Bachelor’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Transforming XML documents
based on user-defined rules

Jakub Pavlat

May 2017

Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Katedra poéitaéu

ZADANI BAKALARSKE PRACE

Student: Jakub Pavlat

Studijni program: Softwarové technologie a management
Obor: Softwarové inzenyrstvi

Nazev tématu: Transformace XML dokument(na zakladé uZivatelsky definovanych pravidel

Pokyny pro vypracaovani:

Prostudujte moZnosti jazyka XSLT[1] a v soucinnosti se zadavatelem BP vyberte vhodny
zpUsob zépisu pravidel pro transformaci XML dokument(i ze zdrojového formatu EMF XMI[2]
do cilového formatu PNML[3]. Zdrojovy dokument popisuje model specifikovaného
autonomniho systému, cilovy format popisuje realizaci tohoto systému pomoci Petriho sité.
Pravidla pro popis transformace by méla byt zapsana formainé pfesnym a na jazyku XSLT
nezavislym zplUsobem. Z tohoto popisu bude vygenerovan kéd v XSLT, ktery transformaci
uskutecni. Vygenerovany XSLT kod otestujte v soucinnosti se zadavatelem na vhodnych
realnych datech.

Seznam odborné literatury:

[1] XSLT - http://www.w3schools.com/xml/xsl_intro.asp

[2] EMF v1.0 Users' Guide
http://www.eclipse.org/modeling/emf/docs/1.x/UG/EMF_v1.0_Users_Guide.html

[3] Petri Net Markup Language (PNML) - http://xml.coverpages.org/pnml.html

Vedouci: doc. Ing. Karel Richta, CSc.

Platnost zadani do konce letniho semestru 2017/2018

LS,
prof. Dr. Michal Péchoucek, MSc. : prof. Ing. Pey&el Ripka, CSc.

vedouci katedry dékan

V Praze dne 2.11.2016

Acknowledgement

First and foremost allow me to thank
my supervisor, Doc. Ing. Karel Richta,
CSc., whose expertise and exceptional
open minded attitude made this thesis
possible. T would also like to thank Ing.
Tomas Richta, as well as his colleagues,
for providing me with insight into his
research and having the patience to ex-
plain it to me over and over again. Let
me also express my gratitude to my fam-
ily for supporting me and everyone else
who has made this work to be completed
possible.

/ Declaration

I declare that I have developed and
written the enclosed Bachelor Thesis
completely by myself, and have not used
sources or means without declaration
in the text. Any thoughts from others
or literal quotations are clearly marked.
The Bachelor Thesis was not used in
the same or in a similar version to
achieve an academic grading or is being
published elsewhere.

Abstrakt / Abstract

Tato bakalarska prace se zaméruje
na mozné vyuziti XSLT transformaci
v konverzi z formatu Eclipse Mode-
ling Frameworku (EMF), do Petri Net
Markup Language (PNML). Motivace
za vyvojem takové transformace je jeji
mozné vyuziti v oblasti ndvrhu dyna-
mickych architektur pro distribuované
embedded ftidici systémy, nebot tyto
systémy pouzivaji k popisu své struk-
tury vyse uvedené PNML, zatimco
EMF mitze byt, jako jiz existujici for-
mat s nastroji, pouzit k navrhu a popisu
takovychto systému a pfitom, na rozdil
od PNML, si udrzet vysokou uroven
Citelnosti pro c¢lovéka.

Vi

This bachelor’s thesis focuses on the
possible use of XSLT transformations
for a conversion from the Eclipse Mod-
eling Framework (EMF) format to the
Petri Net Markup Language (PNML).
The motivation for developing this
particular tranformation is its possi-
ble further use in the field of dynamic
software architecture for distributed
embedded control systems design, as
these systems use the aforementioned
PNML to define their structure, whereas
EMF can be used as an existing format
and tools to design and describe these
systems, while, unlike PNML, retaining
a human-readable form.

/ Contents

1 Introduction
1.1 Overviewcooovuiiunii..

2 Existing formats and resources ...

2.1 Petri Nets ...t
2.2 Petri Net Markup Language. ..
2.2.1 Concepts ...oovvvvnnenn...
2.2.2 Syntax.........oooiiain..
2.3 Petri Net Operating System. ..

2.4 Eclipse Modeling Framework. ...

3 Transformation
3.1 Formal parameters.............
3.2 Petri net top level..............

3.2.1 Transformation algo-
rithm
3.2.2 XSLT implementation ...
3.2.3 Implementation
OVEIVIEW .+ .tvieeneiannn
3.3 Underlying nets

4 Conclusion

4.1 Complete transformation ex-
ample ...
References

vii

Chapter].
Introduction

I 1.1 Overview

In this thesis we will be examining the possibility of using XSLT[1] to implement a
format conversion. The formats in question are Domotic ecore, a domain specific lan-
guage built as an extension to the Eclipse Modeling Framework (EMF)[7], and Petri
Net Markup Language (PNML)[8] and the transformation in question is from EMF to
PNML. Both formats are still xml-style documents with a tree structure of the ele-
ments. The choice of these two particular standards is motivated by their connection
in the field of dynamic software architecture for distributed embedded control system
design.

This thesis came to be as a small part of an ongoing research conducted by Tom4&s
Richta and Vladimir Janousek from Brno University of Technology, Faculty of Infor-
mation Technology and Fernando Macias along with Adrian Rutle from Department
of Computing, Mathematics and Physics of Western Norway University of Applied
Sciences. Their research deals with the use of domain specific languages (along with
other components) for distributed control system description. It should be noted, that
while this thesis aims to construct a prototype transformation that might aid in their
research, its general goal is to examine capabilities of XSLT.

In this context PNML is used to describe the system - its components, data exchange
arcs between these component and the rules for such exchanges. A document written
in PNML can be translated into executable code and run on a Petri Net Operating
System (PNOS)[6]. However, as will become transparent later on, when graphed out
(or even more so as a raw document) PNML gives very little idea to the reader of how
the system looks, what function each component has and what type of data exchange
goes on, which makes the system design inefficient and possibly quite complex. That
is why we consider EMF for design. EMF is a modeling framework primarily used for
code generation based on a class model. Code generation aside, the modeling features
of EMF allow for easy design of basically any structure similar to a class diagram - in
our case a distributed system.

Chapter 2 of this thesis is about existing resources, such as EMF and PNML - the
two formats between which we will be implementing the transformation. Chapter 3 is
where we go over the actual transformation that will need to be implemented as well
as its implementation in XSLT. Chapter 4 is reserved for evaluation and assessment of
how well and to what extent we have accomplished all the goals of this thesis and if we
have not, then why.

Chapter 2
Existing formats and resources

I 2.1 Petri Nets

A Petri net is a graphical modeling tool used for description and definition of distributed
systems. Although initially used for the description of systems consisting of several
chemical reactions, Petri nets and the term distributed system are not limited to the
field of chemistry, but can be applied in electronics and software, as is our case.

A Petri net is made up of 2 major components - states (also called places or, more ab-
stractly, conditions) and transitions. Since the target described systems were originally
chemical reactions, states represented substances and transitions reactions. States are
represented by circles, transitions by squares or rectangles. They are interconnected
by arrows, indicating the flow direction. In our use of Petri nets, the flow always goes
both ways so we do not use the term arrow, but rather we call them arcs (from general
graph theory). When showing steps of a particular process, tokens, represented as black
dots, can be placed inside states and be moved to other states via transitions. This
can be useful to visualise a chronological order of operations, however their use is not
mandatory.

Based on the structure of the net and certain set restrictions, we can differentiate
between classes (or types) of Petri nets. As an example of such a class, we may present
production nets, simply showing different states of a process, as seen in fig. 2.1, or cyclic
nets, which describe processes, that may be repeated infinitely (in a cycle). [4]

c)O NaOH)O HCl

co, NaHCO; NaCl

o,

co,

| Production Net |

Figure 2.1. an example of a Petri net describing a chemical process [4]

The dynamic software architecture research [5] is based on using (extended) workflow
nets and that is the class of Petri nets that we will be dealing with. Ultimately however,
making the distinction between classes is not necessary in the scope of this thesis, as
Petri nets are not the focus of this thesis.

I 2.2 Petri Net Markup Language

Petri Net Markup Language, or PNML, is a XML-style based format used for high-level
Petri net definition interchange. The format specifications are defined in the ISO/IEC
15909-2:2011 (a second part of ISO/IEC 15909) standard. This particular standard
was created as a resolution of a purely technical problem of sharing, importing and
exporting of Petri nets between tools. A new standard had to be created because there

are many types of Petri nets where usually each Petri net type uses a different format
for definition. As well as being readable and universal, extraction of information from
the document should be possible even without knowing which exact type of Petri net
is being described. The format focuses on 3 key features, namely

m Readability - human readable (non-binary) using a conventional text editor
m Universality - every Petri net type can be represented
= Mutuality - easy information extraction, even if the Petri net type is not known

Readability comes from PNML being a subtype of XML. Even though there may
be formats that provide more readability, or may be slightly better fitted for the task,
XML was chosen because of its overwhelming popularity. Universality is guaranteed
by attaching additional information of a Petri net type to objects in the net. This
information is stored by labeling the net and the objects in it (for example in the form
of element attributes). Mutuality can be guaranteed by conventions, which describe a
set of standardized labels and their semantics and typical use. [8]

B 2.2.1 Concepts

The most general format of PNML is a labeled graph, with 2 types of nodes - places
transitions. Along with arcs, we call these objects of a Petri net. Please note that PNML
describes 3 other object types, namely page, reference place and reference transition -
we will explain what these are later on.

One file in PNML can contain several Petri nets. Each of these nets consists of
objects (previously defined as being of type place, transition or arc). Every object has
a unique identifier. The identifier must be unique across the entire document, not just
a page, or a Petri net.

Every object can also have a label. Labels are typically place markings, transition
guards or arc inscriptions. Labels come in two variants: annotations and attributes.
Typically labels are plain text, that should be displayed near the object it corresponds
to, while attributes have a small domain of values which alter the visuals of the object
itself (color, shape, etc.). The impact of an attribute on the object is however not
defined in PNML and is a problem left for the tool that uses the given net.

Objects and annotations can be enriched by graphical information so that not only
the net structure is preserved, but the graphical layout is kept as well. Our main goal
is to prepare a Petri net definition so that it can be used to compile code runnable
on PNOS, where the graphical information is superfluous. It could be argued that for
debugging for example, the graphical information may be important - luckily however,
tools for viewing and editing Petri nets described with PNML are usually capable of
adding this information on their own automatically, or they let users manipulate the
objects and store the resulting information into the PNML file.

Tools that deal with PNML may also need to store additional data, specific to and
only usable by this one particular tool. PNML can store this information. This infor-
mation is marked as tool specific and even contains the name of the tool it is intended
for, making it very easy for other tools to simply ignore this information.

The PNML standard also tackles the problem of describing nets, that are too large to
fit onto a single page. Obviously the page could be scaled up, but the visual represen-
tation of the net would then be poor. Therefore PNML introduces 2 distinct principles
for dealing with vast nets.

We have mentioned pages and reference nodes earlier when we talked about the base
objects of every Petri net. The essential idea is, that a part of a net can be encapsulated

in a <page> element to create a simulation of drawing parts of the net on different
pages, while staying confined within the same document. The problem with drawing
a net on different pages is that each page is secluded and cannot be connected to the
other pages. This is where references come in. If we need to reference a node defined on
another page (e.g. to create a transition between 2 places) we can use a referencePlace
element with attributes id (which is of the same type as the id attribute in place) and
ref. While id has the same meaning as with all other elements, the ref attribute is a
reference to an ¢d attribute of the node we are referencing, defined on another page.

The concept of modules is slightly more complex in comparison with pages and ref-
erences. It builds on the way many systems and software in general is designed, which
is defining modules and then reusing these modules several times in the design. It
is a principle easily compared to creating a class in a higher programming language
and then instantiating it several times. Modules are more complex, however they of-
ten exploit the unique features of a particular Petri net type and therefore are not as
widespread nor supported. [8] Since we will not be using modules at all, as they are
not widely supported, we will skip examining any code fragments.

B 2.2.2 Syntax

We will now go back to the previously explained concepts and describe how they can
actually be expressed in a PNML document.

The following code fragment describes a place node (with additional graphical infor-
mation).[8] Place nodes may later be simply referred to as places.

<place id="pi">
<graphics>
<position x="20" y="40"/>
</graphics>
<name>
<value>ready to produce</value>
<graphics>
<offset x="-10" y="10"/>
</graphics>
</name>
<initialMarking>
<value>P</value>
</initialMarking>
</place>

We can see a use of two labels. Both name and initial M arking are annotations.

It should be noted that the graphic element for place and name has different struc-
ture. Graphical information for a place are just its Cartesian position, whereas an
annotation such as name is described with an offset respective to its parent element.

Please note, that the PNML standard requires the id attribute of an object to satisfy
the restrictions of xs:ID, which include the first character of the ID to be either a letter
or an underscore. [2] The compilation routine of PNML for PNOS however is unable
to cope with any IDs that contain an underscore or letters, so we are forced to deviate
from the PNML standard here and use numerical IDs only.

Another object type was a transition (this time with additional tool specific infor-
mation).[8]

<transition id="t1">

<toolspecific tool="PN" version="1.0">
<hidden/>
</toolspecific>
</transition>

As mentioned before, the toolspecific element does not interest us very much, but
if one would want to store some tool specific data, the grammar requires declaring an
element toolspeci fic with the attributes tool and version referencing an existing tool
and its verison respectively.

The last of the basic objects was an arc

<arc id="al" source="pl" target="t1">
<inscription>
<value>x</value>
</inscription>
<type value="inhibitor"/>
</arc>

Since some definitions of Petri net prohibit multiple arcs between a place and a tran-
sition, it could be argued that an arc does not need an id as it can be uniquely identified
by the two objects it connects (referenced by the attributes source and target), how-
ever as stated in The Petri Net Markup Language [8], PNML aims to suffice for the
description of even extended Petri nets and therefore should not place a limit on the
number of arcs between 2 objects.[4] [8]

Also, because the definition of Petri nets 2.1 states that an arc cannot connect 2
places or 2 transitions (must be from a place to a transition or vice versa), then if the
value of source is an id of a place, then the value of target must be an id of a transition
(and vice versa).

Lastly we talked about how PNML deals with large net structures that are hard to
visualize on a single page. We will examine the page and reference constructs without
going into too much detail, because our main objective is to produce a PNML document
and feed it to a compiler and except for debugging, this feature has no practical use for
us at this moment.

<net id="nl" type="HLnet">
<name>
<value>Example high-level net</value>
</name>
<place id="p1">
</place>
<page id="pgl">
<referencePlace id="rpl" ref="pl">
<name>. ..</name>
<graphics>
<position x="20" y="20"/>
</graphics>
</referencePlace>

</page>
</net>
The referencing mechanism is demonstrated using the place with id pl. We define it
on the top level of the net and it is valid in that context. If we want to connect it to

some objects on page pgl, we have to define it within the context of the page. Simply
declaring it again is prohibited however (because of the id principle violation), which
is why we use the referencePlace object. If we were to create an arc on the top level
from this place, we would use the reference pl, however if we wanted to create an arc
inside page pgl, we would use the reference rpl. [8]

The use of pages and re ferences does not give the net any new functionality, however
it could be used to organize the net into pages, where each page can be viewed on its
own. This could be useful if the system effectively decomposed a problem and each
page would tackle one part.

I 2.3 Petri Net Operating System

Although the workings of the Petri Net Operating System are beyond the scope of this
thesis, it plays a key role in Richta’s, Janousek’s, Macias’ and Rutle’s research.

A primary application area of their research are distributed control systems based
on wireless sensor networks. The nodes of this net contain PNOS, which is comprised
of the kernel and the platform net. The kernel contains PNVM (Petri Net Virtual Ma-
chine) which interprets Petri nets that are installed in the system in form of a bytecode
(PNBC). PNOS also supports access of the application program to the hardware inputs
and outputs, as well as serial communication port. [6]

PNML with the appropriate inscriptions can be used to generate the byte code for
PNOS. This is why in this thesis we explore the possibility of a transformation from
EMF to PNML.

I 2.4 Eclipse Modeling Framework

The EMF project is a modeling framework and code generation facility for building
tools and other applications based on a structured data model.[7]

As the name suggests, the framework is built atop the Eclipse IDE. At its core,
without any extensions, the most basic use of the framework would be using a graphical
user interface (GUI) to create a data model (also called domain model) for some data
you are working with. This meta model is called Ecore. Based on this model, EMF
can generate Java classes and interfaces and their factories (in the object oriented
programming sense). [7]

The process in this case would be first creating a domain model in the EMF modeling
tool. We can create entities, classes, packages and relations between them. If we were
modeling a enterprise application of a library for example a part of the model might
look something like fig. 2.2.

= # LiteraturePckg -
H Library

@ getBookCount()
cInt

H Literature

@ getBestBook() : [1l.1] belongs to [0..#] has in storage
Book
A
E:|—' Book] | ; Magazine
= ISBN : String = ISSN : String

Figure 2.2. an example of a domain model in EMF

When we have our domain model created, we can use EMF to generate interfaces
and classes for the model entities. The interface for the Book entity, would look like
this

public interface Book extends Literature {
String getISBNQ);
void setISBN(String value);

X

As per the model, the interface inherits from Literature and has a getter and a setter
for the ISBN attribute.

An important thing to note is that EMF stores our UML model in an XML document.
More precisely it is an XMI document, but we are not going to be taking any advantage
from it being XMI so we may consider it being simple XML. A XMI code fragment
that describes the Book entity would look like this

<eClassifiers xsi:type="ecore:EClass" name="Book"
eSuperTypes="#//Literature">
<eStructuralFeatures xsi:type="ecore:EAttribute"
name="ISBN" ordered="false" eType="ecore:EDataType
http://www.eclipse.org/emf/2003/XMLType#//String" />
</eClassifiers>

We can see that this document stores the name of the class, its type and attributes
as well as the class from which it inherits.

Although EMF seems like a great tool, we may struggle to find use for it in the field
of Petri nets and distributed systems. The thing that makes EMF a great tool to design
embedded distributed systems is the fact that the default set of symbols, annotations
and relations that are used in the model can be expanded by custom extensions. This
means that we do not have to be limited to the predefined entities and relations in
the model. That is where Domotic ecore comes in. It is a set of new components and
relations that can be used in the model.

At this time, documentation for Domotic ecore is scarce because it is currently in
the stages of research and development by Richta, Janousek, Macias and Rutle.

As the name implies, Domotic ecore contains mainly components that can be used
to describe real life components found in an ordinary house - components like knobs,
valves, thermostats, boilers, simple computational units and so on. We can use EMF
to draw up a model with these components and link them together. For example we
might create a Thermostat and a Knob and link them both to a Computational unit
and place them into a package.

Hopefully the similarity between creating and packaging classes and interfaces and
relations between them and creating and packaging components like thermostats and
boilers and relations between them is apparent. It should be clear that the modeling
principle remains the same with different components and symbols.

Figure 2.3. an example of a house model in Domotic ecore [5]

Domotic ecore even inherits the packaging principle (placing components into other
components). In this particular example we can see that we divided the top level
package House into four sub-packages based on the room they would be physically in.

The code that corresponds with this model is fairly long so we will not be going
through it all, but let us take a look at some fragments of it. This first example is to
show how the packaging principle works in practice.

<contains xsi:type="domotic:Component" name="House 1">
<contains xsi:type="domotic:Component" name="Hall and stairway">
<contains xsi:type="domotic:Sensor" name="thermostatl">

</contains>
<contains xsi:type="domotic:ComputationalUnit" name="cu">

</contains>
</contains>
</contains>
Instead of using classes, we can use elements with xsi:type domotic : Component
which can contain other contains elements. The difference is that there is no limit
to how many layers the structure can have, unlike in Ecore where there cannot be a

package inside a package. This obviously comes from the fact that there cannot be a
package inside a package in Java.

There is also a difference in describing relations in Domotic ecore and basic Ecore.

Ecore has a couple of ways to set up relations between components - SuperType,
Reference, Bi-directional Reference and Composition. These relations however are all
stored in the class as seen in this code fragment taken from the definition of Library in
fig. 2.2.

<eClassifiers xsi:type="ecore:EClass" name="Library">
<eStructuralFeatures xsi:type="ecore:EReference"
name="has in storage" upperBound="-1"
eType="#//LiteraturePckg/Literature"
eOpposite="#//LiteraturePckg/Literature/belongs20to"/>

As we can see, the relation between Library and Literature (from package Litera-
turePckg) is in fact stored in a child element to the Library class element. This is not
the case with Domotic ecore. In Domotic ecore to create a relation (two components
having data exchange), we use the element dataFlows which has attributes name and
ports like so

<contains xsi:type="domotic:Sensor" name="thermostatl'">
<outputPorts name="templ"/>

</contains>

<contains xsi:type="domotic:ComputationalUnit" name="cu">
<inputPorts name="temp"/>

</contains>

<dataFlows name="df" ports="//Qcontains.0/Qcontains.0/@outputPorts.0

//@contains.0/@contains.0/@contains.1/@inputPorts.1"/>

This fragment declares 2 components - a sensor and a computational unit and their
relation. As we can see, the relation is defined and declared outside the declaration of
the 2 components.

We should also explain how the relation set by dataFlows works. There are two
expressions in the ports attribute separated by a space. Each of these refers to an
element in the document. These expression are in principle similar to xPath, yet have
different rules of application. No use of traditional xPath axis is allowed except for the
child axis. Every element must be preceded by a @ symbol, followed by its position
(in the sequence of its siblings) designated by an integer after a . sign. It should
be noted that we count from 0 rather than 1. Take for example the first expression
//@contains.0/@contains.0/@outputPorts.0. As stated before, these expressions do not
use any other axis than child and therefore the first two slashes // are not interpreted
as descendant-or-self but rather simply as the beginning of the expression. The integer
0 means that we want the 1st element (in case there were more than one). The same
rules apply for the rest of the expression.

We can look at the following minimalistic Domotic ecore document to see how the
expressions are built up. The elements and their corresponding expression are on the
same line.

<domotic:Component>
<contains ...> //@contains.O
<contains ...> //@contains.0/contains.O
<outputPorts .../> //@contains.0/contains.0/@outputPorts.0
</contains>

<contains ...> //@contains.O/contains.1
<inputPorts ...> //@contains.O/contains.1/@inputPorts.0
</contains>
</contains>
</domotic:Component>

Please note that these pseudo-xPath expressions do ignore the root element (the first
token of the expression would always be the same).

This overview should be enough to provide basic working knowledge of EMF and
Domotic ecore in the extent we will need later on.

10

Chapter 3
Transformation

I 3.1 Formal parameters

In order to use EMF for PNML generation, we will need to find a mapping from one
format to the other. It should be noted, that while the transformation could be done
in both directions - EMF to PNML and PNML to EMF, we are interested only in the
former, as transforming PNML to EMF has no use for us right now and we will not be
exploring this option further. The formal requirements for the transformation are as
follows:

m Transformation input
1. EMF file, as described in 2.4, describing the system structure
m Transformation output

1. a .pnml file describing the top level of the petri net
2.n .pnml files each describing the internal structure of a top level component

m Lightweight-ness - we want the transformation to as minimalistic as possible, requir-
ing very little other software and resources

m Platform independence - continuing from the previous point - we want this trans-
formation to employ a WORA (write once, run anywhere) principle, to make the
area of usability as wide as possible. Using XSLT ensures that any platform with a
XSLT processor can use these transformations without much (or ideally none) further
implementation.

s Commercial independence - we want this transformation process to not be reliant on
any commercial products, or products under licensing so that its use can be universal.

I 3.2 Petri net top level

The more complex of the 2 outputs of the transformation is creating the top level of
the petri net. We will look at the algorithm required to describe the net top level and
at its implementation.

B 3.2.1 Transformation algorithm

As described in 2.4 and 2.2, both PNML and EMF are xml style documents with dif-
ferent nested elements as well as being subjects to different XML Schema Definitions.
However, not all EMF elements are relevant for PNML generation, meaning the map-
ping is not a one-to-one (bijection). To describe the transformation implementation we
will first decompose the EMF document into elements that are of interest to us.

m The term depth will be used to signify the number of elements in the ancestor xPath
axis

11

Format decomposition 3.1.

1. Let C be a set of all < contains > elements in depth 1, such that they match the
xPath Component/contains/contains

2. Let D be a set of all < dataFlow > elements in depth 1, such that they match the
xPath Component/contains/dataFlows

Please note that we will refer to this definition later several times.

The desired mapping from EMF to PNML can be achieved by implementing the
following algorithm:

Algorithm 3.2.

1. For VC; € C create a place P; such that the attribute id of P; is unique across the
entire document.

2. For VD, € D create a transition T; such that the attribute id of T; is unique across
the entire document.

3. For VD; € D create a pair of arcs A; and A, such that the attribute id of A; and Ay
is unique across the entire document and

a) attribute from of element A; has the value of attribute id of a place P which was
created from an element C' referenced by the first expression in attribute ports

b) attribute to of element A; has the value of attribute id of transition 7" which was
created from dataFlow D;

c) attribute from of element A has the value of attribute id of a place P which was
created from an element C referenced by the second expression in attribute ports
of D;

d) attribute to of element A, has the value of attribute id of transition 7" which was
created from dataFlow D;

To prove the validity and completeness of this algorithm, we would need to formalise
the behaviours of both the input and output models as well as the language that
represents them. Firstly, this would be a very complex problem on its own, probably
exceeding the scope of this thesis. Secondly, as previously mentioned, the Domotic
ecore model is still in the early stages of its development and so far no major papers
have been published. For these reasons we will only provide a sketch of a proof that
this solution works.

Sketch of proof would be as follows:

Let G be the Petri net graph in the output. Due to step 1, all components of
EMF model C will have appropriate place in the Petri net graph G. Due to step 2, all
dataflows in D will have an appropriate transition in the Petri net graph G. In step 3,
all transitions created in the step 3 will be linked by input and output arcs according
to the source dataflow. [3]

B 3.2.2 XSLT implementation

In this section, we will try to implement the algorithm described in 3.2.1.

The first approach we take will be fairly straight forward - going through the steps
3.2 we will create a functional section of XSLT for each one, starting with the first
line of the algorithm. For VC; € C create a place P; such that the attribute id of P; is
unique across the entire document. In XSLT this should be a simple operation. Using

12

the constructs template and apply-templates we can easily achieve this bijective (one to
one) mapping.

<xsl:template match="contains">
<place>
<xsl:attribute name="id">
<xsl:value-of select="generate-id()"/>
</xsl:attribute>
<name>
<text>
<xsl:value-of select="@name"/>
</text>
</name>
</place>
</xsl:template>

The structure of elements place -> name -> text is in accordance with PNML spec-
ifications as described in 2.2. The result PNML fragment might look like this:

<place id="13">
<name>
<text>Kitchen</text>
</name>
</place>

Please note, that the function generate-id() has an alphanumerical output (containing
both letters and numerals) [2]. However, as was stated in 2.2, the attribute id cannot
contain any alphabetical characters and has to be strictly numerical. For this purpose
we refrain from using generate-id() and we will use the following instead:

<xsl:attribute name="id">
<xsl:number format="00000" level="any"/>
</xsl:attribute>

This gives us a numeral-only value, as it is a xsl:number type node. This node will
have a value of all the preceding elements to the one the XSLT processor is currently in.
The length of the string in the format attribute is obviously dependent on how many
elements requiring a unique identification there are overall.

Using this template, we have successfully satisfied step 1 of the algorithm 3.2 - every
element contains is mapped to an element place with a unique id attribute across the
document. The uniqueness of the id attribute is guaranteed by the one-to-one mapping
between contains and place and the nature of the attribute value selected. This is
because only one element place is created every time the XSLT processor reaches an
element of type contains and in every element contains the expression above gives a
unique number, because no two elements in one document can have the same number
of preceding nodes.

Let us continue with step 2 of 3.2, For VD; € D create a transition T; such that the
attribute id of T; is unique across the entire document.

As with step 1 this will be very simple. Using the same constructs, we can use almost
the same code, changing only the match expression from contains to dataFlow, as well
as some of the inner structure of the result transition element.

<xsl:template match="dataFlow">
<transition>
<xsl:attribute name="id">

13

<xsl:value-of select="generate-id()"/>
</xsl:attribute>
<create>

<text>

</text>

</create>
</transition>
</xsl:template>

We have intentionally left the contents of the element text blank, because the contents
need to have the form of id1 : output(portnamel,id2 : input(portname2), where id are
identifiers of places and port name are values of name attributes of these places. Using
the algorithm we are currently exploring, it would be a complex task to fetch these
values, but a more severe problem arises with step 3 of this algorithm, so we will ignore
this element for now, and assume that it can be created according to specification
nevertheless.

The section above has so far described steps 1 and 2 of the algorithm 3.2. Continuing
with step 3, that is

ForVD; € D create a pair of arcs Ay and Ay such that the attribute id of A1 and A,
s unique across the entire document and

a) attribute from of element Ay has the value of attribute id of a place P which was
created from an element C' referenced by the first expression in attribute ports

b) attribute to of element Ay has the value of attribute id of transition T which was
created from dataFlow D;

c¢) attribute from of element Ay has the value of attribute id of a place P which was
created from an element C referenced by the second expression in attribute ports of
D;

d) attribute to of element As has the value of attribute id of transition T which was
created from dataFlow D;

Obviously without the succeeding conditions this is a trivial task. We would create a
template just like with steps 1 and 2, with different content, namely there being 2 arc
element instances. Taking into account even just the first condition makes using this
approach impossible.

At this point, the XSLT processor has read a dataFlow element. The only directly
accessible information is what dataFlow contains which is basically just the ports at-
tribute that tells us the source of the routed data and its destination. Although the
expression is not actual xpath, let us assume that it could be transformed into a valid
xpath expression. As per the 1st condition, we need to get the id of a place, that we
created from an element (that matches the xpath in ports) of the original document.
Now even if we could dynamically resolve the xpath in ports, we still would not be able
to get to the id of the place created from it, because the id was created for the new
document, and has no tie to the original.

To go step-by-step through this problem, let us consider the following input:

<contains>
<contains>
<outputPort/>
</contains>
<contains>
<inputPort>

14

</contains>
<dataFlows ports="//@contains.0/@contains.0/@outputPort.0
//@contains.0/@contains.1/@inputPort.0">
</contains>

The transformation of the two contains elements are obvious and will produce some-
thing like the following

<place id="1">...</place>
<place id="2">...</place>

Now the processor moves on to the dataFlows element. The processor knows which
elements from the original files it wants to link together, but there is no way of knowing
what ids the places they represent have. XSLT is a declarative programming language
which means that we do not describe the control flow or specific instruction that should
be executed, but rather describe the logic of the computation.

XSLT therefore lacks any sort of data structures resembling a Key, Value map. If
there was a possibility to create such a structure, we could simply keep a map where
the expression is the key and the id is the value. When creating places we would store
these pairs, and retrieved the values when iterating over the dataFlows elements. As
stated before however, there is no such construct in XSLT.

It may seem that merging steps 1 and 3 of the algorithm 3.2 might help - creating
the places along with the transitions between them. It is true, that while processing
the first dataFlows element, we can create the two place elements, storing their ids in
two variables and then using these ids create a transition. This obviously works, but
fails in the next iteration, where the places already have assigned ids that you cannot
retrieve.

This is why we propose a different approach. In the previous paragraph we talked
about merging steps of the algorithm 3.2 together, which only delays the problem, while
what we can do is separate step 1 from the rest. What is meant by that, is that we run
2 transformations in a sequence, feeding the result of the first one as input to the other.
The problem came from the fact that there was no usable link between the original
contains elements and their ids in the resulting document - if we knew, what place (and
subsequently id) each contains element mapped to, the problem would be gone. This
can be done in several ways, so we picked what seemed the most straight forward one.

Specifically what we want to do is for the first transformation to transform the
relevant contains elements into places, while leaving the rest of the contents intact,
while the second transformation implements steps 2 and 3.

We will demonstrate how this solves the problem we could not tackle in just one
transformation. The input for the first step is the same as before - Domotic ecore
document. Let us reuse some definitions, specifically Let C' be a set of all < contains >
elements in depth 1, such that they match the xPath Component/contains/contains.

The objective of the first transformation is simple - accomplish step one of the algo-
rithm 3.2 and copy the entire document. We have already shown a way to achieve the
former. Copying the document is simple enough, although it should be noted, that a
XSLT expression such as this

<xsl:template match="/">

<xsl:copy-of select="."/>
</xsl:template>

15

is incorrect in this case, as copy-of creates a shallow copy only. What we need is a
template that can be applied recursively, to create a deep copy. Fortunately there is a
recommended template for that, which is as follows

<xsl:template match="node() |@*">
<xsl:copy>
<xsl:apply-templates select="node() |@x*"/>
</xsl:copy>
</xsl:template>

This template matches any node or attribute and therefore effectively copies the
entire document. This may seem like we cannot create any new elements, since every
node matches this template, however XSLT is very clear about template conflicts and
gives more specific match expressions precedence. This means that we can use the same
template we used before to transform certain contains elements into places. To both
create a new place and keep the original element, we must add a template application
on the node itself to create a copy.

The input for the second transformation is then a document that contains all the
original information, with the addition of every contains element being preceded (or
succeeded, depending on the implementation) by a place element. This gives us a stable
relation in the input document between a contains element and its place element’s id.
With this document we can run the second transformation, that will create transitions
and arcs.

Because both arcs and transitions are created while iterating over the same set (VD),
we will do steps 2 and 3 simultaneously, in one template. This is for 2 reasons -

1. It makes more sense to iterate over the set once, with every iteration creating 2 arcs
and 1 transition, rather than iterating over the set twice (creating transition in one
iteration, arcs in the other)

2. If we indeed split them up, when creating the arcs, we would not know what transition
id to use in the from/to attribute of the arc. This issue is similar to the one we are
currently trying to solve - the reason this can be solved by merging the steps together
comes from the fact that the |D| = |T| (the number of all dataFlow elements is equal
to the number of transition elements), whereas with D and P we can make no such
claim.

The idea now is, that if we know to which contains element an expression in the ports
attribute of dataFlows is pointing to, we can get the id of this place as well. Let us say
that in the input file we now have the following

<contains ...>
<place id="1">...</place>
<contains name="Kitchen" .../>
<place id="2">...</place>
<contains name="Bathroom" .../>

<dataFlows ports="//@contains.0/@contains.0
//@contains.0/@contains.1"/>
</contains>

and we want to create the transition and arcs from place 1 to place 2 (in practice
there would be input and output ports, but the principle stands). Let us say that we
create a transition with id = 3. Now we need to create 2 arcs (from place 1 to transition
3, from transition 3 to place 2). Transforming the expressions from the ports attribute
into valid xPath could be done, but we run into yet another issue. While XSLT can

16

obviously resolve such xPath expression, it can only do so if it is in the form of a literal,
not a variable whose value is computed at runtime.

XSLT 2.0 or lower (without extensions), which are currently the only non-commercial
versions, are incapable of dynamic xPath resolution. If you consider the following
document fragment

<element id="1"/>
<xpath>//element [@id = "1"]</xpath>

there is no way to resolve the xzPath in element <xpath> and thus get a reference
to element <element id=1>. The only way to use xPath in these versions of XSLT
is to include it in the XSLT file itself, making it useless since we do not know what
the expression in the ports attribute will be. This is a severe drawback of using the
non-commercial versions which requires yet another workaround.

Using commercial implementations of XSLT 3.0 is not possible as per the stated
requirements in 3.1 just as using extensions for XSLT 2.0 (or lower). The workaround
we propose is fairly simple. Rather than looking at the ports expression and calculating
which element its xPath equivalent points to, we calculate and add these expressions
to every element and then simply compare if the expression matches. We will have to
revisit the 1st transformation, as all these values need to be added before the document
is usable for the 2nd transformation.

It should be noted, that unlike our simplified examples, a dataFlow must create
a port-to-port relation, rather than place-to-place relation. We will therefore have to
ensure, that the document after the first processing has both the contents of the original
EMF document and in some form stored information about places and their ids and
their ports along with the appropriate pseudo-xPath expressions for each port.

Again, there are many ways to accomplish this and we suggest the following structure

<place id="1" px="//@contains.0/@contains.0">
<ports name="request" px="//@contains.0/@contains.0/@inputPorts.0"
io="input"/>
<ports name="temperature" px="//Qcontains.0/@contains.0/@outputPorts.0"
io="output"/>
</place>

where pz stands for pseudo-xPath and io for input/output to indicate, whether the
original element was inputPort or outputPort.

We have already described a template for the appropriate contains elements that
creates places, so we can just extend the code of this template. The id, name and io
attributes are trivial. What is interesting is how we can derive the expression in px.

When creating the attribute itself, we will apply a very general template with a path
mode, that will trace back to the root element - it will apply itself on every node in the
given axis. Using a template with a mode is convenient so that it does not clash with
any of our current templates.

<xsl:apply-templates select="ancestor-or-self::*" mode="path"/>

The template itself looks as follows

17

1 <xsl:template match="*" mode="path">

2 <xsl:text>/0</xsl:text>

3 <xsl:value-of select="concat(name(), ’.°)"/>

4 <xsl:value-of select=

5 "count (preceding-sibling: : * [name () =name (current ())])"/>
6 </xsl:template>

These lines of code can be interpreted as

® 2 - adds a prefix to every element

m 3 - appends the name of the element and a dot sign

m 4 and 5 - counts how many sibling elements of the same name precede the current
element

We also stated, that these expressions always start with //. Also this proposed
template would match with the root element, which should not be in the expression as
stated in 2.4. We can rid ourselves of both problems by adding an if-else structure to
the template as such

<xsl:choose>
<xsl:when test="count(ancestor::*x) = 0">
<xsl:text>/</xsl:text>
</xsl:when>
<xsl:otherwise>

</xsl:otherwise>
</xsl:choose>

where the otherwise branch contains the code we used in the template earlier. In the
choose construct we simply check if the current element is root and if so, do nothing
else than produce a /.

Now we have the document in a state with which we can easily implement the rest
of the algorithm. It may seem that we are now further from solving the problem than
we were at the beginning, since

1. place elements now contain superfluous data
2. we have not implemented steps 2 and 3 of the algorithm 3.2.

Filtering the extra data in the place elements is trivial. We simply copy everything,
that is neither the pz attribute, or a ports element.

Creating the transitions and arcs at this point however becomes almost trivial as
well.

When processing a dataFlows element (inside a template), we create a transition
and store its generated ¢d in a variable. We then declare several other variables as
follows

<xsl:variable name="placelpx"
select="substring-before(@ports, ’> ’)"/>

<xsl:variable name="placel"
select="//placel./ports[contains($placelpx, @px)]1]1"/>

<xsl:variable name="placelport"
select="$placel/ports[contains($placelpx, @px)]"/>

m placelpx is just the expression identifying the first element of the relation

18

m placel is an element, that has in its pz attribute the same expression we are looking
for
m placelport is the corresponding port element

We duplicate these variables for the second element in that relation as well (substi-
tuting substring-before for substring-after).

Now constructing the arcs is in fact trivial because we have references to both places
from the ports attributes. When we need to retrieve the ids for placel and place?2,
Wwe can use

<xsl:value-of select="$placel/@id"/>
and
<xsl:value-of select="$place2/0id"/>

respectively.

As per the PNML format definition2.2, there are required contents of the elements,
but the mapping is very straight forward and we will therefore not go through those
parts of the code.

With this we have accomplished all 3 steps of the algorithm 3.2.

B 3.2.3 Implementation overview
We will provide a brief and more shallow overview of the final implementation.

s Transformation 1: Copy contents of EMF and add VC; € C a place that contains all
its ports (along with their pseudo-xPath expressions)
s Transformation 2:

m Copy all places, while filtering all the content not specified in PNML

m For VD; € D create a transition and a pair of arcs as is specified in PNML, where
the correct ids can be found by searching the space of places, with the attribute
pz, that matches the expression in the ports attribute of D;

I 3.3 Underlying nets

As per point 2 of the formal parameters 3.1, we need to produce separate PNML files
for elements one below the top level. The contents of these files are still a subject
of research, but so far it seems that the contents will be static and the transformation
should act as a simple map, mapping a specific Domotic ecore type to predefined PNML
code. Based on the future definition of the contents of these files, we would have to
consider during which processing (we run 2 XSLT transformations) this should be dealt
with. For now, let us say that we tackle this problem in the second transformation.

The generalized problem can be described as create n files, where n is the number of
specific elements in the input document, with content based on the element’s attribute
value.

Firstly, we need to let the XSLT processor know we want it to process these elements.
Let us examine the following code fragment

19

<xsl:template match="/">
<pnml>

</pnml>

<xsl:apply-templates select=
"domotic:Component/contains/contains/contains"/>

6 </xsl:template>

1
2
3
4
5

Lines 2 through 4 represent the already explained transformations. On line 5 we
are declaring the processing of the elements at what we referred to as one below
the top level (since we have defined the top level as elements matching domotic :
Component/contains/contains).

If we want the files to have type-specific content, all we have to do is create a template
for every type and restrict it accordingly. For example

<xsl:template match="contains[@xsi:type = ’domotic:Sensor’]">

would be a template that only fits a Sensor type component.
The final problem was creating multiple output files. Fortunately XSLT has a result—
document node that does just that [2]. We can use it as follows

<xsl:template match="contains[@xsi:type = ’domotic:Sensor’]">
<xsl:result-document method="xml" href="sensor_{generate-id()}.pnml">
<pnml ...>
</pnml>

</xsl:result-document>
</xsl:template>

By wrapping any arbitrary XSLT code in a result — document node, we redirect the
output to another document - in this case a document with a unique (based on the
generate-id function) name. Now when this template is called, no output is written in
the place of the template call - everything inside the result — document is resolved and
written in a separate document.

20

Chapter 4
Conclusion

We have successfully shown that it is in fact possible to convert EMF, or rather Domotic
ecore, into PNML using XSLT.

We have also shown however, that what could commonly be understood as using only
XSLT - which would be running a transformation with one XSLT stylesheet, is not in
fact enough to define rules for such a transformation. Using two succeeding XSLT
transformations eliminates the critical problems that arise in a one transformation
solution. Managing two transformations, where the product of the first one is fed into
the second one requires some, although minimal, management of something other than
XSLT. An argument could be however made, that launching the XSLT processor always
requires minimal action from a third party. Therefore we would like to think that it
could be said that this problem is in fact solvable using only XSLT.

Another interesting finding was the approach XSLT 2.0 uses in dealing with and
resolving xPath expressions. While some parts of the xPath expression can be dynamic
(e.g. conditions can contain variables), simply feeding a variable (the content of which
has been resolved also in runtime) to a field that resolves xPath expressions will not
work. However we found that if need be, standard XSLT processors can be upgraded
with extensions that support such functionality, as well as the now commercial version
3.0 of XSLT.

After seeing that the transformation process had to be divided into 2 parts, to work
around a fairly simple mapping issue, XSLT should be chosen with caution when dealing
with logic-heavy transformations.

I 4.1 Complete transformation example

We have attached a minimalistic example of the prototype transformation. Attached

you can find a minimal EMF document with two top level components, Hall and stair-

way and Scheduler. They each contain another component - a Sensor and a Rule Engine

respectively. There is also a defined data flow between these two components.
Following is a list of files in the example directory and its description.

m emf.xml - Domotic ecore file, describing a house, that serves as input for the first
transformation

m emf_pnml_1.xslt - the transformation stylesheet describing the first part of the
transformation

m emf_pnml_2.xslt - the transformation stylesheet describing the second part of the
transformation

m pnml.tmp - a working hybrid file containing both EMF and PNML elements generated
by the first part of the transformation, that also serves as input for the second
transformation

s pnml.pnml - PNML final output file

m sensor_dleld.pnml - PNML output file, describing the Sensor element (dlel4 is a
string returned by the generate-id() function)

21

Demonstrated are all the issues discussed in 3.2.2. Extending existing EMF with
place elements, correctly resolving ids for data flow elements and creating files for 2nd
level components can be examined closer in the example.

22

References

[1] Kay, M. XSL Transformations (XSLT) Version 2.0 Retrieved from
https://www.w3.org/TR/xs1t20 on 10-02-2017

[2] Marsh, J., Veillard, D., Walsh, N. W3C Recommendation Retrieved from
https://www.w3.org/TR /xml-id on 22-03-2017

[3] Pavlat, J., Richta, K., Richta, T., Janousek, V. Model Transformations via XSLT
In: Proc. of DATESO 2017, pp. 43-54, ISBN 978-80-01-06138-1

[4] Petri, C. A., Reisig, W. Petri nets Retrieved from
http://www.scholarpedia.org/article/Petri_net on 20-03-2017

[5] Richta, T., Janousek, V., Ko¢i, R. Dynamic Software Architecture
for Distributed Embedded Control Systems In: ADECS ’15. Bruxelles: CEUR-
WS.org, 2015, pp. 1-15, ISBN 1-234-56789-X, ISSN 1613-0073

[6] Richta, T., Janousek, V., Ko¢i, R. Petri Nets-Based Development of Dynamically
Reconfigurable Embedded Systems In: CEUR Workshop Proceedings, 2013, vol. 2013,
no. 989, pp. 203-217, ISSN 1613-0073

[7] The Eclipse Foundation, Eclipse Modeling Framework (EMF) Retrieved from
http://www.eclipse.org/modeling /emf on 15-03-2017

[8] Weber, M., Kindler, E. The Petri Net Markup Language, 2003

23

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	/Contents
	Introduction
	Overview

	Existing formats and resources
	Petri Nets
	Petri Net Markup Language
	Concepts
	Syntax

	Petri Net Operating System
	Eclipse Modeling Framework

	Transformation
	Formal parameters
	Petri net top level
	Transformation algorithm
	XSLT implementation
	Implementation overview

	Underlying nets

	Conclusion
	Complete transformation example

	References

