
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Control System for CNC Cutting Machine

Bc. Filip Měšťánek

Supervisor: Ing. Petr Felkel, Ph.D.
Field of study: Open informatics
Subfield: Computer graphics and interaction
May 2017

ii

eeske vysok6 udenitechnick6 v Praze
Fakulta elektrotechnick6

katedra pocitadov6 grafiky a interakce

ZADAN1 OIPLOMOVE PRACE

Student: Filip M65t'5nek

Studijnl program: Otevien6 informatika
Obor: Poc[ta6ov6 grafika a interakce

Ndzev t6matu: RiUicisoftware CNC Stroje

Pokyny pro vypracovdn[:

Proved'te re5er5i existujiclch ifdicich syst6mt pro CNC iezaci stroje z pohledu uZivatelsk6ho
rozhrani a pl6nov6ni trajektorie stroje a stanovte poZadavky na vytv6ienf syst6m pro
konkr6tnl typ CNC stroje. Navrhn6te a implementujte ildici syst6m CNC iezaciho stroje (ak
u2ivatelsk6 rozhranl, tak vlkonne j6dro bdZici na platform6 re6ln6ho casu) a funkce pro
interpretaci NC soubor& ve standardu lSO. Vfkonn6 j6dro bude napojeno na framework TG
Motion obsluhujici pohyby servopohoni. Syst6m vytv6iejte jako roz5iiitelny pomoci modulu,
interakci implementujte se zietelem na odolnost rozhranI proti necht6n6mu po5kozeni stroje
obsluhou. RiOici syst6m bude mit moZnost manu6lniho ovl6ddni stroje. Sou6Ssti bude
graficke okno zobrazujici aktuAlnl d6ni na stroji (nahrany NC soubor, trajektorie hlavy, apod).
Syst6m d0kladn6 otestujte alespon na p6ti r0znych trajektorilch, rozhranI podrobte
u2ivatelskym test0m.

Seznam odborne literatury:

Dokumentace frameworku TG Drives pro ovl6d6nI servopohont, TG Motion, 2016

Vedoucl: lng. Petr Felkel, Ph.D.

Platnost zadAni. do konce zimniho semestru 201712018

pro'f .l/6. JiiiZdra, CSc. Ripka, CSc.
ouci katedry

Y Praze dne 8. 3. 2016

iv

Acknowledgements
I would like to express my deep grat-

itude to my supervisor Ing. Petr Felkel,
Ph.D., who helped me extensively with
writing the thesis, provided me with valu-
able insights and was a great support dur-
ing the development. Another thanks goes
to Petr Kretík from the PTV company,
who regularly reviewed and consulted the
application with me from the technical
side. Finally, I want to thank all who
participated during the inspection and
testing of the interface, especially Silvestr
Rovný who supplied me with many ideas.

Declaration
Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

In Prague, 25. May 2017

v

Abstract
This thesis describes the development

cycle of a control system for CNC cut-
ting machines. It describes all phases of a
system development, from the analysis of
current control systems and identification
of their flaws, the choice of architecture
and appropriate technologies, across de-
sign of the user interface to the testing
phase. It focuses on the design of the
user interface, which was identified as the
main deficiency of current systems. The
developed system uses TG Motion Frame-
work, which realizes communication with
hardware peripherals.

Keywords: control system, CNC, high
pressure water-jet

Supervisor: Ing. Petr Felkel, Ph.D.

Abstrakt
Tato diplomová práce popisuje cyklus

vývoje řídícího systému pro CNC řezací
stroje. Práce se zabývá všemi fázemi vý-
voje systému od analýzy stávajících ří-
dících systémů a identifikací jejich nedo-
statků, výběru architektury a vhodných
technologií, přes návrh uživatelského roz-
hraní až po fázi testování. Důraz byl kla-
den na návrh uživatelského rozhraní, které
bylo identifikováno jako hlavní nedosta-
tek stávajících systémů. Vyvinutý systém
využívá TG Motion Framework, který rea-
lizuje komunikaci s koncovými periferiemi.

Klíčová slova: řídící systém, CNC,
vysokotlaký paprsek

Překlad názvu: Řídící Software CNC
Stroje

vi

Contents
1 Introduction 1
1.1 Detailed Assignment 2
2 Analysis 3
2.1 High Pressure Abrasive Water-Jet 3
2.2 Control Systems 6
2.2.1 AremPRO Cnc886 6
2.2.2 TG Motion Water 10
2.2.3 Other Control Systems 12

2.3 G-code . 15
2.4 TG Motion Framework 15
2.4.1 Programmable Logic
Controller . 16

2.4.2 Hardware Communication . . . 17
3 User Interface Design 19
3.1 Prototype . 19
3.2 Usability Inspection 23
3.3 Interface of the Future 26
3.3.1 Start from Arbitrary Position 26
3.3.2 Shape Projection 27
3.3.3 Cut CNC Program Memory . 27
3.3.4 CNC Program Queue 28
3.3.5 Automatic Head Docking . . . 28
3.3.6 Material Sheet Position
Recognition 28

3.3.7 Nesting/Position Selection of a
CNC Program 28

3.3.8 Automatic Sheet Selection . . 29
4 Architecture 31
4.1 Architecture of a Module 32
5 Technology 33
6 Programmable Logic Controller 37
6.1 Shared Memory 37
6.2 Structure . 37
6.3 Manual Movement 38
6.4 CNC Program Cutting 39
7 User Interface Core 41
7.1 Internal Mechanisms 41
7.2 CNC Programs and Cutting 43
7.3 Other Areas 45
8 Graphical User Interface 51
8.1 Windows Presentation Foundation 51
8.2 Example of Designing a Form . . 52
8.3 User Interface Stylization 54
8.4 Extensibility 56

8.5 Visual Window 57
8.5.1 Displaying a CNC Program . 57
8.5.2 Showing Progress of a CNC
Program. 58

8.5.3 Optimizations 58
9 Makro Module 59
10 Testing 61
10.1 Functionality Testing 61
10.1.1 Assertions, Code Contracts . 61
10.1.2 Unit Tests 62
10.1.3 Integration Tests 62

10.2 Usability Testing 63
10.2.1 Testing Scenarios 63
10.2.2 Testing 64
10.2.3 Evaluation 65

11 Discussion 67
11.1 Clarity of Visual Window 67
11.2 Automation of the Cutting
Process . 67

11.3 Current State of the Work 68
12 Conclusion 69
12.1 Plans for the Future 69
Bibliography 71
A Abbreviations 73
B Additional Screenshots 75
C Installation Manual 79
C.1 Requirements 79
C.2 Installation 79
C.3 Startup Arguments 79
D User Manual 81
D.1 Main Screen 81
D.2 CNC Programs 82
D.3 Manual Control 84
D.4 Application Maintenance 86
E CD Content 89
F Others 91
F.1 Tools Used 91
F.2 Third-party Software Used 91
F.3 Code Statistics 92

vii

Figures
2.1 Water Jet CNC Machine 4
2.2 Ensuring straight edges 5
2.3 Cutting a material 5
2.4 Image of cut material 6
2.5 Dynamic radius control 7
2.6 Bottom side of cut material
without DRC. 8

2.7 AremPRO control system 9
2.8 TG Motion Water – Main screen 11
2.9 TG Motion Water – CNC program
selection . 12

2.10 WinCNC 13
2.11 Mach 3 . 13
2.12 UCCNC . 14
2.13 LinuxCNC 14
2.14 G-code example 16
2.15 TG Motion HW Configuration 17

3.1 GUI Mockup – Main page 22
3.2 GUI Mockup – Circular control for
freeform head movement 23

3.3 GUI Mockup – CNC program
selection and customization 23

3.4 Manual mode sketch 24
3.5 Automatic mode sketch 25
3.6 Speed setter 26
3.7 Cut history 27
3.8 Nesting of a CNC program 28

4.1 System Architecture Diagram . . 32

6.1 Control Observer 38
6.2 Profile Generator 39

7.1 TG Motion memory connection
info . 43

7.2 Permission hierarchy 48

8.1 WPF example 52
8.2 Manual movement user control . 53
8.3 MahApps.Metro Theme 55
8.4 Windows 7 Theme 55
8.5 Windows 95 Theme 56
8.6 Adding a view to region 57
8.7 Visual Window 57

9.1 Makro – shape selection 60
9.2 Makro – shape configuration . . . 60

B.1 Main screen with a CNC program 75
B.2 Loading of a CNC program 76
B.3 Configuration of a CNC program 76
B.4 User management 77

D.1 Login screen 82
D.2 Main screen 82
D.3 Loading a CNC program 83
D.4 Loading a makro 84
D.5 Start configuration modal
window . 85

D.6 Absolute/relative movement
menu . 86

viii

Chapter 1
Introduction

From the beginning of times, people have looked for ways to make their work
easier. Beginning with simple tools which evolved into complex machines
during Industrial Revolution. Manufacturing became faster and prices were
dropping. The machines were driven mostly by gears and cams. But the
true revolution began with the birth of computers during 50s. This led to
creation of computer numerical control (CNC) machines, machines driven by
computers, which were far more superior to their predecessors. They were
universal, could run 24/7, and produced almost identical products.

CNC Machines fall into many categories. There are milling, cutting, drilling,
bending machines and many more. They differ in principles and functionality
but share the aim of refining materials. As opposed to manually operated
machines, CNC machines are controlled by control systems. Control system
is a special software whose task is to control individual parts of the machine
like motors or valves in order to achieve the desired result. The system
itself is commanded either manually by an operator or through a specialized
code, mostly the G-code. G-code is a semi-standardized language for CNC
Machines whose instructions describe motions and actions of the machine.

Many control systems originate from 80s or 90s which is very obvious from
their user interfaces. CNC machines are getting faster and more precise
but from the functional side not much have changed. Therefore, there isn’t
enough driving force to innovate the interfaces because the older ones still
suffice. From a functional point, there is nothing bad with them. It is the user
interface, which tends to be clumsy and unfriendly. UIs weren’t a priority
back then (this can be seen in every subfield of engineering) as there was
much less computing power. But situation today is completely different, UI
technologies and principles made a huge progress, user demands drastically
increased. Goal of this thesis is to develop a functional modern control system
for a laser and water-jet CNC cutting machine. When developing the control
system, I will use modern techniques to create a functional, robust and user
friendly application.

1

1. Introduction
1.1 Detailed Assignment

Create a control system for operating a CNC laser cutting machine (with the
intentions to operate also a high pressure water jet machine in the future).
Use the TG Motion Framework (developed by TG Drives s.r.o.) which handles
low level control of servomotors and other IO devices (described in detail
in Chapter 2.4). The control system will be divided into PLC and a user
interface. All of the components will run on the same physical PC. PLC
is a specialized application running in real-time which is plugged into the
TG Motion. It uses the framework to control the movements and other
IO operations. The user interface is a standard application which provides
interface for operators of the machine. Focus on the ease of use of the interface.
The system will be created in cooperation with a CNC machine manufacturer
PTV, spol. s r.o. company, which will use it for controlling their machines.

Features

This is a list of features the Control System will implement:. Loading and executing CNC programs. Code of the CNC program will
be based on the ISO standard. Only 2D programs will be supported..Graphical window showing machine activity (CNC program, trajectory
of the cutting head, limits of the machine, etc.). The window will be
adjustable by the user (zooming, moving, selection of display planes).. Input through qwerty keyboard, mouse, or touchscreen (and possibly
virtual on-screen keyboard)..Manual control of cutting-head movement.. Support for multiple cutting heads.. Diagnostic information (speed of the cutting head, cutting time, etc.).. Ability to transform the coordinate system of the CNC program (rotation,
scale, translation).. Resistance of the system against accidental damage by the machine
operator ("foolproof").. Customizable settings for the CNC programs.. Authorization system with multiple levels of authorization.. Event and error logs with the option to send them via internet.. Ability to load a shape from a predefined shape library..Multi-language support.. Application extensibility.

2

Chapter 2
Analysis

All types of CNC cutting machines (water, plasma, laser) share the same
concept (as opposing to e.g. a milling machine, whose job is not to separate
the material, but mill it) and therefore can be driven by a single control system
with only minor adjustments. Figure 2.1 shows an image of a high pressure
water-jet CNC machine. The machine consists of a heavy movable frame
which spans the whole machine and is attached on both sides (exceptionally
just to one side on smaller machines). On the frame, there is a carriage
(or multiple) which can move across the frame. On the carriage, there is
a specific cutting tool which can move up and down. This setup creates a
three dimensional coordinate system usually using the right hand orientation.
Sometimes, the cutting tool has the ability to rotate in multiple directions
(which is called a 5-axis). The cutting tools are also similar since they are all
some sort of circular streams. Inside the machine, there is a catcher. That is
the part, where the material to be cut is put on. For water-jets, it is filled
with water to stop the beam after it cuts through the material. The usual
dimensions of the machine range from 0.5m x 0.5m to 5m x 10m. Maximum
thickness of a material is different for individual tools – 1.5 cm for laser, 15
cm for plasma and 40 cm for water (these are just estimates, the real value
depends on type of the material and machine performance).

Thanks to the universal nature of CNC cutting machines, the usage is really
diverse. They are used by big companies for non-stop cutting of parts for their
internal production. Such a machine can be constantly cutting for several
days with a three phase shift of operators. Other use is by self-employed
companies who do a contract cutting for other customers. Also in a slightly
modified form, they can be used as a part of an assembly line. Many times,
the CNC cutter does a rough cut of the product which is then refined by
other tools. The cutting stream is always linear. This makes it ideal for
cutting straight shapes.

2.1 High Pressure Abrasive Water-Jet

Water-jet cutting uses a high pressure water (ranging 500 to 6000 bar) and
usually also mixes some kind of abrasive material to the water stream [1],[2].
Soft materials like rubber are cut by pure water, harder materials like metals

3

2. Analysis

Figure 2.1: Water Jet CNC Machine

use the abrasive. To be really precise, the water-jet does not really cut the
material, but it grinds a narrow line into it (for simplification, I will still call
it cutting over the course of this work). Big advantage of the water jet is that
it can cut heat sensitive materials because it does not melt the edges like for
example laser does.

Behavior of the high pressure abrasive water-jet is not as straightforward
as it would have seemed. To be able to cut straight edges and corners, it is
necessary to use a lot of “tricks”. I will not go into physical details (because
that is not the focus of this work) but in the following paragraphs I will
describe all observed phenomena based on various research and testing done
by the PTV company.

The beam loses its power with distance it travels. The reason for this is
its conical shape which is less concentrated with increasing distance. Also
when cutting the material, portion of the power was already used for cut-
ting the upper part. This effect starts to be significant at around 1 cm of
material thickness. The result of this is a V-shaped notch which results in
a non perpendicular edge. If we are interested in just one side of the cut,
perpendicularity can be achieved by tilting the beam into the material (see
Figure 2.2).

Because of the decreasing strength of the water beam with increasing
material thickness, the beam does not have enough time to cut the lower
parts of the material and starts to fall behind (Figures 2.3, 2.4). This causes

4

........................... 2.1. High Pressure Abrasive Water-Jet

Figure 2.2: Ensuring straight edges, front view. The cutting head has to tilt
into the material.

Figure 2.3: Cutting a material – side view. Notice the bent beam.

a visible coarse texture on the cut. In cases of cutting sharp edges or finishing
cut of a material, it can fail to cut the material completely through. The
effect can be decreased by decreasing the cutting speed.

The water beam is strongest in the middle of the beam and the power fades
out to the edges. When the beam stays at one place for longer time, effective
radius of the cut gets bigger. The ranging strength across the beam can cause
non-straight edges or grooves in corners if the speed shall change during the
whole process. If the speed slows down, it allows weaker peripheries of the
beam to cut a wider hole. This can be prevented by virtually increasing the
beam radius (which will cause the beam to move away from the material)
when decreasing the cutting speed (Figure 2.5). This effect can be observed
mostly in the corners, because the machine has to slow down to cut precisely
the corner (Figure 2.6).

When cutting a part, the jet has to start the cutting somewhere. It should
not start directly at the part rim as this would create artifacts on its edge. If

5

2. Analysis

Figure 2.4: Image of cut material. Coarse texture was left by the water beam.
Notice the uncut end of the material. Side view.

possible, it can start outside of the material sheet and then make its way to
the part. Other possibility is to start in the material sheet but outside of the
part, make a hole and then continue to the part. The process of making a hole
inside the material is called piercing and it needs to be given special attention.
The most straightforward way of doing the hole is by just waiting on one spot
till the material is cut completely trough. The disadvantage of this approach
is that the water bounces off the material back to the beam lowering its
efficiency. The preferred way is to do circular movements with small radius
which divert the direction of the bounce. Some materials can be difficult to
pierce with water jet because of the huge initial impact force. Fragile materials
like glass often crack around the pierced position. Probability of cracking can
be lowered by decreasing the pressure of water during the piercing.

2.2 Control Systems

Every CNC machine manufacturer usually develops their own control system.
The systems are part of company know-how and play their role in the company
war. They are usually build specifically for the machines manufactured by the
specific company. In this section, I will analyze the systems AremPRO Cnc886
and TG Motion Water and will discuss their strengths and weaknesses.

2.2.1 AremPRO Cnc886

AremPRO is a Czech company developing AremPRO Cnc886 control system
[3]. The control system is focused on CNC cutting machines using a high
pressure water jet and is currently used by the PTV company. The system
can be used for abrasive and nonabrasive cutting. The software is being used

6

................................... 2.2. Control Systems

Figure 2.5: Dynamic radius control. As the beam approaches the corner, the
cutting speed slows down. This causes the effective radius to increase. To prevent
unwanted artifacts in the material, the beam radius needs to be adjusted. Top
view.

since 2006 and after the years of active usage and testing it gained a lot of
features aimed to fight physical properties of the high pressure water jet. As
a result, the system is very precise. It is designed for Windows XP Embedded
environment with real-time extension. It can control up to 2 cutting heads
with tilt up to 60 degrees. From a user perspective, the application is logically
divided into four main parts - library, manual, maintenance, and on-screen
keyboard with status information. Formerly, the application used a specialized
keyboard and mouse as input but during the years it evolved mostly to touch
screen.

GUI of the application has a machine-like design and many controls resemble
their real world counterparts. As seen in Figure 2.7, the interface consists
of on-screen keyboard, visual window and six tabs. The problem of this
GUI is that it displays all information and controls at the same time even if
they have no function (for example axis 2 buttons when there is no second
axis). Some buttons also change their meaning based on the context (for
example Start+ in the Library starts CNC program but in Manual it moves
the machine along selected axis) which can be very confusing for the user.
A lot of information/tabs are not relevant for a common user and could be
shown only during a specialized service mode.

On-screen Keyboard with Status Info

Alongside the base application, there are also permanently visible panels
with machine controls and basic information of machine’s current state (like
coordinates, speed, etc.). It is practical, as it allows the operator to respond
quickly in every situation. The design resembles real world keyboard layout

7

2. Analysis

Figure 2.6: Bottom side of cut material without DRC.

of the machine. However, some of the controls are not necessary during every
situation (like when loading a CNC program) and only occupy the screen
space.

Library

This is the part, where machine operator will spend most of his work time.
The library offers functions for handling and executing CNC programs and
contains a built-in file manager. It also has a graphical window displaying
important actions on the machine, like shape of the CNC program or current
position of the cutting head. It is possible to move the cropping or zoom
in/out, but the controls are outdated. It is not possible to pan the view,
one has to pres specific buttons for moving or zooming. After that, it
takes noticeable time to re-render depending on the complexity of current
CNC program. When a CNC program is loaded, a modal window with
configuration of the program is shown. Big advantage of this software is
its ability to calculate cutting speed (for selected cut quality) based on the
properties such as material thickness or machinability.

Manual

This tab offers functions for manually moving the machine, referencing, and
other functions for custom machine accessory. It is useful if the operator
needs to quickly separate a material without having a CNC program. The
catch is, that this functionality is already provided by the on-screen keyboard

8

................................... 2.2. Control Systems

Figure 2.7: AremPRO control system – Library tab with a magnified window
showing cutting path and the on-screen keyboard

which is always available. This makes big portions of the tab in the current
state completely redundant.

Maintenance and Errors

This section consists of the tabs Service and Errors which are both focused at
maintenance. The Service tab contains information about various variables
of axes, servos, and other IO modules. It is used during installation and
calibration of the machine. Therefore the whole tab has only significance for
the service technicians, not for a common operator. The other tab, Errors,
contains log of previous actions and errors. If an error occurs, most of the
controls stop working and the user has to go to this tab and confirm the error.

Conclusion

Cnc886 is a really good software for water jet cutting with many useful
features. From a functional perspective, it provides all tools for operating a

9

2. Analysis
water jet machine. On the other hand, the support for maximum of 2 cutting
heads is limiting and its crappy GUI makes it hard to use.

2.2.2 TG Motion Water

TG Motion Water is a control system made by TG Drives company for high
pressure water jet cutting. The concept is similar to Cnc886, but the cutting
features are far more limited. It can control only a single cutting head without
tilting. On the other hand, it offers a simple authorization system containing
5 different levels. This provides means to distinguish machine operator from
a trained mechanic who has access to more advanced settings/functions. It is
designed for Windows XP with real-time extension and can be controlled by
keyboard and mouse and/or touchscreen.

From a user perspective the program is nicely structured. When the
program starts, it opens on the most important page where the operator
will spend most of his time. Here we can find all the required controls and
information for cutting. Graphical window is similar to the one from Cnc886,
but can be freely moved with a mouse or finger. The maintenance part is
nicely separated from the cutting features. The application also contains a
small library of a few basic shapes.

What I found most annoying are missing default values for the CNC
program configuration. This makes selection of a CNC program a painful
process, because the operator has to enter every value each time. The system
also cannot automatically compute the cutting speed, which you have to know
either from experience or acquire it by trial/error. It is also not possible to
specify the exact amount of abrasive for cutting. This is a big disadvantage,
because using the right amount of abrasive for a given material can save a
lot of money.

Detailed GUI Analysis

TG Motion Water GUI was designed with the touch screen controls in mind
as opposed to Cnc886, whose controls mimic the real world button layouts. In
the top right corner, there are three buttons which switch between three main
screens – Cutting, Cutting plans (CNC programs) and Maintenance. Cutting
contains all controls and information relevant to the cutting. In the cutting
plans, one can load and configure CNC programs or choose a CNC program
from a collection of predefined shapes. Maintenance contains configuration
tools, user management system and an event log. There is also a status bar
on the top which contains basic information like current state of the program
or location of the cutting head. The status bar and a stop button are always
visible independently from the current screen.

In this paragraph, I will analyze the Cutting screen as it is the most
important one. On the top, there is information about the current CNC
program. Information like currently selected program or remaining cutting
time are important enough to be always visible, but information like length of
the cut or number of piercings could be shown just upon user request. Next

10

................................... 2.2. Control Systems

Figure 2.8: TG Motion Water – Main screen with a CNC program

to it, there is an Info panel which shows on/off states of various devices. On
the right, there is a menu with buttons for controlling the machine. Buttons
for more complex actions like Move to location open a sub-menu where the
user specifies additional required inputs. In the middle, there is the graphical
window with additional icons on its bottom. Left from the window, there
is a panel where it is possible to switch between three possible displays –
additional CNC program info, CNC program G-code, and manual control.
Additional CNC Program info is not really required to see all the time, it
could be shown only during loading of the program. G-code is also not
necessary to see when cutting. Manual control offers a way how to manually
move the machine which is mandatory to have. Sadly, there is not an option
to hide the menu completely to enlarge the graphical window.

Conclusion

To sum it up, compared to Cnc886, TG Motion Water offers a more user-
friendly, polished interface with all parts being in their right place. It can be
clearly seen, that the GUI was carefully designed. The big downside of the
software is lack of some critical cutting options and a limited support for just
one 2D head making it suitable just for companies with basic needs.

11

2. Analysis

Figure 2.9: TG Motion Water – CNC program selection

2.2.3 Other Control Systems

There are also many control systems which are not bound to a specific machine
manufacturer. They are used by smaller manufacturers who cannot afford to
develop their own software or by hobbyists, who build their own machines.
To satisfy the broadest audience, the systems are usually multi purpose (e.g.
the same system can operate a laser and a milling machine). Some of them
are even open source (like LinuxCNC). In this section I will quickly examine
GUIs of a few such systems.

As seen on the Figures 2.10 to 2.13, all the depicted systems have very
chaotic user interfaces. The user is overwhelmed by buttons and numbers.
The interfaces are nowhere near to being intuitive. As seen on the Mach 3
(Figure 2.11), the numbers are cropped, the button styles are nonuniform,
and some of the buttons are even extremely scaled to the condition of being
unreadable. The interfaces also contain options irrelevant to the user, or even
worse, have no functionality. This can be clearly seen on the WinCNC on
Figure 2.10. It contains multiple buttons with the label “Custom Button”
which does not perform any action. There is no reason to bloat the interface
with them. The UCCNC (Figure 2.12) shows current position in the G-Code.
That is completely unimportant for the majority of users. If at all, it should
be a switchable option. All these remarks will be taken into account when
developing GUI for this control system.

12

................................... 2.2. Control Systems

Figure 2.10: WinCNC – Customizable control system mainly for
Plasma/Laser/Router machines. Runs on Windows XP and higher. It is sold
together with a PC.

Figure 2.11: Mach 3 – Multipurpose control system. Labels itself as the “most
intuitive CNC control software available”. Runs on 32-bit versions of Windows
2000 and higher.

13

2. Analysis

Figure 2.12: UCCNC – Multipurpose control system. Runs on Windows XP
and higher.

Figure 2.13: LinuxCNC – Open source (GNU GPLv2 license) multipurpose
control system. Runs on major distributions of Linux.

14

....................................... 2.3. G-code

2.3 G-code

G-code is a programming language for CNC machines consisting of instructions
describing movements or actions. It is used by variety of CNC machines,
it can be also used by non-cutting machines like printers or plotters. It is
standardized by the ISO 6983 [4], but some countries use different standards.
The ISO 6983 standard defines the structure of the language and standard
commands with their meaning. Each command consists of a letter, number
and optionally parameters. The language got its name from the most common
commands starting with the letter G. Commands starting with the letter G
either describe the shape or the motion. Commands starting with the letter
M represent miscellaneous actions which are often specific to type of the CNC
machine. For example, the command G01 moves the tool in a straight line to
a target position. It takes the target coordinates as arguments, therefore the
full command could look like: G01 X15 Y20.

However in reality, manufacturers use their own variation of G-code, which
is usually based on the standard but altered in a way. The requirements
of manufacturers are too different to be covered by the standard. And the
standard is too loose when it comes to certain areas, for example it does not
even define how to write comments. Usually the G commands are used from
the standard, but the more specific M commands differ. This makes individual
programs incompatible between systems of different manufacturers. Because
the G-code comes usually as export from a CAD program, the manufacturers
provide so called post-processors. They give the CAD programs the ability
to export their dialect of the G-code.

I will demonstrate the G-code on a simple example as seen in Figure 2.14.
It is a G-code consumed by AremPRO control system for water-jet and cuts
a simple rectangle. Strings between the curly braces are comments. The
line N1 selects the level of quality of cut which was previously defined in
the control system by operator. It defines how fast the cutting head will
move. The line four moves the head to the initial position. Lines five and six
start the cutting process. Line seven selects the compensation1 for the cutter.
Lines 8,10-14 describe the shape of the rectangle. Lines 15,16 and 18 stop the
cutting process and end the program. Lines 2,3,9 and 17 are manufacturer
specific commands.

2.4 TG Motion Framework

TG Motion is a framework developed by TG Drives, s.r.o. that allows to
control movement of a single or multi-axis machines [5]. It uses EtherCat bus
for communication with servos and digital I/O units (DIOs). Advantage of
using TG Motion is that it already implements a lot of low-level functionality
for operating a machine. Without the framework, I would have to do all the
work myself which would drastically increase the difficulty of implementing

1http://emc.sourceforge.net/Handbook/node82.html

15

2. Analysis
%Makro #1 {[W2D-MC]}
N0 ECHO "Cutting Program Makro #1"
N1 F(MP400) {QUALITY SELECTED}
N2 M161
N3 M192 G64

N4 G00 X-3 Y0
N5 M193 MODE=7 {MACHINE SELECTED START}
N6 M191 {CUTTING START}
N7 G42 {RIGHT COMPENSATION}
N8 G01 X0 Y0
N9 M142 {PROGRESS JET ON}
N10 G01 X150 Y0
N11 G01 X150 Y100
N12 G01 X0 Y100
N13 G01 X0 Y0
N14 G01 X0 Y-2
N15 M192 {CUTTING END}
N16 G40 {COMPENSATION OFF}
N17 M140 {PROGRESSJET OFF}

N18 M30 {PROGRAM END}

Figure 2.14: G-code consumed by AremPRO control system. It cuts a rectangle.

the control system. To guarantee a constant delay required by the HW, TG
Motion runs in real-time. It uses real-time OS IntervalZero2 for that purpose
which is installed alongside Microsoft Windows.

2.4.1 Programmable Logic Controller

Programmable logic controller (PLC) is a pluggable library which can enhance
the functionality of TG Motion. It can control servo drives, read and set
values of digital I/O units and communicate with other peripherals through
TG Motion. It is required to be written in a native code and has additional
restrictions imposed by the real-time platform. It cannot have any external
dependencies (except for standard library functions), cannot call any OS
functions and cannot use dynamic memory management. Dynamic memory
is not supported to guarantee consistent deterministic timing. TG Motion
itself runs in cycles with predefined period time. Communication with outside
peripherals is realized during every cycle. This imposes constraints on the
PLC, as it needs to be fast enough to finish all calculations before the next
cycle. Shared memory is used as a mean of communication between TG
Motion and PLC. The PLC is explained in detail in Chapter 6.

2http://www.intervalzero.com/

16

................................ 2.4. TG Motion Framework

Servo[00].Type=5
Servo[00].Node=1
Servo[00].Axe=1
Servo[00].Resolution=20

Servo[01].Type=5
Servo[01].Node=2
Servo[01].Axe=1
Servo[01].Resolution=20

Dio[00].Type=1
Dio[00].Node=1

Figure 2.15: Snippet of a TG Motion hardware configuration. The servo 00 and
01 are assigned the same axis – that means they are controlled synchronously as
one.

2.4.2 Hardware Communication

Based on TG Motion manual [6], the framework can control up to 256 servo
motors and DIO units. Only certain types of motors/units can be driven
by the framework. They are listed in the manual and many of them are
manufactured by the TG Drives company. That is not a problem, as they
are currently used for manufacturing of the CNC machines by PTV but it
creates a vendor lock-in to the future.

The HW peripherals and their specifics are configured in TG Motion con-
figuration file (see Figure 2.15). TG Motion handles HW differences between
individual unit types and provides unified interface for the programmer. Servo
motors work on basis of increments. Increment is the smallest amount the
motor can move. Motor resolution is a count of increments per a full rotation.
Position of a motor is stated in increments. To actually get position of the
motor inside the machine, it is necessary to have a reference point with fixed
and known location. The reference point is usually a HW sensor located in the
farthest position of the axis. After every start of the machine, it is required to
move the motors to their reference points to be able to measure their location
within the machine coordinates. This process is called referencing.

17

18

Chapter 3
User Interface Design

In the introduction I stated that the biggest problem of current controls
systems are their heavyweight and outdated user interfaces. Aim of this
chapter is to design an easily usable and appealing user interface. First I
created a mockup of the GUI. Then I tested it with real users and applied their
feedback. Finally, I proposed new features which would improve usability of
the interface.

3.1 Prototype

This section contains design of the applications GUI and describes various
controls. GUIs of industrial software tend to be static, heavyweight, and
overwhelm the user with a lot of unnecessary informations. I will try to design
this one an opposite by following modern UI principles and using modern
controls. The weaknesses of other control system mentioned in the analysis
will be also taken into account.

Input

As mentioned in the specifications, there will be multiple supported input
methods - touch screen, mouse, and qwerty keyboard. It is important to
also consider the environment when designing the UI. Workplace around
CNC cutting machines are usually dirty and operators can wear slim gloves.
Therefore the UI must be designed in a way that it shouldn’t require too
precise movements. Also during cutting, operators tend to use touch screen for
controlling the machine, keyboard and mouse are used just for non-frequent
actions like servicing.

User and Task Analysis

To be able to design a pleasant GUI, it is required to analyze what kind of
users will use the application and address their needs. Based on experience,
users can be divided into 3 groups – machine operators, service technicians,
and administrators.

19

3. User Interface Design
Machine operator – Cuts parts and does simple service tasks like exchang-

ing nozzles. He is often an employee of the company utilizing the CNC
machine. His usual workflow is to load and start CNC programs and
exchange material sheets after the programs are finished.

Service technician – Calibrates and maintains the machine itself. Often
employee of the company manufacturing the CNC machines. His job
is to make sure the machine is ready to use and well calibrated. Needs
access to a low level configuration of the machine. Cuts mainly to check
correct functionality. They spend more time with the hardware than
with the software.

Administrator – Maintains more advanced settings of the application (like
properties of materials, cutting settings, etc.) and manages other users
accesses. It is usually owner or an experienced worker. He can also work
as a Machine operator at the same time.

The most frequent user is by far the machine operator, therefore the UI
should be designed around their usage. They are usually people with lower
qualifications and with little experience using similar applications. Therefore
the simpler the UI will be, the better. To appeal to more experienced users,
there could be a possibility to switch to a more complex layout with advanced
features.

The workload of the machine operators can be further broken down into
three categories based on the type of company they work in:

Serial production – The company does a mass production of products.
The parts they cut may already be final products or used as internal
parts inside the final products. The operator usually cuts the same
program over and over again. The CNC program is already adjusted for
the type of material sheet used. The company may also employ multiple
shifts per day to keep cutting 24/7. Operators job is just to exchange
the material sheets and ensure the program is running correctly.

Contracting – The company is a job shop. They cut what customers
require and every order can be different. The workload needs to be more
flexible than during the serial production. The operator needs to select
a proper material sheet and adjust the position of the CNC program for
every contract. The customer may supply their own material sheets, but
usually the job shop keeps their own materials which they reuse.

Manufacturer – The company itself is a producer of the machines. The
operator is a skilled person with deep knowledge. He needs access to all
settings and features as he uses them for improving the cutting process.
They can alter internal setting like acceleration which would be too
dangerous for a normal operator and could lead to damage.

20

...................................... 3.1. Prototype

Guidelines

Here is a list of generally valid guidelines which hold true for any GUI. They
will be followed when creating the GUI.. Use icons where appropriate. They help with navigation through the

interface and can be understood even by people not proficient in the
given language.. Guide the user with colors. Green color is associated with positive action,
red color with negative one. It will help the user to decide more quickly
and even more importantly, it will prevent choosing the unwanted option.. Each button should have only one function. In AremPRO, Start button
was recycled for multiple actions. This can be really confusing and
requires the user to remember the state of the application without
getting any feedback.. It should be clearly indicated which button is pressed. Operator should
be able to see it from a distance.. Stop button should be always available and in a fixed place. If a problem
happens, the user will know a quick way how to stop any action.

GUI Mockup

When designing a UI, it is good to find the most common workflows and
design the UI around them. As the theory says, the user will spend 80% of
his time using 20% of the application functionality [7]. The most common
workflow for the machine operator is as follows: power up the machine and
start the software -> check state of the machine and reference it -> place a
material sheet to the machine -> select a CNC program and set a zero point
-> start the program and wait for it to end -> possibly select another CNC
program, replace the material sheet and set a new zero point & repeat ->
switch off the machine and the software.

When starting the application, the user will first need to provide his
username and password. This will be a standard login dialog and therefore
not important for sketching. For companies, who do not care for authorization
this feature can be turned off and the user will be automatically logged in as
a super user and this dialog will be skipped.

Figure 3.1 shows the main screen of the application. It contains necessary
controls for controlling the machine and cutting CNC programs. (1) contains
information about the currently selected CNC program. By clicking the
Manage button a new screen will open with the option to customize the
current program or to select a different one (Figure 3.3). This button is
disabled during cutting. (2) is a status bar displaying current activity. Under
the bar, there is a list of cutting heads with the option to enable/disable each
head separately. (3) shows basic diagnostic information like position or speed
of selected head. (4) contains sliders which can percentually adjust some

21

3. User Interface Design

Figure 3.1: GUI Mockup – Main page

properties like cutting speed. This can help to fine tune the quality of the cut
during cutting. (5) allows to manually control the selected heads. The sliders
adjust the moving speed. By directly clicking on the number box the user can
enter a specific value. For a more freeform movement control, the user can
double-tap the middle circle to transform the control to a freeform circular
control (Figure 3.2). The heads are controlled by holding the pointer inside
the bigger circle, direction is specified by angle and speed by distance from
the circle center. (6) is a graphical window displaying the CNC program and
other information. On the bottom there are various controls for manipulating
the view. Holding (or right clicking) a specific position in the window will
open a context menu. It will contain an option to move the head to the
currently selected position. (7) is a toolbar with the controls. The button
Menu opens a menu where the user can access other pages like maintenance
or event log. Buttons around the graphical window are either for controlling
the machine or the CNC program. Button Advanced toggles between basic
and advanced versions of the interface.

The Window show in Figure 3.3 allows to load and customize the CNC
programs. By clicking the Load button, a drop-down will appear with
possibilities to load the program from a file or from a database of pre-made
shapes. In the top left corner, there is a preview of selected or currently loaded
program. Beneath it there is its G-code. The right box contains information
depending on the current state. Either configuration of the loaded program,
a file browser when loading from a file or a shape gallery when loading a from
Makro library.

Windows like maintenance (containing machine variables, etc.), log, user
accounts will contain just tables of data and will not be accessed on regularly
basis, therefore their design is not that critical and no sketch will be provided.

22

..................................3.2. Usability Inspection

Figure 3.2: GUI Mockup – Circular control for freeform head movement

Figure 3.3: GUI Mockup – CNC program selection and customization

In the next section, I will describe consultations of this GUI mockup with
real users.

3.2 Usability Inspection

The proposed mockup was discussed in two sessions of usability inspection
with the users with previous CNC cutting experience. We evaluated the given
prototypes and current appearance of the program and tried to come with
improvements. They also gave me feedback of using previous cutting software.
Many of those were subtle quality-of-life improvements and are covered in
the additional guidelines.

Manual and Automatic Mode

The idea is to split the cutting environment into two modes – manual (3.4)
and automatic (3.5). Each of the modes would feature controls relevant only

23

3. User Interface Design

Figure 3.4: Manual mode – sketch created during usability inspection

for the given mode. During the manual mode, the user has full control of the
machine motion. He is also able to manually enable/disable the cutting beam.
If he selects and starts a CNC program, the environment will switch into the
automatic mode. During automatic mode, the manual controls are replaced
– machine is completely driven by the CNC program, so there is no need
of having the movement controls on the screen. The controls in automatic
mode would modify the machine behavior during the cutting. There would be
sliders to modify speed of the cutting or abrasive amount (for water-jet) by
a percentage. Also a progress bar indicating progress of the program would
appear. When the program stops (or the user cancels it), the environment
would switch back to the manual mode.

Speed Setter

When manually moving a cutting head, the user should be able to define the
speed of the movement. Both showed systems solve it similarly. AremPRO
uses a global variable for manual movement speed which is possible to increase
or decrease by predefined increments (following a non-linear scale). When
movement button is pressed, value of the variable is used as a speed for
the movement. TG Motion Water’s movement buttons have a unchangeable
predefined speed. It is only possible to switch the movement to a jogging mode
which will stepwise increase the movement speed, but again to a predefined
value.

Both of these approaches are inconvenient to use as they do not provide a
way how to quickly and precisely control the speed. Therefore, we designed
the speed setter component (lower part of Figure 3.6). It is a complement to
the movement control from the mockup with the ability of setting desired
movement speed. It consists of a slider enriched with multiple reference
points. Each reference point represents certain predefined (but configurable)

24

..................................3.2. Usability Inspection

Figure 3.5: Automatic mode (active during cutting) – sketch created during
usability inspection

speed and when clicked, it moves the slider to the given speed value. The
user is also allowed to fine tune the speed by moving the slider or by clicking
left or right side of the slider. Above the slider there is a textbox displaying
currently selected speed. The control gives the ability to quickly select a
rough speed but also allows to fine tune it if a higher precision is needed.

Additional Guidelines

Additional set of guidelines was acquired during the usability inspection.
They are often influenced by results of bad user experience with the previous
systems..Avoid sound signals. The environment and especially the water jet

tend to be very loud therefore the signals would be easily missed. This
would cause even more troubles if they were signalizing important events
like errors..Prevent accidental press of unwanted buttons. Buttons with a
big potential destructive effect (like move the head to the zero point)
should be far enough from other buttons..Avoid interchanging of different buttons (like start and stop).
In cause of a problem, the user might panic and hectically smash the
button (e.g. with intention to stop the machine) which must not switch
between the functionalities..Keep buttons pressed when sliding the pointer from them. This
is even more important when the application is controlled by the touch

25

3. User Interface Design

Figure 3.6: Manual movement window with the speed setter component.

input. The user might not look at the screen and accidentally slide from
a button. It prevents unwanted trigger of other buttons.

Final Design

The final appearance of the interface will be a combination of the first designed
interface (Figure 3.1) with all improvements from the usability inspection.
The resulting interface will use two separate modes, one for CNC programs
and the other for manual control. Many of the components featured in the
mockup will be distributed into the two modes which would make the interface
simpler. The movement control from the mockup will be replaced with the
more sophisticated speed setter. All the mentioned guidelines will be followed.

3.3 Interface of the Future

In this section, I will propose how how an interface of the control system could
look like in the future. It shows various ideas that would improve either its
usability or automate certain tasks. These features will not be implemented
in the scope of the thesis but serve as suggestions for future work.

3.3.1 Start from Arbitrary Position

The application has the option to pause cutting and resume it afterwards
from the same position. But there might be situations where something goes
wrong and the user needs to stop the application. Or a situation, where the
abrasive gets stuck and the last few centimeters did not get cut. Now the
operator is forced to start over again and waste time and resources. Therefore
an option to continue cutting from an arbitrary position would be helpful.

26

................................ 3.3. Interface of the Future

Figure 3.7: Cut history as shown in the graphical window. The big rectangle
represents border of the current sheet. Green parts were already cut into it.
Grey part represents the current program for which the operator searches an
empty place.

The user picks a position on the graphical window which snaps to the nearest
point on the path of the program. He is then able to fine tune the resulting
position by moving along the contour of the shape.

3.3.2 Shape Projection

When the material sheet has holes already, it can be hard to find position for
a next part to be cut to fit to the remaining material. To help the positioning,
outline of the CNC program would be projected to the sheet. This would allow
the operator to visually check, whether the program would fit in the sheet. It
requires attaching a physical projector to the machine and calibrating the
exact distance from the projector to the sheet so it does not distort the size.
Also the projector would get dirty in short time, which requires either regular
cleaning or a protective barrier.

3.3.3 Cut CNC Program Memory

Another solution to the problem of shape placement can be to automatically
track already cut hole for each material sheet. The operator would see which
parts were already cut in the graphical window (see Figure 3.7). This could
help him to position the current part more accurately.

To extend this feature even further, there could be an option to save
and load history for each sheet. Because position of the physical sheet has
probably changed from the last cutting, there needs to be a calibration of its
location, so the system can draw it accurately to the graphical window. This
could be done either manually or automatically as suggested in Section 3.3.6.

27

3. User Interface Design

Figure 3.8: In the first screen, the user places the parts inside the sheet and
selects a direction. On the second one, the part is placed automatically into a
fitting spot in the corner.

3.3.4 CNC Program Queue

Some CNC programs can be pretty short which requires the operator to be at
the machine all the time to place and start new programs every few minutes.
This function would allow to queue up multiple CNC programs in succession
and then execute them as a batch. This function would mainly help the
companies, which cut different programs every time and cannot prepare them
beforehand.

3.3.5 Automatic Head Docking

After finishing the cutting process, the operator usually needs to either take
the cut part out or even replace the whole material sheet. This task is hindered
by the cutting head which usually ends above the cut part. Therefore the
operator must first move the head to a remote place to perform the task. The
solution would be to define a docking position where the head would go after
finishing a CNC program. There can be multiple docking position based on
the location of the head like a nearest corner.

3.3.6 Material Sheet Position Recognition

Finding the correct location for a CNC program is one of the most common
and annoying tasks of a operator. To make it easier, the machine would
have the ability to recognize position of a material sheet on the cutting table.
Coupled with the 3.3.3, it would be much easier to find a correct spot for
the program on the display. To find the position of the sheet, it would use a
camera and image recognition. To make the process easier, the sheets could
contain some sort of identification, like a QR code in their corners.

3.3.7 Nesting/Position Selection of a CNC Program

Coupled with features from Sections 3.3.3 or 3.3.6, the system would be able
to find a fitting position for a program. It could either work automatically or
semi-automatically like in CAD programs, where the user positions the piece
and then chooses a direction and the program finds the best fitting spot in
that direction (Figure 3.8).

28

................................ 3.3. Interface of the Future

Enhanced version of this functionality could do this automatically and for
multiple parts. Companies often invest in nesting1 modules for their CAD
programs. The CNC programs are often done and cut by different people.
Therefore if the material sheet has different dimensions than anticipated, the
operator has to wait for the program to be rebuilt.

3.3.8 Automatic Sheet Selection

The job shop companies can put a lot of money and effort into selecting the
best fitting material sheet for their CNC programs. They usually pile dozens
of used sheets and selecting the right one could take couple of minutes. And
the exchange of the sheet can be also a physically demanding task. With the
prerequisite of cut memory (Section 3.3.3), the program could automatically
select the ideal sheet. It would be based on a similar system which is already
used in automatic warehouses. Operating robots can automatically deliver
and store selected items. They would automatically retrieve the selected
sheet, exchange it with the current sheet and store the current sheet for
future use. This feature would bring most benefits to bigger companies with
multiple machines cutting diverse programs.

1“Nesting refers to the process of laying out cutting patterns to minimize the raw
material waste.”[8]

29

30

Chapter 4
Architecture

Software architecture is a basic foundation describing organization and behav-
ior of components of a system [9]. When designing the software architecture,
one has to consider functionality, environment, and future sustainability.
Failing to consider a important architecture aspect could put the application
at risk and changing a key architecture element would usually require to
completely rewrite the application.

The architecture diagram is shown in the Figure 4.1. As seen on the diagram,
the hosting computer runs two separate environments simultaneously. The
CNC machine will be operated by TG Motion run on the real-time OS.
Real-time systems can guarantee a consistent latency for applications which
is a necessity when operating such HW. Inside TG Motion, there will be a
plugged-in PLC. The PLC will be a simple program resembling a finite-state
machine.

The second environment is a standard OS hosting the UI. The UI is the only
part the user will come into contact with. It provides interface for controlling
the machine to the user. The UI won’t operate the machine directly, it will
send commands to the PLC through a communication link and the PLC will
then perform the commands.

Even if the UI is a technical software, its architecture is inspired by structure
of modern web applications. To keep proper separation of concerns, it is split
into Core (backend) and GUI (frontend). The Core contains the business logic
and the data access. Important parts of the logic are implemented by services
whose dependencies are managed by a container. The Core is unaware of the
GUI or underlaying windowing system. The GUI contains interaction and
visualization logic. The separation makes exchange of used GUI technology
easier. Even if not yet planned, there could be multiple separate GUI clients.
With today’s wide usage of smartphones, I could image a mobile client with
a minimalistic functionality.

The individual blocks shown in Figure 4.1 will be described in detail in
the following chapters, PLC in Chapter 6, Core in Chapter 7, and GUI on
Chapter 8.

31

4. Architecture

Figure 4.1: System Architecture Diagram – blue tiles represent standalone
applications, rectangles represent individual components, green rectangles are
developed as part of this thesis.

4.1 Architecture of a Module

Modules provide a way how to extend the behavior of the application. Archi-
tecture of a module is similar to the architecture of UI. Modules will usually
contain business logic and a GUI. There needs to be a way for the application
to recognize given library as a module. This could be either configured within
the application core, or in a more pleasant way, the application itself could
discover the modules by scanning a predefined folder. The installation of a
module should be simple to be able to be performed by an inexperienced user.
Something as dropping file(s) to a folder. There is no way how to extend the
PLC, therefore the extensibility is limited just to the UI.

32

Chapter 5
Technology

This chapter describes selection of technologies (languages and frameworks)
used for implementation of the control system. The reasons for picking the
specific technologies are explained.

PLC

Due to the nature of PLC, we are constrained in use of third-party libraries.
The PLC can use only standard C++ libraries without any external depen-
dencies. The communication between PLC and UI will be realized through
shared memory. Shared memory is asynchronous, has little overhead, and is
supported by all major operation systems. It is also inherently supported by
TG Motion.

GUI

The first and most important thing to choose is the GUI framework. Based
on my previous experience, I will avoid using C/C++ since it tends to
be cumbersome and too complex for a GUI development. The advantage
of C/C++ is its speed and multi-platform support which both are not a
priority here. The preferred choice is a higher level language like C# or Java.
Both languages offer a many GUI frameworks with the most notable being
JavaFX, Swing, and SWT for Java and WinForms, and WPF for C#. All the
frameworks offer a big set of standard GUI components out of the box. After
doing a research and testing the frameworks, I found the WPF being the most
favorable and advanced. It is a fairly new framework (considering all the
possibilities) running on .NET Framework with a clean separation between
look and functionality. Layout is defined in a separate declarative XAML file
[10] which is connected with a class implementing the advanced view logic
(“code behind”). It also offers an easy way to re-skin the application by using
style resources (which work similarly to CSS files).

Extensibility

Based on the application requirements, there is a need for extensibility support.
That means extending the features of the application by installing separate

33

5. Technology......................................
modules. The process of installing new module should be simple enough for
a common user to handle. By default, the .NET Framework [11] supports
extensibility by using DLL files. The libraries can be loaded into the hosting
application to provide additional functionality. However, it still requires a
lot of plumbing to integrate them with the application. Every module can
provide services, forms, windows, or other controls. This is handled by the
Prism library [12] for WPF which simplifies dll loading and management
but also offers tools for GUI integration. Advantage of Prism is that it can
also work with different GUI framework than WPF.

Rendering

The draw window showing machine activity is assumed to be the most
performance demanding part of the application. The required performance
scales with the size of the CNC programs, which cannot be anticipated. Best
candidates for rendering the visual window are low level APIs like DirectX
or OpenGL. The deciding advantage of DirectX over OpenGL is its support
by WPF. DirectX can be directly used only from a native application which
leaves with two options. Either write the window code in a separate native
program and connect it via Interoperability or use a C# DirectX wrapper
(like SharpDX [13]) and call the API directly. I have chosen the latter since it
is the easier way and it does not require to create additional application. The
trade-off is worse performance1 but the impact shouldn’t be significant. It
will require performance tests in the later stages of the application to really
assess this assumption. I also considered to use the drawing engine of WPF,
but it turned out to be too slow when used with many objects. I experienced
frame drops starting at around 10 000 lines.

Data Storage

Internal application data needs a way to be stored. Standard way of storing
data is to use a database. An alternative is to develop a custom storage system
but that would not bring any benefits. There are no special requirements by
the application for the storage. It is a single user application with low amounts
of data required to be stored and with minimal data traffic. Therefore every
modern database would suffice. Due to my experience and broad use I chose
to use a relational database over a non-relational.

Configuration

As a configuration storage I have chosen the standard .NET Framework
configuration files. The framework provides a built-in way how to store
application or custom configuration which can be also used for storing CNC
program specific configuration files. It is more advanced than just a key-value
file with possibilities of sections, custom datatypes, and additional tags per

1based on the benchmark http://code4k.blogspot.cz/2011/03/benchmarking-cnet-
direct3d-11-apis-vs.html, SharpDX is 1.52 to 2.32 times slower than native.

34

...................................... 5. Technology

record. The only downside is that it uses the XML format which is not
very user friendly (compared for example to ini or JSON) when being edited
directly, but that shouldn’t be a common use case.

35

36

Chapter 6
Programmable Logic Controller

This chapter describes the structure and implementation of programmable
logic controller (PLC). Unlike the rest of the Control System, PLC is im-
plemented using C++. Structure of the PLC is also extensively different
from the rest. Real-time programming diverts from standard programming
paradigms. The program runs in cycles (like for example game engines do)
and every action encompassing IO operations is asynchronous. Performance
is critical to maintain a reasonable delay. Even duration of 1ms per cycle,
which looks reasonable at first sight, is too slow. For example with machine
speed of 1 m/s (a realistic cutting speed) the tool would travel 1 mm during
the cycle. That is too much for shapes requiring frequent changes of speed of
individual axes (like a simple circle).

6.1 Shared Memory

Shared memory is a block of memory that can be accessed by multiple
applications simultaneously. The memory is used to control TG Motion
and also to interchange data between PLC and UI. It is logically divided
into sections, with each section having a different purpose. As an example,
one section is reserved for controlling servo motors. The sections consist of
variables, where each variable has a defined position in the memory, data
type and size. The memory is not strongly typed, therefore it is needed
to know an exact location and type of the variables. The memory layout
is described in the TG Motion manual [6]. One section of the memory is
reserved for communication between UI and PLC. The structure is left to the
programmers of the PLC/UI. TG Drives also offers many utility programs
for monitoring or accessing the shared memory. One of the tools is Control
Observer which is shown in Figure 6.1. It has the ability to read/write
memory blocks, see history of values in the course of time, etc.

6.2 Structure

The PLC needs to follow an exact structure required by TG Motion. It has to
export six functions – Program_Ini and Program_01 to Program_05.

37

6. Programmable Logic Controller.............................

Figure 6.1: Control Observer – Tool for monitoring the shared memory. Cur-
rently showing the System.Header section of the memory. Notice the individual
variables, their offsets and data types.

Program_Ini is called during the load of the PLC and should contain
initialization logic. Program_01 - Program_04 are called periodically.
They only differ in priority, where the higher the number, the higher the
priority. The period can be configured for each function and can range
between 100-10000 µs. Functions with a lower priority can be interrupted by
the ones with a higher priority. The functions with a higher priority can be
used for manipulating the hardware, the lower priority ones for diagnostics.
Program_05 is called synchronously with CNC program execution and
cannot be interrupted. This is the most performance critical function as it
can be called multiple times per cycle. According to manual, it should not
exceed 10 µs.

6.3 Manual Movement

Servo motors are controlled through the shared memory within SERVO sec-
tion. There are multiple ways of controlling them. The most straightforward
one is to directly manipulate the requested position. During each cycle, the
requested position is sent to the servo which tries to reach it until the next
cycle. This can be a bit tricky, as it is required to also handle acceleration
and deceleration properly. For example, if the servo would be given a too
big movement request, it would create a high strain on the outer HW which
could lead to its damage. To overcome this problem, TG Motion offers a
“Profile Generator”. It allows to easily control the movement of a motor by
setting either the target position or the target speed. The rest is handled by
the generator. The servos are controlled individually, therefore each can use

38

................................ 6.4. CNC Program Cutting

Figure 6.2: Profile generator – two possible modes of controlling the movement
of a motor. Acc and Dec are allowed acceleration and deceleration. The
PosSpeed is a maximum movement speed and Speed is a requested speed.
DPos is requested target position. Type represents the shape of the ramp-up
and ramp-down functions. Image taken from [6]

a different movement method. TG motion also offers a way how to group
servos so they can be controlled as one. For example the big frame contains
a servo on both sides, but logically it is just a single axis and their movement
needs to be synchronized.

6.4 CNC Program Cutting

Load and execution of CNC programs is done through special library func-
tions provided by TG Drives. They are called from the application UI (see
Figure 7.2). When a CNC program is active, TG Motion calls the function
Program_05 synchronously with its execution. The function can alter the
positions computed by TG Motion. It can also implement a custom G-code
M functions.

One such example is a circular piercing. Usually, the G-code contains a
piercing command, but it does not contain the actual motion of the nozzle
performing the piercing to avoid pollution of the code. Also the ideal diameter
and number of rotations can differ between materials which would make the
CNC program bound to a specific material. The motion is therefore calculated
procedurally by this function.

39

40

Chapter 7
User Interface Core

This chapter contains implementation details of important aspects of the UI’s
core (see Figure 4.1). The core is divided into packages (.NET namespaces),
where each package represents a comprehensive block of functionality. Design
of individual classes follows the traditional OOP principles. Even if the
control system is a technical application, some of its principles are inspired
by web applications, mainly by the Spring Framework.

7.1 Internal Mechanisms

Inversion of Control

The important business logic is implemented by services. The services use
the Inversion of Control principle which is achieved by the Dependency
Injection. Dependencies aren’t managed by the specific services themselves
but by a third party called container. The classes declaratively specify their
dependencies (either to interfaces or classes) and the actual implementations
are provided by the container during the runtime based on the configuration.
This allows to exchange implementations without the receiving class knowing
about it. It is a significant advantage during testing as we can easily supply
mocks of the dependencies. It also allows the modules to override default
their functionality by providing modified implementations of the services.

The dependency container used for this purpose is Managed Extensibility
Framework [14] (MEF). The primary design purpose of MEF is extensibility,
but it can be also used as a DI container. It has the ability to scan an assembly,
discover the components, and then inject them through the dependency
injection. It also provides a built-in support with Prism (see the next section).

Extensibility

Modules are separate packages that can enhance the application with addi-
tional functionality. They can range from a single dll library to a more complex
structure. A module is recognized when it contains a class sub-classing the
ControlSystemModule. It serves as a descriptor of the module and pro-
vides the core application with vital information about the module. Prism

41

7. User Interface Core
scans the “Modules” directory and automatically loads modules located inside.
Out of the box, Prism supports the module discovery only inside a single
directory. The ability has been expanded with the SubdirectoryModule-
Catalog which searches also subdirectories.

In the case of a more complex module, the module can have its own
additional dependencies. That is a problem, because by default, .NET looks
for dependencies in the location of the running application. But the modules
are located in a subdirectory. That would require to copy all dependencies
of the modules to the root directory which is unacceptable from a user
perspective. The solution was to hook up the assembly resolve event of .NET,
which is fired when the assembly dependency cannot be resolved. During this
event, we can locate the dependency in the folder of the specific module and
load it from there.

PLC Communication

The UI communicates with PLC through the shared memory. As the UI is
not a part of TG Motion, it cannot work with the memory directly like PLC
does. Also the memory is not managed by the .NET virtual machine which
would make a direct access almost impossible. TG Drives company developed
a library for communication across the shared memory for this purpose. It
can establish a connection to the memory and safely read and write into it.
Sadly, the library is written in a native code and therefore cannot be directly
used from the application. I wrote a separate project TG.Communication,
which wraps the native library into C# code using PInvoke [15]. The wrapper
is called from C# and calls the native methods.

The read and write functions of the communication library can work with
the common data types and always require an offset. The offset indicates
location of the variable in the memory. This requires to use a list of variables
and their respective positions which is a very functional approach. To make it
more OOP friendly, I created a data structure SharedMemoryDefinition,
which resembles the structure of the memory. The data structure is instan-
tiated and proxied with a proxy (SharedMemoryProxy, implementation
of a RealProxy) intercepting all reads and writes of attributes of the data
structure. The proxy analyzes the structure of the object and calculates off-
sets for every attribute and when accessing them, it calls the shared memory
read/write functions instead. Benefit of this approach is that implementation
details of accessing the shared memory are hidden and outside classes work
with the shared memory as with a simple object.

During application startup, connection to the shared memory is established.
Then the PLC is loaded. Load of the PLC is done by writing PLC filesystem
location to a variable in the memory. After that, TG Motion loads the PLC
and signalizes success of the operation. Because the PLC is dependent on TG
Motion, it will not be loaded when there is no TG Motion running. A lot of
UI functionality depends on the PLC and its feedback. Therefore I created a
“simulation” mode, which simulates job of the PLC and can be run without
TG Motion (more in Section 7.1). Shared memory is still created for the sake

42

.............................. 7.2. CNC Programs and Cutting

Figure 7.1: TG Motion memory connection info provided by the TG Drives
memory connection library. TG Motion can be running locally or on a remote
PC. The green arrow shows current communication link.

of consistency even without a running TG Motion.

Simulation Mode

The application is designed to run with the TG Motion Framework and
with the connected hardware of a CNC machine. Lot of computations are
performed outside of the UI or is gathered as a feedback from the machine’s
hardware. This would deny us to test some areas of the application without
all of the mentioned tools available which would make some testing really
cumbersome. Therefore I designed a simulation mode, which has the ability to
simulate the behavior of these external tools without them being connected.

Many services, which are dependent on running TG Motion have their
simulation counterparts. Their job is to mimic the real behavior, but of
course it is not 100% identical. To switch to simulation mode, it is required
to run the application with the “–simulation” parameter. Behind the hood, it
replaces the services depending on external tools with the simulation services.
This uses the dependency injection principle. Simulation services have a
SimulationAttribute attribute which prioritizes them for injection during
simulation mode.

7.2 CNC Programs and Cutting

Parsing a CNC Program

As it was explained in Section 2.3, the G-code exists in many dialects. To
make the application independent of actual dialect, it uses an inner structure

43

7. User Interface Core
for representation of the G-code. Each type of G-code command has its
class counterpart inheriting from CommandBase. The parameters of the
commands are exposed through standard C# properties which makes work
with them a lot easier. To create an inner representation from G-code, a
parser is used. That is a class implementing the ICncParser interface. Each
G-code dialect will have its own implementation of the interface. To support
a new dialect just requires to write a new parser for it. The application
currently supports the CncC886 version of the G-code[3].

Start Position Configuration

A start position configuration describes positioning of a CNC program in the
inner area of the machine. Coordinates of a G-code are usually local, therefore
without the start configuration the program would be always located around
the lower left corner (as mentioned in Chapter 2, the machine coordinate
system uses the right hand orientation). The start configuration contains a
3D translation and a rotation. The rotation is possible only around the Z
axis. In a future, scaling might be also added. The user can store multiple
start configurations which might help when switching between CNC programs.
When displaying a program in the draw window, a transformation matrix
is created from the start position configuration and used to move graphical
representation of the program to its appropriate location.

CNC Material and Machine Configuration

The same CNC program can be cut into different materials with different
thicknesses or by different machines. This needs to be handled by a config-
uration specific to a CNC program. We do not want the user to configure
the same program every time it is loaded, because there is a big chance the
same program will be cut repeatedly with the same settings. Therefore, it is
a good idea to store the configuration with the CNC program itself. Because
the ISO G code has no notion of configuration, we need to find a different
way. I chose to store the configuration as a XML file with the same name at
the same directory as the original program. When the program is loaded, its
configuration is loaded with it. If the program does not have a configuration
yet, a default one is created. Standard .NET configuration mechanism is used
for storing the program configurations.

A CNC program for a water jet machine can have different settings from
the one for a laser machine. Therefore, the configuration also needs to be
modular. The idea is to split it into sections. The base application contains
a basic section with common configuration for all cutting machines (like type
of material). Then the water jet or laser specific module supplies its own
section with settings specific to that machine (like for water-jet the cutting
pressure during the cutting). When saving the configuration, the resulting
XML contains all the sections.

44

..................................... 7.3. Other Areas

CNC Program Cutting

When a program is ready to be cut, it is bundled with material and machine
configuration and start position configuration and sent to CncExecutor.
Handling and execution of the programs is performed by a separate library
by TG Drives. Similarly to the shared memory communication (Section 7.1),
it was required to create a wrapper TG.CNC to allow execution from C#.

First of all, the program needs to be compiled. The compile function
accepts a raw G-code but the program is represented by a sequence of internal
objects (Section 7.2), therefore it is required to create a G-code from it.
Dialect of TG Motion accepted G-code differs a bit from the Cnc886, the
class TgCncFormatter is responsible for creating appropriate G-code from
the internal representation.

After the program is successfully compiled, its starting position and rotation
is configured. There are no specific methods how to set it, but the library
accepts a G-code prefix and postfix which is applied to every executed G-code
command. The offset and rotation is therefore supplied as a standard G-code
within the prefix.

After that, the program is executed and the rest is handled by TG Motion
and PLC. Other methods offered by the library worth mentioning are calcu-
lation of execution time, starting the program from a custom location, and
setting of breakpoints.

Manual Cutting and Movement

As stated in the Chapter 6, the UI should not manipulate the HW directly.
Therefore, it only sends messages to the PLC which does the job. To make
it easier, the service responsible for manual movement, IManualMove-
mentService, has a very similar interface to a profile generator (see Section
6.3). It can move the head either to a target position or to a target direction
with a constant speed. PLC then splits the requested movement to individual
profile generators for every axis.

To start cutting, it is necessary to toggle valve of the beam. From the
applications perspective they are represented as a single digital output (DIO).
Digital inputs/outputs are also controlled through the shared memory and
occupy a separate section. A signal is sent to the PLC which enables/disabled
the respective DIO.

7.3 Other Areas

License Management

Licensing is a way of protecting the manufacturing company from usage of
illegal copies of the software. To prevent SW misuse, licenses will be stored
in a licensing server located at the manufacturing company. The application
periodically downloads and refreshes the licenses from the server. If there

45

7. User Interface Core
is no connection to the license server for a certain period of time (currently
set to 20 days), the current licenses are considered as expired and therefore
invalid. This also provides a leverage for the manufacturing company to cut
off non paying customers.

The client-server communication is realized through Windows Communi-
cation Foundation (WCF) [16]. It lets us design the communication as a
simple interface and the actual connection code is automatically generated.
Another advantage of WCF is that communication protocol can be replaced
just through configuration without changing a single line of code. The server
code can be hosted as a Windows Service or inside IIS1 or similar web server.

Each application installation has its own app GUID – an unique identifier.
When requesting licenses, the application presents itself with the identifier so
the server can fetch the ones belonging to that application. A license is issued
either to the base application (core) or to a specific module and contains the
expiration date (which can be unbounded).

Licenses are checked during startup. If the license for core is invalid, the
application shuts down immediately displaying the error message. If the
license for a module is invalid, the module is prevented to load and is disabled.
After the startup, licenses are periodically checked and if one is invalid, the
application shuts down within a short period of time. This is to prevent
avoiding license checking by letting the application open for extended amounts
of time.

Up to now, the application uses plain text licenses which are too vulnerable
to hacking. Before going to production it will switch to a more secure principle
using encryption and keys as described in the article [17]. For a debug build,
checking of licenses is completely disabled.

Internationalization

Internationalization (usually shortened as i18n) means adapting the appli-
cation to different cultures. As perceived by many, i18n is not just about
localizing strings. There are many more differences between cultures like
reading direction, letter capitalization, text sorting etc. Some of these as-
pects are already handled by the .NET Framework or by WPF itself. Every
.NET thread runs under the specific culture which is used as input argument
for actions like text formatting. Other aspects need to be handled by the
application itself.

The application will be usually run in a single language environment. But
in some circumstances, there may be users with other preferences (I myself
prefer using English in applications over Czech). To satisfy this need, the
application has a default language setting and each user has an option to set
his preferred language to override the global option.

Given the specific requirements, the application needs to support dynamic
localization – the application boots up in its default language and when a user
logs in, it switches to his preferred language (if any). The .NET offers the

1Internet Information Services – Microsoft’s web server

46

..................................... 7.3. Other Areas

ResourceManager class for localization. A resource manager encapsulates
multiple resource dictionaries (sets of keys and values) and can fetch resource
from the most specific dictionary given a culture.

When using directly the resource manager with WPF, it can perform only
one time localization on startup. To overcome the limitation, I have created
a central point for localization – ILocalizationService. The service keeps
track of all resource managers used by the application and when providing
localization, it selects the most appropriate one. When the current culture of
the application is changed, the service broadcast a message to all localizable
objects to refresh their localizations.

Permission Management

In compliance with the different roles mentioned in Chapter 3, the application
needs to impose restrictions to what is available to individual users. A
permission management system was developed to suit the needs. Every user
will have its own account. Before being able to use the application, they need
to log in using their username and password. Based on their privileges, they
are be granted access to specific areas. The passwords are salted and hashed
to ensure their protection.

I chose to employ a fine grained permission system. Each permission repre-
sents a certain action. Every agenda can require one or multiple permissions.
The permissions are organized in a hierarchical manner, where having a
parent permission gives automatically the access to all child permissions. For
example there is a super permission for having access to all configurations and
child permissions representing specific sections of the configuration (seen in
Figure 7.2). This way, an administrator is able to edit all configurations but a
standard user could have access only to one specific section. The permissions
the user has are stored within his user object and can be changed by the
administrator.

Data Storage

In the past, applications used direct SQL commands to access and manipulate
data in databases. Modern way is to use an ORM (Object-relational mapping)
framework. It allows us to work directly with classes (entities) which are
mapped to tables of the database. The framework translates every action to
SQL and updates the underlying database behind the scenes. The chosen
ORM framework is Entity Framework Core [18]. It is a fairly new project by
Microsoft succeeding older Entity Framework 6. It still lacks some features
but it is now the preferred choice by Microsoft and therefore more promising
for future.

The used database provider is SQLite because of one reason – its storage
engine can be embedded directly into the application and therefore does not
require a separate running daemon. This is a big advantage because it eases
the installation process of the application.

47

7. User Interface Core

Figure 7.2: This image represents a hierarchical organization of permissions.
The “Configuration” permission grants access to all its children, but the “General”
permission does not grant access to the “Internal”. In this example, each of the
child nodes represents a permission to access a individual configuration section.

Every data access operation is executed through a IDatabaseService
interface. Production implementation uses the SQLite storage engine to store
data into a file located in the applications folder. Implementation for tests
uses an in-memory database recreated every time the tests are run. This
makes the testing easier and also ensures consistency between different test
runs.

Application Configuration

The application stores its configuration through the .NET ApplicationSet-
tingsBase. Each object can contain set of properties, which are stored as
XML. It allows to store standard data types and when provided a TypeCon-
verter, even the custom ones.

To leverage this functionality, I wrapped each ApplicationSettingsBase
into a ConfigurationSection which contains additional information about
the configuration (like the module it came from or required permissions).
These are then registered into IConfigurationManager which keeps tracks
of all configurations in one place. Thanks to that, all the configuration
properties can be edited through a unified interface.

Events

Individual components and services need to share information between them-
selves. This is realized by broadcasting messages. It follows the principle of
publisher – subscriber. The publisher publishes an event which is received by
all subscribers.

The interconnecting class is the IEventDispatcher. It keeps track of all
subscribers and their subscribed event types. Publisher can then publish the
event to all subscribers through this class. The standard .NET events provide

48

..................................... 7.3. Other Areas

similar functionality but this approach has the advantage of the possibility
of having multiple publishers for same event. The components are loosely
coupled which increases maintainability (subscriber doesn’t need to know
who the publisher is). This system is inspired by Spring’s application events.

Logging

Logging can be split into two separate categories – event logging and software
tracing [19]. They differ mainly in their content and in their target audience.
The first is aimed at system administrators and contains more high level events.
The latter is used for debugging with more lower level information. Because
this is not a typical application (there are no typical system administrators),
I will make no distinction between these two. Primary aim of logging is to
find the cause of an error. Because there are many external factors in play
(like hardware), the log will record every user action to be able to reconstruct
the exact sequence of events.

Logging is already well explored area and there is no need to re-invent
the wheel. For this task, I have chosen the NLog library. The library
offers rich configuration options for filtering the messages and for customizing
their format. To avoid hard dependency on the library, there is a separate
layer in-between. When logging, the application uses specific internal format
(LogEntry) which is then passed to ILogger. Implementation of this class
is an adapter between the application and NLog. It converts the messages
and passes them to NLog logger. The separation would make exchange of
the logging library easier in the future.

49

50

Chapter 8
Graphical User Interface

This chapter is dedicated to realization of the graphical part of the application.
As opposed to Core, it contains only visualization and interaction logic.
The GUI is implemented in a separate C# project. It uses WPF as the
underlying GUI technology which is analyzed in Section 8.1 and in Section
8.2 demonstrated on an example. The Section 8.3 shows skinning capabilities
of WPF and Section 8.4 shows its extensibility with the help of Prism. The
last Section 8.5 examines the visual window.

8.1 Windows Presentation Foundation

WPF is GUI framework developed by Microsoft available since .NET Frame-
work 3.0. It makes creating user interfaces much easier as it handles a lot
of common tasks like layouting or user input. Applications created by WPF
can be run on desktop computers, but also for example on tablets with
full versions of Windows. WPF rendering is vector based with resolution
independence, therefore it does not experience problems with variously sized
displays (as opposed to the previous technology, Winforms, based on GDI).
WPF uses internally DirectX as rendering engine which makes it fast and
responsive. Because of that, it can natively host custom DirectX content,
which I used for the visual window (Chapter 8.5).

GUI created by WPF is a composite interface consisting of many inde-
pendent components assembled together. A WPF component consists of a
class and a XAML file which are bound together. The XAML file describes
the visual side of the component, it can also contain other components. The
class (or so called code behind) can contain an advanced interaction logic but
because of richness of XAML it is often not required. The resulting hierarchy
of components is called logical tree.

Interaction between components and business logic is handled through data
binding and viewmodels. Every component has a property called data context
where object called viewmodel can be plugged in. Operations or interactions
of the component can be related to its data context.

Through data binding it is possible to exchange data or events between
the control and its data context. For example we can have an object containing
property Name and a text input. We set the object as the data context and

51

8. Graphical User Interface

Figure 8.1: Example of a interface defined in XAML and its result. Notice, how
the button can also contain another components.

when the user enters text, it is automatically set to the Name property of the
object through data binding.

A viewmodel is an intermediate class between UI and business logic. Its
role is to transform data from business logic to the format required by the UI.
It listens to events of the GUI and then sends changes back the the underlying
business logic accordingly [20].

Older GUI frameworks used to lay out components by defining exact
position in pixels from edges of parent component. That system is not very
flexible and is unusable for complex interfaces. In the past, resolutions were
not changed too much so it was sufficient. But today resolution range from
small ones of phones and tablets to 4K of PCs.

WPF uses special components called panels for arrangement. Every panel
uses a different strategy to lay out its children. WPF itself provides variety
of panels which fit most common scenarios. The arranging process has two
phases. In the first one, panels ask children how much space they need and
tell them how much they can get. In the second pass, they assign the children
a rectangle representing the resulting location [21]. This allows to write
custom panels which can arrange their children in any fashion.

8.2 Example of Designing a Form

The GUI is assembled from many small parts. They are called user controls
and usually represent a coherent block of functionality. They derive from
the WPF UserControl class. Visual Studio offers a visual designer and
additional tools to help designing the user controls. The Control System
consists of many user controls, I will show the process of creating a control
on one specific example. All the user controls used within the GUI reside in
the PTV.ControlSystem.GUI.View namespace.

52

............................. 8.2. Example of Designing a Form

Figure 8.2: Manual movement user control. View taken from Visual Studio
XAML designer.

For the purposes of demonstration, I chose the “manual movement user
control”. This control allows to manually move the cutting head. It is depicted
in Figure 8.2. In the upper left part, the buttons move the head in X/Y
plane. The two buttons on the right move the head in Z direction (up/down).
The speed of the movement is controlled by the speed setter. It is a separate
user control which is embedded into the manual movement user control. The
control was previously described in Section 3.2 and Figure 3.6. The reference
points cannot be seen on the image, because they are created during the
runtime based on the configuration which is not available during the design
time.

Basic layout of this control is done by a vertical stack panel. Stack panel
stacks child controls behind each other. The diagonal movement buttons are
wrapped in a uniform grid which has same width and height for every cell.
The text box indicating currently selected movement speed is not a part of
the speed setter. The current speed is provided as an output of the speed
setter and is displayed in the text box with the help of data binding. The
XAML of the control contains not only the structure of the control but also
the styles used in the control. The styles define properties of the buttons
(they all share the same size) but also their behavior like disabling them when
the machine is executing a CNC program. The control has also its own view
model, which sends the user commands to services in the Core module. For
example, when the user presses the movement button, the event is routed to
the view model which sends a signal to the IManualMovementService to
start moving the head in a given direction and speed.

53

8. Graphical User Interface
8.3 User Interface Stylization

WPF successfully separates appearance from behavior. The components
can completely change their appearance while still maintaining their original
behavior. In WPF, every control is defined by a class. The class implements
all required behavior. For example, for a button it would be to perform some
action when it is clicked.

The visual part is defined in a so called control template. A control template
is defined in XAML and consists of multiple visual elements altogether defining
look of the control. It can also contain visual states or animations, like
changing color when mouse is hovered over the control. When creating
a control, the developer usually supplies a default template. This can be
overridden either globally for the whole application, or for just a visual subtree.
For example, buttons inside toolbar have different appearance – the toolbar
supplies its own control template for buttons which is then applied to all
buttons inside.

So as explained, changing appearance of the application means just to use
a specific set of templates. By default, WPF provides appearance matching
version of Windows the application runs on. That means, if the application
is run on Windows 7, it will look different from one run on Windows 10. As
this may be good for an office application to have appearance the user is
used to, for a technical application it is better to stick with one visual across
all platforms. Therefore, I used templates from an open source framework
MahApps.Metro [22] providing appearance similar to the modern Windows
10 Metro theme. If the appearance should change in the future, it would just
require to change the template library. The Figures 8.3 to 8.5 show look of
the application with different template libraries.

54

............................... 8.3. User Interface Stylization

Figure 8.3: MahApps.Metro Theme

Figure 8.4: Windows 7 Theme

55

8. Graphical User Interface

Figure 8.5: Windows 95 Theme

8.4 Extensibility

Extensibility of GUI means the ability to dynamically add new controls to it.
In Prism, components that can dynamically host the views are called regions.
Each region is uniquely identified by its name. The region knows how to
display the hosted views. The traditional example is a dashboard page – a
dashboards are usually shown when users opens a application and summarizes
some important information. When a specific module is installed, it can
provide its own dashboard which is then shown on the main dashboard page.
The dashboard page, the region, knows how to lay out all the dashboards.
It can show them in a grid, stack them vertically or show one at a time
with arrow for switching between them. It all depends on implementation of
the region. When using prism, every standard WPF panel can be used as a
region.

The most important panels of the application are marked as regions. One
example is the “service” tab which can be extended from the modules. To
add a view to a region, it is first required to explicitly obtain a reference to a
region manager, extract the region from the manager and then add the view
to the region. I simplified this process. Now it is only required to mark the
view with ViewExportAttribute. The attribute contains a target region
for the view. When Prism loads a module, it searches for all classes with the
attribute and automatically adds them to their target regions. The difference
between both approaches can be seen in Figure 8.6.

56

....................................8.5. Visual Window

Figure 8.6: In the first example, the view has to be explicitly added to the
region. In the second one, it is only required to annotate the class of view with
an attribute and the view is automatically created and added to the region.

Figure 8.7: Visual Window – a cut-out showing a CNC program in progress

8.5 Visual Window

Visual Window is a component displaying currently running processes on the
machine. It can show the path of a loaded CNC program and its progress,
start configuration, and position of cutting heads. Currently, all the displayed
objects are made of lines, no polygons are used as no filled shapes are required.
The objects use a proper tree-dimensional cartesian coordinate system and
are rendered through an orthographic camera.

8.5.1 Displaying a CNC Program

A CNC program consists of a sequence of G-code commands. They are
far from being able to be conveniently displayed on a screen. The G-code

57

8. Graphical User Interface
commands are parsed into an internal structure which is more machine
friendly. Now we need to create a sequence of lines to represent the shape of
the program. For some G-codes, like linear move, it is really straightforward.
The rest of the movement commands needs to be converted to lines to be able
to be displayed by the DirectX API. The conversion can be configured for a
maximum error difference from the original shape. Some of the important M
commands, like piercing, also are represented in the window.

8.5.2 Showing Progress of a CNC Program

When cutting the program, the already cut path is distinguished from the
path still needed to be cut. As seen on the Figure 8.7, already cut path has a
greyish color, the path remaining to be cut has a green color. To be able to
distinguish between them, each segment of the path is assigned an increasing
ID. When cutting, the service executing the cutting process keeps track in
which section of the program the process currently is. This value is fed to the
shader drawing the program where it is compared to the ID of the segments.

8.5.3 Optimizations

When testing the visual window, I was able to get a stable framerate for the
program consisting of 200 000 lines, which is much more than a common
program would usually need. From the set of real life programs I received
for testing, the biggest one had around 9 000 lines. However, if optimization
would be required, these are the possible enhancements.

Some CAD programs tend to export circles as a sequence of lines. But
number of lines per circles may be too fine grained. This holds true also for
export of curves. As the high precision might be good for the actual cutting, for
displaying it is usually unnoticeable. Before the actual displaying, the program
can be pre-processed and number of lines decimated by an approximation of
the resulting shape with a specific maximum error. Approximation of shapes
consisting of lines with a specific error margin can be solved with the shortest
path algorithms [23]. This would complicate the calculation of IDs for the
segments because one segment is equal to one G-code command in the current
implementation.

The detail of the model differs at different zoom levels the operator selects.
The previous technique can be used to build multiple levels of detail (LOD) of
the shape. The more further the camera would be zoomed, the less detailed
LODs would be displayed.

If the window is zoomed in, lot of parts of the program could be outside of
the visible frustum. But they are still sent to the GPU and they consume
considerate amounts of computational resources before they are culled. A
structure like octree or bounding volume hierarchy would solve the problem by
showing only showing the visible ones. If we break the cutting path into this
structure, we can feed the GPU only the visible or partially visible segments.

58

Chapter 9
Makro Module

The makro module adds the ability to load CNC programs from the library of
predefined shapes. Normally, a shape needs to be drawn in a CAD program
and then exported to the CNC program. This takes some time, even more if
the operator cannot do it himself. The makro library contains many common
shapes which can be configured and cut directly eliminating the need of a
CAD program.

When the module is enabled, selection of loading a CNC program is
extended with a new tab containing the macro shapes (Figure 9.1). When
the user selects a shape, detail of that shape is shown (Figure 9.2). Here he
can configure the dimensions of the shape or switch the representation of the
shape – some shapes allow to be switched into an inner representation1. This
is done by clicking on image of the shape. When finished, the module creates
a CNC code from the shape which is loaded into the control system.

The makro module was created as a proof of concept for modularity of the
control system. It is based on a standalone application which generated CNC
code from the shapes and saved it to disk. The program was developed by me
a few years ago as a contract for the PTV company. The original program
was written in C++ and used Win32 API for its GUI. I rewrote it into C#
and WPF. This allows the same code base to be included into the Makro
module and still be used as a standalone application. The Makro module
only embeds the executable and configures it to suit the needs of the control
system’s API.

In the Makro executable, every shape is generated by a separate method.
The method contains a geometrical representation of the shape. When sup-
plied with desired dimensions, an intermediate class transforms the geometric
representation into the actual CNC code. The thumbnails of the programs
as seen in the selection (Figure 9.1) or configuration (Figure 9.2) are static
images previously exported from Inkscape.

1Inner representation creates a hole – the cutting beam is inside of the shape

59

9. Makro Module

Figure 9.1: Makro – shape selection

Figure 9.2: Makro – shape configuration

60

Chapter 10
Testing

Testing is an important part of development life cycle of every application.
It differs in focus and how it is performed. Usually its aim is to ensure the
application is bug-free. But there can also be a different reasons, like testing
the ease of use or responsiveness of the application. In this chapter I will
explain the techniques used for testing the application and their results.

10.1 Functionality Testing

Intention of bug testing is to find bugs affecting the application. The simplest
form – manual testing, is used probably during the development of every
application. It provides a simple way to check correct functionality. But its
drawback, a need for a real tester, is pretty severe. Therefore it is being
used in conjunction with other automated techniques. Bug prevention is
important, as discovering bug in early stages of development can save a lot of
effort in future. This holds thousand times for this application, as a critical
bug could cause damage of HW or even worse, an injury. Automatic testing
does help a lot with this issues, as the tests can be run automatically after
every build. So if we introduce an error, we instantly know where it comes
from. Here I list all techniques used for automated bug testing.

10.1.1 Assertions, Code Contracts

Assertions are statements used inside the real code which should always
hold true. They can check conditions which cannot be expressed by the used
programming language. As an example could be null checking. C# doesn’t
allow to define a non-nullable object. But it is often a requirement of methods
that parameters cannot be null. This can be checked by an assertion, which
would indicate a bug in case of a null parameter. Big advantage of assertions
is that they can be turned off, as their evaluating uses CPU power which
would slow down the production code. Assertions are used mostly in private
classes or methods to verify correctness of the program logic.
Code Contracts [24] enhance this idea even further by allowing more

expressiveness. One can define preconditions, postconditions, and invari-
ants. These are then compiled into the resulting code. Apart from runtime

61

10. Testing.......................................
checks, there are also tools which can take advantage of the conditions. Some
of the expressions can be evaluated by a static program analysis. Code
generators can include these conditions in a code documentation. As with
the assertions, they can be also turned off. Code contracts are used mostly
in public interfaces to verify correct input and output parameters.

10.1.2 Unit Tests

During unit tests, components are tested in isolation. The idea is to test
if the given component is behaving as expected without outside influences.
In practice, each unit test tests a single method of a class. This has the
advantage over testing a class as a whole, if something breaks, it is easier to
find the root of the problem. To properly isolate a class, its dependencies
need to be mocked. Mocking allows to simulate behavior of a object in a
deterministic way.

In the application, tests are implemented in a separate project from the
production code. The reason behind this is to avoid including the tests into
production assembly. The unit tests use a testing framework provided by
Visual Studio [25]. Code coverage differs by specialization of given class. The
more used core parts get better treatment than more specific classes. GUI
has no unit tests at all as writing tests for GUI tends to be much harder.
For example the geometric library (PTV.Geometry) has around 80% code
coverage1.

10.1.3 Integration Tests

Focus of integration tests is the opposite of unit tests – they tests interaction
between components. Their intention is to expose defects in communication,
when a component is expecting different data than what is being provided.
They should be run after unit tests when we are sure the individual components
work properly.

Integration tests usually need to prepare the whole run environment of the
application. For example the application creates an in memory database every
time integration tests are run. This makes them much slower opposed to unit
tests. If they would be executed after every build, it would increase build
times which would lead to frustration of developers. Therefore it is a good
practice to separate them from unit tests and let them run on a separated
machine in defined intervals, like every day during the night.

In the application, integration tests are implemented at the same level as
unit tests. They are implemented only for a few higher level components.
They are not a part of any automated process and need to be run manually.

1As calculated by Visual Studio Code Coverage tools [26]

62

.................................. 10.2. Usability Testing

10.2 Usability Testing

The aim of usability testing is to evaluate the ease of using an application.
It is performed by real people who perform typical tasks while being observed.
I have prepared seven tasks and tested them on two participants with different
experience in the field. Goal of the testing session was to identify problems
with usage of the user interface.

10.2.1 Testing Scenarios

Before the actual testing, the participants were given a quick overview about
basic functions of the interface. The participant without previous experience
with CNC machines was also given a short training in this area as it is
necessary a prerequisite. The testing environment was prepared with all
below mentioned files ready in their places. A super admin account with all
permissions was used for the testing. Because of practical and safety reasons,
testing was performed using only the simulation mode on a common PC
without actual cutting machine. Therefore when evaluating the results, we
need to keep in mind that feedback from the machine was missing. Here a
list of scenarios, which performed by the participants:..1. Loading the CNC program from file Load the CNC program located

in D:/CncFiles/Customer/test_program.CNC.

..2. Configuring the CNC program Configure the program to be cut on
2mm thick steel material with the cutting best quality. Use circular
piercing with 1s duration...3. Setting a start configuration Position the program to be cut within
the material sheet. The sheet is 500mm x 500mm rectangular shape and
is located within the machine with its left bottom corner at the 200X
100Y location. Rotate the program 45 degrees so it aligns with axes of
the sheet...4. Executing the CNC program Start the program. After the first hole
is cut, pause it before it starts cutting again. After a brief delay continue
the cutting and let it finish2.

2This mimics a real life situation when the operator is required for example to refill the
cutting abrasive material

63

10. Testing...5. Loading CNC program from a makro Load the makro depicted on
the image. Dimensions of the resulting shape should be 100mm diameter
of the outer circle and 6 inner circles with 20mm diameter.

..6. Manually cutting a rectangle Navigate to approximately center of
the machine (imagine, there is somewhere a material sheet). Manually
(without using a CNC program) cut a small rectangle (around 50mm
length of edges). The speed while cutting needs to be approximately
1000mm/min...7. Administration of the application Create a new user account for
a new machine operator. Try to log in as the new user. Add a new
material “Leather” with machinability set to 450. Install a new module
and enable it. The module is located in D:/Example.dll.

10.2.2 Testing

Participant 1 is experienced worker within the field of CNC cutting machines.
He has previous experience with using the AremPRO control system and is
highly skilled with computer software. He had no troubles performing the
first two tasks. The respective buttons were quickly found. For the third task,
he did not know how to set the starting point. After showing the button he
knew how to configure the starting point as the form is similar to the one
from AremPRO. The tasks 4 and 5 were also performed without problems. A
remark was given, that the makro is missing units for the dimensions but he
assumed mm as it is a standard unit in the engineering field. The task 6 was
also performed without problems. The speed setter was praised, however it
was advised to show speeds for the various reference points. Task 7 was also
performed without troubles. The participant was just confused, why nothing
appeared when he enabled the module (a restart is required for the change
to take effect).
Participant 2 is completely new to the field of CNC machines, has average

experience with computer software. The first task was achieved without bigger
problems. The subject was first disoriented about what is a folder and what
is a file during navigating the file system. He managed to finish the second
task, but was confused with setting the piercing type. He did not know, why
he can set configuration for all piercing types even when only one piercing
type can be selected. He also did not know the difference between them.
The third task caused him a lot of pain. As with the first participant, he

64

.................................. 10.2. Usability Testing

could not locate the appropriate button. According to his words, the form is
too complicated and was very hard to set the starting position because he
could not see the sheet on the screen. During the fourth task, he stopped the
program instead of pausing, which aborted the process and it was required
to start it again. The fifth task was performed without any troubles. In
the sixth task he started to press the movement arrows but nothing was
happening. After explaining that it is required to set movement speed with
the speed setter, he managed to fulfill the task. He added a suggestion, that
the already cut area could be shown on the graphical window. Task 7 was
completed without troubles. He noticed an inconsistency that the materials
are saved automatically, but users have to be explicitly saved by pressing a
button.

10.2.3 Evaluation

The testing sessions clearly show a huge difference between previously expe-
rienced and totally new users. Participant 1 experienced no big obstacles
during performing the tasks. He was able to apply previous experience and
also praised the simplified interface compared to AremPRO. However the
second participant was insecure and got stuck several times. It is required to
note, that a CNC machine is an expensive equipment and not available for
broad public. We must assume, that every person using the machine must
undergo at least some basic training. When applied to the second participant,
some of the things he got stuck on would be explained during the training.
However some controls, like the start configuration form are still too complex
and can be overwhelming for a new user. Overall aim should be to make the
interface more clear for new users. Here is a list of improvements which are a
result from the testing sessions:. CNC program load – Distinguish files from folder in the filesystem

browser by using icons.. CNC program configuration – Sort list of materials, do not show con-
figuration for non-selected piercings, add help explaining individual
piercings.. Start configuration – Add label to the button, simplify the form..Makro – Add measurement units.. Speed setter – Give the lowest selectable speed some meaningful value,
add labels.. Draw window – Add layer showing manually cut trajectory..Modules – Show a warning that a restart is required.. CNC program execution – Allow continuing of the program even when
stop is pressed.

65

66

Chapter 11
Discussion

The chapter Discussion is devoted to topics which could not fit into the main
course of the thesis.

11.1 Clarity of Visual Window

The visual window displays trajectory of CNC programs, position of cutting
heads and points of interest like piercing locations or the starting point. All
the elements are drawn using 1px wide lines. This makes some elements
hard to see, mainly if the operator is farther from the screen. I could try to
improve it by increasing drawing width for the trajectory. On the other hand,
this would worsen dense programs as the trajectories could overlap due to
the high width. Maybe the best solution is to use dynamic width based on
the trajectory.

Another improvement can be done to distinguish the already cut path
more from the uncut one. Both paths are drawn using different colors but
the difference is not entirely visible at first glance. This can be achieved
by increasing contrast between the colors. The chosen colors need to be
sufficiently contrasting but they still need to fit the the style of other elements
in the window.

11.2 Automation of the Cutting Process

The cutting process is very dependent on the operator controlling the machine.
He has to load, place, and configure the programs, select and exchange the
material sheets. If we look at other production areas like car manufacturing,
their processes are usually fully automatic. Why is it so different from water-
jet/laser cutting? In an ideal world, the operator would only submit the part
blueprint and target material and the rest would be handed by the machine
automatically. From loading the material, configuring the program based on
the material, selecting a proper starting position to cutting the program and
putting the resulting part to an output tray. Many of the tasks would be
solved by proposed features from the Section 3.3.

67

11. Discussion
11.3 Current State of the Work

As it stands now, the software does not cooperate 100% with the hardware.
When I was testing cutting of a CNC program, the servomotors got stuck
in one moment. I believe, this is a synchronization issue caused in the PLC.
However, when fixing the bug, it is required to proceed with caution, as the
machine is very expensive and bugs like this can lead to permanent damage.
After I finish the thesis, I will continue to investigate the cause of the problem.

Many internal machine parameters are currently wired into the program.
In the future, they need to be configurable from the user interface as different
machines require different configuration for ideal performance. They are
currently optimized for the setting I used during development.

68

Chapter 12
Conclusion

As a part of the thesis, I have developed a new control system for CNC
cutting machines. The main features of the system are the ability to manually
operate a CNC cutter, automatic cutting of G-code programs, and a library
of simple shapes. Notable advantage of the system is its extensibility, which,
without interfering with the application base, allows to add new functionality
or modify the existing one. The thesis focuses on the user interface which was
created during several iterations. Based on the results of the user testing, the
interface is simpler and more accessible compared to other analyzed systems.
The thesis is not only a theoretical work, but its results will be used in
practice.

12.1 Plans for the Future

The application is currently in its first version. Before it is completely ready
to be distributed to clients, a phase of intensive testing and polishing needs to
follow. The application is for many customers the only thing they come into
contact with, therefore it will form their opinion towards the manufacturing
company. After the thesis is finished, the system will be subjected to extensive
testing under conditions simulating a common workload. In the thesis, I
proposed a lot of new features which would improve effectiveness and make the
work with the application more enjoyable. It depends only on the management
of the company, which features will be implemented in the future.

69

70

Bibliography

[1] What is water jet, [Online]. Available: http://www.waterjets.org/
index.php?option=com_content&task=category§ionid=4&id=
46&Itemid=53 (Accessed 04/05/2016).

[2] Water jet basics, [Online]. Available: http : / / www . ptv . cz /
comparison - of - cutting - efficiency - depending - on - the -
pressure - and - amount - of - abrasive - material/ (Accessed 28/
05/2016).

[3] Operation of the Cnc886/Win Control System, 4. revision, AREM
PRO, s.r.o., Nuslova 2275/15, 158 00, Praha 5 Nové Butovice, 2010.
[Online]. Available: http://www.arempro.cz/resources/cnc886win_
en_20101207.pdf (Accessed 19/04/2017).

[4] Iso 6983, [Online]. Available: https://www.iso.org/standard/34608.
html (Accessed 19/04/2017).

[5] TG Motion, [Online]. Available: http : / / www . tgdrives . cz / en /
control- systems- pc- and- panels/tg- motion/ (Accessed 04/05/
2017).

[6] TG Motion, návod k obsluze, 4th ed., TG Drives, s.r.o., Olomoucká 79,
627 00, Brno-Černovice, 2016.

[7] B. Sandu. The 80/20 rule that you should know as a designer, [Online].
Available: http://www.designyourway.net/blog/inspiration/the-
8020- rule- that- you- should- know- as- a- designer/ (Accessed
18/04/2017).

[8] What is nesting, [Online]. Available: https://en.wikipedia.org/
wiki/Nesting_(process) (Accessed 18/05/2017).

[9] What is a software architecture?, [Online]. Available: https://www.ibm.
com/developerworks/rational/library/feb06/eeles/ (Accessed
11/04/2017).

[10] XAML, [Online]. Available: https://msdn.microsoft.com/en-us/
library/cc189036(VS.95).aspx (Accessed 24/04/2016).

[11] .NET framework, [Online]. Available: https://www.microsoft.com/
net/ (Accessed 24/04/2016).

71

http://www.waterjets.org/index.php?option=com_content&task=category§ionid=4&id=46&Itemid=53
http://www.waterjets.org/index.php?option=com_content&task=category§ionid=4&id=46&Itemid=53
http://www.waterjets.org/index.php?option=com_content&task=category§ionid=4&id=46&Itemid=53
http://www.ptv.cz/comparison-of-cutting-efficiency-depending-on-the-pressure-and-amount-of-abrasive-material/
http://www.ptv.cz/comparison-of-cutting-efficiency-depending-on-the-pressure-and-amount-of-abrasive-material/
http://www.ptv.cz/comparison-of-cutting-efficiency-depending-on-the-pressure-and-amount-of-abrasive-material/
http://www.arempro.cz/resources/cnc886win_en_20101207.pdf
http://www.arempro.cz/resources/cnc886win_en_20101207.pdf
https://www.iso.org/standard/34608.html
https://www.iso.org/standard/34608.html
http://www.tgdrives.cz/en/control-systems-pc-and-panels/tg-motion/
http://www.tgdrives.cz/en/control-systems-pc-and-panels/tg-motion/
http://www.designyourway.net/blog/inspiration/the-8020-rule-that-you-should-know-as-a-designer/
http://www.designyourway.net/blog/inspiration/the-8020-rule-that-you-should-know-as-a-designer/
https://en.wikipedia.org/wiki/Nesting_(process)
https://en.wikipedia.org/wiki/Nesting_(process)
https://www.ibm.com/developerworks/rational/library/feb06/eeles/
https://www.ibm.com/developerworks/rational/library/feb06/eeles/
https://msdn.microsoft.com/en-us/library/cc189036(VS.95).aspx
https://msdn.microsoft.com/en-us/library/cc189036(VS.95).aspx
https://www.microsoft.com/net/
https://www.microsoft.com/net/

Bibliography
[12] Microsoft prism library, [Online]. Available: https://msdn.microsoft.

com/en-us/library/gg406140.aspx (Accessed 24/04/2016).
[13] Sharpdx, [Online]. Available: http://sharpdx.org/ (Accessed 21/04/

2016).
[14] Managed extensibility framework, [Online]. Available: https://msdn.

microsoft.com/en-us/library/dd460648.aspx (Accessed 11/04/
2017).

[15] Microsoft. Calling native functions from managed code, [Online]. Avail-
able: https://msdn.microsoft.com/en- us/library/ms235282.
aspx (Accessed 04/05/2017).

[16] Window communication foundation, [Online]. Available: https://msdn.
microsoft.com/en-us/library/bb332338.aspx (Accessed 03/04/
2017).

[17] Licensing solution, [Online]. Available: https://www.codeproject.
com/Articles/996001/A- Ready- To- Use- Software- Licensing-
Solution-in-Csha (Accessed 03/04/2017).

[18] Entity framework core, [Online]. Available: https://github.com/
aspnet/EntityFramework/ (Accessed 03/04/2017).

[19] Logging, [Online]. Available: https://en.wikipedia.org/wiki/
Tracing_(software) (Accessed 03/04/2017).

[20] Implementing the model-view-viewmodel pattern, [Online]. Available:
https://msdn.microsoft.com/en- us/library/ff798384.aspx
(Accessed 19/04/2017).

[21] WPF - layout, [Online]. Available: https://msdn.microsoft.com/en-
us/library/ms745058 (Accessed 19/04/2017).

[22] Mahapps.metro, [Online]. Available: http://mahapps.com/ (Accessed
15/04/2017).

[23] P. Šůcha. Combinatorial optimisation, the shortest paths in a graph, [On-
line]. Available: https://cw.fel.cvut.cz/wiki/courses/a4m35ko/
start (Accessed 17/05/2015).

[24] Code contracts, [Online]. Available: https://msdn.microsoft.com/
en-us/library/dd264808.aspx (Accessed 11/04/2017).

[25] Unit test basics, [Online]. Available: https://msdn.microsoft.com/
en-us/library/hh694602.aspx (Accessed 11/04/2017).

[26] Visual studio code coverage, [Online]. Available: https : / / msdn .
microsoft.com/en-us/library/dd537628.aspx (Accessed 13/04/
2017).

72

https://msdn.microsoft.com/en-us/library/gg406140.aspx
https://msdn.microsoft.com/en-us/library/gg406140.aspx
http://sharpdx.org/
https://msdn.microsoft.com/en-us/library/dd460648.aspx
https://msdn.microsoft.com/en-us/library/dd460648.aspx
https://msdn.microsoft.com/en-us/library/ms235282.aspx
https://msdn.microsoft.com/en-us/library/ms235282.aspx
https://msdn.microsoft.com/en-us/library/bb332338.aspx
https://msdn.microsoft.com/en-us/library/bb332338.aspx
https://www.codeproject.com/Articles/996001/A-Ready-To-Use-Software-Licensing-Solution-in-Csha
https://www.codeproject.com/Articles/996001/A-Ready-To-Use-Software-Licensing-Solution-in-Csha
https://www.codeproject.com/Articles/996001/A-Ready-To-Use-Software-Licensing-Solution-in-Csha
https://github.com/aspnet/EntityFramework/
https://github.com/aspnet/EntityFramework/
https://en.wikipedia.org/wiki/Tracing_(software)
https://en.wikipedia.org/wiki/Tracing_(software)
https://msdn.microsoft.com/en-us/library/ff798384.aspx
https://msdn.microsoft.com/en-us/library/ms745058
https://msdn.microsoft.com/en-us/library/ms745058
http://mahapps.com/
https://cw.fel.cvut.cz/wiki/courses/a4m35ko/start
https://cw.fel.cvut.cz/wiki/courses/a4m35ko/start
https://msdn.microsoft.com/en-us/library/dd264808.aspx
https://msdn.microsoft.com/en-us/library/dd264808.aspx
https://msdn.microsoft.com/en-us/library/hh694602.aspx
https://msdn.microsoft.com/en-us/library/hh694602.aspx
https://msdn.microsoft.com/en-us/library/dd537628.aspx
https://msdn.microsoft.com/en-us/library/dd537628.aspx

Appendix A
Abbreviations

API Application Interface

CAD Computer-Aided Design

CLI Command Line Interface

CNC Computer Numerical Control

CPU Central Processing Unit

DI Dependency Injection

DIO Digital Input/Output

DLL Dynamic Link Library

DRC Dynamic Radius Control

GPU Graphics Processing Unit

GUI Graphical User Interface

HW Hardware

ID Identifier

IDE Integrated Development Environment

IoC Inversion of Control

JSON JavaScript Object Notation

MEF Managed Extensibility Framework

MVC Model View Controller

MVVM Model-View-Viewmodel

NC Numeric Control

OOP Object Oriented Programming

73

A. Abbreviations
ORM Object-Relational Mapping

OS Operating System

PLC Programmable Logic Controller

PTV PTV, spol. s r.o. Company

SQL Structured Query Language

UI User Interface

XAML Extensible Application Markup Language

XML Extensible Markup Language

WCF Windows Communication Foundation

WPF Windows Presentation Foundation

74

Appendix B
Additional Screenshots

Figure B.1: Main screen with a CNC program

75

B. Additional Screenshots

Figure B.2: Loading of a CNC program

Figure B.3: Configuration of a CNC program

76

................................. B. Additional Screenshots

Figure B.4: User management

77

78

Appendix C
Installation Manual

C.1 Requirements

To run the application in simulation mode:.OS: Microsoft Windows 7, 8.1 or 10. 2 Core CPU, 2 GHz. 4 GB RAM. 1 GB HDD Space. DirectX 11 Capable graphics card. DirectX redistributable (June 2010). .NET Framework 4.6.2

To run the application in production mode, it required to have additionally
installed TG Motion Framework + Interval Zero. The programs are propri-
etary software and come together with purchase of a machine. Therefore they
cannot be included with the thesis. The application will run in production
mode without this software, but some commands will not have any effect
because it expects feedback from TG Motion.

C.2 Installation

Copy the folder bin from the CD to hard drive of your computer. Be sure to
meet all requirements listed in C.1. Now run thePTV.ControlSystem.GUI.exe
executable. To run it in simulation mode, see C.3

C.3 Startup Arguments

Application can be started with following command line arguments:

--simulation Runs the application in simulation mode (7.1).

79

C. Installation Manual
--lang [LANGUAGE_CULTURE_NAME] Sets the language as

startup language.

--no-modules Modules won’t be loaded.

--disabled-modules [MODULE1_NAME] [MODULE2_NAME] [...]
Listed modules won’t be loaded. Can be used if a certain module is
breaking the application.

To start application with command line arguments on windows, open CMD.
Go to the folder with the application and type: ExecutableName arg1 arg2 ...
For example: “PTV.ControlSystem.GUI --simulation”.

80

Appendix D
User Manual

The user manual to the PTV Control System. It will explain you the basics
of operating a CNC cutting machine using the control system. The system
can be used to operate a single headed, laser or water-jet, CNC cutter.
The manual will not show how to configure such machine, that is a job for
administration manual.

Logging in

When you start the application, you are presented with a login screen (Figure
D.1). During the first start, two initial users are created – “service” and
“admin”. Their passwords are equal to their user names. Service account is
reserved for service technicians. It has access to very critical setting which
shouldn’t be manipulated by a common user. The admin is the account to
go, it has all permissions except the before mentioned. Go and log in.

D.1 Main Screen

After logging in, the main screen is shown (Figure D.2). It is a central hub
of the application where you will spend most of your time. Here you can
manually control the cutting head, load and execute CNC programs or enter
the service mode. All the mentioned functions will be explained in their
respective sections.

Draw Window

Draw window is located in the middle of the main screen. It shows important
things on the machine. The window can be zoomed or moved. For zooming,
use either mouse scroll wheel, the icons with magnifying glass or input gestures.
To move the window, hold left mouse inside the window and move the mouse
or touch it with a finger and move the finger. You can also focus to see the
full workspace of the machine or center to a loaded CNC program by clicking
the buttons right of the magnifying glasses. By default, the window shows
the view from the top. You can switch between the different views by clicking

81

D. User Manual.....................................

Figure D.1: Login screen. First screen shown during application startup.

Figure D.2: Main screen

the X/Y, X/Z, Y/Z or 3D buttons. However, only the default X/Y view is
fully supported.

D.2 CNC Programs

This section will show you how to load and execute CNC programs.

Loading a CNC Program

To load a cnc program, click the Load button in the upper left corner. This
opens up CNC program loading screen (Figure D.3). In the right, there is a
file explorer. Locate the folder containing CNC files and select the desired
CNC program. A thumbnail of the program and its G-code is shown on the
left side. To load it, click the Load program button. The program should
be now visible and centered on the draw window.

82

................................... D.2. CNC Programs

Figure D.3: Loading a CNC program

Loading a Makro

Makro allows you to load a program from a library of predefined shapes.
Before using it, be sure the module is installed and enabled (see Section
D.4). Click the Load button like when loading a CNC program from a file.
Now select the Makro tab and choose the desired shape (Figure D.4). Each
shape offers configurable dimensions. After it is configured, click the Load
program button. The program should be now visible and centered on the
draw window.

Configuring a CNC Program

When the CNC program is loaded, it is possible to set its configuration. The
configuration is used to adapt the program for the material into which it
is cut. To open configuration, press the Configuration button next to the
load button. In the configuration menu, you can select the target material,
piercing type, and speed of the cutting. The system calculates various speeds
based on properties of the material. If all of the offered speeds are unsuitable,
you can also enter custom speed.

Setting Start Configuration

Before executing the CNC program, it is required to set start configuration.
The start configuration describes position and rotation of the program inside
the machine. To configure the start configuration, press the Start configu-
ration button which shows a modal window (Figure D.5). There are multiple
ways how to configure start configuration. In the Parameters box, you
can input absolute coordinates. In the Position box, you can either set the

83

D. User Manual.....................................

Figure D.4: Loading a makro

start configuration to the current location of the head or move it by specified
amount. The Rotation box allows to set rotation more precisely.

Executing a CNC Program

When the start configuration is set, we can see the program on the draw
window in its target position. If the program is configured, you can start the
cutting process. Pressing the green Start button will execute the program.
The interface will now switch into cutting mode. Draw window displays
progress of the program. We should see the cutting head moving and already
cut parts of the program are drawn with different color. To stop the program,
press the Stop button, to only pause it, press the Pause button. When the
program is paused, you can either continue with the execution or completely
stop it.

D.3 Manual Control

This section explains how to manually operate the machine.

Manual Movement

To manually move the cutting heads, use the Movement control located left
from the draw window. The eight arrows represent movement in axes X/Y.
The two arrows on the right move the head up and down (Z axis). Speed of
the movements is defined by the value shown in the textbox below. To adjust
the speed, either use the slider or double click one of the respective arrows
below the slider to set the speed to a predefined value. The button with “0”
moves the head to the location of start configuration (how to set it, see the

84

................................... D.3. Manual Control

Figure D.5: Start configuration modal window

Section D.2). The button with diagonal arrows opens an absolute/relative
movement menu (show in Figure D.6). This lets you to move the head either
to a specific location (absolute) or by a specific amount (relative). Any
movement can be canceled with the Stop button located in the lower right
corner of the application.

Manual Cutting

Even though most of the times you will cut the CNC programs, you can also
cut manually. Manual cutting is not precise but can be handy for simple
actions like separating a material. The buttons for manual cutting are labeled
as Main buttons. The Technology button is a master switch button for cutting.
If toggled off, nothing will come out of the cutting nozzle. The Water button
switches on/off the water-jet. The Abrasive switches on/off adding of abrasive
into the water-jet. This button has no effect when water-jet is off. Use the

85

D. User Manual.....................................

Figure D.6: Absolute/relative movement menu

manual movement buttons (see Section D.3) to move the head in desired
motion during cutting.

D.4 Application Maintenance

The less frequent agendas aimed at maintenance of the application are hidden
behind the Service button of the main screen. When selected, the application
switches to a service mode. Individual agendas are explained in the following
sections. You cannot switch to service if the machine is moving or executing
a CNC program.

Configuration

In the configuration, we can change settings of the application. Each module
can have its own configuration which is further divided into sections. In the
table, all settings the user has access to are displayed. To change a setting,
double click the Value column of the given setting and enter a new value.
The configuration needs to be manually saved by clicking the Save button.
Some settings require a restart to take effect.

Log

The log contains list of events which happened from start of the application.
Each message can contain additional information which can be shown when
clicking on the Open in the Detail column. The messages are distinguished
by severity which indicates importance of given message. The log agenda can
be crucial when tracing events after a collision. The logs are also stored into
the Logs folder inside the folder where the application executable is.

Module Management

The application is extensible through installation of additional modules. To
install a module, copy it to the Modules directory. When a new module is

86

............................... D.4. Application Maintenance

installed, it is disabled by default. The module agenda lets us to enable/disable
available modules and also see their licenses. The first module is always Core
which cannot be disabled and represents the core of the application. On the
right side of the module name, license info about given module is displayed1.
Application needs to be restarted when a module is enabled/disabled for it
to take effect.

User Management

User management agenda lets us manage accounts of users and specify their
permissions. In the left table, we can add/update/remove users. Each user
can have its own preferred language. When he logs in, application switches
to that language. If none is chosen, a global application language is used
(can be set in configuration). To edit permissions of a user, select the user
in the table and click the Permissions button. The individual permissions
usually correspond to same named agendas. All changes performed in the
user agenda need to be confirmed by clicking the Save button.

Materials

Materials agenda allows to manage list of known materials and their properties.
They can be then used when configuring CNC programs. To edit a material,
double click the desired column in the table. Changes done to materials
are saved automatically. The “machinability refers to the ease with which
the material can be cut”2. The cutting speed computed by the software for
a given CNC program is highly influenced by machinability of a selected
material.

1Non-production release does not validate licenses. In the production release, the
application would either shut down or disable the module if no valid license would have
been found.

2en.wikipedia.org/wiki/Machinability

87

88

Appendix E
CD Content

. bin/ – Application binaries. Logs/ – Contains application logs.Modules/ – Root folder for modules. PTV.ControlSystem.GUI.exe – main executable. src/ – Source codes of the application. ControlSystem/ – Contains main sources of the control system. CppToCSharp/, MemoryAlocator/ – Custom tools used during
development. PTV.ControlSystem.Core/ – Core. PTV.ControlSystem.Core.Test/ – Tests for Core. PTV.ControlSystem.LicenseService*/ – Licensing WCF
client/server code. PTV.ControlSystem.GUI/ – GUI. PTV.ControlSystem.Module.Makro/ – Makro module source. PTV.ControlSystem.PLC/ – PLC. PTV.ControlSystem.Server/ – Server for hosting WCF services. TG.CNC*/ – TG Motion library wrapper for CNC program
execution. TG.Communication*/ – TG Motion library wrapper for shared
memory communication. PTV Control System.sln – Control system VS 2015 solution. Utilities/ – Supporting projects. PTV.Geometry/ – Geometric library. PTV.Geometry.Test/ – Tests for geometry. PTV.Utils/ – Generic utilities. PTV.WPFUtils/ – WPF utilities. Utilities.sln – Utilities VS 2015 solution.Makro/ – Sources of the standalone Makro library. PTV.Makro/ – Makro sources

89

E. CD Content
. MakroSvgExport/ – Custom tool for exporting PNG images

from SVG files using Inkscape CLI. PTV Makro.sln – Makro VS 2015 solution. thesis/. thesis.pdf – This thesis. src/ – LATEX sources of the thesis including used template. cnc/ – Example CNC programs. licenses/ – Licenses of used third-party software (see F.2)

90

Appendix F
Others

F.1 Tools Used

List of major tools used during development.

Microsoft Visual Studio 2015 – IDE for C# and C++.

NuGet – Package manager for Visual Studio. Manages dependencies to
third-party software listed in Section F.2.

Resharper – Extension to Visual Studio with lot a of helpful tools.

Git – Version control software.

Bitbucket.org – Hosting for Git repositories.

Inkscape – Vector graphics editor. Used for drawing of shapes for the Makro
library.

F.2 Third-party Software Used

This is a list of third party software which is used within the control system.
Names of the listed packages correspond to their names within NuGet. De-
pendencies of the following packages are not listed. Licenses for individual
packages are stated in the brackets.

.NET Framework + System Libraries (net_library_eula_enu) – .NET
Framework and standard libraries.

AvalonEdit (MIT) – Basic text editor. Used to display the G-code when
loading CNC programs. Can handle big files as opposed to the default
WPF text box.

CommandLineParser (MIT) – Parser for command line parameters.

Extended.Wpf.Toolkit (Ms-PL) – Collection of WPF controls and utili-
ties.

91

F. Others
JetBrains.Annotations (MIT) – Attributes for static code analysis. Re-

quires ReSharper to be effective.

MahApps.Metro (MIT) – Metro style interface.

MahApps.Metro.Icon (MIT) – Collection of icons mostly used within
buttons.

Microsoft.EntityFrameworkCore (net_library_eula_enu) – ORM data
access technology.

Microsoft.EntityFrameworkCore.Sqlite (net_library_eula_enu) –
Database provider for the Entity Framework Core.

NLog (BSD License 2.0) – Logging platform.

Prism (Apache 2.0) – Extensibility support.

QuickConverter (MIT) – Scriptable WPF converter. Avoids writing a
specialized converter for every scenario.

Resource.Embedder (MIT) – Embeds satellite assemblies to main assem-
bly.

SharpDX (SharpDX) – DirectX wrapper for C#.

SharpDX.WPF (FreeBSD License) – SharpDX integration into WPF.

SpicyTaco.AutoGrid (MIT) – Provides the AutoGrid and StackPanel
WPF panels. They are more refined than their default counterparts.

UnitsNet (MIT) – Eases manipulation with physical units.

WPFTaskDialog (CPOL) – Modal windows for WPF emulating native
Windows task dialogs.

F.3 Code Statistics

Code statistics including every project used within the application. The
metrics were calculated by the tool cloc v1.721.

Language files blank comment code
C# 562 4962 4172 24518

MSBuild script 21 0 147 3595
XAML 59 339 36 2071

C/C++ Header 23 282 169 1080
XML 2 7 0 857
C++ 25 165 59 538
SUM: 692 5755 4583 32659

1github.com/AlDanial/cloc

92

	Introduction
	Detailed Assignment

	Analysis
	High Pressure Abrasive Water-Jet
	Control Systems
	AremPRO Cnc886
	TG Motion Water
	Other Control Systems

	G-code
	TG Motion Framework
	Programmable Logic Controller
	Hardware Communication

	User Interface Design
	Prototype
	Usability Inspection
	Interface of the Future
	Start from Arbitrary Position
	Shape Projection
	Cut CNC Program Memory
	CNC Program Queue
	Automatic Head Docking
	Material Sheet Position Recognition
	Nesting/Position Selection of a CNC Program
	Automatic Sheet Selection

	Architecture
	Architecture of a Module

	Technology
	Programmable Logic Controller
	Shared Memory
	Structure
	Manual Movement
	CNC Program Cutting

	User Interface Core
	Internal Mechanisms
	CNC Programs and Cutting
	Other Areas

	Graphical User Interface
	Windows Presentation Foundation
	Example of Designing a Form
	User Interface Stylization
	Extensibility
	Visual Window
	Displaying a CNC Program
	Showing Progress of a CNC Program
	Optimizations

	Makro Module
	Testing
	Functionality Testing
	Assertions, Code Contracts
	Unit Tests
	Integration Tests

	Usability Testing
	Testing Scenarios
	Testing
	Evaluation

	Discussion
	Clarity of Visual Window
	Automation of the Cutting Process
	Current State of the Work

	Conclusion
	Plans for the Future

	Bibliography
	Abbreviations
	Additional Screenshots
	Installation Manual
	Requirements
	Installation
	Startup Arguments

	User Manual
	Main Screen
	CNC Programs
	Manual Control
	Application Maintenance

	CD Content
	Others
	Tools Used
	Third-party Software Used
	Code Statistics

