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Abstrakt

Préace se zabyva vizualni lokalizaci Sestinohého kracejiciho robotu. V po-
slednich letech bylo vyvinuto nékolik metod vizualni lokalizace zalozenych
na simultanni lokalizaci a mapovani vyuzivajici vyznamné body v prostie-
di. Néekteré z téchto metod vyuzivajici ruzné senzory se ukézaly velice efek-
lokalizaci Sestinohého kracejiciho robotu, kde vlivem kraceni dochazi k os-
cilacim a rychlym rota¢nim pohybum, které nepfiznivé ovliviuji méreni
senzory robotu. V praci jsou porovnany tfi ruzné metody simultdnni lo-
kalizace a mapovani vyuzivajici tii ruzné typy senzoru. Na zakladé pro-
vedenych experimentu byla zméfena presnost lokalizace, kterou jsou tes-
tované metody schopny poskytnout. Provedené experimenty spocivaly v
lokalizaci Sestinohého kréacejicitho robotu v kancelarském prostiedi. Na
zakladé ohodnoceni presnosti lokalizace muzeme konstatovat, ze metody
simultanni lokalizace a mapovani mohou poskytovat relativné presnou lo-

v/

navrhujeme feSeni na zakladé aktivni lokalizace.
Kli¢ova slova:

SLAM, sestinohy kracejici robot, visualni odometrie, S-PTAM, ORB-SLAM,
RGB-D SLAM
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Abstract

Vision-based localization of hexapod walking robot is addressed in this
thesis. In particular, localization methods called Simultaneous localiza-
tion and mapping that are based on visual approaches have been studied.
In recent years, several methods of simultaneous localization and mapping
using detection of salient points in the robot’s environment by various types
of cameras were developed. Some of these methods were proved to be very
effective for localization of wheeled robots. However, in this thesis, we ad-
dress more challenging visual localization of hexapod walking robot where
sensors suffer from motion blur, the robot’s oscillations and fast rotations
around several axes, induced by the robot’s locomotion. Three different
simultaneous localization and mapping methods (S-PTAM, ORB-SLAM?2
and RGB-D SLAM v2) in combination with three different types of sensors
are evaluated in this thesis. Moreover, we propose to evaluate performance
of the localization methods by evaluation proposed in literature that has
been further improved according to performed experimental deployments
of the robot. Experiments with localization systems were performed on
a low-cost hexapod platform in an office environment. Based on the pre-
sented results, we can conclude that the evaluated vision based localization
can provide relatively accurate position estimation of the hexapod robot es-
pecially for short term localization. For more demanding cases, we propose
to use enhance the position estimation by active localization approaches.

Keywords:

SLAM, hexapod robot, visual odometry, S-PTAM, ORB-SLAM, RGB-D
SLAM
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Part 1
Introduction

Reliable localization is an essential prerequisite for an autonomous behavior of mobile
robots including unmanned aerial vehicles, wheeled robots, and also legged robots. In
recent years, legged robots became popular due to their ability to traverse difficult,
uneven terrain with obstacles comparable to their dimensions while interacting with
the environment only by foots. This capability makes them a good choice for explo-
ration of collapsed buildings or caves. In such cases, it is necessary to build a map of
robot’s surroundings by onboard sensors, which enforces utilization of relatively precise
localization in comparison with the robot’s dimensions.

Simultaneous localization and mapping (SLAM) [I] is an approach in mobile robotics
that is capable of reliable and precise localization of mobile robots. Besides, it may also
provides a map of the robot’s surroundings, which is beneficial especially for motion
planning. The other great advantage of SLAM is ability to use only sensors mounted
to the robot which results in autonomous localization without a need of any external
external sensor systems such as Global Navigation Satellite System (GNSS). Although,
the general problem of Simultaneous localization and mapping can be considered as
theoretically solved by existing frameworks [I], there are several difficulties based on
sensor’s precision and computational demands, which complicate the implementation
of SLAM in real on-board scenarios. Several SLAM methods were recently developed,
e.g., ORB-SLAM [2], RGB-D SLAM [3], and S-PTAM []. These methods were proved
to be effective for localization of wheeled robots. In this thesis, we address challenges of
visual localization arising in deployment of these methods on a hexapod walking robot.

Several experiments in both flat and uneven terrains with the localization of hexa-
pod walking robot equipped with multiple sensors (shown in Figure 1) were performed.
As the localization, all three above metioned methods (ORB-SLAM, RGB-D SLAM
or S-PTAM) were experimentaly evaluated using standard metrics utilized in SLAM
evaluation [5] enhanced with minor improvements based on a SLAM behavior. The
presented evaluation results of SLAM systems provide quantitative results for the com-
parison of SLAM systems performance in standardize and unifying way. Moreover, the
evaluation yields to a set of the proposed improvement for individual methods taking
into consideration an active localization approach, in which special actions to improve
the localization performance are taking by considering properties and evolution of the
localization precision during the robot autonomous mission.
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1.0 INTRODUCTION

(a) Hexapod walking robot

(b) RGB-D camera Asus Xtion (c) Stereo camera Tara

Figure 1: Equipment used in the experimental evaluation of SLAM systems

2/40



Part 2
Vision based localization

The vision based localization is a process of acquiring the robot pose in an environment
using a camera sensor. In general, localization methods can be divided into two groups:
1) absolute localization; and 2) incremental localization.

The absolute localization provides an estimate of the robot’s pose independently
on the previous robot’s states. Examples of absolute localization systems are GPS or
geodetic total station. Vision based absolute localization usually rely on recognition of
the special pattern attached to the robot, e.g., April Tags [6], see Figure 2.

=

Figure 2: April Tag attached to the hexapod robot.

The incremental localization (also called dead-reckoning) has prior knowledge of the
robot’s starting pose. Then, each next pose is calculated from the previous pose and
the robot’s position change. One of the common used incremental localization methods
is the odometry, which localizes a robot using its start position and counting the num-
ber of rotations of the robot’s wheels utilized for the robot motion. The incremental
localization can also be use to localize a hexapod walking robot using kinematic model
of the robot, further supported by the Inertial measurement unit (IMU) and joint an-
gle sensors embedded the robot’s servos [7]. However, the main disadvantage of this
approach is that it relies on a precise kinematic model. Due to imperfections in the
model and robot’s mechanical construction, the absolute error of estimated pose in-
creases rapidly with the traveled distance. Therefore, it is more beneficial to use visual
odometry, which is described in the next section.

2.1 Visual odometry

Visual odometry uses a camera mounted to the robot while processing consecutive image
frames to estimate a change of the camera’s pose. Each change of the camera’s pose
between pairs of consecutive frames is estimated by detecting correspondences between
these frames. There are several methods of detecting correspondencies in images, and
one of the most popular are those based on detection of salient points in the image.
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2.2 IMAGE FEATURES
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Figure 3: Overview of simple visual odometry

The salient points can be, e.g., corners, places with significant change of contrast or
color.

Processing blocks of a typical feature based visual odometry are depicted in Figure 3
and it operates as follows. At first, image features are extracted, by a process that
consists of two phases: feature detection and feature description. During the feature
detection, limited number of image features is detected, then a local representation of
each detected features (i.e., feature description) is calculated. After that, descriptors
of features detected in the current frame and feature descriptors obtained from the
previous frame are compared to find the same salient points in both images. The
process of comparison of feature descriptors to find out, if they represent the same
salient object in the environment is called feature matching. Corresponding features
in both frames determine the geometrical transformation between these frames. The
resulting camera pose is computed from the beginning pose and product of all following
transformations calculated from the beginning frame to the current frame.

The main disadvantage of the visual odometry is that the error of the calculated
transformations accumulates along the whole path of the robot. Therefore, visual
odometry is not suitable for a long-term localization. However, methods based on
visual odometry called Simultaneous localization and mapping (SLAM) employ more
complex strategies of searching corresponding frames to allow more reliable and more
accurate localization than a simple visual odometry [I]. One of the fundamental tech-
niques is loop closure which enables to improve localization by observing a scene that
was already seen.

2.2 Image features

The important part of the image processing pipeline in the vision-based localization
systems, e.g., such as shown in Figure 3, substantilally affects the feature based local-
ization, is the particular type of image features [§] used to find correspondencies between
the camera images. One of the most important parameters of image features is their
distinctiveness, i.e., how the previously detected features can be reliably recognized
when they are observed again. An additional important attribute of an image feature
is the reliability to be recognized under different viewing conditions, e.g., from different
viewpoints or under different illumination conditions. The invariance to changes of the
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2.2 IMAGE FEATURES

viewpoint is especially important for the loop closing. Computational complexity of im-
age features is also important because, e.g., features that can be detected and matched
faster enables the whole system to operate at a higher framerate, and thus be capable
to capture fast robot motion. Four widely used features in vision-based localizations:
SIFT, SURF, BRIEF, and ORB are further described in the next section to highlight
their main properties.

2.2.1 SIFT features

A feature detection of the so called Scale Invariant Feature Transform (SIFT) [9] relies
on a cascade filtering of the image by Gaussian function, which gradually refines features
positions. Coordinates of the image features are obtained in two steps. At first, the
convolution of the given input image and the substraction of two Gaussian functions
is computed. Then, feature coordinates are detected as extremas of the convolution’s
product by Hessian matrix.

The SIFT descriptor (shown in Figure 4) is obtained from a selected square part of
the image in the neighborhood of the detected feature point, where intensity gradients
for each pixel are calculated. Selected part of the image is divided into 4 x 4 subre-
gions, where each subregion is represented by a set of gradients with eight bins. Each
contribution from the subregion is weighted by a Gaussian function to improve rotation
invariance of the descriptor. Thus, each subregion can be represented by eight values,
the whole SIFT feature descriptor is an 128-dimensional vector.
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(a) SIFT descriptor (b) Cascade of Gaussian functions

Figure 4: SIFT descriptor construction (retrieved from [I])

SIFT features are invariant to the image scale, rotation, and change of the view-
point. Another advantage of SIFT features is that they are highly distinctive due to
their large descriptors. On the other hand, the main disadvantages of SIFT features
are computational demands of the gradient calculation and also demanding feature
matching which uses Euclidean distance between features.
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2.2 IMAGE FEATURES

It is possible to decrease the memory consumption and computational demands of
SIFT using, e.g., shorter descriptors or it is possible to compute hashes from descriptors
to transform them into binary vectors. Binary vectors can be compared using the
Hamming distance, which can be calculated faster than the Euclidean distance.

2.2.2 SURF

Speeded Up Robust Features (SURF) [I0] are features based on SIFT with several sim-
plifications in calculation process to get features that have comparable distinctiveness
but are less computationally demanding and have smaller descriptors. SURF are de-
tected using Hessian matrix as SIFT, but the input of the Hessian matrix is calculated
using the approximation of Gaussian functions by box filters, see Figure 5b. The scale
invariance of SURF is achieved by filtering the image using different sizes of box filters
for each SURF scale k.

SURF descriptor (shown in Figure 5a) is calculated from a square of 20k x 20k and
this square is further divided into 4 x 4 subregions. Then, each subregion is represented
by the gradients as subregions of the SIFT descriptor. After that, the gradients are
weighted by the box filters that are used as approximation of Gaussian function.

SURF are invariant to the image scale, rotation, and change of the viewpoint. The
main advantage of SURF is that they are less computationally demanding than SIFT
features and they have equal distinctiveness. Matching of SURF is performed using the
Euclidean distance. Calculation of the Euclidean distance is computationally demand-
ing, and the SURF descriptors are still relatively large, but it is possible to use the
same tricks of decreasing the memory and computational requirements as can be used
for SIFT.
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TNy

V| >~

J v > 7 a L -
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Image gradients Keypoint descriptior
(a) SURF descriptor (b) Box filter approx-

imation of Gaussian
function

Figure 5: SURF descriptor construction (retrieved from [10])
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2.2 IMAGE FEATURES

2.2.3 BRIEF

Binary independent elementary features (BRIEF) [I1] were designed to get features that
are less computationally demanding and have smaller descriptors than SIF'T features or
SURF. BRIEF is described by its descriptor, which is a binary vector and can be used
with any feature detector. Calculation of each descriptor’s bit is based on the intensity
comparison of two pixels in the neighborhood of the image feature coordinates. Two
examples of pairwise comparisons are depicted in Figure 6.

BRIEF described by binary descriptors can be easily matched using the Hamming
distance. When the Hamming distance between the two descriptors is small, there
is a high probability that both descriptors belong to the same image feature. The
great advantage of the Hamming distance in comparison to the Euclidean distance is
that, the Hamming distance can be computed much faster!. Therefore, BRIEF is less
computationally demanding than SIFT or SURF.

Figure 6: Examples of pairwise comparisons used in BRIEF descriptors (retrieved

from [11])

2.2.4 ORB features

Oriented FAST and Rotated BRIEF (ORB) [12] is an image feature that uses improved
FAST feature detector [I3] and improved BRIEF descriptor [I1], where the FAST stands
for Features From Accelerated Segment Test. FAST detect features using comparisons
of intensities of the pixels in the circle around the central pixel, see examples in Figure 7.
If all n contiguous pixels in the circle have intensity higher or lower than central pixel,
then the central pixel is considered as a new feature. There are two major improvements
which makes ORB from FAST. FAST is not scale invariant; so, the first improvement
provides the scale invariance by computing FAST from the same image at different
image scales. The second improvement is based on the calculation of intensity centroids
[T4] to make FAST rotation invariant.

Calculation of the ORB descriptor is based on BRIEF comparisons. Moreover,
different patterns of BRIEF comparisons are used for different orientations of the de-
tected feature. This approach is used in order to make the BRIEF descriptor rotation
invariant.

'Modern processors usually have a special instruction for calculation of the Hamming distance.
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2.2 IMAGE FEATURES

The main advantage of ORB features is that they can be computed faster than STFT
or SURF. Appeareance of the detection features as ORB, SURF, and SIFT detection
is depicted in Figure 8.

Figure 8: Different features detected by RGB-D SLAM. Noteworthy is difference in-
duced by the appearance nature of the ORB detector in contrast with the behavior of
SURF and SIFT, which detect special regions.
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Part 3
Visual simultaneous localization
and mapping

Visual SLAM systems take an advandage of rich information about the captured
environment contained in an image data to provide a reliable localization of a mobile
robot. SLAM systems can be divided by the way the image data are processed to
full/online, sparse/dense, and direct/indirect.

Full SLAMs estimate the whole robot’s path and are capable to recalculate the
path when a loop closure is detected. Whereas online SLAMs seek to estimate only the
current camera pose. The advantage of full SLAMs is that they can improve quality
of the localization by means of improving the underlying map of features whenever the
robot revisits the same place. On the other hand, online SLAMs usually have lower
hardware requirements as it is supposed they are running on-line and on-board of the
robot computational resources.

(a) Pixels used for depth map (b) Image features detected by ORB-

costruction by LSD-SLAM (re- SLAM
trieved from [I5])

Figure 9: Use of information by semi-dense method and sparse method

The amount of information taken from an image can be utilized to further clasify a
SLAM systems as sparse or dense. SLAM systems clasified as sparse use just a small set
of image pixels to construct a coarse map of the environment and calculate the camera’s
pose. Examples of sparse SLAMs are for example ORB-SLAM [2] or RGB-D SLAM [3].
On the other hand, dense SLAMs use all or most of pixels in an image to construct
a detailed map of the environment and compute the camera’s pose. The advantage
of dense SLAMs is that their underlying map contains more details about the robot’s
surrounding and the map can be used also for other purposes, e.g., collision avoidance.
However computational demands of dense methods are really high and these methods

9/40



3.1 ORB-SLAM

usually require image processing on a graphic processing unit (GPU). In Figure 9b, it
is shown an example of detected keypoints by the ORB-SLAM, and in Figure 9a an
example of the selected pixels by the semi-dense method LSD-SLAM [I5] is shown.

The last way of categorizing SLAM systems is based on the way of using the image
data, which can be done directly or indirectly. Direct SLAM methods use intensity of
pixels to compute a depth of the scene directly. The indirect SLAM methods compute
a special representation of the selected pixels and their neighborhood (image features)
and then a depth of each individual feature is calculated.

A more thorough description of the three feature-based visual SLAM systems that
have been selected for the deployment and benchmarking on a hexapod walking robot
as a part of this thesis follows. All the selected SLAMs are based on the visual odometry
in discussed in Section 2.1 and provide localization of the robot in 6 Degrees of freedom
(DOF). The studied SLAM systems use different types of features: SIFT [9], SURF [I0],
BRIEF [II], and ORB [12], already introduced in Section 2.2. Source codes of all the
presented SLAM systems are open source and publicly available?. The evaluated SLAM
systems are detailed in the next sections.

3.1 ORB-SLAM

ORB-SLAM [2], [16] is a feature based SLAM system, which enables to use three
different sensors: RGB-D camera, monocular camera, and stereo camera. ORB-SLAM
architecture (depicted in Figure 10) is divided into three parts that run in parallel:
1) tracking, 2) local mapping, and 3) loop closing.

Tracking provides the camera localization for each new frame and it is responsible
for a keyframe selection. Camera localization is based on the visual odometry enhanced
with an optimization using the bundle adjustement [I7] and it works as follows. At first,
features in a new frame are detected. Then, they are matched with features from the
previous frame. Feature matching is accelareted by tracking of features, which means
that each feature is matched with features in a close neighborhood of the feature’s
presumed position in the next frame. Feature tracking accelerates matching because
each feature does not have to be matched with all features detected in the frame before.
Afterwards, a new frame is compared with other frames, that supports reobservability
of the previously seen features. These frames are found in the covisibility graph, see
Figure 11. If the matching phase fails, then ORB-SLAM employs a module for the place
recognition to relocalize the camera. Tracking is also in charge of a keyframe selection
which happens when the frame contains sufficient quantity of new features. Keyframe is
the frame which contains sufficient amount of new information to be stored. The main
reason of Keyframe selection is to keep just the most important information about the
environment.

20RB-SLAM is available at http://webdiis.unizar.es/~raulmur/orbslam/, RGB-D SLAM is
available at http://felixendres.github.io/rgbdslam_v2/, and S-PTAM is available at https:
//github.com/lrse/sptam
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3.1 ORB-SLAM

Local mapping processes a keyframe detected by tracking, using bundle adjustment
to optimize the local map. Local mapping also extracts the most important features
from the keyframes and put them into the global feature map, which is used when
tracking is lost.

A loop closure detection is based on detecting sets of features that were already
observed, which is used to improve the precision of the localization [I]. ORB-SLAM
detects loop closures for each individual keyframe. When a loop closure is detected,
the algorithm calculates error accumulated in the loop. Then, it corrects the graph of
camera poses and also merges duplicated points and features in the map.

The whole system uses ORB features [12], which are classified as close or far based
on the distance from the camera center. Distances of the close features can be reliably
triangulated to be used for the visual odometry, especially for the calculation of the
camera translation. On the other hand, a distance of far features cannot be reliably
estimated, but these features are usually suitable for, e.g., the loop closing.
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Figure 10: ORB-SLAM overview
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3.2 RGB-D SLAM

Figure 11: ORB-SLAM covisibility graph and feature map

3.2 RGB-D SLAM

RGB-D SLAM [3], [I§] is the second version of the SLAM system designed to be used
with an RGB-D camera like Microsoft Kinect or Asus Xtion that are both based on
the Prime sensor chip. RGB-D SLAM is overviewed in Figure 12, where it can be seen
that the architecture is divided into two main parts: the frontend and backend. The
frontend is in charge of the feature detection, descriptor extraction, matching features,
and calculating of geometrical transformations. The backend is responsible for the pose
refinement and pose graph optimization.

When a new RGB image and corresponding depth image are captured, feature
detection and feature description is performed first. RGB-D SLAM uses OpenCV [19]
implementation of feature detectors and feature descriptors; so, it is possible to straight-
forwardly use different feature extractors, e.g., ORB, SURF, SIFT. It is also possible to
use SIFT optimized for calculation on GPU, but in this thesis, it is supposed the SLAM
system will be deployed on a mobile robot with an embedded computational platform
of the type Odroid XU4, which does not feature an OpenCL enabled hardware. Au-
thors of the RGB-D SLAM propose to use ORB features, because of their performance.
However, in scenarios with a hexapod walking robot, it has been reported that features
with higher distinctiveness provide better performance [20], [2I]. Therefore, during all
experiments performed in this thesis, SURF features (in both detectors and descriptors)
were used.

After the feature extraction, frames are selected and compared with the current
frame to find a large loop closure or just to find correspondences between following
frames. There are three sets of frames selected for the comparison. The first set
contains n, frames that directly precede the current frame. The second set contains
frames in the graph neighborhood of the first set (includes the previously detected loop
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closures). Moreover, the last set includes n, frames that are chosen randomly to detect
new large loop closures.

After the selection, features detected in the current frame are matched with the
features of all the frames from the selection. Then, a camera pose is estimated by the
RANSAC algorithm [22]. The pose estimated by the RANSAC algorithm is then refined
using a bundle adjustment and it is added to the pose graph. When a loop closure is
detected, the whole pose graph is optimized.
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Figure 12: RGB-D SLAM overview

3.3 S-PTAM

Stereo Parallel Tracking and Mapping (S-PTAM) [E], 23] is a SLAM system mainly
designed to be used with a stereo vision sensor system. Its architecture is divided into
three parts that run in parallel: extraction, tracking, and mapping. Figure 13 shows
the S-PTAM operation.

The extraction is in charge of the keypoint detection and the descriptor computation.
Keypoints are detected using the Good features to track (GFTT) detector [24] and
described by the BRIEF [II] feature descriptors. The used combination of feature
detector and feature descriptor is implemented using OpenCV [19]; so, it is possible to
easily use different image features implemented under OpenCV. However, the selected
combination of GFTT detection and BRIEF description provides the best performance,
according to [§]. Notice, image features are detected in one image, and then S-PTAM
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atempts to detect the same features at corresponding epipolar(s) of the second camera
image.

Tracking works similar as in ORB-SLAM. It is in charge of feature matching, and
estimation of the camera pose. When a new pair of images is captured, all image
features are then projected onto the plane with features that were detected in the former
frames. The projection is based on a prediction of the current camera pose. Feature
matching is performed using the Hamming distances between not-matched feature and
features in the close neighborhood in the plane. Therefore, the computational demands
depend on the quality of the camera pose prediction. S-PTAM uses a velocity motion
model, or a model based on the Extended Kalman filter (EKF) [I] enhanced with IMU
measurements to predict the camera pose. In this thesis, S-PTAM is used with the
stereo camera TARA, which provides IMU measurements; so, it would be possible to
use a model based on the EKF, which is more suitable for walking robots. Since the
motion of the wheeled robots is generaly smoother than the motion of walking robot,
the estimation of camera pose of a wheeled robot is much easier. However, only vision
based SLAM systems without any aditional sensors are compared in this thesis; thus,
S-PTAM that relies only on the velocity motion model was utilized.

The tracking phase also selects keyframes, which are frames that contain less than
90 % of points tracked in the previous keyframe. New keyframes that were detected
during the tracking are used for the map construction.

Mapping inserts new points in the map and refines the camera position and the local
map utilizing BA. Optimization is used only for a local map containing just nearby
keyframes. The absence of the global map optimization prevents false loop closing.
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Figure 13: S-PTAM overview
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3.4 Active localization

SLAM systems can use techniques like loop closures to improve the localization, but
when the robot does not perform actions that enable usage of these techniques, the
localization cannot be improved. This is the principle of passive localization when the
localization system just processes data from sensors, but it cannot affect the robot’s
actions. On the other hand, there is active localization approach [25], which main
principle is to affect the robot’s actions to improve the robot’s localization.

Experiments performed in this thesis and reported in Section 5 were designed in
order to compare the performance of several SLAM systems and also to find out, which
robot’s actions significantly affect the accuracy and reliability of the robot’s localization.
Some of these actions can be used to improve localization of the robot using the active
localization approach in a similar way as in [20], [27].
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Part 4
Evaluation methodology

All SLAM systems described in Chapter 3 (i.e., ORB SLAM, RGB-D SLAM, and S-
PTAM) provide localization of the robot and a map of the robot’s surroundings. One of
the ways to compare SLAM systems is to compare just the accuracy of the localization
provided by the SLAM systems in the same scenario. It is also possible to evaluate the
quality of the constructed map. However, as it is noted in [I§], the quality of the map
depends on the accuracy of the estimated trajectory, and thus it may not be necessary
to evaluate SLAM systems using the created maps.

The accuracy of SLAM can be measured by comparing the whole estimated trajec-
tory of the robot with the reference trajectory (the ground truth). The ground truth
should be enough precise for the comparison, therefore an external localization system
April [6] with the centimeter precision was used to capture the ground truth during
all experiments reported in this thesis. Nevertheless, the evaluation of the estimation
of the trajectory accuracy requires metrics that are capable to compare the quality of
two estimations as well as to correctly express an error of the estimated trajectory.
Metrics suitable for the evaluation of trajectory estimation are the Absolute trajectory
error (ATE) and relative pose error (RPE) [5]. These metrics were also used in similar
approaches of SLAM systems evaluation in [28] and [20] as they are presented in this
thesis.

This chapter describes the evaluation process used for the evaluation of experimental
data. Section 4.1 depicts the process of establishing a reliable ground truth. The utilized
evaluation metrics are detailed in Section 4.2.

4.1 Ground truth

For the ground truth construction, a vision based absolute localization approach has
been used. The used absolute localization works as follows. At first, a video with
the robot’s motion was captured by one Logitech ¢920 HD webcam with a resolution
of 1920 x 1080 px at approximately 30 FPS that has been attached above the robot
operational work space. For easier recognition of the robot, the AprilTag [6] has been
attached to the robot. After that, the video has been captured and processed frame-by-
frame using the April detector [0] to get the trajectory of a particular marker (AprilTag),
which has been attached to the robot.

The great advantage of the motion capture system based on the April detector [6] is
that only one marker (AprilTag) is needed to get estimation of the full 6 DOF position
of the robot. It is also possible to use different vision-based motion capture system like
Whycon [29], which uses different, rotation invariant markers. However, it is necessary
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to attach more than one marker to get full 6 DOF position, because of the rotation
invariance of the utilized marker in the Whycon [29] system, which has been found
impractical for the purpose of this thesis.

A comparison of the estimated trajectory with the ground truth requires timestamps
for all frames of the ground truth. But standard mjpeg video does not provide reliable
timestamps for each frame of the video. Therefore, all videos used for ground truth
construction have been captured using ROS framework [30] with rosbag. The ROS’s
rosbag is capable of capturing all data coming from the sensors as individual messages
and save them to the bag file. The advantage of this framework is that all messages
are timestamped. The timestamp corresponds to the moment when the message was
published. During all the experiments described in Section 5, data from sensors attached
to the robot and video stream for the ground truth construction have been saved in one
bag file, which ensures no time shift between the ground truth and estimated trajectory.

4.2 Evaluation metrics

The output trajectory of the SLAM system and corresponding ground truth are rep-
resented by timestamped 6 DOF poses. As all of the sensory data are recorded into a
single bag file on a single computer, the timestamps are globally consistent. Neverthe-
less, the individual sensors provide the data with a different frequency, which has to be
synchronized before the evaluation. The synchronization consists of two phases. The
first one extracts the corresponding poses of trajectory estimate and the ground truth
based on the timestamps. The second one seeks a rigid transformation between the
trajectory estimate and the ground truth to synchronize the coordinate systems which
are, in general, different.

The first phase of the synchronization can be done by finding pose with the nearest
timestamp of the ground truth for each pose of the estimated trajectory as it is proposed
in [5]. However, in this thesis, we propose to use linear interpolation of the ground truth
poses to improve the reliability of the evaluation metrics and better synchronization of
the trajectories with respect to time domain. The linear interpolation of the ground
truth consists of the linear interpolation of the position and linear quaternion interpola-
tion (LERP) as an interpolation of the orientation. Note, whereas the interpolation of
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the position is straight-forward, the interpolation of the rotation is much harder to as-
sess. Therefore, we use the linear quaternion interpolation and normalize the resulting
quaternion to represent a valid rotation.

The second phase of the synchronization consists of estimation of translation and ro-
tation between the time synchronized trajectory and ground truth. The rigid transform
was found by collocating the starting points of the trajectories and then seeking the
rotation that minimizes the root mean squared error between the estimated trajectory
and the ground truth.

Each pose of the estimated trajectory and corresponding pose of the ground truth
have to be represented by the SE(3) matrix. The SE(3) matrix is representation of
the robot’s position by the matrix of size 4 x 4, which can be divided into the orienta-
tion represented by a rotation matrix R (of size 3 x 3) and the column matrix of the

translation T’
R T

After all the mentioned preparations, it is possible to compute ATE and RPE as
follows. ATE [0] is calculated using the equation:

where Q; represents an ith point of the ground truth by the SE(3) matrix®, and P
represents ith point of the estimated trajectory. ATE represented by the SE(3) matrices
F; can be divided into the translational part of ATE Fj;..,s and the rotational part of
ATE Fj., as it was used in [20]. The translational part of ATE measures distances
between the estimated poses and poses of the ground truth. Similarly, the rotational
part of ATE measures an error of the robot’s orientation.

RPE [5] can be calculated using the equation

E; = (Qi'Qira) (P ' Pya), (3)

where A defines the size of the fixed frame interval. RPE represents a local drift of the
estimated trajectory. When A = 1, then F; expresses a drift of the visual odometry.
RPE can also be used to evaluate conformity between shape of the estimated trajectory
and shape of the ground truth, which can be done using A > 1. In this thesis, the
conformity of the evaluated trajectory was measured by chosing A to achieve distance
between frames approximately 0.5 m, which is the size of the used robot. In the following
text, the translation part of the RPE where A corresponds with the distance of 0.5 m
is referenced as RPE,;.

RPE represented by the SE(3) matrices E; can be divided using the same principle
as ATE into Fjans and Ej..;. Results of the trajectory evaluation detailed in Section b
are expressed utilizing average values ATE;, ATE,, RPE; and RPE, computed from
‘Etrans|7 ’Firot|7 |Eit7’ans’7 and |E1lrot|~

3Representation of poses by the SE(3) matrix can be expressed as a transformation of the standard
basis of the space IR® from the begining of the coordinates.
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Part 5
Experimental results

In this chapter, experiments on the localization of a real hexapod crawling robot are
described together with the description of the different experimental setups and the
robot itself. During all experiments, the same robot platform was used in two different
configurations. These configurations differ in the used main sensor for the localization.
The first configuration is the RGB-D camera and the second configuration is with the
stereo camera Tara.

5.1 Robot’s description

Experiments were performed on the off-the-shelf hexapod robot based on Phantom X
Mark II. The used hexapod robot platform consists of six legs and the robot’s body
with the robot’s control unit and a camera. Each leg of the robot is composed of three
Dynamixel servos AX-12A with the inbuild sensor of angular rotation, which can be
used to detect a contact point of the robot’s leg with the ground, see Section 5.1.1. Due
to the 3 actuators per each leg, it is possible to set a position of each leg’s endpoint
at 3 degrees of freedom (DOF). The robot servos enable to carry about 2.5 kg of the
robot’s mass and about 1 kg of additional load. The robot loaded with all the necessary
equipment for experiments presented in this thesis weights about 2.7 kg. Battery, which
powers the robot is a Li-pol battery pack (3s, 4 Ah), which provides enough energy to
power the robot for about 90 minutes. The maximal distance, the robot can traverse by
a single battery pack depends mostly on the type of the motion gait [31]. Servo motors
of the robot are controlled by the robot’s control unit Odroid U3+, which is an ARM
Cortex A9 based quad-core embeddded computer. A PS2-like controller communicating
over wireless protocol is used for the remote control of the robot.

5.1.1 Motion gaits

Locomotion of the walking robots can be based on two types of control; the first one
is using a pattern of movement (motion gait). The second type uses planning of each
foothold. Motion gaits, with a pattern of movement can be usually used without the
need of any additional sensors. On the other hand, planning of foothold placement is
more suitable for tough terrains like stairs. However, it is computationally demanding
and the whole motion of the robot is very slow, due to the alternation between the
sensing and planning. Therefore, the pattern based motion gait is utilized for the robot
locomotion in this thesis. However, the motion gait if further featured by the ability to

traverse uneven terrain.
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The utilized approach to traverse difficult terrain with the hexapod robot is the
adaptive motion gait introduced in [32], which is based on a motion pattern enhanced
with a feedback from the actuators that enables to detect when a leg touches the ground.
The adaptive motion gait allows the robot to move faster with lower computational cost
than with the foothold placement planning approach.

Motion gaits of a hexapod walking robot can also be divided into groups according
to the number of legs that are in the support phase. If the terrain is flat, it is possible to
use motion gait without any feedback (default gait), which enables the robot to move
faster. The faster locomotion of the hexapod robot yields, the robot consumes less
energy per traversed distance [3I]. When a simple gait without a feedback is incapable
of traversing uneven terrain, it is possible to use adaptive gait, which is slower, and
therefore, less energy efficient, but it enables the robot to traverse much more difficult
terrain. If a terrain is extremely difficult, e.g., there are just a few places, where the
robot can place its legs, then planning of each foothold placement [33] can be more
suitable choice. In this thesis, the adaptive motion gait together with the default
gait were utilized for the data collection in the experimental evaluation of the SLAM
systems. The adaptive motion gait was used in all experiments in Section 5, whereas
the default gait was used only for experiment presented in Section 5.2.4.

5.1.2 Sensors

SLAM methods used in this work for the localization of a hexapod robot use different
types of sensors: RGB-D SLAM V2 uses an RGB-D camera, S-PTAM uses a stereo
camera and ORB-SLAM?2 enables to use an RGB-D camera, stereo camera, and also a
monocular camera.

5.1.2.1 RGB-D camera

The RGB-D camera provides standard an RGB color image and also depth image which
contains distances from camera center to points that correspond to each pixel of the
color image. For the experiments with SLAM algorithms, the RGB-D camera Asus
Xtion Pro (newer version) was used, which is more suitable for mobile robotics than,
e.g., Microsoft Kinect which is heavier and requires an extra power supply. Resolution
of the color image provided by the camera is 640 x 480 px with the framerate of 30 FPS.
Distance measurements (depth image) are provided by an infrared sensor, which works
as follows. A source of the infrared light emits a special pattern of the infrared light.
Then, the pattern is reflected from objects in front of the camera. Different distances
between the objects and camera defect the infrared pattern. Next, the infrared sensor
captures a reflected pattern and computes the distances from the comparison of the
reflected pattern and the reference pattern. Note, the Asus Xtion uses a camera sensor
which has not a global shutter and the RGB and depth images are not synchronized.
The absence of the global shutter induces a geometrical distortion of an image, especially
when the robot turns fast. Unsynchronized RGB and depth image results in wrong
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estimation of the image depth when the robot moves fast. Henceforth, the estimation
of feature’s depth in the environment is less precise which results in an overall decrease
of trajectory estimate precision provided by SLAM system.

5.1.2.2 Stereo camera

The stereo camera consists of a camera pair with two parallel optical axes at the defined
distance called the baseline. The main advantage of the stereo camera is the ability
to compute a distance between the camera and observed objects directly from a pair
of images using triangulation. Therefore, some SLAM systems, e.g., [4], use stereo
cameras rather than monocular cameras. The ability to directly estimate a position of
each point of the map from just one measurement is a great advantage for initialization
of the map. The initialization of the map using stereo camera is simple. It consists
only of the insertion of the first pointcloud.

The stereo camera used in all practical experiments in this thesis was the E-con
systems Tara [34]. Tara was designed for computer vision applications and for mobile
robotics, which puts specific demands on the used sensors. One of the most important
features of the sensors is the ability to capture all the image pixels at the same time.
For this reason, Tara features the image sensors MT9V024 with the global shutter. The
global shutter enables the camera to capture consistent images without artifacts even if
the camera or object in the field of view moves relatively fast. Another important feature
of Tara is synchronized capturing of images by both camera sensors, which improves
the reliability of the triangulation. The next property, which makes Tara a good choice
for the mobile robotics, is an in-built IMU. Tara’s IMU is capable of measuring speed
and acceleration of the camera in three Degrees of freedom (DOF). IMU, integrated
directly in stereo camera, is beneficial especially for small robots. A disadvantage of
Tara is that both cameras are sensitive to infrared light; so, it is impossible to directly
use Tara together with the Asus Xtion because of the infrared pattern affects Tara’s
sensors. Properties of Tara as well as properties of Asus Xtion are depicted in Table 1.

5.1.2.3 Monocular camera

Although, it is beneficial to use a stereo cameras for SLAM systems, monocular cameras
are smaller and more common not only in mobile robotics. Thus, they enable SLAM
system to be deployed in different scenarios, e.g., for localization in buildings utilizing
smartphones [35].

On the other hand, initialization of map using a monocular camera is much harder
than initialization using stereo camera because the scale of observed scene is unknown.
There are several ways to solve the problem with initialization of the map, e.g., boot-
strapping problem [36]. The easiest way is to use a prior knowledge of the initial scene,
e.g., put an object of known proportions in the scene. However, after the initialization
of the map, the scale drifts, and therefore, a less precise results can be expected. For
the evaluation purposes of a monocular SLAM system, one of Tara’s cameras has been

used.
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Table 1: Properties of the used sensors

Sensor Asus Xtion Pro Stereo camera Tara
Resolution [px] 640 x 480 752 x 480
Framerate [Hz] 30 60
Global shutter no yes

5.2 Experiments

Localization provided by different SLAM systems has been evaluated for four different
setups. In each setup, multiple trials (dataset) were captured by the hexapod robot
in one or both possible configurations: with the RGB-D camera and with the Stereo
camera (shown in Figure 15). Each captured trial was processed online? by the SLAM
algorithms described in Section 3; so, there are multiple trajectory estimates for each
setup. The only trials processed by ORB-SLAM at the framerate of 60 FPS were not
processed online. Afterwards, all trajectory estimates have been evaluated using metrics
described in Section 4.2. In all the experimental setups, the hexapod robot has been
guided by a human operator.

It is also possible to evaluate the accuracy of SLAM methods using publicly available
datasets like, e.g., Kitty dataset [37] or TUM dataset [5]. However, these datasets
usually do not provide trials captured by both sensors (the RGB-D camera and stereo
camera) and are also captured from a wheeled vehicle, whose motion significantly differ
from the hexapod walking robot studied in this thesis. The particular experimental
setups are further described in the following subsections.

Figure 15: Hexapod robot equipped with Asus Xtion and with Tara.

4For the processing was used machine with 3.4 GHz Intel Core Xeon octa-core processor, 16GB
RAM. However, not more than 2GB of RAM were used in the most demanding cases.
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5.2.1 Setup 1: Planar Surface

When the hexapod robot walks on a planar surface, it may look like that the motion
of the robot’s mass center is similar to the motion of a wheeled robot, but there is a
great difference in the smoothness of the movement. Whereas a wheeled robot moves
smoothly, on a planar surface, crawling of the hexapod robot makes its movements
non-smooth.

Figure 16: Experimental setup with planar surface.

In the Setup 1, the robot walks only on a planar surface in a space surrounded
by many different objects at various distances, which provide many features for visual
localization (see Figure 16). The dataset contains ten trials where the robot is equipped
with the RGB-D camera and ten trials for the stereo camera. In all 20 trials, the robot
walks approximately along the rectangular trajectory (about 7 m long). Therefore, it

is possible to test SLAM algorithms in both close loop and open loop scenarios, as it
was done in [28§].

Evaluation process shows that trajectory estimates provided by both stereo meth-
ods (S-PTAM and stereo version of ORB-SLAM) were estimated at a wrong scale (see
Figure 17). Therefore, all the trajectory estimates provided by stereo methods in exper-
imental Setup 1 and 2 were used for the calculation of scale offset. Each trajectory was
synchronized with corresponding ground truth (using minimization of RMSE between
corresponding poses) while compensating the scale offset. The offset calculated for
stereo methods is ksrpreo = 0.921 4+0.024. The offset ksrrreo was used for all trajec-
tory estimations provided by both stereo methods. The same way of offset calculation
was also used for RGB-D methods: krgp_p = 1.009 £ 0.054; so, the compensation of
the scale offset was not necessary.

Table 2: Trajectory estimation results for Setup 1

Close loop scenario Open loop scenario
SLAM system ATE, ATEs; ATE. RPE; RPE,; RPE; No. of ATE, ATEs; ATE. RPE; RPE,; RPE; No. of
[em]  [deg] [em] [em]  [em]  [deg] @ fails [em]  [deg] [em] [em]  [em]  [deg]  fails
RGB-D SLAM 2411 19.37 1445 067 745 0.54 0 50.72  25.65 93.16 0.64 6.79  0.52
ORB-SLAM (RGB-D) 554 989 218 047 3.92 049 0 599 10.22  9.77 046  3.59 049

ORB-SLAM (Stereo) 441 578 426 038 274  0.53 1 486 640 9.04 036 260 0.54
S-PTAM (Stereo) - - - - - - 691 627 9.08 088 555 145

ORB-SLAM (Mono) - - - - - - 10
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Figure 17: Scale offset compensation for trajectory estimations provided by stereo meth-
ods

All 10 trajectories estimated by each SLAM system were evaluated using the metrics
described in Section 4 and then medians were calculated for each trajectory error.
Incomplete trajectory estimates and trajectory estimates with false loop closures are
counted as failed and excluded from the evaluation. The results are summarized in
Table 2 and Figure 18.
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Figure 18: Absolute and relative error of SLAM systems in flat terrain scenario
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5.2.2 Setup 2: Artificial Uneven Terrain

The ability of the hexapod robot to traverse a rough terrain induced experimental setup
with a challenging uneven terrain. The experimental setup contains a corridor filled
with wooden blocks with flat and slant tops, see Figure 19 and Figure 15. Slant tops of
the blocks greatly affect the robot’s motion, because the robot often slips down, when
it tries to climb on the wooden blocks. An unpredictable slippage makes the robot’s
motion very rough. Slipping of the robot makes robot’s motion almost unpredictable.

Figure 19: Experimental setup with artificial uneven terrain

The experimental setup is similar as Setup 1 described in Section 5.2.1 except that
the robot walked about 6 m on a planar surface and about 1.1 m in the corridor filled
with the wooden blocks. The dataset captured during this experiment also contains
ten trials with Asus Xtion and ten trials with Tara.

Table 3: Trajectory estimation results for Setup 2

Close loop scenario Open loop scenario
SLAM system ATE, ATEs; ATE. RPE; RPE,; RPE, No. of ATE, ATE; ATE. RPE; RPE,; RPE, No. of
[em]  [deg] [em] [em]  [em]  [deg]  fails [em]  [deg]  [em]  [em]  [em] [deg]  fails
RGB-D SLAM 21.96 19.07 19.13  0.79 8.98 0.54 1 4281 2420 101.38  0.72 8.16 0.50
ORB-SLAM (RGB-D) 793 12.84 539 048 4.98 0.47 0 7.59 13.05 743 048 4.27 0.46

ORB-SLAM (Stereo) ~ 7.89 710 1119 041 321 056 1 585 788 1470 041 286 058
S-PTAM (Stereo) - - - - - - 750 655  9.80 095 539 149
ORB-SLAM (Mono) - - - - - - 10 - - - - - -

OO NN o

Evaluation of trajectory estimation were performed in the same way as it was done
in the previous experiment. The results shown in Table 3 and in Figure 20 indicate
that method with generally the lowest trajectory error is stereo version of ORB-SLAM.

In one case, RGB-D SLAM failed to estimate the trajectory because it detects a
false loop closure (depicted in Figure 21). The false loop closure significantly affect the
trajectory error. ORB SLAM (RGB-D and stereo version) failed mostly at the corners
of the trajectory where the ORB SLAM starts to track new features with insufficient
speed which results in tracking failure. Monocular version of the ORB-SLAM failed

almost every time at the first corner of the trajectory.
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Figure 20: Absolute and relative error of SLAM systems in uneven terrain scenario

Figure 21: Pose graph after optimization applied on false loop closure by RGB-D SLAM.
Yellow lines represent the established frame-to frame correspondences. Whereas the
ones along the trajectory are correct, those between different parts of trajectory are
incorrect and induce the false loop closures.

5.2.3 Setup 3: Test of Mono SLAM

In the previous setups described in Sections 5.2.1 and 5.2.2, the monocular version of the
ORB-SLAM was unable to localize the robot in all trials. In most of the experiments,
the localization failed in the first corner of the trajectory. Otherwise, there was at least
a significant drift of the feature map’s scale.

The main hypothesis, why SLAM with a monocular camera fails, is that ORB-SLAM
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starts to track new image features only if it is able to estimate their distance from the
camera center, which requires to see these features from multiple distances. However,
when the robot turns with almost zero turn radius, new features are not added to the
map as there is no lateral movement that would enable the triangulation. A special
experimental setup has been prepared to test this hypothesis. An oval shape of the
robot’s trajectory, where the robot turns with a non-zero turn radius has been designed.
This experimental setup also contains more objects at different distances from the
camera at the start of the trajectory to make the map initialization easier. The dataset
contains two trials captured by the robot equipped with the Tara camera. Each trial
was processed using the stereo version of the ORB-SLAM and its monocular version
utilizing only the left camera image. Both trials of the dataset were processed two times
at 60 FPS in a close loop scenario. The results are summarized in Table 4.

Table 4: Trajectory estimation results for Setup 3

ORB-SLAM (Mono) ORB-SLAM (Stereo)

Trial 1 Trial 2 Trial 1 Trial 2
Run 1 2 1 2 1 2 1 2
ATE; [em]  10.37 - 7.57 18.79 2.54 288 2.63 3.73
ATE, [deg] 7.31 - T.18 8.39 420 4.52 4.34 4.86
ATE, [em]  29.56 - 7.85 129.29 1.10 1.34 0.30 1.31
RPE; [cm] 247 - 210 2.47 1.89 1.67 1.55 1.62
RPE, [cm] 10.93 - 6.76  14.11 420 4.84 4.22 4.28
RPE, [deg] 1.87 - 201 1.71 1.74 1.62 140 1.64
Note LC TL TL LNC LC LC LC LC

Special designation is used in Table 4 to express some additional information about
trials; LC means the loop was closed, LNC means the loop was not closed, and TL means
the tracking was lost. In Setup 3, the monocular version of the ORB-SLAM was able to
estimate three of four trajectories. Results in Table 4 show that localization provided
by stereo version of ORB-SLAM is in all cases more accurate than the localization
provided by monocular version of the ORB-SLAM.

Results in Table 4] indicate that the monocular version lost tracking of features in
two cases; during the second run of the first trial and during the first run of the second
trial’>. When the cases where ORB-SLAM does not lost tracking are compared, it can
be concluded that Loop closing significantly improves the accuracy of the localization.
This effect is induced by the drifted scale of the ORB-SLAM’s map, which is shown in
Figures 22b and 22a.

°In this case, ORB-SLAM covers most of the trajectory estimate using relocalization.
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Figure 22: Trajectory estimations by Monocular version of ORB-SLAM with marked
ATE;, (green color)

5.2.4 Setup 4: Different Viewpoint Orientations

The last experimental scenarios have been designed to test the impact of the hexapod
robot’s heading on the accuracy of the localization. Note, the hexapod robot is an
omnidirectional vehicle; so, it can move in any direction without rotation around the
vertical axis unlike as, e.g., a car. The main idea of experimenting with the robot’s
orientation is to determine how walking directions affect the accuracy of the localization.

Figure 23: Experimental setup with different viewpoint orientations. The robot was
guided from right to left along the marked red line with heading deflection ¢ of 0,30,60
and 90 degrees respectively.

Therefore, the experimental setup contains a set of experiments with a non-zero
angle ¢ between the robot’s move direction and the heading of the robot (the camera’s
optical axis), see Figure 23. Because the motion of the hexapod robot (especially
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smoothness of the motion) is influenced by the robot’s motion gait, experiments have
been performed for two different gaits: the default tripod gait and the adaptive tripod
gait. Experiments also contain trials captured while the robot traverses both the flat
and uneven terrains, which was created from the corridor of wooden blocks covered
by a carpet of the artificial grass. The artificial grass on the wooden blocks makes
the surface of the terrain smoother; so, it improves traversability of the terrain by the
default gait. On the other hand, soft terrains like artificial grass induce false surface
detections, when the adaptive motion gait is used. All trials have been captured with
the stereo camera Tara at the frame rate of 60 FPS.

ATE, for each set of trials ATE, for each set of trials
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Figure 24: Absolute trajectory error

Results of the evaluation are shown in Figures 24a and 24b. Based on the results
depicted in Figure 24a, it can be concluded that the absolute error of the trajectory
estimate is lower when the robot walks on a flat terrain using the default motion gait
except the case when the heading deflection (1) is 60 deg. Nevertheless, Figure 24b
shows that when the robot walks on an uneven terrain it is better to use the adaptive gait
because the error of the trajectory estimate is lower, except the case where ¢ = 60 deg.
These results are probably induced by the overall smoothness of the robot’s motion.
The hexapod crawling robot equipped with the adaptive motion gait moves at first with
legs and than with the body of the robot. On the other hand hexapod robot equipped
with default gait moves with the body almost continuously which makes the robot’s
motion smooth on a flat terrain, but on the uneven terrain many additional non-smooth
motions are induced by slipping of the robot from obstacles.
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5.3 Summary of experiments

In this section, the most important results of the performed evaluation are described.

5.3.1 Impact of higher framerate on localization precision

During the evaluation of the SLAM systems described in Sections 5.2.1 and 5.2.2, sensor
data were processed at 15 FPS. The experimental results summarized in Tables 2 and 3
show that the localization with the smallest translation error was provided by stereo and
RGB-D versions of ORB-SLAM. Nevertheless, in some trials, the localization provided
by ORB-SLAM failed. These fails were caused by too fast changes of the camera field
of view induced mostly by the high speed of rotation at the corners of the trajectory or
by the uneven terrain.

ATE ¢ for individual trial of the dataset RPE" for individual trial of the dataset
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Figure 25: Impact of a higher frame rate on the accuracy of localization provided by
ORB-SLAM. Trial 2 captured in the flat terrain was omitted in the comparison because
at the frame rate of 15 FPS, the ORB-SLAM was unable to localize the robot.

The problem of too fast changes of the camera field of view can be solved by re-
duction of the robot’s speed or by processing of the video at higher frame rate. The
video stream provided by Tara in Setup 1 and Setup 2 was captured at frame rate of
approximately 60 FPS, thus it was possible to evaluate an impact of the higher frame
rate by processing using ORB-SLAM. At first, the trials where the tracking while
processing at 16 FPS failed were processed at 60 FPS by ORB-SLAM. In all these tri-
als, ORB-SLAM’s tracking succeeded in the estimation of the trajectory. Afterwards,
first five trials from both the flat and uneven terrain were processed at 60 FPS by
ORB-SLAM at close loop scenario. Resulting trajectories were evaluated and the most
important results are shown in Figures 25a and 25b.
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Figure 25b shows that the relative pose error of the trajectory estimates provided by
ORB-SLAM at 60 FPS is lower at all evaluated trials than the error of the trajectory
estimates provided by ORB-SLAM working at 15 FPS. Note, there are some trials
where the absolute trajectory error was lower for method working at 15 FPS. However,
it can be concluded that localization provided by the ORB-SLAM at 60 FPS is generally
more accurate because the absolute pose error is in all cases lower than 7 cm; so, the
estimation is more reliable.

5.3.2 High error of RGB-D SLAM'’s estimates

Based on Tables 2 and 3, it can be concluded that in both the Setup 1 (Section 5.2.1
and Setup 2 (Section 5.2.2) RGB-D SLAM generally provides trajectory estimates with
higher error than the other SLAM systems. The problem affecting the accuracy of
most trajectory estimations provided by RGB-D SLAM occurred when the robot turns
at the first corner of a rectangular trajectory, see Figure 26a. This was probably
caused by repeating feature pattern on the wall in front of the robot, which induced
many false correspondences between images (depicted in Figure 26b), and therefore, the
RGB-D SLAM calculated wrong geometrical transformations between the camera poses.
Trajectory estimates provided by the ORB-SLAM and the S-PTAM were not affected
by repeating of feature patterns because both algorithms use tracking of features.
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(a) Trajectory estimated by RGB-D SLAM  (b) False correspondences (red arrows) in the
critical section

Figure 26: High error of RGB-D SLAM’s estimates
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5.3.3 Consequences of S-PTAM Parametrization

S-PTAM provided trajectory estimations with generally second highest error in both
the flat and uneven terrains. The main hypothesis, why the error was that high is that
the used parametrization use a large neighborhood of tracked feature to find the corre-
spondences in the following image. A large size of the neighborhood was chosen because
when the robot traverses the uneven terrain, the distance between the corresponding
features in sequential images is high.
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Figure 27: Comparison of trajectory estimations provided by S-PTAM with two differ-
ent parametrizations. Trajectory t1 was estimated with parametrization using larger
neighborhood and trajectory t2 was estimated using smaller neighborhood.

A special experiment was designed to verify this hypothesis. During this experiment,
the trial captured on a flat terrain was processed with two S-PTAM parametrizations;
the first parametrization t1 used a large neighborhood to find feature correspondences
and the second one t2 used smaller neighborhood. The trajectory estimates provided
by S-PTAM using both parametrizations have similar medians of ATE; and RPE.
However, in Figure 27, it can be seen that the trajectory estimated by S-PTAM using
parametrization ¢1 contains some outliers, which would make the localization unusable
but estimation using parametrization ¢2 is free of such outliers.

5.3.4 Comparison of loop closure strategies
Based on the values of ATE;, and ATE, presented in Tables 2 and 3, it can be concluded
that the loop closures signifficantly improve the accuracy of localization provided by

RGB-D SLAM even if the method faces problem that is described in Section 5.3.2.
On the other hand, the same conclusion cannot be stated in the case of ORB-SLAM,
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which provides very accurate localization even in large open loop scenarios.The only
significant improvement on accuracy of the localization can be observed by comparing
the end distances, which are generally lower for all methods that enables loop closing,
see Tables 2, 3, and 4.

The noteworthy fact is that the stereo version of ORB-SLAM was unable to close the
loop five times in Setups 1 and 2 together. However, the RGB-D version of ORB-SLAM
as-well-as the RGB-D SLAM were able to close the loop in all trials in both setups. One
of the reasons for this behavior is probably caused by a very high confidence needed
for the loop closure, which prevents false loop closing. Nevertheless, the ORB-SLAM’s
module for relocalization is able to detect already seen scene from more difficult view-
points.

Unlike the ORB SLAM, RGB-D SLAM is capable of detecting features that were
already observed from relatively distant places and different directions. On the other
hand, when RGB-D SLAM detects a loop closure, it starts the global optimization
of the trajectory (see Section 3.2) and this procedure stops the whole SLAM system
until it finishes the calculation. The time required for the calculation depends on a
size of the pose graph, which has to be optimized, but even for small pose graphs used
in experiments described in Section b, the calculation takes approximately 2.5 s. It
is possible to set how often RGB-D SLAM starts the global optimization, but for the
experiments where the robot moves fast it could result in loss of localization.

5.3.5 Suggestions for the active localization

In this section, improvements of localization using evaluated SLAM systems based on
principles of the active localization approach are suggested.

As it was shown in Section 5.3.3, the precision of the localization provided by
S-PTAM depends on the size of the neighborhood, which is searched during the track-
ing of the image feature. A small size of the neighborhood prevents false matches of
image features. The suggestion for this system is to adaptively change the size of the
neighborhood based on the currently traversed terrain. Another way to improve the
localization is to use a different version of S-PTAM, which predicts features positions
in the new frames by fusing visual odometry with IMU measurements [23]. Prediction
of the next feature positions enables to use a much smaller neighborhood than it was
used during the experiments in this thesis.

Stereo and RGB-D versions of ORB-SLAM provided generally the most accurate
localization of the hexapod walking robot, but the main problem was the reliability of
the localization. Reliability of the localization provided by ORB-SLAM can be increased
by processing video stream at higher frame rate as it was shown in Section 5.3.1.
However, in some cases, limited computational resources does not allow this; so, the
reliability can be also improved by slowing down the angular velocity of the robot.

In Section 5.2.3, it is shown, that the deployability of the monocular version of
ORB-SLAM strongly depends on the turn radius. Thus, it is necessary to establish the
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minimal turn radius of the robot. Another important thing is to make loop closures as
often as possible because the scale of the map used by monocular version of ORB-SLAM
may drift rapidly as it was shown in Figure 22b.

The disadvantage of RGB-D SLAM is very computational demanding process of
the global map optimization, which takes very long time as it was mentioned in Sec-
tion 5.3.4. During this computational period, the localization of the robot is not pro-
vided, which can result in fail of localization if there was significant change of the
viewpoint. The fail of the localization can be avoided by measuring frequency of pro-
vided localization by RGB-D SLAM. When the frequency significantly drops down,
than also the speed of the robot should by decreased to avoid localization failure.

General ideas based on active localization that can be use together with any of
evaluated SLAM system are: 1) revisit places to close loops, 2) swich gaits based on
the traversed terrain, and 3) control the gaze direction. The importance of the first
idea was already discussed in Section 5.3.4, the second idea is based on evaluation in
Setup 4. The last idea to control gaze direction is also based on evaluation in Setup 4,
where Figures 24a and 24b show that when the heading of the robot is deflected by
angle 1 = 30 deg, the trajectory error is lower than for ¢» = 0 deg. This means that the
robot should move with deflected heading to improve its localization, especially when
it is possible to observe reliable image features.
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Part 6
Conclusion

This thesis presents an experimental study of five SLAM systems (RGB-D SLAM,
S-PTAM, and three versions of ORB-SLAM: stereo, monocular, and RGB-D) all de-
ployed on the real hexapod walking robot in multiple different experimental scenarios.
A thorough evaluation using proposed method has been performed on altogether 87
captured trials to compare the precision of aforementioned SLAM systems.

The results of the evaluation indicate that the localization with the highest precision
was provided by stereo and RGB-D version of ORB-SLAM, the localization of the
second highest precision was provided by S-PTAM. The localization with the worst
precision was provided by RGB-D SLAM, which suffer from many false matches, thus
wrong camera pose estimates.

Moreover, the evaluation reveals the individual factors influencing the precision of
visual localization of the hexapod walking robot. Among the most prominent ones, it
has been shown that tracking of image features can significantly increase reliability of
feature matching, especially when the selected region for matching is small. Another
important observation is that the monocular SLAM is not suitable for the localization
in setups, where the robot turns with a small turn radius. This disadvantage can be
avoided by enlarging the turn radius of the robot. The noteworthy result is also the
fact that the deflection of the robot’s heading can improve the localization. Based on
the evaluation results, suggestions that follow active localization principles have been
raised to improve the precision of hexapod robot’s localization.

Therefore I am convinced that the main goals of this thesis were achieved. In future
work, I would like to deploy SLAM system on hexapod walking robot utilizing the
proposed improvements based on active localization to deal with the fully autonomous
navigation in exploration scenarios.
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I CD content

Table 5 lists names of all root directories on CD together with their content.

Directory name Description

/mt Bachelor thesis in pdf format.

Table 5: CD content.
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