SITE	Hunterston A					
SITE OWNER	Nuclear Decommissioning Authority					
WASTE CUSTODIAN	Magnox Limited					
WASTE TYPE	ILW; SPD1					
WASTE VOLUMES						
Stocks:	At 1.4.2013	563.7	⁷ m ³			
Total future arisings:		() m ³			
Total waste volume:		563.7	⁷ M ³			
Comment on volumes:	There will be no future arisings	of this stream:	the bunker is nominally full.			
Uncertainity factors on volumes:	Stock (upper):x 1.25Arisings (upper)xStock (lower):x 0.75Arisings (lower)x					
WASTE SOURCE	Fuel element debris, from the re discharged fuel elements.	emoval of Mag	nox splitters and buttons from			
PHYSICAL CHARACTERIS	TICS					
General description:	The waste consists of splitters and buttons from discharged fuel elements. Each fuel element comprises a Magnox can with 4 splitter blades. These blades are sheared off. Each piece of Magnox is generally small (75 mm long) with an average mass of 0.1125 kg which includes a percentage of the braces (i.e. mass of Magnox per fuel element is 0.45 kg). Magnox buttons (one per element) each weigh 1.7g. No items require special handling. During initial station operation the desplittering process involved baling Magnox into 150 mm diameter bales.					
Physical components (%wt):	Splitter blades (99.9 wt%), Magnox buttons (<0.1 wt%). By volume, there is 95% of solid and 5% powder.					
Bulk density (t/m ³):	0.25					
Comment on density:	Mean bulk density is 0.25 t/m3.	This assumes	a packing fraction of $1/7$ (= 0.143).			
CHEMICAL COMPOSITION	l					
General description and components (%wt):	The waste is comprised of (~10 contaminated by fission product magnesium hydroxide, may be	0%) Magnox A s and actinide present (<0.3	AL80 alloy. The Magnox may be s. Some corrosion product, wt %).			
Chemical state:	The waste is neutral but will act	as a reducing	agent.			
Chemical form of radionuclides:	 H-3: Tritium is expected to be present as surface contamination, possibly as water but perhaps in the form of other inorganic or organic compounds. C-14: Carbon 14 will probably be present as graphite. Cl-36: Chlorine 36 incorporated in the Magnox may be associated with barium impurity (barium chloride). Other chlorine 36 may be associated with surface contamination. Se-79: The chemical form of selenium has not been determined. Tc-99: The chemical form of technetium has not been determined. Ra: Radium isotope content is insignificant. Th: The thorium isotope content is insignificant. U: Chemical form of uranium isotopes may be uranium oxides. Np: The chemical form of neptunium has not been determined. Pu: Chemical form of plutonium isotopes may be plutonium oxides. 					
Metals and alloys (%wt):	The waste is Magnox AL80 which includes 0.8% wt aluminium as an alloying constituent. There will be impurities, generally at trace levels, incorporated in the Magnox. No bulk metal items present.					
	Stainless steel	0	Bronze	0		
	Other terrous metals	0	Inconel	0		
	Copper	0	Stellite	0		
	Lead	0	Boral	0		
	Zinc	0	Dural	0		
	Magnox/Magnesium	>99.0	Monel	0		
	Zircaloy	0	Uranium	00		
	Brass	U	Other metals (below)	03		

Other metals: No "other" metals have been identified.

2013 Inventory

WASTE STREAM 9J23 FED Magnox

Inorganic anions (%wt):	None expected at greater than tra	ce concen	trations.		
	Fluoride	TR	Nitrate TR		
	Chloride	TR	Nitrite TR		
	lodide	0	Phosphate TR		
	Cvanide	0	Sulphate TR		
	Carbonate	TR	Sulphide		
Listed substances:	Not present.				
Hazardous and problematic	Magnox will ignite under certain og	onditions			
materials (%wt):	Magnox will ignite under certain of	Shallons.			
	Combustible metals	>99.0	Strong oxidising agents0		
	Low flash point liquids	0	Pyrophoric materials0		
	Explosive materials	0	Generating toxic gases		
	Phosphorus	0	Reacting with water >99.0		
	Hydrides	0	Asbestos 0		
	Putrescible wastes	0	Free aqueous liquids TR		
	Biological etc. materials	0	Free non-aqueous liquids 0		
	Powder	TR			
Asbestos types and proportions:	-				
Complexing agents (%wt):	Not yet determined. Only trace qu	antities, if	any, are expected.		
	Complexing agents		TR		
Organics (%wt):					
	Total cellulosics		0		
	Paper, cotton		0		
	Wood		0		
	Halogenated plastics		0		
	Total non-halogenated plastics		0		
	Condensation polymers		0		
	Others		0		
	Organic ion exchange materials		0		
	Total rubber		0		
	Halogenated rubber	•	0		
	Non-halogenated rubber		0 0		
	Other organics		TR		
Halogenated plastics and	There are no halogenated plastics	or rubber	s present.		
rubber (%wt):	Traces of graphite may be presen	+			
Calor materials (70Wt).			0		
	Inorganic ion exchange materials.	•			
	Inorganic sludges and flocs		NE		
	Soll		0		
	Rubble	•	0		
	Concrete, cement and sand	•	0		
	Glass	•	0		
	Ceramics	•	0		
	Graphite		IK		
PACKAGING AND COND	ITIONING				
Conditioning method:	The solid will be encapsulated in a be tamped or compacted. Any pow separately and packaged in 3m3 [a 3m3 box vdered wa Drum.	 It is not expected that the waste will ste is expected to be encapsulated 		
Plant Name:	SILWR for solid waste, WILWREP (Wet ILW Retrieval and Encapsulation Plant) for				

Location:	Hunterston A Decommissioning Site
Plant startup date:	2012
Total capacity (m ³ /y incoming waste):	~500.0

any powdered waste.

WASTE STRE	ΞΑΜ	9J23	FED Magno	x				
Target start date packaging this st	for ream:	2012						
Throughput for this stream ~113.0 (m³/y incoming waste):								
Other information	1:	All solid and pac superco separate	All solid wastes in the bunker would be encapsulated together in a BFS/OPC matrix and packaged in 3m3 Stainless Steel Box. There is no intention to first supercompact the waste. Any powdered waste is expected to be encapsulated separately in a 9:1 BFS/OPC matrix and would be packaged in 3m3 Drum.					
Likely container type: Container				Waste packaged (%vol)	Waste loading (m ³)	Payload (m ³)	Container displacement volume (m ³)	
	3m³ box (r	ound corner	s)	100.0	2.93	2.65	3.273	
Likely container t	уре	The load	ling assumes tha	it the waste will r	revert to a simi	lar volume as	the original	
comment:		volume	in the vault. It is	not expected th	at the waste w	ill be tamped of	or compacted.	
Range in container waste No significant variability is expected. volume:								
Other information containers:	r information on The 3m3 box is expected to be made from stainless steel. ainers:							
Likely conditionin	g matrix:	BFS/OP	С					
Other information	n:	-						
Conditioned dens	sity (t/m³):	~2.0	~2.0					
Conditioned density The density of the conditioned waste will probably be about 2 t/m3. comment:								
Other information on conditioning: The proposed method has changed from dissolution to encapsulation in BFS/OPC in a 3m3 box. The wastes in the bunker will probably be encapsulated together, b possibly excluding any ash and dusts. The waste is a mixture of waste streams 9J18, 9J23, 9J26, 9J35 and 9J40. Any of the Magnox waste that has degraded from the topowder will be encapsulated in a 3m3 drum with a conditioning factor of about 3.					in BFS/OPC, d together, but e streams degraded from ng factor of			
RADIOACTIVI	ΓY							
Source:		Predomi and acti	Predominantly activation products with possible contamination by fission products and actinides.					
Accuracy:		The valu	ies quoted are in	dicative of activit	ties that might	be expected.		
Definition of total and total beta/ga	alpha mma:	Totals s beta/gar	Totals shown on table of radionuclide activities are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma.'					
Measurement of specific Activities have been estimated from activation calculations with assumptions for contamination.				nptions for				

Other information:

1

Other beta/gamma nuclides (in TBq/m3) in stocks are : Al26 (2E-5).

WASTE STREAM 9J23 **FED Magnox**

	Average specific activity. TBg/m ³				Average specific activity, TBg/m ³					
Nuclide	Waste at	Bands and	Future	Bands and	Nuclide	Waste at	Bands and	Future	Bands and	
	1.4.2013		ansings	Code		1.4.2013	coue	ansings	Code	
п 3 Ве 10	2.53E-02 1E-07				Ho 166m		0 8			
C 14	1E-07				Tm 170		8			
CI 36	2E-05				Tm 171		8			
Ar 39	22 00	8			1 174		8			
Ar 42		8			Lu 174		8			
K 40		8			Hf 178n		8			
Ca 41	<2E-05	С 3			Hf 182		8			
Mn 53	-22 00	8			Pt 193		8			
Mn 54		8			TI 204		8			
Fe 55	9.26E-05	CC 2			Pb 205		8			
Co 60	<6.74E-04	С 3			Pb 210		8			
Ni 59	2E-05	CC 2			Bi 208		8			
Ni 63	1.96E-03	CC 2			Bi 210m		8			
Zn 65		8			Po 210		8			
Se 79		8			Ra 223		8			
Kr 81		8			Ra 225		8			
Kr 85		8			Ra 226		8			
Rb 87		8			Ra 228		8			
Sr 90	6.52E-04	CC 2			Ac 227	Ī	8			
Zr 93	4E-08	CC 2			Th 227		8			
Nb 91		8			Th 228		8			
Nb 92		8			Th 229		8			
Nb 93m	4.77E-09	CC 2			Th 230		8			
Nb 94		8			Th 232		8			
Mo 93		8			Th 234		8			
Tc 97		8			Pa 231		8			
Tc 99	2E-07	CC 2			Pa 233	4.03E-09	CC 2			
Ru 106		8			U 232		8			
Pd 107		8			U 233		8			
Ag 108m	2.99E-06	CC 2			U 234	6.01E-08	CC 2			
Ag 110m		8			U 235	2E-09	CC 2			
Cd 109		8			U 236	5E-09	CC 2			
Cd 113m	<5.18E-05	C 3			U 238	7E-08	CC 2			
Sn 119m					Np 237	4.03E-09	CC 2			
Sn 121m	<1.92E-04	C 3			Pu 236		8			
Sn 123		8			Pu 238	8.79E-06	CC 2			
Sn 126	3.04E-09	CC 2			Pu 239	2E-05	CC 2			
Sb 125	1.87E-06	CC 2			Pu 240	2E-05	CC 2			
Sb 126	– .	8			Pu 241	2.6E-04	CC 2			
Te 125m	1.98E-06	CC 2			Pu 242	6E-09	CC 2			
Te 127m		8			Am 241	3.12E-05				
1129		8			Am 242m	3.94E-08				
US 134	1.46E-08				Am 243	8E-09				
US 135	6E-09				Cm 242	3.22E-08				
US 137	0.03E-04				Cm 243	0.03E-09				
Da 133	<4.1E-05				Cm 244	3.37E-08				
La 13/	<4E-U0				Cm 240	}	ŏ			
La 130		ð o			Cm 240		ŏ			
Dm 145		O Q			Cf 240		0			
Pm 143	<1.81E-04	0			Cf 250		o Q			
Sm 147	<1.01∟-04				Cf 251		υ Q			
Sm 147 Sm 151	1 95E-06	00.2			Cf 252		о я			
Fu 152	2.57E-08	00 2			Other a		0			
Eu 152	1.57E-06	CC 2			Other b/a	2E-05	CC 2			
Eu 155	3 29F-07	CC 2			Total a	8 02F-05	CC 2			
Gd 153	5.232-07	Q 2			Total b/g	3 03E-02	00 2			
00.100		U			· · · · · · · · · · · · · · · · · · ·	0.000-02	00 2			

Bands (Upper and Lower) A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in the average specific activity.

Code

Measured activity
 2 Derived activity (best estimate)
 3 Derived activity (upper limit)
 4 Not present
 5 Present but not significant
 5 likely to be present but not activity

6 Likely to be present but not assessed
7 Present in significant quantities but not determined
8 Not expected to be present in significant quantity