
master’s thesis

Autonomous Navigation of UAV

Tomáš Sekanina

May 2017

doc. Ing. Martin Hromčík, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering, Departement of Measurement

ii

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Measurement

Technická 2, 166 27 Prague 6, Czech Republic

Academic year 2016/2017

MASTER PROJECT ASSIGNMENT

Student: Bc. Tomáš Sekanina

Study programme: Cybernetics and Robotics

Specialisation: Aircraft and Spacecraft Instrumentation

Title of Master Project: Autonomous Navigation of UAV

 Systém autonomní navigace UAV zařízení (in Czech)

Guidelines:

The goal of the thesis is to design and implement an algorithm for autonomous navigation of a drone
(copter and/or terrestrial rover) to a target specified by GPS coordinates. The work is linked to an
existing cooperation of the team from the Faculty of Mechanical Engineering (Tomáš Vyhlídal,
Jaroslav Bušek) with Georgia Tech University within the RescueBot project.

1. Get familiar with the state-of-the-art in autonomous navigation of UAVs.
2. Design an algorithm for autonomous navigation of a copter/drone towards a terrestrial target

specified by GPS coordinates. Consider the copter has already implemented attitude stabilization
subsystem.

3. Perform simulation validation and verification.
4. Implement the algorithm for autonomous drone navigation in the on-board control unit.
5. Verify the functionality of selected functions experimentally in test flights.

Bibliography/Sources:

 [1] Blakelock: Automatic Control Systems of Aircraft and Missiles, Princeton University Press,
1985.

Master Project Supervisor: Doc. Ing. Martin Hromčík, Ph.D. (K 13135)

Valid until: September 30, 2018

L. S.

Prof. Ing. Jan Holub, Ph.D. Prof. Ing. Pavel Ripka, CSc.
 Head of Department Dean

Prague, February 13, 2017

iv

Acknowledgement
I would like to thank to doc. Hromčík for introducing me to this project and thus giving
me opportunity to work on such interesting topic as well as supervising my work on it.
I would also like to express my gratitude to Ing. Bušek for his guidance throughout the
project and willingness to help me with encountered problems.

Author’s Affirmation
I hereby declare that the submitted thesis is exclusively my own work and that I have
listed all used information sources in accordance with the Methodological Guideline on
Ethical Principles for College Final Work Preparation.

2017 prague,
Tomáš Sekanina

v

Abstract
Tato práce se zabývá metodami navigace bezpilotních prostředků, konkrétně vývojem
algoritmu pro platformu kvadrokoptéry vytvořenou týmem ČVUT. Především se za-
měřuje na filtrační algoritmy, potřebné k navigování letounu. Výsledný produkt by měl
přispět k úspěšné účasti na studentské soutěži ARLISS [1]. Favoritem v této oblasti
je Kálmánův filtr a proto byly zvoleny dvě jeho varianty – UKF a EKF. Vzhledem
k tomu, že ke stabilizaci kvadrokoptéry je využit komerční produkt, který umožňuje
řízení přes změnu natočení a výšky, byly také navrženy řídící smyčky potřebné k pře-
vodu z chyby pozice na vsuptní příkazy pro autopilot. Jak filtrační, tak regulační část
byly ověřeny simulacemi a jejich výsledky vyhodnoceny. Následně byly tyto algoritmy
implementovány v C++ pro zvolenou řídící jednotku, kterou je STM32F401.

Klíčová slova
arliss, rescuebot, uav, kalman, EKF, UKF

vi

Abstract
This thesis deals with navigation methods of unmanned aerial vehicles, namely develop-
ment for quadcopter platform created by CTU team. Above all, it focuses on filtration
algorithms necessary for aircraft navigation. The resulting product should contribute
to successful participation in student competition ARLISS [1]. Kalman filter is prevail-
ing choice in this field and therefore were chosen two of its variants – UKF and EKF.
Since a commercial product is used for stabilization of the quad rotor, which enables
control via change of attitude and altitude, there were also designed control loops re-
quired for transformation of position error to autopilot’s input commands. Both the
filtering and regulatory parts were verified by simulations and their results evaluated.
Subsequently, these algorithms were implemented in C++ for the selected control unit,
which is STM32F401.

Keywords
arliss, rescuebot, uav, kalman, EKF, UKF

vii

Contents

1. Introduction 1

2. Navigation 2
2.1. UAV . 2

2.1.1. History . 2
2.1.2. Structure . 2
2.1.3. Current situation . 3

2.2. Navigation . 3
2.2.1. Inertial navigation . 4
2.2.2. Satellite navigation . 4
2.2.3. Visual navigation . 4

2.3. Localization . 5

3. Sensors 7
3.1. IMU . 7

3.1.1. IMU errors . 7
Accelerometer and gyroscope . 8

3.1.2. Magnetometer . 8
3.2. GPS . 9

4. Filtering 10
4.1. Complementary filter . 10
4.2. Kalman Filter . 10

4.2.1. KF algorithm . 10
Process equation . 11
Measurement equation . 11
Life-cycle of the algorithm . 12

4.2.2. Extended Kalman Filter . 12
Life-cycle of the algorithm . 13

4.2.3. Unscented Kalman Filter . 13
Unscented transformation . 13
Life-cycle of the algorithm . 14

4.2.4. Other versions . 15
4.3. Madgwick filter . 15

4.3.1. The algorithm . 15
4.3.2. Orientation frames . 15
4.3.3. Gradient descend algorithm . 16

Magnetic distortion . 17
Gyro bias drift . 17
Algorithm configuration . 18

5. The project 19
5.1. Motivation . 19

5.1.1. ARLISS competition . 19
5.1.2. Open class category . 20

6. HW set-up 21
6.1. Quad rotor . 21

viii

6.2. Microcontroller . 21
6.3. Stabilization . 23
6.4. Sensors . 23

6.4.1. LS20030 . 23

7. Implementation 25
7.1. Navigation equations . 25

7.1.1. State model . 26
7.1.2. Measurement model . 26

7.2. Initiation phase . 27
7.3. GPS measurement frequency . 27
7.4. EKF . 27

7.4.1. Process covariance update . 27
7.5. UKF . 27

7.5.1. Sigma points . 27
7.6. Trajectory . 28

8. Simulations 29
8.1. Navigation . 29

8.1.1. Results . 29
Position . 29
Velocity . 29
Attitude . 30
Biases . 30

8.2. Control . 30
8.2.1. Vertical . 31
8.2.2. Horizontal . 31
8.2.3. Tests . 32

9. Algorithm 36
9.1. MCU setup . 36

9.1.1. Clock . 36
9.1.2. UART . 36
9.1.3. Timer . 36

9.2. Classes . 36
9.2.1. Telemetry . 37
9.2.2. KF . 37

EKF . 37
UKF . 37

9.2.3. Control . 37
9.3. Main . 37

10.Conclusion 39
10.1. Results . 39
10.2. Future work . 40

Appendices

A. CD content 41

Bibliography 42

ix

Abbreviations
UAV Unmanned aerial vehicle
VTOL Vertical take of landing
GPS Global positioning system
IMU Inertial measurement unit
INS Inertial navigation system
CF Complementary filter
KF Kalman filter
EKF Extended Kalman filter
CTU Czech Technical University
ARLISS A rocket launch for international student satellites
MEMS Microelectromechanical systems
MCU Microcontroller unit
OS Operation system
NMEA National marine electronics association
NED North-East-Down
AHRS Attitude and Heading reference system
DCM Direct cosine matrix
MARG Magnetic, angular rate and gravity
LRF Laser range finder
CTU Czech Technical University

x

1. Introduction

As the name suggests the main concern of this thesis navigation of autonomous Un-
manned aerial vehicles (UAV). In the beginning of chapter 2 is briefly explained back-
ground of UAVs – what it is, its history and why is it today such frequent topic. After
this necessary preliminary, follows introduction to navigation of aircrafts and current
state of the art methods. The theoretical part concludes chapter 4, which is about
filtering. This discipline plays major part in navigation since it enables estimating true
parameters from distorted sensor readings. Therefore it is essential for localization and
control of the aircraft. which gives brief outline of available filtering. There are de-
scribed 4 different filtration methods, at first simple complementary filter, other two
are variations of well-known Kalman filter (KF) and the third one is Madgwick filter.

Following chapter presents motivation for choosing this topic and project of group
DICEbot [2], to which results of this thesis should contribute. Since its main aim is
participating in an international competition, this part also briefly lays out its rules,
because configuration explained in next chapter is relevant to it. The thesis continues
with description of designed configuration and its individual parts, namely a microcon-
troller, autopilot and sensors. Next chapter gives basic information about used sensors
and their errors.

The following text explains used process and measurement equations used in KF,
with specifics of the implemented UKF and EKF. This is followed by chapter 8 which
documents simulations of designed algorithms and their results. This part is followed
by description of the final algorithm for the target microcontroller. The last chapter
finishes with summary of results and recommandations for future development.

1

2. Navigation

Before going through past and current navigation methods it is important to first define
what is actually UAV and look at its development throughout history, its possibilities
and current applications. This covers the first section and rest of this chapter examines
different navigation technologies.

2.1. UAV
Unmanned aerial vehicle (UAV) is an aircraft without on board crew but not necessarily
not controlled by human. From this point could be established two group by a source
of control. It can be done remotely by person or acting on its own, following specified
instructions. The first kind can be done e.g. over radio and the aircraft can be either
controlled directly such as by adjusting flaps or via some control system which inputs
can be i.e. velocities in relevant coordinate frame etc. The later group are autonomous
UAVs. This means that such UAV can fulfill its task without any intervention from
human pilot. As the name of this thesis implies it takes focus in these.

2.1.1. History

The first occurrences resembling UAVs are documented even before the invention of a
plane. As with other scientific advances, the main reason of its progress was the war,
the first documented case [3] is bombarding of Venice in August 22, 1849 using hot air
balloons. Another, this time peaceful, record is from 1883, when an Englishman named
Douglas Archibald measured wind using instrument attached to a kite and 4 years later
used it to take camera pictures [4]. The first successful attempts at remote control of
aerial vehicle made Nikola Tesla in 1900 with wirelessly controlled airship[3].

As [4] further describes, the first larger advancement happened during World War I.
At first the UAVs were basically just an air torpedoes, mechanically designed to hold
some course and after desired distance crash to the ground. They were later also used
at large for reconnaissance purposes. Great progress was made later throughout several
wars in the 20th century in the field of remotely controlled aircrafts, as can be read
in [4]. The development of autonomous aircrafts underwent great advancement in the
last few decades. One of the milestones maybe being the First International Aerial
Robotics Competition in July 29, 1991 [5] which annually continues since then.

Nowadays UAVs range in all sizes and shapes, mostly as multirotors, fixed wing
airplanes and others. The next two paragraphs enumerate these different variations
and give quick comparison.

2.1.2. Structure

There are two main categories of UAVs: Fixed-wing and multirotors. The first group
of aircrafts uses lift generated by its wings during forward motion, while the other its
horizontal propellers of which there may be an arbitrary number. The most common
ones are with 4 or 6 propellers. The main advantages of rotorcrafts are that they

2

2.2. Navigation

are capable of vertical take off and landing (VTOL) and can move in all directions
or stay in place midair. These features make them suitable for indoor tasks, filming,
manipulation with objects etc. The whole construction is simpler, as well as attaching
additional instruments to them because their aerodynamics is not such a concern as
with a fixed-wing aircraft. Another advantage over them is that it is not affected by
some dynamics phenomenons like for example the dutch roll mode. On the other hand
cannot travel such distances and fly as long as their counterpart.

The UAV usually consists of its body, motors, source of power – battery or fuel tank,
transmitter for communication with the ground, some set of sensors and a control unit,
which controls the motors and other adjustable parts of the aircraft. As mentioned
earlier it can also carry additional cargo or equipment. The most common attachable
instrument is a camera, which can be placed in a gimbal for stabilization and possible
control of its attitude.

Besides inertial sensors and camera, the UAV can also be equipped with other sensors.
Because of bad vertical accuracy of GPS, another sensor can be incorporated in the
filtering process for better altitude estimation. Radar or pressure sensor can improve
accuracy in high altitudes while for landing is suitable some precise short range distance
sensor, such as ultrasounds or laser.

2.1.3. Current situation

There are ambitions and a lot of research is being invested in using autonomous UAVs for
various tasks like 3D mapping, watching over places or exploration of natural disaster
stricken areas and looking for survivors. Advancement of technology made possible
that some of experiments already got to real application. It is so because the on board
systems can nowadays run complex algorithms which allows all kinds of navigation,
basic image processing or very precise movement. Lot of research is done in the field
of collective robotics, artificial intelligence and indoor navigation for such purposes
these days. Unfortunately there are still several problems hindering true utilization of
such possibilities. These are mainly short air time because of weight of available power
sources, legal reasons and still insufficient technology to apply it in general environment.
So the experiments are still mostly done under laboratory circumstances.

2.2. Navigation

Navigation is a term covering three different disciplines. First is a localization, second
path planning and at last following of the desired path. Basic principles of aircraft
navigation are very similar and originate from maritime navigation. Speaking of first
scientific methods, using instruments such as compass and astrolabe, it is documented to
go through great advancement already in the 16th century [6]. Today there are much
more sophisticated methods and instruments. Even though celestial navigation was
largely used in aviation even in the 20th century, it got replaced by GPS in most cases.
The prominent methods and current state of navigation in the field of autonomous
UAVs is outlined in rest of this chapter.

Path planning and following is similar for different fields of robotics and is also exten-
sively researched. Probably the most significant task for UAVs is position estimation.
It is essential for the aircraft to know where it is and other parameters. This task is
quite challenging compared i.e. to ground robots because of its high dynamics and
different environment while in the air. Nevertheless these information can be obtained

3

2. Navigation

from different sources which vary with application of the UAV. The most basic form is
using inertial navigation which is also called dead reckoning.

2.2.1. Inertial navigation
Dead reckoning estimates position from knowing the initial course and location while
integrating velocities. This can be easily done in the UAV by using inertial measurement
unit (IMU), which is also necessary for control of the aircraft. IMU usually measures
angular speed and specific force in all axis and thus should be able to provide attitude
and velocity. Unfortunately well known problem in using relative measurements is,
that errors of these sensors integrate every computational cycle. Microeletromechanical
sensors (MEMS) are generally used in common UAVs, because of their small size, low
price and ease of use. Todays high-end MEMS IMUs achieve tactical grade accuracy
similar to mechanical gyroscopes, yet still, there is a big trade-off between price and
accuracy. While the random walk of gyroscopes can vary from 0.002 – 5°/

√
Hr and

accelerometers horizontal position error 57 – 1100 km [7] the price can also span from
few dollars to thousands.

Even though generally available IMUs are not usable for long term navigation on its
own, they have high update rate and are mostly inert to outside world. To compensate
for its drawbacks, additional absolute sensors can be integrated in the system, which
fixes the estimated values. Purely inertial navigation is than used when the other
sensor measurements are not available for some reason. This can be caused by lower
sampling frequency then the IMU’s or failure of the relevant system. Even though not
exactly inertial sensor, magnetometer is usually included in IMUs. It offers absolute
readings of attitude, especially the azimuth which typical IMU cannot provide unless
aligned beforehand. Unfortunately, it is easily disturbed by other sources of magnetic
field so some sort of error detection for faulty measurements and good calibration is
required. One such approach was presented in [8] for underwater robot which is likely to
encounter metal objects. This paper describes a way of identifying wrong accelerometer
and magnetometer readings and eliminating them. Integration of measurements from
different sensors is called filtering. It is introduced in chapter 4.

2.2.2. Satellite navigation
For absolute positioning is usually used set of beacons which allows triangulation of
the position. In sense of their function these are also satellites. GPS is used in most
outdoor UAV applications for exactly this purpose. It free, has great coverage ans its
receivers are easily affordable. Besides position it also offers velocity, course over ground
and many other parameters. Although GPS got very precise over time even for general
public and there are multiple satellite systems to choose from, there are reasons why it
is not sufficient without some complementary system as mentioned in previous section.
Its update frequency is usually few Hz which is too slow for systems with high dynamics
like UAV. Its accuracy is compromised by several factors which are discussed in chapter
3 and altitude and course information is not very accurate to begin with. Nevertheless,
the most obvious reason of looking for alternatives or complements to GPS is that its
signal is very unreliable or not available at all in some environments.

2.2.3. Visual navigation
The basic navigation methods mentioned in previous paragraphs still persist, at least
as a redundancy system, but the camera no longer serves only for capturing interesting

4

2.3. Localization

moments. It allows application of complex computer vision algorithms like stereoscopy
and other methods, which gave way to new dimensions of utilization.

With the development of computer vision emerged a new trend - using cameras as a
means of navigation. Since image processing is quite demanding in terms of data flow
and computing, one of the challenges is to make it optimized enough to be able to run on
the UAVs on board computer. These methods are also usually used in combination with
IMU and eventually other sensors. One of basic and often used methods is navigation
using optic flow. In this approach a single camera traces movement of salient features in
subsequent frames and deduces from it motion of the UAV. Example of such algorithm
using downwards facing camera and IMU for position and velocity control was presented
in [9]. Another usage of this method is for distance estimation from obstacles which is
very important for usage of UAVs indoors or lower to the ground. Higher magnitude
of optic flow means closer distance to the obstacle which makes it is suitable for flying
in urban canyons. Comparison of using omnidirectional camera and two cameras with
fish-eye lens to cover 360 degrees for this purpose was shown in [10].

Another option which inflicts higher computation load is using stereo vision. It
enables to build 3D map of the environment and effective obstacle avoidance. This
requires two cameras and can be combined with the optic flow method. Such case is
documented in [11]. This paper presented that combination of these two methods using
stereo camera facing forward and two sideways looking wide-range cameras was superior
to using only one of the methods and eventually only a pair of cameras with fish-eye
lens directed forward could be used, where outer sides of the images would be used for
optic flow and the inner sides for stereo. Another paper [12] documented usage of stereo
camera and rotating laser range finder (LRF) in GPS denied environment. The LRF
made it possible to build accurate 3D map of cluttered environment and navigation in
it.

2.3. Localization
The following chapters refer to terms which need to be explained first. Since the task
at hand is concerned with 6-DOF rigid body, its location is defined by rotation and
position in 3 axes. However both can be expressed in different ways.

First of all there are multiple reference frames used in aircraft navigation. The most
significant being [13]:

• Inertial coordinate system – Frame in which applies Newton’s laws of motion
• Geographic coordinate system – Earth centered, earth fixed (ECEF). Standard

GPS coordinates: latitude, longitude, elevation.
• Navigation coordinate system – Local level: North, East, Down (NED).
• Body coordinate system – Frame aligned with the vehicle, mainly to describe

orientation of on-board sensors reading and NED frame.
ECEF and NED frame are outlined in figure 1. The same frames are used also with
rotations, only it is usually expressed as a rotation of one frame with respect to another.

As described in [14], it can be done by Euler angles, direct cosine matrix (DCM) or
quaternion and some other ways but these are the most common. Euler angles are easy
to imagine but suffer from singularities and dependency on their order. On the other
hand quaternions with their unusual algebra enable easy and straightforward rotations.
In the used implementation is attitude described in Euler angles, namely roll, pitch and
yaw.

5

2. Navigation

Figure 1. Quadrotor coordinate frames, from [15].

6

3. Sensors

For successful operation of quad rotor, the control algorithm needs to know its precise
position in space and its velocities. That includes space coordinates [𝑥, 𝑦, 𝑧], its rotation
angles [𝜙, 𝜃, 𝜓] as well as their derivations (angular and translational velocities). How-
ever usage of commonly available sensors makes it challenging task, because neither of
the measurements are very precise and only by combining the data and filtering them
provides usable information. This process is described in the next chapter on multiple
algorithms. But first it is necessary to introduce functions and features of each used
sensor.

3.1. IMU

The inertial measurement unit consists of 3 angular rate sensors, 3 accelerometers and a
3 magnetometers. Even though MEMS angular rate sensor is not technically gyroscope,
these two terms are used interchangeably. With combination of these three triads, it is
then possible to measure acceleration, angular velocity and magnetic field in all axes.
It mainly serves for estimation of attitude, velocities and accelerations for the controller
but also complements GPS in providing position data, especially in case of GPS signal
outage.

Because of Earth’s gravitation field, accelerometer can provide relatively reliable
information about pitch and roll when the device is not moving. On the other hand
magnetometer can measure rotation in all axis and is not affected by motion. Its
greatest disadvantage is that it is very easily influenced by other sources of magnetic
field, another is that the Earth’s magnetic field differs with location so it needs to
be taken in account as well. Gyroscope provides accurate information about rotation
velocities and by integrating its data relative attitude could be estimated as well but its
biases tends to drift and there is always some additive error when integrating. Errors
of these devices are throughly described in [16] so the following paragraphs give only a
brief insight to this problematic.

3.1.1. IMU errors

All the mentioned sensors suffer from instrumentation errors which are listed in table
1. Scale factor, bias and misalignment of the sensor can be compensated easily by
formula 1, but they have to be determined first. 𝑥 is a true value of the measured �̂�
after compensation, 𝑀 corrects misalignment of sensor, 𝑆 is scale factor and 𝑏 is bias.
This can be easily illustrated by an error ellipse which as in figure 2. The red ellipse
represents raw measured values when rotating the sensor around one axis, while the true
data and desired shape after compensation is the blue circle. Displacement from origin
is caused by bias, rotation by nonorthogonality and not being perfect circle by scale
factor. In a 3D situation the sensor is usually rotated around until the measurements
form an ellipsoid and using some fitting algorithm its parameters are calculated. This
enables then to obtain the real value. However some parameters, especially gyroscope

7

3. Sensors

biases, tend to more or less change over time, so it is sufficient only for high grade
sensors. ⎡⎢⎣𝑥𝑥𝑥𝑦

𝑥𝑧

⎤⎥⎦ =

⎡⎢⎣ 1 𝑀𝑥𝑦 𝑀𝑥𝑧

𝑀𝑦𝑥 1 𝑀𝑦𝑧

𝑀𝑧𝑥 𝑀𝑧𝑦 1

⎤⎥⎦
⎡⎢⎣

1
𝑆𝑥

0 0
0 1

𝑆𝑦
0

0 0 1
𝑆𝑧

⎤⎥⎦
⎛⎜⎝

⎡⎢⎣�̂�𝑥�̂�𝑦
�̂�𝑧

⎤⎥⎦ −

⎡⎢⎣𝑏𝑥𝑏𝑦
𝑏𝑧

⎤⎥⎦
⎞⎟⎠ (1)

Bias Offset of measured values.
Scale factor Disproportion of the measured values.
Nonorthogonality Misalignment of sensor axis.
Sensor noise Random noise in sensor measure-

ments. Usually said to be zero-mean
white noise.

Table 1. Common IMU sensor errors

�

Figure 2. Sensor error ellipse. Blue – compensated measurement, Red – distorted measurement

Accelerometer and gyroscope

Both device are affected by already mentioned errors, gyroscope can be also affected by
Earth spin but it is neglected with used grade of sensors and each are also influenced by
temperature. The temperature dependency can be usually compensated by measuring
values in different temperatures beforehand and find a formula via some polynomial fit-
ting to recalculate the values. Calibration of accelerometer is relatively straightforward
since it is known that if static, norm of the values should be always equal to Earths
gravitation acceleration.

3.1.2. Magnetometer

Magnetometer calibration is similar to accelerometers in terms of scale factor, bias and
misalignment, thought the measurements can be done even on moving sensor. Problem
with magnetometer is that Earths magnetic field is very weak and easily disturbed.
Such distortions are called soft and hard iron. These and another sources of errors are

8

3.2. GPS

deeply discussed in [17], but the most common and with greatest influence are these
two. Hard iron effects are caused by permanent magnets near the sensor and behave
just like bias so it is only necessary to do the calibration with the sensor attached in
its place. Soft iron is caused by ferromagnetic compounds with changing intensity of
their field. This can be modeled to some extent or a characteristics for i.e. motors on
the robot can be measured to compensate for.

3.2. GPS
The Global Positioning System is a satellite-based navigation system. The client device
calculates distance to chosen available satellite from time it takes message to travel over
there. Using such information from at least 4 satellites it is able to calculate unique
position in latitude, longitude and altitude. GPS has also multiple error sources which
can be divided into two main groups:

• Common mode errors
– Satellite clock error
– Orbital error
– Ionospheric error
– Tropospheric error

• Non-common mode errors (receiver specific errors)
– Clock errors
– Multipath
– Noise

Common mode errors are minimized by specialized methods and extensions of the
space part i.e. differential GPS. The later group depends on grade of the receiver which
has usually included some mechanisms to suppress these segments.

The greatest vulnerability of this system is its need of a clear view of at least 4
satellites.1 Due to surroundings of the receiver such as high buildings, view of the
sky can be quite obstructed and view of the satellites with it. Because of this or
another cause, full GPS outages might occur. In such cases, the system has to rely on
information from another sensors to determine its position. This and demand for higher
accuracy is why there are filters which allow incorporating data from multiple sensors
to make the readings more reliable. Such filters are discussed in the next chapter.

13 for just horizontal localization.

9

4. Filtering

Since there are no perfect sensors, each of them has different traits and all measurements
are affected by errors, especially in aviation, are often used multiple devices to estimate
a single value. Pure estimation of values could be done via simple averaging but using
more advanced methods allows modeling state of the system and its errors. Basic
filtering algorithm which could be used for e.g. inertial navigation is complementary
filter, but it is too simple to provide sufficient results. The most of todays navigation
algorithms are based on the Kalman filter (KF), which is named after Rudolf E. Kálmán.
Because KF is only for linear problems it had to be adapted for nonlinear tasks such
as attitude estimation. Nowadays there are countless implementations which are based
on this filter. Other frequent filters in navigation are particle filter, information filter
or Madgwick filter.

4.1. Complementary filter
The complementary filter does not require any difficult computations so it is easy to
implement and fast to run. It can be used in a situation where there are two sensors 𝑠1
and 𝑠2 [18]. 𝑠1 is disturbed by high frequency noise and the other one by low frequency
noise. For each sensor a filter is used, low pass 𝐹 (𝑠) for 𝑠1 and high pass 𝐺(𝑠) for 𝑠2.
Where 𝐺(𝑠) is complement of 𝐹 (𝑠), thus 𝐺(𝑠) = 1 − 𝐹 (𝑠). Then we can express the
estimated value as in equation 2.

�̂� = 𝑥𝐹 (𝑠) + 𝑥𝐺(𝑠) = 𝑥𝐹 (𝑠) + 𝑥[1 − 𝐹 (𝑠)] (2)

Such filter could be used i.e. for combining data from accelerometer and gyroscope.
There also exists a non-linear version. Since it is very simple and not implemented it
is not discussed any further. More information can be found in the cited paper.

4.2. Kalman Filter
Kalman filter is a discrete, recursive and optimal algorithm for estimation of linear
dynamic systems. Because it is recursive, it uses only the last estimate for the next
computation and does no need to store large number of measurements. It also does
not require any demanding computations. These two factors make it very efficient and
suitable for running on embedded systems where HW performance is limited. The
algorithm is briefly derived according to [19] in the following section.

4.2.1. KF algorithm
KF applies to linear, discrete-time, dynamical systems described by figure 3. This
diagram can be divided into two blocks: Process and measurement part. Symbols used
in following derivation are in table 2. The goal of this process is to estimate state 𝑥
as precise as possible. Vector 𝑦𝑛 contains all observed values at the given time step.
These states values have their own models and are each distorted by different noises.

10

4.2. Kalman Filter

Both noises are assumed to be additive, white, Gaussian with zero mean and mutually
uncorrelated. These two parts are derived separately in rest of this subsection.

Symbol Definition
𝑥𝑛 state vector of the system
𝑦𝑛 set of measured data
𝐹𝑚,𝑛 transition matrix from state 𝑥𝑛 to 𝑥𝑚
𝑤𝑛 process noise
𝐻𝑛 measurement matrix
𝑣𝑘 measurement noise
𝑛 index defining iteration step

Table 2. Symbol definitions for Kalman filter derivation

𝑧−1𝐼 𝐻𝑘

𝑤𝑘 𝑥𝑘+1

𝐹 𝑘+1,𝑘

𝑥𝑘 𝑦𝑘

𝑣𝑘

Measurement equationProcess Equation

Figure 3. Digram of Kalman filter for discrete linear system [19]

Process equation

Having block diagram of the system, process equation is defined as:

𝑥𝑘 = 𝐹 𝑘,𝑘−1𝑥𝑘−1 + 𝑤𝑘−1, (3)

where 𝑀 is dimension of the state space. Process noise 𝑤𝑘 is defined as:

𝐸[𝑤𝑛𝑤𝑇
𝑘] =

{︃
𝑄𝑘 for 𝑛 = 𝑘
0 for 𝑛 ̸= 𝑘

(4)

Where 𝐸[𝐴] is an expected value of 𝐴.

Measurement equation

Equation for the measurement block is:

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘, (5)

where 𝑁 is dimension of the measurement space. Covariance matrix of the measurement
noise 𝑣𝑘 is defined as:

𝐸[𝑣𝑛𝑣𝑇𝑘] =
{︃

𝑅𝑘 for 𝑛 = 𝑘
0 for 𝑛 ̸= 𝑘

(6)

The goal of Kalman filter is to find a minimum mean-square error estimate of 𝑥𝑖 using
observed data 𝑦1,𝑦2, . . . ,𝑦𝑘. There are three possible variants with different names as
follows:

11

4. Filtering

𝑖 = 𝑘 – filtering,
1 ≤ 𝑖 < 𝑘 – smoothing,
𝑖 > 𝑘 – prediction.

Elaborate derivation follows in the cited book [19]. The final system then looks like
set of equations 3 and 5:

𝑥𝑘 = 𝐹 𝑘,𝑘−1𝑥𝑘−1 + 𝑤𝑘−1

𝑦𝑘 = 𝐻𝑘−1𝑥𝑘−1 + 𝑣𝑘−1
(7)

Life-cycle of the algorithm

The initial state is:
�̂�0 = 𝐸[𝑥0]),
𝑃 0 = 𝐸[(𝑥0 − 𝐸[𝑥0])(𝑥0 − 𝐸[𝑥0])𝑇].

(8)

And next steps are calculated from formulas:

State estimate propagation �̂�−
𝑘 = 𝐹 𝑘,𝑘−1�̂�𝑘−1,

Error covariance propagation 𝑃 −
𝑘 = 𝐹 𝑘,𝑘−1𝑃 𝑘−1𝐹 𝑇

𝑘,𝑘−1 + 𝑄𝑘−1,

Kalman gain matrix 𝐾𝑘 = 𝑃 −
𝑘 𝐻𝑇

𝑘 [𝐻𝑘𝑃
−
𝑘 𝐻𝑇

𝑘 + 𝑅𝑘]−1,

State estimate update �̂�𝑘 = �̂�−
𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘�̂�

−
𝑘),

Error covariance update 𝑃 𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃 −
𝑘 .

(9)

However as noted in the beginning, it is not possible to use KF for nonlinear problems,
which gives rise to adaptations of the former algorithm. The most common version is
the Extended Kalman Filter (EKF) but there are also others among which is likely the
most notable Unscented Kalman Filter (UKF).

4.2.2. Extended Kalman Filter
Kalman filter allows filtering of linear systems, however most real-life problems, includ-
ing estimation of position of quad rotor, are non-linear. For such models linearization is
a must. Combination of linearization and KF is called Extended Kalman filter. Using
equation 7 new non-linear system is defined:

𝑥𝑘+1 = 𝑓(𝑘,𝑥𝑘) + 𝑤𝑘,

𝑦𝑘+1 = ℎ(𝑘,𝑥𝑘) + 𝑣𝑘.
(10)

Same rules apply for process and measurement noise and their covariance matrices.
Only transition matrices 𝐹 𝑘 and 𝐻𝑘 are replaced by non-linear, possibly time-variant,
transition matrix functions 𝑓(𝑘,𝑥𝑘) and ℎ(𝑘,𝑥𝑘). When the state space model is
linearized, standard KF is used. Common linearization consists of two steps. At first
partial derivations of transition matrices are calculated and then evaluated for the
current state:

𝐹 𝑘+1,𝑘 = 𝜕𝑓(𝑘,𝑥)
𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥𝑘

,

𝐻𝑘 = 𝜕ℎ(𝑘,𝑥)
𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥−

𝑘

.

(11)

These values are then used in first order Taylor polynomial:

𝐹 (𝑘, 𝑥𝑘) ≈ 𝐹 (𝑥, �̂�𝑘) + 𝐹𝑘+1,𝑘(𝑥, �̂�𝑘),
𝐻(𝑘, 𝑥𝑘) ≈ 𝐻(𝑥, �̂�−

𝑘) + 𝐻𝑘+1,𝑘(𝑥, �̂�−
𝑘).

(12)

12

4.2. Kalman Filter

For the final approximation of the non-linear state equations 10, two new formulas are
needed:

𝑦𝑘 = 𝑦𝑘 − {ℎ(𝑘, �̂�−
𝑘) − 𝐻𝑘�̂�

−
𝑘 },

𝑑𝑘 = 𝑓(𝑥, �̂�𝑘) − 𝐹 𝑘+1,𝑘�̂�𝑘.
(13)

From which approximation of non-linear equations finally can be obtained as:

�̄�𝑘+1 ≈ 𝐹 𝑘+1,𝑘𝑥𝑘 + 𝑤𝑘 + 𝑑𝑘,

𝑦𝑘 ≈ 𝐻𝑘𝑥𝑘 + 𝑣𝑘.
(14)

Then the final algorithm for the system is defined by equations 10.

Life-cycle of the algorithm

Firstly the initialization sequence is the same as in KFs formulas 8:

�̂�0 = 𝐸[𝑥0]),
𝑃 0 = 𝐸[(𝑥0 − 𝐸[𝑥0])(𝑥0 − 𝐸[𝑥0])𝑇].

And every step new computation of states and covariance matrices is done:

Calculate state matrix jacobian 𝐹 𝑘,𝑘−1 = 𝜕𝑓(𝑘,𝑥)/𝜕𝑥|𝑥=𝑥𝑘−1,

State estimate propagation �̂�−
𝑘 = 𝑓(𝑘, �̂�𝑘−1),

Calculate measurement matrix jacobian 𝐻𝑘 = 𝜕ℎ(𝑘,𝑥)/𝜕𝑥|𝑥=𝑥−
𝑘

Error covariance propagation 𝑃 −
𝑘 = 𝐹 𝑘,𝑘−1𝑃 𝑘−1𝐹 𝑇

𝑘,𝑘−1 + 𝑄𝑘−1,

Kalman gain matrix 𝐾𝑘 = 𝑃 −
𝑘 𝐻𝑇

𝑘 [𝐻𝑘𝑃
−
𝑘 𝐻𝑇

𝑘 + 𝑅𝑘]−1,

State estimate update �̂�𝑘 = �̂�−
𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘�̂�

−
𝑘),

Error covariance update 𝑃 𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃 −
𝑘 .

(15)

4.2.3. Unscented Kalman Filter
As is thoroughly explained in [20] the EKF’s accuracy suffers from linearization of the
transformation equations which might not be usable at all in some cases. It further
presents advantages and steps of the Unscented Kalman Filter. This variation of KF
is named after the unscented transform, which allows using nonlinear equations while
only approximating a probabilistic distribution. It does so by selecting a so called sigma
points which hold information about mean a covariance of the data set. These are
afterwards transformed using the nonlinear equations and the estimated probabilistic
distribution is calculated from them.

Unscented transformation

As [21] states, “the unscented transformation(UT) is a method for calculating the
statistics of a random variable which undergoes nonlinear transformation”. It further
describes its steps starting with the selection of sigma points as:

𝒳0 = �̄�

𝒳𝑖 = �̄� + (
√︁

(𝐿+ 𝜆)𝑃 𝑥)𝑖 𝑖 = 1, . . . , 𝐿

𝒳𝑖 = �̄� − (
√︁

(𝐿+ 𝜆)𝑃 𝑥)𝑖−𝐿 𝑖 = 𝐿+ 1, . . . , 2𝐿,

(16)

13

4. Filtering

𝜆 = 𝛼2(𝐿+ 𝜅) − 𝐿

where 𝑥 is the random variable in 𝐿-dimensional space, with mean �̄� and covariance
𝑃 𝑥. 𝛼 and 𝜅 are parameters defining spread of the sigma points. Each sigma point is
also associated with its weight. The weights are calculated by following equations:

𝑊
(𝑚)
0 = 𝜆

𝐿+ 𝜆

𝑊
(𝑐)
0 = 𝜆

𝐿+ 𝜆
+ (1 − 𝛼2 + 𝛽)

𝑊
(𝑚)
𝑖 = 𝑊

(𝑐)
𝑖 = 1

2(𝐿+ 𝜆) 𝑖 = 1, . . . , 2𝐿,

(17)

where 𝛽 is parameter incorporating prior knowledge of the distribution. Optimal value
for Gaussian is 2. Having the sigma points, they are transformed using the nonlinear
function 𝑔:

𝒴𝑖 = 𝑔(𝒳𝑖) 𝑖 = 0, . . . , 2𝐿 (18)

Finally the estimated mean and covariance can be calculated as

�̄� ≈
2𝐿∑︁
𝑖=0

𝑊𝑚
𝑖 𝒴𝑖

𝑃 𝑦 ≈
2𝐿∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒴𝑖 − �̄�)(𝒴𝑖 − �̄�)𝑇 .

(19)

Selection of the sigma points plays a significant role. Their number affects computa-
tion cost so the lesser the better, but it is necessary for them to properly embody the
probabilistic distribution of the original set. [22] derives method of selecting them and
proves that the minimal sufficient number is 2𝐿 points when properly selected, though
2𝐿+ 1 points are usually used.

Life-cycle of the algorithm

The initialization sequence of UKF is the same as in KFs formulas 8:

�̂�0 = 𝐸[𝑥0]),
𝑃 0 = 𝐸[(𝑥0 − 𝐸[𝑥0])(𝑥0 − 𝐸[𝑥0])𝑇].

And at every cycle, unscented transformation is calculated for new set of sigma points
for process and measurement separately, from which new mean and covariance estimates

14

4.3. Madgwick filter

are computed:

State sigma points by 16 𝒳 𝑘−1,

Transformed state sigma points 𝒳 −
𝑘 = 𝑓(𝒳 −1),

State apriory estimate �̂�−
𝑘 =

∑︁2𝐿
𝑖=0

𝑊 𝑥
𝑖 𝒳 𝑘,𝑖,

State covariance apriory estimate 𝑃 −
𝑥𝑘

=
∑︁2𝐿

𝑖=0
𝑊 𝑐
𝑖 (𝒳 −

𝑘,𝑖 − �̂�−
𝑘)(𝒳 −

𝑘,𝑖 − �̂�−
𝑘)𝑇 + 𝑄𝑘,

Transformed measurement sigma points 𝒴𝑘,𝑖 = ℎ(𝒳 −
𝑘,𝑖),

Measurement estimate �̂�𝑘 =
∑︁2𝐿

𝑖=0
𝑊 𝑥
𝑖 𝒴𝑘,𝑖

Measurement covariance 𝑃 𝑦𝑘
=

∑︁2𝐿
𝑖=0

𝑊 𝑐
𝑖 (𝒴𝑘,𝑖 − �̂�𝑘)(𝒴𝑘,𝑖 − �̂�𝑘)𝑇 + 𝑅𝑘,

Transformed cross covariance 𝑃 𝑥𝑘,𝑦𝑘
=

∑︁2𝐿
𝑖=0

𝑊 𝑐
𝑖 (𝒳 −

𝑘,𝑖 − �̂�−
𝑘)(𝒴𝑘,𝑖 − �̂�𝑘)𝑇

Kalman gain matrix 𝐾𝑘 = 𝑃 𝑥𝑘𝑦𝑘
𝑃 −1
𝑦𝑘
,

State estimate �̂�𝑘 = �̂�−
𝑘 + 𝐾𝑘(𝑦𝑘 − �̂�𝑘),

State covariance estimate 𝑃 𝑥𝑘
= 𝑃 −

𝑥𝑘
− 𝐾𝑘𝑃 𝑦𝑘

𝐾𝑇
𝑘 .

(20)

4.2.4. Other versions
Besides EKF and UKF exist also other various adaptation of KF. Thorough comparison
of EKF and several versions of UKF is in [23]. Often researched trend are adaptive
filters which adjust the covariance matrices on the fly. Examples of such algorithms
can be Adaptive Kalman Filter [24], Adaptive Extended Kalman Filter [25] or Adaptive
Unscented Kalman Filter [26].

4.3. Madgwick filter
Another interesting approach for estimating attitude using 6 and 9-DOF IMUs pub-
lished Sebastian O. H. Madgwick in his paper [27]. It uses quaternions and is said to
be computationally less demanding than EKF while maintaining similar results.

4.3.1. The algorithm
MARG version of Madgwicks filter is displayed in figure 4. There are two inputs from
magnetometer and accelerometer which serve for estimation of attitude using the gra-
dient descend algorithm and a third input from gyroscope which provides information
about rate of change of rotation. These two estimates are combined for the final atti-
tude estimate which is then incorporated in a feedback. Group 1 implements magnetic
distortion compensation and Group 2 takes care of gyroscope bias drift.

4.3.2. Orientation frames
The gyroscope measures angular rate in sensor frame which is defined by vector

𝑆𝜔 =
[︁
0 𝜔𝑥 𝜔𝑦 𝜔𝑧

]︁
. (21)

The rate of change in the earth frame is than

𝑆
𝐸 �̇�𝜔,𝑡 = 1

2
𝑆
𝐸 �̂�𝑒𝑠𝑡,𝑡−1 ⊗ 𝑆𝜔𝑡. (22)

15

4. Filtering

Figure 4. Block diagram of Madgwicks MARG filter algorithm [27]

Finally the estimated quaternion is obtained by integration of angular rate:

𝑆
𝐸𝑞𝑒𝑠𝑡,𝑡 = 𝑆

𝐸 �̂�𝑒𝑠𝑡,𝑡−1 + 𝑆
𝐸 �̇�𝑒𝑠𝑡,𝑡Δ𝑡 (23)

To calculate orientation in the Earth frame from accelerometer and magnetometer it
is necessary to use some optimization algorithm to obtain complete solution. Madgwick
in his paper uses a gradient step algorithm.

4.3.3. Gradient descend algorithm

The optimization problem is solved by minimizing the objective function 𝑓
(︁
𝑆
𝐸 �̂�,𝐸�̂�, 𝑆 �̂�

)︁
defined by equation 24, using gradient-descend algorithm.

𝑓
(︁
𝑆
𝐸 �̂�,𝐸�̂�, 𝑆 �̂�

)︁
= 𝑆

𝐸 �̂�* ⊗ 𝐸�̂� ⊗ 𝑆
𝐸 �̂� − 𝑆 �̂� (24)

Where 𝐸�̂� denotes reference direction in the earth frame and 𝑆 �̂� measured direction in
sensor frame.

In the objective function for accelerometer 𝐸�̂� is substituted by gravity vector

𝐸 �̂� =
[︁

0 0 0 1
]︁

and 𝑆 �̂� with accelerometer measurement

𝐸�̂� =
[︁

0 𝑎𝑥 𝑎𝑦 𝑎𝑧
]︁
.

In case of the magnetometer 𝐸�̂� is substituted by

𝐸 �̂� =
[︁

0 𝑏𝑥 0 𝑏𝑧
]︁

16

4.3. Madgwick filter

and 𝑆 �̂� by normalized magnetometer measurement

𝑆�̂� =
[︁

0 𝑚𝑥 𝑚𝑦 𝑚𝑧

]︁
.

The objective functions 𝑓𝑔 for accelerometer and 𝑓 𝑏 for magnetometer are defined
by equations 25 and 26, which can be obtained from the general formula after some
simplifications which are described in the original paper.

𝑓𝑔
(︀𝑆
𝐸 �̂�, 𝑆�̂�

)︀
=

⎡⎢⎣2(𝑞2𝑞4 − 𝑞1𝑞3) − 𝑎𝑥
2(𝑞1𝑞2 + 𝑞3𝑞4) − 𝑎𝑦
2(1

2 − 𝑞2
2 − 𝑞2

3) − 𝑎𝑧

⎤⎥⎦ (25)

𝑓 𝑏

(︁
𝑆
𝐸 �̂�, 𝑆�̂�

)︁
=

⎡⎢⎣2𝑏𝑥(0.5 − 𝑞2
3 − 𝑞2

4) + 2𝑏𝑧(𝑞2𝑞4 − 𝑞1𝑞3) −𝑚𝑥

2𝑏𝑥(𝑞2𝑞3 − 𝑞1𝑞4) + 2𝑏𝑧(𝑞1𝑞2 + 𝑞3𝑞4) −𝑚𝑦

2𝑏𝑥(𝑞1𝑞3 + 𝑞2𝑞4) + 2𝑏𝑧(0.5 − 𝑞2
2 − 𝑞2

3) −𝑚𝑧

⎤⎥⎦ (26)

Jacobians 𝐽𝑔(𝑆𝐸 �̂�) and 𝐽 𝑏(𝑆𝐸 �̂�) can be easily obtained by derivation of their respective
objective functions. The next orientation estimate is calculated from equation 27 using
step size 𝜇.

𝑆
𝐸𝑞∇,𝑡 = 𝑆

𝐸 �̂�𝑒𝑠𝑡,𝑡−1 − 𝜇𝑡
∇𝑓

(︁
𝑆
𝐸

�̂�𝑒𝑠𝑡,𝑡−1,
𝐸�̂�, 𝑆 �̂�

)︁
⃦⃦⃦
∇𝑓

(︁
𝑆
𝐸 �̂�𝑘,

𝐸�̂�, 𝑆 �̂�
)︁ ⃦⃦⃦ , 𝑘 = 1, 2, . . . 𝑛 (27)

∇𝑓 =
[︃

𝐽𝑔(𝑆𝐸 �̂�𝑒𝑠𝑡,𝑡−1)
𝐽 𝑏(𝑆𝐸 �̂�𝑒𝑠𝑡,𝑡−1,

𝐸 �̂�)

]︃𝑇 [︃
𝑓𝑔

(︀𝑆
𝐸

�̂�𝑒𝑠𝑡,𝑡−1,
𝑆�̂�

)︀
𝑓 𝑏

(︁
𝑆
𝐸

�̂�𝑒𝑠𝑡,𝑡−1,,
𝐸 �̂�, 𝑆�̂�

)︁]︃
(28)

Magnetic distortion

To compensate magnetic distortion, 𝐸 �̂�𝑡 is defined by equation 29

𝐸 �̂�𝑡 =
[︁

0
√︁
ℎ2
𝑥 + ℎ2

𝑦 0 ℎ𝑧
]︁

(29)

𝐸ℎ̂𝑡 =
[︁

0 ℎ𝑥 ℎ𝑦 ℎ𝑧
]︁

= 𝑆
𝐸 �̂�𝑒𝑠𝑡,𝑡−1 ⊗ 𝑆�̂�𝑡 ⊗ 𝑆

𝐸 �̂�*
𝑒𝑠𝑡,𝑡−1 (30)

Gyro bias drift

The gyro scope bias changes slowly over time with temperature and motion. Apart
from Kalman filter, Madgwick estimates gyroscope bias drift via integral feedback of
the error in the rate of change orientation. The compensated gyroscope measurement
is than calculated as the figure suggest via set of equations 31.

𝑆𝜔𝜖,𝑡 = 2 𝑆
𝐸 �̂�*

𝑒𝑠𝑡,𝑡−1 ⊗ 𝑆
𝐸

˙̂𝑞𝜖,𝑡
𝑆𝜔𝑏,𝑡 = 𝜁

∑︁
𝑡

𝑆𝜔𝜖,𝑡Δ𝑡

𝑆𝜔𝑐,𝑡 = 𝑆𝜔𝑡 − 𝑆𝜔𝑏,𝑡

(31)

17

4. Filtering

Algorithm configuration

There are only two gains to be tuned in the filter 𝛽 and 𝜁. The first represents all
mean zero gyroscope measurement error and the latter rate of convergence to remove
gyroscope measurement errors which are not mean zero. These can be determined using
following equations.

𝛽 =
⃦⃦⃦⃦1

2𝑞 ⊗
[︁

0 �̃�𝛽 �̃�𝛽 �̃�𝛽
]︁⃦⃦⃦⃦

=
√︂

3
4 �̃�𝛽 (32)

𝜁 =
√︂

3
4

˜̇𝜔𝜁 (33)

18

5. The project

In previous chapters were described application and history of UAVs, evolution of navi-
gation methods and filtration techniques used today, with detailed look on some filtering
algorithms. All of this comes as a background for the following part of this thesis where
these algorithms are applied on a real project. In this chapter is described motivation
behind this effort and purpose of the project.

5.1. Motivation

The practical part of this thesis is built on an ongoing development of CTUs team [2]
which represents its university with it in an international ARLISS [1] competition. This
event takes place every year in Black Rock Desert, Nevada and CTU’s team already
participated in the previous runs. Rules of the competition are introduced in the next
section.

The project engages mainly in the fields of electrical and mechanical engineering and
aviation. Having the mechanical part done from previous work of another student, it
is welcomed opportunity to build own solution almost from scratch, while the field of
work is highly relevant to studied program. Another great possibility is, if possible, to
eventually personally participate in the competition. This is conditioned by successful
solution of this task of course.

5.1.1. ARLISS competition

The competition is held for students interested in aerospace engineering, so they can get
practical experience with building a complete solution for this kind of task. Teams from
all over the world gather in late September to compare their skills in two categories:
CanSat and Open class. The CTU’s robot is built for the later.

Figure 5. Launch of a rocket carrying the device during ARLISS competition [28]

19

5. The project

5.1.2. Open class category
The assignment in this category is to create a device able to autonomously navigate to
a target specified by GPS coordinates located somewhere in 6 km radius from the place
of launch. At first, the device is launched circa 3 km high, as can be seen in figure 5,
and released. Then it has to travel to the provided location and stop there with 10 m
accuracy. The robot has to fit in the carrier device and so there are size and weight
restrictions, which are listed in table 7.

Dimension Maximum value

Diameter 146 mm
Height 254 mm
Weight 1.8 kg

Table 3. List of restrictions for robot design.

There are two main categories of robots: ground and flying. Most teams choose to
build a rover – robot which moves over the ground, however CTU team’s solution is a
quad copter. Its design specification including the frame and electronics are described
in chapter 6.

20

6. HW set-up

Taking propositions of the competition in account, it is kind of a unique application.
Hence building a custom made solution is a logical approach, because mass produced
goods would hardly fill all needs and would cost multiple times over. Schema of the
HW set-up is in figure 6. Each part of the design is described in rest of this chapter.

MAVLink

UART

Pixhawk

Autopilot

MPU
STM32

�
o
m
m
a
n
d
s

D
a
t
a

IMU

D
a
t
a

UART

GPS
LS2��3�

Figure 6. Custom quadrotor of CTU team for ARLISS competition

6.1. Quad rotor

The quad rotor was built by DICEbot team [2] at the Faculty of Mechanical Engineering
of CTU. Since the quad rotor has to fit in a small tube, the beams with propellers have to
be folded to be in parallel. Therefore it was necessary to implement a mechanism which
would spread these supports to their working position. The quad rotor is equipped with
a parachute which unfolds right after the robot is released and besides stabilization
during initial fall it is also attached to mechanism which opens up unfolds the structure.
The built frame is in picture 7.

6.2. Microcontroller

There are countless options when it comes to choosing a platform that could control a
quad rotor but there are 2 main choices in general. Firstly there are small computers
with OS such as Raspberry Pi [29] or BeagleBone Black[30] and secondly microcon-
trollers with market leader Arduino[31] or STM32[32]. The price is similar for both

21

6. HW set-up

Figure 7. Custom quadrotor of CTU team for ARLISS competition

groups depending on its class but where computers have superior performance to MCUs,
with power consumption it is exactly the other way around. This fact makes MCUs
more suitable for robotic applications if the provided performance is sufficient and run
time on battery is critical factor. MCUs also provide more deterministic behavior when
it comes to timing compared to usually used UNIX distributions, though there are also
real-time systems for specific purposes.

Considering this comparison, using a microcontroller for the ARLISS competition is
obvious choice since airtime of quad rotor is already short due to its motors. Then
there are another 2 options: There are universal development kits with large amounts
of GPIOs, multiple peripherals and communication interfaces or there is a possibility to
build an ad-hoc board based on CPU of choice which would be minimalistic. Since this
is a pilot project and a lot can change in next phases of development, multi-purpose
MCU kit is used for this work. However building some lighter and more application
specific solution is desirable for further development.

Because of its availability, SW support and performance, development kit based on
the high-performance ARM© Cortex©-M4 32-bit RISC core operating at a frequency
of up to 84 MHz[33] was selected. Comparison to high-end non-USA Arduino version
Genuino is in table 4.

Peripherals STM32F401VC Genuino Zero
Price(official)[e] 13 42.90
Flash memory 256 kB 256 kB
SRAM 64 kB 32 kB
GPIO 81 20
Maximum CPU frequency 84 MHz 48 MHz

Table 4. Comparison of ST32MF401VC[33] and Genuino Zero[34]

The STM32F401VC kit is a universal high-performance controller which covers all
needs of the application in terms of CPU frequency and communication interfaces

22

6.3. Stabilization

needed for attaching additional sensors. Its Cortex©-M4 core features a Floating point
unit which is quite advantageous in this kind of application and has also good software
support with many necessary libraries already existing.

6.3. Stabilization
Since stabilization of quadcopter is a task of its own and this thesis is mainly concerned
with navigation a Pixhawk Autopilot [35] is used for this. It is a multi-purpose module
which can be used with different vehicles, sensors and communication protocols. It
built on STM32F427, which is MCU similar to the microcontroller used for running
the main algorithm. The system also hosts two two sets of accelerometers and angular
rate sensors plus one magnetometer and barometer. Another useful features are several
integrated backup function which make it suitable for use in aircrafts. It also comes
with an extensive software support and large user community.

It has three main modes of use – manual, assisted and auto. These then have their
own variations depending on type of the aircraft. For this application was chosen the
assisted ALTCTL mode, where the control for multirotors is done by pitch, roll, yaw
commands and climb rate, otherwise the autopilot keeps leveled flight and altitude.

Besides its internal sensors, Pixhawk also reads data from external GPS and even-
tually other devices and transmits them to the MPU. Communication with the unit is
done by serial interface using MAVLink protocol [36]. Using MAVLink messages the
microcontroller reads raw sensor data and issues commands to the autopilot.

This autopilot has also native navigation algorithms and would be able to complete
the whole task on its own, but in this case it is strictly used only for stabilization and
reading sensor data. Nevertheless, it would be logical to completely remove it in future
and implement the stabilization into the microcontroller.

6.4. Sensors
The internal sensors of Pixhawk:

• 16 bit 3D angular rate sensor ST Micro L3GD20H
• 14 bit 3D accelerometer and 3D magnetometer ST Micro LSM303D
• 3D accelerometer and gyroscope Invensense MPU 6000
• MEAS MS5611 barometer

Since there are multiple sensors of the same kind the autopilot has redundant measure-
ments and user can choose from two different IMU messages. Their selected parameters
are in table 5.

The device has also special connector for communication with a GPS unit which is
in this case LS20030. It is briefly described in the next paragraph.

6.4.1. LS20030

LS20030[40] is a complete GPS receiver including embedded passive antenna and GPS
receiver circuits. It can acquire up to 60 satellites and its update frequency is 1 Hz
by default but can be changed up to 10 Hz. In such case either baud rate has to be
raised as well or types of incoming NMEA messages reduced. NMEA is a standard of
communication protocol transmitting GPS information. The communication consists
of so called sentences, which are independent of each other and start with a 5-letter
prefix. It contains information about the device and type of the content. Meaning of

23

6. HW set-up

Sensor Feature Value
MPU-6000 gyroscope Full-scale range ±250, ±500, ±1000, ±2000 ° s−1

Sensitivity ±131, ±65.5, ±32.8, ±16.4 LSB/°/s
MPU-6000 accelerometer full-scale range ±2, ±4, ±8, ±16 g

Sensitivity 16 834, 8192, 4096, 2048
L3GD20H gyroscope Full-scale range ±245, ±500, ±2000 ° s−1

Sensitivity ±8.75, ±17.5, ±70, ±70 mdps/digit
LSM303D accelerometer Full-scale range ±2, ±4, ±6, ±8, ±16 g

sensitivity ±0.061, ±0.122, ±0.183, ±0.732 mg/LSB
LSM303D magnetometer Full-scale range ±2, ±4, ±8, ±12 G

Sensitivity ±0.08, ±0.16, ±0.32, ±0.479 mG/LSB

Table 5. Parameters of Pixhawk’s internal sensors [37] [38] [39]

all provided NMEA sentences is in the cited datasheet. The module uses serial port so
UART is used for data transmission to the autopilot.

Feature Value
Update rate 1 Hz, up to 1 Hz

Acquisition time
(open sky)

Hot start < 1 s (typical)

Cold start 32 s (typical) without AGPS
< 15 s (typical) with AGPS

Position accuracy Autonomous 3 m
SBAS 2.5 m (depends on accuracy of cor-

rection data)
Protocol support NMEA0183 ver 3.01 9600 bps(default), 8 data bits, no

parity, 1 stop bits (default)1Hz:
GGA, GLL, GSA, GSV, RMC,
VTG

Table 6. LS20030 parameters[40]

24

7. Implementation

This chapter describes models and principles used in the final filtering algorithms in-
cluding steps specific for each of them. The Madgwick filter was tested just briefly,
because it allows only attitude estimation and some other filter would be required any-
way to incorporate position and velocity. As the most suited for the task seemed to be
EKF and UKF and therefore were selected.

The implemented filters use the loosely coupled architecture, which means that the
GPS and IMU measurements are independent of each other. Taking in account unreli-
ability of the magnetometer and sources of magnetic field on the quad rotor, the only
measurements used besides GPS data are from accelerometer and angular rate sensor.

7.1. Navigation equations

A model is core part of the KF. State space of the process model differs with implementa-
tions and accuracy of the system. State equitations differ with applied approximations.
Depending on used sensors and required precision, multiple errors of each sensor can
be modeled. Although price for more accurate model with more states is lengthy and
difficult tuning. The measurement model is basically given by used sensors and their
approximations. In the implemented algorithm were used slightly altered equations
from [41]. Both implemented filters are done according to the steps described in chap-
ter 4. There only few things that are specific for each and are mentioned in subsections
7.4 and 7.5.

Symbol Meaning

𝑝𝑁𝐸𝐷 = [𝑝𝑁 , 𝑝𝐸 , 𝑝𝐷] Position in NED frame
𝑣𝑁𝐸𝐷 = [𝑣𝑁 , 𝑣𝐸 , 𝑣𝐷] Velocity in NED frame
𝑎𝑏 = [𝑎𝑥, 𝑎𝑦, 𝑎𝑧] Specific force in body frame
[𝜙, 𝜃, 𝜓] Attitude - roll, pitch, yaw
𝜔𝑏 = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧] Angular velocity
𝑏𝑎𝑐𝑐 = [𝑏𝑎𝑥, 𝑏𝑎𝑦, 𝑏𝑎𝑧] Accelerometer bias
𝑏𝑔𝑦𝑟 = [𝑏𝑔𝑥, 𝑏𝑔𝑦, 𝑏𝑔𝑧] Angular rate sensor bias
𝑝𝐺𝑃𝑆𝑁𝐸𝐷

= [𝑝𝐺𝑃𝑆𝑁
, 𝑝𝐺𝑃𝑆𝐸

, 𝑝𝐺𝑃𝑆𝐷
] GPS position measurement

𝑣𝐺𝑃𝑆 GPS speed over ground measurement
𝑓 𝑠 =

[︀
𝑓𝑠𝑥 , 𝑓𝑠𝑦 , 𝑓𝑠𝑧

]︀
Accelerometer measurement

[𝜔𝑥, 𝜔𝑦, 𝜔𝑧] Angular rate sensor measurement
𝑇 Period
𝜏𝑔𝑦𝑟 Angular rate sensor correlation time
𝜏𝑎𝑐𝑐 Accelerometer correlation time
𝑔𝑁 Gravitation constant

Table 7. Table of symbols for section 7
.

25

7. Implementation

7.1.1. State model

𝑥 = [𝑝𝑁 , 𝑝𝐸 , 𝑝𝐷, 𝑣𝑁 , 𝑣𝐸 , 𝑣𝐷, 𝑎𝑥, 𝑎𝑦 , 𝑎𝑧 , 𝜙, 𝜃, 𝜓, 𝜔𝑥, 𝜔𝑦 , 𝜔𝑧 , 𝑏𝑎𝑥, 𝑏𝑎𝑦 , 𝑏𝑎𝑧 , 𝑏𝑔𝑥, 𝑏𝑔𝑦 , 𝑏𝑔𝑧] (34)

The state model used in the implemented filters consists of position, velocity, acceler-
ation, attitude, angular velocity and biases of accelerometer and angular rate sensor.
The set of equations 35 describes this model. And equations 36 the discrete step update.

�̇� = 𝑣𝑡+ 1
2𝑎𝑡

2

�̇� = 𝑎𝑡

�̇� = − 𝑎

𝜏𝑎𝑐𝑐
+ 1
𝜏𝑎𝑐𝑐

𝑣

�̇� = 𝜔𝑥 + 𝜔𝑦 sin𝜙 tan 𝜃 + 𝜔𝑧 cos𝜙 tan 𝜃
𝜃 = 𝜔𝑦 cos𝜙− 𝜔𝑧 sin𝜙

�̇� = 𝜔𝑦
sin𝜙
cos 𝜃 + 𝜔𝑧

cos𝜙
cos 𝜃

�̇� = − 1
𝜏𝑔𝑦𝑟

𝜔 + 1
𝜏𝑔𝑦𝑟

𝑤

�̇�𝑎𝑐𝑐 = 0 + 𝑣

�̇�𝑔𝑦𝑟 = 0 + 𝑤

(35)

𝑥𝑘+1 = 𝑥𝑘 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑇 × 𝑣𝑁𝐸𝐷 + 1
2𝑇

2 × 𝐶𝑛
𝑏 × 𝑎𝑏 × 𝑔𝑁

𝑇 × 𝐶𝑛
𝑏 × 𝑎𝑏 × 𝑔𝑁

− 𝑇
𝑡𝑎𝑢𝑎𝑐𝑐

× 𝑎𝑏

𝑇 ×

⎡⎢⎣1 cos𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin𝜙

cos 𝜃
cos𝜙
cos 𝜃

⎤⎥⎦ × 𝜔𝑏

− 𝑇
𝜏𝑔𝑦𝑟

× 𝜔𝑏

03×1
03×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

7.1.2. Measurement model

𝑦 = [𝑝𝐺𝑃 𝑆𝑁
, 𝑝𝐺𝑃 𝑆𝐸

, 𝑝𝐺𝑃 𝑆𝐷
, 𝑣𝐺𝑃 𝑆 , 𝑓𝑠𝑥 , 𝑓𝑠𝑦 , 𝑓𝑠𝑧 𝜔𝑥, 𝜔𝑦 , 𝜔𝑧] (37)

The measurement consist of position and velocity from GPS, accelerometer and angular
rate sensor readings, so the measurement model is derived in the same fashion. The
measurement estimation is calculated in a following way:

�̂�𝑘 =

⎡⎢⎢⎢⎢⎣
𝑝𝑁𝐸𝐷
𝑣𝑁𝐸𝐷

𝑎𝑏 + 𝑏𝑎𝑐𝑐 + 𝐶𝑏
𝑛 ×

[︁
1 0 0

]︁𝑇
𝜔𝑏 + 𝑏𝑔𝑦𝑟

⎤⎥⎥⎥⎥⎦ (38)

And 𝐶𝑛
𝑏 is a transformation matrix from body to NED frame:

𝐶𝑛
𝑏 =

⎡⎢⎣cos 𝜃 cos𝜓 − cos𝜑 sin𝜓 + sin𝜑 sin 𝜃 cos𝜓 sin𝜑 sin𝜓 + cos𝜑 sin 𝜃 cos𝜓
cos 𝜃 sin𝜓 cos𝜑 cos𝜓 + sin𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓 + cos𝜑 sin 𝜃 sin𝜓

− sin 𝜃 sin𝜑 cos 𝜃 cos𝜑 cos 𝜃

⎤⎥⎦
(39)

Reverse transformation is done using transpose of this matrix.

26

7.2. Initiation phase

7.2. Initiation phase

Before the take-off or launch in case of the competition, the copter is left still to lock on
GPS and get its approximate position. This is taken as origin in the navigation frame,
from which are calculated variables for the transformation between the two frames as
shows equations 40. Then the calculation of NED coordinates from GPS is done using
set of equations 41. LAT and LON stands for latitude and longitude, ALT is altitude.
The subscript in stands for initial value.

𝑎 = 6378137 . . . Earth semi-major axis (m)
𝑏 = 6356752.3142 . . . Earth semi-minor axis (m)

𝑒 =
√︁

1 − 𝑏2/𝑎2 . . . Earth eccentricity

𝑟𝑁 = 𝑎(1 − 𝑒2)/
√︂

(1 − 𝑒2 sin(𝜋

180𝐿𝐴𝑇𝑖𝑛)2)3 . . . Curvature radius in prime vertical

𝑟𝑀 = 𝑎/

√︂
1 − 𝑒2 sin(𝜋

180𝐿𝐴𝑇𝑖𝑛)2 . . . Meridian radius of curvature
(40)

𝑝𝑁 = (𝐿𝐴𝑇 − 𝐿𝐴𝑇𝑖𝑛)/180
𝜋

arctan(𝑟−1
𝑁)

𝑝𝐸 = (𝐿𝑂𝑁 − 𝐿𝑂𝑁𝑖𝑛)/180
𝜋

arctan((𝑟𝑁 cos(𝜋

180)−1)

𝑝𝐷 = −𝐴𝐿𝑇 +𝐴𝐿𝑇𝑖𝑛

(41)

7.3. GPS measurement frequency

Since output rate of GPS is lower that IMU’s, it is necessary to do some extra operations
in steps without GPS update. Between each GPS update the navigation system si
basically in dead reckoning mode. Thus during this phase biases are not updated and
last 6 rows of 𝐾 are zero. The same goes for the position and velocity rows in innovation
vector.

7.4. EKF

7.4.1. Process covariance update

The process covariance matrix is every cycle calculated from the original matrix 𝑄 by
formula 42.

𝑄𝑘 = 0.5(𝐹 𝑘,𝑘−1𝑃𝑘𝐹 𝑇
𝑘,𝑘−1 +𝑄); (42)

7.5. UKF

7.5.1. Sigma points

To ease the computation load a little bit, cholesky factorization chol() is used instead of
square root. This is possible because the covariance matrix is always positive definite if

27

7. Implementation

the filter is stable. So the sigma points are computed using set of equations 43 from [42].

𝑃𝑐ℎ𝑜𝑙 = chol(𝑃)
𝐴 = 𝑐𝑃𝑐ℎ𝑜𝑙

𝑌 =
[︁
𝑥 𝑥 · · · 𝑥

]︁
𝐿×𝐿

𝑋 =
[︁
𝑥 𝑌 +𝐴 𝑌 −𝐴

]︁ (43)

7.6. Trajectory
Since the UAV’s air time is quite limited it would be desirable to find optimal trajectory.
However multiple facts play role here. In higher altitude is lower air density. To show
this on real numbers, follows comparison of point of release of the quad rotor and at
the ground. In altitude of 3 km is around 44 % less than at the sea level according to
model of standard atmosphere [43] as can be seen from eq 44.

Therefore thrust of the propellers significantly drops with higher elevation, which
causes energy outtake to increase. From this point of view it would be for the best to
release the parachute above the ground and fly horizontally. On the other hand while
keeping some descend rate and moving forward, the required thrust will decrease. But
when the thrust is lowered in order to slowly sink, while keeping constant attitude, the
forward speed will drop as well, resulting in longer air time and again increased energy
outtake. On the contrary drag of the aircraft is proportional to air density, which is
another element in this equation.

Finding optimal solution for this situation would probably require knowing relevant
characteristics of the quad rotor and correct differential equations describing the sit-
uation. Then the problem could be solved by some optimization method. For now is
selected starting altitude 200 meters and straight flight path towards the goal.

h(m) T(K) p(Pa) 𝜌(kg m−3)
0 288.15 101,325 1.2250

500 284.90 95,461 0.9421
1,000 281.65 89,874 0.8870
1,500 278.40 84,556 0.8345
2,000 275.15 79,495 0.7846
2,500 271.90 74,682 0.7371
3,000 268.65 70,108 0.6919
3,500 265.40 65,764 0.6490

Table 8. Table of selected values from model of the standard atmosphere[43]

100
𝜌ℎ=0

· (𝜌ℎ=0 − 𝜌ℎ=3000) = 100
1.225 · (1.225 − 0.6919) .= 43.5 % (44)

28

8. Simulations

For completing the task at hand two different algorithms are necessary. As the previous
chapters indicate, these are navigation and control. First of all aircrafts’s attitude,
position and other attributes are required. Filtering of sensor data and estimating
correct values is role of the navigation part and the control part is in charge of moving
the quad rotor to the desired position.

Even though the autopilot can switch into an automatic mode anytime, it is nec-
essary to test and tune the individual algorithms by simulations. This should, ease
the development and at least to some extent, prevent potential collision and damage.
In this chapter are described simulation tests which were done. The simulations were
mostly done in Matlab [44] and Simulink [45].

8.1. Navigation

Both Extended and Unscented Kalman filters were tuned with data from a flight of
different aircraft because it was not possible to obtain sensor readings on sufficient rate
from autopilot logs. As reference was used system with higher grade sensors. In the
two following subsections are results of these tests. Since the autopilot is professional
commercial product and has implemented filtration algorithm as well, it is used as a
reference in the testing process. These tests were done purely in Matlab.

8.1.1. Results

Each following section shows different aspects of the results for both filters and com-
ments on the obtained values. From each chart was selected just a part to be showed
so that the individual values can be compared. One cycle of the EKF took 0.70642 ms
and UKF 1.1 ms.

Position

It is clearly visible from figure 8 that estimating of position is good for both algorithms.
This is supported by calculation of RMSE and STD for each filter. These values are
given in table 8.1.1

filter N E D
RMSE[m] EKF 3.52 3.17 2.6
RMSE[m] UKF 3.49 3.18 2.62
STD[m] EKF 2.84 2.96 3.02
STD[m] UKF 2.82 2.96 3.03

Velocity

In figure 9 is comparison of estimated velocities in NED frame.

29

8. Simulations

Figure 8. Position estimate comparison.

Attitude

Figure 10 shows estimation of roll pitch and yaw. RMSE and STD values are in ta-
ble 8.1.1.

filter Φ Θ Ψ
RMSE[°] EKF 2.16 3.34 5.95
RMSE[°] UKF 2.78 3.08 6.28
STD[°] EKF 1.98 2.61 5.15
STD[°] UKF 2.83 5.06 8.73

Biases

Biases of the accelerometer are in figure 11 and gyroscope’s in figure 12. This is an
important parameter because it reflect how well is the filter tuned.

8.2. Control

For the control simulation was used Simulink model from [46]. This model consists of
quad rotor model with attitude and altitude PD regulator. Since the autopilot is driven
in the same fashion, it is suitable for testing control algorithms for the MCU. Designed
regulators and results of the simulations are described in rest of this chapter.

30

8.2. Control

Figure 9. Comparison of estimated velocity

8.2.1. Vertical

The original PD regulator already has vertical control, but it does not bring satisfying
results, so different PID regulator is used. The fact that vertical speed value is available
was taken advantage of and it is used instead of derivative of the current value in the
regulator. The structure can be seen in figure 13.

8.2.2. Horizontal

The horizontal position is affected by pitch and roll of the quad rotor. Because the orig-
inal model has only attitude control and position control is required, it was necessary to
introduce regulator from position to attitude. Direction the UAV is facing is irrelevant
in this application so x and y coordinate errors can be simply conversed to pitch and
roll commands. Both of these rotation angles have their own P regulator with feedback
from their respective position and velocity. The whole navigation Simulink block is in
figure 14.

The block speedErrBody simply transforms position error from navigation frame to
body frame using another n2b block which uses formula 45. speedSat block only satu-
rates maximum angle command.

[︃
𝑥
𝑦

]︃
𝑏𝑜𝑑𝑦

=
[︃

cos𝜓 sin𝜓
− sin𝜓 cos𝜓

]︃ [︃
𝑥
𝑦

]︃
𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛

(45)

31

8. Simulations

Figure 10. Comparison of estimated attitude

8.2.3. Tests
Since the route is arbitrary, one of the options, which would suffice for the competition,
was used for the test. The reference and actual coordinate does not match until reaching
the goal, because the immediate reference position in every moment is chosen some
distance in front of the UAV along the planned path. The chosen path goes along the
X axis from 1500 to 10 meters under -45°. The initial point is considered as the moment
when the parachute is thrown away. The results for all axis are shown in figure 15 and
altitude profile of the trajectory is in figure 16.

32

8.2. Control

Figure 11. Biases of accelerometer

Figure 12. Biases of gyroscope

33

8. Simulations

kpz

kpez

saturation

1
s

Integrator
Limited

kiz

ki

kdz

kd

1

ref

2

val

3

dval

1

cmd

Figure 13. Vertical position regulator

ref

val

dval

cmd

zPID

1

x	ref

2

x

3

y	ref

4

y

1

pitch	cmd

2

roll	cmd5

psi

6

vx

7

vy

X_cmd

Y_cmd

X

Y

Psi

X	err	body

Y	Err	body

speedErrBody

-1

Gain

8

z

9

vz

3

z	cmd

xN

yN

angle

xb

yb

n2b

vx

vy

vxMax

vyMax

speedSat

10

z	ref

P(z)

xPID

P(z)

yPID

X	Error

Y	Error

Figure 14. Horizontal position to attitude regulator

34

8.2. Control

0 50 100 150 200

Time[s]

-1

0

1

x
[
m
]

x ref
x

0 50 100 150 200

Time[s]

0

1000

2000

3000

y
[
m
]

y ref
y

0 50 100 150 200

Time[s]

0

500

1000

1500

z
[
m
]

z ref
z

Figure 15. Graph of references and actual values for all axis

0 1000 2000 3000

y[m]

0

500

1000

1500

z
[
m
]

Figure 16. Z-Y view of the trajectory

35

9. Algorithm

Both EKF and UKF are implemented for the target platform – STM32f401. Since it
is 32-bit MCU the obvious choice is C/C++. Though C is lower-level language and
would be maybe more suitable for such application, C++ was chosen because it has
better library support for matrix calculations, specifically Eigen [47]. Template of the
project was generated by STM’s CubeMX [48] which uses HAL driver. It is a low level
hardware abstraction layer, which provides implementation of most of the necessary
functions for using the MCU and its peripherals. It should also ease portability of the
code.

9.1. MCU setup

While using embedded systems such as this one, the actual implementation precedes
configuration of the device and its peripherals. In this section is laid out the applied
setup.

9.1.1. Clock

As a source of clock is used on-board external 8 MHz crystal. Then the internal PLL
and prescalers are configured so that the system clock is 72 MHz as well as all timers
and peripheral’s clock, excluding APB1 which runs on a half of the frequency.

9.1.2. UART

Communication with the autopilot is done via serial interface, so UART2 device is
configured to handle this. It is in Rx/Tx 8n1 mode with baud rate 57 600 bit s−1 using
pins PA2 and PA3. To be able to continually transmit and receive messages in non-
blocking mode, global interrupt is enabled. Another uart device UART6 is configured
for eventual data output in transmit mode and baud rate 9600 bit s−1.

9.1.3. Timer

Since the autopilot needs to receive heartbeat messages to keep the connection alive,
timer TIM3 is configured to trigger interrupt every second. To obtain this behavior its
prescaler’s value is set to 36000 and it counts up to 1999.

9.2. Classes

There were implemented 3 main classes with key functionalities. Them being Telemetry,
KF and Control and each of them plays major part in the algorithm.

36

9.3. Main

9.2.1. Telemetry
This class handles communication with the autopilot. It keeps configuration of the
ongoing MAVlink communication and other variables necessary for incoming data. Be-
sides just reading the messages also provides methods for preparing data structures
for subsequent functions and encoding commands generated by the Control class into
MAVLink message and sending it back to the autopilot. It also implements method for
arming, changing mode and sending the heartbeat which is being called from handler
of the TIM3 interrupt.

9.2.2. KF
Base class for Kalman filter which implements methods and variables common for EKF
and UKF which subclass it. It also defines structures and methods required for trans-
forming coordinates between NED and ECEF frame. The main method here is pure
virtual function update() which differs for the two derived classes EKF and UKF.

EKF

Besides update() function implements methods for calculating jacobians of the process
and measurement equations.

UKF

This class has four member functions – update(), one for calculating sigma points and
the other two for unscented transformation of process and measurement sigma points.

9.2.3. Control
The Control class defines important structure PID which represents real discrete PID
regulator, although all components does not need to be used. Instance of this structure
is created for each axis in a way similar to the design used in simulation. In the
update step of the control part of the algorithm are then calculated new values for
every regulator.

9.3. Main
Besides the two mentioned interrupt handlers, main() function controls the whole flow
of the program. In the beginning the peripherals and interrupts are configured. Then
required variables are defined and initialized afterwards which an infinite while loop is
entered. In there, 4 main steps are taken. At first is created measurement vector from
data which where decoded in the UART interrupt. These are passed to either EKF or
UKF instance, depending on the configuration. State vector with position, attitude and
velocities calculated there is then handed over to the control part. Command calculated
by Control class instance is then converted by Telemetry and send via uart back to the
autopilot. The cycle then repeats itself as is described in figure 17.

37

9. Algorithm

Send
Heartbeat

�ain

Get
measurement

Initialization

Update KF

Update control

Send command

Start
TIM3 IT

Telemetry
KF
�ontrol

Receive data

UART� IT

Figure 17. Horizontal position to attitude regulator

38

10. Conclusion

In the introductory theoretical part of this thesis was given overview of the problematics
connected to navigation of autonomous UAVs. Further were enumerated various past
as well as recent navigation methods and latest trends in this field. As a preliminary to
actual filtering algorithms were briefly mentioned sensor errors and their compensation.

As a background and motivation for this topic in the first place was in chapter 5
introduced the ARLISS competition from which the practical part of the assignment
originates. First of all was laid out selected hardware configuration which is supposed to
be used. This includes selection of microcontroller STM32F401 as the navigation unit
and autopilot Pixhawk for stabilization of the quad rotor and sending sensor readings
to the MCU.

The main part of this thesis is concerned with filtering methods. There was given
detailed description of Kalman filter and its descendants Extended Kalman filter and
Unscented Kalman filter. Explanation of Madgwick filter was given as well though
this algorithm was not implemented beyond some basic tests because it only estimates
attitude. On the other hand EKF and UKF were tested by simulations and compared
to each other. In the end of the thesis is described implementation of the designed
algorithms for the target platform. As a complement to the code was generated PDF
and HTML page with documentation. This should ease eventual continuation on this
work.

Up to the last task was the implementation successful. However the implemented
algorithms are supposed to be verified by actual test flights. This did not happen
due to multiple problems, which appeared just in the final phase of writing of the
thesis. First was caused by Linux version of APM Planner [49]. This is a software for
configuration of the autopilot and can as well work as a ground control station. Even
thought being the latest version, the program stopped displaying parameters of the
unit and its configuration. Also flashing of new firmware was failing from the begging,
so in case something went wrong, it was necessary to use another computer. This
obstructed preparation for the testing. Next problem was actual sending commands to
the autopilot, which did not react to most of them for some reason. Third problem
turned out to be insufficient output frequency of measured values. Although the used
baud rate should be capable of handling such data stream when unnecessary messages
are disabled and it is stated multiple times by other users that it is possible to set the
output rate up to 100-200 Hz, the maximum which was ever measured is around 25Hz.

Nevertheless part of the communication with Pixhawk was successful and API for
finishing this step was prepared. It is now possible to send heartbeat, the autopilot got
armed by the algorithm so it should be ready for a take off and mechanism for reading
MAVLink messages works well too.

10.1. Results

In chapter 8 were given RMSE and STD values for attitude and position estimations
for each filter. Even though UKF is supposed to have lower errors, EKF brings better

39

10. Conclusion

results here. This might be also caused by the algorithm being better tuned. But not
only higher errors, 1 UKF cycle also took approximately 0.3936 seconds longer than
EKF, which might matter in a long run.

The estimated velocity is clearly not as accurate as attitude and position, but it is not
as important and it is more difficult to estimate because it is integrated by accelerometer
and GPS provides only speed over ground. From the biases it is visible that even in
this area shows EKF better results, though not so significantly, but it might be reason
why does it give better accuracy.

10.2. Future work
Since there appeared a problem with sensor data rate from the autopilot, the data
should be read directly from external sensors. This will require new IMU, but its
output rate will be more than sufficient and under direct control of the MCU. Another
suitable step would be replacing the universal development kit STM32F401VC6T with
a custom minimalistic board. For the quad rotor to be really complete solution from
scratch it will be necessary to get rid of the autopilot and implement stabilization
directly to the main program. This a large task but it will make the device much more
compact since everything will be on only one board and the project will not depend on
external tools such as the APMPlanner.

But regarding the nearest feature, it is important to get proper sensor readings and
overcome the problem with controlling the autopilot so that the quad rotor is ready for
the competition.

40

Appendix A.

CD content

Since main part of this thesis is computer code and data, everything was put in an
attached CD. This appendix lists its structure and contents. This is list is not complete
directory tree but gives narrowed structure and description of each directory.

• sekanina.pdf . . . This thesis
• simulations . . . Data and code used in simulations
• code . . . Source and header file for the C++ project
• docs . . . Directory with documentation to the code

– doc.pdf . . . Documentation as pdf
– HTML . . . Documentation as HTML

• copter401.ioc . . . CubeMC project with configuration of the board

41

Bibliography

[1] ARLISS A Rocket Launch for International Student Satellites. 2017. url: http:
//www.arliss.org/.

[2] DICEbot. 2017. url: http://control.fs.cvut.cz/dicebot.
[3] Remote Piloted Aerial Vehicles : An Anthology. Feb. 2003. url: http://www.

ctie.monash.edu/hargrave/rpav_home.html#Teleautomata.
[4] Paul Gerin Fahlstrom and Thomas James Gleason. Introduction to UAV systems.

2012.
[5] G. A. Steinlage. “Autonomous aerial vehicle development”. In: Proceedings of the

IEEE 1992 National Aerospace and Electronics Conference@m_NAECON 1992.
May 1992.

[6] Daniela Bleichmar et al. Science in the Spanish and Portuguese Empires, 1500-
1800. Dec. 18, 2008.

[7] Inertial Measurement Units and Inertial Navigation. url: http://www.vectornav.
com/support/library/imu-and-ins (visited on 30/03/2017).

[8] Riccardo Costanzi et al. “An Attitude Estimation Algorithm for Mobile Robots
Under Unknown Magnetic Disturbances”. In: IEEE/ASME TRANSACTIONS
ON MECHATRONICS (Aug. 2016).

[9] Farid Kendoul, Isabelle Fantoni, and Kenzo Nonami. “Optic flow-based vision
system for autonomous 3D localization and control of small aerial vehicles”. In:
Robotics and Autonomous Systems (Feb. 20, 2009).

[10] Stefan Hrabar and Gaurav S. Sukhatme. “A Comparison of Two Camera Config-
urations For Optic-Flow Based Navigation of a UAV Through Urban Canyons”.
In: (2004).

[11] Stefan Hrabar et al. “Combined optic-flow and stereo-based navigation of urban
canyons for a UAV”. In: (Aug. 2005).

[12] A stereo and rotating laser framework for UAV navigation in GPS denied envi-
ronment. IEEE, Oct. 2016.

[13] Jan Roháč. Lecture Reference frames. Principles of navigation. Attitude represen-
tation. 2017.

[14] James Diebel. “Representing Attitude: Euler Angles, Unit Quaternions, and Ro-
tation Vectors”. Stanford University, Oct. 20, 2006. url: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.110.5134&rep=rep1&type=pdf
(visited on 06/27/2016).

[15] Basic Air Data. NED frame image. url: http : / / www . basicairdata . eu /
knowledge-center/background-topics/coordinate-system/.

[16] Saurabh Godha. “Performance Evaluation of Low Cost MEMS-Based IMU In-
tegrated With GPS for Land Vehicle Navigation Application”. UCGE Report.
Schulich School of Engineering, Jan. 2006.

42

http://www.arliss.org/
http://www.arliss.org/
http://control.fs.cvut.cz/dicebot
http://www.ctie.monash.edu/hargrave/rpav_home.html#Teleautomata
http://www.ctie.monash.edu/hargrave/rpav_home.html#Teleautomata
http://www.vectornav.com/support/library/imu-and-ins
http://www.vectornav.com/support/library/imu-and-ins
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.5134&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.5134&rep=rep1&type=pdf
http://www.basicairdata.eu/knowledge-center/background-topics/coordinate-system/
http://www.basicairdata.eu/knowledge-center/background-topics/coordinate-system/

Bibliography

[17] Valérie Renaudin, Muhammad Haris Afzal, and Gérard Lachapelle. “Complete
Triaxis Magnetometer Calibration in the Magnetic Domain”. Schulich School of
Engineering, University of Calgary, Oct. 2010.

[18] Walter T. Higgins, Jr. “A Comparison of Complementary and Kalman Filtering”.
Arizona State University, Aug. 1974.

[19] Simon Haykin. Kalman Filtering and Neural Networks. John Wiley & Sons, 2001.
Chap. 1. isbn: 0-471-22154-6.

[20] Simon J. Julier and Jeffrey K. Uhlmann. “Unscented Filtering and Nonlinear
Estimation”. In: Proceedings of the IEEE (Nov. 4, 2004).

[21] Eric A. Wan and Rudolph van der Menve. “The unscented Kalman filter for
nonlinear estimation”. In: (Oct. 4, 2002).

[22] Simon Julier and Jeffrey K. Uhlmann. “A General Method for Approximating
Nonlinear Transformations of Probability Distributions”. University of Oxford,
Nov. 1, 1996.

[23] S. Kolås, B.A. Foss, and T.S. Schei. “Constrained nonlinear state estimation based
on the UKF approach”. In: Computers and Chemical Engineering (Mar. 21, 2008).

[24] Weiguang Yang Yuanxi; Gao. “An Optimal Adaptive Kalman Filter”. In: Journal
of Geodesy (July 2006).

[25] Leopoldo Jetto, Sauro Longhi, and Giuseppe Venturini. “Development and Exper-
imental Validation of an Adaptive Extended Kalman Filter for the Localization
of Mobile Robots”. In: IEEE Transactions on Robotics nad Automation (Apr.
1999).

[26] Jianhua Cheng et al. “An Adaptive Unscented Kalman Filtering Algorithm for
MEMS/GPS Integrated Navigation Systems”. In: Journal of Applied Mathematics
(Nov. 13, 2014).

[27] Sebastian O.H. Madgwick. An efficient orientation filter for inertial and iner-
tial/magnetic sensor arrays. Apr. 30, 2010. url: https://www.samba.org/
tridge/UAV/madgwick_internal_report.pdf (visited on 06/27/2016).

[28] Photography from ARLISS competition. 2017. url: http://control.fs.cvut.
cz/dicebot/wp-content/uploads/2015/05/cropped-cropped-IMG_20140910_
1240051.jpg.

[29] Raspberry Pi. May 6, 2016. url: https://www.raspberrypi.org/.
[30] BeagleBone Black. May 7, 2016. url: https://beagleboard.org/black.
[31] Arduino. May 6, 2016. url: https://www.arduino.cc/.
[32] STM32. May 6, 2016. url: http : / / www2 . st . com / content / st _ com / en /

products/microcontrollers/stm32-32-bit-arm-cortex-mcus.html.
[33] STMicroelectronics. DS9716: ARM©Cortex©-M4 32b MCU+FPU, 105 DMIPS,

256KB Flash/64KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces. Version 5.
STMicroelectronics. Aug. 2015. url: http : / / www2 . st . com / content / ccc /
resource/technical/document/datasheet/9e/50/b1/5a/5f/ae/4d/c1/
DM00086815.pdf/files/DM00086815.pdf/jcr:content/translations/en.
DM00086815.pdf (visited on 04/30/2015).

[34] Arduino Zero. May 7, 2016. url: https://www.arduino.cc/en/Main/ArduinoBoardZero.

43

https://www.samba.org/tridge/UAV/madgwick_internal_report.pdf
https://www.samba.org/tridge/UAV/madgwick_internal_report.pdf
http://control.fs.cvut.cz/dicebot/wp-content/uploads/2015/05/cropped-cropped-IMG_20140910_1240051.jpg
http://control.fs.cvut.cz/dicebot/wp-content/uploads/2015/05/cropped-cropped-IMG_20140910_1240051.jpg
http://control.fs.cvut.cz/dicebot/wp-content/uploads/2015/05/cropped-cropped-IMG_20140910_1240051.jpg
https://www.raspberrypi.org/
https://beagleboard.org/black
https://www.arduino.cc/
http://www2.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus.html
http://www2.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus.html
http://www2.st.com/content/ccc/resource/technical/document/datasheet/9e/50/b1/5a/5f/ae/4d/c1/DM00086815.pdf/files/DM00086815.pdf/jcr:content/translations/en.DM00086815.pdf
http://www2.st.com/content/ccc/resource/technical/document/datasheet/9e/50/b1/5a/5f/ae/4d/c1/DM00086815.pdf/files/DM00086815.pdf/jcr:content/translations/en.DM00086815.pdf
http://www2.st.com/content/ccc/resource/technical/document/datasheet/9e/50/b1/5a/5f/ae/4d/c1/DM00086815.pdf/files/DM00086815.pdf/jcr:content/translations/en.DM00086815.pdf
http://www2.st.com/content/ccc/resource/technical/document/datasheet/9e/50/b1/5a/5f/ae/4d/c1/DM00086815.pdf/files/DM00086815.pdf/jcr:content/translations/en.DM00086815.pdf
https://www.arduino.cc/en/Main/ArduinoBoardZero

Bibliography

[35] Pixhawk Autopilot. url: https://pixhawk.org/modules/pixhawk (visited on
05/07/2017).

[36] MAVLink Micro Air Vehicle Communication Protocol. url: http://qgroundcontrol.
org/mavlink (visited on 05/07/2017).

[37] L3GD20H. 2017. url: http://www.st.com/en/mems-and-sensors/l3gd20h.
html.

[38] LSM303D. 2017. url: http://www.st.com/en/mems-and-sensors/lsm303d.
html.

[39] MPU-6000. 2017. url: https : / / store . invensense . com / ProductDetail /
MPU6000-InvenSense-Inc/420595/.

[40] Datasheet of GPS smart antenna module, LS20030 3. 79. LOCOSYS Technology
Inc. 2006. url: http://www.locosystech.com/product.php?zln=en&id=20
(visited on 05/07/2016).

[41] Jan Roháč. Enhanced navigation solution for low-cost navigation units. 2017.
[42] Yi Cao. Learning the Unscented Kalman Filter. Dec. 12, 2010. url: https://

www.mathworks.com/matlabcentral/fileexchange/18217.
[43] Egbert Torenbeek. Appendix B - International Standard Atmosphere. In: Ad-

vanced Aircraft Design: Conceptual Design, Analysis and Optimization of Sub-
sonic Civil Airplanes. May 27, 2013.

[44] Matlab. May 7, 2017. url: https://www.mathworks.com/products/matlab.
html.

[45] Simulink. May 7, 2017. url: https://www.mathworks.com/products/simulink.
html.

[46] Abdel-Razzak Merheb. PD Control Quadrotor - Simulink. Apr. 10, 2014. url:
https : / / www . mathworks . com / matlabcentral / fileexchange / 41149 - pd -
control-quadrotor-simulink.

[47] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.
[48] Gaël Guennebaud, Benoît Jacob, et al. STM32CubeF4. http://www.st.com/en/embedded-

software/stm32cubef4.html. 2017.
[49] APM Planner 2. 2016. url: http://ardupilot.org/planner2/.

44

https://pixhawk.org/modules/pixhawk
http://qgroundcontrol.org/mavlink
http://qgroundcontrol.org/mavlink
http://www.st.com/en/mems-and-sensors/l3gd20h.html
http://www.st.com/en/mems-and-sensors/l3gd20h.html
http://www.st.com/en/mems-and-sensors/lsm303d.html
http://www.st.com/en/mems-and-sensors/lsm303d.html
https://store.invensense.com/ProductDetail/MPU6000-InvenSense-Inc/420595/
https://store.invensense.com/ProductDetail/MPU6000-InvenSense-Inc/420595/
http://www.locosystech.com/product.php?zln=en&id=20
https://www.mathworks.com/matlabcentral/fileexchange/18217
https://www.mathworks.com/matlabcentral/fileexchange/18217
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/matlabcentral/fileexchange/41149-pd-control-quadrotor-simulink
https://www.mathworks.com/matlabcentral/fileexchange/41149-pd-control-quadrotor-simulink
http://ardupilot.org/planner2/

	Introduction
	Navigation
	UAV
	History
	Structure
	Current situation

	Navigation
	Inertial navigation
	Satellite navigation
	Visual navigation

	Localization

	Sensors
	IMU
	IMU errors
	Accelerometer and gyroscope

	Magnetometer

	GPS

	Filtering
	Complementary filter
	Kalman Filter
	KF algorithm
	Process equation
	Measurement equation
	Life-cycle of the algorithm

	Extended Kalman Filter
	Life-cycle of the algorithm

	Unscented Kalman Filter
	Unscented transformation
	Life-cycle of the algorithm

	Other versions

	Madgwick filter
	The algorithm
	Orientation frames
	Gradient descend algorithm
	Magnetic distortion
	Gyro bias drift
	Algorithm configuration

	The project
	Motivation
	ARLISS competition
	Open class category

	HW set-up
	Quad rotor
	Microcontroller
	Stabilization
	Sensors
	LS20030

	Implementation
	Navigation equations
	State model
	Measurement model

	Initiation phase
	GPS measurement frequency
	EKF
	Process covariance update

	UKF
	Sigma points

	Trajectory

	Simulations
	Navigation
	Results
	Position
	Velocity
	Attitude
	Biases

	Control
	Vertical
	Horizontal
	Tests

	Algorithm
	MCU setup
	Clock
	UART
	Timer

	Classes
	Telemetry
	KF
	EKF
	UKF

	Control

	Main

	Conclusion
	Results
	Future work

	CD content
	Bibliography

