
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

No-regret Learning in Generalized
Normal-Form Games with Sequential
Strategies

Prokop Šilhavý

Supervisor: Mgr. Branislav Bošanský, Ph.D.
Field of study: Open Informatics
Subfield: Computer and Informatic Science
May 2017

ii

Acknowledgements

I would like to thank my supervisor, Mgr.
Branislav Bošanský, Ph.D., for his patient
guidance, helpful advises, and construc-
tive critique.

Furthermore, I would like to thank my
family for the love, support during the
study, and for the permanently full fridge.
And special thanks go to my sister Terezie
for many typographic and linguistic sug-
gestions.

Finally, my thanks belong also to VO
MetaCentrum, which provides distributed
computing infrastructure, and which en-
ables us to run all the experiments.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in according with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
thesis.

..
signature

Prague, date May 25, 2017

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

..
podpis autora práce

V Praze dne 25. května 2017

iii

Abstract

This work formalizes generalized normal-
form games with sequential strategies and
finds Nash equilibria in them. This game
model is the same as normal-form game
with sewuential strategies (NFGSS); the
only difference is that there is no restric-
tion on the utility. First, we have eval-
uated the solution of NFGSS in gener-
alized NFGSS. Then we have used the
transformation of generalised NFGSS to
normal form (NFG) and solving it by stan-
dard methods, and finally, we adapted
Monte Carlo Counterfactual regret mini-
mization (MCCFR) algorithm for general-
ized NFGSS. We have tested these meth-
ods in three game domains: Transit game
(TG), Border protection game (BPG), and
Ticket inspection game (TIG).

The MCCFR algorithm converges to
Nash equilibrium in BPG and TIG, and
for TG it gives as a better estimate as
the approximation by NFGSS. The scal-
ability of MCCFR is bad. However, it is
faster as the standard methods for NFG.
The results show that MCCFR algorithm
gives the best result from these three ap-
proaches either as an exact solver in TIG
and BPG or as a heuristic in TG.

Keywords: Game Theory, Normal form,
Sequential strategies, NFGSS,
generalized NFGSS, CFR, MCCFR

Supervisor: Mgr. Branislav Bošanský,
Ph.D.

Abstrakt

Práce formalizuje zobecněné hry v nor-
mální formě se sekvenčními strategiemi
a představuje koncepty pro hledání Na-
shova ekvilibria v těchto hrách. Tento
herní model je identický s hrami v nor-
mální formě se sekvenčními strategiemi
(NFGSS), ale nemá žádná omezení na vý-
platní funkci. Nejprve jsme použili Na-
shova ekvilibria z NFGSS jako odhad ře-
šení zobecněného NFGSS. Dále jsme hle-
dali řešení pomocí převedení NFGSS do
normální formy a následně použili stan-
dardní metody. Jako poslední přístup jsme
adaptovali Monte Carlo Counterfactual
regret minimization (MCCFR) přímo na
zobecněné NFGSS. Všechny tyto metody
jsme testovali na třech doménách: Tran-
sit game (TG, Border protection game
(BPG) a Ticket inspection game (TIG).

MCCFR algoritmus konverguje k Na-
shovu ekvilibriu v BPG a v TIG. Pro TG
nám dává lepší odhad řešení než zjednodu-
šení zobecněného NFGSS na standardní
NFGSS. Škálovatelnost tohoto algoritmu
není vysoká, nicméně dokážeme s jeho
pomocí vyřešit větší hry než za využití
běžných metod na řešení NFG. Výsledky
ukazují, že MCCFR algoritmus má nej-
lepší výsledky ze všech tří zkoumaných
přístupů, a to nejen jako algoritmus na
přesné řešení NFGSS pro TIG a BPG, ale
i jako heuristika pro TG.

Klíčová slova: Teorie her, normální
forma, sekvenční strategie, NFGSS,
zobecněné NFGSS, CFR, MCCFR

Překlad názvu: Učení v zobecněných
normálních hrách se sekvenčními
strategiemi

iv

Contents
1 Introduction 1
1.1 Owerview . 2
2 Background 3
2.1 Normal-Form Games 3
2.1.1 Definition 3
2.1.2 Strategy 4

2.2 Extensive-Form Games 4
2.2.1 Perfect-Information Games . . . 4
2.2.2 Strategies in Extensive-Form
Games . 5

2.2.3 Imperfect-Information Games . 6
2.2.4 Alternative Definition 7
2.2.5 Perfect Recall 8

3 Solving Games 9
3.1 Solution Concepts 9
3.1.1 Best Response 9
3.1.2 Nash Equilibrium 10
3.1.3 ε-Nash Equilibrium 10

3.2 Finding Nash Equilibria in
Normal-Form Games 11

3.3 Finding Nash Equilibria in
Extensive-Form Games 12
3.3.1 Counterfactual Regret
Minimization 12

3.3.2 MCCFR 13
4 NFGSS 15
4.1 Definition . 15
4.2 Conversion of NFGSS to
Normal-Form Game 16

4.3 Conversion of NFGSS to
Extensive-Form Game 17

4.4 Generalized NFGSS 18
4.4.1 Definition 18
4.4.2 Conversion of Generalized
NFGSS to the Normal Form 19

4.4.3 Conversion of Generalized
NFGSS to the Extensive Form . . 20

4.5 Solving NFGSS 20
4.6 Best Response in NFGSS 20
4.6.1 LP Finding Nash Equilibria in
NFGSS . 21

4.6.2 CFR Algorithm on NFGSS . . 21
5 Solving Generalized NFGSS 23
5.1 Best Response in Modified
NFGSS . 23

5.2 MCCFR algorithm application for
NFGSS . 24
5.2.1 MCCFR Algorithm for
Modified NFGSS 26

6 Experimental Evaluation 27
6.1 Used Software and Resources . . . 27
6.2 Game Domains 28
6.2.1 Transit Game 29
6.2.2 Border Protection Game 29
6.2.3 Ticket Inspection Game 30

6.3 Nash Equilibrium in NFGSS
Evaluated on Generalized NFGSS . 31

6.4 LP Solver . 33
6.5 Analysis of MCCFR for
Generalized NFGSS 34
6.5.1 Border Protection Game 35
6.5.2 Ticket inspection game 38
6.5.3 Transit game 39

7 Conclusions 45
7.1 Future work 46
A Bibliography 47
B CD Content 49
Running the Implementations 49
C Project Specification 51

v

Figures
2.1 Payoff matrix of rock, paper,
scissors game (Figure 3.7 in [1]) . . . 3

2.2 The prefect information game tree
of the Sharing game (Figure 5.1 in
[1]) . 5

2.3 An imprefect information game
tree. Dashed line connects nodes in
the same information set. (Figure
5.10 in [1]) . 6

2.4 An imprefect recall, imperfect
information game tree. (Figure 5.12
in [1]) . 7

3.1 Payoff matrix of Companies
competition game 10

4.1 Example of NFGSS. At the top
there are MDPs of both players and
predefined utility is below them. . . 16

4.2 The imprefect-recall,
imperfect-information, extensive-form
representation of the game from
Figure 4.1. 18

6.1 Scheme of a graph of Transit
game. 29

6.2 Graphs of Border protection game
with width 3. 30

6.3 MDP of passenger in Ticket
inspection game. 31

6.4 Sizes of utility matrices and
computation times for Transit game
(a, b), Border protection game (c, d),
and Ticket inspection game (e, f). In
the time analysis chart, the labels
mean: ‘strategies’ - the part of
getting all strategies, ‘utility’ - the
part of getting utility, and ‘LP’ - the
part of solving LP. 34

6.5 Convergence chart of the BPG
with the weakly connected graph,
width 3, and 4 steps. 35

6.6 Convergence chart of the BPG
with the almost fully connected
graph, width 3, and 4 steps. 35

6.7 Convergence chart of the BPG
with the fully connected graph, width
3, and 4 steps. 36

6.8 Scalability of MCCFR in Border
protection game with weakly
connected graph 36

6.9 Scalability of MCCFR in Border
protection game with almost fully
connected graph 37

6.10 Scalability of MCCFR in Border
protection game with fully connected
graph . 37

6.11 Convergence chart of the TIG
with two stations, two trains, and
approximative 2000 passengers. . . . 38

6.12 Scalability of MCCFR in Ticket
inspection game 39

6.13 Convergence chart of the TG 2 2
2. 40

6.14 Convergence chart of the TG 3 2
3. 40

6.15 Convergence chart of the TG 3 2
2 . 40

6.16 Convergence chart of the TG 3 2
2 in the detail. 41

6.17 Convergence chart of the TG 4 3
2 . 41

6.18 Convergence chart of the TG 4 3
3 . 42

6.19 An example of a situation in
Transit game, where utility gained by
action a depends on the previous
history. 43

6.20 Scalability of MCCFR in Transit
game . 43

vi

Tables
4.1 An example of the definition of
nonlinear utility in the game
described in Figure 4.1. The utility is
defined for the whole sequences in
MDPs. 19

6.1 Table of versions of the software
used in the experiments. 28

6.2 Table of the clusters used in the
experiments.1 28

6.3 Nash equilibria from ‘linear’
approximation evaluated on
generalized Border protection game
on the weakly connected graph with
width 3. 32

6.4 Nash equilibria from ‘linear’
approximation evaluated on
generalized Transit game with the
width 2 and with the number of steps
equal to the length + 1. 32

6.5 Nash equilibria from ‘linear’
approximation evaluated on
generalized Ticket inspection game
with 3-hour long shift, with the
number of stations equal to the
number of trains +1, and with the
approximative number of passengers
equal to the 1000 · the number of
trains. 32

vii

Chapter 1
Introduction

Many of us like various games and puzzles. Maybe it is the excitement of
competition, the feeling of winning, or the solution of a riddle, which makes
games popular. Also, many of real-life situations involve these attractive
properties. It is no coincidence that many of the games are based on the
real-life problems. Typical examples are strategic computer games from the
Middle Ages or the board game Scotland Yard. The effort to solve the games
goes hand in hand with the number of these problems. Game theory deals
with this topic.

In game theory, there exist two basic game formalizations: the normal and
the extensive form. The normal form describes games, where a player has
only one decision as in the rock, paper, scissors game. The extensive form is
more complex and describes games with sequences of decisions. An example
of an extensive-form game is chess. In game theory, we evaluate the result of
the game by a value called utility. For example, a player gets 1 for victory, -1
for losing and 0 for a tie.

The fundament of solving a game is to find a rational strategy, which has
the maximum probability of winning or returns a maximum gain. Game
theory gives us solution concepts, which tries to provide us with this strategy.
Every game contains such strategies for each player that no-one can increase
his gain by altering the strategy. These strategies are called Nash equilibrium,
and they rank among these concepts.

Finding such strategies without computers is almost impossible. There
exist standard algorithms for solving games in the normal form. Nevertheless,
games in the normal form are exponentially large for games with sequences of
moves. That is why, we need something, which is faster and usable for larger
games. Thus, there exist also other formalizations of games as Normal-form
games with sequential strategies (NFGSS). In NFGSS, there are two players,
and both of them make sequences of decisions as in the extensive form, but
they can not observe the impact of moves of the opponent immediately. The
utility is computed as a sum of ‘partial utilities’ of all pairs of actions of both
players. It gives us a possibility to calculate a gain of choosing a move. As an
example of NFGSS can be a cop and robber game. There are a police officer
and the robber in a town represented by a graph. The robber tries to escape,
and the cop wants to catch him. When the robber leaves the town, wins, and

1

1. Introduction
whenever the cop catches the robber, gains a payoff. The game is limited by
a number of steps because we want to keep it finite.

These NFGSS games can be represented in the extensive form and the
normal form, but there exist more efficient algorithms applied directly on
NFGSS. An example is Counterfactual regret minimization algorithm (CFR),
which iteratively finds the optimal strategy in self-play.

Many real-world scenarios, however, do not exactly correspond to NFGSS.
For example, in the cop and robber game, mentioned above, the policeman
can catch the robber multiple times, and the game does not end. For this
scenario, it is more realistic to end after catching the robber. The robber is
arrested, he receives the negative utility, and can not leave the town anymore.
This problem needs another model. We call it generalized NFGSS or nonlinear
NFGSS. There is no restriction on the computation of utility, but it can be
computed only at the end of the game.

The goal of this work was to find Nash equilibria in generalized NFGSS.
First, we evaluated the Nash equilibrium from NFGSS in the generalized
NFGSS, and we tried to find out if this estimate is usable as a heuristic.
Then we created the solver, which uses the transformation of NFGSS to the
normal form and the standard algorithm for solving it. Finally, we adapted
the Monte Carlo extension of CFR algorithm (MCCFR) for the NFGSS, and
we utilize the property, that it do not need to compute utility before the end
of the game. Therefore, we also used this algorithm for solving generalized
NFGSS. However, the strategy found by MCCFR algorithm do not need to
converge to the Nash equilibrium in generalized NFGSS, because the linearity
of NFGSS utility is necessary for the proof of it. We have tested all these
three approaches to find out which one gives reasonable results in a shorter
time.

1.1 Owerview

. In Chapter 2 are formalizations of the normal form and the extensive
form. Nash equilibrium can be found in the introduced game models by algo-
rithms from Chapter 3. NFGSS and solving methods for them are in Chapter 4. In Chapter 5, we present the adaptation of MCCFR for NFGSS, and we
introduce methods for solving generalized NFGSS. Chapter 6 contains the experimental results of all presented methods for
solving generalized NFGSS. Finally, we conclude all algorithms and results in Chapter 7

2

Chapter 2
Background

In this chapter, we will introduce the concept of games and strategies in
them. We will define games in normal form and show some examples of it.
Then we will move to extensive-form games with perfect and with imperfect
information. Finally, we will show a concept of perfect recall. All definitions
are from [1].

2.1 Normal-Form Games

The first and the most basic game model is the nveormal form. It represents
games, where all players make only one decision. Afterwards, each player
receives a reward or a penalty based on the choices.

2.1.1 Definition

The game in normal form is defined as a tuple (N,A,u), where N is a set of
n players, also called agents, A=A1× ·· ·×An, where Ai is a set of possible
actions of player i and u= (u1, · · · ,un), where ui : Ai 7→ R is a utility function.

A classical example is the popular game rock, paper, scissors.

Player 2

Pl
ay

er
1 Rock Paper Scissors

Rock 0, 0 -1, 1 1, -1
Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

Figure 2.1: Payoff matrix of rock, paper, scissors game
(Figure 3.7 in [1])

This game is in the normal form represented by a matrix of payoffs. Each
player has three possible actions: rock, paper, and scissors. If the first player
plays paper and the second plays scissors, they get payoff written in the
second row and the third column, which means the first player got -1 and the
second 1.

We focus on two-players zero-sum games, where there are only two active
agents and utility for each combination of actions of players sums to 0, i.e.

3

2. Background
u1 =−u2. Rock, paper, scissors game is a simple example of a two-players
zero-sum game.

2.1.2 Strategy

A pure strategy is defined as that a player chooses his actions deterministically[1].
Players can also play with some randomization. For example, they throw
a crown before choosing an action. It is called a mixed strategy, and it is
defined as a probability distribution over all actions[1].

For example in the rock, paper, scissors game a player in a mixed strategy
can choose paper with the probability of 1

2 and rock with the probability of
1
2 .
A strategy profile is called a tuple of pure or mixed strategies for each

player[1]. For a strategy profile, we can compute an expected output for the
player i. It is a sum of the utilities of outcomes multiplied by the probability
of reaching the corresponding outcome under the strategy profile.

Formally:

ui(σ) =
∑
a∈A

ui(a)
n∏
j=1

πσj (aj)

Where σ = (σ1, · · · ,σn) is a strategy profile A = A1 × ·· · ×An is a set of
actions, ui(a) is a utility for the player i, when a= (a1, · · · ,an) is played and
πσj (aj) is the probability, that the player j plays the action aj . It should be
noted, that we use ui for utility and also for expected utility.

For example, we can compute the expected utility for the first player
in the rock, paper, scissors game for a strategy profile σ = (σ1,σ2), where
σ1 = (0, 1

2 ,
1
2) and σ2 = (1

2 ,
1
2 ,0). It means that the player one plays only paper

and scissors with the same probability and the player two plays only rock
and paper with the same probability. The expected utility for the player one
will be:

u1(σ) = 1 · 14 + 0 · 14 − 1 · 14 + 1 · 14 = 1
4

Since the rock, paper, scissors game is two-player and zero-sum, u2(σ) =
−u1(σ) =−1

4 .

2.2 Extensive-Form Games

The normal form is the basic and straightforward form. But not always it is
reasonable to represent a game by a matrix. Extensive form is introduced
for games, where players do not need to make decisions simultaneously. The
representation as a table is not suitable for these games because, in general,
the size of it grows exponentially.

2.2.1 Perfect-Information Games

Perfect-information games (in the extensive form) are games, which can be
represented by a tree. Each node in the tree is a state of the game where one

4

................................ 2.2. Extensive-Form Games

player makes a choice, each edge is a possible action, and in leaves, there are
payoffs given by the game. This tree is also known as a game tree.

Formally, the perfect-information game is a tuple (N,A,H,Z,χ,ρ,γ,u),
where N is a set of n players, A is a set of actions, H is a set of nonterminal
choice nodes, Z is a set of terminal nodes. χ : H 7→ 2A is a function defining
possible actions in each choice node. ρ : H 7→N is a function defining which
player is on the move in each choice state. γ : H ×A 7→H ∪Z is a function
defining successor nodes when an action is played in a choice node. And
u = (u1, · · · ,ui, · · · ,un), where ui : Z 7→ R is an utility function defined for
terminal nodes[1].

As an example, we can get a sharing game [1]. Two siblings have to share
two indistinguishable gifts. The brother has three choices. He can offer both
gifts to the sister or keeps both or each of them can keep one. The sister can
accept or reject this offer. If she rejects it, none of them gets gifts. This game
is represented by the following game tree:

1

2

2;0 0;0

2

1;1 0;0

2

0;2 0;0

(2;0)

yes no

(1;1)

yes no

(0;2)

yes no

Figure 2.2: The prefect information game tree of the Sharing game
(Figure 5.1 in [1])

2.2.2 Strategies in Extensive-Form Games

A pure strategy in extensive-form games is defined as the Cartesian product�
s∈H,ρ(s)=iχ(s). It means that in each choice node one action is chosen,

whether it is possible to reach that choice node or not. A mixed strategy is
a probability distribution over pure strategies.

All possible pure strategies in the Sharing game (Figure 2.2) are:

S1 = {(2− 0),(1− 1),(0− 2)}
S2 = {(yes,yes,yes),(yes,yes,no),(yes,no,yes),(yes,no,no),

(no,yes,yes),(no,yes,no),(no,no,yes),(no,no,no)}

In extensive-form games, there is also defined a behavioral strategy. Mixed
strategies are probability distributions over pure strategies, which is like
a probability distribution over vectors of decisions. Unlike that, a behavioral
strategy is a vector of probability distributions over possible choices[1].

Formally, let ∆(A) be a set of all probability distributions over A, the
behavioral strategy of player i is a function σi(s) ∈ ∆(χ(s)); ∀s ∈H : ρ(s) = i

5

2. Background
2.2.3 Imperfect-Information Games

In perfect-information games, players make a decision in each choice node. It
means that they exactly know where in the game tree they are. It implies
that players remember the whole history of the game. It is a very strong
assumption. In some situations, we want to model players with only a partial
or no knowledge. Thus, are defined imperfect-information games (in the
extensive form).

Imperfect-information game is a tuple (N,A,H,Z,χ,ρ,γ,u,I), where (N,A,
H,Z,χ,ρ,γ,u) is a perfect-information game, and I = (I1, · · · , In), where Ii
is a set of equivalence classes Ii,k on states of the player i, where for each
s,s′ ∈ Ii,k holds χ(s) = χ(s′), and ρ(s) = ρ(s′).

Imperfect-information game is the same as a perfect information game with
the difference that players choice nodes are grouped into information sets.
A player cannot distinguish between nodes in one information set[1]. Since
nodes in one information set are truly indistinguishable, they must have the
same possible actions.

We will show it on an example [1]:

1

2

1

0;0 2;4

1

2;4 0;0

1;1

L

A

l r

B

l r

R

Figure 2.3: An imprefect information game tree. Dashed line connects nodes in
the same information set.
(Figure 5.10 in [1])

The player 1 has two information sets in this game. The root node is in one
information set, and both other choice nodes are in the second information set.
Since a player cannot distinguish in which node he is, pure strategies must
be defined as the Cartesian product

�
Ij,k∈Ii,ρ(Ij,k)=iχ(Ij,k). The actions are

chosen in information sets instead of states. The same way a behavioral
strategy is defined in imperfect information game.

The example of an imperfect information game (in Figure 2.4) demonstrates
that behavioral strategies do not have the same expressivity as mixed strate-
gies. Mixed strategy is a probability distribution over pure strategies. Pure
strategies of the player 1 are L and R, and the player 2 has pure strategies U
and D. It means that the player 1 plays with probability p the action L and

6

................................ 2.2. Extensive-Form Games

1

1

1;0 100;100

2

5;1 2;2

L

L R

R

U D

Figure 2.4: An imprefect recall, imperfect information game tree.
(Figure 5.12 in [1])

with probability 1-p the action R in all tree. The node (100;100) cannot be
reached by a mixed strategy because we need to take for the first time the
action L and for the second time the action R in the same information set.
By way of contrast, we will reach the leaf node (100;100) with the probability
of 1

4 under the behavioral strategy, which chooses L and R uniformly with
the probability of 1

2 .

2.2.4 Alternative Definition

Let s0,a0,s1,a0, · · · ,sm,am,s be a path through a game tree (the sj is a choice
node, and the aj is an action). The history h is an ordered set of actions
a0,a1, · · · ,am and hist(s) is the history leading to the state s. For all s ∈ Z the
history hist(s) is called terminal history. The set of all histories is named H ′,
and the set of all terminal histories is denoted Z ′. Indeed holds Z ′ ⊆H ′[2].

There exists a bijection between nodes and histories. Therefore, the set
of terminal nodes Z can be identified with the set of all terminal histories
Z’ and the set of all nonterminal nodes H can be identified with the set of
all nonterminal histories H ′ \Z ′. And finally, functions χ, ρ, γ, u can be
redefined on sets H’ and Z’ instead of H and Z.

The root node corresponds to an empty history ∅. Let h = hist(s), and
a player plays an action a in the node s. Then h′ = ha, and the history h
is called a prefix of h’, denoted h v h′. This relation has to be generalized
with transitivity closure (if h′ = ha1a2, then hv h′) and reflexivity closure
(∀h : hv h)[2].

We can also introduce an information set alternatively. If two nodes s,s′
are in one information set, then the histories hist(s) and hist(s′) are also in
the same information set. Similarly hist(I) = {hist(s)|s ∈ I}. For history h,
we also define I(h) as the information set containing the history h[2].

A z[I], where z is a terminal history, and I is an information set, denotes
the history h, such that hv z and h ∈ I[2].

7

2. Background
2.2.5 Perfect Recall

The player i has a perfect recall, if for any s,s′ from the same information set
and for any paths s0,a0,s1,a0, · · · ,sm,am,s and s0,a′0,s

′
1,a
′
0, · · · ,s′m,a′m,s′,

where s0 is the root node, holds m=m′, ∀ 0≤ j ≤m : if ρ(sj) = i, then sj
and s′j are in the same information set and aj = a′j .

In other words, the player i has the perfect recall if all states of the player i
in one information set have the same history of his nodes and chosen actions
from the root node. It means that he does not forget the history of his nodes
and actions.

If every player has a perfect recall, then the game is called the game of
perfect recall. Otherwise, the game has an imperfect recall. It can be observed,
that every perfect-information game is a game of perfect recall.

In games of perfect recall, a mixed strategy can be replaced by an equivalent
behavioral strategy and vice versa. It means that behavioral strategies and
mixed strategies have the same expressivity in the game of perfect recall.[1]

8

Chapter 3
Solving Games

In this chapter, we will introduce the concept of solving games. We assume
that all players are rational and want to get the maximum utility. When
there is only one agent, he can play the action, which gives him the maximal
utility. The situation is much more complicated in games with two and more
players. Therefore, the concepts of best response and Nash equilibrium are
introduced.

The second problem is finding the strategies of the best response and
Nash equilibrium. There are many options, which algorithm to use. We will
focus on LP solving of two-players zero-sum games in the normal form, on
Counterfactual regret minimization for the extensive-form games, and on
Monte Carlo extension of CFR. These algorithms will be useful in the next
parts of this text.

3.1 Solution Concepts

In games with more players, there we can not talk about the best strategy for
the player, since the expected utility of the player depends on strategies of
other players. Therefore, some outcomes are grouped into sets called solutions
concepts, which in a certain perspective substitute ‘the best strategy.’ One of
these solution concepts is Nash equilibrium.

3.1.1 Best Response

All players in the game are rational. That is why they want to maximize the
expected utility. When a player knows strategies of opponents, he can simply
find a strategy, which gives him the maximum expected utility. This concept
is called a best response strategy.

Formally: Let σ = (σ1, · · · ,σn) be a strategy profile. The strategy σi is the
best response strategy of player i on other players strategies σj ;j , i, if and
only if for all strategy profiles σ∗ = (σ1, · · · ,σ∗i , · · · ,sn) holds ui(σ)≥ ui(σ∗)[1].

9

3. Solving Games
3.1.2 Nash Equilibrium

Nash equilibrium is a strategy profile in which each player plays the best
response strategy to all other players strategies. It means that no player can
get a better expected utility by changing his strategy when strategies of other
players stay the same[1].

We will demonstrate it on a simple example. We have two companies.
Each one can discover new technologies or stay put. If one of them discovers
technologies and the other does not, the first one gains a competitive advantage
and gets the payoff a > 0 and the second one gets the payoff -a, otherwise, the
utility of both is 0. This game can be represented by the following matrix.

C
om

pa
ny

1 Company 2
Discover Stay

Discover 0, 0 a, -a
Stay -a, a 0, 0

Figure 3.1: Payoff matrix of Companies competition game

There can be easily seen the Nash equilibrium in the first row and the first
column. If one company changes strategy to stay, it gets the utility -a instead
of 0, which is worse.

This was an example of pure-strategy Nash equilibrium. In the game rock,
paper, scissors there is no such pure equilibrium. We must use the mixed
strategies σ1 = (1

3 ,
1
3 ,

1
3) and σ2 = (1

3 ,
1
3 ,

1
3) to satisfy the condition of Nash

equilibrium.
John Nash proved that in every game there exists at least one Nash

equilibrium[3].

3.1.3 ε-Nash Equilibrium

ε-Nash equilibrium is a strategy profile, in which one of the players by changing
his strategy can get maximum gain equal to ε.

Formally ε-Nash equilibrium is a strategy profile σ = (σ1, · · · ,σn) for fixed ε
if, for every player i and for all strategies σ′i , σi holds: ui(σ1, · · · ,σi, · · · ,σn)≥
ui(σ1, · · · ,σ′i, · · · ,σn)− ε.[1]

In every game, the ε-Nash equilibrium exists for any ε > 0. If we go with ε
to 0, ε-Nash equilibrium strategy profile goes to the Nash equilibrium strategy
profile. It is useful for the computation of the Nash equilibrium. When
we do not need the exact Nash equilibrium strategy profile, we can find
ε-Nash equilibrium with any precision epsilon. Thus, it is not necessary to
go through the whole continuous space of strategy profiles, and we still can
get the desired accuracy[1].

10

......................3.2. Finding Nash Equilibria in Normal-Form Games

3.2 Finding Nash Equilibria in Normal-Form
Games

In the previous section, we have introduced the concept of Nash equilibrium.
Now we will look at the basic algorithms for computing it in normal-form
games. We will focus on the computation of the Nash equilibrium in two-
players zero-sum games.

The minmax theorem shows that the expected utility of player i U∗i in
two-players zero-sum games is equal in all Nash equilibria[1]. Therefore, we
can compute the expected utility U∗1 by finding a minmax strategy for the
player 2. It leads to the following linear program (LP)[1]:

min U∗1 (3.1)

s.t.
∑
k∈A2

u1(aj1,a
k
2) · sk2 ≤ U∗1 ∀j ∈A1 (3.2)

∑
k∈A2

sk2 = 1 (3.3)

sk2 ≥ 0 ∀k ∈A2 (3.4)

In this program s2 and U∗1 are variables, and terms u1(.) are constants. We
minimize the utility U∗1 (3.1). Therefore, the constraint (3.2) will be satisfied
with equality. It means that the utility U∗1 is the expected utility of the best
response strategy of player 1 to a mixed strategy sk2. The linear program
also finds such strategy of player 2, sk2, that the expected utility of player
1, U∗1 , is minimal. U∗2 =−U∗1 , which implies that the utility U∗2 is maximal.
Therefore, it is the utility of the best response strategy. Because both U∗1
and U∗2 are the best response utilities, sk2 is the mixed strategy of the second
player in the Nash equilibrium. Formulas (3.3) and (3.4) guarantee that s2 is
a probability distribution.

We can write a dual problem to the previous linear program:[1]

max U∗1 (3.5)

s.t.
∑
j∈A1

u1(aj1,a
k
2) · sj1 ≥ U

∗
1 ∀k ∈A2 (3.6)

∑
j∈A1

sj1 = 1 (3.7)

sj1 ≥ 0 ∀j ∈A1 (3.8)

There are variable s1, and U∗1 and terms u2(.) are constants. The lines (3.5)
and (3.6) find a strategy of player 1, s1, which maximizes the expected utility
U∗1 against all possible strategies of player 2. Thus, it finds the mixed strategy
of the player 1, s1, and the maximum utility U∗1 in the Nash equilibrium.

11

3. Solving Games
3.3 Finding Nash Equilibria in Extensive-Form
Games

In this section, we will focus on computing Nash equilibria in extensive-form
games. It is, in general, more complicated than in the normal form. We will
describe an approximative algorithm, Counterfactual regret minimization,
which iteratively updates strategies of all players. The strategies are ε-Nash
equilibrium for ε → 0 when the number of iterations → ∞. The second
algorithm, which we will introduce is the Monte Carlo Counterfactual regrets
minimization. Both these algorithms will be used in the next parts.

3.3.1 Counterfactual Regret Minimization

Counterfactual regret minimisation is an algorithm for computing Nash
equilibria in extensive-form games. It iteratively modifies strategies of both
players in self-play and converges to the Nash equilibrium. In this algorithm
we define for each information set a counterfactual value as follows: [2]

vi(I,σ) =
∑
z∈ZI

πσ−i(z[I]) ·πσ(z[I],z) ·ui(z)

This value represents the expected utility of player i in an information set
I when he plays the strategy σ and his opponent plays the strategy σ−i.
ZI is the set of all terminal histories z, such that hist(I) v z. πσ−i(z[I]) is
the probability, that the opponent will play actions from the history hist(I)
and πσ(z[I],z) is the probability of reaching the terminal history z using the
strategy σ from the end of hist(I)[2]. It gives us a sum of expected utilities for
having reached the history from I weighted by the probability, that opponent
will reach I[4].

The main idea of CFR is computing regrets iteratively. Regret is the
difference of utilities between playing one best action and playing by actual
strategy[4]. Specifically in CFR meaning an action regret in time t is the
difference between the expected utility gained by playing strategy σt and
choosing an action a in the information set I. Formally, the regret of not
choosing an action a in the information set I:

rt+1(I,a) = vi(I,σtI→a)− vi(i,σt)

A strategy σtI→a is identical as σt, only in the information set I is chosen the
action a with the probability of 1[2].

Action regrets are summed over time to cumulative regrets for each infor-
mation set and each action:

Qt+1(I,a) =max{0,Qt(I,a) + rt+1(I,a)}

And Q0 = 0 for every action, every player, and in every information set[2].
Finally, the new strategy is recomputed:

σt+1(I,a) =


Qt(I,a)
Qtsum(I) if Qtsum(I)> 0

1
|A(I)| otherwise

12

.....................3.3. Finding Nash Equilibria in Extensive-Form Games

Where Qtsum(I) =
∑

a′∈A(I)
Qt(I,a′) and A(I) is the set of actions possible

in the information set I. This procedure is called Regret matching[2].
Finally, we can compute an average strategy profile σ̄t(I,a). This average

profile is the ε-Nash equilibrium with ε→ 0, when t→ inf[2]. It is calculated:

σ̄T (I,a) =
∑T
t=1π

σt
i (I) ·σt(I,a)∑T
t=1π

σt
i (I)

Where πσti (I) =
∑
h∈I π

σt
i (h)[4].

3.3.2 MCCFR

MCCFR algorithm is Counterfactual regret minimization algorithm (3.3.1)
modified by Monte Carlo approach. In Monte Carlo algorithms we do not
compute the exact value, and we only estimate it by sampling. We compute
a mean of values gained by samples weighted by probabilities of reaching the
sample. When the number of used samples is high, the estimate has to be
close to the real value. It is guaranteed by the law of large numbers [4].

Sampled counterfactual regret minimization is the same as CFR, except
for the computation of counterfactual values. These are computed by the
following equation:[4]

vi(I,σ|j) =
∑

z∈Qj∩ZI

πσ−i(z[I]) ·πσ(z[I],z) ·ui(z)
q(z)

Where Qj is a chosen set of terminal histories, so that
⋃
iQi = Z. And

q(z) =
∑

j:z∈Qj
qj , where qj is the probability of picking Qj and q(z) is the

probability of selecting z as a part of Qj.
In MCCFR outcome sampling we choose one terminal history in each

iteration, and we update only the information sets in this selected history.
The probability distribution over all samples z is marked πσ

′(z) and σ′ is
called sampling profile[4].

In this algorithm, we traverse the history similarly as in CFR (in CFR we
go through the whole tree). In each step, we compute regrets and update
strategies. Almost all equations stay the same as in CFR. The counterfactual
values must be normalized by the probability of choosing the sample[4].

vi(I,σ) =
πσ−i(z[I]) ·πσ(z[I],z) ·ui(z)

πσ
′(z)

Where z is a chosen terminal history.
Formally written computation of action regrets:[4]

13

3. Solving Games

r(I,a) = vi(I,σI→a)− vi(i,σ)

=
πσ−i(z[I]) ·πσ(z[I]a,z) ·ui(z)

πσ
′(z) −

πσ−i(z[I]) ·πσ(z[I],z) ·ui(z)
πσ
′(z)

=
πσ−i(z[I]) ·ui(z)

πσ
′(z) · (πσ(z[I]a,z)−πσ(z[I],z))

=W · (πσ(z[I]a,z)−πσ(z[I],z))

The last step is the substitution W = πσ−i(z[I])·ui(z)
πσ′(z)

When the action is not a part of the history z, the probability πσ(z[I]a,z) =
0, which means that vi(I,σI→a) = 0 and r(I,a) =−vi(i,σ).[4]

There are two more questions. The first question is how to make the
sampling profile σ′. We used the most straightforward approach epsilon-on-
policy. It is a mixture of a uniform strategy and σ(I,a) in the ratio ε and
1− ε. Therefore, σ′(I,a) = ε ·Uniform(I) + (1− ε) ·σ(I,a).

The second one is how to compute the mean strategy, σ̄, when only few
information sets are visited in each iteration. The most straightforward
method is called optimistic averaging. In this approach, each information set
remembers the number of the iteration, when the mean strategy has been
last updated. This counter is named cI . Initially cI is equal to 0 for all I.
Later, when information set is visited, the mean strategy is incremented by
(t− cI)πσ

t

i (I) ·σt(I,a), and cI is set to t. This is the mean strategy update
from CFR, weighted by the time since the last modification. It simulates
using the newly computed strategy from the last visitation of I. Finally, all
information sets have to be updated, and the cumulative mean has to be
normalized. More information about this and other methods can be found in
Marc Lanctot’s Ph.D. thesis Section 4.4[4].

14

Chapter 4
NFGSS

This chapter will introduce the new model of games called Normal-form games
with sequential strategies. In this two-players, zero-sum games both players
have sequential strategies as in the extensive form, but they cannot observe
the impact of actions of the opponent immediately. This model is useful for
describing many real problems, typically a movement on the graph in time,
where the player cannot observe the movement of the opponent.

4.1 Definition

Normal-form games with sequential strategies (NFGSS) are two-players zero-
sum games. Each player has an acyclic Markov decision process (MDP) as
his strategy space. It means that player i has a set of states Si, a set of
actions Ai and a stochastic transition function T : Si×Ai 7→ ∆(Si), where
∆ : Si 7→ R is a probability distribution over states[2][5]. Intuitively, a player
moves between his states by choosing actions. If he chooses an action, the
next state is given by a probability distribution. The pure strategy is a set of
chosen actions in each state, and mixed strategy is a probability distribution
over pure strategies. Utility in NFGSS is defined as follows[5]:

u1(σ1,σ2) =
∑

S1×A1

∑
S2×A2

πσ1 (s1,a1) ·πσ2 (s2,a2) ·U((s1,a1),(s2,a2))

Where σi is a strategy of a player i, πσi (si,ai) is the probability, that the
player i will reach the state si and will play the action ai under the strategy
σi. And U(.,.) is the defined utility function for all state-action pairs of both
players.

We will demonstrate it on a simple example:

15

4. NFGSS

s1

s3s2

t1

Player 1 Player 2

l
r

l rl r

0.9
0.1

L R

U1(., .) (s1; l) (s1;r) (s2; l) (s2;r) (s3; l) (s3;r)
(t1;L) -1 1 -1 1 -1 1
(t1;R) 1 -1 1 -1 1 -1

Figure 4.1: Example of NFGSS. At the top there are MDPs of both players and
predefined utility is below them.

In this example, we have two players. The first player tries to sneak two
illegal packets through a border, but he can carry only one at a time. There
are two possible ways, the left, and the right. In the first attempt, he has
a messy map. Thus there is the probability of 0.1, that he will choose the
left way, but he will go by the right way. In the second attempt, the maps
are already clear. The second player, the defender, chooses the crossing at
the beginning and he cannot change it. The utility of the smuggler is written
in the table.

4.2 Conversion of NFGSS to Normal-Form Game

NFGSS is basically in the normal form. The only thing we need is to extract
a set of actions in the sense of the normal-form game actions and then
compute the utility for these actions. An action in the normal-form game
representation is identical as a pure strategy in NFGSS. Which means it is σ,
a set of pairs (s,a), where s is an MDP state, and a is a chosen action in it
[5]. For these actions we can compute utility u1(σ1,σ2) with the following
equation:

u1(σ1,σ2) =
∑

(s1,a1)∈σ1

∑
(s2,a2)∈σ2

U((s1,a1),(s2,a2)) ·πT (s1) ·πT (s2)

Where U((s1,a1),(s2,a2)) is the utility from the definition of NFGSS and
πT (si) is the probability of reaching si defined by the transition function T .

From the example in Figure 4.1, the sets of actions for players are:

A1 = {((s1, l),(s2, l),(s3, l)),((s1, l),(s2, l),(s3, r)),((s1, l),(s2, r),(s3, l)),
((s1, l),(s2, r),(s3, r)),((s1, r),(s2, l),(s3, l)),((s1, r),(s2, l),(s3, r)),
((s1, r),(s2, r),(s3, l)),((s1, r),(s2, r),(s3, r))}

A2 = {(t1,L),(t1,R)}

16

......................4.3. Conversion of NFGSS to Extensive-Form Game

And the utility for the third action of player 1 and the first action of player
2 is:

u1(((s1, l),(s2, r),(s3, l)),(t1,L)) =
= U((s1, l),(t1,L)) · 1 +U((s2, r),(t1,L)) · 0.9 +U((s3, l),(t1,L)) · 0.1
=−1 · 1 + 1 · 0.9− 1 · 0.1 =−0.2

The disadvantage of this representation is the exponential size. It can also
be seen in this example, that the MDP with only three states and branching
factor 2 corresponds to 8 actions in the normal form representation.

4.3 Conversion of NFGSS to Extensive-Form
Game

Each NFGSS can be converted to the extensive form with an imperfect recall
[2]. The extensive form can be defined as a set of players, a set of actions,
a set of histories, a set of terminal histories, a set information sets, and as
a utility function. History is any sequence of actions lying on the path from
the root to any state. Terminal history is any sequence of actions lying on
the path from the root to any leaf. It is described in Section (2.2.4).

In an extensive-form game derived from NFGSS, the set of players stays
the same. The set of actions is a union of state-action pairs of all players
and chance actions. Chance actions are triple (s,a,s′) with a probability
derived from the transition function in the MDP. A history of the player i
is a sequence of actions in his MDP, where action of each player is followed
by a chance action. The set of histories is the Cartesian product of histories
of all players. The set of terminal histories is a set of histories in which all
players reach a terminal node in the MDP. Two histories are in the same
information set if both lead to the same MDP state. The utility is defined
for each terminal history as follows [2]:

u1(z) =
∑

(s1,a1)∈z1

∑
(s2,a2)∈z2

U((s1,a1),(s2,a2))

The algorithm can be shown on the game displayed in Figure 4.1. This
game in the exponential form is displayed in the following figure.

17

4. NFGSS
s1

CH

s2

t1

-2 2

t1

0 0

s3

t1

-2 2

t1

0 0

s3

t1

0 0

t1

2 -2

l

0.9

l

L R

r

L R

0.1

l

L R

r

L R

r

l

L R

r

L R

Figure 4.2: The imprefect-recall, imperfect-information, extensive-form repre-
sentation of the game from Figure 4.1.

In this game, the state-action pairs of the first player and the chance nodes
are at the beginning and the state-action pairs of the second player follow
afterwards. The information sets are marked out by the dashed lines, and
the utility of the history is written in terminal nodes.

The disadvantage of this representation is that these games generally have
the imperfect recall. It is unpleasant because extensive-form games with
imperfect recall are in general difficult to solve.

4.4 Generalized NFGSS

We wanted to express more realistic scenarios, such as fare evaders in the
public transport or a graph searching game. These problems can by simplified
as NFGSS, but it has disadvantages. The main problem is that NFGSS
utility does not depend on history, which means thet linearity is too strong
assumption. To be concrete, when the pursuer in the case of a graph searching
game catchs the evader, the evader gets a penalty, and the game ends.

4.4.1 Definition

Modified nonlinear NFGSS is defined the same way as NFGSS. It is a two-
players zero-sum game, where each player has his own MDP as a strategy
space. Strategies and transition probabilities are the same.

The only difference between NFGSS and nonlinear NFGSS is the definition
of utility. Let zi be a terminal sequence of action states in an MDP of player
i, then U(z1,z2) = c, where c ∈ R.

For example in the game defined in Figure 4.1, the first player has two

18

..................................4.4. Generalized NFGSS

attempts. However, more realistic is, that when the smuggler is caught, he
cannot smuggle the second package. It leads to the following nonlinear utility:

U1(., .) (s1; l)
(s2; l)

(s1; l)
(s2;r)

(s1; l)
(s3; l)

(s1; l)
(s3;r)

(s1;r)
(s3; l)

(s1;r)
(s3;r)

(t1;L) -1 -1 -1 -1 0 2
(t1;R) 2 0 2 0 -1 -1

Table 4.1: An example of the definition of nonlinear utility in the game described
in Figure 4.1. The utility is defined for the whole sequences in MDPs.

4.4.2 Conversion of Generalized NFGSS to the Normal Form

Conversion of modified NFGSS to the normal-form game can be made similarly
as a transformation of ‘linear’ NFGSS into a normal-form game (4.2). The
set of actions is the same, only the computation of utility cannot be identical.
Therefore, we modify a form of actions for a better estimation of utility.

From the set of pairs (s,a), σ, defined in Section (4.2), we extract a set Z,
which contains all terminal histories s1,a1, · · · ,sn,an,sn+1, where s1 is the
root node, ∀i : (si,ai) ∈ σ, sn+1 is a terminal node, and T (si,ai,si+1)> 0.

The sets Ai of all actions from the example defined in Figure 4.1 are:

A1 = {((s1, l),(s2, l),(s3, l)),((s1, l),(s2, l),(s3, r)),((s1, l),(s2, r),(s3, l)),
((s1, l),(s2, r),(s3, r)),((s1, r),(s2, l),(s3, l)),((s1, r),(s2, l),(s3, r)),
((s1, r),(s2, r),(s3, l)),((s1, r),(s2, r),(s3, r))}

A2 = {(t1,L),(t1,R)}

The set of terminal histories Z can be written for each element of Ai. For
example, the set Z for the third action of the first player is:

Z = {((s1, l),(s2, r)),((s1, l),(s3, l))}

From the sets Zi of both players it is straightforward to calculate the utility
u1(Z1,Z2) by the following equation:

u1(σ1,σ2) = u1(Z1,Z2) =
∑
z1∈Z1

∑
z2∈Z2

U(z1,z2) ·πT (z1) ·πT (z2)

Where πT (zi) is the probability of reaching terminal history zi defined by the
transition function T as follows: πT (zi) =

∏
(sj ,aj ,sj+1) part of zi T (sj ,aj ,sj+1).

An example of the calculation of the utility of the third action of the first
player and the first action of the second player:

u1(((s1, l),(s2, r),(s3, l)),(t1,L)) = u1({((s1, l),(s2, r)),((s1, l),(s3, l))},{(t1,L)}) =
= U(((s1, l),(s2, r)),(t1,L)) · 0.9 · 1 +U(((s1, l),(s3, l)),(t1,L)) · 0.1 · 1
=−1 · 0.9− 1 · 0.1 =−1

19

4. NFGSS
4.4.3 Conversion of Generalized NFGSS to the Extensive
Form

Conversion of nonlinear NFGSS to an extensive-form game can be the same
as the transformation of standard NFGSS into the extensive form (4.3). Only
the utility must be recalculated as follows:

u1(z) = U(z1,z2)

4.5 Solving NFGSS

As in games in the normal form or the extensive form, we also want to find
Nash equilibria in NFGSS. We have shown in the previous section, that
NFGSS can be transformed into the normal form and the extensive form.
It implies that NFGSS can be solved by algorithms for these two models.
The first algorithm in this text is LP finding Nash equilibria for normal-form
games. The other approach is using CFR algorithm on the extensive-form
representation of NFGSS. We will show, that the CFR can be applied directly
on NFGSS.

4.6 Best Response in NFGSS

As in normal-form games, the best response can also be computed in NFGSS
on a strategy of opponent σ−i. It is computed recursively by the following
program[5]: (s is an MDP state. Externally, the function is called with the
root state as s.)

Algorithm 1 Best Response in NFGSS
1: function BR(s,σ−i)
2: if s is terminal then
3: return 0
4: for all a ∈A1(s) do
5: va←

∑
s2∈S2,a2∈A2 π

σ
−i(s2,a2)U((s,a),(s2,a2))

6: for all s′ ∈ S1 s.t. T (s,a,s′)> 0 do
7: va +=BR(s′,σ−i) ·T (s,a,s′)
8: maxAction← argmaxa∈A1(s)va
9: return vmaxAction

This program for each action possible in a state s computes an expected
utility (line 4), thenit gets the expected utility of the best response recursively
for each successor (line 6). Finally, the action with the maximum sum of
the expected utilities is selected (line 8). Finally, the value of this action is
returned.

20

............................... 4.6. Best Response in NFGSS

4.6.1 LP Finding Nash Equilibria in NFGSS

The first baseline algorithm uses the standard LP for solving games in the
normal form since every NFGSS can be represented as an exponentially large
normal-form game. We have explained the transformation of NFGSS into the
normal form in Section (4.2) and the algorithm for finding Nash equilibria in
the normal-form games in Section (3.2).

This solution has a big problem. A number of actions in the normal form
and consequently the size of LP grows exponentially with the size of an MDP.
Therefore, this method is very demanding regarding space complexity.

There are other methods, which solves NFGSS using LP for solving games
in the sequential form, as Compact-Strategy Double-Oracle algorithm [5].
This algorithm uses the linearity of NFGSS and so it is not usable next in
this work.

4.6.2 CFR Algorithm on NFGSS

The second algorithm, Counterfactual regret minimization, can be adapted
directly on NFGSS [2]. When we transform NFGSS to an extensive-form
game, two histories are in the same information set if both lead to the same
MDP state. It implies that the probability of reaching the information set is
the probability of reaching the MDP state. The strategies of both players
can also be updated separately because parts of histories of each player are
mutually independent. Finally, all probabilities and expected utilities can
be calculated iteratively from the corresponding values in predecessors or
successors. More precisely it can be seen in the detailed code:[2]

Algorithm 2 CFR for NFGSS
1: procedure NFGSS-CFR
2: ∀i ∈N ; σi← uniform strategy
3: ∀i ∈N ; Qi← 0, σ̄i← 0
4: for iteration t ∈ (1,2, · · ·) do
5: for i ∈N do
6: UpdateStateProbabilitiesMeanStrategies(-i,t)
7: UpdateActionRegretsCurStrategies(i)
8: ∀i ∈N ; Normalize(σ̄i)
9: procedure UpdateStateProbabilitiesMeanStrategies(i,t)

10: ∀si ∈ Si; p(si)← 0
11: p(s0

i)← 1
12: for si ∈ Si in topological order do
13: for ai ∈A(si) do
14: for s′ ∈ T (si,ai) do
15: p(s′) += p(si) ·σ(si,ai) ·T (si,ai,s′)
16: σ̄i(si,ai) += p(si) ·σ(si,ai)

21

4. NFGSS
17: procedure UpdateActionRegretsCurStrategies(i)
18: ∀si ∈ Si; v(si)← 0
19: for si ∈ Si in reverse topological order do
20: for ai ∈A(si) do
21: v(ai)← 0
22: for s′ ∈ T (si,ai) do
23: v(ai) += T (si,ai,s′) · v(s′)
24: for s−i, a−i ∈ S−i×A−i do
25: v(ai) += p(s−i) ·σ(s−i,a−i) ·Ui(si,ai,s−i,a−i)
26: v(si) += σ(si,ai) · v(ai)
27: for ai ∈A(si) do
28: Q(si,ai)←max(0,Q(si,ai) + v(ai)− v(si))
29: σi(si)←RegretMatching(Q(si))

In this pseudocode, we store for each MDP state the probability p(s) of
reaching it. For each action we store the cumulative action regrets Q, the
cumulative mean strategy σ̄, and the current strategy σ (it can be computed
from action regrets instead of storing). Since the MDPs in NFGSS have to
be acyclic, we store the states in topological order. When we traverse the
states in topological order, we have a guarantee, that predecessors are always
solved before the successors.

The algorithm updates strategies of both players alternately in each itera-
tion (line 5). First, it updates the state probabilities and the mean strategy
of the opponent player −i (line 6). Then the action values, the cumulative
regrets, and the current strategy of the player i are computed (line 7). After
T iterations the computation ends and the final cumulative mean strategy σ̄
has to be normalized (line 8).

The update of state probabilities and the update of the mean strategy is as
follows. First, all state probabilities are set to 0 (line 10), only the root state
has the probability of 1 (line 11). We iterate over states in topological order
(line 12). For each action (line 13) and each successor (line 14), the probability
is set to the probability of predecessor multiplied by the probability of choosing
the action under the current strategy and by the transition probability (line
15). When the probability is calculated, we can update the mean strategy
(line 16).

In the procedure update action regrets current strategies, we traverse states
in reverse topological order (line 19). For each action (line 20), we compute
the action value as a sum of all excepted values of the successors multiplied by
the transition probability (lines 22-23) and the marginal utility of that action
multiplied by probabilities of the opponent of playing his actions (lines 24-25).
The state value is a sum of all action values multiplied by the current strategy
(line 26). Finally, for each action cumulative action regrets Q are computed
(lines 27-28), and the current strategy is updated by regret matching (line
29).

22

Chapter 5
Solving Generalized NFGSS

In this chapter, we will focus on finding Nash equilibria in generalized NFGSS.
The first baseline algorithm is the standard LP solving algorithm applied
on the normal-form representation of generalized NFGSS, as we have shown
in Section (4.4.2). However, NFGSS represented in the normal form is
exponentially large. Therefore, we modify the MCCFR algorithm on NFGSS
and consequently on generalized NFGSS.

5.1 Best Response in Modified NFGSS

Computation of the best response to a strategy of the opponent σ−i in
modified NFGSS is also similar as in ‘linear’ NFGSS. It can be written as the
following recursive function: (s is the visited state, z is the sequence of states
and actions leading to s)

Algorithm 3 Best Response in nonlinear NFGSS
1: function BR(s, z, σ−i)
2: if s is terminal then
3: return computeExpectedUtility(z,σ−i)
4: for all a ∈A1(s) do
5: va← 0
6: z′← (z,(s,a))
7: for all s′ ∈ S1 s.t. T (s,a,s′)> 0 do
8: va +=BR(s′,z′,σ−i) ·T (s,a,s′)
9: maxAction← argmaxa∈A1(s)va

10: return vmaxAction

This program returns in terminal state s the expected utility given from
the sequence z leading to s and strategy of opponent σ−i (3). Formally:

computeExpectedUtility(z,σ−i) =
∑

z−i∈Z−i
U(z,z−i) ·πσ−i(z−i)

Where πσ−i(z−i) =
∏

(s,a)∈z−i π
σ
−i(s,a)·

∏
(sj ,aj ,sj+1) part of z−i T (sj ,aj ,sj+1).

23

5. Solving Generalized NFGSS
If s is not terminal (lines 2-3), the program computes the best response

value for each action (lines 4-8). It is calculated as the value returned by the
recursive calling of this function for all successors, normalized by transition
probability (line 8). Finally, the action with the maximum expected value is
selected (line 9).

This function finds the best response against σ−i. In a terminal node, we
get an expected utility and then in each node we choose an action, which
leads to the maximal expected utility gained by a next sequence. Formally,
this argument can be done by the mathematical induction.

5.2 MCCFR algorithm application for NFGSS

The main part of our work is to adapt MCCFR algorithm for NFGSS and
utilize the property, that we need only the utility of entire samples. With
these prerequisites, we use the major part of the CFR algorithm adapted on
NFGSS (Algorithm 3). Only the procedure UpdateActionRegretsCurStrategies
uses the linearity of the utility in NFGSS. Therefore it must be modified in
the MCCFR way.

Each NFGSS can be transformed into an extensive-form game. In the
method of turning NFGSS into the extensive form (4.3), the terminal history
of the game is a terminal sequence of moves in an MDP of the player i followed
by a terminal sequence of steps of the player −i. Thus, the part of the player
i we can call zi and the part of the opponent z−i.

In MCCFR for extensive-form games, we get a set of terminal histories
updated in one step, and we call it Qj . We use the property of splitting
history on zi and z−i, and we take as Qj a sequence zi and all possible
continuations of it. These continuations are all possible terminal sequences
of moves in an MDP of the opponent. And it gives us, that the probability
of taking the set Qj is q(z) = qj = πσ(zi), where πσ(zi) is the probability of
reaching the sequence zi by the strategy σ. It is because all histories from
Qj start by the sequence zi.

With this knowledge, we can rewrite the computation of counterfactual
value:

vi(I,σ|j) = vi(I,σ|z1)

=
∑

z∈Qj∩ZI

πσ−i(z[I]) ·πσ(z[I],z) ·ui(z)
q(z)

=
∑

z∈Qj∩ZI

πσ−i(z[I]) ·πσ−i(z[I],z) ·πσi (z[I],z) ·ui(z)
q(z)

=
∑

z∈Qj∩ZI

πσ−i(z) ·πσi (z[I],z) ·ui(z)
q(z)

24

........................ 5.2. MCCFR algorithm application for NFGSS

=
∑

(zi,z−i)∈Qj∩ZI

πσ−i(z−i) ·πσi (zi[I],zi) ·ui(zi,z−i)
πσ
′(zi)

=
∑
z−i

πσ−i(z−i) ·πσi (zi[I],zi) ·ui(zi,z−i)
πσ
′(zi)

= πσi (zi[I],zi)
πσ
′
−i(zi)

∑
z−i

πσ(z−i) ·ui(zi,z−i)

Similarly, as in general MCCFR Outcome sampling, we can make a substi-

tution W =
∑

z−i
πσ−i(z−i)·ui(zi,z−i)

πσ′(zi)
. The computations of action regrets can

be done in the same way as in MCCFR Outcome sampling, described in
Section (3.3.2), only W must be substitute differently and terminal history z
is restricted on sequence zi.

The numerator of the W,
∑
z−i π

σ
−i(z−i) · ui(zi,z−i), can be computed as

the expected utility gained from a pure strategy of the player i, which leads
to the zi, and the strategy σ−i of the opponent player −i.

Formally:

∑
z−i

πσ−i(z−i) ·ui(zi,z−i) =
∑

si,ai∈zi

∑
S−i×A−i

σ−i(s−i,a−i) ·U((si,ai),(s−i,a−i))

The modified function UpdateActionRegretsCurStrategies is depicted in
the following pseudocode:

Algorithm 4 MCCFR in NFGSS
1: procedure UpdateActionRegretsCurStrategies(i)
2: (pσ′ ,zi)← getRandomSample(i)
3: W ← computeExpectedUtility(zi,σ−i)/pσ

′

4: p← 1
5: for all (si,ai) ∈ zi in reverse topological order do
6: if isDefined(ssucc) then
7: p ∗= T (si,ai,ssucc)
8: ssucc← si
9: for all a ∈A(si) do

10: if a= ai then
11: Q(si,a) +=W · p
12: Q(si,a)−=W · p ·σi(si,a)
13: Q(si,a)←max(0,Q(si,a))
14: p ∗= σ(si,ai)
15: σi(si)←RegretMatching(Q(si))

First, we get a random sample in the MDP of the player i and compute
the probability of selecting it (line 2). The value and the probability are
used for computing the substituent W (line 3), and in the variable p there
is saved the probability of reaching the sample from the actual state. The

25

5. Solving Generalized NFGSS
states from the sample are iterated from the leaf to the root state (line 5). If
the state s is not the leaf, p is multiplied by the transition probability (lines
6-7). Then we calculate the cumulative action regret for each action (lines
9-13). If the action a is in the sample, W multiplied by p, the probability
of reaching the leaf state, is added to the action regret (lines 9-10). Then
the W multiplied by p and by the strategy σ is subtracted from the action
regret (line 11). Finally, the probability p is multiplied by the probability of
choosing the action from the sample by the current strategy σ (line 14), and
the current strategy is updated by the regret matching (line 15).

5.2.1 MCCFR Algorithm for Modified NFGSS

The CFR algorithm for NFGSS needs to know the utility for each state-action
pair. Thus, it cannot be modified to generalized NFGSS. In contrast, MCCFR
algorithm needs to know the utility of only terminal histories. Therefore,
the computation of counterfactual values can be rewritten to a form with
nonlinear NFGSS utility U(z1,z2):

vi(I,σ|j) = πσ(z1[I],z1)
πσ
′(z1)

∑
z2

πσ(z2[I],z2) ·ui(z1,z2)

= πσ(z1[I],z1)
πσ
′(z1)

∑
z2

πσ(z2[I],z2) ·U(z1,z2) · sign(i)

Where sign(1) = 1 and sign(2) =−1.
Pseudocode stays the same, only the function computeExpectedUtility(zi,σ−i)

must by defined with respect to the nonlinear utility. In detail it is described
in Section (5.1).

It is not formally shown that this algorithm converges to Nash equilibrium.
The experiments suggest that it can work for a reasonable large class of
practical problems.

26

Chapter 6
Experimental Evaluation

In this chapter, we will present results of experiments on Monte Carlo CFR
used on nonlinear NFGSS. First, we will state all circumstances under which
the experiments were performed, then we will introduce game instances on
which the algorithms run, and finally, we will discuss the outcomes and
possible reasons for them.

6.1 Used Software and Resources

The implementation is created as an extension of Game-Theoretical Library1

created by Game Theory group from Artificial Intelligence Center2 at Czech
Technical University in Prague. GT Library is written in Java, containing,
among other things, many algorithms for solving normal-form and extensive-
form games and algorithms for finding Nash equilibria in NFGSS as Double-
Oracle or Counterfactual regret minimization. There are also implemented
some domains of NFGSS as Ticket inspection game, Transit game, and
Border protection game i.e. Border patrolling game, which we have used in
the experiments.

On these bases, the system for finding Nash equilibria in NFGSS by
conversion to the normal-form and solving LP has been created. In our
implementation, the linear programs are solved in the IBM ILOG CPLEX
Optimization Studio3. It is a large optimization package, which solves mainly
integer and linear programming problems using various methods. We call it
through an integrated interface from Java, and we use only default methods
for solving LP described in Section (3.2).

Next, CFR has been reimplemented and transformed to MCCFR, which
contains the implementation of the best response algorithm for NFGSS and
generalized NFGSS. Finally, Transit game, Border protection game, and
Ticket inspection game have been modified and extended by nonlinear utility
functions.

The versions of used software are listed in the following table:

1Download: http://jones.felk.cvut.cz/repo/gtlibrary
2More info: http://aic.fel.cvut.cz/
3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

27

http://jones.felk.cvut.cz/repo/gtlibrary
http://aic.fel.cvut.cz/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

6. Experimental Evaluation................................
Software Version
Java 1.8.0_60

GT Library from 1. 11. 2016
IBM ILOG CPLEX 12.4

Table 6.1: Table of versions of the software used in the experiments.

The experiments were performed on distributed computing infrastructure
managed by virtual organization MetaCentrum4, to which we would like
to give thanks once again for the provided grid services. The tests were
performed mainly on computers from clusters listed in the table:

Cluster CPU
SPECfp2006
performance

per core

doom 2x 8-core Intel Xeon
E5-2650v2 2.60GHz 33.9

gram 2x 8-core Intel Xeon E5-2670
2,6GHz 30.3

ida 2x 10-core Intel E5-2650v3
3GHz 33.2

lex 2x 8-core Intel Xeon
E5-2630v3 2.40GHz 35.6

manegrot 4x 8-core Intel Xeon
E5-4627v2 (3.30GHz) 34.375

meduseld 4x 14-core Intel Xeon E7-4830
v4 (2.00GHz) 26.6

tarkil 2x 12-core Intel Xeon
E5-2650v4 (2.20GHz) 32.9

zubat 2x 8-core Intel Xeon
E5-2630v3 2.40GHz 33.9

Table 6.2: Table of the clusters used in the experiments.5

6.2 Game Domains

Three game domains have been expanded by the implementation of nonlinear
utility functions. Modified games are Border protection game, Transit game,
and Ticket inspection game.

4More info: https://metavo.metacentrum.cz/en/index.html
5All clusters with detailed info: https://metavo.metacentrum.cz/pbsmon2/nodes/

physical [6]

28

https://metavo.metacentrum.cz/en/index.html
https://metavo.metacentrum.cz/pbsmon2/nodes/physical
https://metavo.metacentrum.cz/pbsmon2/nodes/physical

....................................6.2. Game Domains

6.2.1 Transit Game

Transit game domain was used for evaluation in [2] and [5]. It is a basic search
game played on an undirected graph, which is formed as a grid displayed
in Figure 6.1. It is determined by three parameters: width, length, and
a number of steps. When the number of steps is reached, the game ends. At
each step, the player can either try to move or stay in place. Every try to
move fails with the probability of 0.1. The players move simultaneously.

There are two players: an evader and a defender. The evader starts at any
node most to the left. It is formulated as starting at the node se on time -1.
His goal is to cross the grid from left to right without meeting the defender.
If he successfully gains the right side of the grid, he gets utility 1. With every
step, he gets a small penalty 0.02.

The defender starts on the grayed node sd in the middle of the most bottom
side of the graph. If he catches the evader, he gets payoff 1 and the game
ends, and all next steps are evaluated with 0 utility. When the defender does
not meet the evader during the game, and he does not return to the base,
which corresponds to the starting node, he gets a penalty 20.

The game has to be zero-sum. Hence, a gain of the defender is a penalty
of the evader and vice versa.

sd

se width

lenght

Figure 6.1: Scheme of a graph of Transit game.

6.2.2 Border Protection Game

Border protection game was used for evaluation in [5]. It is played on
a directed graph shown in Figure 6.2 in three variants. It is determined by
two parameters: width and a number of steps. As well as in Transit game,
the number of steps determines the end time of the game.

There are also two players: an evader and a patroller. The evader starts at
the leftmost node E and attempts to safely cross the graph to the rightmost
node D. The evader gains the utility 2 for reaching the goal node. The evader
moves by every step, only in grayed areas he can stay in the same node.

The patroller controls two units, which move simultaneously in the inter-
mediate nodes. These nodes are in gray shaded areas in Figure 3.2. The units
can start in any one of them, and they can in each step either move to the

29

6. Experimental Evaluation................................
neighbor node or stay at the same place. The patroller can observe traces,
which the evader has left behind in previous steps with the probability of 0.1.
If the patroller sees a trail, he gets the utility 0.1. If he catches the evader,
he gets the utility 1 and the game ends.

As in Transit game, this domain has to be zero-sum. Hence, a gain of the
defender is a penalty of the evader and vice versa.

E D

P1 P2

(a) : Fully connected

E D

P1 P2

(b) : Almost fully connected

E D

P1 P2

(c) : Weakly connected

Figure 6.2: Graphs of Border protection game with width 3.

6.2.3 Ticket Inspection Game

Ticket inspection game was used for evaluation in [2]. It models scheduling
ticket inspectors shift of specified length on a single train line. We define
this line by a number of stops, a number of trains from both sides, and an
approximate number of passengers. Trains are generated non-uniformly with
tangent function. It means that at the beginning and at the end of the shift
trains are generated with a lower frequency than in the peak around the
second third of the shift. There are defined passenger trips as a number of
passengers that take each train between each pair of stations. The trips are
also generated non-uniformly from predefined popularities of stations, train
timetable, and the approximate overall number of passengers.

The ticket inspector starts in the middle of the train line on a station.
On a station, he can either take a train or check tickets of passengers on
the station, which takes 15 minutes. When he is on a train, he can either
check the tickets until the next stop or exit the train. The inspector checks 5
passengers per minute and passengers are present in the station 3 minutes
before they take a train and 3 minutes after they exit it. The inspector misses
the train or is not able to leave the train with the probability of 0.1. It is

30

............... 6.3. Nash Equilibrium in NFGSS Evaluated on Generalized NFGSS

due to unexpected delays. The MDP of ticket inspector starts with an action
when he receives money for purchased tickets. Afterwards, the MDP contains
a schedule of the shift of the inspector.

The MDP of passenger trips is drawn in Figure 6.3. It starts with the
dummy action with a successor for each trip. The transition probability is
defined as a probability, that random passenger takes the trip. In each of
these successors, the passenger can decide, if he buys a ticket or dodges the
fair.

The ticket price is 1.50$ and fine for driving without a ticket is 100$. After
the inspector imposes a fine of the passengers in a train, he must impose
a fine of the passengers in another train. Otherwise, he gets nothing from
the passengers.

This game is clearly zero-sum because what a passenger pays, the inspector
gets.

· · ·

Get trip

p1

Buy Not

p2

Buy Not

pn

Buy Not
Trip 1 Trip 2 Trip n

Figure 6.3: MDP of passenger in Ticket inspection game.

6.3 Nash Equilibrium in NFGSS Evaluated on
Generalized NFGSS

NFGSS has several methods for finding Nash equilibria. In this section, we will
discuss, if Nash equilibrium strategies in NFGSS give a good approximation
of the Nash equilibrium in generalized NFGSS.

We solved NFGSS by CFR algorithm on the absolute precision 0.01 (a dif-
ference of the best response values), and we computed the best response values
in generalized NFGSS on the found strategies. The precision ε guarantee that
we found ε-Nash equilibrium in modified NFGSS.

In Border protection game, we tested games on the weakly connected graph
with the width equal to 3. When the number of steps was smaller than 4,
the strategies were quite close to Nash equilibrium in the generalized NFGSS.
The difference values were at most 3.68% of the utility. The difference in
generalized NFGSS was on the weakly connected graph with three steps
sometimes even smaller than in ‘linear’ NFGSS (0.34%< 0.71%). When the
number of steps was greater than or equal to 4, the strategies computed
by CFR on ‘linear’ NFGSS differed considerably from Nash equilibrium in
nonlinear NFGSS. The differences between the best response values ranged
between 9% and 11%. The definition of nonlinearity in Border protection
game cause this changes. The smuggler can reach the end of the plane after 4

31

6. Experimental Evaluation................................
steps, and it is the moment when the nonlinearity plays the significant role. It
is almost inconsequential, if the player was caught twice or once, the strategy
would be close to Nash equilibrium.

Steps 2 3 4 5 6 7

Precision [%] 3.68 0.34 10.98 9.58 9.66 9.07

Table 6.3: Nash equilibria from ‘linear’ approximation evaluated on generalized
Border protection game on the weakly connected graph with width 3.

In Transit game, we tested games with many possible combinations of the
width, the length and the number of steps. When the game configuration
was not small (has more than two steps), the differences ranged from 1.3% to
2.1%. The multiple captures allowed in the ‘linear’ version of this game has
a significant impact on the optimality in the strategy profile in the nonlinear
version. It is caused by the penalty for step, the penalty for not returning to
the basis and the height interconnection of the graph.

Length 2 3 4 5

Precision [%] 1.36 1.29 1.56 2.08

Table 6.4: Nash equilibria from ‘linear’ approximation evaluated on generalized
Transit game with the width 2 and with the number of steps equal to the length
+ 1.

In Ticket inspection game, we tested games with the variable number
of stations and the variable number of trains. The approximative number
of passengers was always set on thousand times the number of trains. The
results on this game domain differed a lot. Sometimes, the differences between
the best response values take values around 0.05%. On the other hand, the
differences acquire values up to 0.5% in some examples. In Ticket inspection
game, the nonlinearity avoids checking passenger two times in the same train
in a row. It is not a radical change, and usually, it has not a big impact on the
best strategies. Sometimes, we cannot rely on linear NFGSS as a heuristic,
and we must solve generalized NFGSS to get a reasonable result.

Trains 1 2 3 4

Precision [%] 0.048 0.48 0.05 0.51

Table 6.5: Nash equilibria from ‘linear’ approximation evaluated on generalized
Ticket inspection game with 3-hour long shift, with the number of stations equal
to the number of trains +1, and with the approximative number of passengers
equal to the 1000 · the number of trains.

32

...................................... 6.4. LP Solver

6.4 LP Solver

In this section, we describe experimental results for the standard LP for
solving normal form games, which is outlined in Section 4.6.1. This algorithm
is the baseline, and it is not expected to be usable for problems that are not
negligibly small.

We used all three domains. Border protection game was run on the weakly
connected graph with the width 2 and with the variable number of steps.
Transit game had a size w, where the length of the grid was equal to the
width and the size w, and the number of steps was equal to w + 1. Ticket
inspection game was run on the three hours (180 min) long shift, with the
variable number of stations, the number of trains was constantly 2, and the
approximate number of passengers was 2000. We ran the experiments five
times to decrease the statistical error. The matrix size is always the same,
and the standard deviations of times are in graphs.

1 2 310−1

102

105

108

1011

Game Size

U
til
ity

M
at
rix

Si
ze

(a) : Transit game utility matrix size

1 2
0

100

200

233±19

128±7

T
im

e
[m

s]

strategies utility LP

(b) : Transit game computation time

1 2 3
101

103

105

107

109

1011

Number of Steps

U
til
ity

M
at
rix

Si
ze

(c) : Border protection game utility
matrix size

1 2

50

100

150

200

194±22

116±4

T
im

e
[m

s]

strategies utility LP

(d) : Border protection game compu-
tation time

33

6. Experimental Evaluation................................

2 3 4
103

106

109

1012

Number of Stations

U
til
ity

M
at
rix

Si
ze

(e) : Ticket inspection game utility
matrix size

3 4

0

2

4

6

8
·104

±1 · 104
6.07 · 104

136±6

T
im

e
[m

s]

strategies utility LP

(f) : Ticket inspection game computa-
tion time

Figure 6.4: Sizes of utility matrices and computation times for Transit game
(a, b), Border protection game (c, d), and Ticket inspection game (e, f). In
the time analysis chart, the labels mean: ‘strategies’ - the part of getting all
strategies, ‘utility’ - the part of getting utility, and ‘LP’ - the part of solving
LP.

In the graphs, we can see, that the size of the payoff matrix grows quickly,
which was expected. It corresponds to the time necessary for the computation.
TG with the size 3 and in TIG with four stations has huge memory require-
ments, and we have not enough resources to meet it. In the TG of size 3, the
utility matrix has size 338339× 261307. It means that we need more than
8.841× 1010 · 8≈ 7.073× 1011 bytes, which is approximately 707 Gigabytes.
In the TIG with four stations, the utility matrix has size 3665243× 16777216.
Thus, it requires even more memory (≈ 492 Terabytes). The payoff matrix in
the BPG with three steps has size 20× 1761607680, and we have not enough
resources to store all strategies.

6.5 Analysis of MCCFR for Generalized NFGSS

This section describes the experiments, which were performed with the
MCCFR algorithm on modified NFGSS games. We examined the progress in
the strategy, and we tried to find out, whether the algorithm converges.

We ran the algorithm on all three domains with different sizes. The
computation was limited by a maximal number of iterations equals to 109.
Based on the previous experiments, we set the epsilon from the epsilon-on-
policy to 0.1 or 10%. And the precision of the final result was set to 0.01,
which means the best response values on strategies of players differ maximally
by 0.01. In TG it corresponds to the half of the penalty for a step, in BPG it
is a tenth of the penalty for observing a trail and in TIG the error tally with
one cent per passenger.

34

....................... 6.5. Analysis of MCCFR for Generalized NFGSS

6.5.1 Border Protection Game

Border protection game was used in all three variants: weakly connected,
almost fully connected, and fully connected. It was run with width three and
a multiple number of steps. There are three examples of convergence graphs.
It shows the average values of five runs. The standard deviation was in all
iterations and in all tests smaller than 0.03.

102 103 104
−0.1

−0.05

0

0.05

0.1

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Patroler
Smuggler

Figure 6.5: Convergence chart of the BPG with the weakly connected graph,
width 3, and 4 steps.

102 103 104

−0.2

−0.1

0

0.1

0.2

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Patroler
Smuggler

Figure 6.6: Convergence chart of the BPG with the almost fully connected
graph, width 3, and 4 steps.

35

6. Experimental Evaluation................................

102 103 104

−0.1

0

0.1

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Patroler
Smuggler

Figure 6.7: Convergence chart of the BPG with the fully connected graph, width
3, and 4 steps.

In the graphs and also in all other tested Border protection games the best
response values for both players apparently converges to the same values,
which means that strategies found by the MCCFR algorithms was in ε-Nash
equilibrium for ε→ 0. In these three examples, the algorithm convergs to the
desired precision (0.01) after ca. 5.5 hours (2.8× 106 iterations), 4.4 hours
(4.8× 105 iterations), and 5.5 hours (3× 106 iterations) respectively.

When we compare the MCCFR algorithm with the approximation by ‘linear’
NFGSS, MCCFR gives us better results. The smallest difference gained by
the approximation was 9.07% (unless we include the smallest games), while
MCCFR gives us the precision, which we want to.

Another question is the scalability of the algorithm in this game. All ex-
periments were run five times, the average values and the standard deviations
are presented. The percentages differed not more than by 4%.

1 2 3 4
10−1

100

101

102

103

104

Number of Steps

T
im

e
[s]

(a) : Computation times

1 2 3 4

0%

20%

40%

60%

80%

100%

ARCS Mean Utility Rest

(b) : Percentages of the computation
time used in procedures

Figure 6.8: Scalability of MCCFR in Border protection game with weakly
connected graph

36

....................... 6.5. Analysis of MCCFR for Generalized NFGSS

1 2 3 4
10−1

100

101

102

103

104

Number of Steps

T
im

e
[s]

(a) : Computation times

1 2 3 4

0%

20%

40%

60%

80%

100%

ARCS Mean Utility Rest

(b) : Percentages of the computation
time used in procedures

Figure 6.9: Scalability of MCCFR in Border protection game with almost fully
connected graph

1 2 3 4
10−1

100

101

102

103

104

Number of Steps

T
im

e
[s]

(a) : Computation times

1 2 3 4

0%

20%

40%

60%

80%

100%

ARCS Mean Utility Rest

(b) : Percentages of the computation
time used in procedures

Figure 6.10: Scalability of MCCFR in Border protection game with fully con-
nected graph

The previous graphs shows the computation times and percentages of time
used in methods for Border protection game with the weakly connected graph
(6.8), Border protection game with the almost fully connected graph (6.9),
Border protection game with the fully connected graph (6.10). In the method
analysis chart, the labels mean:. ‘ARCS’ - the method of computation action regrets and current strategies

(without computeExpectedUtility). ‘Mean’ - the method for updating of the state probabilities and computing
mean strategies. ‘Utility’ - the function computeExpectedUtility. ‘Rest’ - overhead time for printing results and so on

37

6. Experimental Evaluation................................
The time needed to solve the game grows quickly. The first factor, which

plays a role in convergence time, is the number of iterations necessary for
the solving the game. This number is connected with the number of samples
through both MDPs. In the CFR algorithm, we update values in all MDP in
one iteration. Unlike it, MCCFR updates strategies only in one sample in an
iteration. Therefore, we need the number of iterations from CFR multiplied
by the number of samples in the MDP. This estimate is very inaccurate
because it profoundly depends on the probability of choosing the sample. The
number of iterations needed to solve the game grows typically with the size
of the game, but it is not the rule. For example, we needed approximately
6.7× 106 iterations in Border patrolling game with the weakly connected
graph with 3 steps and 2.3× 106 iterations in the same game with 4 steps. It
is caused by not uniformity in selecting a sample.

The reason for the bad scalability can be seen in right graphs. The main
part of the computation time is spent in the computeExpectedUtility function.
In this function, we evaluate a chosen sample against all the MDP of the
opponent. We go through the MDP and evaluate the states against the states
in the sample. When the probability of reaching the successor is zero, we
drop out all continuations of this path. It is also done when the game has to
end (the defender catches the attacker).

6.5.2 Ticket inspection game

We run Ticket inspection game with a various number of stations and trains.
The approximative number of stations was set on thousand times the number
of trains. The following convergence graph shows an example of the average
of five runs. The error was always smaller than 1.5%.

10−3 10−2 10−1 100 101 102 103 104 105

0.4

0.6

0.8

1

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Passenger
Ticket inspector

Figure 6.11: Convergence chart of the TIG with two stations, two trains, and
approximative 2000 passengers.

The graph and the other tested configurations of this game indicate that
the mean strategy computed by MCCFR algorithm converges to the Nash

38

....................... 6.5. Analysis of MCCFR for Generalized NFGSS

equilibrium also in Ticket inspection game. More specifically, in the previous
example, the mean strategy reaches desired accuracy (0.01) after about
23.5 hours (784× 106 iterations).

When we compare the MCCFR algorithm with the approximation by ‘linear’
NFGSS, MCCFR gives us better results. However, the results given by ‘linear’
approximation are sometimes quite good (the difference of best responses is
about 0.05%) and the computation time is significantly lower (10−2s < 101s).
The problem is, we do not know in which case the approximation give us the
good result, while MCCFR gives us always the precision, which we want to.

Another question is the scalability of the algorithm in this domain. All ex-
periments were run five times, the average values and the standard deviations
are presented. The percentages differed not more than by 4%.

1 2
101

102

103

104

105

Number of Trains

T
im

e
[s]

(a) : Computation times

1 2

0%

20%

40%

60%

80%

100%

ARCS Mean Utility Rest

(b) : Percentages of the computation
time used in procedures

Figure 6.12: Scalability of MCCFR in Ticket inspection game

Ticket inspection game was in the previous figure used with the changing
number of trains, the number of stations was equal to the number of trains
plus one, and the approximative number of passengers was equal to the
number of trains multiplied by thousand.

The graph of the scalability shows the same phenomena, which were
discussed in the previous section. However, the computation of the utility
in Ticket inspection game is more time complex than in Border protection
game because the nonlinearity does not drop out any paths through MDP. It
only skips some values.

6.5.3 Transit game

Transit game has three degrees of freedom: width, height, and a number
of steps. We ran multiple tests With various settings. Data displayed in
following charts are averages of five runs with different random seeds. The
error was always smaller than 1%. The run games are marked as follows: TG
a number of steps, a length, a width. For example, TG 2 1 3 means Transit
game with two steps and on a grid with width 3 and length 1.

39

6. Experimental Evaluation................................

10−3 10−2 10−1 100

0

2

4

6

8

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Deffender
Attacker

Figure 6.13: Convergence chart of the TG 2 2 2.

10−3 10−2 10−1 100 101 102 103

0

5

10

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Deffender
Attacker

Figure 6.14: Convergence chart of the TG 3 2 3.

10−3 10−2 10−1 100 101 102 103 104

0

5

10

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Deffender
Attacker

Figure 6.15: Convergence chart of the TG 3 2 2

40

....................... 6.5. Analysis of MCCFR for Generalized NFGSS

The first two examples converge to the accuracy 0.01 respectively after
ca. 106 iterations and 4 seconds, ca. 24× 106 iterations and 4.75 minutes.

On the third graph, there is drawn a progress of best response values
against the mean strategies of both players. It seems that it converges quickly
as the previous examples. However, the required precision is not reached
even after 109 iterations, which was set as a limit. When we look at it in
detail (Figure 6.16), we can see that the accuracy oscillates around the value
of 0.11%. The best-attained strategy has the error equal to 0.106%. It was
reached after ca. 45 minutes and 262× 106 iterations.

100 101 102 103 104
0.06

0.08

0.1

0.12

0.14

0.16

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Deffender
Attacker

Figure 6.16: Convergence chart of the TG 3 2 2 in the detail.

100 101 102 103 104 105

−0.4

−0.2

0

0.2

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Deffender
Attacker

Figure 6.17: Convergence chart of the TG 4 3 2

41

6. Experimental Evaluation................................

100 101 102 103 104 105

−0.5

0

0.5

1

Time [s]

B
es
t
re
sp
on

se
va
lu
e

Deffender
Attacker

Figure 6.18: Convergence chart of the TG 4 3 3

In the last two examples, it is even more clear that the MCCFR algorithm
does not converge to Nash equilibrium. TG 4 3 2 reaches the minimal error
equal to 0.42% after approximately 2.4× 106 iterations and 217 seconds. TG
4 3 3 has the minimal difference even worse. It is equal to 1.2%, and it is
reached after ca. 0.9× 106 iterations and 184 seconds.

The main question is, what causes this divergence. We have measured, that
in these examples, there are differences in values gained by the same action
according to a history and this difference does not disappear with the time.

The difference can in the nonlinear version of Transit game appear when
the attacker has two histories h1, h2, which lead to the same information
node. In h1 the player is caught with the probability of ε, and in h2 he can
not be caught. Therefore, an action a is after the history h1 evaluated only
against a part of the MDP of the opponent. By way of contrast, the same
action a is after history h2 evaluated against all the MDP of the opponent.

We show this phenomenon in the following example. We have a nonlinear
Transit game, where the attacker gets only the utility 1 for reaching the most
right node and the utility −1 when he is caught. We play this game on a 3×3
grid, with three steps, and there is no uncertainty. The parts of the MDPs of
both players, where the strategy probability is nonzero, are in Figure 6.19.
In the figure, strategy probabilities are drawn next to actions, and there is
marked an action a.

When the attacker plays the first history (probability p), he is caught with
the probability of ε at the time 1, and he is caught with the probability of
1− ε at the time 2. When the player plays the second history (probability
1-p), he is caught with the probability of 1− ε, and with the probability of ε,
he reaches the right node (1,2) safetly. The utility gained by a after the first
history is −1 and after the second history, it is ε ·1 + (1− ε) · (−1). When ε is
bigger than 0, these utilities are unequal.

MCCFR algorithm does not converge in Transit game. We can use the
strategy profile, which is nearest to Nash equilibrium, as an approximation.

42

....................... 6.5. Analysis of MCCFR for Generalized NFGSS

S

(1,0) (2,0)

(1,0) (2,0)

(1,1)

(1,2)

(0,1)

(1,0)

(0,1)

(0,1)

(1,2)

(1,2)

(1,1)

T=-1

T=0

T=1

T=2

T=3

Attacker Defender

p 1− p

1 1

1 1

a

ε 1− ε

1 1

1 1

Figure 6.19: An example of a situation in Transit game, where utility gained by
action a depends on the previous history.

Then we can compare this estimate against the ‘linear’ approximation by
NFGSS. MCCFR is always better in this comparasion. For example, TG 3 2
2 has the best strategy profile with the error 0.106% and the same instance
gets from approximation by NFGSS the error 1.36%. TG 4 3 2 has the best
difference gained by MCCFR equal to 0.42% and by CFR in NFGSS get the
precision 1.29%. Finally, TG 4 3 3, which is the worst case for MCCFR, has
the difference by MCCFR equal to 1.2% and the ‘linear’ approximation gives
us 3.7%, which is also the biggest error from all tested instances.

The last question is the scalability of the algorithm on this domain. Since
MCCFR does not converge in this domain, we stopped the computation after
109 iterations. All experiments were run five times, the average values and
the standard deviations are presented. The percentages differed not more
than by 4%.

1 2 3

10−3

10−1

101

103

105

Length

T
im

e
[s]

(a) : Computation times

1 2

0%

20%

40%

60%

80%

100%

ARCS Mean Utility Rest

(b) : Percentages of the computation
time used in procedures

Figure 6.20: Scalability of MCCFR in Transit game

43

6. Experimental Evaluation................................
Transit game confirms, that the time complexity grows quickly with the

size of the game. From the right graph, we can see that Transit game has the
computeExpectedUtility function less time-consuming. It is because we need
to evaluate the state from the MDP against only the state with the same
timestamp from the sample.

44

Chapter 7
Conclusions

The goal of the work was to solve generalized NFGSS in the meaning of finding
Nash equilibria in them. As the baseline algorithm, we used the standard LP
for solving normal-form games. It is possible because each NFGSS can be
expressed as an exponentially large game in the normal form.

The second approach to solving generalized NFGSS used no-regret learning
algorithms. We had started with the Counterfactual regret minimization
(CFR) algorithm adapted for NFGSS. However, it could not be used on
generalized NFGSS because it needs to know the utility of single actions.
This is not feasible in generalized NFGSS since the utility function there
is defined only for terminal histories. Therefore, we adapted the Monte
Carlo Counterfactual regret minimization (MCCFR) algorithm for NFGSS.
This algorithm needs to know the utility of completed games, which in our
implementation corresponds with terminal histories in NFGSS. It implies
that we could use it directly on generalized NFGSS.

For testing, we modeled three domains of generalized NFGSS: Transit game,
Ticket inspection game, and Border protection game. On these domains,
we run multiple experiments with the LP solver and MCCFR. Finally, we
compared the attained results with results given by evaluation of Nash
equilibria from NFGSS in generalized NFGSS.

MCCFR algorithm always converged in Ticket inspection game and Border
protection game. In Transit game the algorithm diverges since we discovered
considerable utility dependency on the previous history. However, the best
strategy found by MCCFR was a far better than results of the ‘linear’
approximation of generalized NFGSS.

The scalability of LP method was bad, because of the exponential size of the
utility matrix of the representation in the normal form. MCCFR algorithm
managed to compute more problems, but the largest solved problems had
only tens or at most hundred of states in one MDP. The bad scalability is
caused by getting utility function, which is called in each iteration, and the
computation time of it grows with the number of paths through MDP.

45

7. Conclusions
7.1 Future work

MCCFR proved to be promising as a solver or an approximative solver
of generalized NFGSS. We discovered a significant deficiency in scalability.
The current bottleneck is the computation of the expected utility. It would
be great to speed up this method by, for example, finding a more efficient
algorithm or by parallelization of the computation. The other possibility
is to find some approximation of this function, which would speed up the
computation without significant inaccuracy. For example, we can drop out
the samples with reaching probability smaller than ε≥ 0. (In actual version
ε= 0).

Furthermore, for specific domains, we would like to identify some more
heuristics to improve the scalability of the algorithm.

46

Appendix A
Bibliography

[1] Y. Shoham and K. Leyton-Brown, Multiagent Systems : Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press,
rev 1.1 ed., 2009.

[2] V. Lisý, T. Davis, and M. Bowling, “Counterfactual regret minimization
in sequential security games,” in Thirtiet AAAI Conference on Artificial
Intelligence, 2016.

[3] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54,
pp. 286–295, Sept. 1951.

[4] M. Lanctot, Monte Carlo Sampling and Regret Minimization for Equilib-
rium Computation and Decision Making in Large Extensive-Form Games.
PhD thesis, University of Alberta, 2013.

[5] B. Bošanský, A. X. Jiang, M. Tambe, and C. Kiekintveld, “Combining
compact representation and incremental generation in large games with
sequential strategies,” in Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[6] “Vo metacentrum - physical machines.” https://metavo.metacentrum.
cz/pbsmon2/nodes/physical. Accessed: 2017-04-22.

47

https://metavo.metacentrum.cz/pbsmon2/nodes/physical
https://metavo.metacentrum.cz/pbsmon2/nodes/physical

48

Appendix B
CD Content

The enclosed CD contains following files and directiories:. silhapro.pdf - the text of this work. source - folder with the implementations in Java

Running the Implementations

The source folder contains the whole GTLibrary supplemented by our source
code of MCCFR algorithm, transformation NFGSS to the normal form and
solving the standard LP, and implementations of nonlinear domains: Transit
game, Border protection game, and Ticket inspection game.

Executing of it requires third party software. All of them can be downloaded
for free (or at least in an academical license):. Java1. IBM ILOG Cplex2

Our code is located in following packages:. cz.agents.gtlibrary.nfg.MDP.mccfr - the whole package. cz.agents.gtlibrary.nfg.MDP.exponential - the whole package. cz.agents.gtlibrary.nfg.MDP.implementations - the abstract class MDP-
ConfigNonlinearImpl. cz.agents.gtlibrary.nfg.MDP.domain.transitgame - the TGConfig supple-
mented by extension of the MDPConfigNonlinearImpl class. cz.agents.gtlibrary.nfg.MDP.domain.bpg - the BPConfig supplemented
by extension of the MDPConfigNonlinearImpl class. cz.agents.gtlibrary.nfg.MDP.domain.tig - the TIGConfig supplemented
by extension of the MDPConfigNonlinearImpl class

1http://www.oracle.com/technetwork/java/javase/downloads/index.html
2https://developer.ibm.com/academic/

49

B. CD Content
The standard LP solver can be executed by running MDPExponential-

FormAlgorithm from package cz.agents.gtlibrary.nfg.MDP.exponential with
following options:

[domain] [parameters of the domain] [Boolean: use nonlinear utility]

The MCCFR alforithm can be executed by running MCCFR from package
cz.agents.gtlibrary.nfg.MDP.mccfr with following oprions:

[domain] [parameters of the domain] [Boolean: use nonlinear utility] [Double:
final precision] [Double from 0 to 1: ε from epsilon-on-policy] [Integer: a maxi-
mal number of iterations] [Boolean: use CFR] [Boolean: evaluate on nonlinear]

The ‘use CFR’ and ‘evaluate on nonlinear’ options are available only with
the linear utility. With the ‘use CFR’, is Nash equilibrium found by CFR, and
the ‘evaluate on nonlinear’ computes the best response values in generalized
NFGSS against the found strategy in NFGSS.

Possible domains with options are:
[TG] [Integer: a number of steps] [Integer: length] [Integer: width]
[BP] [Integer: a number of steps] [String: graph file]
[TIG] [Integer: max time] [Integer: number of stops] [Integer: number of

trains] [Integer: approximative number of passengers]

50

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Prokop Š i l h a v ý

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: No-regret Learning in Generalized Normal-Form Games with
 Sequential Strategies

Guidelines:
In some sequential games, players have limited observations about the actions of the
opponent. These games can be modeled as normal-form games with sequential strategies
(NFGSS), where the strategy space of each player is modeled as a finite acyclic Markov
decision process. Existing algorithms for finding optimal strategies in these games typically
assume a specific linear structure of utilities that allow these games to be solvable by linear
programming or no-regret learning algorithms. However, such an assumption is not always
present in real-world scenarios. The main goal of the student is to (1) analyze these more
general NFGSS and no-regret learning algorithms based on counterfactual regret minimization
(CFR), (2) analyze the possibility of implementing CFR-based algorithms for these more
general NFGSS despite the lack of theoretical guarantees, and (3) provide an experimental
evaluation of the quality of CFR strategies in at least three different games.

Bibliography/Sources:
[1] Branislav Bosansky, Albert Xin Jiang, Milind Tambe, and Christopher Kiekintveld.
 Combining Compact Representation and Incremental Generation in Large Games with
 Sequential Strategies. In Proceedings of AAAI. 2015
[2] Viliam Lisy, Trevor Davis, Michael Bowling. Counterfactual Regret Minimization in
 Sequential Security Games. In Proceedings of AAAI. 2016
[3] Marc Lanctot. Monte Carlo Sampling and Regret Minimization For Equilibrium Computation
 and Decision-Making in Large Extensive Form Games. PhD Thesis, University of Alberta,
 2013

Bachelor Project Supervisor: Mgr. Branislav Bošanský, Ph.D.

Valid until: the end of the summer semester of academic year 2017/2018

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 12, 2017

	Introduction
	Owerview

	Background
	Normal-Form Games
	Definition
	Strategy

	Extensive-Form Games
	Perfect-Information Games
	Strategies in Extensive-Form Games
	Imperfect-Information Games
	Alternative Definition
	Perfect Recall

	Solving Games
	Solution Concepts
	Best Response
	Nash Equilibrium
	-Nash Equilibrium

	Finding Nash Equilibria in Normal-Form Games
	Finding Nash Equilibria in Extensive-Form Games
	Counterfactual Regret Minimization
	MCCFR

	NFGSS
	Definition
	Conversion of NFGSS to Normal-Form Game
	Conversion of NFGSS to Extensive-Form Game
	Generalized NFGSS
	Definition
	Conversion of Generalized NFGSS to the Normal Form
	Conversion of Generalized NFGSS to the Extensive Form

	Solving NFGSS
	Best Response in NFGSS
	LP Finding Nash Equilibria in NFGSS
	CFR Algorithm on NFGSS

	Solving Generalized NFGSS
	Best Response in Modified NFGSS
	MCCFR algorithm application for NFGSS
	MCCFR Algorithm for Modified NFGSS

	Experimental Evaluation
	Used Software and Resources
	Game Domains
	Transit Game
	Border Protection Game
	Ticket Inspection Game

	Nash Equilibrium in NFGSS Evaluated on Generalized NFGSS
	LP Solver
	Analysis of MCCFR for Generalized NFGSS
	Border Protection Game
	Ticket inspection game
	Transit game

	Conclusions
	Future work

	Bibliography
	CD Content
	Running the Implementations

	Project Specification

