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Abstract

The problem of automatically computing focal lengths of a pair of cameras from corre-
sponding pair of images has long been a daunting task for 3D reconstruction community.
A number of methods were developed, but the commonly held view is that neither of
them works good enough to be used in practical situations. We focus on the particular
task of computing focal lengths from the point correspondences, which we deem to be
the missing link for the problem solution.

We especially focus on existing algebraic solvers for computing the fundamental ma-
trix and the Bougnoux formula for computing the focal lengths therefrom. We survey
these methods, as well as iterative methods [10, 4] proposed as their extensions, and
analyze their performance. Our results show that the number of imaginary estimates,
as well as the error of the estimation, declines with growing number of correspondences
used. Moreover, based on our analysis we suggest that the computation of the ratio of
focal length r = f2/f1 is more robust than computation of f1 or f2 alone. We propose
an improvement to the solver of [10] based on this suggestion.

We furthermore assess performance of the methods in degenerate situations, and
show that for bigger levels of noise the effect of the degeneracies significantly decreases.
Specifically, the degenerate case of intersecting optical axes is shown to almost vanish
for realistic levels of noise.

We finally analyze the problem of computing focal length from the theoretical stand-
point of algebraic geometry, and give two new formulae for computing camera focal
length from a fundamental matrix. We show that using the right of them might help
to avoid a known degeneracy. Specifically, the degeneracy where the plane defined by
the baseline and the optical axis of one camera is perpendicular to the plane defined by
the baseline and optical axis of the other camera, and where Bougnoux ([3]) formula
fails can in some cases be avoided. The degeneracy reduces to the case where all three
formulae fail.

Keywords: computer vision, 3D reconstruction, minimal problems, focal length, Gröb-
ner basis
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Abstrakt

Problém automatického výpočtu ohniskových vzdálenost́ı dvou kamer z odpov́ıdaj́ıćıch
obrázk̊u je stále obt́ıžnou úlohou pro komunitu 3D rekonstrukce. Pro vyřešeńı tohoto
problému byla navržena řada metod. Má se ale za to, že žadná z nich nefunguje natolik
dobře, aby mohla být použita v praktické situaci. V této tezi se proto zaměř́ıme na
úlohu výpočtu ohniskové vzdálenosti z korespondenćı v obrázku, kterou považujeme za
chyběj́ıćı článek pro vyřešeńı problému.

Zejména se zaměř́ıme na existuj́ıćı algebraické solvery pro výpočet fundamentálńı
matice, a na Bougnoux̊uv vzorec, který z ńı vypočte ohniskovou vzdálenost. Tyto
metody prozkoumáme a zanalyzujeme jejich výkonnost. Ukážeme, že počet imaginárńıch
odhad̊u, jakož i chyba odhadu ohniskové vzdálenosti klesaj́ı s rostoućım počtem použitých
korespondenćı. Rovněž zanalyzujeme degenerace metod a jejich efektivitu v degen-
erovaných situaćıch, stejně jako výkon existuj́ıćıch iteračńıch solver̊u [10, 4], a navrhneme
zlepšeńı solveru [10].

Dále provedeme analýzu problému výpočtu ohniskové vzdálenosti z hlediska alge-
braické geometrie. Ukážeme, že kromě Bougnouxova vzorce existuj́ı daľśı dva vzorce pro
výpočet ohniskové vzdálenosti kamery z fundamentálńı matice. Ukážeme, že použit́ım
spravného z těchto vzorc̊u se můžeme v některých př́ıpadech vyhnout známé degeneraci.
Konkrétně takové, kde rovina definovaná baselineou a optickou osou jedné kamery je
kolmá na rovinu definovanou baselineou a optickou osou druhé kamery, a kde Boug-
noux̊uv vzorec [3] selhává. Degenerace se redukuje na př́ıpad, kdy selhávaj́ı všechny
tři vzorce.

Kĺıčová slova: poč́ıtačové viděńı, 3D rekonstrukce, minimálńı problémy, ohnisková
vzdálenost, Gröbnerovy báze
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1. Introduction

1.1. Motivation

We analyze the problem of computing epipolar geometry of two partially calibrated
cameras, where only the focal lengths are unknown.

Estimating epipolar geometry with unknown focal lengths is an important issue in
practical problems. In the laboratory environment it is possible to calibrate the camera
beforehand using established procedures [9]. When taking images in the wild, however,
it is often impractical or impossible to use these procedures. It is desirable to have an
automated procedure to estimate camera calibration from images themselves.

The usual way [25, 24, 21] to estimate camera external and internal parameters is to
extract points of interests [2, 19] with tentative correspondences, and use RANSAC [23]
method for joint estimation of correspondence inlier pairs and camera parameters. In
RANSAC, a procedure to compute camera parameters from a (preferably small) num-
ber of points is needed. These procedures, that essentially are used as black box in
RANSAC, are called minimal problems because it is desirable to find a procedure that
would use the theoretical minimum number of correspondences.

The basic procedure to compute the focal lengths and epipolar geometry given cor-
respondences consists of two steps: finding a fundamental matrix and decomposing the
matrix into calibration matrices and essential matrix. For the first task, the minimal
needed number of correspondences is 7. Hartley and Zisserman [9] describe an algo-
rithm for this which uses 7 correspondences as well as the singularity condition. The
algorithm gives three different estimations of the matrix, i.e. one correct and two false
ones. Hartley [11] also summarizes an algorithm by Longuet-Higgins [18] which uses 8
correspondences instead. Bougnoux [3] gives a concise formula to compute focal length
from the fundamental matrix, if the rest of calibration information, i.e., the principal
point, the skew, the ratio of the pixel dimensions, is known.

The procedure suffers from a number of known failure cases:

• It is not possible to determine a fundamental matrix if the correspondences are in
singular position.

• The camera pair may have intersecting (or parallel) optical axes. In that case it is
impossible to determine the focal lengths.

• The plane defined by the baseline and the optical axis of one camera may be perpen-
dicular to the plane defined by the baseline and optical axis of the other camera. In
this case no focal length can be recovered as the Bougnoux formula fails.

• All computed fundamental matrices may have rank 1 or be complex.

• A computed focal length may be complex.

• There may be no such computed camera configuration where most points in 3D space
lie in front of the cameras.

Because of these deficiencies, the commonly held view is that the algebraic approach
of using 7pt algorithm and Bougnoux formula is not robust, and sometimes fails entirely,
unable to find any valid solution. Hartley [10] argues that in many practical cases this
approach cannot be used. Other methods [10, 27, 14] were proposed to solve this
problem. Neither of these approaches, however, works decisively better.

5



1. Introduction

We analyze the procedure of computing focal lengths from points correspondences
and different degeneracies to show that slight modifications of the procedure allow to
alleviate a number of the problems.

1.2. Related work

Hartley and Silpa-Anan [10] develop an iterative algorithm which incorporates heuristic
estimates (prior knowledge) of focal lengths. The authors use optimization on a certain
cost function which includes the Sampson error, priors of focal lengths and priors of
principal points. They show that by allowing the algorithm to move principal point
better results can be obtained. The algorithm shows competitive, although not deci-
sively better performance in comparison to 7pt approach. In this thesis, we propose an
improvement to this algorithm and demonstrate better performance.

Chandraker [4] further explores the idea of using priors of focal lengths. He defines
a simpler cost function, and uses epipolar constraints as hard constraints, instead of
including Sampson error in the cost function. The work considers two same focal
lengths, but the algorithm can be easily extended to incorporate two focal lengths.

Nakatsuji et al. [15] show that even when the two focal lengths are the same, the 7pt
algorithm (which assumes they are different) yields better accuracy than methods which
assume the same focal length. When the 7pt algorithm with the Bougnoux formula fail
to produce a real focal length, he authors use ’subsampling’ procedure. Points are
subsampled from the set of inliers and the focal length is recomputed each time from
the sample until a real focal length is found.

Kanazawa et al. [14] use three views for computing camera parameters (only two-view
correspondences are needed for the method). Exploiting three different view pairs they
are able to give more stable results than two-view methods.

DeepFocal, a recent algorithm by Scott Workman et al. [27], uses a Convolutional
Neural Network to estimate the focal length directly from one image. The neural
network outperforms other approaches based on one view. While an interesting and
fresh idea, authors didn’t compare DeepFocal to any existing two-view approaches,
therefore it is difficult to assess the advantages of the work.

1.3. Thesis structure

Our contributions are presented in Chapters 3, 4 and 5.
In Chapter 2 we survey the basic concepts and establish notation for the thesis. In

Chapter 3 we provide an analysis of the known methods for focal length computation
and show their performance. In Chapter 4 we use algebraic geometry to further analyze
the problem. In Chapter 5 we suggest improvements to the current methods using our
analysis from Chapter 3. We also provide a survey of methods that use prior focal
length information.

6



2. Basic notions

2.1. Camera geometry

The book [9] describes camera geometry, the main topic of this thesis, in chapter 6. All
needed preliminaries are also well described in chapters 1-5 of the book. In the next two
sections we very briefly summarize and recapitulate the topic. We follow the notation
of [9].

2.1.1. Single camera geometry

The most convenient way of representing points in 3D or 2D space while dealing with
camera geometry is using corresponding projective spaces.

Definition 2.1.1. Given a linear vector space Rn, a projective space Pn−1 could be
defined as a factorization of the linear space by a relation ∼:

x1 ∼ x2 ⇐⇒ (∃λ ∈ R\{0} x1 = λx2).

The zero point is also excluded from projective space.

A point Xi =
[
x y z

]T
from 3D linear space R3 can be though of as a point X′ =[

x y z 1
]T

from 3D projective space P3. Similarly, a point X′ =
[
x y z f

]T
can be converted back to the point X =

[
x
f

y
f

z
f

]T
unless f is zero. Because of this

possible conversion we will frequently refer to the same geometrical point as belonging
to projective space Pn−1 as well as linear space Rn simultaneously.

Definition 2.1.2. A projective line is a line of points in projective space Pn. Conve-
niently, it can be also represented by a point from the space Pn. For example, a line in
projective plane ax+ by+ fc = 0, which corresponds to the line ax+ by+ c = 0 in real

plane, can be written as a point l =
[
a b c

]T
.

The Fig. 2.1 shows an essential concept of projecting points from world (3D) space
to image (2D) space. This projection can be described as a linear operation in corre-
sponding projective spaces.

The projection operator is given by camera parameters, which can be divided in two
groups - extrinsic and intrinsic parameters. We next define essential intrinsic parame-
ters.

Definition 2.1.3. The principal axis, also optical axis, is the line passing through
camera center and perpendicular to the image plane.

Definition 2.1.4. The principal point p =
[
px py 1

]T
is the point lying at the

intersection of image plane and principal axis.

Definition 2.1.5. The focal length f is the distance from the camera center to the
principal point.

Camera intrinsic parameters are can be formed into camera calibration matrix.

7



2. Basic notions
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C
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Figure 2.1. Projective camera model. Courtesy of [9]

Definition 2.1.6. A iatrix1 K is a matrix of the form

K =

f 0 px
0 f py
0 0 1

 .
If we assume that the camera center is the world space zero point, principal axis

coincide with Z axis, and image space axes x, y are aligned with world space axes X,
Y (true for the Fig. 2.1), we can project 3D points with only camera intrinsics. The
projection from R3 to P2 image plane is given by xi = KXi.

Extrinsic parameters of a camera i are described by a rotation matrix in the world
space Ri describing camera orientation and the camera center point Ci in the world
space. Given extrinsic and intrinsic parameters, we can construct the full projection
matrix.

Definition 2.1.7. The camera projection matrix Pi can be constructed from camera
parameters and projects points Xi from world space P3 to the image plane P2:

xi = PXi = KR[I| −C]Xi

.

2.1.2. Epipolar geometry

Epipolar geometry, one of the key topics of this thesis, is a geometry of two cameras
seeing the same 3D object.

This section is described in depth in chapter 9 of [9]. As a slight deviation from the
notation of Hartley and Zisserman, cameras and respective image points are indexed
with numbers, e.g., x1, x2 and not x, x′ respectively.

Extrinsic parameters of a camera pair can be concisely given by the translation
vector between camera centers t = C1 −C2 and the rotation matrix between cameras’
coordinate systems R = R2 R

T
1 . If R, t are known, extrinsics R1, R2,C1,C2 are defined up

to a projective transformation.

Geometry of two cameras and a point in the world space seen by both cameras is
usually described in terms of epipoles, which are the key concept of epipolar geometry.

Definition 2.1.8. The baseline is the line in 3D joining two camera centers.

1Throughout this work we assume unity aspect ratio and zero skew.

8



2.1. Camera geometry
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Figure 2.2. Camera pair. Courtesy of [9]

Definition 2.1.9. The epipole ei is the point in image plane that lies at the baseline.
Equivalently, it is the point to which the center of another camera projects.

Definition 2.1.10. An epipolar line l is a line in image plane on which the epipole of
that plane lies.

Definition 2.1.11. An epipolar plane π is a plane in the world space which contains
the line joining camera centers. The plane is associated with two epipolar lines that it
contains.

The information about camera epipolar geometry can be described by a single matrix
as defined next. If interested, see extended discussion and proofs in [9].

Definition 2.1.12. An essential matrix E is a matrix of the form E = R [t]×. The
essential matrix is defined up to overall scaling.

As can be seen from its construction, an essential matrix can only be of rank 2. A
weaker version of this constraint can be stated as the rank constraint:

det E = 0. (2.1)

The two non-zero singular values of an essential matrix are equal. This constraint
can be stated as the next matrix equation (also called the trace constraint):

2EETE− trace (EET)E = 0. (2.2)

The equations 2.1 and 2.2 together are called Demazure polynomials [20].
Essential matrix does not capture intrinsic camera parameters. For this purpose, the

fundamental matrix is used.

Definition 2.1.13. The fundamental matrix F corresponding to an Essential matrix E

is given by

F = K−T2 EK−11 . (2.3)

The fundamental matrix is, like the essential matrix, defined up to overall scaling.

The fundamental matrix of a camera pair defines a specific mapping from points
in one image to epipolar lines in another image. Suppose that given an image point
x1 ∈ P3 and two cameras P1, P2, the line C1x1 in world space is projected by the second
camera to the line l2 ∈ P3 in the second camera image space. Then we can obtain l2
by l2 = Fx1

9



2. Basic notions

Definition 2.1.14. We say that a point in one camera x1 and a point in another
camera x2 form a correspondence if there exists a 3D point X that projects to x1 and
x2.

For each correspondence x1,x2, the fundamental matrix satisfies the so-called Epipo-
lar constraint:

xT
2 Fx1 = 0. (2.4)

As with essential matrices, a fundamental matrix can only be of rank two. On the
other hand, every matrix of rank two is a fundamental matrix [9]. A fundamental
matrix satisfies the rank constraint

det F = 0. (2.5)

A version of trace constraint on fundamental matrix can be formulated by substitut-
ing equation 2.3 into equation 2.2.

2.2. Computing focal lengths from point correspondences

Given a set of points in one image X1 and a set of points in another image X2 that
correspond to the same points X in the world space, it is possible in some cases to
determine the positions of points X as well as intrinsic and extrinsic parameters of
both cameras. This section guides the reader through the process.

Note, that in this part we assume that the point correspondences are given to us
by a black box algorithm. In fact, many algorithms and modifications thereof were
developed to this end, the most notable being the RANSAC family of algorithms [7].

2.2.1. Fundamental matrix computation

First, we need to estimate the fundamental matrix F of a camera pair. In fact, all
the information we need is contained in this matrix. Various algorithms exist that can
compute the matrix F from point correspondences. We present two methods that are, to
our best knowledge, used the most. They are relatively simple and can be implemented
efficiently.

The algorithms which we present can be formulated as so-called algebraic solvers,
which work by way of constructing a set of constraints on the matrix F given the
correspondences, and then solving the constraints in an algebraically precise way, giving
all possible solutions. If the constraints are represented by polynomial equations the
techniques of algebraic geometry can be used to solve these constraints.

We first define the 7pt algorithm. The algorithm uses (at least) 7 different epipolar
constraints 2.4 and the rank constraint 2.5. This gives us 8 constraints on a 3×3 matrix.
Note, however, that all of the constraints are homogeneous polynomials, and thus the
solution to the system will be a finite number2 of linear one-dimensional spaces of
matrices. As a fundamental matrix is defined up to scaling, this corresponds to a finite
number of fundamental matrices. Moreover, the number of matrices can be expected
to be no more than 33.

The algorithm uses SVD procedure which serves as an implicit optimization of the
epipolar constraints. In case that precisely 7 epipolar constraints are given, SVD can

2We suppose that the constraints are algebraically independent. Equivalently, at least 7 of the corre-
spondence point pairs are in general position.

3This number is calculated as the product of degrees of the polynomials entering the system, which is
3 · 17.
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2.2. Computing focal lengths from point correspondences

be replaced with Gauss-Jordan elimination, and the f1, f2 vectors will be a basis of right
null space of the matrix B. Equivalently, the matrices F1, F2 will be a basis of the pace
of matrices that satisfy seven epipolar constraints.

Algorithm 1: 7pt

Data: list of n ≥ 7 right image points x1,i, list of the corresponding left image
points x2,i

Result: Fundamental matrix F

begin
Populate matrix B ∈ Rn×9 with columns bi: bi ← vec(x2,i ⊗ x1,i);
Take the right singular vectors f1, f2 corresponding to the two smallest singular
values and transform them back to matrices F1, F2 ∈ R3×3 ;

if det(F2) = 0 then
return F2;

else
Solve the 3rd degree polynomial in x: det(xF1 + F2) = 0, and choose the
real roots xi.;

return xiF1 + F2;

end

end

Note, that we call this algorithm 7pt because the minimal number of correspondences
it needs is 7. Nevertheless, any number bigger than 7 can also be used. No smaller
number of correspondences can be used, however. It can be proven that the problem of
computing fundamental matrices with two unknown focal lengths is inherently ill-posed
when less than 7 correspondences are given. The algorithm thus solves the problem
using minimal possible number of correspondences.

The second algorithm doesn’t use the rank constraint 2.5. Therefore, generically we
expect the result to be a matrix of rank 3 and not a valid fundamental matrix. The
matrix, however, ”better” satisfies the epipolar constraints 2.4, that is, it is more loyal
to the data. We will compare the performance of this algorithm to 7pt in the later
parts of the work. Note that this algorithm gives precisely one real solution.

Algorithm 2: 8pt

Data: list of n ≥ 8 right image points x1,i, list of the corresponding left image
points x2,i

Result: Fundamental matrix F

begin
Populate matrix B ∈ Rn×9 with columns bi: bi ← vec(x2,i ⊗ x1,i);
Take the right singular vector f corresponding to the smallest singular value
and transform it back to matrix F ∈ R3×3 ;

return F;

end

Note, that we call this algorithm 8pt because the minimal number of correspondences
it needs is 8. Nevertheless, any number bigger than 8 can also be used.

2.2.2. Essential matrix computation

If all calibration information is known, we can estimate essential matrix E instead of F.
This can be done by transforming points so that effects of intrinsic camera parameters

11



2. Basic notions

are removed:

x̃i = K−1i xi.

Then the epipolar constraint 2.4 is satisfied by the essential matrix with respect to
the transformed points:

x̃T
2 Ex̃1 = xT

2 K
−T
2 EK−11 x1 = xT

2 Fx1 = 0.

The algebraic solver for the essential matrix uses the rank constraint 2.1, the trace
constraint 2.2, and needs 5 point correspondences. Note that the trace constraint is
a matrix equation, and therefore actually stands as more than one constraint, which
explains why counting degrees of freedom seemingly fails in this case.

The construction of the solver is considerably more involved than the previous algo-
rithms, therefore we will only refer to the papers that describe it fully.

Nister et al. [22] show in detail how to construct an algebraic solver for this prob-
lem. The paper makes extensive use of theory of algebraic geometry [6, 5]. It is very
instructing to read through the construction of this solver.

We will, however, use another solver, described by Kukelova et al. in [17]. The code
can be found online at ”http://cmp.felk.cvut.cz/mini/”4. This solver, contrary to the
one by Nister et al., makes it possible to use an arbitrary number of correspondences,
which we will take advantage of. We will refer to this solver as 5pt solver.

For those interested, Kukelova et al. give an algorithm (with source code) that
automatically creates solvers for algebraic problems [16].

2.2.3. Focal lengths computation

Bougnoux [3] gives a concise formula to compute focal length from the fundamental
matrix, if principal point position is known. In the next two formulae the matrix I2 is
defined as I2 = diag(1, 1, 0), and e1, e2 are the epipoles of the first and second image
correspondingly.

f21 = −
pT
2 [e2]× I2Fp1p

T
1 F

Tp2

pT
2 [e2]× I2F

TI2Fp2
(2.6)

f22 = −
pT
1 [e1]× I2F

Tp2p
T
2 Fp1

pT
1 [e1]× I2FI2F

Tp1
(2.7)

The second equation may be derived from the first by switching indices and trans-
posing the F matrix.

Note that it is not possible to find a focal length unless both principal points are
known. As these formulae show, generically, the focal lengths are different for different
principal point positions.

2.2.4. Failure cases

We consider the failure cases that may occur while estimating focal length using 7pt
algorithm and the Bougnoux formula.

4Enter ’Polynomial eigenvalue solutions to minimal problems in computer vision’ in the search field.
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2.2. Computing focal lengths from point correspondences

Degeneracies

The first possible degeneracy is that the 7 epipolar constraints 2.4 are linearly dependent.
This means that the system is underconstrained and there will be generically an infinite
number of solutions. A configuration of 7 correspondences which lead to such a system
is said to be in singular position.

Agarwal et al., in a thorough study [1], analyze by algebraic geometry techniques
a degeneration when neither of 3 solutions that 7pt algorithm gives are actually valid
Fundamental matrices. It is shown in the paper that meeting the rank constraint is
not enough for a matrix to be a fundamental matrix, as it needs to be of rank precisely
2. There may be a degeneracy when the matrix is of rank 1 5. However, the constraint
”is not of rank 1” cannot be expressed algebraically in an easy way and doesn’t reduce
the number of degrees of freedom of F, as it only affects an infinitely small fraction of
matrices. The preferable way of dealing with this degeneracy is thus to select only the
valid subset of the 3 solutions given by the 7pt algorithm.

Another degeneracy may occur when the camera pair has intersecting (or parallel)
optical axes. In that case it is impossible to determine the focal lengths [13]. We now
formulate a concise condition which describes when this can happen.

Lemma 2.2.1. Optical axes of cameras P1, P2 as lines in projective P3 space intersect6

if and only if the principal points p1, p2 satisfy the epipolar constraint

pT
2 Fp1 = 0.

Moreover, if the principal points are zero points p1 = p2 =
[
0 0 1

]T
, the optical

axes intersect if and only if the rightmost lowest element of the corresponding funda-
mental matrix F is zero

F3,3 = 0

.

Proof. The first part. If optical axes intersect, the point at their intersection is projected
to images’ principal points. Thus, principal points form a correspondence and must
satisfy the epipolar constraint. Conversely, if the principal points satisfy the epipolar
constraint, they must lie in an epipolar plane (see Fig. 2.2). The optical axes are then
also lying in the epipolar plane, and each two projective lines in a plane intersect.

The second part. Consider the following:

pT
2 Fp1 =

[
0 0 1

] F1,1 F1,2 F1,3
F2,1 F2,2 F2,3
F3,1 F3,2 F3,3

0
0
1

 =
[
0 0 1

] F1,3F2,3
F3,3

 = F3,3

A further degeneracy [9] occurs when the plane defined by the baseline and the optical
axis of one camera is perpendicular to the plane defined by the baseline and optical
axis of the other camera. In this case the Bougnoux formulae have zero denominator
and thus fail to estimate the focal lengths.

5We suppose that algorithm does not return zero solution F = 03,3. Our formulation of the 7pt
algorithm indeed does not naturally produce this solution.

6In projective space we say that two parallel lines intersect at a point at infinity.
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2. Basic notions

Invalid solutions

There are also cases when the matrix and the focal lengths can be computed but don’t
correspond to any real camera configuration.

Some solutions that may need to be filtered out are complex F matrices. In the 7pt
algorithm, as we are solving a 3rd degree polynomial, we may end up with 2 complex
and one real solution. This might be a problem if the real solution F is a matrix on
rank 1, and thus we don’t have any valid result.

Hartley shows in [10] that the focal lengths computed may be imaginary, which again
leads to impossible camera configuration. This happens because the focal length enter
the Bougnoux formulae (Eq. 2.6) only squared, so a negative estimation of f2 leads to
a purely imaginary focal length and can occur even when all the coefficients are real.
Hartley argues that this is unacceptable and addresses the problem by developing a
new algorithm to find a matrix which will have a valid focal length.

Another problem is described in conjunction with the notion of cheirality in [12].
In the projective camera model, we allow the points from behind the camera to be
projected to image plane. This introduces an ambiguity when decomposing the essential
matrix into rotation and translation. Four different camera pairs can be constructed
that will have the same essential matrix, corresponding to two possible orientations of
each camera, one that has points in front of it and one that has points behind.

Normally, we are able to pick the right reconstruction by selecting the camera pair
such that cameras have points in front of them in world space. However, with presence of
large noise it can happen that no such camera pair will exist. Usually the configuration
that has the points in front of it is chosen, but this strategy can produce a wrong
configuration.

2.3. Algebraic Geometry

This section serves as a brief introduction of the topic of algebraic geometry. We follow
the notation of Cox et al. from [6][5]. We refer an interested reader to these books.

First we define the key algebraic object of the algebraic geometry.

Definition 2.3.1. Given a polynomial ring C[x1, x2, . . . , xn], an ideal I is such a subset
of the ring that is closed under addition as well as under multiplication by a polynomial
from C[x1, x2, . . . , xn]. Specifically,

∀f1, f2 ∈ I : f1 + f2 ∈ I
∀f ∈ I, h ∈ C[x1, x2, . . . , xn] : hf ∈ I.

We can generate a geometrical object from an ideal, as outlined in the next definition.

Definition 2.3.2. We define a function V(I) = V , where I ⊂ C[x1, x2, . . . , xn], and
V ⊂ Cn.

V(I) = {a ∈ Cn | f(a) = 0 for all f ∈ I}

Intuitively, V is a set of solutions to a (possibly infinite) system of polynomial equa-
tions I.

The geometrical sets that can be constructed in such a way are called varieties.

Definition 2.3.3. A variety V is such a set V ⊂ Cn that V(I) = V for some system
of polynomial equations I ⊂ C[x1, x2, . . . , xn].
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2.3. Algebraic Geometry

We can also generate an ideal back from a variety.

Definition 2.3.4. We define a function I(V ) = I, where V ⊂ Cn, and I ⊂ C[x1, x2, . . . , xn].

I(V ) = {f ∈ C[x1, x2, . . . , xn] | f(a) = 0 for all a ∈ V }.

Intuitively, I is a maximal set of polynomial equations that determines the geometrical
set V .

A known result [6] is that V(I(V )) = V . Under a certain assumption7, the opposite
is also true I(V(I)) = I.

An important notion of Gröbner bases is somewhat analogical to linear bases from
linear algebra. Defining Gröbner bases requires more involved terms, so we won’t do it
here. Instead, we state an important result, which offers an intuitive understanding of
them.

Definition 2.3.5. If G is a Gröbner basis G = {g1, g2, . . . , gm} ⊂ I of an ideal
I ⊂ C[x1, x2, . . . , xn], then:

I = 〈g1, g2, . . . , gm〉 = {
m∑
i=1

higi | h1, h2, . . . , hm ∈ C[x1, x2, . . . , xn]}

An important result [6] states that every ideal defined on a finite-dimensional poly-
nomial ring has a finite Gröbner basis. Continuing the analogy with linear bases, a
Gröbner basis of a set of polynomials of degree 1 (i.e., linear equations) system is
indeed its linear basis.

7When the ideal concerned is a so-called radical ideal [6].
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3. Experimental analysis of existing solutions

In this chapter we provide an assessment of the the quality and stability of the 7pt
algorithm (algorithm 1) with the Bougnoux formula (Eq. 2.6). We consider this pipeline
as essentially integral baseline procedure for estimation of the focal lengths from image
correspondences.

3.1. Experimental setup

We assume zero skew and unity aspect ratio in both cameras and consider a partially
calibrated problem, i.e., the principal points are known. We assume that the images
were preprocessed in a way that principal points are always in the center. This means
that the calibration matrices after this preprocessing are of shape

Ki =

fi 0 0
0 fi 0
0 0 1

 .
Different cameras are allowed to have different focal lengths.

3.1.1. Evaluation procedure

The setup for most experiments in the work is as follows:

Algorithm 3: Workflow

Data: The number of correspondences used n, noise σ
1 begin
2 Create a camera pair P1, P2 with focal lengths f1,f2;
3 Create a point cloud X ∈ R3×n of n points in 3D ;
4 Project X to the cameras P1 and P2, producing the ground truth image point

sets x
gt
1 , xgt2 ∈ R2×n ;

5 Apply additive noise drawn from N (0, σ2) to both x, y coordinates of each

point from x
gt
1 and x

gt
2 . This produces observed image point sets xob1 and xob2

correspondingly ;
6 Select 7 pairs of corresponding points x1 and x2, and let the remaining pairs to

be the test set xtest1 , xtest2 ;
7 Get the Fi estimates of the fundamental matrix F from the correspondences

x1, x2 (e.g. i = 1 . . . 3 when using the 7pt algorithm (algorithm 1)). Leave
only matrices with real elements;

8 Choose the estimation that optimizes Sampson error (equation 3.2) on the test
set;

9 Estimate the focal lengths from the fundamental matrix F using the
formulae 2.6 and 2.7;

10 end
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Figure 3.1. Error function 3.1 for the focal length, where fgt is fixed to 1.

3.1.2. Estimation quality measure

We treat error in focal length estimation as multiplicative, so that the error in case
where the ground truth fgt = 1000 and computed value fob = 2000 is the same as error
in case where the ground truth fgt = 100 and computed value fob = 200. More precisely
the error is given by

e(fgt, fob) = 1− min(fgt, fob)

max(fgt, fob)
. (3.1)

The error function for fixed ground truth value fgt = 1 is shown in the Fig. 3.1.
For measuring the quality of a fundamental matrix we use the Sampson error:

S(F) =
∑
i

(xT
2 Fx1)

2

(Fx1)21 + (Fx1)22 + (xT
2 F)21 + (xT

2 F)22
. (3.2)

3.2. Performance analysis for generic situations

In this section we analyze the focal length computation performance for a generic scene,
in which a degeneracy is unlikely to occur.

In experiments, we each time generate a random set of points and a random camera
pair so that the set of correspondences in each image span at least 1000 × 1000 pixel
square.

3.2.1. Overall analysis

We analyze the behavior of the pipeline against different numbers of given correspon-
dences and different levels of noise. The quality of the estimation is assessed by com-
puting the median of focal lengths computation error e and its 0.25 and 0.75 quantiles.
In these experiments we discard each all imaginary estimates.

The Fig. 3.2 shows a rapid decline in error with growing number of correspondences.
This is explained by the fact that both algorithms use SVD procedure to optimize error
on epipolar constraints. With bigger number of correspondences the error caused by
random noise is averaged and the estimation becomes more stable.

The Fig. 3.3 shows the growth of the error with increasing noise. The number of
correspondences used is 8 for both algorithms. We see that the error growth is ap-
proximately linear and quite mild, e.g., with additive noise of 3 pixels the error is still
bearable. For realistic values of noise around 1 pixel, the error is reasonably small.

Another important trend is shown in the Fig. 3.4 is the decrease of number of imag-
inary estimates with increasing number of correspondences used. We suggest that
imaginary focal lengths are due to high level of noise, and appear less often when the
noise is averaged over a big number of correspondences.
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Figure 3.2. A Comparison of the 7pt and 8pt algorithms against the number of correspondences
used. Median error f − f true in focal length and two its 0.25, 0.75 quantiles are shown. The
ground truth f true is equal to 1500. The level of noise σ is equal to 1. Imaginary estimates
are excluded.

We conclude that when the estimate of the focal lengths is real we can generally
expect it to be quite precise and usable for most practical cases. More correspondences
insure good performance, and moderate amounts of noise can be handled well. The 7pt
algorithm performs better for most applications, however, interestingly enough, the 8pt
algorithm gives less imaginary estimates.

3.2.2. Ratio of focal lengths is robust

We will continue to analyze the 7pt algorithm, as it apparently performs better than
the 8pt algorithm on average. The 7pt algorithm also has the theoretical advantage in
that it never gives a matrix of rank 3 (remember that a fundamental matrix is always
of rank 2).

We show empirically that the ratio r = f2/f1 computation is more robust than
computation of f1 or f2 alone. To show it we conduct an experiment with 300 different
noise samples applied to the same camera geometry. We exclude extreme outliers.

The Fig. 3.5 shows scattered estimated points in the space (f1, f2). If the distribution
of estimates in this space doesn’t have additional structure, we expect these estima-
tions to lie around the ground truth, perhaps similar to a two-dimensional Gaussian
distribution. However, it can be seen that while the deviation of focal lengths from
the ground truth point is relatively big, the points clearly tend to the line f2/f1 = 3/4

18



3.2. Performance analysis for generic situations

0 1 2 3 4 5 6

level of noise 

0

200

400

600

800

1000

1200

1400

e
rr

o
r 

in
 f

o
c
a

l 
le

n
g

th

8pt 0.75 quantile

8pt median

8pt 0.25 quantile

7pt 0.75 quantile

7pt median

7pt 0.25 quantile

Figure 3.3. A comparison of the 7pt and 8pt algorithms against noise level σ. The ground
truth f true is equal to 1500. 40 correspondences are used.

(given in blue), which is indeed the ground truth for the ratio. Imaginary estimates are
also shown in absolute values, which, interestingly, also tend to have the right ratio.
We will expand on this in the next section.

We conclude that the computation of the ratio of the focal lengths r by Bougnoux
formula is more robust than the the computation of focal lengths themselves by the
Bougnoux formula. We will use this fact later to construct a more robust solver.

3.2.3. Imaginary focal lengths

We empirically show that the ratio of the focal lengths is robust even when both focal
lengths are imaginary. The probability of getting an imaginary focal length also isn’t
connected to distance between optical axes.

Fig. 3.6 shows the experiment. The figure is the histogram of different errors in ratio
(measured as f2/f1 − (f2/f1)gt). A small number of outliers lies far off the graph.
Clearly, the likelihood that a focal lengths ratio is estimated better is bigger when
the focal lengths are real. However, the Fig. 3.6 shows that the ratios computed from
imaginary focal lengths also fall reasonably close to the ground truth, in the sense that
the mean of their distribution seem to converge to the ground truth ratio.

The distribution of the imaginary focal lengths itself is shown in the Fig. 3.8. We
see that for bigger values of error, the number of imaginary estimates is roughly equal
to the number of real ones, in other words, the likelihood of getting an imaginary focal
length estimate is around 50% when the error in focal length estimate is bigger than
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Figure 3.4. The fraction of imaginary focal length estimates by the 7pt and 8pt algorithms.
The noise level σ in image measurements is equal to 1.

twofold.
We suggest that there is a hidden variable that is susceptible to noise and makes both

focal lengths imaginary when the level of noise is high. It doesn’t, however, affect the
absolute values of the squares of the focal lengths. The variable seems to be selecting
the sign of the square of the focal lengths in a way that the higher the noise is the more
probable it is that the sign will be negative.

One of our guesses was that the probability of having imaginary estimate can increase
when the situation becomes close the degenerate. In the next experiment we assess the
degree of degeneracy by the length of shortest transversal between the optical axes.
When the length is zero, the optical axes intersect.

The Fig. 3.7 shows the estimated ratios r = f2/f1. We see that the fraction of
imaginary estimates does not depend on the length of shortest transversal. We also see
how both ratios computed from real and imaginary estimates tend to the ground truth.
We plot the ratios estimated from imaginary values of the focal lengths with negative
sign and in red to distinguish it from the ratios estimated from the real values, which
are shown in blue.
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Figure 3.5. The scatter plot of the focal lengths (f1, f2) estimates by the 7pt algorithm for one
scene. Line through ground truth ratio r = f2/f1 is given for reference. Ground truth point
also shown in green. Imaginary estimates are shown in absolute value. The noise level σ in
image measurements in image measurements is equal to 1. Seven correspondences are used.
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3. Experimental analysis of existing solutions

Figure 3.6. The histogram of errors in the ratio of focal length estimations by 7pt algorithm,
i.e. f2/f1 − f true2 /f true1 . The cases with at least one imaginary focal length are shown in a
separate histogram (orange), the cases where both focal length were real are shown in blue.
Red color is shown where an orange is supersimposed over blue. 40 correspondences are used,
and level of noise σ is equal to 1. A small number of outliers lies far off the graph.
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Figure 3.7. Scatter plot of focal lengths ratio r = f2/f1 estimates produced by 7pt algorithm.
Ratios corresponding to imaginary focal lengths are plotted as negative to distinguish them
(they are positive). On X axis is the distance between optical axes. A small number of
outliers lies far off the graph.. 40 correspondences are used.
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3. Experimental analysis of existing solutions

Figure 3.8. The distribution of multiplicative errors (equation 3.1) in the focal lengths, pro-
duced by 7pt algorithm. Separate distributions are shown for the case with both real focal
lengths (blue) and for the case with at least one imaginary focal length (orange). Red color is
shown where the orange is supersimposed over blue. 40 correspondences are used, and level
of noise σ is equal to 1.
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3.3. Performance analysis for close to degenerate situations

3.3. Performance analysis for close to degenerate situations

In theory, there does not exist a method to recover focal length when the optical axes
intersect. With a small amount of noise in the image measurements, however, the
configuration no longer is singular. The focal lengths thus can be computed in almost
all practical situations. Nonetheless, we expect pose estimation to deteriorate as the
configuration becomes close to singular due to numerical instability. In this section we
show the extent of this deterioration. For the fundamental matrix estimation, we will
use the 7pt algorithm, as it apparently performs better than the 8pt algorithm.

3.3.1. Intersecting optical axes

In this scenario, two non-parallel optical axes are initially in a plane and we lift one
camera away from the plane to distance d. The optical axes become skew lines. We
compare the quality of estimations for different distances d and levels of noise σ. In
our setup the distance between camera centers is 1 m and the mean distance from the
cameras to the scene points is 5 m.

The Fig. 3.9 shows the distribution of multiplicative errors in the focal length esti-
mates by the 7pt algorithm. The figure shows 4 different levels of noise, and each line
represent a distance d. We see that for small values of noise, σ � 0.1 px, the distance
between the optical axes significantly affects 7pt algorithm performance. The perfor-
mance deteriorates greatly with decreasing distance between optical axes. For more
realistic noise levels, however, the Fig. 3.9 shows that the distance has little impact
on the quality of estimation. With 1 pixel noise, the performance is almost the same
and axes that are 10 cm or 1 cm apart. A 50 cm transversal configuration, which we
assume is not influenced by the degeneration is marginally more suitable for reconstruc-
tion. Even for configuration with axes distance zero, the performance is still acceptable
(because of the noise in image measurements), with 75% of estimations being off by a
factor of at most 2.

We suggest this happens because the noise in image measurements drives the system
further away from a degenerate situation.

3.3.2. Parallel optical axes

An interesting configuration is when the optical axes intersect at a point at infinity, i.e.,
when they are parallel.

In this scenario, two optical axes are initially parallel and we rotate one axis away
from the common plane of the axes by angle α. As we rotate one axis away, it is no
longer parallel to the other one. We compare the quality of estimations for different
angles α and levels of noise σ.

Fig. 3.10 shows the results. We see that the quality of estimation is much worse for
truly parallel axes and small noise in image correspondences does not save the situation.
However, the degeneracy almost disappears already when the angle α reaches 0.1◦.

3.3.3. Conclusions

We have shown that the 7pt algorithm performs better for most applications. However,
interestingly, 8pt algorithm gives less imaginary estimates.

Using more correspondences allows us to make much better results and get imaginary
estimates less often. The ratio r = f2/f1 seems to be more robust than the focal lengths
themselves. The ratio is also usable even when the focal lengths are imaginary.
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3. Experimental analysis of existing solutions

0 0.5 1

error magnitude

0

50

100
fr

e
q
u
e
n
c
y
, 
%

noise 1px

0 0.5 1

error magnitude

0

50

100

fr
e
q
u
e
n
c
y
, 
%

noise 0.1px

0 0.5 1

error magnitude

0

50

100

fr
e
q
u
e
n
c
y
, 
%

noise 0.01px

0 0.5 1

error magnitude

0

50

100

fr
e
q
u
e
n
c
y
, 
%

noise 0.001px

0 cm

0.1 cm

0.2 cm

0.5 cm

1 cm

2 cm

5 cm

10 cm

50 cm

Figure 3.9. The cumulative distribution of the estimated focal length multiplicative error
(equation 3.1) for nearly intersecting optical axes. Different lines show different distances
between optical axes in centimeters. 7pt algorithm is used

We confirmed that the imaginary focal lengths are indeed signs of a highly corrupt
solution, and the fundamental matrices that decompose into imaginary focal lengths
should be discarded.

Of two types of camera configuration degeneracy, intersecting optical axes do not
pose a significant risk for camera reconstruction, especially for real-life noise levels. A
configuration with parallel or nearly parallel optical axes, however, is a harder case
where more than a half of reconstructions may be off by a factor of two and more.
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3.3. Performance analysis for close to degenerate situations
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Figure 3.10. The cumulative distribution of the estimated focal length multiplicative error
(equation 3.1) for nearly parallel optical axes. Different lines show different angles between
optical axes in degrees. 7pt algorithm is used
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4. Algebraic analysis of focal lengths computation

In this section we analyze the methods for computing focal lengths from point cor-
respondences by the algebraic geometry techniques. We show that indeed three and
only three fundamental matrices (some possibly complex or of rank 1) can be derived
using algebraic geometry. We analyze the degeneracies of the computation. We also
show that three different formulae exist for computing focal lengths from a Fundamen-
tal matrix. One of these is the Bougnoux formula 2.6, and two others weren’t known
before.

4.1. Analysis

We analyze the set of valid fundamental matrices of camera pairs calibrated up to focal
lengths using techniques of algebraic geometry. To this end, we use Macaulay2 [8], a
programming language and also a software pack for algebraic geometry and abstract
commutative algebra. Macaulay2 tends to have an intuitive interface for many algebraic
operations and, in general, code can be read as easily as mathematical equations. For
this reason, instead of mathematical language, we will use in this section Macaulay2
code snippets directly. This helps to make our results reproducible, too.

In algebraic terms, we choose to describe the set of valid Fs as a variety in a field of
rational numbers Q11 of 11 unknowns, 9 for elements of the fundamental matrix F and
2 for focal lengths f1, f2. We assume that the principal points p1, p2 are zero.

The ideal Gs is the ideal generated by rank 2.5 and trace constraints 2.2 and saturated
by the ideal 〈f1 f2〉. The saturation is desirable, because it can remove large spurious
components corresponding to cases when f1 = 0 or f2 = 0, which can’t happen in any
real camera systems.

Below is a snippet of Macaulay2 code explaining the construction of Gs.

R = QQ[f1,f2,f11,f12,f13,f21,f22,f23,f31,f32,f33, MonomialOrder=>Lex]

F = matrix{{f11,f12,f13},{f21,f22,f23},{f31,f32,f33}}

K1 = matrix{{f1, 0, 0}, {0, f1, 0}, {0, 0, 1}}

K2 = matrix{{f2, 0, 0}, {0, f2, 0}, {0, 0, 1}}

E = transpose(K2)*F*K1 -- Essential matrix

Et = transpose E

G = ideal(det(E)) + minors(1, 2*E*Et*E - trace(E*Et)*E);

dim G, codim G, degree G

Gs = saturate(G,ideal(f1*f2)); -- det(K1),det(K2) are non-zero

dim Gs, codim Gs, degree Gs -- dimension, codimension and degree

The ideal Gs contains constraints under which a matrix is generically a fundamental
matrix. The variety V(Gs) therefore is a variety that contains all valid fundamental
matrices. It also contains more matrices, specifically those of rank 0 and 1. Generi-
cally, however, we expect a matrix from the variety to be of rank 2. Moreover, when
considered in the algebraically closed field C, the variety does contain some complex
matrices. In practical situations however, when considering a solver constructed this
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4.2. Computing focal lengths

way, we can just sort out the spurious solutions afterwards as there will be only three
solutions in total.

The 7pt algorithm can be regarded as intersecting the variety V(Gs) it with 7 hy-
perplanes, and it gives us three different solutions. The solutions are actually one-
dimensional subspaces, and therefore we would expect the ideal Gs to have dimension
8, which it indeed has.

The next snippet shows how to compute algebraic conditions in terms of elements of
Fundamental matrix only, by eliminating f1, f2.

M = eliminate(Gs,{f1,f2});

dim M, codim M, degree M

-- the commands "mingens gb" give a minimal set of generators

-- for the groebner basis of an ideal

m = mingens gb M

After executing the above, we see that the ideal M has only one generator - the
det(F) polynomial. This means that the algebraic constraints on the set of fundamental
matrices of up to focal lengths calibrated camera pairs are the same as for the fully
uncalibrated camera case. It can be deduced that a seven-tuple of corresponding points
obtained by completely uncalibrated cameras can also be explained by cameras with
two unknown focal lengths when the focal lengths are allowed to attain non-real values.

It also means that only the rank constraint 2.1 is needed to solve the system, and
the trace constraint is extraneous. The trace constraint, however, allow us to compute
the focal lengths.

4.2. Computing focal lengths

In the next snippet we show how the Bougnoux formula [3] can be derived with algebraic
geometry, given as a polynomial in the entries of F. This is done by eliminating one of
the focal lengths from the ideal Gs. It turns out that the Gröbner basis of the eliminated
ideal si contains the determinant of F and additional three polynomials, from which a
formula for computing the focal length that wasn’t eliminated can be deducted. This
means that there exist three algebraically independent constraints on each focal length.

s2 = mingens gb eliminate(Gs,f1)

s1 = mingens gb eliminate(Gs,f2)

-- Formulae for f1

(m11,c11) = coefficients(s1_1_0,Variables=>{f1}) -- extract coefficients

(m12,c12) = coefficients(s1_2_0,Variables=>{f1}) -- extract coefficients

(m13,c13) = coefficients(s1_3_0,Variables=>{f1}) -- extract coefficients

-- Formulae for f2

(m21,c21) = coefficients(s2_1_0,Variables=>{f2}) -- extract coefficients

(m22,c22) = coefficients(s2_2_0,Variables=>{f2}) -- extract coefficients

(m23,c23) = coefficients(s2_3_0,Variables=>{f2}) -- extract coefficients

We see that there exist three formulae for each focal length, for example,

f22 = −c230,1
c230,0

= − F3,3(F1,1F2,3F3,1 + F1,2F2,3F3,2 − F1,3F2,1F3,1 − F1,3F2,2F3,2)

(F21,1F1,3F2,3 − F1,1F
2
1,3F2,1 + F1,1F2,1F

2
2,3 + F21,2F1,3F2,3

− F1,2F
2
1,3F2,2 + F1,2F2,2F

2
2,3 − F1,3F

2
2,1F2,3 − F1,3F

2
2,2F2,3)

. (4.1)
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4. Algebraic analysis of focal lengths computation

It can be checked that this formula is equivalent to the Bougnoux formula by expressing
the latter directly in terms of Fundamental matrix elements. The two other formulae
are:

f22 = −c220,1
c220,0

= −
F3,3(F1,1F3,1F3,3 + F1,2F3,2F3,3 − F1,3F

2
3,1 − F1,3F

2
3,2)

(F21,1F1,3F3,3 − F1,1F
2
1,3F3,1 + F1,1F2,1F2,3F3,3 + F21,2F1,3F3,3

− F1,2F
2
1,3F3,2 + F1,2F2,2F2,3F3,3 − F1,3F2,1F2,3F3,1 − F1,3F2,2F2,3F3,2)

.

(4.2)

f22 = −c210,1
c210,0

= −
F3,3(F2,1F3,1F3,3 + F2,2F3,2F3,3 − F2,3F

2
3,1 − F2,3F

2
3,2)

(F1,1F1,3F2,1F3,3 − F1,1F1,3F2,3F3,1 + F22,1F2,3F3,3 − F2,1F
2
2,3F3,1

+ F1,2F1,3F2,2F3,3 − F1,2F1,3F2,3F3,2 + F22,2F2,3F3,3 − F2,2F
2
2,3f3,2)

. (4.3)

The formulae for the other focal length f1 may be obtained by transposing the fun-
damental matrix. The undertaken analysis of the formulae has shown that generically
they differ little in terms of stability and quality of estimations. However, as the de-
nominators of the formulae are different, each of them has its own degeneracies, where
another one may succeed instead. We proceed to give examples of such situations.

It can be shown by substitution that the Bougnoux formula vanishes whenever either
first or second column of F is the zero vector. Of the formulae we found, however,
the third formula (Eq. 4.3) does not necessarily vanish when the first column of F

is zero, and the second formula (Eq. 4.2) does not necessarily vanish when the second
column is zero. When the third column is zero, all the formulae either vanish or become
p(F) f22 = 0. The focal lengths cannot be reconstructed in this case per lemma 2.2.1, as
F3,3 = 0.

Example 4.2.1. The pair of cameras P1, P2 both have their optical axes almost per-
pendicular to the baseline (tilted by an angle of π/10) and experience the degeneration
where the plane defined by the baseline and the optical axis of one camera is perpen-
dicular to the plane defined by the baseline and optical axis of the other camera [9].
The calibration matrices are identity matrices. More precisely, the fundamental matrix
of the pair is:

Rtilt =

 cos(π/10) 0 sin(π/10)
0 1 0

− sin(π/10) 0 cos(π/10)


F = R ∗ [t]× = Rtilt

1 0 0
0 0 −1
0 1 0

Rtilt
0 0 0

0 0 −1
0 1 0

 ≈
0 0.3 0.3

0 0.9 0
0 0.1 0.9


By substitution, the first and second (Eqs. 4.2, 4.1) vanish on this example,, i.e.,

assume the form 0 f22 = 0, but the third formula (Eq. 4.3) successfully gives a correct
focal length estimate.

The example 4.2.1 shows that there among all configurations known to be degenerate
for the Bougnoux formula, there exist some that can be successfully solved by using the
correct formula of the existing three. We see that specifically the degeneration when
the plane defined by the baseline and the optical axis of one camera is perpendicular to
the plane defined by the baseline and optical axis of the other camera can be, at least in
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4.3. The ratio formula

some cases, solved. We also see that in the example 4.2.1 the configuration corresponds
to a fundamental matrix which has the first column equal to zero vector.

Note that there still remains a degeneracy when each of the three denominators
vanishes. When this happens, the focal lengths cannot be reconstructed from the
matrix F, as there are no constraints on them (they can have any value). The next
example shows when this degeneracy might occur.

Example 4.2.2. The pair of cameras P1, P2 are similar as in the example 4.2.1, but
without tilt, i.e., they both have their optical axes perpendicular to the baseline. They
also experience the degeneration where the plane defined by the baseline and the optical
axis of one camera is perpendicular to the plane defined by the baseline and optical axis
of the other camera. The calibration matrices are identity matrices. More precisely,
the fundamental matrix of the pair is:

F = R ∗ [t]× =

1 0 0
0 0 −1
0 1 0

0 0 0
0 0 −1
0 1 0

 =

0 0 0
0 −1 0
0 0 −1


By substitution, all three formulae (Eqs. 4.3 4.2, 4.1) vanish on this example, i.e.,

assume the form 0 f22 = 0

Based on the examples 4.2.1, 4.2.2 we conjecture that the remaining degeneracy is
the case when the both camera have their optical axes perpendicular to the baseline,
and also experience the degeneration where the plane defined by the baseline and the
optical axis of one camera is perpendicular to the plane defined by the baseline and
optical axis of the other camera. In this case all three formulae should fail.

4.3. The ratio formula

We present a formula to compute directly the ratio r = f2/f1. Note that unlike focal
length formulae, there can be only one algebraically independent formula for computing
the ratio.

r =
f2

f1
=

F21,1F
2
3,1F3,3 + 2F1,1F1,2F3,1F3,2F3,3 − F1,1F1,3F

3
3,1 − F1,1F1,3F3,1F

2
3,2

+ F21,2F
2
3,2F3,3 − F1,2F1,3F

2
3,1F3,2 − F1,2F1,3F

3
3,2 + F22,1F

2
3,1F3,3 + 2F2,1F2,2F3,1F3,2F3,3

− F2,1F2,3F
3
3,1 − F2,1F2,3F3,1F

2
3,2 + F22,2F

2
3,2F3,3 − F2,2F2,3F

2
3,1F3,2 − F2,2F2,3F

3
3,2

F21,1F
2
1,3F3,3 − F1,1F

3
1,3F3,1 + 2F1,1F1,3F2,1F2,3F3,3 − F1,1F1,3F

2
2,3F3,1

+ F21,2F
2
1,3F3,3 − F1,2F

3
1,3F3,2 + 2F1,2F1,3F2,2F2,3F3,3 − F1,2F1,3F

2
2,3F3,2

− F21,3F2,1F2,3F3,1 − F21,3F2,2F2,3F3,2 + F22,1F
2
2,3F3,3 − F2,1F

3
2,3F3,1 + F22,2F

2
2,3F3,3 − F2,2F

3
2,3F3,2

(4.4)

Computing the ratio directly from F can offer greater speed and more stability than
computing it from the focal lengths. Indeed, we observed that for close to degenerate
situations, the formula, although marginally, is a better estimator.

4.4. Computing Fundamental matrices

We show in detail how the 7pt solver works from the viewpoint of algebraic geometry.

We first simulate a random set of correspondences. We skip this code for brevity
and assume that the matrix B is a matrix from the 7pt algorithm (algorithm 1), i.e.,
the matrix, the right null space of which is the linear space of all (vectorized) matrices
satisfying 7 certain epipolar constraints 2.4.
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4. Algebraic analysis of focal lengths computation

In the next snippet we show detailed analysis of the computation results. The va-
riety V(GBs) is the variety of all possible focal lengths that explain the simulated
correspondences.

m = transpose matrix {{f11,f12,f13,f21,f22,f23,f31,f32,f33}}

rank B

eB = B*m

IB = minors(1,eB)

GBs = Gs + IB

gGBS=mingens gb GBs

dim GBs, codim GBs, degree GBs

pGBS = minimalPrimes GBs

Ideal IB contains the epipolar constraints. By adding together the ideals Gs and
IB we combine the constraints and obtain an ideal that corresponds to a variety of
solutions of the 7pt solver for our correspondences.

Variety V(GBs) can consist of either 5 or 13 components, one of dimension 2, and
the rest of dimension 0. We will show the significance of this fact and what are these
components corresponding to.

We provide an example of what the minimal primes (ideals, corresponding to com-
ponent varieties) may look like.

Example 4.4.1. The minimal primes of an ideal containing seven epipolar constraints
and the rank constraint. The actual minimal primes are 6 ideals, which correspond to 5
component varieties over Q. One of the prime ideals does not correspond to any variety
over Q, but would decompose into 8 point varieties over C. We exclude this ideal from
the example for the sake of brevity. The remaining 5 ideals are as follows:

1. 〈F3,3, F3,2, F3,1, F2,3, F2,2, F2,1, F1,3, F1,2, F1,1〉
2. 〈16000F3,2+31F3,3, 3200F3,1+3F3,3, 12000F2,3+11F3,3, 8000000F2,2−9F3,3, 1200000F2,1+

F3,3, 4000F1,3 − F3,3, 6000000F1,2 − F3,3, 4800000F1,1 − 7F3,3, f2 + 1500, f1 − 2000〉
3. 〈16000F3,2+31F3,3, 3200F3,1+3F3,3, 12000F2,3+11F3,3, 8000000F2,2−9F3,3, 1200000F2,1+

F3,3, 4000F1,3 − F3,3, 6000000F1,2 − F3,3, 4800000F1,1 − 7F3,3, f2 + 1500, f1 + 2000〉
4. 〈16000F3,2+31F3,3, 3200F3,1+3F3,3, 12000F2,3+11F3,3, 8000000F2,2−9F3,3, 1200000F2,1+

F3,3, 4000F1,3 − F3,3, 6000000F1,2 − F3,3, 4800000F1,1 − 7F3,3, f2 − 1500, f1 + 2000〉
5. 〈16000F3,2+31F3,3, 3200F3,1+3F3,3, 12000F2,3+11F3,3, 8000000F2,2−9F3,3, 1200000F2,1+

F3,3, 4000F1,3 − F3,3, 6000000F1,2 − F3,3, 4800000F1,1 − 7F3,3, f2 − 1500, f1 − 2000〉

The first ideal corresponds to the component of dimension 2. It represents the degen-
erate situation when the matrix F is the zero matrix. The ideal also does not contain
any polynomial in f1 or f2, so neither of focal lengths can be determined as there are no
constraints on them. Because of this, the component has dimension 2, its two degrees
of freedom are f1 and f2.

The 12 (or 4) other components are of dimension 0 are point varieties (all unknowns
are determined there). They can be divided into 3 groups (or 1 group), which corre-
spond(s) to 3 different Fundamental matrices (a single matrix). Each group includes
4 point varieties in form f1 = ±C1, f2 ± C2 where C1, C2 are constants. The reason
for this is that the focal length actually only enters the Bougnoux formula, as well as
formulae we derived (Eqs. 4.3, 4.2, 4.1) in the second degree, so it is impossible to
determine it’s sign1.

1Of course for any practical application the situation is unambiguous, as the positive sign should
always be chosen.
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4.5. Conclusions

We see that each group corresponds to one of the three fundamental matrices as
returned by 7pt algorithm. Sometimes, however, two of them would be complex. In
this case we will get only one group, as our code considers varieties over real numbers.
This explains why sometimes we can get only 4 components with nonzero f1, f2 instead
of 12.

4.5. Conclusions

We have shown how Bougnoux formula and 7pt algorithm work in terms of algebraic
geometry. We have derived 2 new formulae for computing focal lengths from funda-
mental matrix, and a formula for computing ratio r = f2/f1. No more algebraically
independent formulae can be derived for this problem. We have shown that a known
degeneracy [9] can be partially avoided by using the right focal length formula of the
three. The degeneracy reduces to the case when all three formulae fail.

We confirmed that three and only three fundamental matrices can explain 7 corre-
spondences. We have shown that the trace constraint is redundant while solving camera
relative pose with two unknown focal lengths.
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5. Improvements

Using the analysis carried out in the previous chapters, we suggest improvements to
the existing methods of focal length computing.

5.1. f-Ratio

We present and analyze the performance of a new algorithm, called f-Ratio, for robust
focal lengths computation. The algorithm uses the premise that the ratio of focal lengths
is more robust to achieve superior accuracy. The algorithm serves as a further proof
that explicitly using the ratio of the focal lengths may by beneficial for the performance.

5.1.1. Algorithm

The idea of the algorithm is to use a new solver that would compute F from 6 corre-
spondences given the ratio r = f2/f1. We create such a solver using the automatic
generator [16]. The solver uses the Demazure polynomials, i.e. the rank and the con-
straints 2.1, 2.2 in terms of elements of the matrix F, f1, and r.

A solver assuming fixed focal length f1 = f2 could be used instead, for example that
of Torii et el. [26], by first rescaling

xr2 =

r 0 0
0 r 0
0 0 1

x2.

The output of such solver would be f1 and F. We can compute f2 as f1r.

Both solvers give same results up to machine precision. Both solvers also yield 15
(possibly non-real) solutions.

Algorithm 4: f-Ratio

Data: A list of 7 right image points x1 and a list of the corresponding left image
points x2, lists of remaining tentative correspondences xtest1 ,xtest2 , 6pt
solver solve6pt

Result: Fundamental matrix F
begin

Estimate F0 from all correspondences;
Estimate r = f2/f1 from F0 ;
foreach 6-tuple x6

1 of points drawn from x1 do
x6
2 ← corresponding points to x6

1 from x2 ;
Fsi ← solve6pt(x6

1,x
6
2, r);

Fi ← the matrix from Fsi which best explains xtest1 ,xtest2 ,
end
return Fi which best explains xtest1 ,xtest2

end
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5.1. f-Ratio

The solver needs to compute and test 7 × 15 fundamental matrices1, which still may
be bearable time for a RANSAC-based method.

One may construct a version of the algorithm which works with all the available
points, however, in such an algorithm one would need to test a combinatorially growing
number of matrices.

5.1.2. Performance

We assess the performance of the algorithm in a similar manner as in the previous
analysis. Fig. 5.1 a comparison our f-Ratio method and the baseline 7pt algorithm.
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Figure 5.1. A comparison of 6-Ratio against the baseline. The cumulative distribution of the
multiplicative error (equation 3.1) in the focal length estimates is shown.

In the next experiment, Fig. 5.2 we add an additional amount of noise (σ = 10 pixels)
to one of the points. This demonstrates that our method can cope with outliers even
better than the standard RANSAC algorithm.

The results show that it is possible to reconstruct scenes better with f-Ratio than
with 7pt algorithm. The algorithm 4 successfully demonstrates that explicitly using
estimated ratio of focal lengths may improve the accuracy of the estimation.

1At most. The 6pt solver usually gives from 9 to 14 real solution, but the maximal possible number
is 15.
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Figure 5.2. A comparison of 6-Ratio against the baseline in presence of outliers. The cumulative
distribution of the multiplicative error (equation 3.1) in the focal length estimates is shown.

5.2. Prior focal length

Hartley [10] describes an iterative algorithm for computing focal lengths from point
correspondences, which incorporates prior information about focal lengths and principal
points. The algorithm uses a Levenberg-Marquardt optimization. In this section we
describe an improvement to his algorithm. Using computed focal length ratio r = f2/
f1, we are able to get better focal lengths estimates.

5.2.1. Original Hartley’s algorithm

Original Hartley’s algorithm optimizes a certain cost function given the weights wi,
point correspondences x1, x2, prior focal length f̄1, f̄2, minimal focal length fmin and
prior principal points p̄1, p̄2. We give this cost function as algorithm 5.

Note that the focal lengths are not in the list of the parameters to this cost function,
as they are determined by the fundamental matrix and principal points.

The cost function of focal lengths Cf incorporates a few interesting ideas besides
using prior knowledge in first two terms. Its third term drives the focal lengths to the
same value, which probably reflects the fact that most real cameras have similar focal
lengths from a relatively small (compared to infinity) range. Also using such a term,
the method should perform accurately even if the cameras used were indeed the same
camera. The fourth and the fifth terms serve two purposes. Firstly, they prevent the
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5.2. Prior focal length

Algorithm 5: The cost function of Hartley [10]

Data: Fundamental matrix F, principal points p1, p2.
Result: Vector of costs (errors) C
begin

From F, p1, p2 compute f1, f2;
CF ← Sampson error of the matrix F on the points x1, x2;
Cf ←
w2
1(f21 − f̄21 )2 +w2

2(f22 − f̄22 )2 +w2
d(f

2
1 −f22 )2 +w2

z1(f
2
min−f21 )2 +w2

z2(f
2
min−f22 )2;

Cp ← w2
p‖p1 − p̄1‖2 + w2

p‖p2 − p̄2‖;
return Costs CF, Cp, Cf ;

end

squared focal lengths f21 , f22 from becoming negative, which addresses the problem of
imaginary focal lengths estimates. Secondly, these terms also prevent focal lengths from
converging to zero.

Hartley suggests initializing the optimization with a technique he calls calibrated re-
construction, which is described as algorithm 6. The algorithm takes point correspon-
dences and prior information about camera calibration, and returns a matrix which is
consistent with priors. Hartley also claims that the returned matrix has small Sampson
error on the point correspondences.

Algorithm 6: Calibrated reconstruction [10]

Data: Point correspondences x1, x2, prior focal lengths f̄1, f̄2,prior principal
points p̄1,p̄2.

Result: Fundamental matrix F′

begin
Compute a fundamental matrix F from point correspondences x1, x2 using the
7pt algorithm;

Create the prior calibration matrices K̄1, K̄2 from the f̄1, f̄2, p̄1,p̄2;
Create an estimate of the essential matrix Ē = K̄T2 FK̄1;
Compute (U, S, V) = svd(Ē);
Take the two biggest singular values s1, s2 Create an essential matrix
E = U diag(

[
s1 s2 0

]
) V;

Create a fundamental matrix which is consistent with the priors F′ = K̄−T2 EK̄−11 ;
return F′;

end

5.2.2. Using ratio

We introduce a modification based on use of estimated ratio of focal lengths r = f2/
f1. Given the correspondences, we use 7pt algorithm 1 and the Bougnoux formula
to estimate the ratio. We include the estimated ratio in cost function on f from the
function 5:

Cf = w2
1(f21 − f̄21 )2+w2

2(f22 − f̄22 )2+w2
d((rf1)

2−f22 )2+w2
z1(f

2
min−f21 )2+w2

z2(f
2
min−f22 )2.

We show that such enhanced solver produces better focal length estimates. The
graph 5.3 shows the experiment with 100 runs of each solver.
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Figure 5.3. A comparsion of the Hartley algorithm [10] against our modified version which
explicitly uses the ratio of the focal lengths r = f2/f1 . The cumulative distribution of
the multiplicative error (equation 3.1) in the focal length estimates. The ground truth focal
lengths were (3, 4). The prior focal lengths were drawn from an uniform distribution between
(3, 4) and (4.5, 5.5). The ground truth principal points were zero, and the prior principal
points were (0.1, 0.1). The number of correspondences used was 40, and the level of noise σ
was equal to 1. The weights on principal point priors were 10 times smaller than weights on
focal lengths priors.
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5.2. Prior focal length

5.2.3. Comparison of focal length computing methods

We summarize the performance of several methods for estimating the focal lengths from
the point correspondences. Besides previously mentioned, we use a method similar to
the one from [4]. The method derived in the work is described as the algorithm 7

Algorithm 7: The algorithm of Chandraker [4]

Data: Weights wi, point correspondences x1, x2, prior focal length f̄1, f̄2, prior
principal points p̄1, p̄2.

Result: Vector of costs (errors) C
begin

Estimate the fundamental matrix F using the 7pt algorithm;
Define p1(f1, f2,p1,p2), p2(f1, f2,p1,p2), p3(f1, f2,p1,p2) as Kruppa
equations [9], rewritten as polynomials (see the paper [4]);

Minimize the following cost function:

f∗1 , f
∗
2 ,p

∗
1,p
∗
2 =

= min
f1,f2,p1,p2,λ1,λ2,λ3

w2
1(f1 − f̄1)2 + w2

2(f2 − f̄2)2 + w2
p‖p1 − p̄1‖2 + w2

p‖p2 − p̄2‖

such that λ1p1(f1, f2,p1,p2) + λ2p2(f1, f2,p1,p2) + λ3p3(f1, f2,p1,p2)

return focal lengths f1, f2, principal points p1,p2;

end

Note that the algorithm 7, contrary to the algorithm 5 of Hartley, does not change
the fundamental matrix during the optimization. Instead, it computes the fundamental
matrix beforehand, and the optimization finds a suitable combination of principal points
and focal lengths that would be consistent with the fundamental matrix..

We use an optimization procedure obtained in private conversation to do the opti-
mization in the last step of the algorithm 7.

The figures 5.4, 5.5 show the distribution of focal length as computed by different
methods against different levels of noise in prior focal lengths. The distribution for each
case is depicted using MATLAB function boxplot which shows 25% to 75% quantile
values as boxes with a horizontal line for median. The crosses show data beyond 1.5
times the interquartile range. We use high level of noise (σ = 4 pixels) to show that
the regularization by priors allows us to handle bigger amount of noise. For smaller
amounts noise the difference between the Bougnoux formula and prior methods is not
as pronounced.

We can observe in the figures 5.4, 5.5 that different methods behave inherently in a
different way. The bougnoux formula has the biggest standard deviation of all, generally
is noisy and gives a lot of outliers. The formula is also much less biased, and, of course,
is independent of the given prior. The method of Hartley, because of the chosen cost
function, tends to drive the focal lengths close to each other. Thus, it overestimates
the smaller focal length in the Fig. 5.4 and underestimates the bigger focal length in
the Fig. 5.4. Our modified version of Hartleys’ algorithm, as well as the method of
Chandraker does not suffer from this. The algorithm of Chandraker apparently shows
smaller standard deviation and is less influenced by the prior.
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Figure 5.4. A comparison of the methods for computing focal lengths from point correspon-
dences. The ground truth focal length f1 was 1700 (shown in cyan), and the relative noise
(axis x) was added to it to produce priors, i. e., the priors were: 1700, 1717, 1785, 1870,
2040, 2210, 2550. The ground truth principal points were both (10,20), and the prior princi-
pal points were (0, 0). The number of correspondences used was 7, and the level of noise σ
was equal to 1. The weights on principal point priors were 10 times smaller than weights on
focal lengths priors. The term enforcing the ratio of focal length in our modified version has
the same weight as the terms for the focal lengths themselves.
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Figure 5.5. A comparison of the methods for computing focal lengths from point correspon-
dences. The ground truth focal length f2 was 2500 (shown in cyan), and the relative noise
(axis x) was added to it to produce priors, i. e., the priors were: 2500, 2525, 2625, 2750,
3000, 3250, 3750.
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5.3. Conclusions

5.3. Conclusions

We conclude that the fact that focal length ratio r = f2/f1 is robust can be used to
construct more efficient algorithms. We show two examples of modifications to existing
algorithms where we explicitly use a ratio estimation to improve the accuracy of the
focal lengths computation. We show that using prior knowledge about focal length
considerably bigger amounts of noise could be treated.
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6. Conclusions

In this work, we have focused on the methods of computing the focal length from point
correspondences.

In Chapter 2 we surveyed the existing methods for this task, as well as the basic
concepts needed for understanding them. We provided specific degeneracies of the
methods and other cases where they might fail.

In Chapter 3 we analyzed the performance of the different methods for comput-
ing the focal length. We have revealed several trends which these algorithms exhibit.
Firstly, the error of the focal length estimation declines rapidly with growing number
of correspondences. Secondly, with growing number of correspondences, the number
of imaginary focal length estimates also declines. A conclusion can be made that the
standard methods work fairly well for scenes where a sufficient number of inlier corre-
spondences may be found.

We compared the performance of minimal solvers that use or don’t use the rank
constraint (Eq. 2.1). Our results found that using rank constraint isneficial for the
performance, however, such a solver might produce a larger fraction of imaginary esti-
mates.

We found that the computation of the ratio of focal length r = f2/f1 by the Bougnoux
formula [3] is more robust than the computation of f1 or f2 alone. Interestingly, this
robustness is preserved even when both focal length estimates are imaginary.

We furthermore assessed the performance of the methods in degenerate situations.
The results showed that for bigger levels of noise in image measurements the effect of the
degeneracies significantly decreases. Specifically, the effects of the intersecting optical
axes degeneracy was shown to be mild under 1 pixel noise in image measurements
already.

In Chapter 4 we analyzed the problem of computing focal length using the techniques
of algebraic geometry. We have shown how the Bougnoux formula may be derived with
these techniques and give two new formulae for computing camera focal length from a
fundamental matrix, as well as one formula for the ratio of the focal length. We have
shown that using the right formula helps avoiding a known degeneracy. Specifically, the
degeneracy where the plane defined by the baseline and the optical axis of one camera is
perpendicular to the plane defined by the baseline and optical axis of the other camera,
and where Bougnoux ([3]) formula fails can in some cases be avoided. The degeneracy
reduces to the case where all three formulae fail.

In Chapter 5 we suggested improvements to the existing methods using our suggestion
that computation of the ratio of focal length r = f2/f1 is more robust than computation
of f1 or f2 alone. We have shown that this fact indeed may improve performance
of a solver. We suggested a modification to the solver of [10] and demonstrated an
improvement in focal length estimation quality over the original method. Finally, we
presented a survey of optimization methods for focal lengths computing and have shown
that the optimization methods using prior focal length information may exhibit robust
performance even under big amounts of noise in image measurements.
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A. Contents of the enclosed CD

/

RobustFocal .................folder with the all files of the thesis
results .................. folder containing graphs that are included in the

thesis
...

lib .......................folder with auxiliary files required for the exper-
iments

generated solvers ....solvers generated for the work using automatic
generator [16]

...

utils .................utility scripts
...

geometry ..............geometrical utility scripts
...

scene generator ...... scripts that generate a sample scene with points
and cameras

...

data ..................... folder with synthetic data generated for the ex-
periments

...

src .......................folder with the source files of the thesis
analysis experiments .folder containing experiments for Chapter 4.

...

algeom experiments ...folder containing experiments for Chapter 4.
...

thenew experiments ...folder containing experiments for Chapter 5.
...

geometry ..............folder containing geometrical functions written
for the project.

...

utils ................. folder containing utility functions written for the
project.

...

paths.m ...............script which add all required paths to the MAT-
LAB environment

toy.m ................. script which runs a toy example of the focal
length computation
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