SITE	Bradwell					
SITE OWNER	Nuclear Decommissioning Authority					
WASTE CUSTODIAN	Magnox Limited					
WASTE TYPE	ILW					
WASTE VOLUMES						
Stocks:	At 1.4.2013	0 m³				
Future arisings -	1.4.2013 - 31.3.2015	0.5 m ³				
Total future arisings:		0.5 m ³				
Total waste volume:		0.5 m ³				
Comment on volumes:	The Magnox dissolutio completion in 2015. It is currently assumed the vaults, with a minin once detailed character	n plant is expected to comr d that there is a maximum o num of 250 expected. The prisation of Vaults 1A and 1	nence operations in 2012 with of 1000 nimonic springs present in number of springs will be estimated B has been completed			
Uncertainity factors on	Stock (upper): x		Arisings (upper) x 1.2			
volumes:	Stock (lower): x		Arisings (lower) x 0.8			
WASTE SOURCE	-					

PHYSICAL CHARACTERISTICS

General description:	Insoluble constituents of Magnox. There are no large items that may require special handling. Secondary solid waste will consist primarily of nimonic springs, thermocouple wires and potentially fuel fragments. Additionally, the volume will include a small fraction of top end fittings (spiders) containing zirconium alloy. It is conservatively estimated that there are approx 1000 nimonic springs within the vaults, however the quantity may be as low as 250. Springs weigh approx 5g each and are estimated to be 33mm long and 10mm diameter. An estimate of the number of thermocouples has not been made. Thermocouples components are comprised of stainless steel and other metals. Top end fittings (aka spiders) total volume across all vaults is assessed as being 0.001m3. Top end fittings comprised of fission fragments and uranium, total volume across all vaults is assessed as being 0.014m3. The fuel fragments will be comprised of fission fragments and uranium.
Physical components (%wt):	The waste stream consists primarily of small metal and metal alloy items.
Bulk density (t/m ³):	~1.9
Comment on density:	The density is based on the assessment completed for Sizewell and Hinkley waste streams.

CHEMICAL COMPOSITION

General description and components (%wt):	The waste is comprised of solid waste removed from FED prior to it undergoing dissolution and residues from the chemical dissolution of Magnox (including Fe, Co, Zn, Zr and Al). The waste will primarily consist of highly activated stainless steel. Siliceous materials including sand, and a range of other materials may be present in the solid residue remaining after the dissolution process is complete.
Chemical state:	It is unknown whether the waste will be alkaline, oxidising, reducing or neither.
Chemical form of radionuclides:	C-14: Carbon 14 may be present as graphite.Cl-36: The chemical form of chlorine 36 may be inorganic chloride.U: The chemical form of uranium isotopes has not been determined but will probably be uranium oxides.Pu: The chemical form of plutonium isotopes has not been determined but will probably be plutonium oxides.
Metals and alloys (%wt):	Nimonic will be the primary component, accounting for upwards of 95% of the waste stream. Small proportions of other metals from thermocouples and zirconium alloy may be present as well.

WASTE STREAM 9B79 FED Magnox - Solid Secondary Waste

	Stainless steel	~10	Bronze	
	Other ferrous metals	2.0	Inconel	
	Aluminium	~2.0	Nimonia	
	Coppor		Stallita	95.0
			Baral	
			Dural	INE
	∠inc	NE	Dural	NE
	Magnox/Magnesium	<1.0	Monel	NE
	Zircaloy	~1.0	Uranium	NE
	Brass	NE	Beryllium	TR
			Other metals (below)	~1.0
	Other metals: The "other" meta	l content	has not been fully assessed.	
Inorganic anions (%wt):	Not fully assessed Carbonates ar	e exnect	ed to be present	
morganie amons (70wt).			ed to be present.	
	Fluoride	NE	Nitrate	NE
	Chloride	NE	Nitrite	NE
	lodide	NE	Phosphate	NE
	Cyanide	NE	Sulphate	NE
	Carbonate	NE	Sulphide	NE
Listed substances:	Not yet determined			
Hazardous and problematic materials (%wt):	Biological components are not expo	ected to	be present in the waste stream.	
	Combustible metals	<1.0	Strong oxidising agents	0
	Low flash point liquids	0	Pyrophoric materials	0
	Explosive materials	0	Generating toxic gases	NF
	Phosphorus	0 0	Reacting with water	0
	Hydrides	0	Ashestos	0
	Putrescible wastes	0	Free aqueous liquids	P
	Biological etc. materials	тр	Free non-aqueous liquids	TP
	Powder		The non-aqueous liquius	IIX
	1 owder	0		
Asbestos types and proportions:	-			
Complexing agents (%wt):	Not yet determined			
Complexing agents (76wt).			TO	
	Complexing agents		IR	
Organics (%wt):	The cellulosic material content of the believed that any will be present.	ne waste	has not been assessed as it is not	
	Total cellulosics		NE	
	Paper, cotton		NE	
	Wood		NE	
	Halogenated plastics		0	
	Total non-halogenated plastics		0	
	Condensation polymers		0	
	Others		0	
	Organic ion exchange materials		TR	
	Total rubber		0	
	Halogenated rubber		0	
	Non-halogenated rubber		0	
	Other organics		<10	
rubber (%wt):	I nere are no halogenated plastics	or rudde	rs present.	
Other materials (%wt):	-			
	Inorganic ion exchange materials		NE	
	Inorganic sludges and flocs		0	
	Soil		0	
	Rubble		0	
	Concrete, cement and sand		0	
	Glass		0	
	Ceramics		0	
	Graphite		NE	
	•			

PACKAGING AND CONDITIONING

Conditioning method:	No further conditioning is expected. The solid wastes will be packaged directly into containers to minimise handling operations. Packaging will occur during retrieval operations and throughout dissolution operations.
Plant Name:	FED Retrieval and Dissolution plants
Location:	Bradwell Site
Plant startup date:	2012
Total capacity (m³/y incoming waste):	-
Target start date for packaging this stream:	2012
Throughput for this stream (m ³ /y incoming waste):	-

Other information:

.

Likely container type:	Container Other (MOSAIK with 120mm shielding. Displacement volume 1.32m3.)		Waste packaged (%vol)	Waste loading (m ³)	Payload (m³)	Container displacement volume (m ³)		
			100.0	~0.149	0.166			
Likely container t comment:	уре	-						
Range in container waste volume:		Not yet determined.						
Other information on containers:		The container material is expected to be cast iron. Based on experience at Dungeness A, some internal shielding may be required, reducing the volume available for waste. 120mm shielding is expected.						
Likely conditionin Other information	g matrix: n:	None -						
Conditioned dens	sity (t/m³):	1.9						
Conditioned density comment:		No conditioning matrix is envisaged, therefore density of the waste will remain unchanged.						
Other information on conditioning:		-						
RADIOACTIVI	ΓY							
Source: Activation of metal operation. In addit expected.		Activation of metal component operation. In addition to a expected.	mponents that were in close proximity to fuel during generating to activation, a significant amount of contamination is					
Accuracy:	The fingerprint data for this waste stream is based on the fingerprint developed by Sizewell A and in comparison to measured fingerprints for waste in vaults at Brady			developed by aults at Bradwell				
Definition of total and total beta/ga	alpha mma:	Totals shown on table of radionuclide activities are the sums of the listed alpha or beta/gamma emitting radionuclides plus 'other alpha' or 'other beta/gamma.'			ated alpha or amma.'			
Measurement of specific - activities:		-						
Other information:		The fingerprint is limited to the nimonic springs and does not assess the presence of top end fittings, thermocouples or fuel fragments as no data is available for these items.						

WASTE STREAM 9B79 FED Magnox - Solid Secondary Waste

	Average specific activity, TBq/m ³				Average specific activity, TBg/m ³				
Nuclide	Waste at 1.4.2013	Bands and Code	Future arisings	Bands and Code	Nuclide	Waste at 1.4.2013	Bands and Code	Future arisings	Bands and Code
Н 3			2.53E-03	CC 2	Ho 163				8
Be 10				8	Ho 166m				8
C 14			6E-06	CC 2	Tm 170				8
CI 36			2E-04	CC 2	Tm 171				8
Ar 39				8	Lu 174				8
Ar 42				8	Lu 176				8
K 40				8	Hf 178n				8
Ca 41				8	Hf 182				8
Mn 53				8	Pt 193				8
Mn 54			3.52E-03	CC 2	TI 204				8
Fe 55			1.85E+01	CC 2	Pb 205				8
Co 60			4.72E+02	CC 2	Pb 210				8
Ni 59			1E+01	CC 2	Bi 208				8
Ni 63			1.96E+03	CC 2	Bi 210m				8
Zn 65				8	Po 210				8
Se 79				8	Ra 223				8
Kr 81				8	Ra 225				8
Kr 85				8	Ra 226				8
Rb 87				8	Ra 228				8
Sr 90			4.66E-05	CC 2	Ac 227				8
Zr 93			2E-09	CC 2	Th 227				8
Nb 91				8	Th 228				8
Nb 92				8	Th 229				8
Nb 93m				8	Th 230				8
Nb 94				8	Th 232				8
Mo 93				8	Th 234			3E-08	
Tc 97				8	Pa 231				8
Tc 99			1E-08	CC 2	Pa 233			4.02E-09	CC 2
Ru 106			5.08E-08	CC 2	U 232				8
Pd 107				8	0 233				8
Ag 108m				8	0 234			3.02E-08	CC 2
Ag 110m				8	0 235			15.00	8
Cd 109				8	0 236			4E-09	
Cd 113m				8	0.238			3E-08	
Sn 119m				8	Np 237			4.02E-09	CC 2
Sn 121m				8	Pu 236				8
Sn 123				8	Pu 238			1.95E-05	CC 2
Sn 126				8	Pu 239			1E-05	CC 2
Sb 125				8	Pu 240		-	2E-05	CC 2
Sb 126				8	Pu 241		-	6.92E-04	CC 2
Te 125m				8	Pu 242			1E-08	CC 2
Te 127m				8	Am 241			2.35E-05	CC 2
I 129			a a== -:	8	Am 242m			9.85E-08	CC 2
Cs 134			3.65E-07	CC 2	Am 243			3E-08	CC 2
Cs 135			0 -0	8	Cm 242			8.06E-08	CC 2
Cs 137			6.53E-05	CC 2	Cm 243			2.8E-08	CC 2
Ba 133				8	Cm 244			3.57E-07	CC 2
La 137				8	Cm 245				8
La 138			0.075.05	8	Cm 246				8
Ce 144			6.95E-09	CC 2	Cm 248				8
Pm 145				8	Ct 249				8
Pm 147			1.81E-06	CC 2	Cf 250				8
Sm 147			0 -0	8	Cf 251				8
Sm 151			8.79E-08	CC 2	Ct 252				8
Eu 152			2.57E-09	CC 2	Other a			a -	8
Eu 154			4.71E-07	CC 2	Other b/g	_		2E-04	
Eu 155			1.31E-07	CC 2	fotal a	0		7.35E-05	CC 2
Gd 153				8	Total b/g	0		2.46E+03	CC 2

Bands (Upper and Lower)

A a factor of 1.5

B a factor of 3 C a factor of 10

D a factor of 100

E a factor of 1000

Note: Bands quantify uncertainty in the average specific activity.

Code

1 Measured activity 2 Derived activity (best estimate) 3 Derived activity (upper limit)

4 Not present

5 Present but not significant

6 Likely to be present but not assessed

7 Present in significant quantities but not determined 8 Not expected to be present in significant quantity