WASTE STREAM 9D39 FED Nimonic R1

SITE Hinkley Point A

SITE OWNER Nuclear Decommissioning Authority

WASTE CUSTODIAN Magnox Limited

WASTE TYPE ILW

WASTE VOLUMES

Stocks: At 1.4.2013...... ~0.4 m³

Total future arisings: 0 m³

Total waste volume: 0.4 m³

Comment on volumes: There could be up to about 130,000 springs in the vault.

Uncertainity factors on Stock (upper): x 1.05 Arisings (upper) x volumes: X 0.95 Arisings (lower) x

WASTE SOURCE Nimonic springs are incorporated into Magnox fuel element top fittings and are

removed during fuel element desplittering.

PHYSICAL CHARACTERISTICS

General description: Springs are about 33 mm long, 10 mm in diameter and weigh about 5 g. There are

no large items present in the waste which may require special handling.

Physical components (%vol): Nimonic springs (~100 vol%).

Bulk density (t/m³): ~0.82 Comment on density: -

CHEMICAL COMPOSITION

General description and components (%wt):

Nimonic (~100%).

Chemical state: The waste is not acidic, alkaline, oxidising or reducing.

Chemical form of radionuclides:

H-3: Tritium will probably be present as surface contamination, possibly as water but

perhaps as other inorganic or organic compounds.

C-14: Carbon 14 is likely to be present in the form of graphite contamination. Cl-36: Chlorine 36 will probably be present in the form of graphite contamination.

Se-79: The selenium content is insignificant.

Tc-99: The chemical form of technetium has not been determined.

Ra: Radium isotope content is insignificant. Th: The thorium isotope content is insignificant.

U: Chemical form of uranium isotopes has not been determined but may be uranium

oxides.

Np: The chemical form of neptunium has not been determined.

Pu: Chemical form of plutonium isotopes has not been determined but may be

plutonium oxides.

Metals and alloys (%wt): The Nimonic is 100% type 80A. Bulk metal items are not present in the waste.

Stainless steel	0	Bronze	0
Other ferrous metals	0	Inconel	0
Aluminium	0	Nimonic	100.0
Copper	0	Stellite	0
Lead	0	Boral	0
Zinc	0	Dural	0
Magnox/Magnesium	0	Monel	0
Zircaloy	0	Uranium	
Brass	0	Beryllium	0
		Other metals (below)	0

Other metals:

Inorganic anions (%wt): None of the inorganic anions in the table is expected to be present at greater

than trace concentration.

Fluoride	TR	Nitrate	TR
Chloride	TR	Nitrite	TR
lodide	0	Phosphate	TR
Cyanide	0	Sulphate	TR
Carbonate	TR	Sulphide	0

WASTE STREAM 9D39 FED Nimonic R1

Listed substances:	Not present.		
Hazardous and problematic materials (%wt):	There are no materials identified in the non-radiological hazard.	ne waste	likely to represent a fire or other
	Combustible metals	0	Strong oxidising agents 0
	Low flash point liquids	0	Pyrophoric materials 0
	Explosive materials	0	Generating toxic gases 0
	Phosphorus	0	Reacting with water 0
	Hydrides	0	Asbestos0
	Putrescible wastes	0	Free aqueous liquids P Free non-aqueous liquids 0
	Biological etc. materials Powder	0	Free non-aqueous liquids 0
Asbestos types and proportions:	-		
Complexing agents (%wt):	Not yet determined. Only trace quant	ities, if a	ny, are expected.
	Complexing agents	٦	ΓR
Organics (%wt):	Organics may be present in trace qua	antities.	
	Total cellulosics		0
	Paper, cotton		0
	Wood		0
	Halogenated plastics		0
	Total non-halogenated plastics		0
	Condensation polymers Others		0
	Organic ion exchange materials		0
	Total rubber		0
	Halogenated rubber		0
	Non-halogenated rubber		0
	Other organics	٦	ΓR
Halogenated plastics and rubber (%wt):	No halogenated plastics or rubbers p	resent.	
Other materials (%wt):	Traces of graphite may be present.		
	Inorganic ion exchange materials		0
	Inorganic sludges and flocs		0
	Soil		0
	Rubble		0
	Concrete, cement and sand		0
	Ceramics		0
	Graphite	٦	TR
PACKAGING AND CONDI	•		
Conditioning method:	-		
Plant Name:	-		
Location:	Hinkley Point A Site		
Plant startup date:	2019		
Total capacity (m³/y incoming waste):	-		
Target start date for packaging this stream:	2020		
Throughput for this stream (m³/y incoming waste):	-		
Other information:	-		

WASTE STREAM 9D39 **FED Nimonic R1**

Likely container type:

Container	Waste packaged (%vol)	Waste loading (m³)	Payload (m³)	Container displacement volume (m³)
Other (MOSAIK with 90mm shielding. Displacement volume 1.32m3.)	100.0	~0.2	0.222	

Likely container type

comment:

Range in container waste

volume:

Other information on

containers:

Likely conditioning matrix:

Other information:

Conditioned density (t/m³):

Conditioned density comment:

Other information on

conditioning:

RADIOACTIVITY

Nimonic springs originally incorporated into Magnox fuel element top end fittings and Source:

removed during fuel element desplittering. There will be activation products in the

Nimonic and contamination by fission products and actinides.

Accuracy: Specific activity is a function of Station operating history. The values quoted are

indicative of the activities that might be expected.

Definition of total alpha

and total beta/gamma:

Totals shown on table of radionuclide activities are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma.'

Measurement of specific

activities:

Induced activity has been calculated and fission product and actinide contamination levels have been based upon measurements of the activity of Magnox samples.

Other information: The Nimonic springs are expected to be of high activity. Other beta/gamma nuclides

in stocks include (in TBq/m3) Al26 (2E-4).

WASTE STREAM 9D39 **FED Nimonic R1**

	Average specific activity, TBq/m³			Average specific activity, TBq/m³					
Nuclide	Waste at 1.4.2013	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2013	Bands and Code	Future arisings	Bands and Code
H 3	2.14E-03	CC 2			Ho 163	1	8		
Be 10		8			Ho 166m		8		
C 14	6E-06	CC 2			Tm 170		8		
CI 36	2E-04	CC 2			Tm 171	Ī	8	Ì	
Ar 39		8			Lu 174		8		
Ar 42		8			Lu 176		8		
K 40		8			Hf 178n		8		
Ca 41		8			Hf 182	Ī	8	Ì	
Mn 53		8			Pt 193		8		
Mn 54	3.1E-05	CC 2			TI 204		8		
Fe 55	4.29E+00	CC 2			Pb 205		8		
Co 60	2.27E+02	CC 2			Pb 210		8		
Ni 59	1E+01	CC 2			Bi 208		8		
Ni 63	1.92E+03	CC 2			Bi 210m		8		
Zn 65		8			Po 210		8		
Se 79		8			Ra 223	İ	8	Ī	
Kr 81		8			Ra 225		8		
Kr 85		8			Ra 226		8		
Rb 87		8			Ra 228		8		
Sr 90	4.34E-05	CC 2			Ac 227		8	Ī	
Zr 93	2E-09	CC 2			Th 227		8		
Nb 91		8			Th 228		8		
Nb 92		8			Th 229		8		
Nb 93m		8			Th 230		8		
Nb 94		8			Th 232		8		
Mo 93		8			Th 234	<3E-08	C 3		
Tc 97		8			Pa 231	102 00	8		
Tc 99	1E-08	CC 2			Pa 233	<4.04E-09	C 3		
Ru 106	.2 00	8			U 232	11.012 00	8		
Pd 107		8			U 233		8		
Ag 108m		8			U 234	3.04E-08	CC 2		
Ag 110m		8			U 235		8		
Cd 109		8			U 236	4E-09	CC 2		
Cd 113m		8			U 238	3E-08	CC 2		
Sn 119m		8			Np 237	4.04E-09	CC 2		
Sn 121m		8			Pu 236		8		
Sn 123		8			Pu 238	1.9E-05	CC 2		
Sn 126		8			Pu 239	1E-05	CC 2		
Sb 125		8			Pu 240	2E-05	CC 2		
Sb 126		8			Pu 241	5.25E-04	CC 2		
Te 125m		8			Pu 242	1E-08	CC 2		
Te 127m		8			Am 241	2.56E-05	CC 2		
I 129		8			Am 242m	9.71E-08	CC 2		
Cs 134	5.33E-08	CC 2			Am 243	3E-08	CC 2		
Cs 135	3.222 00	8			Cm 242	8.01E-08	CC 2		
Cs 137	6.09E-05	CC 2			Cm 243	2.61E-08	CC 2		
Ba 133	3.002 00	8			Cm 244	3.18E-07	CC 2		
La 137		8			Cm 245		8		
La 138		8			Cm 246	İ	8	İ	
Ce 144		8			Cm 248		8		
Pm 145		8			Cf 249		8		
Pm 147	4.1E-07	CC 2			Cf 250		8		
Sm 147	∓.1L-0/	8			Cf 250 Cf 251		8		
Sm 147 Sm 151	8.59E-08	CC 2			Cf 251		8		
Eu 152	2.2E-09	CC 2			Other a		8		
Eu 152 Eu 154	3.09E-07	CC 2			Other b/g	2E-04	CC 2		
		•						_	
Eu 155 Gd 153	4.32E-08	CC 2			Total a	7.51E-05	CC 2	0	
Gu 100		8			Total b/g	2.16E+03	CC 2	0	

Bands (Upper and Lower)

A a factor of 1.5 B a factor of 3 C a factor of 10 D a factor of 100 E a factor of 1000

Note: Bands quantify uncertainty in the average specific activity.

Code

- Measured activity
 Derived activity (best estimate)
 Derived activity (upper limit)
- 4 Not present
 5 Present but not significant
- 7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity