
Bachelor thesis

Event Detection from Text Data

Tomáš Kala

Supervisor: doc. Ing. Jǐŕı Kléma, PhD.

Department of Cybernetics

Faculty of Electrical Engineering

Czech Technical University in Prague

May, 2017

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Tomáš K a l a

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Event Detection from Text Data

Guidelines:

1. Get familiar with the topic of event detection from potentially large text collections.
2. Reimplement the method of He et al. in Python and test it on a dataset provided by the
 thesis supervisor.
3. Propose and implement modifications of this algorithm. Consider changes in the cost
 function, utilization of document clustering with consequent topic dependent event detection
 and application of word/document embedding.
4. Extend the algorithm to be able to annotate the individual events and organize them.
5. Compare the results reached in the previous steps. Employ the list of real events given by
 the thesis supervisor to make the comparison as objective as possible.

Bibliography/Sources:
[1] He, Qi, Kuiyu Chang, and Ee-Peng Lim. "Analyzing feature trajectories for event detection."
 Proceedings of the 30th annual international ACM SIGIR conference on Research and development
 in information retrieval. ACM, 2007.
[2] Fung, Gabriel Pui Cheong, et al. "Parameter free bursty events detection in text streams."
 Proceedings of the 31st international conference on Very large data bases. VLDB Endowment, 2005.
[3] Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jeffrey. "Efficient Estimation of Word
 Representations in Vector Space". In Proceedings of Workshop at ICLR, 2013.
[4] Zhong, Shi. "Efficient online spherical k-means clustering." In Proceedings of the IEEE International
 Joint Conference on Neural Networks, 2005., vol. 5, pp. 3180-3185, 2005.
[5] Atefeh, Farzindar, and Wael Khreich. "A survey of techniques for event detection in twitter."
 Computational Intelligence 31.1, pp. 132-164, 2015.

Bachelor Project Supervisor: doc. Ing. Jiří Kléma, Ph.D.

Valid until: the end of the summer semester of academic year 2017/2018

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 12, 2017

Author statement for
undergraduate thesis:

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instruc-
tions for observing the ethical principles in the preparation of university theses.

Prague, date

signature

3

Abstract

Event detection is a process of analysis of text documents aiming to uncover real
events happening in the world. It is based on the assumption that words appearing
in similar documents and time windows are likely to concern the same real-world
event. Therefore, our method attempts to group together words with similar tem-
poral and semantic characteristics while discarding noisy words, not contributing to
anything of interest. This results in a concise event representation through a set of
representative keywords. These are then used to query the document collection to
retrieve the actual event-related documents. Finally, we extract short summaries
from these documents and annotate the events in a human-readable fashion. The
keyword retrieval phase of our method is based on an existing event detection sys-
tem, which we modify by employing a word embedding model to measure semantic
similarity. The method is evaluated on a collection of 2 million documents from
Czech news over a 13 months period and compared to the original method, not
depending on word embeddings.

Keywords: Document retrieval, event detection, multi-document summarization,
word embedding.

Abstrakt

Detekce událost́ı je proces analýzy textových dokument̊u za účelem odhaleńı
událost́ı, které se během doby jejich vydáńı staly ve světě. Tento proces je založen na
předpokladu, že sémanticky podobná slova se zvýšeným výskytem během stejného
obdob́ı se pravděpodobně vztahuj́ı ke stejné události. Námi zkoumaná metoda
se tedy snaž́ı shlukovat dohromady slova s podobnou časovou nebo sémantickou
charakteristikou, a zároveň ignorovat slova nenesoućı žádnou informaci. To vede
k jednoduché reprezentaci událost́ı pomoćı skupin kĺıčových slov. Tato kĺıčová
slova jsou následně použita k dotazu do zkoumané kolekce a źıskáńı dokument̊u
vztahuj́ıćıch se k jednotlivým událostem. Z těchto dokument̊u jsou nakonec extra-
hována krátká shrnut́ı pro bohatš́ı popis událost́ı. Fáze źıskáváńı kĺıčových slov je
založena na existuj́ıćım postupu, který modifikujeme použit́ım modelu vnořováńı
slov (word embedding) k měřeńı sémantické podobnosti. Metoda je vyhodnocena
na kolekci 2 milion̊u dokument̊u z českých novinových server̊u vydané za obdob́ı 13
měśıc̊u, a porovnána s p̊uvodńım postupem nevyžaduj́ıćım vnořováńı slov.

Kĺıčová slova: Źıskáváńı dokument̊u, detekce událost́ı, sumarizace v́ıce doku-
ment̊u, word embedding.

4

Contents

1 Introduction 7

2 Related work 9
2.1 Word embedding . 9
2.2 Event detection . 9
2.3 Document retrieval . 10
2.4 Event annotation . 10

3 Document stream and preprocessing 11
3.1 Preprocessing . 12
3.2 Word embeddings . 12
3.3 Document collection . 12
3.4 Document stream formally . 13

4 Word-level analysis 14
4.1 Binary bag of words model . 15
4.2 Computing word trajectories . 16
4.3 Spectral analysis . 17

5 Event detection algorithms 19
5.1 Original method . 19

5.1.1 Trajectory distance . 20
5.1.2 Document overlap . 20
5.1.3 Cost function . 20
5.1.4 Event detection algorithm . 20

5.2 Embedded greedy approach . 22
5.2.1 Semantic similarity . 22
5.2.2 Cost function . 23

5.3 Cluster-based approach . 23
5.3.1 Noise filtering . 24
5.3.2 Distance function . 25
5.3.3 Event detection . 26

6 Document retrieval 27
6.1 Event burst detection . 27

6.1.1 Event trajectory construction 28
6.1.2 Trajectory filtering . 28
6.1.3 Event periodicity . 28
6.1.4 Density fitting . 29

5

6.1.5 Burst detection . 30
6.2 Document retrieval . 31

7 Event annotation 33
7.1 Multi-document summarization . 34
7.2 Coverage function . 35

7.2.1 TFIDF similarity . 35
7.2.2 Word2Vec similarity . 36
7.2.3 TR similarity . 36
7.2.4 Keyword similarity . 36

7.3 Diversity function . 37
7.4 Optimization . 37
7.5 Results . 37

8 Evaluation 39
8.1 Precision, Recall, F-measure . 39
8.2 Redundancy . 41
8.3 Noisiness . 42
8.4 Purity . 43
8.5 Computation time . 45

9 Conclusion and future work 46

Bibliography 48

A Real events used for evaluation 52

B Annotated events 56
B.1 Original method . 56
B.2 Embedded-greedy method . 58
B.3 Cluster-based method . 59

C DVD contents 61

6

Chapter 1

Introduction

As the number of news articles published each day grows, it becomes impossible to
manually examine them all to learn about events happening in the world. The field
of Event Detection arose as a subfield of Information Retrieval (Rijsbergen, 1979;
Manning et al., 2008) and Topic Detection and Tracking (Allan et al., 1998; Allan,
2002) with a goal to aid the users by automatically discovering important events in
document collections.

More precisely, given a stream of text documents published over a certain time
period, the task is to analyze them and output a collection of events that happened
in the world during the period. An event is loosely defined as something happening
in a certain place at a certain time (Yang et al., 1998).

In this thesis, we chose to modify an approach introduced by He et al. (2007a),
which is a retrospective 1 method relying on event representation through keywords.
These keywords are semantically related words with a similar temporal characteris-
tic. The assumption is that related words frequently co-occurring during the same
time period are representative of the same events that happened at that time.

We attempt to modify this method in various ways to obtain events of higher
quality. We aim for a small number of events comprised of highly relevant keywords
without any underlying noise. These events should have a clear interpretation, and
not be redundant of each other. To achieve this, we introduce a word embedding-
based measure of word similarity, which will be discussed in Chapter 2 and Chapter 3
in more detail.

Once we obtain the events represented in terms of keywords, we query the doc-
ument collection to also obtain the documents related to the events. We then use
these documents and keywords together to generate human-readable annotations
that reveal more information about the events.

The rest of the thesis is organized as follows. First, in Chapter 2, we discuss
related work. Then, in Chapter 3, we describe the document collection used for
evaluation and the preprocessing steps taken.

In Chapter 4, we describe the original paper’s procedure used to extract temporal
characteristics of the individual words. These characteristics are then examined to
reveal a subset of words which may be related to certain events, as opposed to
generally appearing noisy words, so called stopwords.

Then, in Chapter 5, we proceed to the event detection itself. Here, we describe
the original method, its modification relying on word embedding and also propose

1Discussed in Section 2.2

7

an alternative algorithm for event detection.
Although a set of related keywords provides a concise event representation, it

is not particularly readable to the user. In Chapter 6, we follow by interpreting
each keyword set as a query to the document collection. This allows us to employ
Information Retrieval techniques to obtain documents relevant to each event.

Since the number of documents may be still too high, we also generate a short
annotation for each event. The user can quickly skim through these annotations to
get an idea what the events are about, and decide which of them are worth a closer
examination. This will be addressed in Chapter 7.

Finally, we evaluate our method and compare it to the original paper in Chap-
ter 8. We then conclude the thesis in Chapter 9.

Event

annotation

Word

embedding

Document

preprocessing

Event

detection

Event burst

detection

Document

retrieval

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Raw

documents

Word

trajectories

and analysis

Processed

events

Figure 1.1: Schematic representation of our method.

8

Chapter 2

Related work

A system encompassing event detection, subsequent document retrieval and auto-
matic event annotation needs to tackle several issues. In particular, we need to select
a suitable word embedding model to be used during the detection. Furthermore, we
must decide on the detection method itself and also specify the process of relevant
documents retrieval. Finally, we need to find a suitable method of annotating the
detected events in a human-readable fashion.

All of these concerns have been addressed in literature. Below, we provide a
basic overview of the related work which was helpful for our approach.

2.1 Word embedding

Recently, a number of neural network models for vector space word embedding have
been proposed. Perhaps the best known model is Word2Vec (Mikolov et al., 2013a)
by Tomáš Mikolov. Additional methods include Stanford GloVe (Pennington et al.,
2014), WordRank (Ji et al., 2015) and FastText (Bojanowski et al., 2016).

In this thesis, we use the Word2Vec model. The learned word vectors have useful
semantical properties (Mikolov et al., 2013b,c), an efficient implementation exists
(Řeh̊uřek and Sojka, 2010), and it is a well documented and accepted method.

The Word2Vec model has additionally been modified to support embedding
whole documents (Le and Mikolov, 2014).

2.2 Event detection

Although our method is evaluated on a news collection, the documents do not nec-
essarily have to come from a formal news source. A lot of work has also been
published in event detection by analyzing tweets, an overview can be found in Ate-
feh and Khreich (2015), other examples being Ifrim et al. (2014) and Brigadir et al.
(2014). Atefeh and Khreich (2015) also distinguish between retrospective and online
event detection. The former analyzes a given collection of documents to discover
past events, the latter (also known as First Story Detection) tries to classify contin-
uously incoming texts into “old” documents concerning events already known, and
“new” documents concerning events not yet seen.

Further distinction can be made based on event representation. Some methods
directly compare documents by their content and temporal similarity (He et al.,

9

2007b), outputting an event as a set of documents. Others, such as Fung et al.
(2005); He et al. (2007a); Fisichella et al. (2011) and our method included, represent
the events by clusters of semantically and temporarily related keywords.

Additional work has also been done in event detection through topic modeling
(Chaney et al.; Keane et al., 2015). Topic modeling will be briefly addressed in the
next section.

2.3 Document retrieval

Retrieving relevant documents from a large corpus based on a user-given query is the
main concern of Information Retrieval (Rijsbergen, 1979; Manning et al., 2008). A
number of methods comparing similarity of document representation through vectors
has been created. These methods range from a simple, yet precise binary weighting
(Luhn, 1957; Salton and Buckley, 1988; Manning et al., 2008), to those utilizing
term weighting to diminish common words (Sparck Jones, 1972) and approaches
that attempt to discover a latent structure behind the documents, such as Latent
Semantic Indexing (Deerwester et al., 1990).

Further work has been done in topic modeling, where the focus is to discover
abstract topics behind the documents. Latent Semantic Indexing belongs to topic
modeling as well. More complex methods, such as Latent Dirichlet Allocation (Blei
et al., 2003) employ a generative probabilistic model to discover the topical structure.
Document can then be compared in terms of their topical similarity.

Recently, a new similarity measure utilizing the Word2Vec model, an extension
of Rubner et al. (2000), called Word Mover’s Distance (Kusner et al., 2015) was
introduced. This is a measure we are going to use and discuss in Chapter 6 in more
detail.

2.4 Event annotation

For annotating the detected events, we consulted Gupta and Lehal (2010) and
Nenkova and McKeown (2012). We aim to obtain a short summary for each event
using the documents retrieved as relevant. The task of document summarization can
be divided into abstractive, where the task is to generate new sentences or words
not seen in the documents, and extractive, where the task is to extract parts of the
document into a summary.

An example of the abstractive approach applied on news events is Alfonseca et al.
(2013), extractive approach is addressed by e.g. Ferreira et al. (2014); Lin and Bilmes
(2010, 2011). The abstractive methods are much more complex and still an active
area of research, as it is necessary to generate sentences with a logical structure.
We decided to employ the extractive approach, as the methods are generally better
documented, simpler and more mature.

The method introduced by Lin and Bilmes (2010, 2011) supports multi-document
summarization, which is suitable for our task, as we have multiple documents rele-
vant to each event. Additionally, K̊agebäck et al. (2014) examined various ways of
how this approach could be improved by word embeddings. Their work led to a sys-
tem presented in Mogren et al. (2015) which aggregates multiple similarity measures
to perform summarization. We decided to adapt this system for our task.

10

Chapter 3

Document stream and
preprocessing

The document collection we work with comes directly from webscraping various
Czech news servers, and does not have any special structure. The documents consist
only of headlines, bodies and publication days. Furthermore, there are some noisy
words such as residual HTML entities, typos, words cut in the middle, etc. To make
the most of the collection, we preprocess the documents to remove as many of these
errors as possible, and also to gain some additional information about the text.

We first employ some NLP (Natural Language Processing) methods to gain in-
sight into the data. Then, we train a model to obtain word embeddings, which we
discuss next.

Our event detection method is keyword-based — the events will be represented
by groups of keywords related in the temporal as well as semantic domain. To be
able to measure the semantic similarity, we need to obtain a representation of the
individual words that retains as much semantic information as possible while sup-
porting similarity queries. There is a number of ways to do so — a simple TFIDF
(Term Frequency-Inverse Document Frequency) representation (Sparck Jones, 1972;
Manning et al., 2008) which represents the words by weighted counts of their ap-
pearance in the document collection. More complicated methods, such as Latent
Semantic Indexing (Deerwester et al., 1990) attempt to discover latent structure
within words to also reveal topical relations between them. This idea is further
pursued by probabilistic topical models, such as Latent Dirichlet Allocation (Blei
et al., 2003).

In this thesis, we use the Word2Vec model introduced by Mikolov et al. (2013a,b,c),
which uses a shallow neural network to project the words from a predetermined
vocabulary into a vector space. Vectors in this space have interesting semantical
properties, such as vector arithmetics preserving semantic relations, or semantically
related words forming clusters. A useful property of the Word2Vec model is that it
supports online learning, meaning that the training can be stopped and resumed as
needed. We can then train the model on one document collection, and only perform
small updates when we receive new documents with different vocabulary.

Later on, we will need some sort of word similarity measure. This will come up
several times in the course of the thesis — in the event detection itself, later when
querying the document collection to obtain document representation of the events
detected, and finally when generating human-readable summaries. The Word2Vec

11

model is fit for all of these uses, as opposed to the other approaches mentioned
above, some of which are designed only to measure document similarity, or, on the
other hand, do not support document similarity queries very well.

3.1 Preprocessing

Some of the documents contain residual HTML entities from errors during web
scraping, which we filter out using a manually constructed stopwords list.

We used the MorphoDiTa tagger (Straková et al., 2014) to perform tokenization,
lemmatization and parts of speech tagging. Our whole analysis is applied to these
lemmatized texts; we revert to the full forms only at the end when annotating the
events in a human-readable way.

3.2 Word embeddings

Next, we train the previously mentioned Word2Vec model. Although the training
is time-consuming 1, the word vectors can be pre-trained on a large document col-
lection and then reused in following runs. In case the vocabulary used in these new
documents differs, the model can be simply updated with the new words.

For the training, we only discard punctuation marks and words denoted as un-
known parts of speech by the tagger. Such words are mostly typos not important
for our analysis. We also discard words appearing in less than 10 documents.

The thesis was implemented using the Gensim (Řeh̊uřek and Sojka, 2010) library.
The project contains memory efficient, easy to use Python implementations of vari-
ous topic modeling algorithms, Word2Vec included. In addition, we used the SciPy
toolkit (Jones et al., 2001–) and Scikit-Learn (Pedregosa et al., 2011) for various
machine learning-related computations.

We use the skip-gram model defined in Mikolov et al. (2013a), which was shown in
Mikolov et al. (2013b) to learn high quality word embeddings well capturing semantic
properties. After experimenting with different settings on a smaller subset of the
documents, we decided to embed the words in a 100-dimensional vector space and to
allow 5 passes over the document collection. Allowing more passes slows down the
training, while not improving the quality very much. Setting higher dimensionality
also does not lead to significant quality improvement, and slows down the training
as well as requires more memory.

In the thesis, we refer to the vector embedding of a word w as vw ∈ R100.

3.3 Document collection

The dataset used is a collection of Czech news documents from various sources
accumulated over a period from January 1, 2014 to January 31, 2015. The collection
contains 2,078,774 documents averaging at 260 words each, with 2,058,316 unique
word tokens in total. However, majority of the words are rare words or typos of no
importance, so the number of unique real words is much lower. This is confirmed

1See Chapter 8 for computation times.

12

after discarding the words appearing in less than 10 documents, with only 351,136
unique words remaining.

These words are further processed in the following chapter, where we uncover a
small subset of words possibly representative of an event, and discard the rest.

3.4 Document stream formally

Formally, the input to the algorithm is a collection of N news documents containing
full text articles along with their publication days and headlines.

If we denote ti as the publication day of a document di, the collection can be
understood as a stream {(d1, t1), (d2, t2), . . . , (dN , tN)} with ti ≤ tj for i < j. Fur-
thermore, we define T to be the length of the stream (in days), and we normalize
the document publication days to be relative to the document stream start; that is
t1 = 1 and tN = T .

13

Chapter 4

Word-level analysis

Word-level analysis is the first phase of the event detection algorithm, focused on ob-
taining temporal characteristics of the individual words as well as a set of candidate
words for event representation. We do not yet perform the actual event detection,
which is addressed in the next chapter, but merely extract a subset of words carrying
enough information to be considered representative.

Here we work with the assumption that an event can be detected by observing
the frequencies of individual words over time and grouping together those words
which appear in similar documents during similar time periods (He et al., 2007a;
Fung et al., 2005). This corresponds to an event being often mentioned in the
text stream around the period when it actually occurred. Of course, not all words
are representative of an event, so we will have to impose a criterion of a “word
eventness”.

He et al. (2007a) also distinguished between periodic and aperiodic words, where
periodic words are mentioned with a certain period (these words are related for
example to sport matches played every weekend, weather forecasts reported every
day, etc.) Consequently, the authors divided the words into two groups by their
periodicity, and detected events from each group separately. However, during our
evaluation, some word periodicities were misclassified. This would cause an event
represented by those words to be split into a “periodic part” and an “aperiodic
part”. Therefore, we detect events from all “eventful” words at once, and examine
the periodicities of the events later on in Chapter 6.

We show an example of such periodicity misclassification in Figure 4.1. There are
two words representing the same real world event, the first of which in Figure 4.1a
being correctly classified as aperiodic. The word in Figure 4.1b also has a distinct
burst of activity typical for aperiodic words, though it is labeled periodic due to the
noise present in its time trajectory. If we detected the events separately from the
aperiodic and periodic categories, these two words could not be assigned together,
even though they concern the same event.

At first, we construct a time trajectory of each word — a measure of word
frequency over time. Then, we apply signal processing techniques to determine the
eventness of each word. The same techniques will be later used to determine the
event periodicities in Chapter 6. Once we have a notion of word eventness, we
extract a small subset of words to be considered for further analysis, and discard
the rest.

These word trajectories will then be examined for so called “bursts” in frequency,

14

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.0

0.1

0.2

0.3

0.4

0.5
DF

ID
F

Hebdo

(a) Aperiodic word

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.00

0.05

0.10

0.15

0.20

0.25

DF
ID

F

islám

(b) Aperiodic word misclassified as periodic

Figure 4.1: Trajectories of the words Hebdo and Islam, respectively. Both of these
words are related to the shooting in Charlie Hebdo offices in Paris on January 7,
2015. However, the original method classifies the word Islam as periodic with period
of 198 days. If we detected events separately from periodic and aperiodic words, the
event “Charlie Hebdo attack” would be split into at least two, causing redundancy.

where a word would suddenly start appearing in a large number of documents dur-
ing a short time period. Should a number of words appear in similar documents
with overlapping bursts, it may be an indicator that an event worthy of attention
occurred.

One thing to note is that the frequency of a word is, by itself, not a good
indicator of a word importance. Stopwords appearing in most documents, such
as conjunctions, prepositions, etc. do not carry any information and should be
ignored. Therefore, we utilize the parts of speech tagging performed earlier and
limit our analysis to Nouns, Verbs, Adjectives and Adverbs only. This limits the
number of stopwords appearing in the stream, though some remain. These will need
to be filtered by other means, as we will see later in this chapter.

We compare the trajectories of a typical eventful word and a stopword in Fig-
ure 4.2. The trajectory of the eventful word contains a distinct burst of activity,
indicating a possible event happening. The stopword, on the other hand, does not
contain such bursts, its trajectory oscillating as the word is mentioned in many doc-
uments over time. Although there are eventful periodic words with multiple bursts
as well, as in Figure 4.3a, their trajectories generally reach higher values than those
of stopwords. This difference in values will be used to distinguish stopwords from
eventful words in Section 4.3.

We ignore the documents and focus entirely on word analysis up until Chapter 6.
There, we use the words assembled into events to query the document collection,
obtaining the event-related documents. The core of the word analysis algorithm is
taken from He et al. (2007a).

4.1 Binary bag of words model

To construct the word trajectories, we first need to know which words appear in
which documents, as we are interested in the document frequency of each word.
We create a binary bag of words model, which is represented by a binary matrix
denoting the incidence of documents and words. This model completely ignores

15

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.00

0.25

0.50

0.75

1.00

1.25
DF

ID
F

Vánoce (Christmas)

(a) Eventful word

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.05

0.10

0.15

0.20

0.25

DF
ID

F

pátek (Friday)

(b) Stopword

Figure 4.2: (a) Trajectory of an eventful word Christmas. (b) Trajectory of a
stopword Friday with a period of 7 days.

word order, which is neglected in this analysis.
It might seem that using only a simple binary model, as opposed to one denoting,

say, the frequency of words within the documents, results in a loss of information.
While true, this model is not the target word representation — we only need to
know the word-document incidence to construct the word trajectories, which are
then the desired output.

We define a term-document matrix B ∈ {0, 1}N×V , where N is the number of
documents and V is the total vocabulary size. The document collection can then
be interpreted as a set of N observations, each consisting of V binary features. The
matrix B is defined as

Bij =

{
1, document i contains the word j;

0, otherwise.
(4.1)

Because every document contains only a small fraction of the vocabulary, the
matrix B consists mostly of zeroes. This allows us to store the matrix in a sparse
format, which makes it possible to fit the matrix in memory. We use a sparse
matrix instead of a more traditional inverted index (Manning et al., 2008), because
this representation allows us to vectorize some further operations.

4.2 Computing word trajectories

He et al. (2007a) defined the time trajectory of a word w as a vector
yw = [yw(1), yw(2), . . . , yw(T)] with each element yw(t) being the relative frequency
of w at time t (1 ≤ t ≤ T, 1 ≤ w ≤ V). This frequency is defined using the DFIDF
(Document Frequency-Inverse Document Frequency) score:

yw(t) =
DFw(t)

N(t)︸ ︷︷ ︸
DF

· log
N

DFw︸ ︷︷ ︸
IDF

, (4.2)

where DFw(t) is the number of documents published on day t containing the word
w (time-local document frequency), N(t) is the number of documents published on
day t, N is the total number of documents and DFw is the number of documents
containing the word w (global document frequency).

16

The DFIDF score, defined by He et al. (2007a), is a modification of the commonly
used TFIDF (Term Frequency-Inverse Document Frequency) score (Sparck Jones,
1972; Manning et al., 2008), which measures the importance of a word within a docu-
ment collection. The purpose of this modification is to include temporal information
and measure the word importance over time.

To be able to compute these word trajectories efficiently using the matrix B, we
define a utility matrix D ∈ {0, 1}N×T mapping the documents to their publication
days:

Dij =

{
1, document i was published on day j;

0, otherwise.
(4.3)

Next, we sum the rows of B together to obtain df = [DF1,DF2, . . . ,DFV]; DFj =∑N
i=1 Bij. Similarly, we sum the rows of D to obtain nt = [N(1),N(2), . . . ,N(T)];

N(j) =
∑N

i=1 Dij.
Finally, we compute the word trajectory matrix Y ∈ RV×T , with trajectory of a

word w, yw ∈ RT , being the w-th row of Y.
The matrix Y is computed as follows:

Y = diag

(
log

N

df

)
︸ ︷︷ ︸

IDF

·BT ·D · diag

(
1

nt

)
︸ ︷︷ ︸

DF

(4.4)

Now, having trained the Word2Vec model in Chapter 3 and constructed the word
trajectories, we obtained temporal and semantic representation of the words. Every
word w is represented by two vectors: vw ∈ R100 being its Word2Vec embedding,
and yw ∈ RT its time trajectory. The trajectories will be further analyzed in this
chapter, while both trajectories and Word2Vec embeddings will be used in Chapter 5
to group words into events.

4.3 Spectral analysis

Having constructed the word trajectories, we still need to decide which words are
eventful enough. He et al. (2007a) interpreted the word trajectories as time signals,
which allowed them to analyze the trajectories using signal processing techniques.
They performed the analysis both to decide word eventness and to discover the word
periodicity.

Unlike the original paper, we only analyze the signal power to decide which words
are eventful enough. We will detect events from both periodic and aperiodic words
at once, and decide the periodicity of the whole events in Chapter 6.

We apply the discrete Fourier transform to the trajectories to represent each
time series as a linear combination of T complex sinusoids. We obtain Fyw =
[X1, X2, . . . , XT] such that

Xk =
T∑
t=1

yw(t) exp
(
− 2πi

T
(k − 1)t

)
, k = 1, 2, . . . , T. (4.5)

The measure of “eventness” of a word is simply its signal power. That can be
determined from the power spectrum of each signal, estimated using the periodogram

17

p =
[
‖X1‖2, ‖X2‖2, . . . , ‖XdT/2e‖2

]
.

To measure the overall signal power, we define the dominant power spectrum of
the word w as the value of the highest peak in the periodogram, that is

DPSw = max
k≤dT/2e

‖Xk‖2. (4.6)

In Figure 4.3, we show the trajectory and periodogram of a periodic word air-
plane. In the periodogram plot, the DPS value of approximately 0.1192 is high-
lighted. This value is attained at frequency of about 0.0076, making the dominant
period of the word 1/0.0076 ≈ 132. Although He et al. (2007a) further utilized
these dominant periods to categorize the words by their periodicities, we postpone
the periodicity analysis to event trajectories assembled in Chapter 6.

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.0

0.1

0.2

0.3

0.4

0.5

DF
ID

F

letadlo (airplane)

(a) Trajectory

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pe
rio

do
gr

am

letadlo (airplane)

(b) Periodogram with indicated DPS

Figure 4.3: Trajectory and periodogram of the word airplane with a period of 132
days.

Finally, He et al. (2007a) define the set of all eventful words (EW) as those words
whose trajectory signal is powerful enough. This corresponds to their occurrence in
a large number of documents in a noiseless pattern:

EW = {w | DPSw > DPS-bound} . (4.7)

where DPS-bound can be estimated using the Heuristic stopword detection algo-
rithm described in He et al. (2007a). The algorithm computes the average trajectory
value and DPS values from a given seed stopwords set. The DPS boundary is then
defined as the maximum DPS value of the stopwords set.

18

Chapter 5

Event detection algorithms

In this chapter, we define the actual event detection algorithm. First, we describe the
original method used by He et al. (2007a). Then, we make a change to incorporate
semantic similarity through the word embeddings obtained in Chapter 3. Finally,
we introduce an alternative algorithm that utilizes word clustering using a custom
distance function.

The original algorithm creates events as sets of related keywords by greedily
minimizing a cost function combining temporal and semantical distance between
words. However, the paper used only a simple notion of semantical distance, namely
the document overlap between words. This demands that there exists at least one
document containing all the words used to represent an event. This is a strong
requirement, since the documents may use different vocabularies while conveying
similar information. As a result, the events are split into multiple keyword sets,
leading to redundancy.

In an attempt to solve this problem, we modify the cost function, replacing the
document overlap by a Word2Vec-based similarity. This does not require the words
to appear in exactly the same documents, only that they have similar semantics.
We refer to this method as embedded greedy approach, as it is a modification to make
the original greedy algorithm utilize word embeddings.

Realizing that the task of constructing keyword sets resembles the task of word
clustering, we propose an alternative algorithm. Here, we apply a clustering algo-
rithm to the words, using a modification of the cost function as a distance measure.
This is a method referred to as cluster-based approach.

First, we briefly describe the original method for reference. This will make it
clear which parts of the function we modify. It will also allow us to make reference
to the original method in Chapter 8, where we compare all three algorithms.

5.1 Original method

As stated in the introduction, the original method performs greedy minimization
of a cost function defined over sets of words. The cost function consists of tra-
jectory distance measuring the word distance in temporal domain, and document
overlap, standing for distance in the semantic domain. We first describe these two
components and then combine them into the cost function.

19

5.1.1 Trajectory distance

Before measuring the trajectory distance, the trajectories are smoothened by fitting
a probability density function to them. We adapt a similar technique in Chapter 6
where it is described in more detail. Our event detection modifications do not use
the original smoothing though, and we refer the reader to the original paper for
more details.

After normalization to unit sum, the (smoothened) trajectory y′
w of a word w

can be interpreted as a probability distribution over the stream days. The element
y′w(i) then denotes the probability that w appears in a random document published
on day i. This interpretation allows to compare the trajectories using information-
theoretic techniques, notably the information divergence (Cover and Thomas, 2012).

In the original paper, the authors first defined the distance between trajecto-
ries of two words v and w as Dist(y′

v,y
′
w) = max {KL(y′

v‖y′
w),KL(y′

w‖y′
v)},

symmetrizing the Kullback-Leibler divergence KL (Kullback and Leibler, 1951).
Then, the distance is generalized to a whole set of words M as

Dist(M) = max
v,w∈M

Dist(y′
v,y

′
w). (5.1)

5.1.2 Document overlap

The document overlap is again first defined for a pair of words v and w as DO (v, w) =
|Mv∩Mw|

min{|Mv |,|Mw|} , where Mj = {i | Bij = 1} is the set of all documents containing the
word j. The higher the document overlap, the more documents do the two words
have in common, which makes them more likely to be correlated.

The overlap is again generalized to a set of words M as

DO(M) = min
v,w∈M

DO(v, w). (5.2)

5.1.3 Cost function

The cost function is a combination of the trajectory distance and document overlap
of a set of words M. It is defined as

C(M) =
Dist(M)

DO(M) ·
∑

w∈M DPSw

. (5.3)

Since the algorithm attempts to minimize it, the intuitive result is a set of words
with low trajectory distance and high document overlap. The algorithm will also
prefer words of higher importance due to the last term of the denominator, counting
in the power spectra.

5.1.4 Event detection algorithm

The algorithm, called unsupervised greedy event detection algorithm in the original
paper, produces events as structured objects e consisting of:

• e.KW: The event keyword set.

• e.Docs: Documents concerning the event.

20

• e.Bursts: Bursty periods of the event.

• e.DP: Dominant period of the event.

• e.Annotation: Human-readable annotation of the event.

Only the event keyword set e.KW is initialized in this section. The other fields
will be properly defined and filled in the rest of the thesis.

The algorithm itself is defined as follows:

Algorithm 1 Unsupervised greedy event detection

Input: Word set EW obtained in Chapter 4, matrices B and Y, word DPS
1: Sort the words in descending DPS order: DPSw1 ≥ · · · ≥ DPSw|EW|

2: k = 0
3: for each w ∈ EW do
4: k = k + 1
5: ek.KW = {w}
6: costek = 1

DPSw

7: EW = EW \ w
8: while EW 6= ∅ do
9: m = argmin

m
C(ek.KW ∪ wm)

10: if C(ek.KW ∪ wm) < costek then
11: costek = C(ek.KW ∪ wm)
12: ek.KW = ek.KW ∪ wm

13: EW = EW \ wm

14: else
15: break
16: end if
17: end while
18: end for
Output: Events {e1, . . . , ek}

The algorithm works by greedily minimizing the cost function (5.3). Once it is
minimized, an event is produced, consisting of all the words found since last event.

The words are sorted in descending DPS order before entering the minimization
loop, so that the most important words are processed first. This assures that the
most eventful words are assigned together, without wasting them to appear with
low quality words.

He et al. (2007a) did not provide the time complexity of the algorithm, which
we attempt to estimate now. The execution time is dominated by the main loop
on lines 3 through 18. The outer loop must execute O(|EW|) times. In each of
the iterations, the inner loop is executed at most |EW| times, making it O(|EW|)
as well. The argmin statement on line 9 must search through the whole remaining
|EW| words, also making it run O(|EW|) times.

If the number of eventful words is low enough, the pairwise trajectory distance
and document overlap can be precomputed. This makes the cost function take
O(|M|2) time when applied to a set M. If the distances are not precomputed, the
cost function execution requires O(|M|3) time.

21

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
DF

ID
F

palestinský
izraelský
Palestinec
Izrael

Figure 5.1: Example of an event detected using the original method. The event
consists of the words palestinian, israeli, Palestinian and Israel, respectively.

We were unable to precisely determine the cost function’s complexity with re-
spect to the set EW, as it is always applied on the currently composed event.
However, during our experiments, the number of words comprising an event never
exceeded 10 in the original method. This makes the cost function’s asymptotic
complexity negligible compared to the main loop.

The resulting complexity of the algorithm is therefore O(|EW|3 · c), where c is
the complexity of the cost function.

In Figure 5.1, we show an example of an event detected by the original method.
We can see that it consists of four keywords with overlapping trajectories, sharing a
common burst of activity around day 210. The event is likely related to the tension
in the Middle East, though the keywords by themselves do not allow any closer
interpretation. For this reason, we provide longer annotations in Chapter 7, so that
we can examine the event more closely.

5.2 Embedded greedy approach

In this section, we modify the original method to use the Word2Vec model to measure
semantic similarity between words. Unlike the document overlap (5.2), this new
similarity measure is able to distinguish semantically similar words even when they
do not appear in the same documents. This may happen, for instance, when different
authors each use distinct vocabulary when referring to the same event.

5.2.1 Semantic similarity

Some of the astounding results of the Word2Vec model arise from semantically
similar words forming clusters (Mikolov et al., 2013c) in terms of cosine similarity,
which is a standard measure used in information retrieval (Manning et al., 2008;

22

Huang, 2008).
We replace the document overlap in the cost function (5.3) by cosine similar-

ity between Word2Vec embeddings, though with a small modification. The cosine
similarity is bounded in [−1, 1] with -1 denoting the least degree of similarity. This
means that the cost function would reach negative values for highly dissimilar words.
This would mean a problem, as Algorithm 1 attempts to minimize it. Consequently,
we will transform the cosine similarity into [0, 1], just like the document overlap
(5.2).

The similarity between a set of words M and a word w /∈ M is defined as

Sim(M, w) =

(〈
v̄M,vw

〉
‖v̄M‖ · ‖vw‖

+ 1

)
/ 2, (5.4)

where v̄M is the mean of all vector embeddings of M and vw is the vector em-
bedding of w. Here, the mean vector virtually represents the central topic of words
in M.

5.2.2 Cost function

We redefine the cost function (5.3) as

C(M, w) =
Dist(M ∪ w)

Sim(M, w) ·
∑

u∈M∪w DPSu

, (5.5)

where Dist(·) is the original trajectory distance function (5.1).
In the original method, He et al. (2007a) defined the cost function (5.3) for a

set of words. However, in Algorithm 1, it is always applied on the union of the
keywords of an event constructed so far, and a newly added word. The new cost
function must now be applied on such keyword set and word separately due to the
nature of Word2Vec similarity definition.

Having constructed the cost function, we use Algorithm 1 to detect events once
again.

In Figure 5.2, we show an event detected using the embedded greedy method. It
is related to the same real-world event as the event in Figure 5.1, though it consists of
more keywords. Generally, events detected by the embedded greedy method contain
more keywords, as we will see in Table 8.1. The trajectory overlap is not perfect,
the burst of the word American being off compared to the rest of the words. It
is possible that the semantic similarity of the word was so high that the word was
deemed relevant nonetheless.

5.3 Cluster-based approach

Realizing that the keyword-based event detection resembles word clustering and
could be solved by an application of a clustering algorithm, we decided to investigate
this idea. In the final method, we apply a clustering algorithm equipped with a
custom distance function to the set of eventful words. The distance function is
actually a modification of the cost function yet again, though some means have to
be taken to make it usable in this context. First though, we need to consider a
proper clustering algorithm.

23

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
DF

ID
F

povstalec
raketa
Izrael
izraelský
Američan
humanitární

Figure 5.2: Example of an event detected using the embedded greedy method. The
event consists of the words rebel, missile, Israel, israeli, American and humanitarian,
and is related to the same real event as Figure 5.1.

The obvious requirement for the clustering algorithm is that it must require no
prior knowledge of the desired number of clusters. Another requirement is that the
algorithm must accept a custom distance measure.

We considered three candidate algorithms, all satisfying these requirements:
Affinity propagation (Frey and Dueck, 2007), DBSCAN (Ester et al., 1996) and
its modification, HDBSCAN (Campello et al., 2013).

During our experimentation, Affinity propagation performed poorly, its clusters
being often seemingly random and of low quality. The quality of HDBSCAN clus-
ters was considerably better, though the algorithm took longer to converge as the
number of eventful words grew. It also required to tune multiple parameters, which
was difficult to do without any annotated data. We decided to use the DBSCAN
algorithm, which outperformed Affinity propagation as well, and does not require
to tune as many parameters as HDBSCAN.

In addition to the previously stated requirements, DBSCAN is also capable of
filtering out noisy samples (in our case words), not fit for any of the clusters. This
property will prove advantageous for our task, as will become clear during the eval-
uation in Section 8.3.

5.3.1 Noise filtering

Before we apply clustering, we filter out the noisy parts from the word trajectories.
Most words are on some level reported all the time, though only a fraction of these
reportings corresponds to notable events. Unlike the greedy optimization described
previously, clustering is prone to such noise, and would yield clusters of poor quality,
often with trajectories being put together only due to their noisy parts being similar.
Additionaly, with DBSCAN capable of filtering out noisy samples, some high quality
words could be discarded precisely due to this noise in their (otherwise eventful)

24

trajectories.

We want to keep only those trajectory parts exceeding a certain frequency level,
distinguishing notable bursts from the general noise. We do this by computing a
cutoff value for each event trajectory and discarding the sectors falling under this
cutoff. This procedure is adopted from Vlachos et al. (2004). The algorithm is based
on computing a moving average along the trajectory, and works as follows:

Algorithm 2 Burst filtering

Input: Window-length l, word trajectory yw

1: mal = Moving Average of length l for yw = [yw(1), yw(2), . . . , yw(T)]
2: cutoff = mean (mal) + std (mal)
3: burstsw = [yw(t) | yw(t) > cutoff]

Output: burstsw

We use the window length l = 7, looking 1 week back in the trajectory.

5.3.2 Distance function

We now define the distance function used by DBSCAN. It conveys similar informa-
tion as the cost function in the previous two algorithms. We still need to measure
the trajectory distance as well as semantic similarity between words, though the
distance will now be defined strictly pairwise.

For a measure of trajectory distance, we replace the Kullback-Leibler divergence
by the Jensen-Shannon divergence JSD (Lin, 1991), which is symmetric in its argu-
ments. This is a necessary property of the distance function.

Although He et al. (2007a) did symmetrize the Kullback-Leibler divergence, they
did not provide any source for their symmetrization form. We were unable to find a
case where that particular form was used, though we discovered the Jensen-Shannon
divergence, which comes from stronger mathematical background (Lin, 1991; Fu-
glede and Topsoe, 2004). It also tended to improve the clustering quality during
our experimentation, as opposed to the original symmetrization. We then decided
to replace the original paper’s KL-divergence symmetrization by the JS-divergence.

Instead of semantic similarity, we measure semantic distance as the Euclidean
distance between two word vector embeddings. The reason is that Euclidean dis-
tance is unbounded, which makes it possible for the samples to be spread farther
apart. Since DBSCAN is a density-based clustering algorithm, having high density
areas consisting of words with low trajectory distance and similar cosine similarities
would cause them to appear in the same cluster. This would cluster the words only
in terms of their trajectories, not semantics.

The distance between two words v and w with (normalized and filtered using
Algorithm 2) trajectories y′

v, y
′
w and Word2Vec embeddings vv, vw is now defined

as

d(v, w) = JSD(y′
v‖y′

w) · ‖vv − vw‖2, (5.6)

with JSD(p‖q) = 1
2

(KL(p‖m) + KL(q‖m)) , m = 1
2

(p + q).

25

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

DF
ID

F

Gaza
Hamas
Izrael
Izraelec
Palestinec
izraelský
palestinský

Figure 5.3: Example of an event detected using the cluster-based method. The event
is related to the same real event as Figure 5.1 and Figure 5.2.

5.3.3 Event detection

Now, we describe the cluster-based event detection algorithm, which is a direct
application of the DBSCAN algorithm and consequent noise filtering.

Algorithm 3 Cluster-based event detection

Input: Word set EW obtained in Chapter 4, matrix Y, word embeddings for EW
1: Precompute a distance matrix Dist ∈ R|EW|×|EW| with Distij = d(wi, wj)
2: Apply DBSCAN to Dist, obtaining k clusters and the noisy cluster
3: for each (w, cluster) ∈ DBSCAN.clusters do
4: if cluster 6= noise then
5: ecluster.KW = ecluster.KW ∪ w
6: end if
7: end for

Output: Events {e1, e2, . . . , ek}

In Figure 5.3, we show an event detected using the cluster-based method. It is
again related to the same real event as those in Figure 5.1 and Figure 5.2. The main
thing to note is that the word trajectories are clear of noise due to application of
Algorithm 2. This made it possible to match words only based on their bursts, not
any underlying noise. Compared to the event depicted in Figure 5.2, the cleaned
trajectories overlap almost perfectly.

26

Chapter 6

Document retrieval

Having detected the events, we still have to present them to the user in a readable
format. A set of keywords may be a concise representation for the computer, but
it does not offer much insight into the event itself. We aim to generate short anno-
tations for the events, based on which the user can decide to actually inspect the
event more thoroughly and read some of the documents. Consequently, we need to
retrieve a number of documents relevant to each event. These documents will then
be used in Chapter 7 to generate summaries.

We can use each event’s temporal and semantic information to query the doc-
ument collection. The former is trivial – simply select the documents published
within an event’s bursty period. From these document, we can then select those
document which relate to the event semantically. This will prove more complicated,
and we will need to employ some more information retrieval techniques to obtain
the documents.

As of now, an event e is described by a set of its keywords, e.KW. The goal is to
convert this keyword representation to a document representation, e.Docs consisting
of documents related to e.

6.1 Event burst detection

First, we need to detect the period when the particular event happened, so that we
can retrieve the documents published around that time. This part of the algorithm
again follows from He et al. (2007a). In this paper, the period around an event’s
occurrence was called bursty period. The burst detection is done in five steps.

1. Construct the event trajectory from the trajectories of its keywords.

2. Clean the event trajectory.

3. Determine the event’s periodicity.

4. Fit a probability density function to the event trajectory.

5. Take the region(s) with the highest density as the bursty period(s).

27

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.0

0.1

0.2

0.3

0.4

0.5

DF
ID

F

(a) Event keywords

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

DF
ID

F

(b) Event trajectory

Figure 6.1: Keywords and trajectory of the event related to Charlie Hebdo attack.
The keywords are Charlie, Hebdo, Mohamed (Muhammad), Pař́ı̌z (Paris), Islam,
karikatura (caricature), Muslim, náboženstv́ı (religion), pař́ı̌zský (Parisian), prorok
(prophet), satirický (satirical), teroristický (terroristic), terorizmus (terrorism).

6.1.1 Event trajectory construction

We first need to construct an event trajectory out of its keyword trajectories. We
do this by computing a weighted average of the event’s keyword trajectories, with
weights being the keyword DPS. This ensures that less important words with slightly
different time characteristic will not shift the trajectory away from the actual burst.

ye =
1∑

k∈e.KW DPSk

∑
k∈e.KW

DPSk · yk (6.1)

An example of such event trajectory can be found in Figure 6.1.

6.1.2 Trajectory filtering

Now, a typical event (shown in Figure 6.2) usually has a number of dominant bursts
corresponding to the period(s) when the event actually occurred. Additionally, there
are some milder, noisy bursts due to the keywords appearing elsewhere, indepen-
dently of that particular event.

We aim to fit a probability density function to the event trajectory, as in He et al.
(2007a). The noisy bursts would behave as outliers, shifting the fitted function away
from the main event bursts. Once again, we apply the Burst filtering algorithm from
Subsection 5.3.1 to filter out noise, this time from the event trajectories. The cutoff
value computed by the Burst filtering algorithm is shown in Figure 6.2 as well.

6.1.3 Event periodicity

We apply the signal processing techniques described in Chapter 4 once more, this
time to determine the dominant period e.DP of each event e. After computing
the periodogram, the dominant period is defined as the inverse of the frequency
corresponding to the highest peak in the event trajectory:

e.DP =
T

argmax
k≤dT/2e

‖Xk‖2
, (6.2)

28

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.00

0.05

0.10

0.15

0.20
DF

ID
F

Figure 6.2: An event with a noisy trajectory and keywords Vrbětice, muničńı (am-
munition), sklad (storage) related to the explosions of the ammunition storage in
Vrbětice on October 16 and December 3, 2014 (events 38 and 47 in Appendix A.
The dashed red line is the cutoff value computed using window length 7. The parts
of the trajectory under the cutoff will be discarded.

as the Fourier coefficient Xk denotes the amplitude at frequency k
T

. We then
consider an event e to be aperiodic if it happened only once in the stream, that is if
e.DP > dT/2e. Similarly, the event is periodic if e.DP ≤ dT/2e.

6.1.4 Density fitting

We normalize the event trajectories to have unit sums, so they can be interpreted as
probability distribution over days. An element y′e(i) of the normalized trajectory y′

e

can be interpreted as the probability of that event occurring on day i. This allows
us to fit a probability density function to them. He et al. (2007a) adapted a similar
approach, though only for word rather than event trajectories.

We describe aperiodic and periodic events separately, as different probability
distributions must be used in case of a single burst than in case of multiple bursts.

1. Aperiodic events

An aperiodic event trajectory y′
e is modeled by a Gaussian distributionN (µ, σ2).

We fit the Gaussian function to the trajectory y′
e and estimate the parameters

µ and σ. He et al. (2007a) did not mention the method they used for ape-
riodic trajectories. As we are fitting the density to probabilities rather than
observations, Maximum Likelihood Estimate of the parameters is not appli-
cable. We decided to use non-linear least squares, namely the Trust Region
Reflective algorithm (Branch et al., 1999) to estimate µ and σ bounded within
the document stream period. An example of the Gaussian distribution fit to
an event trajectory is shown in Figure 6.3.

29

42.7
Days (relative to 1/1/2014)

0.00

0.01

0.02

0.03

0.04

DF
ID

F

Figure 6.3: An aperiodic event consisting of the keywords Sochi, ZOH (Winter
Olympic Games), olympijský (olympic), olympiáda (olympiad). The Gaussian func-
tion modeling the trajectory and the event bursty period are shown in red.

2. Periodic events

A periodic event trajectory y′
e is modeled using a mixture of K = bT/e.DPc

Cauchy distributions (as many mixture components as there are periods), as
in Fisichella et al. (2011):

f(x) =
K∑
k=1

αk
1

π

(
γk

(x− µk)2 + γ2k

)

The mixing parameters αk ≥ 0,
∑K

k=1 αk = 1, location parameters µk and
scale parameters γk are estimated using the EM algorithm.

The Cauchy distribution has a narrower peak and thicker tails than the Gaus-
sian distribution, which models the periodic bursts more closely. The indi-
vidual bursts of a periodic event tend to be quite short, but even between
two consecutive bursts, the frequency remains at a non-negligible level, which
makes the Cauchy distribution a somewhat better choice. Figure 6.4 shows an
example of such fit.

6.1.5 Burst detection

Using the fitted probability density functions, we define the bursty period(s) as
the regions with the highest density. The bursty period of an aperiodic event e is
now defined as e.Bursts = {[µ− σ, µ+ σ]}. For a periodic event, there are K =
bT/e.DPc bursty periods defined as e.Bursts = {[µk − γk, µk + γk] | k = 1, . . . , K}.
The burst of an aperiodic event is highlighted in Figure 6.3, while a periodic event’s
bursts are shown in Figure 6.4.

30

296.558.1 143.5
Days (relative to 1/1/2014)

0.000

0.005

0.010

0.015

0.020

0.025
DF

ID
F

Figure 6.4: A periodic event with keywords volba (election), volebńı (electoral), volič
(voter) and a period of 132 days. The event is modeled by a mixture of b396/132c =
3 Cauchy distributions. Each of the event’s bursty periods is highlighted.

6.2 Document retrieval

We only describe the process for aperiodic events. The method is similar for periodic
events, except applied on each burst individually.

We need to measure the relevance of individual documents published within an
event’s bursty period to the event. The only measure of semantics for an event we
have is the event’s keyword set e.KW. If we interpret e.KW as a keyword query
for the document collection, we arrive at the classical task of Information Retrieval.
That is, to rate the documents in a given corpus by their relevance to the query
(Manning et al., 2008).

In the original method by He et al. (2007a), the task was simple due to the cost
function used. The only measure of semantic similarity was the degree of document
overlap between all words in e.KW. If two words had no document overlap, they
would not get assigned in the same event. That way, there was always at least one
document in which all of the event’s keywords appeared. It was a simple matter
to compute the intersection of all documents containing either keyword within the
bursty period. This is not the case in our method, and we will need to measure the
document relevance in a more sophisticated way.

There are a few approaches we could take, such as project all documents and
queries to a TFIDF (Term Frequency-Inverse Document Frequency) space (Man-
ning et al., 2008) and sort the documents by their cosine similarity to the query.
This simple approach does not go beyond a trivial keyword occurrence compari-
son, though after applying some weighting scheme. We could enrich it using Latent
Semantic Indexing (Deerwester et al., 1990) to also take the document topics into
account. This would require us to compute yet another model to be used for this
part only, which would be computationally and memory-intensive.

Instead, we decided to further utilize the Word2Vec model and use the recently

31

introduced Word Mover’s Distance (Kusner et al., 2015), which is an application of
the better known measure of Earth Mover’s Distance (Rubner et al., 2000) to word
embeddings.

The Word Mover’s Distance (WMD) measures the similarity of two documents
as the minimum distance the word vectors of one document need to “travel” to reach
the word vectors of the second document. Since more similar words are embedded
close to each other (Mikolov et al., 2013c), the farther apart the words lie, the less
similar they are semantically. The formal definition of the WMD is rather lengthy, so
we refer the reader to the original paper (Kusner et al., 2015) for the full derivation.

The WMD discards word order, which makes it suitable for our keyword queries.
As the authors note, it achieves best results for short documents, in part due to
the method being computationally expensive for larger pieces of text. Therefore, we
apply the WMD to document headlines only.

In Information Retrieval, it is more traditional to work with document similarity
rather than distance. In the Gensim framework (Řeh̊uřek and Sojka, 2010) which
implements the WMD, the similarity is defined as

SimWMD(di, dj) =
1

1 + WMD(di, dj)
(6.3)

which is 1 if WMD(di, dj) = 0 and goes to 0 as WMD(di, dj)→∞.
We now describe the algorithm to compute the document representation of an

event.

Algorithm 4 Document representation of an aperiodic event

Input: Event e, burst ∈ e.Bursts, number of documents n, document stream D
1: burst docs = ∅
2: for each doc ∈ D do
3: if doc.publication date ∈ burst then
4: Compute SimWMD(e.KW, doc.headline)
5: burst docs = burst docs ∪ doc
6: end if
7: end for
8: Sort burst docs by the computed SimWMD in descending order

Output: first n elements of burst docs

The set of event documents e.Docs is then a union of the outputs of Algorithm
4 over all bursts in e.Bursts.

In our experiments, we chose the number of documents n as the square root of
total number of documents within the particular event burst.

32

Chapter 7

Event annotation

The final step of our method is to annotate the detected events in a human-readable
way. We aim to generate short summaries so that the user does not have to process
a large quantity of text, and can just skim through a few sentences to decide whether
he is interested in that particular event. If so, then he can examine the event more
closely and go through the actual documents, which we have retrieved in chapter
Chapter 6.

Although the keyword set discovered in Chapter 5 provides a concise representa-
tion of an event, it can lead to ambiguities or simply not reveal enough information.
The keywords should be considered an internal representation used in the detection
process, not a feature presentable to the user.

An example of such event whose background is unclear from the keyword set
is shown in Figure 7.1. After manual examination, we discovered that the event
concerns Viktor Yanukovych being ousted from Ukraine’s presidency, though it is
unclear from the keyword set.

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014

0.0

0.1

0.2

0.3

0.4

0.5

DF
ID

F

Janukovyč
Janukovyčův
Viktor

Figure 7.1: An event whose meaning is not clear from the keyword set.

A simple method is to annotate an event by the headline of the most relevant
document in terms of Word Mover’s Similarity. This may give insight of the general

33

topic of the particular event, but it is unlikely that a whole event will be well
characterized by a single document. For this reason, we also investigate a more
complex method.

To obtain richer annotations, we apply multi-document summarization tech-
niques to generate a short summary of an event’s document set. More specifically,
we attempt to extract a subset of sentences out of the event documents, which cover
the general topic of the event without providing redundant information. As the
documents come from different sources and describe the events from different per-
spectives, the result will not generally be a continuous paragraph, but more of a set
of characteristic sentences. Still, a longer piece of text will likely provide a better
insight into an event than a single headline.

We examined the multi-document summarization system presented in Lin and
Bilmes (2010, 2011). This system was later improved by K̊agebäck et al. (2014), who
evaluated the usage of different word embedding techniques for sentence similarity
measures. Their work led to the system presented in Mogren et al. (2015) which
aggregates several different similarity measures to obtain a better quality summary.
We adapt their system and combine together several measures of sentence similarity
suitable for the event detection task.

7.1 Multi-document summarization

In Lin and Bilmes (2010), the authors formulate the task of multi-document sum-
marization as a constrained combinatorial optimization problem, where the goal is
to retrieve a subset of sentences maximizing a monotone submodular function F(·)
measuring the summary quality.

A submodular function F(·) on a set of sentences U satisfies the property of
diminishing returns ; that is, for A ⊆ B ⊆ U \ {v}, F(A ∪ {v}) − F(A) ≥ F(B ∪
{v}) − F(B), v ∈ U . This has an intuitive interpretation for text summarization,
namely that adding a sentence v to a longer summary does not improve the summary
as much as adding it to a smaller one. The reason is that the information carried
by v is likely already present in the longer summary.

Even though solving the task exactly is NP-hard, a greedy algorithm is guaran-
teed to find a solution only a constant factor off the optimum, as discussed by the
authors.

The summary quality is measured in terms of how representative it is to the
whole set (coverage) and how dissimilar the sentences are to each other (diversity).
The constraints limit the summary to a reasonable length by bounding the total
number of words.

In Lin and Bilmes (2010), basic submodular functions to be used in multi-
document summarization are described. In Lin and Bilmes (2011), these functions
are further developed to better capture the semantic properties of sentences.

Mathematically, the task is formulated as

max
S⊆U

F(S) = L(S) + λR(S)

s. t.
∑
i∈S

ci ≤ B,
(7.1)

where U is the set of all sentences from the document set being summarized,

34

ci is the number of words in sentence i and B is the total budget, i.e. the desired
maximum summary length.

A feasible set S maximizing F(·) will provide a reasonable number of sentences
well capturing the overall topic of the whole document set, no two of which being
redundant. What remains is to define the coverage function L(·) and diversity func-
tion R(·), whose influence can be controlled by the parameter λ ≥ 0. Additionally,
the functions must be defined in a way that the submodularity conditions from Lin
and Bilmes (2010) are not violated, so that a greedy algorithm can still be used with
performance guarantee.

7.2 Coverage function

In Lin and Bilmes (2011), the coverage function L(·) is defined in terms of pairwise
sentence similarity Sim(·, ·) as

L(S) =
∑
i∈U

min
{∑

j∈S

Sim(i, j), α
∑
j∈U

Sim(i, j)
}
. (7.2)

The first argument of the minimum measures the similarity between the sentence
i and the summary S, while the second argument measures the similarity between
the sentence i and the rest of the sentences U . The number α ∈ [0, 1] is a threshold
coefficient controlling the influence of the overall similarity.

In Lin and Bilmes (2010), the authors further prove that if Sim(i, j) ∈ [0, 1] ∀i, j ∈
U , the whole function remains submodular.

Originally, only a simple cosine similarity between TFIDF sentence vectors (Man-
ning et al., 2008) was used as Sim(·, ·). K̊agebäck et al. (2014) examined various
methods of word embeddings to obtain a finer measure of similarity. This alone
outperformed the original method. In Mogren et al. (2015), a more complex system
aggregating multiple similarity measures was built, further improving the summary
quality. The authors compute the sentence similarity Sim(i, j) as a product of these
individual similarities, all bounded in [0, 1]:

Sim(i, j) =
∏
l

Ml
si,sj

. (7.3)

We use this method with several different similarity measures fit for the event
detection task. Next, we describe the individual sentence similarities used.

7.2.1 TFIDF similarity

The first measure used is the standard cosine similarity between TFIDF (Term
Frequency-Inverse Document Frequency) vectors (Manning et al., 2008) of two sen-
tences si and sj. Such method is a simple measure of document similarity often
used in information retrieval.

If we denote the frequency of the word w in sentence si as tfw,i and the inverse
document frequency of w as idfw, the similarity is written as

MTFIDF
si,sj

=

∑
w∈si∪sj tfw,i · tfw,j · idf2w√∑

w∈si tf2w,i · idf2w ·
√∑

w∈sj tf2w,j · idf2w

. (7.4)

35

The term frequencies are always non-negative, and so the whole cosine similarity
is in [0, 1].

The major setback of TFIDF similarity is that it does not go beyond simple
word overlap, though weighted to diminish stopwords and amplify important words.
That means that if two sentences convey essentially the same information through
different vocabulary, they will not be ranked similar due to having only a few words
in common. That can be a problem in larger document collections from different
sources and authors.

7.2.2 Word2Vec similarity

We attempt to solve this problem by considering the word embeddings of the indi-
vidual words, as first examined by K̊agebäck et al. (2014).

We represent a sentence si by summing together the vector embeddings of its
words, vi =

∑
w∈si vw. The similarity of two sentences is then the cosine similarity

of these vectors, transformed to [0, 1]:

MW2V
si,sj

=

(
〈vi,vj〉
‖vi‖ · ‖vj‖

+ 1

)
/ 2. (7.5)

This similarity brings a finer distinction of word-level semantics. This means
that even if two sources reporting the same event use fairly different vocabularies,
the sentences will still be ranked similar.

7.2.3 TR similarity

The next measure uses Text Rank (TR) similarity, as defined by Mihalcea and Tarau
(2004). Each sentence is represented by a set of words, and the overlap of these sets
is measured. Mogren et al. (2015) achieved best results by combining the TFIDF
similarity, word embeddings and the TR similarity, which is defined as

MTR
si,sj

=
|si ∩ sj|

log |si|+ log |sj|
. (7.6)

7.2.4 Keyword similarity

In addition to the three previously described similarities, Mogren et al. (2015) con-
sidered a keyword similarity, which measures the overlap between two sentences and
a predefined keyword set. Having previously obtained the event keyword represen-
tation e.KW, we use this measure to make sure the sentences actually concern the
particular event.

The similarity is defined as

MKW
si,sj

=

∑
w∈(si∩sj∩e.KW) tfw · idfw

|si|+ |sj|
. (7.7)

The measure effectively chooses only those sentences having non-zero word over-
lap with the keyword set. It also breaks the summary fluency, making the summary
more of a set of sentences characteristic for the given event. On the other hand, the
resulting sentences will be highly relevant to the event, often revealing important
information about it.

36

This tradeoff between fluency and quality is more worth it when summarizing a
large number of documents. Even without the keyword similarity, the chance that
two summary sentences will make sense consecutively is quite small, when they come
from different documents.

If an event consisted of only one or two documents, it would make sense to use
a different measure to reach better fluency.

7.3 Diversity function

Now, we can define the diversity function, which will positively reward a summary
consisting of non-redundant sentences. Lin and Bilmes (2011) first applied the
K-Means clustering algorithm to the TFIDF vectors of the sentences in U . The
diversity function then positively rewards summaries whose sentences come from
different clusters. If the clustering well separates the sentences in the semantic sense,
the sentences chosen from different clusters will not carry redundant information.

The diversity function is defined as

R(S) =
K∑
k=1

√ ∑
j∈S∩Pk

rj, (7.8)

where Pk, k = 1, . . . , K is a clustering of the sentence set U . The value rj =
1
|U |
∑

i∈U MTFIDF
si,sj

is the singleton reward for adding the sentence i into the summary
S.

This function positively rewards diverse sentences in a sense that once an ele-
ment i from a cluster Pk is chosen, other elements from the same cluster will have
diminishing gains due to the square root function (see Lin and Bilmes (2011) for a
concrete example). The summarization will then prefer sentences from yet unused
clusters.

7.4 Optimization

Having defined the cost function F(·), we can use the greedy algorithm defined in
Lin and Bilmes (2010) to obtain the desired summary e.Annotation for an event e.

For the experiments, we set a budget of 50 words. In the diversity function
the number of clusters K was set to |U |

10
, putting 10 sentences into each cluster on

average. As for the other parameters, we used the values from the original papers
(Lin and Bilmes, 2010, 2011). Additionally, we need to specify which documents
we will use for the summarization. In theory, there is no limit to the number of
documents, though it would make sense to use only a few most-relevant documents.
In Chapter 8, we will limit the number of documents for efficiency reasons.

7.5 Results

In Table 7.1, we show the annotation for the event depicted in Figure 7.1. Though
the keywords do not reveal much, the event’s topic is fairly clear from the longer
summary. We also include the headline of the most relevant document for compar-
ison. In this case, the headline does not provide much insight into the event.

37

Janukovyč, Janukovyč̊uv, Viktor (Feb 15 - Mar 2, 2014)

Kdo stoj́ı za Viktorem Janukovyčem?
Kyjevská úřadovna prezidenta Viktora Janukovyče je bez stráž́ı. Režim Viktora
Janukovyče se zhroutil. Moc ukrajinského prezidenta Viktora Janukovyče se o
v́ıkendu zhroutila. Odvolaného ukrajinského prezidenta Viktora Janukovyče st́ıhá
policie. “Já , Viktor Janukovyč, se obraćım na lid Ukrajiny.” Svržený ukrajinský
prezident Viktor Janukovyč se voleb zúčastnit nechce.

Table 7.1: Annotation for the event depicted in Figure 7.1

In Table 7.2, an event with highly redundant summary is shown. In this summa-
rization, the diversity function (7.8) failed to diminish similar sentences, and most
of the summary simply repeats the same information. On the other hand, the most
relevant document’s headline represents the event very well, and would suffice to
make sense of it.

Adriano, Krnáčová, primátorka (Oct 12 - Dec 1, 2014)

Pražskou primátorkou bude Adriana Krnáčová z ANO
Novou pražskou primátorkou bude Adriana Krnáčová. Primátorkou Prahy bude
Adriana Krnáčová (ANO). Novou pražskou primátorkou bude Adriana Krnáčová
z ANO. Novou pražskou primátorkou bude Adriana Krnáčová z ANO. Adriana
Krnáčová je p̊uvodem ze Slovenska. Pražskou primátorkou byla zvolena Adriana
Krnáčová z hnut́ı ANO. Bratislavská rodačka Adriana Krnáčová je primátorkou
Prahy.

Table 7.2: Example of a summary with high degree of redundancy.

Neither of the summaries is fluent enough to be read as an article. In both
cases, the summaries resemble unordered sets of sentences, most of which give some
insight into the underlying event. The user can stil gain some information from these
summaries and consequently decide whether he is interested in the events enough
to read the documents.

Further examples of the generated summaries can be found in Appendix B.

38

Chapter 8

Evaluation

In this chapter, we compare the three event detection methods from various stand-
points. We will compare the original method (“original”), its modification using
word embeddings (“embedded-greedy”) and the method using clustering algorithm
to group similar words together (“cluster-based”).

Most of these evaluations rate the quality of the detected events on the keyword
level. We will be referring to the average number of keywords per event, which we
provide in an overview in Table 8.1.

We discarded trivial events only consisting of a single keyword.

Method Events detected Keywords Keywords/event

Original 217 451 2.08
Embedded-greedy 46 473 10.28
Cluster-based 77 761 9.88

Table 8.1: Overview of the detected events

As we can see from the table, the original method’s events are not very rich,
majority of them consisting of only 2 keywords. Since the original method is applied
to the same words as the other methods detecting fewer events, we can expect a
considerable level of redundancy, as we will see in Section 8.2.

Furthermore, the keywords are used to query the document collection for event
documents. Having only a few keywords makes it difficult to unambiguously retrieve
related documents, leading to a poor document set. This will become clear in
Section 8.4.

The other two methods detect considerably fewer events which generally consist
of a higher number of keywords. We can expect these methods to rank higher in the
evaluations, provided that the events themselves are meaningful and not comprising
of noisy words. This is an issue we will address in Section 8.3.

8.1 Precision, Recall, F-measure

First, we evaluate the precision and recall, which are metrics commonly used in
information retrieval (Manning et al., 2008; Rijsbergen, 1979). The evaluation is
done with respect to a reference set of real events that occurred during the examined
period. The list can be found in Appendix A.

39

Given a set of detected events Detected and the set of reference events Reference,
the Precision (P) and Recall (R) are defined as

P =
|Detected ∩ Reference|

|Detected|

R =
|Detected ∩ Reference|

|Reference|
.

(8.1)

The Precision and Recall scores are then merged together using the F1 score,
which is their harmonic mean scaled into [0, 1]:

F1 = 2 · P ·R
P +R

. (8.2)

Although the reference list of real events is not exhaustive, it does provide a
way to objectively compare the individual event detection methods. While there
are many more events that happened during the examined time period, a sample of
events important enough provides a picture of the methods performance.

We manually inspected the detected events and matched them with the reference
events. Out of this assignment, we calculated the precision, recall and F-measure.
The results are shown in the table below.

Method Precision Recall F1 score

Original 16.35% 28.57% 20.80%
Embedded-greedy 8.70% 10.20% 9.39%
Cluster-based 25.97% 28.57% 27.21%

Table 8.2: Precision, Recall and F-measure comparison (manual evaluation)

The original method’s precision was poor due to high recurrence of events not
appearing in the reference list, which will be more clear in redundancy evaluation
later. As the average number of keywords per event is low, the real events are scat-
tered among many detected events. On the other hand, the cluster-based method
attained the highest precision due to events consisting of more keywords, meaning
lower recurrence.

The embedded greedy method’s precision and recall were poor both for the same
reason as the original method, as well as some events consisting of keywords unre-
lated to each other. This made them difficult to assign to their real world counter-
parts.

In addition, we attempted to measure precision and recall in a more automatic
way, so that the evaluation does not entirely depend on a manual input.

A real event, consisting of occurrence date and a headline, was considered de-
tected if its date was found within a bursty period of some detected event, and if
its headline had nonzero intersection with the detected event’s keyword set.

40

Method Precision Recall F1 score

Original 7.14% 16.33% 9.94%
Embedded-greedy 26.09% 22.45% 24.13%
Cluster-based 20.78% 28.57% 24.06%

Table 8.3: Precision, Recall and F-measure comparison (automatic evaluation)

Unlike the manual evaluation, the automatic one favors the embedded greedy
approach. The reason is that its events generally contain more keywords, so there
is a higher chance the keywords intersect a headline of some real event, marking the
event as detected.

On the other hand, the original method’s keyword sets usually consist of only
two words that may not appear in the real event headlines at all. This makes it
score rather poorly in the automatic evaluation.

The cluster-based method’s results are similar to the manual evaluation.

8.2 Redundancy

Next, we evaluate redundancy — the tendency to scatter a real event among several
detected events. We noticed that the original method tends to scatter a real event
among several detected events. This is an undesirable behavior which we attempt
to suppress in the other two methods by using a less-strict word similarity measure.
This is an evaluation that must be performed manually, since if we had an automatic
way of recognizing redundancy, we would be able to avoid it entirely.

We assembled the detected events into groups, where each group is a set of
events related to the same real-world event. If it was unclear which real event does
a detected event refer to, we considered two events equal if they had similar burst
characteristics and semantically similar keywords.

The redundancy is then computed as 1 − (|groups| / |events|). An ideal event
detection method would result in singleton groups, where each real-world event was
covered precisely by one detected event. This would result in numerator being the
same as the denominator, and the total redundancy of 0.

In Figure 7.1, we show an example of two redundant events which should be
merged into one. They were detected using the original method. The main burst
around day 290 is related to elections to the Czech senate (events 36 and 40 in
Appendix A). It is reasonable to assume that the four words appeared in some
documents together, so their document overlap must have been nonzero, and they
should comprise one event only.

Method Redundancy

Original 77.99%
Embedded-greedy 65.22%
Cluster-based 42.86%

Table 8.4: Redundancy comparison

Large redundancy of the original method is to be expected with events consisting
of only 2 keywords on average.

41

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.0

0.2

0.4

0.6

0.8

1.0

DF
ID

F
volební
volič

(a) An event with keywords election-related,
voter

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.2

0.4

0.6

0.8

DF
ID

F

hlas
strana

(b) An event with keywords vote, political
party

Figure 8.1: Example of two redundant events detected by the original method.

8.3 Noisiness

When we checked the detected events manually, we noticed that some events are
formed of keywords unrelated to each other, or do not show any clear bursts in their
trajectory. Outputting such events is clearly undesirable, as they are difficult to
make sense of.

Motivated by this, we seeked to evaluate the methods in terms of how many
events they output share such noisy characteristic. We manually examined the
events detected for signs of noise in trajectories or keyword sets. An event is con-
sidered noisy if its trajectory does not contain any distinguishable burst of activity,
or if it consists of keywords unrelated of each other.

We realize that this examination is largely subjective. However, we did not find
any simple way of automating the evaluation without losing interpretability of the
results. It would be possible to impose a threshold on the overall event trajectory
variance or keyword similarity, under which the event would be considered noisy.
Such threshold would be an arbitrary value though, and the method could misclassify
some events.

In Figure 7.2, we show a typical noisy event that comes from the embedded
greedy algorithm. Not only are the keywords mostly unrelated to each other, they
also do not carry much information about what real event could possibly be happen-
ing. The event trajectory does not contain many notable bursts. Perhaps except
around day 290, the overall trajectory value does not vary greatly to reveal any
burst of interest.

Although the keyword trajectories are not all similar, there could be an overlap
high enough for them to be put together. We suspect that the main level of similarity
comes from the Word2Vec model, though. It is well possible that these words
appeared in similar context, even though they are not representative of any real
event. The Word2Vec model would then rate them similar, and they would end up
in one event.

42

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.0

0.1

0.2

0.3

0.4

0.5
DF

ID
F

(a) Event keyword trajectories

0 50 100 150 200 250 300 350
Days (relative to 1/1/2014)

0.10

0.12

0.14

0.16

0.18

0.20

DF
ID

F

(b) Trajectory of the same event

Figure 8.2: (a) Event with noisy keywords and trajectory. The keywords are top,
autor (author), podnik (business), test, fotogalerie (photogallery), reklama (adver-
tisement), výsledek (result), komentář (commentary), zpravodajstv́ı (reporting), hra
(game), informace (information), novinka (hot news), akce (action), návrh (propo-
sition), Martin, kĺıčový (key, adj.), vedeńı (leadership), projekt (project), program,
účast (participation), ČTK (Czech News Agency). (b) Trajectory of the same event
constructed from the keywords.

Method Noisiness

Original 50.94%
Embedded-greedy 19.57%
Cluster-based 19.48%

Table 8.5: Noisiness comparison

Here, the cluster-based method performed the best, as the clustering algorithm
chosen (DBSCAN) is capable of automatic filtering of noisy samples. With the
distance function measuring both trajectory and keyword similarity, it filters out
words unrelated to any event.

Surprisingly, the embedded greedy method performed only slighly worse than the
cluster-based method. Although the embedded greedy method reached considerable
redundancy, manual check revealed that the events mostly consist of important
keywords, and most of the trajectories contain distinguiushable bursts.

Poor performance of the original method is partially caused by its large re-
dundancy. Even if a number of words with noisy trajectories appears in similar
documents, the method would not group them together to a single event, but split
into several noisy events. All of these noisy events then negatively contribute to the
noisiness score.

8.4 Purity

All previous evaluations concerned the events on the keyword level. The purity
measure will evaluate the event document sets in terms of topical consistency. This
is a metric used by Aggarwal and Subbian (2012), and the definition can be found
in Manning et al. (2008).

We interpret each event as a cluster of documents. The evaluation is then an

43

application of the standard measure of cluster purity, which measures the consis-
tency of class labelling within each cluster. Clearly, a high quality event should
contain documents concerning similar topics. The problem is that our documents
do not have any notion of class labels denoting their topics, which we will have to
supplement.

Similarly to Aggarwal and Subbian (2012), we first assembled a list of 50 words
from 1000 most often occurring Nouns and Verbs in document headlines. The
words are Ukrajina (Ukraine), Rusko (Russia), policie (police), soud (court), Zeman,
EU, Sparta, festival, Babǐs, Putin, Google, ekonomika (economics), letadlo (air-
plane), východ (east), politika (politics), zab́ıt (to kill), poslanec (deputy), armáda
(army), Kyjev (Kiev), Škoda, hokejista (hockey player), fotbalista (football player),
doprava (traffic), vražda (murder), Vánoce (Christmas), Francie (France), sport,
NATO, Moskva (Moscow), ropa (petroleum), turnaj (tournament), Obama, referen-
dum, ebola, parlament (parliament), koalice (coalition), Pař́ı̌z (Paris), automobil,
mistrovstv́ı (championship), elektrárna (power plant), Sýrie (Syria), islamista (is-
lamist), Brusel (Brussels), olympiáda (olympics), sńıh (snow), pr̊umysl (industry),
revoluce (revolution), výbuch (explosion), finance, terorista (terrorist). All docu-
ments that contained any of these words in their headline were tagged with the
corresponding class label.

Then, for each event, we computed the number of documents tagged by the
most frequent label in the event. These values are then summed over all events and
divided by the total number of tagged documents from all events.

Mathematically, this is formulated as

Purity =
1

|Tagged|
∑

e∈Events

max
t∈Tags

|{d ∈ e.Docs | d.tag = t}|, (8.3)

where Tagged =
⋃

e∈Events {d ∈ e.Docs | d.tag is defined} and Tags is a set con-
taining the 50 manually selected words. The results are shown in Table 8.6.

Method Purity

Original 30.53%
Embedded greedy 44.42%
Cluster-based 61.08%

Table 8.6: Purity comparison

Poor performance of the original method can be explained by the events consist-
ing mostly of 2 keywords. Such short query for the document collection does not
distinguish the documents very well, often retrieving unrelated texts.

The other two methods produce events generally containing more keywords, so
the queries are more specific. This allows us to retrieve more relevant documents
and reach higher purity. The better results may also be caused by the Word Mover’s
Distance used as the document similarity metric. However, it is arguable whether
the WMD could beat the selection of precisely those documents that contain all the
event keywords, provided there were more than 2 keywords in general.

44

8.5 Computation time

Finally, we evaluate the computation time. We measure the execution time of the
individual detection steps, so it is clear which parts are the bottlenecks. All ex-
periments were performed on a laptop computer with a 64bit operating system,
quad-core processor and 8GB RAM.

In the embedded-greedy and cluster-based methods, we did not retrieve docu-
ments for periodic events with a period of 7 days or lower. The reason is that such
short periods will essentialy cover the entire stream with short bursts and the Word
Mover’s Distance, computationally expensive on its own, will need to be computed
to almost all documents. This might take a day’s worth of time, and the short
period events mostly concern unineresting events such as sport matches, weather
forecasts, etc.

In addition, the summaries were extracted only using 50 most relevant documents
instead of all documents retrieved, so that the overall process would not take too
long.

Unit Original Embedded Cluster

Word2Vec embedding N/A 3h 50min
Bag of words model construction ←− 37min −→

Word trajectories & spectral analysis ←− 8s −→
Event detection 2min 12s 38s 4min 50s

Document retrieval 7min 30s 6h 7h 40min
Event annotation 3h 22min 3min 38s 7min 30s

Total 4h 9min 10h 31min 12h 20min

Table 8.7: Computation time comparison

The original method’s document retrieval took considerably less time than the
other two methods. The reason is that the original method does not use the Word
Mover’s Distance as a similarity measure. Due to word semantic similarity being
measured only in terms of their document overlap, there is always at least one
document containing all the event keywords. It is sufficient to take the documents
containing either of the event keywords and intersect these sets, which is much faster
than calculating the distance.

This is also the reason why the event annotation took longer in the original
method. Having also retrieved documents for events with short period (7 days and
less), it is necessary to summarize each period independently. When we summarized
only aperiodic events and those with period higher than 7 days, summarization took
1h 12min.

45

Chapter 9

Conclusion and future work

In this thesis, we addressed retrospective event detection from text streams. The
task is to analyze a given document collection and uncover real events that hap-
pened over the stream period. These events are described by semantically related
keywords whose occurrence in the stream has similar temporal characteristic. Once
the events have been found, the relevant documents can be recovered by querying
the documents with the event keywords. We focused on various ways to augment
the event detection by using Word2Vec model (Mikolov et al., 2013a) to measure
the word semantic similarity as well as retrieve the documents.

First, we attempted to augment an existing method by He et al. (2007a) to use a
Word2Vec-based similarity function to match semantically related words together.
This led to an improvement over the original method, mainly in the average number
of keywords per event. The modified method reached lower detection redundancy
and the found events were less noisy. However, the method declined in precision
and recall.

Then, we explored a different approach, where we interpreted the keyword-based
event detection as a literal clustering task. We defined a custom distance func-
tion also utilizing the Word2Vec model as a semantic measure. We then applied a
clustering algorithm equipped with this distance function to words previously se-
lected as eventful. Our evaluation suggests that this method was more successful
than both the original method and its Word2Vec modification. The cluster-based
method reached even lower redundancy and noisiness than the previous methods
while surpassing them in precision and recall.

The disadvantage of both our methods is the necessity to train the Word2Vec
model, which is time consuming. However, the Word2Vec model supports online
learning; the training can be stopped and resumed as necessary. When we are about
to detect events from a different document collection with a distinct vocabulary, we
can simply embed the new words prior to starting the algorithm.

We also examined how the Word2Vec model could be used to retrieve documents
concerning the detected events. We applied the Word Mover’s Distance (Kusner
et al., 2015) to documents within each event’s bursty period as a measure of their
relevance to that particular event’s keyword set. We then selected the most relevant
documents as the event’s document representation. Although the documents were of
high quality and represented the events well, the process took an unbearable amount
of time. In the original method, the retrieval process was more straightforward and
much more efficient.

46

Finally, we applied multi-document summarization techniques to the documents
to obtain a short annotation describing each event. These summaries, along with
the event’s occurrence dates and document sets, are the outputs of our method
presented to the user. The summaries serve the purpose of giving a quick reference
of the event’s topic, based on which the user may decide to examine the event further
and go through the retrieved documents.

In future work, it would be beneficial to use a more efficient way of computing the
documents relevant to each event. Traditional information retrieval techniques, such
as Latent Semantic Indexing (Deerwester et al., 1990) could be used here, perhaps
with some domain specific knowledge of the underlying events, such as their bursty
periods.

Also, we would like to examine how an event could be represented directly as a set
of documents, rather than keywords. Although there are attempts to do so (He et al.,
2007b), they require to fine-tune even more parameters than our method, and the
document representation is again constructed using word trajectories. The Doc2Vec
model (Le and Mikolov, 2014), a generalization of Word2Vec able to embed whole
documents in a vector space, could be used to obtain the semantic representation.

Instead of computing a cutoff value to clean a word or an event trajectory, as we
did in Subsection 5.3.1 and Subsection 6.1.2, further signal processing techniques
could be applied on the trajectories to separate the dominant bursts from the under-
lying noise. The result would be a somewhat cleaner trajectory devoid of any milder
bursts of no interest. This could lower the noisiness, since words would be matched
together based on only the dominant activity, not any underlying influence, which
still eludes the cutoff value method.

47

Bibliography

C. C. Aggarwal and K. Subbian. Event detection in social streams. In Proceedings
of the 2012 SIAM international conference on data mining, pages 624–635. SIAM,
2012.

E. Alfonseca, D. Pighin, and G. Garrido. Heady: News headline abstraction through
event pattern clustering. In ACL (1), pages 1243–1253. Citeseer, 2013.

J. Allan. Introduction to topic detection and tracking. Topic detection and tracking,
pages 1–16, 2002.

J. Allan, J. G. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection
and tracking pilot study final report. 1998.

F. Atefeh and W. Khreich. A survey of techniques for event detection in twitter.
Computational Intelligence, 31(1):132–164, 2015.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606, 2016.

M. A. Branch, T. F. Coleman, and Y. Li. A subspace, interior, and conjugate
gradient method for large-scale bound-constrained minimization problems. SIAM
Journal on Scientific Computing, 21(1):1–23, 1999.

I. Brigadir, D. Greene, and P. Cunningham. Adaptive representations for tracking
breaking news on twitter. arXiv preprint arXiv:1403.2923, 2014.

R. J. Campello, D. Moulavi, and J. Sander. Density-based clustering based on hi-
erarchical density estimates. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pages 160–172. Springer, 2013.

A. J. Chaney, H. Wallach, M. Connelly, and D. M. Blei. Detecting and characterizing
events. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 1142–1152.

T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley &
Sons, 2012.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American society for infor-
mation science, 41(6):391, 1990.

48

M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96,
pages 226–231, 1996.

R. Ferreira, L. de Souza Cabral, F. Freitas, R. D. Lins, G. de França Silva, S. J.
Simske, and L. Favaro. A multi-document summarization system based on statis-
tics and linguistic treatment. Expert Systems with Applications, 41(13):5780–5787,
2014.

M. Fisichella, A. Stewart, A. Cuzzocrea, and K. Denecke. Detecting health events
on the social web to enable epidemic intelligence. In Proceedings of the 18th Inter-
national Conference on String Processing and Information Retrieval, SPIRE’11,
pages 87–103, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-24582-4.
URL http://dl.acm.org/citation.cfm?id=2051073.2051083.

B. J. Frey and D. Dueck. Clustering by passing messages between data points.
science, 315(5814):972–976, 2007.

B. Fuglede and F. Topsoe. Jensen-shannon divergence and hilbert space embedding.
In Information Theory, 2004. ISIT 2004. Proceedings. International Symposium
on, page 31. IEEE, 2004.

G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free bursty events detection
in text streams. In Proceedings of the 31st International Conference on Very Large
Data Bases, VLDB ’05, pages 181–192. VLDB Endowment, 2005. ISBN 1-59593-
154-6. URL http://dl.acm.org/citation.cfm?id=1083592.1083616.

V. Gupta and G. S. Lehal. A survey of text summarization extractive techniques.
Journal of emerging technologies in web intelligence, 2(3):258–268, 2010.

Q. He, K. Chang, and E.-P. Lim. Analyzing feature trajectories for event detection.
In Proceedings of the 30th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR ’07, pages 207–214, New
York, NY, USA, 2007a. ACM. ISBN 978-1-59593-597-7. doi: 10.1145/1277741.
1277779. URL http://doi.acm.org/10.1145/1277741.1277779.

Q. He, K. Chang, E.-P. Lim, and J. Zhang. Bursty feature representation for clus-
tering text streams. In Proceedings of the 2007 SIAM International Conference
on Data Mining, pages 491–496. SIAM, 2007b.

A. Huang. Similarity measures for text document clustering. In Proceedings of the
sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand, pages 49–56, 2008.

G. Ifrim, B. Shi, and I. Brigadir. Event detection in twitter using aggressive filtering
and hierarchical tweet clustering. In Second Workshop on Social News on the Web
(SNOW), Seoul, Korea, 8 April 2014. ACM, 2014.

S. Ji, H. Yun, P. Yanardag, S. Matsushima, and S. Vishwanathan. Wordrank:
Learning word embeddings via robust ranking. arXiv preprint arXiv:1506.02761,
2015.

49

http://dl.acm.org/citation.cfm?id=2051073.2051083
http://dl.acm.org/citation.cfm?id=1083592.1083616
http://doi.acm.org/10.1145/1277741.1277779

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–. URL http://www.scipy.org/. [Online; accessed 2017-03-07].

M. K̊agebäck, O. Mogren, N. Tahmasebi, and D. Dubhashi. Extractive summariza-
tion using continuous vector space models. In Proceedings of the 2nd Workshop
on Continuous Vector Space Models and their Compositionality (CVSC)@ EACL,
pages 31–39. Citeseer, 2014.

N. Keane, C. Yee, and L. Zhou. Using topic modeling and similarity thresholds to
detect events. In Proceedings of the 3rd Workshop on EVENTS at the NAACL-
HLT, pages 34–42, 2015.

S. Kullback and R. A. Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

M. J. Kusner, Y. Sun, N. I. Kolkin, K. Q. Weinberger, et al. From word embeddings
to document distances. In ICML, volume 15, pages 957–966, 2015.

Q. Le and T. Mikolov. Distributed representations of sentences and documents. In
Proceedings of the 31st International Conference on Machine Learning (ICML-
14), pages 1188–1196, 2014.

H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization
of submodular functions. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pages 912–920. Association for Computational Linguistics, 2010.

H. Lin and J. Bilmes. A class of submodular functions for document summarization.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 510–520. Association
for Computational Linguistics, 2011.

J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on
Information theory, 37(1):145–151, 1991.

H. P. Luhn. A statistical approach to mechanized encoding and searching of literary
information. IBM Journal of research and development, 1(4):309–317, 1957.

C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. Association for
Computational Linguistics, 2004.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781, 2013a. URL http:

//arxiv.org/abs/1301.3781.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013b.

50

http://www.scipy.org/
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space
word representations. In Hlt-naacl, volume 13, pages 746–751, 2013c.

O. Mogren, M. K̊agebäck, and D. P. Dubhashi. Extractive summarization by aggre-
gating multiple similarities. In RANLP, pages 451–457, 2015.

A. Nenkova and K. McKeown. A survey of text summarization techniques. In
Mining text data, pages 43–76. Springer, 2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–1543, 2014.

R. Řeh̊uřek and P. Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.

muni.cz/publication/884893/en.

C. J. V. Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton, MA,
USA, 2nd edition, 1979. ISBN 0408709294.

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric
for image retrieval. International journal of computer vision, 40(2):99–121, 2000.

G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513–523, 1988.

K. Sparck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 28(1):11–21, 1972.

J. Straková, M. Straka, and J. Hajič. Open-Source Tools for Morphology, Lemmati-
zation, POS Tagging and Named Entity Recognition. In Proceedings of 52nd An-
nual Meeting of the Association for Computational Linguistics: System Demon-
strations, pages 13–18, Baltimore, Maryland, June 2014. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/P/P14/P14-5003.

pdf.

M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similarities, peri-
odicities and bursts for online search queries. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’04, pages
131–142, New York, NY, USA, 2004. ACM. ISBN 1-58113-859-8. doi: 10.1145/
1007568.1007586. URL http://doi.acm.org/10.1145/1007568.1007586.

Y. Yang, T. Pierce, and J. Carbonell. A study of retrospective and on-line
event detection. In Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’98,
pages 28–36, New York, NY, USA, 1998. ACM. ISBN 1-58113-015-5. doi:
10.1145/290941.290953. URL http://doi.acm.org/10.1145/290941.290953.

51

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://doi.acm.org/10.1145/1007568.1007586
http://doi.acm.org/10.1145/290941.290953

Appendix A

Real events used for evaluation

This is a list of confirmed events which occurred in 2014 that was used to evaluate
Precision and Recall.

Date Headline

1 June 2
Španělský král Juan Carlos I. abdikoval a za svého nástupce
určil svého syna Filipa.

2 June 4-5 Konal se 40. summit G8 v Bruselu.

3 June 7
Petro Porošenko složil prezidentskou př́ısahu a stal se preziden-
tem Ukrajiny.

4 June 8
Abd al-Fattáh as-Śıśı složil prezidentskou př́ısahu a stal se
prezidentem Egypta.

5 June 10
V izraelských prezidentských volbách byl zvolen Re’uven
Rivlin.

6 June 12 V Braźılii začalo 20. mistrovstv́ı světa ve fotbale.

7 June 15
Andrej Kiska složil prezidentskou př́ısahu a stal se prezidentem
Slovenska.

8 June 18
Vůdci vojenského převratu v Turecku z roku 1980 Kenan Evren
a Tahsin Şahinkaya byli odsouzeni na doživot́ı.

9 June 19
Filip, asturský kńıže složil př́ısahu a stal se králem Španělska
jako Filip VI. Španělský

10 July 1 Itálie se ujala předsednictv́ı EU.

11 July 8

Armáda České republiky utrpěla největš́ı ztrátu v novodobých
dějinách, kdy při sebevražedném útoku pobĺıž letecké základny
Bagram zemřeli čtyři češt́ı vojáci, spolu s daľśımi 12 tamńımi
oběťmi. Pátý český voják byl těžce raněn a 14. července zemřel.

12 July 13 Mistry světa ve fotbale se stala německá fotbalová reprezentace.

13 July 15
Novým předsedou Evropské komise se stal lucemburský politik
a bývalý premiér Jean-Claude Juncker.

14 July 17
V oblasti boj̊u na východńı Ukrajině se zř́ıtil Boeing 777 mala-
jsijských aeroliníı. Zemřelo všech 295 osob na palubě.

52

15 July 21
Vláda Bohuslava Sobotky vybrala nového eurokomisaře. Stane
se j́ım ministryně pro mı́stńı rozvoj Věra Jourová, která ve
výběru porazila Pavla Mertĺıka.

16 August 10
V historicky prvńı př́ımé prezidentské volbě v Turecku byl zv-
olen premiér Recep Tayyip Erdoğan.

17 August 16-28 Letńı olympijské hry mládeže 2014 v č́ınském Nankingu.

18 August 19
Americký novinář James Foley byl popraven v syrské poušti
neznámým islámským radikálem, jeho smrt vyvolala v
západńım světe vlnu pobouřeńı.

19 August 24
Meziplanetárńı sonda New Horizons prolétla bĺızko L5 soustavy
Slunce–Neptun.

20 August 25
Ve sporu o amnestii Václava Klause soud schválil smı́r, podle
něhož se bývalý hradńı právńık Pavel Hasenkopf na vyhlášeném
zněńı amnestie nepod́ılel.

21 August 28
Recep Tayyip Erdoğan složil prezidentskou př́ısahu a stal se
prezidentem Turecka.

22 August 30
Polský premiér Donald Tusk byl na summitu Evropské unie
zvolen předsedou Evropské rady.

23 September 1
Pavel Hasenkopf podal na Vratislava Mynáře trestńı oznámeńı
pro pomluvu ohledně Mynářova výroku, že Hasenkopf je jedńım
z autor̊u amnestie Václava Klause.

24 September 2
Daľśı americký novinář Steven Sotloff byl popraven v syrské
poušti neznámým islámským radikálem, stejně jako James Fo-
ley v srpnu.

25 September 4
Ve Vilémově se zř́ıtil most, na kterém prob́ıhala rekonstrukce.
Zemřeli čtyři dělńıci, daľśı dva byli zraněni.

26 September 6
Počet nakažených ebolou při celoročńı epidemii se přehoupl přes
4 000.

27 September 8
Britský následńık tr̊unu Princ William a jeho manželka Kate
oznámili, že čekaj́ı druhé d́ıtě.

28 September 10
Kandidátka na českou eurokomisařku Věra Jourová źıskala
portfolio spravedlnosti, spotřebitelské politiky a rovnosti
pohlav́ı.

29 September 13
Islámšt́ı radikálové popravili daľśıho západńıho zajatce, ten-
tokrát j́ım byl britský humanitárńı pracovńık David Haines.

30 September 18
Ve Skotsku proběhlo referendum o nezávislosti na Spojeném
královstv́ı. Pro odtržeńı od Británie hlasovalo 44,7% lid́ı, proti
55,3% lid́ı, Skotsko tak z̊ustane jej́ı součást́ı.

31 September 20
Náčelńık Generálńıho štábu Armády ČR Petr Pavel byl zvolen
předsedou vojenského výboru NATO.

53

32 September 24
Na Pražský hrad se dostal výhružný dopis adresovaný prezi-
dentovi Miloši Zemanovi s b́ılým práškem. Př́ıpad šetř́ı policie.

33 October 3
Prezident Miloš Zeman přijal demisi ministryně pro mı́stńı
rozvoj Věry Jourové.

34 October 3
Islámšt́ı radikálové popravili daľśıho západńıho zajatce, stal se
j́ım opět britský humanitárńı pracovńık Alan Henning.

35 October 7
Evropský parlament schválil nominaci Věry Jourové na post
eurokomisařky pro spravedlnost, spotřebitelskou politiku a
rovnost pohlav́ı.

36 October 10-11

Proběhly volby do Senátu Parlamentu České republiky, volby
do zastupitelstev obćı a volby do Zastupitelstva hlavńıho města
Prahy. Ve volbách uspěly předevš́ım vládńı strany ČSSD, ANO
a KDU-ČSL.

37 October 14
Žena trṕıćı schizofrenii pobodala na obchodńı akademii ve
Žďáru nad Sázavou tři studenty a zasahuj́ıćıho policistu. Je-
den ze student̊u útok nepřežil.

38 October 16
Ve Vrbětićıch došlo k výbuchu muničńıho skladu č. 16. Na
mı́stě zahynuli dva zaměstnanci skladu, došlo k evakuaci oby-
vatel přilehlých obćı.

39 October 16
Zanikla europarlamentńı frakce Evropa svobody a př́ımé
demokracie, 20. ř́ıjna byla opět obnovena.

40 October 17-18
Proběhlo druhé kolo voleb do Senátu Parlamentu České repub-
liky. Ve volbách uspěly předevš́ım vládńı strany ČSSD, ANO
a KDU-ČSL.

41 November 9
V Katalánsku začalo symbolické hlasováńı o nezávislosti na
Španělsku.

42 November 12
Přistál modul Philae jako historicky prvńı lidský stroj na
kometě.

43 November 15
Islámšt́ı radikálové popravili daľśıho západńıho zajatce, stal se
j́ım americký humanitárńı pracovńık Peter Kassig.

44November 15-16 Summit G20 v Brisbane.

45 December 1

Ledovková kalamita ochromila hromadnou dopravu v ČR a
dodávky elektřiny v mnoha regionech. Tramvajová doprava
v Praze dokonce poprvé ve své historii zažila úplné zastaveńı
provozu. Do normálu se dopravńı i energetická situace vrátila
až 3. prosince.

46 December 1 Druhým předsedou Evropské rady se stal Donald Tusk.

47 December 3
Ve Vrbětićıch došlo k daľśımu výbuchu muničńıho skladu č.
12. Opět proběhla evakuace obyvatel přilehlých obćı, oba dva
výbuchy jsou vyšetřovány jako úmyslný trestný čin.

54

48 December 16
Ozbrojenci ze skupiny Tahŕık-e Tálibán-e Pákistán spáchali
masakr v péšávarské vojenské škole škole. Útok si vyžádal 141
obět́ı většinu z nich tvořili děti.

49 December 28
Na cestě ze Surabaje do Singapuru se ztratilo letadlo malajsi-
jské společnosti AirAsia se 162 lidmi na palubě.

55

Appendix B

Annotated events

Below are several examples of events detected by the three methods. For each
method, we provide examples of Well-formed event summaries as well as those of
poor quality. The full outputs for all detected events can be found on the DVD.
These examples serve purely to illustrate the various events found using the indi-
vidual methods.

For each event, the first few keywords are shown to save space. Then, for each
event burst, we list its date, headline of the most similar document, and the gener-
ated summary with a maximum length of 60 words.

B.1 Original method

Well-formed events

1. let, mha

Mar 11 - Apr 2, 2014

Pátráńı po malajském boeingu pokračuje
Což měl údajně být i př́ıpad jednoho z lid́ı v malajsijském letu MH 370. Jsou však
značně vzdálené od plánované trasy letu MH 370. Neřekl jsem, že to byl let MH
370. Záhada letu MH 370 pokračuje. Záhada letu MH 370 tak pokračuje. Záhada
letu MH 370 trvá.

Jul 18 - Jul 28, 2014

Na Ukrajině byl nejsṕı̌s sestřelen malajsijský boeing, v́ıce než 300 obět́ı
Zpravodajstv́ı o tragickém letu MH 17 najdete v listě. Sestřeleńı letu MH 17 nadále
sledujeme online. Redaktor CNN ukazuje dráhu letu MH 17. Byl MH 17 skutečně
sestřelen? Na palubě letu MH 17 bylo podle malajsijského ministra dopravy 298
lid́ı. Sestřeleńı letu MH 17 by mu tedy takovou cestu mohlo otevř́ıt.

Aug 14, 2014 - Jan 5, 2015

Prvńı zpráva o tragédii letu MH 17 na Ukrajině bude v zář́ı
Prvńı zpráva o tragédii letu MH 17 bude v zář́ı. Boeing MH 370 také několikrát
prudce změnil výšku. Bratr mi zmizel při letu MH 370, dcera zahynula v MH 17,
pláče. Ukrajinská armáda prokazatelně BUKy měla a byly v dobu letu MH 17
aktivńı. Separatistka se naĺıčila řasenkou oběti letu MH 17.

56

2. KDU-ČSL, lidovec

Jan 4 - Feb 22, 2014

Koalice Náměstci, třeste se!
Vašimi koaličńımi partnery jsou ANO a KDU-ČSL. Vláda bude mı́t 17 člen̊u. Již
před Vánoci zveřejnili své nominanty lidovci. Kandidáti hnut́ı ANO a KDU-ČSL na
ministry jsou již známi. KDU-ČSL je stranou, která se často oháńı tradićı. ANO i
KDU-ČSL budou mı́t po jenom vicepremiérovi. ANO: Lidovci, rozhodněte se!

May 16 - Jul 27, 2014

Eurovolby 2014 s Janem Kellerem (ČSSD) a Pavlem Svobodou (KDU-
ČSL)
KDU-ČSL zveřejnila program, se kterým jde do voleb. Proti návrhu je opozice
i lidovci. Má podporu zelených a lidovc̊u. To je ale podle lidovc̊u málo. Nové
slevy na druhé d́ıtě jsou podle lidovc̊u slabé. Pro lidovce je to však málo. Lidovci
nepodpoř́ı Babǐsovy daňové změny. Lidovc̊um se to ale zdá málo.

Oct 11 - Oct 31, 2014

SedmiDeńık Uplynulý týden očima Kateřiny Perknerové
KDU-ČSL kandiduj́ı v hlavńım městě v Trojkoalici. Zv́ıtězila zde jediná volebńı
kandidátka KDU-ČSL. Věř́ı, že lidovci v obou hlasováńıch pośıĺı. Lidovci kanduj́ı
ve dvaceti volebńıch obvodech. Kandidáti KDU-ČSL v́ıtězili ve třech obvodech, ve
dvou pak vedou společńı kandidáti lidovc̊u a Strany Zelených. Po sečteńı poloviny
hlas̊u vede v komunálńıch volbách KDU-ČSL.

Poor quality events

1. bodovat, děkovat

Oct 19 - Dec 31, 2014

Beránek Začali jsme hrozně. Nevěřil jsem vlastńım oč́ım

Hemingway bar neboduje jen ve světě. Odpověď zńı “Ne děkuji. V anketě bodovalo
divadlo všech žánr̊u. Pardubice naopak počtvrté za sebou nebodovaly. Východočeši
nebodovali už počtvrté za sebou. Réway: Za výhru můžeme děkovat Rasťovi. Maj́ı
śılu a teď několikrát za sebou bodovali. JESENÍK BODOVAL V SOUTĚŽI ELEK-
TROOSKAR.

2. Č́ına, č́ınský

Apr 19 - Jun 11, 2014

Po přidružeńı k EU se Ukrajina stane jen vývozcem pracovńı śıly...?
(Břetislav Oľser)
Nad Č́ınou se stahuj́ı mračna. Na vině je dovoz z Č́ıny. Výsledek je tedy č́ınskou
kopii jiné č́ınské kopie amerického vozu. McLarenu se v Č́ıně nedař́ı. V Č́ıně zač́ıná
mezinárodńı autosalon. Prodej aut v Č́ıně dál poroste. V Č́ıně v sobotu začal
mezinárodńı autosalon. Fiat bude vyrábět modely Jeep v Č́ıně.

57

Oct 10 - Dec 23, 2014

Nobelovu cenu za literaturu źıskal francouzský spisovatel Patrick Modi-
ano
Ta bude pod č́ınskou dominanćı a ř́ızená z Pekingu. Vháńıme Rusko do náruče Č́ıny.
Komunismus je i v Č́ıně, proto je špatná. A doplat́ı na to výrobci. Ti všichni věř́ı
v potenciál r̊ustu č́ınského akciového trhu. Tento problém už ale bude řešit č́ınská
strana. Ta se v Č́ıně odehraje již dnes.

B.2 Embedded-greedy method

Well-formed events

1. sankce, konflikt, Putin, Moskva, západ, východ, armáda, vojenský...

Jul 26 - Sep 15, 2014

Moskva a NATO se hádaj́ı o ruské vojáky na Ukrajině
Demonstranti v Moskvě žádali Putina o vojenský zásah na Ukrajině. Merkelová:
NATO pośıĺı na východě svou vojenskou př́ıtomnost. Vladimir Putin dohĺıž́ı na
vojenské manévry. Putin chce pośılit armádu kv̊uli údajné hrozbě Západu. Putin
prověřuje bojeschopnost armády na Dálném východě. NATO pořádá manévry na
západě Ukrajiny, Moskva protestuje.

2. předplatné, vložit, Václav, Havel, č́ıslo, náměst́ı, pražský, výroč́ı...

Oct 26 - Dec 15, 2014
Knihovna Václava Havla slav́ı 25. výroč́ı sametové revoluce
Pro mě to nebyla až taková událost. Hodnot́ı nejsoučasněǰśı události v Evropě. StB
navrhovala zab́ıt Václava Havla. Knihovna Václava Havla slav́ı 25. výroč́ı sametové
revoluce. Oslavy sametové revoluce pohĺıdaj́ı v Praze stovky policist̊u. Kroměř́ıž si
na náměst́ı připomene výroč́ı revoluce i Karla Kryla. Psali jsme: Čas pracuje pro
Václava Havla.

Poor quality events

1. únor, březen, loňský, vloni

Feb 1 - Mar 25, 2014

V březnu
Co se stalo 20. února? Při loňské razii u Nagyové našla policie šperky za miliony.
Tak máme pomalu konec února, jemuž je autor těchto řádk̊u zvyklý ř́ıkat úmor.
Vyšlo nové vydáńı Solidarity na únor/březen. Podle nejnověǰśıch zpráv (z 1. března)
město Brno povolilo výstavbu skladu Amozonu.

58

2. útok, oběť, zemř́ıt, boj, těžký, d́ıtě, skončit, Německo...

Apr 2 - Nov 4, 2014

Př́ıměř́ı v Gaze vydrželo dvě hodiny, Izrael pokračuje v boj́ıch. Zemřelo
27 Palestinc̊u
Bakterie maj́ı hodiny, které je probud́ı, když skonč́ı útok antibiotiky. Bakterie maj́ı
hodiny, jež je probud́ı, když skonč́ı útok antibiotiky. Posádka druhého vozu skončila
s těžkými zraněńımi v nemocnici. Těžká nehoda autobusu: Řidič zemřel, těhotná
žena skončila popálená! V nemocnici skončilo 33 lid́ı, tři z nich jsou děti.

Jan 6 - Jan 26, 2015

OBRAZEM Francie vzpomı́ná na oběti útok̊u
Podle informaćı deńıku Le Monde zemřelo 12 lid́ı. Zemřelo nejméně 12 lid́ı, z toho
dva policisté. Obama se poklonil obětem pař́ıžského útoku. Útočńıci byli Francouzi,
narozeńı ve Francii. Část z nich v boj́ıch padla, ale asi 180 radikál̊u se vrátilo do
Německa. Boj proti terorismu: Francie se zbláznila.

B.3 Cluster-based method

Well-formed events

1. Gaza, Hamas, Izrael, Izraelec, Palestinec, izraelský, palestinský

Apr 28 - Sep 20, 2014

Izrael vs. Hamás 3.0
Palestinský Hamas oznámı́ př́ıměř́ı s Izraelem. Izraelci zaútočili na deset ćıl̊u
v palestinském Pásmu Gazy. Izraelské nálety na Gazu zabily devět Palestinc̊u.
Izraelské tanky vjely do Gazy. Hamas prý v pásmu Gazy zadržel izraelského vojáka.
Podle Izraele padl do rukou palestinského Hamasu. Izraelci při útoku na Gazu zabili
tři velitele Hamasu.

Dec 19 - Dec 21, 2014

Izrael v pásmu Gazy zaútočil na Hamas
Izrael v pátek odpoledne oznámil, že Palestinci odpálili z Gazy raketu Kásam.
GAZA - Izraelská armáda provedla letecký úder v pásmu Gazy, jehož ćılem bylo
palestinské hnut́ı Hamas. Autor: ČTK. Gaza - Izraelská armáda provedla letecký
úder v pásmu Gazy, jehož ćılem bylo palestinské hnut́ı Hamas. Přesto s Hamásem
nic neudělá.

59

2. Ebola, Guinea, Leone, Libérie, Sierra, ebola, epidemie

Sep 28 - Oct 29, 2014

Epidemie eboly
Ebola nejdř́ıve propukla v Guineji. Nejv́ıce postižené země jsou Sierra Leone,
Guinea a Libérie. Libérie je spolu se Sierrou Leone a Guineou nejpostiženěǰśı
ze západoafrických zemı́. Zat́ım epidemie eboly hlavně postihovala východ Sierra
Leone. Libérie patř́ı k zemı́m nejv́ıce zasaženým epidemíı eboly. WHO: Epidemie
eboly v Libérii začala ustupovat.

Poor quality events

1. extra, podnik, reklama, siga, zpravodajstv́ı

Oct 10 - Dec 3, 2014

Maturus o. p. s.
Jaké reklamy na vás p̊usob́ı nejv́ıce? Reklama na mě nemá téměř žádný vliv.
Televize Barrandov v listopadu rozš́ı̌ŕı zpravodajstv́ı. Některé reklamy jsou hodně
odvážné. Jaké se ti ĺıb́ı reklamy? 4. Jaké se ti ĺıb́ı reklamy ? 9. Zaj́ımavá jsou
zjǐstěńı ohledně televizńı reklamy. Tyto reklamy se mi ĺıb́ı. 3.

2. Rusko, ruský

Feb 21 - Apr 24, 2014

RUSKÝ POSTKOLONIALISMUS - 1.
Jaké jsou skutečné možnosti Ruska? Rusko potřebuje investory jako s̊ul. Na budově
zavlál prapor Ruska. Tak to je pro Rusko dárek! Lid žádá návrat do Ruska. Rusko,
největš́ı stát světa, se může radovat. T́ım se dostala i západńı Ukrajina pod ruskou
vládu. Rusko nemělo evidentně zájmy ve středńı Evropě.

Jul 28 - Sep 8, 2014

Hurá na Rusko
Bát bychom se neměli Ruska, ale USA a EU. Rusko se vyhnulo klasickému
otroctv́ı. Za Janukoviče byly zájmy Ruska v bezpeč́ı. Upozornil na to ruský server
newsru.com. Rusko se obává, že se EU zřekne ruských raket. Válč́ı Rusko na Ukra-
jině? Vše na ruské straně proběhlo dobře.

Nov 30 - Jan 8, 2015

Rusko
Ne že by na to Rusko nemělo. Reálně neńı Rusko nikým vojenský ohrožováno.
Odvolejme naše sankce proti Rusku! Zhruba v polovině léta se k ńı přidal i ruský
rubl. Rusko nejen přežije, ale bude mnohem silněǰśı, řekl. Ruská centrálńı banka
zahájila intervence na pośıleńı rublu. Rusko tato nařčeńı opakovaně odmı́tlo.

60

Appendix C

DVD contents

The attached DVD contains the Python scripts used for experimentation, logs and
outputs of the event detection. Additionally, we provide the preprocessed data for
running the event detection. Due to space limitations, we do not include the whole
document collection in text format. Instead, we provide the serialized matrix B
defined in Section 4.1 and the relevant documents retrieved for all events. This will
allow to run the detection with the settings as defined in the scripts. In addition,
we provide the trained Word2Vec model.

To run, the project requires Python 3.6, NumPy 1.11.3, SciPy 0.18.1, Scikit-
Learn 0.18.1, Matplotlib 2.0.0, Wordcloud 1.2.1 and Gensim 1.0.1.

The DVD structure is as follows:

• /logs – Log files produced during the experiments with information about
running times.

• /plots – Trajectories of all detected events.

• /scripts – Python scripts used for experimentation.

– /scripts/event detection – The main project files. Run the detection
through the main.py file.

– /scripts/notebooks – Jupyter notebooks used for testing.

– /utils – Simple utility scripts used to collect word counts and train the
Word2Vec mode

• /summaries – Summaries of all detected events.

• /thesis – Source codes for this thesis and its PDF version.

• event detection data.zip – Input data and trained Word2Vec model compressed
into a ZIP format. Unzip to /scripts/event detection before running the
project.

61

	Introduction
	Related work
	Word embedding
	Event detection
	Document retrieval
	Event annotation

	Document stream and preprocessing
	Preprocessing
	Word embeddings
	Document collection
	Document stream formally

	Word-level analysis
	Binary bag of words model
	Computing word trajectories
	Spectral analysis

	Event detection algorithms
	Original method
	Trajectory distance
	Document overlap
	Cost function
	Event detection algorithm

	Embedded greedy approach
	Semantic similarity
	Cost function

	Cluster-based approach
	Noise filtering
	Distance function
	Event detection

	Document retrieval
	Event burst detection
	Event trajectory construction
	Trajectory filtering
	Event periodicity
	Density fitting
	Burst detection

	Document retrieval

	Event annotation
	Multi-document summarization
	Coverage function
	TFIDF similarity
	Word2Vec similarity
	TR similarity
	Keyword similarity

	Diversity function
	Optimization
	Results

	Evaluation
	Precision, Recall, F-measure
	Redundancy
	Noisiness
	Purity
	Computation time

	Conclusion and future work
	Bibliography
	Real events used for evaluation
	Annotated events
	Original method
	Embedded-greedy method
	Cluster-based method

	DVD contents

