Bachelor Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Detection and Localization of Texture-less
Objects with Deep Neural Networks

Pavel Haluza

Supervisor: Ing. Tomas Hodan
May 2017

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Pavel Haluza
Study programme: Cybernetics and Robotics
Specialisation: Robotics

Title of Bachelor Project: Detection and Localization of Texture-less Objects with Deep
Neural Networks

Guidelines:

1. Study the existing state-of-the-art methods for detection and localization of object classes
in RGB images. Focus on methods based on deep neural networks, e.g. [1,2,3].

2. Consider application of the existing methods to detection and localization of specific
texture-less objects.

3. Analyse properties of a selected method on RGB images from relevant RGB-D datasets,
e.g. [4,5,6,7].

4. Propose how to use the D image channel in the selected method. Implement the proposed
extension.

5. Experimentally evaluate the extended method on RGB-D images and compare the results
with other methods.

Bibliography/Sources:

[1] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." arXiv preprint
arXiv:1506.02640 (2015).

[2] Ren, Shaoging, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks."
Advances in neural information processing systems (2015).

[3] Liu, Wei, et al. "SSD: Single Shot MultiBox Detector." arXiv preprint arXiv:1512.02325 (2015).

[4] T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects, http://cmp.felk.cvut.cz/t-less

[5] ICCV2015 Occluded Object Challenge, http://cvlab-dresden.de/iccv2015-occlusion-challenge

[6] UoB Highly Occluded Object Challenge, http://www.cs.bham.ac.uk/research/projects/ucb-hooc

[7] Latent-Class Hough Forests for Object Detection and Pose Estimation,
http://www.iis.ee.ic.ac.uk/rkouskou/research/LCHF.html

Bachelor Project Supervisor: Ing. Toma$ Hodarn

Valid until: the end of the summer semester of academic year 2017/2018

L.S.

prof. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, January 6, 2017

iv

Acknowledgements

I give a great thanks to my supervisor
Ing. Tomas Hodan, who was a huge help
during the work on this thesis. Further-
more, practical experiments would not be
possible without access to Halmos com-
puter acquired by project CEMI of Jifi
Matas.

Declaration

I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 26, 2017

Abstract

This thesis studies Faster R-CNN, the
state-of-art method for object detection
in RGB images, and proposes its exten-
sion to RGB-D images. Solutions to the
following problems are proposed and eval-
uated: filling missing values in depth im-
ages, depth encoding (raw depth vs. sur-
face normals), extension of the CNN archi-
tecture to accept the extra depth informa-
tion, and initialization of weights in the ex-
tended network. The overall best results
were achieved with a network that accepts
an extra depth channel, pre-processed by
the iterative median filter to fill in the
missing values, and has the depth weights
in the first convolutional layer initialized
with the mean of the color weights that
were pretrained on ImageNet. However,
the improvement over the original method
using only RGB channels is not significant
(mAP was increased by 1 — 2%), which
suggests a need for different incorporation
of the depth information.

Keywords: object detection,
texture-less, RGB-D, CNN, deep learning

Supervisor: Ing. Tomas Hodan

vi

Abstrakt

Tato prace zkouméa Faster R-CNN, mo-
derni metodu pro detekci objektt v RGB
snimcich, a navrhuje jeji rozsiteni na RGB-
D snimky. Jsou diskutovana a vyhodno-
cena Teseni nasledujicich problému: vy-
plnéni chybéjicich hodnot v hloubkovych
snimcich, zakddovani hloubkové informace
(puvodni vs. povrchové normadly), rozsi-
feni CNN architektury o hloubkové vstupy
a inicializace vah v rozsifené siti. Cel-
kové nejlepsich vysledkti bylo dosazeno
se siti pracujici s informaci o hloubce
predzpracované iterativnim medidnovym
filtrem pro vyplnéni chybé&jicich hodnot
a hloubkovymi vdhami v prvni konvo-
luéni vrstvé inicializovanymi priamérem
RGB vah predtrénovanych na ImageNetu.
Nicméné zlepseni viici ptivodni metodé vy-
uzivajici pouze RGB kandly je nepatrné
(mAP bylo zvyseno o 1 — 2%), coz vy-
bizi k jinému pristupu pouziti hloubkové
informace.

Kli¢ova slova: detekce objektu, bez
textury, RGB-D, CNN, hluboké uceni

Preklad nazvu: Detekce a lokalizace
netexturovanych objektd pomoci
hlubokych neuronovych siti

Contents

1 Introduction 1
1.1 Structure of the Thesis 2
2 Convolutional Neural Networks 3
2.1 Architecture 3
22 Learning. L 4
2.3 Frameworks 4

3 Object Detection in RGB Images 5

3.1 Faster R-CNN................. 5
32YOLO 7
4 Proposed Extension to RGB-D
Images 9
4.1 RGB-D Sensors................ 9
4.2 Filling Missing Depth

Measurements 9
4.3 Depth Encoding 10
4.4 Extension of the CNN

Architecture 12
4.5 Normalization 12

4.6 Initialization of Network Weights 12

5 Experimental Setup 13
5.1 Datasets..................... 13
5.1.1 T-LESS Dataset 13
5.1.2 LINEMOD Dataset 14
5.2 Evaluation Methodology 14
5.2.1 Intersection over Union 16
5.2.2 Determination of True Positive
Detections 16
5.2.3 Precision and Recall 17
5.2.4 Average Precision 17
5.2.5 Confusion Matrix 17
6 Evaluation of Faster R-CNN 19
6.1 Implementation 19
6.2 Sensitivity to Scale Change 19
6.3 Sensitivity to Rotational Change 20
6.4 Sensitivity to Background. 21
6.5 Quality of Object Proposals.... 21
6.6 Bounding-box Distribution. 22
7 Evaluation of the Proposed
Method 25
7.1 Initialization 25
7.2 Benefits of Using Depth 28
8 Conclusions 31
8.1 Future Work 32

vii

A Bibliography
B Content of the included DVD

33
37

Chapter 1

Introduction

Object detection is one of the core problems of computer vision. The ability
to learn the appearance of a specific object or an object category and then
find it in a new image is a key for many robotic, augmented-reality and other
scene-understanding applications.

The main focus in the field of object detection is currently on 2D detection
of object categories (PASCAL VOC Challenge [1], ILSVRC [2], COCO [3]).
Given a set of training images, each annotated with 2D bounding boxes and
category labels of the visible objects, the goal is to detect the objects in
previously unseen images and estimate their 2D bounding boxes (Figure 1.1).
As in many other areas of computer vision, the field is currently dominated
by methods based on convolutional neural networks (CNN) [4, 5].

Figure 1.1: 2D detection of object categories — the goal is to find objects from
the trained categories and estimate their 2D bounding boxes. Image courtesy of
Redmon and Farhadi [6].

In this thesis we focus on detection of specific texture-less objects (Fig-
ure 1.2). Appearance of a texture-less object is dominated by its global
shape, reflectance properties and the illumination. Unless these are known in
advance and precisely controlled, the recognition method needs to be robust
to changes in these factors. Traditional recognition methods based on local
features does not work well on texture-less objects because interest point

1. Introduction

detectors typically fail to identify corresponding image regions and common
local appearance descriptors are no longer discriminative enough to provide
reliable correspondences [7, 8]. Performance of the CNN methods on this
type of objects is still unclear.

T L)

R

Figure 1.2: 2D detection of specific texture-less objects — the goal is to find
instances of the trained objects and estimate their 2D bounding boxes.

The object detection task can be simplified when depth images, which are
expected to allow for a more discriminative description, are used as additional
input data. RGB-D sensors that capture aligned color and depth images have
been available for years, but consumer-level sensors became widely available
only recently, with the launch of Microsoft Kinect.

The aim of this thesis is to study the state-of-the-art CNN methods for
detection of object categories in RGB images, consider their application to

specific texture-less objects, analyze their properties and propose an extension
to RGB-D images.

. 1.1 Structure of the Thesis

Chapter 2 describes theory and fundamentals of CNNs.

Chapter 3 reviews relevant work, Faster R-CNN [4] and YOLO [6].
Chapter 4 proposes an extension of Faster R-CNN to RGB-D images.
Chapter 5 defines datasets and evaluation methodology.

Chapter 6 analyses properties of original Faster R-CNN.

Chapter 7 evaluates the proposed extension on RGB-D datasets.
Chapter 8 concludes the thesis.

Chapter 2

Convolutional Neural Networks

Thanks to the rise of computational power and the introduction of big datasets
(e.g. ImageNet [2]), deep artificial neural networks has become a standard
tool in machine learning, achieving the state of the art results in various tasks.
This chapter focuses on a specific branch represented by convolution neural
networks (CNN), as they are used in this work.

. 2.1 Architecture

Neural networks in general are modeled as collections of neurons that are
connected in an acyclic graph, often organized into distinct layers of neurons [9].
There is an input layer (accepting the input image) and an output layer (in
our case providing estimates of the position and the class of detected objects).
There are multiple hidden layers in between the input and the output layer.
The layers are placed in consecutive manner, each processing output from
the previous layer and relaying it to the next one (Figure 2.1 left).
A neuron is defined as:

y= f(wlx+), (2.1)
where w is a weight vector, b is a bias, x is an input vector, f is an activation
function, and y is an output (Figure 2.1 right).

The activation function brings non-linearity to the network which increases
its discriminative power. The function must be easily differentiable to be
able to perform back-propagation. Examples are the sigmoid function f(z) =
1/1+ e ® and ReLU f(z) = max(0, z), the latter one being a common choice.

There are three main types of layers used to build CNN architectures:

® Convolutional layer is defined by a set of learnable filters that are
convolved across the width and height of the input volume and the dot
product between the weights of the filter and the input is computed at
each position. The weights are thus shared over all locations. Its output
is called a feature map. Visualization of filters can be found at fig. 7.3.

8 Pooling layer essentially performs down-sampling. By reducing the
spacial size it increases robustness to small deformations, reduces the
chance of over-fitting and reduces the complexity of higher layers.

3

2. Convolutional Neural Networks

Zo Wo
synapse
WoTo

.
axon from a heuron

cell body

ZHJ,zi +b

output axon
activation
function

output layer
input layer
hidden layer

Figure 2.1: A simple neural network with two fully-connected layers (left) and
a mathematical model of a neuron (right). Image courtesy of [9].

Fully-connected layer has each of its neurons connected to all neurons
of the previous layer. Its job is to do high-level reasoning and is often
situated towards the top of the network. CNNs usually use only a few of
these as each such layer significantly increases the number of parameters
and is therefore relatively hard to train and prone to over-fitting.

22 Learning

The most popular technique to learn the CNN weights is stochastic gradient
descent. It is an iterative process, which in each iteration 1) randomly selects
a subset of training examples, 2) evaluates how the network performs on this
subset using a loss function, 3) calculates gradient of the loss function using
back-propagation, and 4) use the gradient to update the weights in order to
decrease the loss [9].

. 2.3 Frameworks

When working with neural networks, it is convenient to use some of the freely
available frameworks which encompass most of the necessary functionality.
Some of the popular frameworks are Caffe, Darknet, Tensorflow, MatConvNet
and Torch. The first two are briefly reviewed below.

Caffe. This framework is well known and widely used. It is implemented in
C++ and CUDA and has hundreds of contributors on GitHub. The authors
praise it for its speed and modularity. Documentation consists mostly of
formatted header files, however there are many tutorials and commented
examples. It also has Python bindings.

Darknet. It is written in C and CUDA specifically for purposes of YOLO
and other projects by Joseph Redmon, who has My Little Pony in his CV. It
is light-weight and well optimized but not very flexible for experimenting, as
is usual for C.

Chapter 3
Object Detection in RGB Images

As popularity of CNNs grew in the last few years, many attempted to use them
for object detection in RGB images. Compared to the traditional methods
[10, 11], the CNN methods [12, 13] often achieve better performance with
less handcrafting. This chapter describes two state-of-the-art CNN methods.

. 3.1 Faster R-CNN

Faster R-CNN [4] is built upon Fast R-CNN [14]. It unifies proposal and
classification parts into a single neural network which provides nearly cost-free
region proposals and allows end-to-end training and testing. Its architecture
consists of multiple convolutional layers, Region Proposal Network (RPN),
a few fully-connected layers and two output layers — one for classification
and one for bounding box regression. Either ZF model [15], which has 5
shareable convolutional layers, or VGG16 model [16], which has 13 shareable
convolutional layers, is used. The convolutional layers are interspersed with
ReLU and max-pooling layers (Figure 3.1).

Outputs: bbox
softmax regressor

Rol
pooling FC FC
layer FCs
feature map Rol feature
vector For each Rol

Figure 3.1: Faster R-CNN architecture.

RPN generates object proposals by sliding a small window over the feature
maps. Each proposal is given by a bounding-box and objectness score. The
bounding boxes are regressed from 9 anchor boxes that improve ability to
detect objects of various scales and aspect ratios (fig. 3.2).

5

3. Object Detection in RGB Images

| 2k scores I I 4k coordinates | <mm kanchor boxes
cls layer \ t reg layer .
| 256-d |
t intermediate layer

[|

sliding window

conv feature map

Figure 3.2: Region Proposal Network (RPN).

The feature maps and 300 proposals with the highest objectness score are
passed to a region of interest (Rol) pooling layer. The Rol pooling layer
uses max-pooling to crop and reshape the regions of feature maps defined
by the proposals to achieve the same spacial size, typically 6 by 6. The
resized regions are then processed by two fully-connected layers and the
resulting feature vector continues to two sibling fully-connected layers. One
is followed by softmax and generates probabilities of each class (including
background). The other fully-connected layer outputs regression of proposed
bounding-boxes.

There are two proposed strategies to train the Faster R-CNN network, both
of them use stochastic gradient descent. One alternates between training
RPN alone and the rest of network, the other is end-to-end but the gradients
for RPN are only approximate.

There are often multiple detections with overlapping or conflicting bounding
boxes. To identify unique detections, the non-maximum suppression algorithm
is applied. It repeatedly retains the detection with the highest score and
removes all those that have large overlap with it, i.e. the IoU is greater than
a selected threshold (Figure 3.3). This effectively reduces the number of
duplicate detections which improves precision while keeping the recall ideally
untouched.

Figure 3.3: Example of NMS outcome. Left: Image with all detections. Right:
NMS algorithm applied to identify the unique detections. Brightness represents
score of a detected bounding-box.

3.2. YOLO

B 32 vyoLo

YOLO (You Only Look Once) [6] also provides integrated CNN model for
object detection, similarly to Faster R-CNN, and generates both bounding-
boxes and their classes from an image. It sacrifices precision but aims to be
much faster, easier to train and more robust.

S x S grid on input inal detections

Class probability map

Figure 3.4: YOLO [6] models detection as a regression problem. It divides the
image into an S x S grid cells and for each grid cell predicts B bounding boxes,
confidence for those boxes, and C' class probabilities.

An input image is resized to predefined resolution, fed into 24 convolutional
layers (9 for a lighter version) that are followed by two fully-connected layers.
The image is divided S x S grid cells. For each grid cell the network predicts
B bounding boxes, confidence for those boxes, and C' class probabilities. A
bounding-box is defined by five values: x and y coordinate of the center in
relation to the grid cell, w and h size of the box as factor of the image size,
and confidence that the box contains an object. This means the network
outputs S x S x (5% B + C) values. Typical values for detection of objects in
the Pascal VOC dataset are S =7, B =2, C = 20.

During our examination of YOLO, we bumped into some issues regarding
application to our problem. The main one is connected to the fact that each
grid cell is trained independently and reasons globally — it looks at the whole
image. As a consequence, the method is not invariant to object translation
and background variations and therefore requires training data that cover
these aspects. Suitable training data was not available and we therefore
decided to focus mainly on Faster R-CNN in this thesis, as well as for its
mentioned benefits.

Chapter 4
Proposed Extension to RGB-D Images

The CNN models described in the previous chapter were designed to work
with RGB images. This chapter discusses their extension to RGB-D images.

. 4.1 RGB-D Sensors

RGB-D sensors have been available for a long time, but consumer-level sensors
became widely available only recently, after the launch of Microsoft Kinect
vl in November 2010. Kinect v1 estimates the depth of the scene using
the structured-light principle — a light pattern is projected onto the scene
using a near-infrared laser emitter and the light reflected back to a standard
off-the-shelf infrared camera is analyzed to estimate the depth of the scene
surfaces [17, 18]. There are other consumer-grade RGB-D sensors that are
based on the same principle, such as Primesense Carmine or Asus Xtion. The
second generation of Microsoft Kinect was released in 2014. This completely
new sensor is based on the time-of-flight principle in which the depth of a
scene is measured by the absolute time needed by a light wave to travel into
the scene and, after reflection, back to the sensor.

The color and the depth sensor have slightly different viewpoints — they are
placed a few centimeters apart on the body of a camera. The depth image is
typically mapped pixel-by-pixel to the RGB image, using the known relative
transformation of the sensors and their intrinsic parameters. The mapping
results in "shadows" around depth discontinuities where no depth information
is available. Furthermore, the depth measurements are often affected or
missing on certain surfaces, especially glossy, transparent or sharply-angled
surfaces. Another limitation of the current RGB-D sensors is their restricted
sensing range going from tens of centimeters to several meters.

B a2 Filling Missing Depth Measurements

As described in Section 4.1, a typical depth image has missing information
on many pixels. In CNN, the representation of invalid values is not trivial
and each pixel is rather assumed to have a valid value. Without any special

9

4. Proposed Extension to RGB-D Images

treatment, the missing depth values can yield false filter responses, possibly
overshadowing responses from regions with valid values.

In the fields of image transmission and photo recovery, there are various
in-painting techniques to reconstruct lost image regions, such as [19, 20].
Nevertheless, these methods usually take from several to tens of seconds
per image (depending on the size or regions to be in-painted). Instead, we
considered the following simple methods that take only a fraction of second
per image and still yield satisfactory results.

B Nearest Neighbor

This approach does not consider the depth information at all — an invalid
pixel is assigned a value of the closest valid pixel, i.e. an pixel with a valid
depth value. The problem is when there are several valid pixels at the same
distance. Consider, for example, a 3 by 3 image with missing value at the
center pixel. What would be an adequate infill according to the nearest
neighbor method? Depending on the implementation, it could be the value
of the top, the left, the bottom or the right pixel.

B Iterative Median Filter

The median filter is known to efficiently remove salt-and-pepper noise from
images. A window with a fixed size is slided across the image and the central
pixel of the window is filled with the median of values in the window.

For the purposes of filling holes in depth images, several modifications are
needed. First of all, the filter has to be applied only on holes (i.e. regions
with missing values), otherwise it would needlessly change the already present
information. Secondly, the missing values are represented by zeros and must
be ignored for the median calculation. The filter is applied in an iterative
manner, gradually filling holes from the borders to the center — the filter is
applied if there is at least one valid pixel in the neighborhood.

In our experiments, a sliding window of size 3 by 3 was shown to produce
acceptable results. On several manually examined images, the method leads
to very similar results as the nearest neighbor method, but was preferred
because it does not have the problem of multiple candidate values. Figure 4.1
shows an example result.

B a3 Depth Encoding

One possible way how to input the depth information to the network is to
use absolute depth — raw or with filled holes — that represents the distance
from the sensor.

Another option is to calculate surface normals, for which we used the
method from [21] — it approximates the surface normal at a pixel by a
normal vector of a plane fitted to the pixel neighborhood. The resulting
normals are expressed in the camera coordinate system and represented as a

10

4.3. Depth Encoding

(a) : Raw depth (b) : 3 iterations (c) : 8 iterations

Figure 4.1: Iterative median filter applied on an image region from the T-LESS
dataset. Dark blue represents the missing values. Scaled for better visibility.

o \

(b) : Depth image

(c) : Depth image with filled holes (d) : Surface normals

Figure 4.2: Representation of an RGB-D image.

3-channel image, with one channel per coordinate. To avoid smoothing at
depth discontinuities, there is a threshold on the maximum allowed depth
difference of points considered for the plane fitting. There is also a threshold
on the maximum depth at which the surface normals are calculated — this
was disabled in our experiments to avoid creating holes in the surface normal
images. A simpler way to extract approximate surface orientation could be
to apply a gradient filter, e.g. Sobel, to the depth image. However, this is
deemed futile since such filter can be learned in the first convolutional layer.

There are other depth encodings. For example, HHA [22] encodes the
depth as horizontal disparity, height above the ground and angle of the local
surface normal with the inferred gravity direction.

Results obtained with the absolute depth values and the surface normals
are compared in chapter 6.

11

4. Proposed Extension to RGB-D Images

. 4.4 Extension of the CNN Architecture

To add the depth information, the CNN architecture was altered to accept
extra of input channels, not just three for red, green and blue. The images
for RGB and depth are pre-processed in advance and saved on disk. During
runtime (training and testing), the matching images are loaded from their
separate files and inserted to the network as if they were one image. The rest
of the architecture, as described in section 3.1, was kept intact.

Another possible extension is a two-branch architecture, as was used in [23],
with one branch processing color and one depth information, which allows
to learn filters for color and depth independently. It seems promising as it
achieves the state-of-the-art semantic segmentation results. Experiments with
this architecture are a subject of future work.

. 4.5 Normalization

The color and depth information have different ranges of values — color being
from 0 to 255 and depth from 0 to theoretically infinity (practically 0 to 65535
as it is saved as a 16-bit unsigned integer). It is important to normalize the
input data to make them of approximately equal importance to the learning
algorithm. The input values are normalized to be from —1 to 1, using ranges
summarized in table 4.1. The depth values are limited to a range covering the
captured scene. Values beyond the usable range are capped at the boundary
values (—1 or 1).

’ dataset ‘ channel ‘ used range target range
color (R, G, B) 0 to 255
all
normals (x, vy, z) —1to1l
T-LESS train depth 450 to 850 mm —1to1l
T-LESS test depth 500 to 1050 mm
LINEMOD test depth 206 to 1640 mm

Table 4.1: Ranges used for input normalization.

B 4.6 Initialization of Network Weights

A common approach is to start with weights that were trained on a related
task and then fine-tune them for the given task. In our case, we can use
weights that were trained for the original Faster R-CNN on the ImageNet
dataset [2], which are provided by authors of Faster R-CNN. The issue is
that there are no pretrained values available for non-color weights in the first
convolutional layer, i.e. weights that are related to non-color channels.

We considered several strategies for initialization of the network weights.
They differ mainly in the way how the non-color weights are initialized. The
strategies are evaluated in chapter 6.

12

Chapter 5

Experimental Setup

. 5.1 Datasets

The experiments were conducted on two datasets: T-LESS by Hodan et
al. [24] and LINEMOD by Hinterstoisser et al. [25]. Both provide RGB-D
images of scenes with texture-less objects. The images are annotated with the
ground truth 6D poses of instances of the modeled objects. For the evaluation
of the 2D object detection task, bounding boxes of projections of the object
models at the ground truth poses were used as the ground truth.

B 5.1.1 T-LESS Dataset

The T-LESS dataset, which we published in [24], features 30 industry-relevant
objects with no significant texture and no discriminative color or reflectance
properties. The objects exhibit symmetries and mutual similarities in shape
and/or size. The dataset includes training and test images that were captured
with three synchronized sensors, specifically a structured-light (Primesense
Carmine 1.09) and a time-of-flight RGB-D sensor (Microsoft Kinect v2) and a
high-resolution RGB camera (Canon IXUS 950 IS). There are approximately
39K training and 10K test images from each sensor. For experiments in this
thesis, only images from the Primesense sensor were used. Training images
depict individual objects against a black background. Test images originate
from 20 test scenes having varying complexity, which increases from simple
scenes with several isolated objects to very challenging ones with multiple
instances of several objects and with a high amount of clutter and occlusion.
There are 9 test scenes with black background and 11 scenes with cluttered
background (Figure 5.1).

Each of the experiments was conducted either on the set of training images
(T-LESS train) or on the set of test images (T-LESS test). The sets were
randomly split into equally-sized training and test subsets, i.e. testing of the
network was done on different images than it was trained on. The practical
scenario for which the dataset was created, i.e. a method is trained on T-LESS
train and evaluated on T-LESS test, was not evaluated in this thesis. This is
because the images from the two sets show the objects in different scale and
with a background of different distribution. Faster R-CNN cannot handle

13

5. Experimental Setup

Figure 5.1: T-LESS includes training images and 3D models of 30 objects (top)
and test images of 20 scenes (bottom). The shown test images are overlaid with
colored renderings of 3D object models at the ground truth poses.

these changes out of the box, without some extra treatment.

B 5.1.2 LINEMOD Dataset

LINEMOD [25] is a well-established dataset used in most of the recent work
on 6D object pose estimation, e.g. [8, 26, 27]. It contains 15 texture-less
objects, for which it provides a sequence consisting of around 1200 RGB-D
images, each of which includes exactly one instance of the object. The images
present significant 2D and 3D clutter and mild occlusion. The objects have
discriminative color, shape and/or size, and, compared to the T-LESS objects,
their recognition is relatively easy (Figure 5.2). For our experiments, the
image set was randomly split into equally-sized training and test subsets.

B 52 Evaluation Methodology

The neural network outputs for each image a set of detections. Each detection
is defined by a rectangular boundary, i.e. a bounding-box, an object class

14

5.2. Evaluation Methodology

Figure 5.2: LINEMOD includes 15 texture-less objects (left) captured in clut-
tered scenes (right).

and score which represents probability that the bounding-box contains an
object of the assigned class.

Fach image is associated with a set of ground truth annotations, each given

by a bounding-box and a class of the annotated object. The annotations were
not used in any way in the neural network during testing. They were used
only for training and true/false positive classification of the final detections.

The process of evaluation consists of the following steps. Steps 1, 2 and 3

are done independently for each image, steps 4 and higher are done across all
images at once.

1.

Do the forward pass through the network, continue with 100 detections
with the highest score. This number was shown sufficient as there is a
maximum of 18 objects of interest in each image.

Apply non-maximum suppression (section 3.1) on the detections with
an IoU threshold of 0.7 (section 5.2.1). This reduces the number of
conflicting detections, thus increasing precision (section 5.2.3) while
recall remains almost the same.

Classify each detection as true or false positive (section 5.2.2).
Calculate the precision-recall curve for each object class (section 5.2.3).

Compute the average precision (AP) per object class according to PAS-
CAL VOC 2010 [28] (section 5.2.3).

Compute the mean average precision (mAP) as the mean of AP rates of
the object classes.

15

5. Experimental Setup

B 5.2.1 Intersection over Union

Intersection over union (IoU) is used to evaluate the alignment of two bounding
boxes — IoU = 1 for two perfectly aligned rectangles while IoU = 0 for no
overlap at all. As the name suggests, it is defined as:

IoU — area of intersection' (5.1)

area of union
To analyze properties of IoU, let us take two identical squares with side
s = 1, position them over each other and shift one of them by z in one
(eq. (5.2)) or both axes (eq. (5.3)). Fig. 5.3 shows that IoU is non-linear
w.r.t. the amount of misalignment. Similar relations can be found for scale,
rotation and their combination. This finding should be taken into account

when deciding IoU thresholds or analyzing results.

1—2
IoUgpe = (5.2)
1+2
(1-=)
IoUpoth = ————— 5.3
1+ 22 — a2 (5:3)
1.0
linear (reference)
shift in one axis
0.8 shift in both axes
0.6 4
=)
<
0.4 4 b \
0.2 1
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

shift in terms of square width

Figure 5.3: IoU of two identical squares when one of them is shifted by x.

B 5.2.2 Determination of True Positive Detections

The detections are evaluated, i.e. classified as true or false positives, as in
[29]. For each image, the detections are sorted by their score in descending
order and greedily matched to the ground truth bounding boxes — each
detection is matched with a ground truth bounding box with the highest
IoU, if IoU> 0.7. Each detection and ground truth can be paired to either
zero or one counterpart. Detections which have a partner are true positives,
others are false positives. False positives can be further divided into various
categories as in [30], however this deep analysis did not found its usage during
work on this thesis.

16

5.2. Evaluation Methodology

B 5.2.3 Precision and Recall

The performance of the detection method is measured by recall and precision:

recall = |{true positive}|

5.4
[{true positive}| + |{false negative}| (54)

[{true positive}|

precision = (5.5)

[{true positive}| + |[{false positive}|

Now that we have detections matched up with ground-truths from sec-
tion 5.2.2, we sort all of them by their score and for each compute recall and
precision in a cumulative manner. This produces the precision-recall (PR)
curve. Example can be seen in fig. 6.1. Precision of a "well-behaved" detector
should monotonically decrease, or ideally stay at 1, while recall rises.

B 5.2.4 Average Precision

Average precision (AP) of an object class is defined as the area under the
precision-recall curve, when considering only detections of that class. To
follow the approach used in PASCAL VOC 2010 [28], the curve is smoothed
out by setting the precision for recall r to the maximum precision obtained
for any recall 7/ > r — as if the new curve was a boundary of shadow cast
by the old "bumpy" curve shined at from right to left. The mean average
precision (mAP) is calculated as the mean of APs across all object classes.

B 5.2.5 Confusion Matrix

Another useful insight about recognition performance can be obtained from a
confusion matrix. Its columns represent the detected class and rows represent
the ground truth class. Each element of the matrix is a number of detections
of the column class that are in fact of the row class. An example can be seen
in fig. 7.5.

17

18

Chapter 6
Evaluation of Faster R-CNN

Before diving into implementing and testing of the proposed extension to
RGB-D images, we analyzed what Faster R-CNN is actually capable of, out
of the box.

B 6.1 Implementation

Faster R-CNN is implemented using slightly extended Caffe framework, while
bulk of the method (a few extra Caffe layers and overhead) is written in
Python. In order to start experimenting, it was necessary to expand the
provided source code, namely make it work with datasets in the format of [31]
and re-implement the evaluation scripts. The evaluation process follows
PASCAL VOC 2010 (section 5.2), but some minor changes were made along
the way, such as taking NMS of detections over all classes instead of per class.

Its training and testing pipelines have a number of variants and parameters
whose suitable values need to be found manually, such as NMS thresholds
of proposals and detections, or the choice of the actual training method and
its learning rate. During our work, we used the end-to-end training variant
with 100k iterations which was found sufficient to reach a low loss. Training
was done mostly on graphics card NVIDIA GeForce GTX TITAN Black,
6GB and took about 7.5 hours. Testing reached impressive speed of about
20 images per second and this could be further improved as some layers are
implemented in Python.

B 6.2 Sensitivity to Scale Change

The first experiment analyzes a situation when the network is trained on a
set of images and then tested on the same images but scaled differently. The
dataset T-LESS train was used for this experiment. The images have a black
background that prevents removing or adding features in the scaling process.

It can be seen in fig. 6.1 that the network behaves in a predictable way. The
more the images are scaled the worse the detections are. Downscaling yields
a bit worse results — compare pairs of inverse scales, e.g. 1.2 and 0.83 = 1/1.2.
This might be explained by the fact that scaling an image to a smaller size

19

6. Evaluation of Faster R-CNN

59%
63%
67%
1%
7%
83%
91%
100%
110%
120%
130%
140%
150%
160%
170%

precision

recall

Figure 6.1: Sensitivity to scale change. The network was trained on 100% sized
images and tested on multiple others. Curves with the same color represent
inversely equivalent scales, e.g. 59% = #0%.

removes features, while scaling up interpolates additional values.

N 63 Sensitivity to Rotational Change

Similarly to the previous experiment, we analyzed sensitivity of the method
to changes in rotation. Results in fig. 6.2 show that change in rotation does
not have such severe effect on quality of detections, compared to the scale
change. The network can handle about 20° rotation with only a minor drop
in performance, while results between 90° to 180° are very similar. The
difference between the clockwise and the anti-clockwise rotation is barely
noticeable.

—_— e
—_—10°
— 20°
— 30°
—-== -30°
— 45°
— 60°
— 90°
— 120°
150°
0.2 1 — 180°

0.8 1

0.6

precision

0.4 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

recall

Figure 6.2: Sensitivity to rotational change. The network was trained on the
original images and tested on the images rotated in the anti-clockwise direction.

20

6.4. Sensitivity to Background

| X Sensitivity to Background

We have also examined sensitivity to different background distributions. For
this experiment, the T-LESS test was divided into these subsets:

® black (scenes 1 to 9) - objects on a black background

B color (scenes 10 to 20) - objects, including some distractor objects, on a
background with various texture and color

® gll (scenes 1 to 20) - combining the previous two to examine ability of
the network to handle both at once

—— black / black
=== black / color
—-= black / all

color / black
=== color / color

precision

— = color / all
all / black
=== all / color
—-= all /all

recall

Figure 6.3: Sensitivity to background. Legend: subset used for training / subset
used for test.

Fig 6.3 shows that the network has serious difficulties with backgrounds
that were not present during training. This indicates an importance of proper
background modeling for Faster R-CNN.

B 65 Quality of Object Proposals

The network generates its own object proposals (fig. 6.4) and their objectness
score before passing them to the classification part (as described in section 3.1).
In this section we examine the proposals in more detail.

One way to evaluate quality of the proposals is to compare their objectness
score to IoU with the ground truth bounding boxes. Two ways of pairing
proposals with the ground truth bounding boxes were considered: 1) for each
proposal find the ground truth with the best IoU (fig. 6.5a), or 2) for each
ground truth find the proposal with the best IoU (fig. 6.5b). The rest of
detections and ground truth bounding boxes, that were not included in the
resulting pairs, were not considered. There are 300 proposals and 1 to 18
ground truth annotations per image.

21

6. Evaluation of Faster R-CNN

(a) : Objectness > 0.5. (b) : Objectness > 0.95.

Figure 6.4: Example object proposals produced by RPN.

Figure 6.5a shows a high number of proposals with low IoU, i.e. proposals
on background or distractor objects. A lot of these have relatively large
objectness score, meaning the classification part of the network cannot fully
rely on them. This is the reason why background needs to be still considered
as one of the classes in the classification part.

Fig. 6.5b shows that the best matching proposals tend to have higher
objectness score. This demonstrates that the object proposal mechanism
works well even on texture-less objects. There is visible decrease of proposals
for ToU > 0.9, such values are difficult to reach as they indicate near-perfect
alignment (section 5.2.1).

1.0 7

104 0.8 1

objectness
o
=N

)

o
=

objectness

10t 0.2 1

10° 0.0 =
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
ToU ToU

(a) : Every proposal is paired with (b) : Every ground truth is paired
a ground truth. with a proposal.

Figure 6.5: Histograms comparing objectness score of the proposals to IoU with
the ground-truth bounding boxes, using dataset T-LESS test. The color scale is
logarithmic.

B 6.6 Bounding-box Distribution

We also examined the distribution of bounding-box positions, both the pro-
posal and the ground truth. Fig. 6.6 shows a distribution where a pixel value

22

6.6. Bounding-box Distribution

is given by the number of bounding-boxes that overlap that pixel. Fig. 6.7
shows the corresponding marginal distributions. One can see that the propos-
als cover unnecessarily large area, compared to the ground-truth bounding
boxes that cover mainly the image center. The classification part of the
network can prune a significant part of false proposals, which can be seen
by comparing the orange and the green curve in fig. 6.7. Note also that the
true positive bounding boxes tend to be slightly larger than the ground truth
bounding boxes.

0 0
6000 300000
10 5000 108 250000
216 4000 216 200000
3000 150000
324 324
2000 100000
. 432
432 1000 50000
540 0 540 0
0 144 288 432 576 720 0 144 288 432 576 720

(a) : Ground-truth (b) : Proposals

Figure 6.6: Distributions of bounding boxes.

108 Ty

107 -

106 5

10° -

10* 4 J ground-truth
proposals

103 4] detections
true positives

102 T T T T T r r T

0 144 288 432 576 720 0 108 216 324 432 540
(a) : x axis (b) : y axis

Figure 6.7: Marginal distributions of bounding boxes.

23

24

Chapter 7
Evaluation of the Proposed Method

This chapter evaluates extensions of the Faster R-CNN method to RGB-D
images that were proposed in chapter 4.

. 7.1 |Initialization

First, let us examine the different strategies for initialization of network
weights. The following strategies were considered:

8 #] - all weights pretrained on ImageNet were used, additional weights in
the first layer for the non-color channels were initialized with the mean
of color weights.

8 #2 - all weights pretrained on ImageNet were used, additional weights
in the first layer for the non-color channels were initialized randomly."

B8 #3 - all weights in the first layer were initialized randomly, weights from
the pretrained model were used for the higher layers.”

8 #/ - all weights in all layers were initialized randomly

The random weights are drawn from normal distribution N (0, t) The
corresponding bias values are set to zero.

Figure 7.1 shows that it is beneficial to initialize the weights with values
pretrained on the ImageNet dataset. For the RGB-D case, the best results
were achieved when the weights in the first layer for the non-color channels
were initialized with the mean of the color weights (strategy #1).

Randomly initializing all weights in the network (strategy #4) was not
evaluated as it was found difficult to train on the used datasets. The progress
of the learning loss can be seen in fig. 7.2. Too high learning rate is not
the cause of the unsuccessful training for strategy #4, as we tried multiple
values. Most likely it is caused by too small training set, which is significantly
smaller than in the case of ImageNet that was used to train the original Faster
R-CNN network. The training loss for all initialization strategies reached

!Note that the initialization strategies #1 and #2 are the same if only RGB is used.
2Similarly, strategies #2 and #3 are the same if only depth is used.

25

7. Evaluation of the Proposed Method

similar final value, except strategy #4. Loss for initialization strategy #3 is
predictably higher for lower iterations.

1.0 1.0

0.8 1 0.8 1

e
=N
)
e
=
)

precision
precision

=)
=
L
=)
=
L

T-LESS test (#1)
=== T-LESS test (#2)
—.= T-LESS test (#3)
0.24 —— LINEMOD test (#1)
~—~ LINEMOD test (#2)
—-= LINEMOD test (#3)

—— T-LESS test (#1 / #2)
0.24 === T-LESS test (#3)

——— LINEMOD test (#1 / #2)
=== LINEMOD test (#3)

0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
recall

)
\}

]

)
)
1
1

|
1
1
1
1
I

recall
(a) : RGB images only (b) : RGB + filled depth

Figure 7.1: Precision-recall curves for several initialization strategies, two input
types and both datasets.

N DU AN AT

loss

1071

0 20000 40000 60000 80000 100000
iterations

Figure 7.2: Training loss on the T-LESS test dataset using RGB and filled
depth images with different initialization strategies. Initialization #/ illustrates
how difficult it is to train the network with all weights initialized randomly.

Figure 7.3d shows that filters trained from a random initialization on T-
LESS are of a lower frequency when compared to filters trained on ImageNet.
This is likely because of the lack of texture, i.e. a higher-frequency pattern,
on the T-LESS objects.

When initialized with random values, the trained depth filters tend to be
more noisy than the color filters (fig. 7.3d). Although noisy filters usually
indicate an unsuccessful training, the network achieves just slightly worse
mAP score when only the depth is used as input (fig. 7.3¢).

26

7.1. Initialization

(e) : filled depth, initialization #3, mAP: 0.892

Figure 7.3: Filters in the first convolutional layer trained on the T-LESS dataset
for different network architectures and initialization strategies.

3The filters in fig. 7.3a are very similar to those pretrained on ImageNet.

27

7. Evaluation of the Proposed Method

B 7.2 Benefits of Using Depth

Finally, we compare results of the network for different input modalities. For
the depth information, we evaluate three variants (chapter 41): 1) absolute
raw depth, 2) absolute depth with holes filled by the iterative median filter,
and 3) surface normals. Normalization is applied to all input values so they
are in range —1 to 1 (section 4.5).

1.0

0.8 1

0.6 9

gray
RGB

raw depth

filled depth
normals

RGB + raw depth
RGB + filled depth
RGB + normals

precision

0.4 1

0.2 4

0.0

0.0 0.2 0.4

(a) :

0.6
recall

0.8 1.0

T-LESS test dataset

1.0

0.8 9

0.6 1

gray
RGB
raw depth

precision

0.4 1

filled depth
normals

RGB + raw depth
RGB + filled depth
RGB + normals

029 ===

0.2 0.4

recall

0.6 0.8 1.0

(b) : LINEMOD test dataset

Figure 7.4: PR curves for different input modalities and datasets. The whole
first layer of the network was initialized randomly (initialization strategy #3,

section 7.1).

training channels dataset

initialization T-LESS test \ LINEMOD test

y filled depth 0.905 0.738

RGB + filled depth 0.938 0.856

#2 RGB 0.929 0.831

grayscale 0.931 0.654

RGB 0.930 0.785

raw depth 0.886 0.625

43 filled depth 0.892 0.696

normals 0.892 0.718

RGB + raw depth 0.933 0.821

RGB + filled depth 0.938 0.824

RGB + normals 0.933 0.811

Table 7.1: mAP for the PR curves from fig. 7.4 with additional results for other
initialization strategies.

Results in fig. 7.4 show that the combination of RGB and depth with filled
holes yields the best results on both datasets. This is followed by RGB with
the other depth encodings, which still outperform the RGB-only variant. The

28

7.2. Benefits of Using Depth

depth alone, in all considered encodings, yields the worst results.

When only grayscale images are used as the input, the network achieves
high performance on T-LESS test, even slightly higher than for RGB. This is
not the case for LINEMOD test, which shows the importance of color for this
dataset.

Table 7.1 shows results also for other initialization strategies. The overall
best results were achieved with initialization stategy #1 and RGB + filled
depth as input.

Confusion matrix for T-LESS test in fig. 7.5a show many mistakes between
objects 1 to 4, 13 to 17, and 19 to 24. This is expected since these objects are
very similar. Figure 7.5b shows mistakes across most of the object classes.

0
bg 100 10

02
04
06
08
10
127
14]
16]
18]
20]
22]
24]
26]
28]
30]

10-!
10!

1072
1072

Ground truth class
Ground truth class

1073

1073

02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 02 o4 06 08 10 12 14

Detected class Detected class

(a) : T-LESS test dataset (b) : LINEMOD test dataset

Figure 7.5: Confusion matrices for RGB + filled depth and initialization strategy
#1. Normalized in rows. Note the logarithmic scale and false positives in the
first row.

29

30

Chapter 8

Conclusions

In this thesis we have studied the Faster R-CNN method for detection of
object categories in RGB images and proposed its extension to RGB-D images.

Analysis of the original Faster R-CNN showed that the method is sensitive
to changes in background. When the method was trained on images with
only black or only cluttered background and tested on images of the other
type, the performance dropped significantly. The object proposals produced
by Faster R-CNN were shown to cover the ground truth annotations very
well. The well aligned proposals have often high objectness score.

We have discussed possible solutions to several problems of extending
Faster R-CNN to RGB-D images: filling missing values in depth images,
depth encoding (raw depth vs. surface normals), extension of the CNN
architecture to accept the extra depth information, and initialization of
weights in the extended network.

The overall best results, on both the T-LESS and the LINEMOD dataset,
were achieved with a network that accepts RGB-D channels as input and has
the depth weights in the first convolutional layer initialized with the mean of
the color weights. The color weights and also all the other network weights
were initialized with weights trained on ImageNet, and the depth channel was
pre-processed by the iterative median filter to fill in the missing values. This
method achieved 93.8% mAP on the T-LESS dataset and 85.6% mAP on the
LINEMOD dataset. Note that the improvement over the original method
using only RGB channels is not significant (mAP was increased by 1 — 2%),
which suggests a need for different incorporation of the depth information,
e.g. through a dedicated network branch (section &.1).

Note that the mentioned scores were achieved on a simple task when the
test image set was randomly split into two parts, one of which was used for
training and one for testing. The method failed when it was trained on the
original training images, as they have a black background and the method
generalizes poorly to the unseen backgrounds in test images.

31

8. Conclusions

. 8.1 Future Work

We focused only on Faster R-CNN with ZF model of the CNN architecture,
which has 5 convolutional layers. The authors of the method proposed also
more complex VGG-16 model with 13 convolutional layers. The simpler
model was used because of time requirements — one training took almost 8
hours even for the simpler model.

In [23], the state-of-the-art results in semantic segmentation in RGB-D
images were achieved with a two-branch CNN architecture — one branch for
RGB and one for depth. This late-fusion approach would be interesting to
explore even for our task. Other depth encodings could be also explored, such
as HHA [22].

The training process was suboptimal in several ways. We used the faster
"approximate joint training" instead of the more precise "alternating training",
both were proposed by the authors of Faster R-CNN. Learning rates and the
number of iterations could be tweaked further. In all experiments, we trained
the individual models only once, repetition would assure reliable results.

32

[10]

Appendix A

Bibliography

Mark Everingham et al. “The pascal visual object classes challenge:
A retrospective”. In: International Journal of Computer Vision 111.1
(2015), pp. 98-136.

Jia Deng et al. “Imagenet: A large-scale hierarchical image database”.
In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE. 2009, pp. 248-255.

Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In:
European Conference on Computer Vision. Springer. 2014, pp. 740-755.

Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object De-
tection with Region Proposal Networks”. In: CoRR abs/1506.01497
(2015). URL: http://arxiv.org/abs/1506.01497.

Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”.
In: arXiv preprint arXiv:1612.08242 (2016).

Joseph Redmon et al. “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 779-788.

Federico Tombari, Alessandro Franchi, and Luigi Di Stefano. “BOLD
features to detect texture-less objects”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2013, pp. 1265-1272.

Tomas Hodan et al. “Detection and fine 3D pose estimation of texture-
less objects in RGB-D images”. In: Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE. 2015,
pp. 4421-4428.

Li Fei-Fei, Justin Johnson, and Serena Yeung. CS231n Convolutional
Neural Networks for Visual Recognition. 2017. URL: http://cs231n.
stanford.edu/.

K. E. A. v. d. Sande, C. G. M. Snoek, and A. W. M. Smeulders. “Fisher
and VLAD with FLAIR”. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition. June 2014, pp. 2377-2384. Dor: 10.
1109/CVPR.2014.304.

33

http://arxiv.org/abs/1506.01497
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://dx.doi.org/10.1109/CVPR.2014.304
http://dx.doi.org/10.1109/CVPR.2014.304

A. Bibliography

[11] Xiaoyu Wang et al. “Regionlets for generic object detection”. In: IEEE
transactions on pattern analysis and machine intelligence 37.10 (2015),
pp- 2071-2084.

[12] Wanli Ouyang et al. “Deepid-net: Deformable deep convolutional neural
networks for object detection”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015, pp. 2403-2412.

[13] Christian Szegedy et al. “Going deeper with convolutions”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 1-9.

[14] Ross Girshick. “Fast R-CNN”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2015, pp. 1440-1448.

[15] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding
convolutional networks”. In: Furopean conference on computer vision.
Springer. 2014, pp. 818-833.

[16] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[17] Jeff Kramer et al. Hacking the Kinect. Vol. 268. Springer, 2012.

[18] Kourosh Khoshelham and Sander Oude Elberink. “Accuracy and resolu-
tion of kinect depth data for indoor mapping applications”. In: Sensors
12.2 (2012), pp. 1437-1454.

[19] Marcelo Bertalmio et al. “Image inpainting”. In: Proceedings of the 27th
annual conference on Computer graphics and interactive techniques.
ACM Press/Addison-Wesley Publishing Co. 2000, pp. 417-424.

[20] Connelly Barnes et al. “PatchMatch: A Randomized Correspondence
Algorithm for Structural Image Editing”. In: ACM Transactions on
Graphics (Proc. SIGGRAPH) 28.3 (Aug. 2009).

[21] Stefan Hinterstoisser et al. “Gradient response maps for real-time
detection of textureless objects”. In: IEFEE Transactions on Pattern
Analysis and Machine Intelligence 34.5 (2012), pp. 876-888.

[22] Saurabh Gupta et al. “Learning rich features from RGB-D images
for object detection and segmentation”. In: Furopean Conference on
Computer Vision. Springer. 2014, pp. 345-360.

[23] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convo-
lutional networks for semantic segmentation”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2015,
pp. 3431-3440.

[24] Tomas Hodan et al. “T-LESS: An RGB-D Dataset for 6D Pose Es-
timation of Texture-less Objects”. In: IEEE Winter Conference on
Applications of Computer Vision (WACV) (2017).

[25] Stefan Hinterstoisser et al. “Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes”. In:
Asian conference on computer vision. Springer. 2012, pp. 548-562.

34

[27]

[28]

A. Bibliography

Eric Brachmann et al. “Uncertainty-driven 6d pose estimation of objects
and scenes from a single rgh image”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2016, pp. 3364—
3372.

Stefan Hinterstoisser et al. “Going further with point pair features”. In:
European Conference on Computer Vision. Springer. 2016, pp. 834-848.

Mark Everingham and John Winn. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Development Kit. 2012. URL: http://host.
robots . ox .ac.uk/pascal /VOC/voc2012/htmldoc/devkit _doc.
html.

Tomas Hodan, Jiri Matas, and Stepan Obdrzalek. “On Evaluation of 6D
Object Pose Estimation”. In: Computer Vision-ECCV 2016 Workshops.
2016.

Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun Dai. “Diag-
nosing Error in Object Detectors”. In: (2012). URL: http://dhoiem.
web.engr.illinois.edu/projects/detectionAnalysis/.

Tomas Hodan et al. SIXD Challenge 2017. 2017. URL: http://cmp.
felk.cvut.cz/sixd/challenge_2017/.

35

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html
http://dhoiem.web.engr.illinois.edu/projects/detectionAnalysis/
http://dhoiem.web.engr.illinois.edu/projects/detectionAnalysis/
http://cmp.felk.cvut.cz/sixd/challenge_2017/
http://cmp.felk.cvut.cz/sixd/challenge_2017/

36

Appendix B
Content of the included DVD

Together with the printed copy of this thesis, a DVD with the following
content is provided:

® Faster R-CNN - Source code of the extended method.

® Tools - Miscellaneous Python scripts used as a supplement of Faster R-
CNN (e.g. initialization of the network models, evaluation) and plotting
the figures.

® Thesis.pdf - Electronic version of this work.

37

	Introduction
	Structure of the Thesis

	Convolutional Neural Networks
	Architecture
	Learning
	Frameworks

	Object Detection in RGB Images
	Faster R-CNN
	YOLO

	Proposed Extension to RGB-D Images
	RGB-D Sensors
	Filling Missing Depth Measurements
	Depth Encoding
	Extension of the CNN Architecture
	Normalization
	Initialization of Network Weights

	Experimental Setup
	Datasets
	T-LESS Dataset
	LINEMOD Dataset

	Evaluation Methodology
	Intersection over Union
	Determination of True Positive Detections
	Precision and Recall
	Average Precision
	Confusion Matrix

	Evaluation of Faster R-CNN
	Implementation
	Sensitivity to Scale Change
	Sensitivity to Rotational Change
	Sensitivity to Background
	Quality of Object Proposals
	Bounding-box Distribution

	Evaluation of the Proposed Method
	Initialization
	Benefits of Using Depth

	Conclusions
	Future Work

	Bibliography
	Content of the included DVD

