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Abstrakt / Abstract
V posledních letech lze zaznamenat

nárůst malware, kteří ke své komuni-
kaci používají HTTPS protokol. Tato
situace s sebou přináší pro bezpečnostní
analytiky řadu nových výzev, protože
přenos je šifrován a je těžko rozliši-
telný od běžné síťové komunikace. Z
tohoto důvodu je potřeba najít nové
metody pro detekci malware bez nut-
nosti dešifrovat síťovou komunikaci.
Metoda, která nepotřebuje k detekci
malware dešifrovat síťovou komunikaci,
je levnější (protože není potřeba žádný
dešifrovací přerušovač sítě), rychlejší a
zajišťuje uchování soukromí, což je pod-
stata šifrované komunikace v HTTPS.
Cílem této práce je detekovat malware
v síťové komunikaci vytvořením nových
parametrů pro strojové učení a pou-
žitím dat, které zpracovává program
Bro IDS. Jelikož není lehké získat data
pro takovýto výzkum, použili jsme
datasety, které jsou součástí projektu
Stratosphere, a některé další jsme si
vytvořili sami. Základní jednotkou pro
náš datový model jsou informace, které
lze získat z šifrované komunikace, jsou
to flow, SSL data a x509 certifikáty,
které generuje Bro program. Všechna
tato data, jsou získána bez nutnosti
jakéhokoliv dešifrování. Pro rozpoznání
malware komunikace používáme něko-
lik algoritmů pro strojové učení, jako
např.: Neuronové sítě, XGBoost a Ran-
dom Forest. Výsledky výzkumu ukazují,
že chování malware v síťové komuni-
kaci se liší od běžné komunikace a že
naší metodou jsme schopni detekovat
malware s přesností až 96.64%.

Klíčová slova: Detekce Malware,
Strojové učení, HTTPS, Síťová analýza,
Umělá inteligence

Překlad titulu: Detekce Malware v
HTTPS komunikaci

In the last years there has been an
increase in the amount of malware
using HTTPS traffic for their communi-
cations. This situation pose a challenge
for the security analysts because the
traffic is encrypted and because it
mostly looks like normal traffic. There-
fore, there is a need to discover new
features and methods to detect mal-
ware without decrypting the traffic. A
detection method that does not need to
unencrypt the traffic is cheaper (because
no traffic interceptor is needed), faster
and private, respecting the original idea
of HTTPS. The goal of this thesis is to
detect HTTPS malware connections by
extracting new features and using data
from the Bro IDS program. Since the
data for the research is hard to come
by, we used data from the Stratosphere
project and we created, by hand, our
own datasets. Our unit of analysis is
an aggregation of all the information
that is possible to obtain without de-
crypting the data. We group together
flows, SSL data and X.509 certificates
data as they are generated by Bro. To
classify the HTTPS malware traffic we
used several algorithms, such as Neural
Networks, XGBoost and Random For-
est. Our results show that the HTTPS
malware behaviour is distinct from nor-
mal HTTPS behaviour and that our
methods are able to separate them with
an accuracy of at least 96.64%.

Keywords: Malware detection, Ma-
chine Learning, HTTPS, Network Anal-
ysis, Artificial Intelligence
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Chapter 1
Introduction

The HTTPS protocol, also called HTTP Secure or Hypertext Transfer Protocol over
SSL, is the standard for secure communications on the Internet and is dominantly used
in any computer network. HTTPS is basically the encryption of Hypertext Transfer
Protocol with either Transport Layer Security (TLS) or Secure Sockets Layer (SSL).
The role of TLS/SSL in HTTPS is to encrypt the content of HTTP. Without encryption,
the communication can be read by anybody that manages to see the packets between
clients and servers.

According to a Google report from April 2017 [1] the usage of HTTPS is still growing.
The report shows that desktop users load more than half of the web pages over HTTPS
and that they spend two-thirds of their time on HTTPS pages. Windows users using
Chrome browser load almost 60% of visited websites over HTTPS and Mac users using
Chrome browser load almost 72% of visited websites over HTTPS.

With this increasing amount of encrypted network traffic in all internet, malware has
also started to use the HTTPS to secure its own communication. In 2016 a report from
Cisco [2] observed data that despite the fact that the majority of malware traffic is
still using unencrypted HTTP there was a steady 10-12% of malicious communications
using HTTPS.

The detection of HTTPS malware traffic is difficult and complicated because the
encryption interferes with the efficacy of classical detection techniques. An increasingly
common solution for dealing with HTTPS traffic in companies is to install HTTPS
interceptor proxies. These hardware servers can open and inspect the HTTPS traffic
of the employees by installing a special certificate in their computers. The HTTPS
interceptor is placed between the client and the server, where the encrypted traffic is
decrypted, scanned for malicious software, encrypted again and sent to the destination
IP. This approach allows for classic detection methods to be used for detecting unen-
crypted malware traffic. The problems of using an interceptor are that it is expensive,
computationally demanding, and that it does not respect the original idea of HTTPS
which is to have private and secure communications.

We hypothesise that the detection of malware HTTPS traffic is possible with good
accuracy without decrypting the traffic. Such a solution would be very important,
because no HTTPS traffic interceptor would be needed, the privacy and security of
communications would be respected and the detections would be faster. Also, such so-
lution could be used together with some HTTPS traffic interceptor as the first detection
layer on network traffic and if any traffic would be suspicious then the HTTPS traffic
interceptor will be used for decryption.

This thesis proposes first to discover new features of HTTPS traffic, and then to
apply methods to detect malware without decrypting the HTTPS traffic. The features
for machine learning algorithms were created and extracted from data logs generated
by the Bro IDS [3], that is able to process pcap files. Bro offers information about
connections, SSL handshakes and X.509 certificates. These three types of data from
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bro give us enough information to create the powerful features and machine learning
algorithms to detect the malicious HTTPS traffic with good accuracy.

The features are divided into three groups: connection features, SSL features and
certificate features. The connection features describe common behavior of the traf-
fic that is not associated with the encryption. The SSL features describe the SSL
handshake and information about the encrypted traffic, the certificate features describe
information about the certificate that the webser give us during the SSL handshake.

A data model for machine learning algorithms is a matrix where columns are feature
values and rows are Connection 4-tuples. The Connection 4-tuple aggregates the records
from Bro logs which share the same source IP, destination IP, destination Port, and
protocol. Therefore, each Connection 4-tuple summarizes the behavior of the malware
while connecting to the same C&C server. Such aggregation proved paramount for the
success of our method. Each Connection 4-tuple contains 28 features that are used by
the machine learning algorithms implemented in this thesis: XGBoost, SVM, Neural
Networks and RandomForest.

A core part of our research was the production and selection of correct datasets. We
used 13 datasets from the CTU-13 malware dataset [4], 59 malware datasets from the
Stratosphere Malware Capture Facility Project (done by Maria Jose Erquiaga) [5] and
I produced 13 normal datasets by hand. Each dataset was processed to extract the
Bro files from the original pcap files. Afterwards, each dataset was labeled using our
expert knowledge. The amount of malware and normal traffic in our entire dataset
is balanced. Our data model from the entire dataset contains 17,384 Connection 4-
tuples, where 8,132 of them are malware and 9,252 of them are normal. For the final
experiments 20% from this data model was taken as a test data.

Our experiments show that the features and machine learning algorithms selected
are able to detect the malicious HTTPS traffic with good accuracy. The best results
from the final experiments on the test data are on accuracy: XGBoost 96.6%, Random
Forest 94.1% and Neural Networks 79.9%.

Motivated by our good results, this thesis has a small extension of our methods,
where we tried to detect only the malware certificates in our dataset by looking at
the encrypted data. By analyzing our 3,246 normal certificates and 1,653 malware
certificates, we obtained a detection accuracy of ∼73%.

All python scripts that are used for this thesis are stored in github [6] such as: computing
statisics of dataset, labeling the dataset, generating the Connection 4-tuples, feature
extraction, feature evaluation and machine learning algorithms. As python interpreter
is used Python 2.7.13.

The remainder of this thesis is organized as follows: Chapter 2 reviews the related
work, Chapter 3 details datasets and Chapter 4 details our feature extraction and
creating data model. Chapter 5 details selected machine learning algorithms, Chapter 6
presents detection results and Chapter 7 presents our small experiment about certificate
detection. Finally, Chapter 8 reviews our results, and we conclude in Chapter 9.
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Chapter 2
Related work

To the best of our knowledge, the state of the art for using machine learning algorithms
to detect malware HTTPS traffic is limited. Many research papers use decryption
to detect malware HTTPS traffic. Then their features are mostly gathered from the
unencrypted TLS/SSL handshake messages and from the certificates.

The research work “Deciphering Malware’s use of TLS [without Decryption]” by
Blake Anderson et al. [7] tries to detect the malware HTTPS traffic and malware fam-
ilies without decryption however their features are gathered from unencrypted TLS
handshake messages and that’s what our work is different from theirs because our fea-
tures are gathered without decryption.

The work “Identifying Encrypted Malware Traffic with Contextual Flow Data” of
Blake Anderson et al. [8] uses TLS flow, DNS flow, HTTP headers and TLS unencrypted
header information to detect malware HTTPS traffic without decryption. Their final
accuracy is 99.993% with 0% false discovery rate. Their work differs from ours in the
use of DNS flows and also in the use of unencrypted TLS handshake messages. The
DNS flows could be interesting idea for future work in our research.

The work “k-NN Classification of Malware in HTTPS Traffic Using the Metric Space
Approach” of Lokoč et al. [9] detects malware in HTTPS traffic using k-NN classifi-
cation. They present the efficiency of metric indexing for approximate k-NN search
over dataset of sparse high-dimensional descriptors of network traffic that reduce false
positive rate.

Compared with other research works our method is unique and novel because is based
on Connection 4-tuples and unencrypted Bro data. Also our datasets and python scripts
for this research are published so the research community is able to reproduce the same
experiments that are mentioned here and verify the credibility of results.

3



Chapter 3
Datasets

An essential and important part of our research was the production and selection of
correct datasets, because the credibility of results is tied with the data. All dataset is
published and contains only real malware and normal traffics consisting of 3 parts:.CTU-13 dataset [4] — The CTU-13 dataset was captured in the CTU University,

Czech Republic, in 2011. The CTU-13 dataset consists of a group of 13 different
malware captures done in a real network environment. The captures include mal-
ware, normal and background traffic, but we just use Normal and Malware. The
normal part of the dataset was captured using a Windows 7 running on virtual ma-
chine. The normal traffic uses unknown web browsers and the malware probably
uses its own libraries to communicate with the Internet. Authors of this datasets
are Sebastian Garcia, Martin Grill, Honza Stiborek and Alejandro Zunino with An
Empirical Comparison of Botnet Detection Methods project..MCFP dataset [5] — There are datasets from the Stratosphere Malware Capture
Facility Project done by Maria Jose Erquiaga. She generated these captures by
selecting malware that uses HTTPS. This dataset consists of 53 malware captures
and 6 normal captures. The capture of normal data was done using Internet Explorer
on Windows 7 and Google Chrome on Linux Debian running on virtual machines
between the years 2015 and 2017..My own normal dataset — Because of the lack of normal data we had to create more
normal captures. The approach was to browse normal websites, such as facebook,
twitter, gmail and dozens more. On most of them we obtained accounts and inter-
acted for some time. We also used a list of websites from Moz.com [10] that contains
the top 500 registered domains and first 700 websites from quantcast.com [11] which
are most visited websites from people in the United States. This part of dataset
contains 13 normal captures. The capturing was managed by Mozilla browser on
Windows 7 running on virtual machine and by Iceweasel browser on Kali Linux in
April 2017.

From now on, all these different captures will be referenced completely as the
‘dataset’.

3.1 Dataset structure and Bro IDS
Each capture in the dataset contains a pcap file of the traffic containing captured
packets, Bro logs generated from the pcap file by the Bro IDS and readme file describing
information about IP addresses, time of capturing, type of malware or visited websites
and timeline of malware behavior.

The Bro IDS [3] is an open-source network traffic analyzer. It is mainly a security
monitor system but it supports a wide range of traffic analysis tasks such as the log
files that record a network activity from the pcap file. These logs describe the captured
traffic and contain essential information for our feature extraction. Bro generates many
log files, among the most common are:

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Interconnection of data in Bro logs

. conn.log — TCP/UDP/ICMP connections.dpd.log — A summary of protocols encountered on non-standard ports..dns.log — DNS queries along with their responses. ftp.log — A log of FTP session-level activity..files.log — Summaries of files transferred over the network. This information is
aggregated from different protocols, including HTTP, FTP, and SMTP..http.log — A summary of all HTTP requests with their replies.. smtp.log — A summary of SMTP activity.. ssl.log — A record of SSL sessions, including certificates being used..x509.log — X.509 certificate info

Our method only uses three files: conn.log, ssl.log and x509.log. They provide enough
information about HTTPS traffic. In summary, for each file we obtain the following
information:

1. Connection record — one line in conn.log file.Each line aggregates a group of packets and describes a connection between two
endpoints. The connection records contain information about IP addresses, ports,
protocols, states of connections, numbers of packets, labels and etc.

2. SSL record — one line in ssl.log file.They describe SSL/TLS handshakes and encryption establishment processes.
There are versions of SSL/TLS, ciphers used, server names, certificate path,
subjects, issuers and much more.

3. Certificate record — one line in x509.log.Each line in the x509.log is a certificate record describing certificate information
such as certificate serial numbers, common names, time validities, subjects, signa-
ture algorithms, key lengths in bits, etc.

These terms are important because will be used for in next definition.
Must be noted that certificate record and certificate are not same. Each certificate

has own certificate serial number that is unique. In case that we have 2 different HTTPS
connection to the same server then we have two certificate records but both of them
will contain same certificate because the certificate serial number will be same. Simply,
more certificate records can describe one certificate.

3.2 Interconnection of data in Bro logs
A great advantage of Bro logs is the interconnection between them through unique keys.
Every line in any log has unique key linking other lines in the rest of logs. For example,
if we have some connection record from the conn.log containing information about SSL
then there is a unique key of this connection record which some SSL record in the ssl.log
has as well. Also with high probability this SSL record should have some certificate.
The SSL records has certificate path pointing to certificates records in x509.log. This
example is shown in Figure 3.1.

5



3. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Certificate and certificate path

The certificate is represented by the certificate record from the x509.log in Bro. The
role of the certificate in HTTPS is to ensure credibility of the web server with certificate
authorities. There are two types of certificate authorities a root CA and an intermediate
CA. In order for a certificate to be trusted that the certificate must have been issued by
a CA that is included in your browser (or any device) as trusted CA. If the certificate
was not issued by a trusted CA, then the web browser will check if the certificate of the
issuing CA was issued by a trusted CA, and so on until a trusted CA is found. These
certificates from the root certificate to the end-user certificate are called a certificate
path or a certificate chain. The certificate path in Bro is stored in the SSL record in
ssl.log where is a list of unique keys pointing to the x509.log where all certificates are
describe.

Figure 3.2 shows an example of the google certificate path by the Google Chrome and
the Bro logs. In Google Chrome example, at the bottom of the path is a *.google.cz
certificate. This certificate is end-user certificate and is signed by Google Internet
Authority G2. Next is the Google Internet Authority G2 certificate, that is signed by
GeoTrust Global CA, is called Subordinate Certificate Authority that are used in a large
organization, such as Google, for signing the many certificates they need to operate.
The GeoTrust Global CA certificate is signed only by itself and should be stored in
the browser as trusted CA. In Bro the SSL record has the same certificate path in
the ssl.log. The left unique key is the end-user certificate for *.google.cz that shows
to second line in x509.log. The middle unique key is the Google Internet Authority
G2 certificate that shows to third line in x509.log and the right unique key is the root
GeoTrust Global CA certificate shows to fourth line in x509.log.

3.4 Labels
In our dataset we used Normal and Malware labels. Our approach of labeling is that we
know the source IP of infected and normal computers. So, according to the source IPs
in the connection records we put Normal or Malware labels to each connection record in
conn.log and if the source IP is not known we put Background label. However records
with Background labels are not used in our method. The labeling was done by our
python scripts.

3.5 Final dataset
In total our entire dataset contains 85 captures — 19 normal and 66 malware captures.
Tables 3.1 and 3.2 show detailed information about entire dataset. There are numbers
about the connection records, SSL records, certificate records and the certificates.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Final dataset

Type of Data CTU-13 MCFP Own normal
Normal connection records 358,768 9,394 402,239
Malware connection records 10,843,391 50,133,670 0
Normal SSL records 20,677 404 68,848
Malware SSL records 3,621 327,354 0
Normal certificate records 2,351 2,618 41,542
Malware certificate records 7,581 162,290 0
Normal certificates 34 35 3,177
Malware certificates 6 1,647 0

Table 3.1. Numbers of connection records, SSL records, certificate records and certificates
in part of datasets.

Type of Data Entire dataset
Normal connection records 770,401
Malware connection records 60,977,061
Normal SSL records 89,929
Malware SSL records 330,975
Normal certificate records 46,511
Malware certificate records 169,871
Normal certificates 3,246
Malware certificates 1,653

Table 3.2. Numbers of connection records, SSL records, certificate records and certificates
in entire datasets.

Figure 3.1. Example of the interconnection between logs. We can see that the third
connection record in conn.log with unique key [Cjkwxu3NuUE41WTAB] has a SSL record
in ssl.log with same key. Next the SSL record has 2 certificate keys. Both of them are
in x509.log where the certificates are described. We can also see that the third and fifth
certificate records in x509.log describing same certificate because the serial numbers in the

fourth column are same.

7



3. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.2. The example of the google certificate path in the SSL record in the Bro and
in Google Chrome. Let’s note that the third SSL record has no certificate path so no

certificate.
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Chapter 4
Features

The purpose of this chapter is to describe how we designed and created the features and
the data model for machine learning algorithms. Our approach is based on Connection
4-tuples. A Connection 4-tuple is the basic unit of analysis of our algorithms and con-
tains 28 features. To create Connection 4-tuples we use data from the conn.log, ssl.log
and x509.log files. These three types of the Bro logs provide us enough information
about the HTTPS traffic.

4.1 SSL aggregation
An SSL aggregation is a piece of data that is the concatenation of a triplet of records:
one connection record, one SSL record and one certificate record. Where the connection
record and the SSL record have the same unique key, and the unique key of the certificate
record is the first unique key in the certificate path in the SSL record. Some SSL records
have no certificate path, so no certificate, then the SSL aggregation contains only a pair
of one connection record and one SSL record. Whether the SSL record has certificate
path depends on many factors, for example, if the SSL handshake is successful, etc.

Figure 4.1 shows an example of four SSL aggregations and one connection record.
SSL aggregation 1, 3 and 4 are very similar. Each of them has connection record and
SSL record that have same unique key and also each of them has certificate path in the
SSL record where first certificate unique key from this path gives us certificate record
from x509.log. The SSL aggregation number 2 is also SSL aggregation according to
definition but does not have the certificate path in the SSL record it means that this
SSL aggregation 2 has no certificate.

4.2 Connection 4-tuples
The Connection 4-tuples are a group of SSL aggregations and some individual connec-
tion records. All of them share the same 4-tuple of source IP, destination IP, destination
Port, and protocol. This 4-tuple is unique key for each Connection 4-tuple. Each Con-
nection 4-tuple summarizes the behavior of the malware connecting to the C&C server
or the behavior of the normal user connecting in most cases to normal websites. The
label of the Connection 4-tuple is created according to its containing SSL aggregations
and connection records that have their own label. In the vast majority of cases the
Connection 4-tuples have all SSL aggregations and connection 4-tuples with same label
but sometimes not. Then the final label is the majority one.

4.3 Generating Connection 4-tuples and the data
model

An algorithm for generating Connection 4-tuples passes through each capture in en-
tire dataset and finally creates the data model for machine learning algorithms. As
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Figure 4.1. The example of creating SSL aggregations from our 3 imporatnt log files. Let’s
note that just the first unique key from the certificate path is used in the SSL aggregations.
Next, the SSL aggregations 2 has no certificate because there is no certificate path in the

SSL record.

mentioned each capture in dataset contains conn.log, ssl.log and x509.log, where all
important information are prepared. The algorithm is described below.

Let’s have the set N of the Connection 4-tuples, then

For each capture in dataset:.For each SSL record in ssl.log:
• Take an unique key from the SSL record and find the connection record in
conn.log with this unique key. This found connection record contains a 4-tuple
(SrcIP, DstIP, DstPort, protocol). If this connection record does not have Mal-
ware or Normal label, read next SSL record.

• If the certificate path in the SSL record is not empty take the first certificate
unique key from the certificate path and find the certificate record in x509.log
with this certificate unique key.

• These 3 or 2 found records are new SSL aggregation containing the 4-tuple. Find
some Connection 4-tuple in the set N containing the 4-tuple from the SSL aggre-
gation and add this SSL aggregation to this found Connection 4-tuple. If such
Connection 4-tuple does not exist, create new Connection 4-tuple with key as
4-tuple from the SSL aggregation, add the SSL aggregation to the newly created
connection 4-tuple and add this newly created connection 4-tuple to the set N.

10
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.For each connection record in conn.log:
• Take the 4-tuple from the connection record. If there is any Connection 4-tuple
in the set N that has a key same as the 4-tuple from the connection record
and the Connection 4-tuple does not contain this connection record in any SSL
aggregation, add this connection record to the Connection 4-tuple.

Compute features for each Connection 4-tuple in the set N and create the data model
from the set N, where the rows are the Connection 4-tuples and the columns are
feature values.

Our algorithm for generating Connection 4-tuples begins by reading SSL records
line by line from the ssl.log. For each SSL record we find the connection record and
certificate record if it exists. The Connection record includes, among others, 4-tuple
(SrcIP, DstIP, DstPort, protocol) and label as well. The triplet or pair of records is
thus found SSL aggregation. The reason why we read the ssl.log first is that connection
records in conn.log contain all kind of traffic such as HTTP, HTTPS, DNS and etc.
However our connection 4-tuples contain only HTTPS traffic and the ssl.log gives us
information about the SSL properties of the connection record in the conn.log. If the
SSL aggregation has normal or malware label then we add this SSL aggregation to an
existing Connection 4-tuple according to the 4-tuple which is the key of each Connection
4-tuple. If there is no existing Connection 4-tuple with this 4-tuple, we create a new
Connection 4-tuple, where a key is the 4-tuple from the SSL aggregation. Then, we
also add the SSL aggregation to the newly created Connection 4-tuple and this newly
created Connection 4-tuple is added to the list of all Connection 4-tuples.

When the complete ssl.log is read then we start to read connection records in the
conn.log line by line and if any Connection 4-tuple from the list of Connection 4-tuples
has a same key (4-tuple) as the connection record and the Connection 4-tuple does
not contain this connection record, we add the connection record to this Connection 4-
tuple. The answer to this step is the fact that although these special connection records
have no SSL records in ssl.log they still belong to some Connection 4-tuple because for
example they don’t reach the application layer and the Bro is not able to know if it is
HTTP, HTTPS or DNS, only the transport layer is known such as TCP or UDP. As
soon as these steps are applied on all captures in dataset the features are computed for
each Connection 4-tuple.

Finally the data model is created. The data model is the basis of our experiments and
what our detection algorithms classify. The data model contains 17,384 lines, where
each line represents one Connection 4-tuple and has 28 columns representing feature
values. The labels of Connection 4-tuples are stored in a second file containing 0 as
Normal and 1 as Malware in the same order as the Connection 4-tuples. The data model
contains 9,252 Normal Connection 4-tuples and 8,132 Malware Connection 4-tuples.

The last and very important step is to normalize the data model. For each feature
column the biggest value is found and each value in this column is divided by the biggest
value (except the -1 value). So in the end, the features values in data model are in the
〈0,1 〉 interval or they have a value of -1.

4.4 Example of a Connection 4-tuple
To better understand the process of generating Connection 4-tuples, Figure 4.2 shows
a more clear example of how this is done. There is a set of Connection 4-tuples where
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Figure 4.2. The example of Connection 4-tuples containing SSL aggregations and con-
nection record. When all Connection 4-tuples are created the data model is created as

well.

each of them has unique key as 4-tuple and contains at least one SSL aggregation and
any number of connection records. From our previous example from Figure 4.1 there
are four SSL aggregations and one connection record. Let’s apply our algorithm to
examples in Figure 4.1 and Figure 4.2.

12
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The ssl.log in Figure 4.1 is read line by line. The SSL record number 1 with its unique
key [C2OyAD2iBBP3ED5rnb] has connection record in conn.log with same unique key.
This connection record has this [10.0.2.15, 54.201.174.90, 443, tcp] 4-tuple and Normal
label. Next, the SSL record has also the certificate path. The first certificate unique
key [F2HZJX1f4EeRGbdrk8] from the certificate path is also in the certificate record
number 1 in the x509.log. These three records are the SSL aggregation number 1.
We check if set of Connection 4-tuples contain some Connection 4-tuple that has our
4-tuple. Since our set is empty at this moment, we create new Connection 4-tuple
with our 4-tuple and with our SSL aggregation number 1 and we add this Connection
4-tuple to the set. In Figure 4.2 there is this created Connection 4-tuple with the SSL
aggregation number 1. According to our algorithm let’s read next SSL record from the
ssl.log. The second SSL record number 2 has also the connection record with the same
4-tuple as the previous SSL aggregation number 1 and Normal label as well. However
this SSL record has no certificate path so this new SSL aggregation number 2 contains
only 2 records. This SSL aggregation number 2 belongs to the previous Connection 4-
tuple because it has same 4-tuple. SSL records number 3 and 4 create SSL aggregation
number 3 and 4 with 4-tuple [10.0.2.109, 193.194.122.30, 443, tcp]. They are classic
SSL aggregations that have certificate.

All lines from the ssl.log is read and our set contains two Connection 4-tuples where
both of them have two SSL aggregations (Figure 4.2) Next step in our algorithm is to
find connection records that belongs to some existing Connection 4-tuple. Connection
records are connection records in conn.log that are not ssl (they don’t have SSL record
in the ssl.log with the same key). In Figure 4.1 the connection record number 1 in
conn.log has same 4-tuple as the second Connection 4-tuple in our set and this second
Connection 4-tuple doesn’t contain this connection record then this connection record
is added to this Connection 4-tuple. The rest of the connection records in conn.log are
part of the SSL aggregations so conn.log is read. The last step is to compute features
for each connection 4-tuple and create data model where each line is one Connection
4-tuple with feature values and the label. It is shown in Figure 4.2.

We can see that the second Connection 4-tuple in the set has two SSL aggregations.
An attentive reader may notice that two certificate records from these two SSL aggre-
gations have same certificate serial number (it is last column in the x509.log in Figure
4.1). This fact means that these two certificate records are the same certificate.

Let’s note that these logs in examples don’t have all columns. This is just example
for understanding and viewing. The real logs have many columns.

4.5 Feature extraction
The generation of features is a very important part of this thesis. The features are new,
precise and designed to detect malware traffic. Most of them were created based on our
expert knowledge on the area and the thorough analysis of our malware data.

Our data model holds each of the 28 features, as they were computed for each Con-
nection 4-tuple. As recalled, each Connection 4-tuple, in time, is an aggregation of other
information. Therefore, each feature of the Connection 4-tuple is a complex extraction
and summarization of information.

All of our 28 features are computed from each Connection 4-tuple. Even though our
features are all together, for simplicity and description they are divided in the following
three groups:.Connection features

13
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.SSL features.Certificates features

The connection features are features from the connection records and describe com-
mon behavior of the traffic that is not associated with the certificates and the en-
cryption. The SSL features are features from the SSL records and describe the SSL
handshake and information about the encrypted traffic and the certificate features are
features from the certificate records and describe information about the certificates that
a webser give us during the SSL handshakes. Each feature is some float value and if
this feature can not be computed for a lack of information the value is -1.

4.5.1 Connection features
All these connection record features are based on the connection records from the
conn.log.

1. Number of SSL aggregations and connection records — Each Connection 4-tuple
contains some number of SSL aggregations and connection records. This first feature
is simply the sum of the two.

2. Mean of duration — Each connection record in the Connection 4-tuple contains a
duration in seconds. With each incoming connection record the Connection 4-tuple
store this duration value in a list and in the end the mean is computed from this list
of the duration. Let set X containing duration values, then the mean is:

E(X) = x1 + x2 + x3 + ...+ xn

n

3. Standart deviation of duration — Same list of duration values from connection
records as previous one but with standart deaviation. The σ is:

E(X) = x1 + x2 + x3 + ...+ xn

n

E(X2) = x2
1 + x2

2 + x2
3 + ...+ x2

n

n

σ =
√
E(X2)− (E(X))2

4. Standart deviation range of duration — This feature describe how many percent
from all duration values is out of range. The range is has two limits. The upper
limit is mean+standartdeviation and the lower limit is mean−standartdeaviation.
An exmaple is shown in Figure 4.3. There are 10 blue point values of the duration
values. The mean of this values is 42,7 and the standart deviation is 27.5. The
black line represents the mean a two red lines are upper and lower limit. All duratin
values that are over the upper limit or under the lower limits are out of range. It is 3
points and all duratin values are 10 points so 3points/10points = 0.3 is the standart
deviation range of duration.

5. Payload bytes from originator — The number of payload bytes the originator sent
for all connection records from the conn.log. With each incoming connection record
we just add this value.

6. Payload bytes from responder — The number of payload bytes the responder sent
for all connection records from the conn.log. With each incoming connection record
we just add this value.

14
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Figure 4.3.

7. Ratio of responder bytes and all bytes — All bytes are bytes from originator and
bytes from responder. Then this feature is:

R = r

r + o
,

where r is number of bytes from responder and o is number of bytes from originator.
8. Ratio of established states of connection — Each connection record contains state

of the connection. There are 13 types of these states. Our approach is that we
divided these states to establihed connection states and non established states. These
2 groups of states describe if there is any TCP handshake or if it is just attempt to
TCP handshake. The established states are [SF, S1, S2, S3, RSTO, RSTR] that
contain a kind of successful TCP hanshake and non establihed states are [OTH, SO,
REJ, SH, SHR, RSTOS0, RSTRH] that contains a kind of unsuccessful handshke.
What each state excatly means is written in Bro documentation [3]. Our ratio R is:

R = e

e+ n
,

where e is number of established states and n is number of non established states.
9. Inbound packets number — A value that is also included in connection record. With

each incoming connection record to the Connection 4-tuple we just add this value.
10. Outbound packets number — A value that is also included in connection record.

With each incoming connection record to the Connection 4-tuple we just add this
value.

11. Periodicity mean — Each connection record has a time of capture. So we can
measure group of them how they are periodic. An exmaple 4.4 shows five connection
records. The time is fictitious, but for our exmaple is enough. The first step is to
compute time diferences between the connection records in order. It is a first time
diference. Next step is to compute second time diferences from the first time diference
in absolute value. If the value is zero, it means that relevant connection records are
periodic. In the end the values from the second time diference are stored in a list.
From this list the mean is computed:
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Figure 4.4.

E(X) = x1 + x2 + x3 + ...+ xn

n

12. Standart deviation of periodicity — The feature uses same list of the second time
diferences as the feature 11, but with standart deviation.

E(X) = x1 + x2 + x3 + ...+ xn

n

E(X2) = x2
1 + x2

2 + x2
3 + ...+ x2

n

n

σ =
√
E(X2)− (E(X))2

4.5.2 SSL features
All these SSL features are based on the SSL records in the ssl.log.

13. Ratio of connection records and SSL aggregations — This feature describe ratio
between connection records that are not SSL and connection records that are SSL.
The ratio R is:

R = fn

fs
,

where fn is number of connection records without SSL and fs is number of connection
records wit SSL.

14. Ratio of TLS and SSL verison — All SSL records have version of TLS or SSL
protocols that are used for encryption. There are SSL 1.0, SSL 2.0, SSL 3.0, TLS
1.0, TLS 1.1, TLS 1.2 and TLS 1.3, where SSL protocol is older than TLS and almost
all Normal traffic use TLS. This feature describe how many SSL records have TLS
protocols. The ratio R is:

R = TLS

TLS + SSL
,
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where TLS is number of SSL records that have TLS protocol and SSL is number of
SSL records that have SSL protocol.

15. Ratio of SNI — The SNI is Server Name Indication that is included in the SSL
record. This feature describes how many SSL records have SNI because some SSL
records have empty SNI. Our results show that Malware SSL records have more often
empty SNI than Normal SSL records. The ration R is:

R = Fs

Fa
,

where Fs is number of SSL record having SNI and Fa is number of all SSL records.
16. SNI as IP — Sometimes the SSL records have SNI as IP address. In this case the

SNI IP should be same as destination IP address. This feature is -1 if any SSL record
in its Connection 4-tuple has SNI as IP but the SNI is not same as DstIP. It is 0 if
any SSL record has SNI as IP and the SNI is same as DstIP and it is 1 if there is no
SSL record that is IP address.

17. Mean of certificate paths — As mentioned most of SSL records have certificate
path. The certificate path is defined in chapter 3. This feature stores number of
certificates in certificate path for each SSL record in a list. The mean is computed
from the list.

E(X) = x1 + x2 + x3 + ...+ xn

n
18. Ratio of self signed certificate — Bro is able to recognize if the end-user certificate

is self signed. This information is in the SSL record. This feature is ratio of the self
signed certificates and all end-user certificate in Connection 4-tuple. The ratio R is:

R = s

c
,

where s is number of self signed certificates and c is number of all certificates.

4.5.3 Certificates features
All these certificate features are based on the certificate records in the x509.log and
some of them on the SSL records in the ssl.log as well.

19. Public key mean — Each certificate record describing a certificate contains public
key of the certificate. With each incoming certificate record to the Connection 4-tuple
the public key is added to a list. From the list the mean is computed.

E(X) = x1 + x2 + x3 + ...+ xn

n

20. Mean of certificate validatity periods — Each certificate has a validity period.
Exmaple of validity period is in Figure 4.5 where the certificate period is 10 years
from 01.01.2010 to 01.01.2020. These bound dates are stored in certificate record in
unix time. From each certificate is this validity period stored in a list in seconds.
Then the mean is computed from this list:

E(X) = x1 + x2 + x3 + ...+ xn

n

21. Standard deviation certificate validatity periods — Same list of certificate validity
periods in seconds as the previous feature but with standard deviation.

E(X) = x1 + x2 + x3 + ...+ xn

n
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E(X2) = x2

1 + x2
2 + x2

3 + ...+ x2
n

n

σ =
√
E(X2)− (E(X))2

22. Validity of the certificate period during the capturing — With capture time and the
validity period of the certificate we can find out if the certicate during the capturing
is valid. If the capture time is inside the certificate valid period then it is ok. This
feature is number of certificates that were out of validity period during the capturing
the traffic. In Figure 4.5 the certificate is valid from 01.01. 2010 to 01.01. 2020. If
you browse in 2025 or in 2005 in any webpage with this certificate, the certifiate woud
not be valid. Our results show that Malware use more often notvalid certificates then
Normal.

Figure 4.5.

23. Mean age of Certificates — This feature is ratio of two time lenghs. First lengh is
certificate validity period and second length is a period from beginning of certificate
validity period to capture time. So we know how the certificate is old. For each
certificate is computed ratio of these periods and the result is stored in a list. Then
the mean in computed from the list. In figure 4.6 is an exmaple of certificate validity
period d and period of duration r. The certificate validity period from 01.01.2010
to 01.01.2020 is 315,532,800 seconds in unix time and the period from 01.01.2010
to 01.01.2015 is 157,766,400 seconds in unix time. Then period r is divided by the
certificate validity period d.

E(X) =
r1
d1

+ r2
d2

+ ...+ rn

dn

n

Figure 4.6.

24. Amount of certificates — The Connection 4-tuple ususally contain one certificate,
but sometime more. So this feature is just number of certificates for one Connection
4-tuple. (Connection 4-tuples ususally contain a lot of certificate records in SSL
aggregation but mostly it is still one certificate)

25. Mean of number of domains in certificate SAN DNS — The SAN is Subject
Alternative Names describing which domains belong to this certificate. With each
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new incoming certificate (not certificate record) the number of dns in SAN is
stored in a list. Then the mean is computed from the list. An example of part of
google certificate SAN dns: [∗.google.com, ∗.android.com, ∗.appengine.google.com,
∗.cloud.google.com, ∗.google-analytics.com, ∗.google.ca, ∗.google.cl, ∗.google.co.in,
∗.google.co.jp, ∗.google.co.uk, ∗.google.de]

E(X) = x1 + x2 + x3 + ...+ xn

n

26. Ratio of certificate records and SSL records — The feature describe how many
SSL record have certificate path, because certificate record can be added to SSL
aggregation just in case that is contained as the first certificate in the certicate path.
The ratio R is:

R = c

s
,

where c is number of certificate records and s is number of SSL record for one
Connection 4-tuple.

27. SNI in SAN DNS — The SNI is Server Name Indication that is included in the SSL
record. SAN DNS are domains in the certicate record that belong to the certificate.
Usually the SNI is part of the SAN DNS. If any certificate record doesn’t contain
the SNI in the SSL record in one SSL aggregation then the value of feature is 0 and
if all certificate records contain SNI in SAN DNS in each pair of SSL aggregation in
the Connection 4-tuple then the value of feature is 1.

28. CN in SAN DNS — The CN is Common Name that is a part of the certificate record.
CN should be part of the SAN DNS. This feature value is 0 if any certificate doesn’t
contain the CN in the SAN DNS and the feature value is 1 if all certificates contain
the CN in the SAN.DNS.
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Chapter 5
Method

5.1 Machine Learning Algorithms
The key of our research is to choose the right Machine Learning Algorithms. For our
experiments we choose SVM, Neural Netowrk, Random forest and XGBoost. For using
these machine learning algorithms we used scikit library [12] and XGBoost library [13]
providing complex description of algorithms and many examples of usage.

The creating plots for visualization our data was managed by T-SNE. This method
is for dimensionality reduction and is particularly well suited for the visualization of
high-dimensional datasets. T-SNE library was provided by scikit library as well..SVM.Neural Network.Random Forest.XGBoost

5.1.1 SVM
SVM (Support Vector Machines) is a supervised learning model used for classification
and regression analysis. SVM can efficiently perform a non-linear classification using
the kernel trick, mapping inputs into high-dimensional feature spaces. We use Radial
Basis Function (RBF) kernel. The RBF kernel provides parameter C and parameter
gamma. The C parameter tells how much you want to avoid misclassifying each training
example and the gamma parameter defines how far the influence of a single training
example reaches. For our experiments the parameter C is 110 and gamma is 0.1. Figure
5.1. shows classification of data with different values of parameter C and parameter
gamma. This example is from scikit library examples [14].

5.1.2 Neural Network
Our model of Neural Network uses MLP Classifier (Multi-layer Perceptron classifier)
that optimizes the log-loss function using stochastic gradient descent. We choose the
stochastic gradient descent with Adam (Adaptive Moment Estimation) that is method
for minimizing an objective function. Parameter of the method is Alpha. Alpha is
a parameter for regularization penalty, that combats overfitting by constraining the
size of the weights. Increasing alpha may fix high overfitting by encouraging smaller
weights. Similarly, decreasing alpha may fix an underfitting by encouraging larger
weights, potentially resulting in a more complicated decision boundary. In our method
the parameter alpha is 1e-05. Figure 5.2 shows classification of data with with different
values of parameter alpha.

5.1.3 Random Forest
We used Random Forest Classifier model that is an estimator that fits a number of
decision tree classifiers on various sub-samples of the dataset and use averaging to
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Figure 5.1. Example of SVM with RBF kernel from scikit library examples [14]. Several
images with different values of C and gamma.

Figure 5.2. Example of Neural Network with Adam solver from scikit library examples [15].

improve the predictive accuracy and control over-fitting. In our method the number of
trees in the forest is 1000.

5.1.4 XGBoost
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XGBoost (eXtreme Gradient Boosting) contains a lot of algorithms such as gradient
boosting, multiple additive regression trees, stochastic gradient boosting or gradient
boosting machines. We used tree booster with logistic regression that is for binary
classification. XGBoost has a lot of parameters but the most important for us are:.max depth — describe maximum depth of a tree.gamma — minimum loss reduction required to make a further partition on a leaf

node of the tree..min child weigh — minimum sum of instance weight (hessian) needed in a child.

Our experiments use 2 types of settings for XGBoost, called XGBoost 1 and XGBoost
2..XGBoost 1

• n estimators = 1000
• max depth = 10
• gamma = 0
• min child weigh = 1.XGBoost 2
• n estimators = 1000
• max depth = 3
• gamma = 0.1
• min child weigh = 5
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Chapter 6
Experiments

This chapter shows our results. There are the content of data model, data analysis by
plotting, training experiments and testing experiments.

6.1 Data model
Our data model is a matrix of values where each row is identified with the Connection
4-tuple ID and the columns are the feature values. Each feature ranges from 0 to 1,
or has the -1 value. The data model has 17,384 rows and 28 columns. From the data
model, 20% is taken as the testing data and the remaining 80% as the training data.
The training data are used for a cross-validation and for the final training and the
testing data are used only for the final test evaluation. Table 6.1 shows the distribution
of labels in the data model.

Connection 4-tuples Train data (80%) Test data (20%) All data (100%)
Normal 7,402 1,850 9,252
Malware 6,505 1,627 8,132
Normal + Malware 13,907 3,477 17,384

Table 6.1. Normal and Malware Connection 4-tuples in the data model splitted to train
and test data.

6.2 Data plotting
For the analysis of our data, we plot it using the T-SNE (T-Distributed Stochastic
Neighbor Embedding) method. This method is for dimensionality reduction and is
particularly well suited for the visualization of high-dimensional datasets. T-SNE takes
our 28 dimensional space and transforms it into two dimensional space. We also try to
use this two dimensional space instead of the 28 dimensional space for machine learning
algorithms, but the results were not interesting.

Figure 6.1 shows the training and testing data together where Malware Connection
4-tuples are ones and Normal Connection 4-tuples are zeros. Figure 6.2 contains only
the testing data.

6.3 Training experiments
In this section all the experiments only use the training data. The testing data is left
to the final experiments. The training experiments consist of a cross-validation and a
learning curves analysis. The training experiments give us possibility to find the best
parameters for machine learning algorithms and show how our data looks like.
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In the training and testing experiments the accuracy of detection is used. The defi-

nition of the accuracy of detection is:

ACC = TP + TN

TP + TN + FP + FN

In this equation TP is True Positive , FP is False Positive, TN is True Negative and
FN is False Negative. The TP is detected as malware and it is malware, the FP is
detected as malware but it is normal, TN is detected as normal and it is normal and
FN is detected as normal but it is malware.

6.3.1 Cross-validation
We use a 10-fold cross-validation that randomly splits the training data into 10 subsets
and iteratively trains and tests them. In each iteration the machine learning algorithm
is trained with 9 training subsets and tested to the one testing subset. At the end there
are 10 results of the detection accuracies from which the average is created. Table 6.2
shows results from 10-fold cross-validation where XGBoost 1 and XGBoost 2 achieve
the best results.

Figure 6.3. Example of 10-fold cross-validation. The rectangle is testing sample and the
circle is training sample. In each iteration the accuracy of detection Xn is computed and

then the average XA of all 10 iteration is computed.

Algorithm Cross-validation
SVM 0.7842
NN 0.8072
Random Forest 0.9391
XGBoost 1 0.9635
XGBoost 2 0.9579

Table 6.2. The accuracies of detection by the 10-fold cross-validations.

6.3.2 Lerning curve
A learning curve is a graphical representation of the validation and training score with
an increasing training data samples. It shows us how much we benefit from adding more
training data. The learning curve consists of the validation curve and the training curve
where the vertical axis is the score or accuracy of detection and the horizontal axis is
amount of the train data.
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.Training curve — The current amount of the training data is taken, the machine
learning algorithm is learnt to this amount of data and then is tested to the same
amount of data as it is learnt. The accuracy from the testing is the training score on
vertical axis..Validation curve — The current amount of the training data is taken and the 10-fold
cross-validation is applied for the current amount of the training data. It gives us 10
results of detection accuracies from which the average is computed. This average is
the validation score on vertical axis.

Learning curves give us information about an overfitting and underfitting. The over-
fitting means that learning curves have high variance. Usually the training curve has
small error and the validation curve has big error. So between the training curve and
validation curve is big gap. The underfitting has high bias. It means that training
curve has big error and the training data is not fit well. Our Figure 6.4 shows exmaples
of underfitting and overfitting.

Figure 6.4. An example of underfitting (left) and overfitting (right). The training curve
in underfitting example has big error. In the overfitting example the training curve has

very small error and the validation curve has big error.

We create the learning curves for each machine learning algorithm. The training
curve and validation curve have 10 points showing the values of detection accuracy
(score) for the amount of training data.

In Figure 6.5 there is the learning curve for SVM. It looks that the SVM underfits
because the training curve has an high error but there is a steady growth of the training
and validation curve.

In Figure 6.6 there is the learning curve for Neural Network that is similar to the
previous learning curve with SVM. The training curve has also an high error so it is
underfitting as well but there is not a steady growth of the training and validation
curve. Around 5000 training samples the training and validation curves drop. This
phenomenon is repeated with 10,000 train samples just with the validation curve. We
would need more data to improve results.

In Figure 6.7 there is the learning curve for Random Forest. We can see that the
training curve has 0However the validation curve has very high detection accuracy
(score). So the gap between the training and validation curve is small.

In Figure 6.8 and Figure 6.9 there are the learning curve for XGBoost 1 and XGBoost
2. The first figure 6.8 with XGBoost 1 has the best training score 96.3% from all
algorithms. But his learning curve overfits, because the training curve has zero error.
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From this reason we try to find other parameters for XGBoost algorithm, that would
have better learning curve without the overfitting. The figure 6.9 shows XGBoost 2
with the learning curve that doesn’t have overfitting. The training curve slowly falls
and approaches the validation curve. Despite the fact that this validation curve from
XGBoost 2 is not so good as the validation curve from XGBoost 1, it is still very good
detection accuracy with 95.8%.

Figure 6.5. The learning curve for SVM. It looks that SVM underfits because the training
curve has an high error. However there is a stedy growth of the training and validation

curve. Probably more training data would help.

28



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Training experiments

Figure 6.6. The learning curve for Neural Network. The training curve has an high error
so, it is probably underfitting. However there is not a stedy growth of the training and
validation curve. Around 5000 train samples the training and validation curves drop. This
phenomenon is repeated with 10,000 train samples just with the validation curve. Probably

more training data would help.

Figure 6.7. The learning curve for Random Forest. We can see that the training curve has
0% error that is the overfitting but the validation curve has very high detection accuracy

(score). The validation curve increases and the achieved result is almost 93.9%.

29



6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.8. The learning curve for XGBoost 1. There is also the training curve with 0%
error that is overfitting, but the validation curve has high score.

Figure 6.9. The learning curve for XGBoost 2. This learning curve has low variance, so
it doesn’t overfit. The training curve slowly falls and approaches the increasing validation

curve.

6.4 Testing experiments
Finally our testing data are used. The machine learning algorithms are learnt from
the training data and then tested with the testing data that has not yet been used.
Each detection gives us confusion matrix containing numbers of True negative, False
negative, True positive and False positive. From the Confusion Matrix we can compute
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next measures describing our detection results such as false positive rate, sensitivity,
specificity etc. For our experiment the most important measures are the accuracy and
the false positive rate (FPR). FPR describes how many percent is detected as malware
but it is just normal. The definitions of all used measures is below.

Tables 6.3 and 6.4 contain values of measures computed from the Confusion Matrix.
Figures 6.10 and 6.11 show the measures in the graphical representation. And finally
table 6.5 compares the detection accuracy between the 10-fold cross-validation training
and the final testing..Accuracy

ACC = TP + TN

TP + TN + FP + FN.False Positive Rate
FPR = FP

FP + TN.Sensitivity
TPR = TP

TP + FN.Specificity
TNR = TN

TN + FP.Precision
PPV = TP

TP + FP.Negative Predictive Value
NPV = TN

TN + FN.False Negative Rate
FNR = FN

FN + TP.False Discovery Rate
FDR = FP

FP + TP.F1 Score
F1 = 2TP

2TP + FP + FN.Matthews correlation coefficient (MCC)

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

ML Algorithm Cross-validation accuracy Test data accuracy
SVM 0.7842 0.7745
NN 0.8072 0.7987
Random forest 0.9391 0.9416
XGBoost 1 0.9635 0.9664
XGBoost 2 0.9579 0.9572

Table 6.5. Result comparison of the cross-validation and the final testing accuracy.
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Measure SVM NN Random Forest

Sensitivity 0.6030 0.6490 0.8961
Specificity 0.9254 0.9303 0.9816
Precision 0.8767 0.8911 0.9772
Negative Predictive Value 0.7260 0.7509 0.9149
False Positive Rate 0.0746 0.0697 0.0184
False Discovery Rate 0.1233 0.1089 0.0228
False Negative Rate 0.3970 0.3510 0.1039
F1 Score 0.7145 0.7511 0.9349
MCC 0.5643 0.6099 0.8849
Accuracy 0.7745 0.7987 0.9416

Table 6.3. Confusion Matrix for Machine Learning Algorithms

Measure XGBoost 1 XGBoost 2
Sensitivity 0.9496 0.9348
Specificity 0.9811 0.9768
Precision 0.9778 0.9725
Negative Predictive Value 0.9568 0.9446
False Positive Rate 0.0189 0.0232
False Discovery Rate 0.0222 0.0275
False Negative Rate 0.0504 0.0652
F1 Score 0.9635 0.9533
MCC 0.9326 0.9143
Accuracy 0.9664 0.9571

Table 6.4. Confusion Matrix for Machine Learning Algorithms

Figure 6.10. This Figure describes Sensitivity, Specificity, Precision, Negative Predictive
Value and False Positive Rate for each machine learning algorithm. The first columnn is
always SVM, second is Neural Network, third Random Forest, fourth XGBoost 1 and fifth

column is always XGBoost 2.
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Figure 6.11. This Figure describes False Discovery Rate, False Negative Rate, F1 Score,
Matthews correlation coefficient and Accuracy for each machine learning algorithm. The
first columnn is always SVM, second is Neural Network, third Random Forest, fourth

XGBoost 1 and fifth column is always XGBoost 2.
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Chapter 7
Certificate experiments

Motivated by our good results, this chapter is a small extension of our methods, where
we tried to detect only the malware certificates in our dataset by looking at the en-
crypted data. This was not in the original plan of the research, but seems to us inter-
esting.

7.1 Certificate data
The certificate is sent from the server if there is successful SSL handshake between
the client and the server. The certificate information is taken from certificates records
in x509.log file describing all information about the certificates. Our dataset contains
4,899 certificates with unique serial number where 3,246 of them are normal certificates
and only 1,653 of them are malware certificates. The label of the certificate is the
majority of certificates records that belong to this certificate.

7.2 Features of certificate
The certificates contain same certificate feature as the Connection 4-tuple and some
others. These features are created during the algorithm for the creating Connection 4-
tuples. if any new certificate is found in this algorithm (according its certificate unique
serial number) the information from the certificate record is stored in a set of certificates.
If any certificate incoming from x509.log already exists in our set of certificates, the
time of capture and Server Name Indication (SNI) are added. Finally each certificate
contains its basic information from the certificate record in x509.log and also list of
captured times and SNI names. Used features are described below..CN in SAN DNS — The CN is Common Name that is a part of the certificate record

and SAN DNS are domains in the certicate record that belong to the certificate. CN
should be part of the SAN DNS. This feature value is 0 if the certificate doesn’t
contain the CN in the SAN DNS and the feature value is 1 if the certificate contains
the CN in the SAN.DNS..Public key number — The certificate contains a public key in bits..Number of domains in SAN DNS — It is number of domains in SAN DNS..Number of SNI — This feature is number of SNI included with this certificate.
Usually one certificate is used in more SSL handskaes. And also some SSL handshake
doesn’t have the SNI. So this feature is sum of SNI list that is sotred in this certificate
set..Mean of valid certificates — The captured time list contains captured times of
using this certificate. Anytime this certificate is used, the captured time is stored
and at the end each captured time is checked if it is inside of validation period of
this certificate. The value of fearure is ratio of non-valid cases, when the certificate
is valid and all certificates cases.
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7. Certificate experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.Mean of certificate validatity periods — The captured time list contains captured

times of using this certificate. Anytime this certificate is used, the captured time is
stored. This feature is mean age of all of all cases when the certificate is used.

At the end there is the data model of 4899 certificates where each of them has these
6 features. Next this data model is normalized for each column.

7.3 Experiments
The data model is splitted to 20% testing data and 80% training data. The training
data is used for 10-fold cross-validation in each machine learning algorithm. Then the
machine learning algorithms are learnt to all training data ant tested on testing data.
The results are shown in Table 7.1.

ML Algorithm Cross-validation accuracy Test data accuracy
SVM 0.7512 0.7592
NN 0.7514 0.7642
Random forest 0.6989 0.7041
XGBoost 1 0.7043 0.7245

Table 7.1. Certificate result comparison of the cross-validation and the final testing accu-
racy.
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Chapter 8
Analysis of results

Our experiments consist of the training and testing experiments. The training exper-
iments use training data and the testing experiments use training data for learning
and testing data for testing. Training data contain 80% and testing data 20% from
all available Connection 4-tuples. The testing data is left for the final testing exper-
iments. The most important measures for us are the accuracy and the false positive
rate. It is important that FPR is low because too frequent false alarm is expensive and
untrustworthy.

8.1 Training experiments
The training experiments show that SVM and Neural Network have underfitting prob-
lem, because the training curves have high bias so, high error. Instead of this fact
with incoming training samples the accuracy of the training and validation curves still
improves. To solve this issue we would probably need more training samples or other
features and also in case of Neural Network there should be more experiments with
algorithm parameters. The 10-fold cross-validation experiments on training samples
are 78.42% for SVM and 80.72% for Neural Network.

As far as the training experiments for Random Forest the training curves have zero
error and the validation curve has a steady growth. It is overfitting problem but the
validation has high score with 93.91%.

XGBoost 1 and XGBoost 2 are same machine learning algorithms with other pa-
rameters. XGBoost 1 achieves the best cross-validation results with 96.35% but with
overfitting, where training curve has zero error. Our endeavor was to limit this over-
fitting. We tried to learn about XGBoost as much as possible and we also mix the
parameters of XGBoost to limit the overfitting. Finally we found it. The XGBoost 2
has 95.79% cross-validation accuracy and no overfitting. The Figure 6.9 shows that the
training curve slowly falls and approaches the increasing validation curve.

8.2 Testing experiments
In the testing experiment the machine learning algorithms are learnt for all training
data and then tested on testing data that has not yet been used. According to the
Table 6.5 the best detection accuracy have XGBoost 1 with 96.64% and XGBoost 2
with 95.72%. Also Random forest has also very good detection accuracy with 94.16%.
As far as SVM and Neural Network the accuracy is not so good. SVM achieves 77.45%
and the Neural Network achieves 79.87%. The best results in the false positive rate
(FPR) has Random Forest with 1.84% XGBoost 1 with 1.89% and XGBoost 2 with
2.32%.
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8.3 Certificate experiments

The results of certificate experiments show that malware certificates are difficult to
detect. According to the Table 7.1 the best detection accuracy has Neural Network
with 76.42%. The reason is that malware use a many of normal certificate in our
dataset such as google etc.
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Chapter 9
Conclusion

The aim of our research was to detect malware HTTPS traffic without decryption and
to create novel features to differentiate the malware and normal HTTPS usage. The
features were extracted from our datasets containing real malware and normal traffic.
The set of features consisted in features for connections, SSL data and certificates,
helping to describe the behaviour of HTTPS traffic. The final table of features is our
data model. Our machine learning algorithms were trained and tested from the data
model and the XGBoost 1 that is the best method, achieved 96.64% detection accuracy
with 1.89% false positive rate. These results seem to be good enough for our datasets
and context. If we had so good results on big datasets as well, then the result would
be more trustworthy.

However even though the False Positive Rate of XGBoost and Random Forest may
seem low, it may relatively high for larger networks, because it means that almost two
connections out of 100 between two endpoints would be false alarms. We conclude that
the usage done by the malware of HTTPS is distinct from normal usage and that these
differences can be used for creating powerful features for machine learning algorithms
that achieve satisfactory results.

9.1 Feature work
There are a lot of possibilities how to improve the final accuracy and the false positive
rate in future work. One of them is to gather a greater amount of training and testing
samples, also to find other available information in BRO logs describing HTTPS traffic
in different way or to find different open source software describing HTTPS traffic.
Next more in-depth to analyze how malware works in HTTPS and also to try more
machine learning algorithms with more different parameters.
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Appendix A
Content of the CD

.project code — Source code for all research for python Python 2.7.13..data models — Prepared data models for machine learning algorithms.. tex folder — Thesis in tex.. strasak thesis 2017.pdf — The electronic version of this thesis.
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