
CZECH TECHNICAL UNIVERSITY IN PRAGUE 

FACULTY OF ELECTRICAL ENGINEERING 

Department of Cybernetics 

 

BACHELOR PROJECT 

Subjective Speech Intelligibility 

Testing Methodology Design 

Inspired by ITU-T P.807 Deploying 

Parallel Load and Virtual Reality 

 

Author: Michaela Urbanovská 

Supervisor: Prof. Ing. Jan Holub, Ph.D. 

 

 

June 2017  



ii 

 

 

  



 

iii 

 

 

 



iv 

 

 

  



 

v 

 

Acknowledgement 

I would like to thank everyone who helped me and supported me during working 

on this project. In the first place to my project supervisor professor Holub for his 

guidance and help when it was needed. Then, of course, to my family and friends 

who supported me through the years of my bachelor studies. 

 

 

 

 

 

 

 

 

 

 

 

 

Author statement 

I declare that the presented work was developed independently and that I have 

listed all sources of information used within it in accordance with the methodical 

instruction for observing the ethical principles in the preparation of university 

theses. 

 

Prague, date ……………………..      …………………………………….. 

          signature 



vi 

 

Abstract 

Intelligibility of speech is an important factor and subjective intelligibility tests held 

in standard laboratory conditions as recommended in ITU-T P.807 [2] don’t present 

the same results as tests held with the additional parallel task [8] that simulates the 

field conditions. Intelligibility is extremely important especially in emergency 

situations, that’s why the field conditions shouldn’t be ignored. I decided to show, 

whether is virtual reality a good generator of the parallel task or not. That means, 

that an application which involves both parallel task and the testing process has to 

be implemented and that a demonstrative test has to be held to compare results 

with different measurement [8].  

Keywords: intelligibility, subjective testing, parallel task, dual task, virtual reality, 

Unity, VR development, MRT, Modified Rhyme Test, ITU-T P.807, HTC Vive 

 

  



 

vii 

 

Abstrakt 

Srozumitelnost řeči je důležitým faktorem a subjektivní testy, které se provádějí ve 

standardizovaném laboratorním prostředí jako je doporučeno v ITU-T P.807 [2], 

nevykazují stejné výsledky jako testy, které jsou prováděny s paralelní záteží [8], 

která simuluje skutečné prostředí. Srozumitelnost je extrémně důležitá především 

v krizových situacích a proto by tyto podmínky neměly být ignorovány. Rozhodla 

jsem se ověřit, zda je virtuální realita dobrým zdrojem paralelní zátěže nebo ne. To 

znamená, že je zapotřebí implementovat aplikaci, která bude obsahovat jak 

paralelní zátěž, tak proces testování. Také je potřeba provést demonstrativní test, 

aby mohly být výsledky porovnány s výsledky jiného měření srozumitelnosti [8].  

Klíčová slova: srozumitelnost, subjektivní testování, paralelní zátěž, dual task, 

virtuální realita, Unity, VR development, MRT, Modified Rhyme Test, ITU-T P.807, HTC 

Vive 

  



viii 

 

Contents 

1. Introduction ............................................................................................................................... 1 

1.1. Project workflow .............................................................................................................. 1 

2. Intelligibility testing ................................................................................................................ 2 

2.1. Dual-task in intelligibility testing ................................................................................ 3 

3. The usage of virtual reality .................................................................................................... 5 

3.1. Advantages of VR ............................................................................................................. 5 

3.2. Disadvantages of VR ....................................................................................................... 5 

4. Possible problems in VR ......................................................................................................... 6 

5. VR platform ................................................................................................................................. 7 

5.1. Technical specifications of used hardware [4] ........................................................ 7 

6. Used software ............................................................................................................................ 8 

7. Used assets ................................................................................................................................ 9 

7.1. List of assets from the asset store .............................................................................. 9 

7.2. List of remaining assets ................................................................................................. 9 

7.3. List of prefabs .................................................................................................................... 9 

8. Scripts ........................................................................................................................................ 10 

8.1. GameControllerScript ................................................................................................... 10 

8.2. PlayerScript ...................................................................................................................... 10 

8.3. Highlighter ........................................................................................................................ 11 

8.4. SpawnBubbles ................................................................................................................ 11 

8.5. SpawnTargets.................................................................................................................. 12 

8.6. VoteBubbleScript ........................................................................................................... 13 

8.7. BubbleScript .................................................................................................................... 13 

8.8. ControlSounds................................................................................................................. 14 

8.9. PauseSession ................................................................................................................... 14 

8.10. EndSession ................................................................................................................... 14 

8.11. FileController ............................................................................................................... 14 

8.12. TutorialPlayerScript ................................................................................................... 14 

8.13. TutorialStarter ............................................................................................................. 15 

8.14. FlyAway ......................................................................................................................... 15 

9. Scenes ........................................................................................................................................ 16 

9.1. Tutorial scene .................................................................................................................. 16 

9.2. Main scene ........................................................................................................................ 16 

10. Test implementation in VR .............................................................................................. 20 



 

ix 

 

10.1. Application preparation ........................................................................................... 21 

10.2. Instructions .................................................................................................................. 21 

10.3. Break in the testing ................................................................................................... 23 

10.4. End of the testing ....................................................................................................... 24 

10.5. Application modification ......................................................................................... 24 

11. Demonstrative test ............................................................................................................ 26 

11.1. Motivating of the subjects ....................................................................................... 26 

11.2. Reactions of listeners ................................................................................................ 26 

12. Data analysis ........................................................................................................................ 29 

12.1. Data preparation ........................................................................................................ 29 

12.2. Data comparison ........................................................................................................ 29 

13. Conclusion ............................................................................................................................ 31 

14. Future steps ......................................................................................................................... 32 

Resources .......................................................................................................................................... 33 

Appendix A – MRT word list ......................................................................................................... 35 

Appendix B – Data Comparison Graph .................................................................................... 37 

 

 

 

  



x 

 

List of figures  

Figure 1: Example of a highlighted target (application screenshot) ............................. 11 

Figure 2: Example of spawned choices (application screenshot) ................................... 12 

Figure 3: Example of randomly spawned targets (application screenshot) ................ 13 

Figure 4: Particle effect played when destroying the target (application screenshot)

 .............................................................................................................................................................. 14 

Figure 5: The Main scene (application screenshot) .............................................................. 17 

Figure 6: Voting process in the Main scene (application screenshot) ........................... 18 

Figure 7: Using teleport (application screenshot) ................................................................ 19 

Figure 8: Tutorial room instruction panels (application screenshot) ............................. 22 

Figure 9: One of the practice votes in Tutorial scene (application screenshot) ......... 23 

Figure 10: Panel displayed when pause is scheduler (application screenshot) ......... 24 

Figure 11: One of the participants (photo from testing) .................................................... 28 

Figure 12: Graph of intelligibility comparison (data from my experiment and [8]) ... 37 

List of tables 

Table 1: Subjects' scores .............................................................................................................. 27 

Table 2: Used MRT word list ( [17]) ............................................................................................. 36 

 

https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780824
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780825
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780826
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780827
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780827
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780828
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780829
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780830
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780831
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780832
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780833
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780834
https://d.docs.live.net/912b6366764e5c16/Skola/Bakalarka/Srani%20se%20s%20formatovanim/ver_2.docx#_Toc482780835


Introduction 

1 

 

1. Introduction  

This thesis is focused on designing speech intelligibility test involving dual-task but 

otherwise compliant with MRT [7] or ITU-T P.807 recommendations [2]. The dual-

task, in this case, will be created using the virtual reality environment in which the 

testing will take place. The goal is to implement a sustainable application which 

can be used to perform such testing and to perform a test run with several subjects 

and compare results with different intelligibility measurement results to see 

whether the virtual reality is an appropriate tool for the tests.  

1.1. Project workflow 

To implement such application, it is necessary to become familiar with common 

subjective testing procedures as specified e.g. in ITU-T P.807 standard [2], which is 

the most up-to-date recommendation for the intelligibility testing. It is also 

important to search for as many information sources as possible to get some 

general knowledge of the problematics and to be able to fulfill all needs of 

the tests and to understand them.  

The next step is getting familiar with HTC Vive and Unity and starting 

the development. A certain amount of time has to be dedicated to designing 

the application logic and its functionalities. The goal is to implement an application 

which can be used again for similar or a different test, so the test mechanics should 

be easy to modify.  

After completing the application, demonstrative test run has to be held with 

several subjects to acquire data. This data can be later analyzed and compared 

with already existing data from different measurement [8] to find out if the virtual 

reality provides a similar parallel load for the subject.    

  



Intelligibility testing  

2 

 

2. Intelligibility testing 

Intelligibility of speech is an important predictor of user acceptability. Modified 

Rhyme Test method (MRT) which will be used in this experiment is one of American 

National Standards Institute’s approved procedures for intelligibility testing 

according to ANSI S3.2 [7]. The purpose of this test is to figure listener’s ability 

to understand sets of single syllable words in specific conditions with certain sound 

modifications.  

Together with Diagnostic Rhyme Test (DRT), MRT can be assigned to a category 

of methods with a closed response as the answer is picked from several options 

and the samples and there’s no rating included. MRT and DRT use single syllable 

stimuli in a multiple-choice task. MRT will be performed in this experiment, so some 

choices will be in total 6. The intelligibility score is adjusted for guessing. Samples 

used in this testing are as we said single syllable words which are more difficult to 

identify and are likely to be used in emergency situations [1].  

Usually, there are 50 samples from which 25 have choices which differ in an initial 

consonant and 25 differ in the last consonant. That means that single consonants 

are tested. Vocabulary used in this test is fixed and available to the public. The last 

consonants can differ in six different features, voicing, nasality, sustention, 

sibilation, graveness and compactness [2].   

During the demonstration test, I will be using two last samples from the list as 

training samples in the tutorial section of the application. The rest of the samples, 

which is 48, will be used in the test itself. The same approach was used in 

the testing which will be later analyzed in comparison with my demonstrative 

experiment. The MRT word list I used for my demonstrative test is available in 

Appendix A.  

MRT test developed from the DRT test which was presented earlier in the year 1958 

by Fairbanks at ‘Test of phonemic differentiation: The rhyme test.' Ninety-six pairs 

of words were used for the testing and tested subject always chose from two 

words which differed only in the initial consonant. The most significant 

disadvantage was the fact that trained expert listeners had to be used for testing 

which made the performance more complicated and very time-consuming.  

MRT was presented in 1965 by House in ‘Psychoacoustic speech tests: A modified 

rhyme test’ [16]. The test consists of 50 sets of 6 one syllable words, 300 words in 

total. The word is identified from a choice of six words. Also, there’s usually a carrier 

sentence or a carrier sound used when playing a sample. The carrier sentence 

makes the subject “ready” for the sample word and it also gives space for dynamic 

sound modifiers to activate and stabilize. The advantage of rhyme tests is their 

relatively short time to perform because the samples are short sentences focused 

on one word instead of multiple sentences, also there’s no complicated training 

needed for naive listeners as the principle is very simple. On the other hand, in 

the case of participating multiple times, the subjects may remember the correct 

answers due to the fact, that the combinations are fixed [3].  

In my demonstrative test, I decided to use carrier sound like the announcer. 

The participants haven’t attended any intelligibility subjective tests for at least half 



Intelligibility testing 

3 

 

a year which is a condition that has to be met according to [12] in the ‘Eligibility of 

subjects’ section. Also, all of the subjects were non-native English speakers. A new 

document which recommends methods for intelligibility testing is ITU-T P.807 

recommendation [2] which deals with subjective speech intelligibility testing. 

Methods presented in ITU-T P.807 recommendation are designed for word testing, 

not a sentence or phrase testing, and apply to North American English. It can also 

be adapted to other languages. However, in this experiment, we will be using North 

American English, and non-native speakers as listeners as similar test data using 

regular laboratory environment are already available to us for comparison 

purposes. 

Samples for each listener need to be randomized for each session separately. 

For this purpose, I implemented an algorithm into the application, which will 

randomize samples for each subject. The algorithm used for this task is Fisher-

Yates shuffle which was originally intended to be performed by a person with 

pencil and paper. It was first introduced in 1983. The algorithm was modified with 

respect to modern technologies and has a linear complexity [6]. 

2.1. Dual-task in intelligibility testing 

Testing with the parallel task is useful for various reasons. Firstly, technologies 

which require intelligibility testing are usually used in different than standard lab 

conditions. Talking on the phone is performed while walking, reading and during 

different mental or physical tasks. Due to this fact, results from standard testing 

may not meet with real world requirements. These differences could have fatal 

consequences in certain situations, for example for the military and public safety 

applications, airport approach control dispatchers and in other emergency or 

dangerous situations.  

There are several different types of parallel task. The first one is a purely mental 

task which requires mental activity from the subject during testing. It can consist of 

mathematical calculations, memory games etc. Another type is a purely physical 

task which requires physical activity like push-ups, running on a treadmill or similar 

device. The type of task I am going to work with in this experiment is ‘dual-task’ 

which requires both, mental and physical task. 

Dual-task requires combining both physical and mental task at the same time. 

During multitasking, the smaller processing capacity of the brain can be focused on 

the intelligibility testing task as it’s being loaded with multiple tasks at a time. 

Dual-task consists of a primary and secondary task. In this case, the primary task is 

the process of intelligibility testing which includes focusing on a playing sample, 

understanding the sample and picking the correct option. The secondary task is 

supposed to distract the listener and load the brain with a different activity.  

Dual-task such as WART (The Walking and Remembering Test) was used to measure 

how impairments in attention may affect performance in balance and walking of 

people with brain injuries [5]. 

In this case, I want to work with virtual reality environment to develop both mental 

and physical load. To do so I should develop an application that will allow 

the listener perform the testing part and the dual-task part at the same time. 



Intelligibility testing  

4 

 

The mental task should consist mostly of the pressure of being in the virtual 

environment and trying to adapt to the virtual world. This includes understanding 

the moving in such world and figuring out how to work with controllers. 

The physical task should consist mostly of looking around the environment and 

mapping the world. Also, locating objects in the scene and the testing part itself 

requires enough movement.  

  



The usage of virtual reality 

5 

 

3. The usage of virtual reality  

I decided to use virtual reality for this testing because it could provide different 

scenarios for the testing and could also be a good source of the mental load. Since 

not as many people are familiar with virtual reality, in general, the listeners may 

already be distracted enough, so the computation capacity of their brain is lowered 

just like when performing different activities that have been used to develop 

parallel task. Processing the surroundings and figuring out controls may be 

a difficult enough task to deal with for an inexperienced user. Also, the game which 

is used as the parallel task is simple and quite immersive. Its goal is to be 

distractive but also fun, so that the listener is involved in the gameplay. 

Another great advantage of the virtual reality development is the community which 

has developed around this topic online. Since VR is becoming more and more 

popular, it is easier to access tools suitable for its development. There are many 

open source solutions which can make the developing process easier.  

3.1. Advantages of VR  

In general, the tests could take place on multiple devices at the same time, which 

would lower the testing time since the number of listeners is possibly unlimited 

and depends more on the space. Another advantage is the variability of 

the application. The environment can change as wanted and there are many 

possible testing scenarios.   

There are also many available platforms which can be used for testing which can 

make the cost of the test very low. For example, when using mobile phones.  

3.2. Disadvantages of VR  

The biggest disadvantage is possible cybersickness, motion sickness or nausea 

which may be caused by experiencing virtual reality. Some people may take 

the distraction which the VR provides negatively, and that could affect the results. 

It may also have a different impact on people who already have experiences with 

some form of VR.  

Another disadvantage is the current cost of the high-end virtual reality devices. If 

the risk of cybersickness was eliminated, cheaper alternatives could be used. 

However, in this test, I decided to prefer better quality hardware to minimalize any 

possible negative effects on the results.  

  



Possible problems in VR  

6 

 

4. Possible problems in VR  

The main discomfort the users may experience in virtual reality is caused by the low 

frame rate. As the world starts to move unrealistically and begins to lag, users can 

experience all kinds of problems which can be similar to motion sickness. They’re 

usually called cybersickness or virtual reality sickness.  Symptoms of such condition 

can be a headache, stomach ache, nausea, blurred vision and many others.  

To prevent cybersickness, the application should run smoothly and keep high FPS 

(frames per second), so the virtual world looks natural. Another prevention is to 

make sure that movement is performed in the application only when it’s performed 

in real life. When the world moves without the user actually engaging in some kind 

of movement, the brain receives information that doesn’t correspond with the state 

of the body and it can also cause cybersickness. This problem, in particular, is 

related to the Sensory  Conflict Theory, which is a theory related to cybersickness. It 

is based on the fact, that senses that provide information about orientation and 

motion are in conflict because of the VR and the body doesn’t know how to handle 

the situation [15].  

To prevent cybersickness, the movement in the application will be performed in 

specified area which corresponds with the one in the application and further 

movement will be made by teleportation which seems to be rather natural for 

the user as it uses fade-in and fade-out effect, which makes the place transition 

less difficult to proceed. The whole application will be taking place in a quite small 

area, so the teleportation probably won’t have to be used frequently enough 

to cause some sickness.  

  



VR platform 

7 

 

5. VR platform  

The VR platform I will be using is HTC Vive which is currently one of the most 

suitable solutions which could be used for intelligibility testing. The device was 

used at VR Lab at Karlovo namesti.  

The original plan was to use Google Cardboard for the testing. It has several 

advantages, one of them being the low price of the needed hardware. This would 

be important criteria in case of testing which would have to be performed with 

more users at one time, but since my demonstrative test took place with one 

listener at a time, I decided to use the HTC Vive.  

Another disadvantage is the controls. Since at the time I started my development, 

there was no alternative for HTC Vive controllers, the mobile platform could be 

controlled just by one click. In my application, it would be a problem to implement 

such controls, but the listeners would have to keep their right hand at the head-

mounted display all the time, and not only this is not a very natural way of 

controlling virtual reality, but it could also be uncomfortable or even painful after a 

longer period. Thanks to controllers which are part of the HTC Vive platform, 

the controls seem more natural and understandable. 

The main reason, however, was the display quality. Mobile phones tend to have low 

frame rate and low resolution, which also depends on the specific phone, but still, 

the phones aren’t really comparable with the HTC Vive when it comes to quality of 

the visuals. From my experience, I know that virtual reality can cause issues mainly 

to inexperienced users. They can experience a headache, nausea, etc. Since the test 

was planned to take about fifteen to twenty minutes, it could be hard for some 

people to perform the whole test. This would also affect the data significantly. This 

also depends on every individual user, but I assumed that my subjects would be 

rather inexperienced.  

5.1. Technical specifications of used hardware [4] 

HTC Vive:  

Resolution: 2160 x 1200 

Refresh rate: 90Hz 

Field of view: 110 degrees 

Tracking area: 15x15 feet  

The tracking area is limited, and the user can see its boundaries in the application 

when getting too close to them. There’s enough room for listeners to make a step 

or two forward and to turn around which is very important for my application. 

Looking around at the surroundings is the key action, and enough space is 

important because people don’t even realize how much space they need in real life 

when being in virtual reality.  



Used software  

8 

 

6. Used software 

For developing the application, I decided to use Unity for its great support which is 

provided for HTC Vive development. I wrote all the scripts in C# and all packages I 

used are available for free.  

One of the most important packages is SteamVR1 which is a package of basic tools 

to work with during development. They provide such things as scripts for tracking 

the controllers in the scene, attaching ray to the controller, placing tracked area to 

the scene and many other basic functions.  

Another open-source framework I will be using is the HTC Vive teleportation 

framework2 which is available on GitHub. It’s an alternative to an already 

implemented teleport which is available in the SteamVR package. This one has 

already implemented fading effect and a parabolic pointer which makes 

the teleportation easier to visualize to users.  

  

                                                        
1 SteamVR Plugin available at: https://www.assetstore.unity3d.com/en/#!/content/32647 
2 HTC Vive Teleportation System available at: https://github.com/Flafla2/Vive-Teleporter  

https://www.assetstore.unity3d.com/en/#!/content/32647
https://github.com/Flafla2/Vive-Teleporter


Used assets 

9 

 

7. Used assets  

The asset is a representation of any item which can be used in a project. There are 

assets which can be imported from external sources like sounds of models, but 

there are also assets which are provided in Unity such as Animator Controller or 

Audio Mixer. [11] 

In this application, I used mostly open-source assets from the Unity Asset Store3. 

List of these assets is presented below. All other assets were made by me or were 

a part of the Unity Standard Asset Package. Last assets I used were the testing 

samples which were provided by my thesis supervisor for the purpose of testing.  

7.1. List of assets from the asset store 

SteamVR Plugin - https://www.assetstore.unity3d.com/en/#!/content/32647 

Free SpeedTrees Package - 

https://www.assetstore.unity3d.com/en/#!/content/29170 

Classic Skybox - https://www.assetstore.unity3d.com/en/#!/content/24923 

Wooden Floor Pack - https://www.assetstore.unity3d.com/en/#!/content/31492 

7.2. List of remaining assets  

Carrier beep sound – https://www.soundjay.com/button/sounds/beep-02.mp3  

Controller images in the tutorial room – 

http://media.bestofmicro.com/G/D/578605/original/HTC-Vive-retail-

controllers.jpg  

Bubble pop sound – made by me 

Texture of the bubbles – made by me 

7.3. List of prefabs 

Prefab is an asset [11] type in Unity which can be useful when several objects with 

the same properties and components are needed. Prefab makes it possible to store 

a GameObject complete with all its components and properties, and it acts as 

a template. This saved prefab can be then instantiated as desired. [14] 

TextBubble – prefab used for instantiating options in voting. This prefab has a child 

GameObject which is a 3D text used to display text.  

TargetBubble – prefab used for instantiating targets in the scene.  

  

                                                        
3 Unity Asset Store available at: https://www.assetstore.unity3d.com/  

https://www.assetstore.unity3d.com/en/#!/content/32647
https://www.assetstore.unity3d.com/en/#!/content/29170
https://www.assetstore.unity3d.com/en/#!/content/24923
https://www.assetstore.unity3d.com/en/#!/content/31492
https://www.soundjay.com/button/sounds/beep-02.mp3
http://media.bestofmicro.com/G/D/578605/original/HTC-Vive-retail-controllers.jpg
http://media.bestofmicro.com/G/D/578605/original/HTC-Vive-retail-controllers.jpg
https://www.assetstore.unity3d.com/


Scripts  

10 

 

8. Scripts 

In this section, I will describe all scripts used in the application. They were all 

written by me in C#.  

In Unity, every object in the scene is controlled by its Components. A script is also 

a component, and it allows us to trigger events, modify other Components and 

respond to user input in any desired way [10]. 

8.1. GameControllerScript  

The main script which controls the whole application. Its main function is to keep 

the game loop in motion and to communicate with all other important scripts. 

The script is in the Main scene because it controls the testing process. Its main 

function is to communicate with other key scripts.  

Among others, this script is responsible for the game loop. To adjust the game loop, 

we can set the delay between samples and number of samples after which there 

will be a break.  

GameControllerScript takes care of initializing the testing when the Main scene is 

entered. It calls the FileController and gets some samples and the first sample 

which is going to be played in the test session according to a randomization. It also 

retrieves how many samples there are in a session so the application can be 

stopped after finishing the last sample. Then is starts spawning routine by calling 

the TargetSpawner and starting the countdown until next sample.  

When the countdown ends, a sample is played, and bubbles with choices are 

spawned around the listener. GameControllerScript announces voting to all 

the scripts which need the information and waits until the listener chooses 

an option.  

When the listener votes, PlayerScript announces the choice number to 

GameControllerScript, and it forwards it to FileController that saves all the votes. 

Information about ending the voting period is announced to all scripts that behave 

according to it and the countdown to the next sample is started again.   

This simplified sequence of actions is repeated until there’s time for a break in 

between the samples or until the test is over.  

8.2. PlayerScript 

The script which is a component of one of the controllers. The script controls all 

shooting in the scene by handling the trigger of the controller. When the trigger is 

pressed, the script tries to recognize the object the player is trying to shoot and if 

an object is recognized, the desired action happens. In the case of bubble targets, 

a bubble is popped, and listener’s score is incremented, in the case of the vote 

bubble, a choice is logged into a file, and all bubbles are popped. In the case of 

shooting during the break, testing is resumed, and in the case of finishing 

the testing, the application quits.  



Scripts 

11 

 

8.3. Highlighter 

The script which is attached to the same controller as the PlayerScript. It highlights 

all highlightable objects in all scenes by assigning them a different color.  

 

8.4. SpawnBubbles 

The script which takes care of loading all the words used in the test and spawning 

choices for every played sample. According to the randomization made at the start 

of the application, it takes proper choices for current sample and places one choice 

into every TextBubble. It also assigns every bubble a choice number which is later 

saved into the log file. Choice numbers correspond to the order in which the words 

are loaded.  

Figure 1: Example of a highlighted target (application screenshot) 



Scripts  

12 

 

 

8.5. SpawnTargets 

The script which controls spawning target bubbles. It computes a random interval 

in which the bubbles should spawn and the location of the spawning and also 

the target’s color is picked randomly. When the voting process takes place, it clears 

the area around the player so no targets are in the way and until the voting ends, it 

takes care of not spawning any new bubbles in the current voting area.  

Figure 2: Example of spawned choices (application screenshot) 



Scripts 

13 

 

 

8.6. VoteBubbleScript 

The script which is a component of every TextBubble prefab. It controls 

the movement of the bubble and has methods to set its text and its number which 

is later logged. It also controls the destroying process which consists of sound 

effect, animation and a particle effect.  

8.7. BubbleScript 

The script which is a component of every TargetBubble prefab. It controls 

movement and after reaching a certain height it pops the bubble, so there aren’t 

millions of targets in the scene. It also controls the destroying process which 

consists of sound effect, animation and a particle effect.  

Figure 3: Example of randomly spawned targets (application screenshot) 



Scripts  

14 

 

 

8.8. ControlSounds  

The script which is a component of an AudioSource GameObject. This script can be 

called for several reasons; the main one is playing the samples. It can also be called 

to play a sound effect when popping a bubble or to play an announcing beep 

sound before the sample.  

8.9. PauseSession 

The script which is responsible for displaying the pause screen when the listener 

should take a break. There’s a countdown during which the controllers are disabled 

so there’s no accidental resuming the test.  

8.10. EndSession 

The script which is responsible for displaying the end screen of the test.  

8.11. FileController 

The script which controls loading or creating a log file at the start of the test. During 

every break and after the test ends, it writes all gained votes into the log file. It also 

provides a total number of samples.  

8.12. TutorialPlayerScript 

Script similar to PlayerScript but in the tutorial scene where it controls 

the shooting.  

Figure 4: Particle effect played when destroying the target (application screenshot) 



Scripts 

15 

 

8.13. TutorialStarter 

The script attached to the interactive board in the tutorial scene. It controls 

the whole tutorial section which consists of two voting actions and controls 

spawning targets. It also starts the main test.  

8.14. FlyAway 

The script which controls the animation of the roof in the tutorial scene. It plays 

the animation when the tutorial round is started to “open” the roof and prevents 

the room from overcrowding with targets.  

  



Scenes  

16 

 

9. Scenes 

The scene in Unity contains all objects of the game. One scene can be used to 

create a menu, one level or anything else. [13] In my application I have two scenes 

in total. One is the “Tutorial room” which is the first thing to appear when starting 

the application.  

The second scene is called “Main” and as the name suggests, this scene is the place 

of testing session. The player is transferred there after completing all the tasks in 

the tutorial scene.  

Both scenes have several objects which are the same. The most important one is 

the CameraRig from SteamVR package4. It contains both controllers including their 

models, head-mounted-display, which means the camera and takes care of 

displaying the tracking area. That means that in case the listener is too close to 

stepping out of it, a blue grid will appear to indicate, that he shouldn’t move any 

further in that direction.  

Tracking the controllers is also extremely helpful because the listener can see 

the same controller in the virtual reality as he holds. It can even be visible that a 

button is pushed on the model controller.  

9.1. Tutorial scene 

The most important GameObject in the Tutorial scene is the Room, which contains 

parts of the room where the listener is. The floor of the room is Terrain GameObject 

which had to be used because of the Vive Teleport5, which works only on terrains. 

The rest of the objects are the boards with instructions that appear on the walls. 

The last board has a TutorialStarter script attached to it. Last GameObject is a 

Teleporter which contains all required assets from the Vive Teleport. The last object 

is the SoundController which is an AudioSource used to play sound effects and 

samples.  

GameObjects which aren’t at the scene from the beginning are the target bubbles 

and the bubbles used for voting. Those are instantiated during the tutorial section 

from prefabs.  

9.2. Main scene 

In the Main scene, there are GameObjects for all the most important scripts, so 

the scripts that are well-arranged in the scene can be easily found when editing is 

needed. I tried to make the tests as customizable in the editor as possible. 

Changing the delay between votes can be changed right in the editor, as well as 

some samples which have to be completed before a break. Those properties can be 

changed by GameController script on the GameController GameObject.  

                                                        
4 SteamVR Plugin available at: https://www.assetstore.unity3d.com/en/#!/content/32647 
5 HTC Vive Teleportation System available at: https://github.com/Flafla2/Vive-Teleporter  

https://www.assetstore.unity3d.com/en/#!/content/32647
https://github.com/Flafla2/Vive-Teleporter


Scenes 

17 

 

Another customization can be done by the SpawnBubbles script on 

the GameObject ChoiceSpawner. There we can set the desired prefab of choice, set 

the number of choices which are going to be available and even set the radius of 

the spawned bubbles. The last thing that can be set is the rotation target which 

makes all the choices rotate towards a certain GameObject. In this case, it is set to 

CameraRig, so the choices always face the listener.  

Figure 5: The Main scene (application screenshot) 



Scenes  

18 

 

There’s also the same Teleport GameObject as in the Tutorial scene with all 

necessary assets from Vive Teleporter6. And the last GameObject is the Terrain 

which affects the appearance of the scene. The terrain was built in Unity by using 

its default tools for shaping the terrain and placing the trees in the scene.  

                                                        
6 HTC Vive Teleportation System available at: https://github.com/Flafla2/Vive-Teleporter 

Figure 6: Voting process in the Main scene (application screenshot) 

https://github.com/Flafla2/Vive-Teleporter


Scenes 

19 

 

 

  

Figure 7: Using teleport (application screenshot) 



Test implementation in VR  

20 

 

10. Test implementation in VR 

To make intelligibility testing possible in the VR, the logic of the game had to be 

implemented to fulfill the basic needs of the testing.  

1. Perform secondary task  

2. Listen to sample and pick a correct word from visible choices  

3. Resume secondary task. 

4. Repeat until all samples from current session are played 

There are several ways of timing this loop. The first option is to perform a secondary 

task for a certain amount of time or to perform it until a certain condition is met, for 

example until ten targets are hit. In this case, I decided to implement the first 

option. It could be possibly used as a motivation because a competitive element 

can be added to a secondary task when there’s a time limit.  

Another problem in the loop was timing the voting process. The first option was to 

start a timer after the sample is played and after a few seconds, the choices would 

disappear, and the secondary task would resume. This would be efficient timewise, 

but there could be empty votes in the data, which is a problem in further data 

analysis. To prevent this situation, I preferred to keep the voting process unlimited 

and to let every listener take all the time they needed. Since the sample can be 

played only once, the votes took just a few seconds in my demonstrative tests. 

The listener is suddenly interrupted from the game and still can see the targets 

floating and spawning but can’t shoot them. This produces stress towards 

the listener and time pressure. The only timer that was used in the voting process 

was for blocking the shooting controller to minimize accidental voting.  

In general, the secondary task consists of locating, highlighting and destroying 

moving objects in the scene. The objects are represented by floating bubbles which 

randomly spawn around the whole area and float up until 15 meters where they 

pop by themselves to prevent spawning millions of instances.  

The bubbles spawn at random places in random intervals, so the localization 

requires a certain amount of movement. The controller used to shoot targets has a 

ray coming out of it so it can be identified from the other controller which is used 

for teleportation. The ray can have a limited range which would require usage of 

the teleport to get closer to target and shoot it. The problem is that controls seem 

to be quite complicated as they are so the ray length is set in a way so that every 

spawned bubble can be popped no matter where it appears.  

The testing procedure starts after every ten seconds of “free shooting.” In this 

period the listener tries to get as high score as possible. The sample is then 

introduced by a beep sound which is a replacement for carrier sentence that can be 

used in such tests. After the sample is played, bubbles with word choices written in 

them spawn in a circle in listener’s current location. All the words are facing 

the listener and to see all the options it is necessary to look around. The desired 

word can be picked by popping its bubble just like all regular target bubbles. 

After that, the countdown is on again for the secondary task performing.  



Test implementation in VR 

21 

 

During audio tests, listeners take breaks after every several minutes. In a standard 

laboratory environment, the parallel task usually doesn’t have such impact on 

the health of the subject, so it is important to take a break during testing in VR. 

A long stay within the virtual reality may cause trouble to the subject and could 

have an impact on the results. I decided to announce a break to the listener after 

every 16 samples which in this case means after every third of the test. 

10.1. Application preparation 

For the proper run of the application, there are several files that need to be 

prepared before the start. In a folder, which contains build of the application, there 

should be a folder named TestData. Before the start, this folder should contain two 

files. The first one is MRT_words.txt, which is a file that contains all choices for all 

samples that are played in the test session. Each line in this file belongs to one 

sample. The second file is mrt_res.csv, which is a file that contains two lines and is 

in the save format as the log file which is generated later during the testing. 

The first line of this file contains all the sample numbers in the test and the second 

line contains correct answers of the samples. This file is necessary to create a 

proper log file.  

Every time the application starts to run a new testing session, the first thing is 

checking the existence of a log file. To make processing the results easier, all 

sessions are saved into one logfile which is in .csv format. CSV, comma-separated 

values is a file format which consists of lines that include values separated by 

commas. It can be opened by MS Excel, which is important for further data 

processing and analysis. Every session the existence of a log file is checked. 

If the file exists, it will be opened for appending more data, if not a new one will be 

created. In the file, each line has its number which represents a session, and it’s 

followed by all the votes.  

Another important action which takes place at the start of a session is 

randomization. As I already mentioned, it is done by Fisher-Yates shuffle algorithm. 

The samples are then played in randomized order, and the answers are saved into 

an array. After a break is announced, all current data is saved into the log file in case 

of some unfortunate event or problems with the application. After the testing all 

the votes are saved again.   

10.2. Instructions  

Speech intelligibility testing always includes instructions of some kind. In this case, 

listeners are going to be told about the system and the controls before they put on 

the head-mounted display, but the application itself is going to have a “tutorial 

room” for the listeners to get used to the controls and to test the aiming and 

teleportation. The “tutorial room” has instructions on the walls in a very brief form. 

There are in total six panels with instructions.  



Test implementation in VR  

22 

 

 

The first panel has general information about the upcoming intelligibility testing. It 

tells the number of samples that will be played and describes the main task which 

is listening to all the samples and picking the right option.  

The second panel introduces the secondary task, which is shooting the targets. It 

encourages the listener to shoot as many targets as possible.  

The third panel describes the workflow of the testing in 4 simple steps, so it’s easy 

to understand and to remember.  

The fourth panel describes the controller which is used for shooting and has 

a picture of it with highlighted trigger to express which button has to be used.  

The fifth panel shows the highlighted touchpad on the picture of a controller and 

describes the teleportation.  

The sixth panel, which is the last one, is highlightable and has an instruction written 

on it. The instruction says that to start the tutorial, the user has to shoot the panel. 

After shooting it, the tutorial section starts. It consists of playing two samples and is 

important because it introduces the whole process to the subject. Between the two 

samples there are five seconds for practicing the target shooting. After completing 

the tutorial section, it should be obvious to the listener, how will the test will 

continue and how to complete it.  

Figure 8: Tutorial room instruction panels (application screenshot) 



Test implementation in VR 

23 

 

 

After the second vote is completed, the interactive board changes its text and by 

shooting it the testing session starts in the Main scene, which is different from 

the Tutorial one.  

10.3. Break in the testing  

After every 16 samples, the listener should take a short break to regenerate a little 

to continue with the testing. That means there are two breaks in the whole testing 

session. A break will be announced by displaying a panel in front of the listener 

with instructions. The listener will be instructed to take off the equipment and take 

a short break. Resuming the test is done by shooting with the controller with ray. 

To prevent accidental shooting right after the panel is displayed, the shooting is 

disabled for 10 seconds so the listener has enough time to realize what should be 

done. After 10 seconds the test can be resumed.  

Figure 9: One of the practice votes in Tutorial scene (application screenshot) 



Test implementation in VR  

24 

 

 

10.4. End of the testing  

After all samples are played and all votes are logged, all targets are destroyed, and 

a panel with a thank you note is displayed. The panel also has a score written on it 

to tell the listener how well he did in the secondary task. Similar to the panel with 

pause instructions, this panel can also be closed by shooting with the controller 

which is meant for shooting, and this will close not only the panel but also 

the whole application. 

10.5. Application modification 

In the introduction, I said that the goal of this project is to build a sustainable 

application that can be used for audio testing purposes. I will be using it for 

the MRT testing, but it is possible to change the application to perform different 

types of tests with parallel load or just to modify the current test.   

Modification of the wordlist or the test results is very simple. All that has to be done 

is replacing or editing proper files in the TestData folder which is located in 

the same folder as the built application.  

In the case of changing the wordlist, so there is a different number of options for 

each sample, it is possible to set some choices in the Unity Editor when we open 

the project and its Main scene. It is also possible to change the radius of 

the appearing samples or the delay between samples. After changing any of these 

settings, the application has to be built again to use the newly set properties.  

The most complicated is changing of all the samples. Samples are located in 

“Assets/Resources/samples” folder. Samples are the only test-related data that 

Figure 10: Panel displayed when pause is scheduler (application screenshot) 



Test implementation in VR 

25 

 

have to be loaded from the Resources folder. I wasn’t able to implement a suitable 

alternative for loading sound clips from the external location, so the application has 

to be built again when making changes in the “samples” folder.   

By combining all the changes above, we could easily modify the application for 

the DRT testing. We would replace our list of words by a file that has only two words 

in a line; then we would put new samples in the “samples” folder and build 

the application. These changes could also be used for the different voting system. 

For example, it would be possible to perform quality testing on the parallel task by 

using the MOS, Mean Opinion Score, which has five options to select. However, this 

is just an example of possible quick modification; the quality testing would have to 

be implemented on the ITU-T P.800 standard [12]. 

  



Demonstrative test  

26 

 

11. Demonstrative test 

To prove functionality of my application, demonstrative tests were held to acquire 

data which can be used for comparison. Subjective tests took place at VR Lab at 

Karlovo Namesti. Date of the testing was 28th April 2017, and the tests were 

performed throughout the entire day. There were ten listeners in total from which 

six had never used a device which provides virtual reality or had used it just very 

briefly, and four of them could be called more experienced users.  

At the beginning of the test, every subject was instructed about controls and 

the testing process. All instructions were repeated in the application itself, 

the listener had enough time to ask any questions about the testing before starting 

the tutorial section. Then the whole test took place. I didn’t measure the duration of 

every test separately, but every listener took about 15 – 20 minutes to complete 

the whole test.  

11.1. Motivating of the subjects 

It is important for every subjective test to have a proper motivation for 

the participants. In some cases, people get paid to participate in subjective tests 

like this one. However, I decided to count on the curiosity of several of those who 

had never experienced virtual reality, and I also offered snacks which turned out 

to be a satisfying reward for the most of them.  

During the implementation, I decided to add competition to the testing by setting 

the free-shooting period to ten seconds, and this also turned out to be a motivation 

for at least a half of my participants because they wanted to achieve a good score.  

11.2. Reactions of listeners 

During the testing, I made several observations. The first one was that the tutorial 

room is not designed in the most user-friendly way. In the future, it may be more 

appropriate to reimplement the user interface so that it’s clear what is the next 

action that should be done. It happened a few times, that the order of instruction 

boards wasn’t clear or that someone didn’t notice changing the text on 

the interactive board, so they didn’t know how to start the main test. It even 

happened that the order of the boards wasn’t clear. 

On the other hand, there was no problem in understanding the testing process. It 

seemed that everyone had understood the process right at the tutorial section and 

they didn’t need any more explanation in the testing process later. I didn’t notice 

any struggle in the test section with the controls, but the teleport was not used by 

many users. This may be caused by the fact that it wasn’t necessary to use it to get 

closer to the targets. From a total of 10 users, 2 used it more than once to get closer 

to a stuck target or in a similar situation, and 3 used it once to try it out and then 

were probably too distracted to use it again.  

Another observation is that majority of participants didn’t need the break between 

every 16 samples. The flow of the testing was quite quick, and almost everyone just 

waited for the compulsory 10-second break and then resumed the test right away. 

None of the listeners had experienced headache or any other form 



Demonstrative test 

27 

 

of cybersickness. This could be because of the short time which was spent in virtual 

reality environment. I asked the listeners about their medical condition after and 

during the tests, and there was no report of any medical complication. Due to this 

fact, I believe that the final data shouldn’t be affected by the cybersickness at all.  

The shooting score was counted for every listener, so I constructed a table to see if 

the score has anything to do with the VR experience of the listener.  

Subject number Score VR experience level 

1 150 Low 

2 159 Low 

3 129 Low 

4 207 Low 

5 134 Low 

6 182 High 

7 145 High 

8 157 High 

9 196 Low 

10 221 High 

Table 1: Subjects' scores 

  



Demonstrative test  

28 

 

We can see that two of the three highest scores were scores of people who hadn’t 

had any experience with virtual reality. It may have been caused by their 

experience with video games, but I did not verify this possibility.  

The average score of a less experienced user is 162.5, the average score of 

an experienced user is 176.25. The difference between these two values is 13.75 

which is a value that may be partially caused by the randomization in spawning 

process.  

  

Figure 11: One of the participants (photo from testing) 



Data analysis 

29 

 

12. Data analysis 

Next step is to analyze acquired data and compare it with results from a laboratory 

experiment. Since my experiment was only demonstrative, the proper statistical 

analysis was not constructed as it is not fully possible with such little data. Further 

on I will describe performed analysis.  

12.1. Data preparation 

As I mentioned before, the data is logged into a CSV file which can be further 

modified. During data analysis, I found out that the CSV file is a reasonable choice 

for logging the data but not for its further analysis because graphs and functions 

don’t save in this format. To process data without any loss or complications, the file 

should be opened and saved as an XLSX file for using formulas, creating graphs and 

so on.  

12.2. Data comparison 

The MRT test is a set of repeated trials in which we can label each one as a success 

or a failure. Since every sample has six choices, the expected limit for 

the probability of success is one-sixth.  Also, [8] specifies a transformation that 

maps the success probability to intelligibility and is denoted as R.  

𝑅 =  
6

5
(𝑝̂ −

1

6
) 

Where 𝑝̂ =  
1

6
 (the success rate for guessing) to R = 0. It also maps  𝑝̂ =  1 to R = 1.  

In the case of the proper experiment with some subjects stated in [2], there would 

be possible to perform further analysis of the data and to consider the question of 

statistical significance. In that case, we would posit a null hypothesis and 

perform a statistical test to confirm or reject it. It is possible to perform for example 

chi-squared test on the data as stated in [9]. I did not perform this statistical 

analysis because with this small set of data the results wouldn’t have much 

corresponding value.  

To compare my results, I took the graph from [8] which shows a comparison of 

laboratory data and parallel task data. I then reconstructed the graph with the field 

data replaced by data from my experiment. Because of the size of the graph and its 

information value, the graph can be found in Appendix B.  

In the original graph, we can see that intelligibility at some samples was way higher 

when testing with the parallel task. The samples 8, 14, 17, 27, 32, 34, 36 and 42 are 

the example of this fact.  

In my graph, samples 14 and 34 were also the example of better intelligibility with 

the parallel task, but it was also the case of samples 35 and 41. Another anomaly 

was in the sample 36 which didn’t have a single correct vote in my demonstrative 

test.   For better comparison of these results, I would need a higher number of 

votes. This comparison is rather just informative, but I would say that the usage of 



Data analysis  

30 

 

virtual reality is suitable for this testing since in several cases, the results seem 

similar.   

  



Conclusion 

31 

 

13. Conclusion 

The main goal of this thesis was to implement an application that can be used for 

intelligibility testing on MRT or ITU-T P.807 methodology and to perform 

the demonstrative test. Another step was to compare acquired data to already 

existing data from a different measurement.  

I believe I fulfilled all given goals. The demonstrative test was performed in my 

application which is in the final working state for the demonstrative experiment 

and can be further modified and expanded to become suitable for different testing 

scenarios. The results were compared to actual test results acquired from 

a different measurement which was performed in the laboratory. The analysis may 

be affected by the amount of gained votes, but there are cases in which the already 

performed parallel task data matches similar conclusions as for the data 

from virtual reality testing.  

  



Future steps  

32 

 

14. Future steps 

I consider my application a proof of concept in this field and believe that virtual 

reality environment is an opportunity for intelligibility testing. In the future, I would 

like to perform a proper test with a similar number of subjects as in [8] to create 

a better comparison of the results of both measurements.  

Another possibility is to expand the application and provide multiple environments 

which could be changing as the test proceeds. The same change could be done 

with the secondary task logic, where we could have multiple game mechanics that 

could switch during the test.  

There are possibly many more ways to improve and modify this application so it 

can fit the intelligibility testing needs even better. I would like to proceed to 

research these possibilities further in my diploma thesis in the future.  

 



 

33 

 

Resources 

[1] – Speech Intelligibility: Summary of Speech Intelligibility Testing Methods 

[online]. [cit. 2017-05-11]. Available 

at: http://www.dynastat.com/Speech%20Intelligibility.htm 

[2] - ITU-T Rec. P.807 - Subjective Test Methodology for Assessing Speech 

Intelligibility, Series P: Terminals and Subjective and Objective Assessment 

Methods. Geneva, 2016. 

[3] - MCDONALD, Pierce. Modified Rhyme Test DETERMINATION OF COMMUNICATION 

PERFORMANCE TEST FOR SPEECH CONVEYANCE AND INTELLIGIBILITY OF CHEMICAL, 

BIOLOGICAL, RADIOLOGICAL, AND NUCLEAR FULL-FACEPIECE AIR-PURIFYING 

RESPIRATOR STANDARD TEST PROCEDURE [online]. In: . 2005 [cit. 2017-05-11]. 

Available at: http://slideplayer.com/slide/4516681/ 

[4] – SPEC COMPARISON: Does the Rift’s Touch update make it a true Vive 

competitor? Digital Trends [online]. 2016 [cit. 2017-05-11]. Available 

at: http://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/ 

[5] – WEIGHTMAN, Margaret M., Karen MCCULLOCH. Mild Traumatic Brain Injury 

Rehabilitation Toolkit: Dual-task assessment and intervention. 2014. 

[6] – Fisher-Yates shuffle. Programming-Algorithms.net [online]. 2012 [cit. 2017-05-

11]. Available at: http://www.programming-algorithms.net/article/43676/Fisher-

Yates-shuffle 

[7] – ANSI/ASA S3.2-2009 (R2014): Method for Measuring the Intelligibility of Speech 

over Communication Systems. 2009. 

[8] - Avetisyan, Hakob: Subjective Speech Quality Measurement: Comparison of 

Laboratory Test Results and Results of Test with Parallel Task, accepted for ETSI 

Workshop on Multimedia Quality in Virtual, Augmented or other Realities. 2017. 

[9] – VORAN, Stephen D., Andrew A. CATELLIER. Speech Codec Intelligibility Testing 

in Support of Mission-Critical Voice Applications for LTE: NTIA Technical Report TR-

15-520. 2015. 

[10] - Creating and Using Scripts. Unity - Manual [online]. 2013 [cit. 2017-05-11]. 

Available at: https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html 

[11] - Asset Workflow. Unity - Manual [online]. 2015 [cit. 2017-05-11]. Available 

at: https://docs.unity3d.com/Manual/AssetWorkflow.html 

[12] – ITU-T Rec. P.800 – Methods for subjective determination of transmission 

quality, Series P: Telephone Transmission Quality. Geneva, 1996. 

[13] - Scenes. Unity - Manual [online]. 2015 [cit. 2017-05-11]. Available 

at: https://docs.unity3d.com/Manual/CreatingScenes.html 

[14] - Prefabs. Unity - Manual [online]. 2014 [cit. 2017-05-11]. Available 

at: https://docs.unity3d.com/Manual/Prefabs.html 

http://www.dynastat.com/Speech%20Intelligibility.htm
http://slideplayer.com/slide/4516681/
http://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
http://www.programming-algorithms.net/article/43676/Fisher-Yates-shuffle
http://www.programming-algorithms.net/article/43676/Fisher-Yates-shuffle
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/Manual/AssetWorkflow.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/Prefabs.html


  

34 

 

[15] - LAVIOLA, Joseph J. A discussion of cybersickness in virtual environments. ACM 

SIGCHI Bulletin [online]. 2000, 32(1), 47-56 [cit. 2017-05-13]. 

DOI: 10.1145/333329.333344. ISSN 07366906. Available 

at: http://portal.acm.org/citation.cfm?doid=333329.333344 

[16] - HOUSE, Arthur S., Carl WILLIAMS, Michael H. L. HECKER a Karl D. KRYTER. 

Psychoacoustic Speech Tests: A Modified Rhyme Test. The Journal of the Acoustical 

Society of America [online]. 1963, 35(11), 1899-1899 [cit. 2017-05-15]. DOI: 

10.1121/1.2142744. ISSN 0001-4966. Available 

at: http://asa.scitation.org/doi/10.1121/1.2142744  

[17] – The 300 Stimulus Words of the MRT. Speech Intelligibility Papers - MRT List 

[online]. [cit. 2017-05-17]. Available 

at: http://meyersound.de/support/papers/speech/mrtlist.htm  

 

  

http://portal.acm.org/citation.cfm?doid=333329.333344
http://asa.scitation.org/doi/10.1121/1.2142744
http://meyersound.de/support/papers/speech/mrtlist.htm


 

35 

 

Appendix A – MRT word list 

went sent bent dent tent rent 

hold cold told fold sold gold 

pat pad pan path pack pass 

lane lay late lake lace lame 

kit bit fit hit wit sit 

must bust gust rust dust just 

teak team teal teach tear tease 

din dill dim dig dip did 

bed led fed red wed shed 

pin sin tin fin din win 

dug dung duck dud dub dun 

sum sun sung sup sub sud 

seep seen seethe seek seem seed 

not tot got pot hot lot 

vest test rest best west nest 

pig pill pin pip pit pick 

back bath bad bass bat ban 

way may say pay day gay 

pig big dig wig rig fig 

pale pace page pane pay pave 

cane case cape cake came cave 

shop mop cop top hop pop 

coil oil soil toil boil foil 

tan tang tap tack tam tab 

fit fib fizz fill fig fin 

same name game tame came fame 

peel reel feel eel keel heel 

hark dark mark bark park lark 

heave hear heat heal heap heath 

cup cut cud cuff cuss cud 



  

36 

 

thaw law raw paw jaw saw 

pen hen men then den ten 

puff puck pub pus pup pun 

bean beach beat beak bead beam 

heat neat feat seat meat beat 

dip sip hip tip lip rip 

kill kin kit kick king kid 

hang sang bang rang fang gang 

took cook look hook shook book 

mass math map mat man mad 

ray raze rate rave rake race 

save same sale sane sake safe 

fill kill will hill till bill 

sill sick sip sing sit sin 

bale gale sale tale pale male 

wick sick kick lick pick tick 

peace peas peak peach peat peal 

bun bus but bug buck buff 

sag sat sass sack sad sap 

fun sun bun gun run nun 

Table 2: Used MRT word list ( [17]) 

  



 

37 

 

Appendix B – Data Comparison Graph 

 

 

 

Figure 12: Graph of intelligibility comparison (data from my experiment and [8]) 


