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Abstract

Place recognition is formulated as a task of finding the location where the query image
was captured. This is an important task that has many practical applications in robotics,
autonomous driving, augmented reality, 3D reconstruction or systems that organize im-
agery in geographically structured manner. Place recognition is typically done by finding
a reference image in a large structured geo-referenced database.

In this work, we first address the problem of building a geo-referenced dataset for
place recognition. We describe a framework for building the dataset from the street-side
imagery of the Google Street View that provides panoramic views from positions along
many streets, cities and rural areas worldwide. Besides of downloading the panoramic
views and ability to transform them into a set of perspective images, the framework is
capable of getting underlying scene depth information.

Second, we aim at localizing a query photograph by finding other images depicting
the same place in a large geotagged image database. This is a challenging task due
to changes in viewpoint, imaging conditions and the large size of the image database.
The contribution of this work is two-fold; (i) we cast the place recognition problem as a
classification task and use the available geotags to train a classifier for each location in the
database in a similar manner to per-exemplar SVMs in object recognition, and (ii) as only
a few positive training examples are available for each location, we propose two methods
to calibrate all the per-location SVM classifiers without the need for additional positive
training data. The first method relies on p-values from statistical hypothesis testing and
uses only the available negative training data. The second method performs an affine
calibration by appropriately normalizing the learned classifier hyperplane and does not
need any additional labeled training data. We test the proposed place recognition method
with the bag-of-visual-words and Fisher vector image representations suitable for large
scale indexing.

Experiments are performed on three datasets: 25,000 and 55,000 geotagged street
view images of Pittsburgh, and the 24/7 Tokyo benchmark containing 76,000 images with
varying illumination conditions. The results show improved place recognition accuracy of
the learned image representation over direct matching of raw image descriptors.
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Abstrakt

Pojem rozpoznávání místa je formulován jako úloha nalezení místa, kde byl pořízen dotazo-
vaný obraz. Tato významná úloha má praktické aplikace v robotice, autonomním řízení, rozšířené
realitě, 3D rekonstrukci či systémech, které oraganizují obrazová data geograficky strukturovaným
způsobem. Rozpoznávání místa se obvykle provádí nalezením referenčního obrazu ve velké struk-
turované georeferenční databázi.

Tato práce se nejprve zabývá tvorbou georeferenční databáze pro rozpoznávání místa. Popisuje
způsob stavby databáze z Google Street View snímků, které poskytují panoramatické pohledy
zachycené v mnoha ulicích, městech a venkovských oblastech po celém světě. Kromě stahování
panoramat je popsán způsob generovaní perspektivních snímků a získávání hloubkových map
zachycené scény.

Dále tato práce cílí na lokalizaci dotazovaného obrazu hledáním dalších obrázků v georeferenční
databázi zachycujících stejné místo. Jedná se o nelehkou úlohu, kde je třeba se vypořádát se
změnami polohy kamery, světelnými podmínkami a velikostí databáze. Přínos této práce je dvojí.
(i) formulace problému rozpoznávání místa jako úlohy klasifikační a za použití geotagů natrénování
klasifikátorů pro každou lokaci v databázi podobně jako per-exemplar SVM v rozpoznávání objektů.
(ii) protože pro každou lokaci je dustupných pouze několik pozitivních trénovacích příkladů, byly
navrhnuty dvě kalibrační metody pro per-exemplar SVM, které nepotřebují pozitivní trénovací
data. První metoda je založená na p-values a používá pouze nagativní trénovací data. Druhá
metoda je založena na afinní kalibraci pomocí příslušné normalizace normálového vektoru naučené
nadroviny. Navrhovaná metoda rozpoznávání místa je testována na bag-of-words a Fisher vector
obrazových reprezentacích vhodných pro indexování velkých databází.

Experimenty jsou provedeny na třech datasetech: geotagované obrázky Google Street View z
města Pittsburgh o velikostech 25000 a 55000 snímků a datasetu 24/7 Tokyo, který obsahuje 76000
obrázků s výraznými rozdíly ve světelných podmínkách. Výsledky vykazují výrazně lepší přesnost
rozpoznání místa za použití reprezentací na základě naučených klasifikátorů.
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3.2 Google Street View as a graph. Each node in a graph represents a panorama lo-
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panorama location may not be sampled (see the yellow layer), the node is missing.
Notice that in general the graph is directed edges, however for brevity, we depict
the graph as undirected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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3.4 Panorama crop and absolute North direction. After stitching the image tiles, the
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(blue), the angle Θ. A direction of the absolute North (green), the angle Θ0, is
different for each panorama and can be found in the metadata. . . . . . . . . . . . 25
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onto a surface of the unit sphere and is then projected to a tangent plane (center).
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3.7 From label matrix to the depth map. To compute a depth at position x, here
illustrated as a small black pixel with the white edge, of the label matrix L (top),
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3.8 Examples of the Google Street View temporal imagery. Each column shows per-
spective images generated from panoramas from nearby locations, taken at different
times. The goal of this work is to learn from this imagery an image representation
that: has a degree of invariance to changes in viewpoint and illumination (a-f); has
tolerance to partial occlusions (c-f); suppresses confusing visual information such as
clouds (a,c), vehicles (c-f) and people (c-f); and chooses to either ignore vegetation
or learn a season-invariant vegetation representation (a-f). . . . . . . . . . . . . . 29
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4.1 An illustration of the proposed normalization of SVM scores for database images.
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4.3 An illustration of the effect of decreasing parameter C2 in the exemplar support
vector machine objective. The positive exemplar x+ is shown in green. The negative
data points are shown in red. All training data is L2 normalized to lie on a hyper-
sphere. (a) For C2 > 0, the normal w of the optimal hyper-plane moves away from
the direction given by the positive example x+ in a manner that reduces the loss
on the negative data. (b) As the parameter C2 decreases the learned w becomes
parallel to the positive training example x+ and its magnitude ||w|| goes to 0. . . 43

5.1 Example query images from the Pittsburgh dataset. The first row shows a sample
of the query images from the Pittsburgh Google Street View research dataset [21].
The second row contains corresponding ground truth database images from the
database. Notice changes in the camera viewpoint, illumination conditions, occlu-
sion and change of the urban environment over time. . . . . . . . . . . . . . . . . 46

5.2 Example query images from the 24/7 Tokyo dataset. Each place in the query set
is captured at different times of day: (a) daytime, (b) sunset, and (c) night. For
comparison, the database street-view image at a close-by position is shown in (d).
Note the major changes in appearance (illumination changes in the scene) between
the database image (d) and the query images (a,b,c). (Courtesy of Akihiko Torii.) 47

5.3 Per-location classifier training data. (left) The positive training set Pj consist of
the descriptor of the target image j. The negative training set Nj consist of hard
negative examples that are geographically further than 200m from the target image
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5.5 A visualization of learned feature weights for two database images. In each panel:
first row: (Right) Target database image j. (Left) Cumulative density function (or
calibrated score) learned for the SVM scores of the corresponding classifier fj ; three
query images displayed on the second row are represented by their SVM scores and
cdf values F0(s), denoted (a)-(c) on the graph. Third row: A visualization of the
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panel are similar but not identical.
Query (b) is in fact also an image of the same location with a portion of the left
skyscraper in the target image detected in the upper left corner and the side of the
rightmost building in the target image detected in the top right corner. Both are
clearly detected by the method as indicated by a large quantity of green circles in
the corresponding regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 A visualization of learned feature weights for two database images. In each panel:
first row: (Right) Target database image j. (Left) Cumulative density function (or
calibrated score) learned for the SVM scores of the corresponding classifier fj ; three
query images displayed on the second row are represented by their SVM scores and
cdf values F0(s), denoted (a)-(c) on the graph. Third row: A visualization of the
contribution of each feature to the SVM score for the corresponding query image.
Red circles represent features with negative weights while green circles correspond
to features with positive weights. The area of each circle is proportional to the
contribution of the corresponding feature to the SVM score. Notice that the correctly
localized queries (c) contain more green colored features than queries from other
places (b) and (a). Please also note that the calibration cdfs in the left and right
panel are similar but not identical. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 A visualization of learned feature weights for two database images. In each panel:
first row: (Right) Target database image j. (Left) Cumulative density function (or
calibrated score) learned for the SVM scores of the corresponding classifier fj ; three
query images displayed on the second row are represented by their SVM scores and
cdf values F0(s), denoted (a)-(c) on the graph. Third row: A visualization of the
contribution of each feature to the SVM score for the corresponding query image.
Red circles represent features with negative weights while green circles correspond
to features with positive weights. The area of each circle is proportional to the
contribution of the corresponding feature to the SVM score. Notice that the correctly
localized queries (c) contain more green colored features than queries from other
places (b) and (a). Please also note that the calibration cdfs in the left and right
panel are similar but not identical. It is worth noting that query (b) is in fact an
image of the target location but seen from further away and from a different angle. 54

5.9 Examples of query images correctly localized by all methods. (a) query image.
(b) top-ranked image retrieved by the per-location classifiers (proposed method).
(c) top-ranked image retrieved by the baseline confuser suppression method. (d)
top-ranked image retrieved by the baseline bag-of-visual-words method. . . . . . . 55



LIST OF FIGURES xxi

5.10 Examples of query images incorrectly localized by all methods. (a) query image.
(b) top-ranked but incorrect image retrieved by the per-location classifiers (proposed
method). (c) top-ranked but incorrect image retrieved by the baseline confuser
suppression method. (d) top-ranked but incorrect image retrieved by the baseline
bag-of-visual-words method. Occlusions by trees often present significant challenge
for tested visual place recognition methods. . . . . . . . . . . . . . . . . . . . . . . 56

5.11 Examples of query images incorrectly localized by our method but correctly local-
ized by the baselines. (a) query image. (b) top-ranked but incorrect image retrieved
by the per-location classifiers (proposed method). (c) top-ranked image retrieved
by the baseline confuser suppression method. (d) top-ranked image retrieved by the
baseline bag-of-visual words method. The proposed method is sometimes confused
by high-scoring similar repeated texture patterns on facades. . . . . . . . . . . . . 57

5.12 Evaluation of the learned Fisher vector representation on the Pittsburgh 25k [27]
dataset. The graph shows the fraction of correctly recognized queries (recall@K,
y-axis) vs. the number of top K retrieved database images for the raw Fisher vector
baseline (FV) for different dimensions compared to the learned representation (w-
norm). Note the consistent improvements over all lengths of shortlist K for all
dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.13 The recognition performance vs. the memory requirements for the Pittsburgh 25k
dataset. The fraction of correctly localized queries at the top 10 retrieved images
(y-axis) vs. the memory footprint (x-axis) for the different representations. For
Fisher vectors, the learned descriptor (FV w-renorm) clearly outperforms the raw
Fisher vector descriptor (FV) for all dimensions corresponding to different memory
footprints (x-axis). Learnt per-location representations for the bag-of-visual-words
model (BOW p-val and BOW w-norm) also improve performance over the raw bag-
of-visual-words (BOW). However, the Fisher vectors provide much better recognition
performance for the same memory footprint. . . . . . . . . . . . . . . . . . . . . . 60

5.14 Analysis of the change in ranking. Each data point in the plot shows a rank of
the best positive image for given a query obtained by two different methods shown
in red (the baseline method) or blue (the alternative method). The baseline ranks
(red) are sorted in the ascending order. Each blue bar shows a difference in ranking
obtained by the alternative method. The blue being above the red curve means that
the ranking got worse and vice versa. (left) The FV128 w-norm method has been
used as a baseline. (right) The raw FV128 method has been used as a baseline.
Notice the trend of improving the ranking when FV 128 w-norm is used. . . . . . 62

5.15 Rank scatter plot. Each data point in the scatter plot corresponds to two different
rankings of the best scoring positive image. The rank obtained by the raw FV128 is
shown on abscissa while the rank obtained by the FV128 w-norm method is shown
on the ordinate. If a point appears below the diagonal line, it is better ranked by
the proposed method than the baseline. . . . . . . . . . . . . . . . . . . . . . . . . 63



LIST OF FIGURES xxii

5.16 Examples of correctly and incorrectly localized queries for the learned bag-of-visual-
words representation. Each example shows a query image (left) together with cor-
rect (green) and incorrect (red) matches from the database obtained by learned bag-
of-visual-words representation p-val method (top) and the standard bag-of-visual-
words baseline (bottom). Note that the proposed method is able to recognize the
place depicted in the query image despite changes in viewpoint, illumination and
partial occlusion by other objects (trees, lamps) and buildings. Note also that bag-
of-visual-words baseline is often confused by repeating patterns on facades and walls.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.17 Examples of correctly and incorrectly localized queries for the learned Fisher vector
representation. Each example shows a query image (left) together with correct
(green) and incorrect (red) matches from the database obtained by the learned Fisher
vector representation w-norm method (top) and the standard Fisher vector baseline
(bottom) for dimension 128. Note that the proposed method is able to recognize
the place depicted in the query image despite changes in viewpoint, illumination
and partial occlusion by other objects (trees, lamps) and buildings. Note that the
baseline methods often finds images depicting the same buildings but in a distance
whereas our learned representation often finds a closer view better matching the
content of the query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.18 Failure cases on difficult queries. In each column, we show a difficult query image
(left) and the first correct image obtained by the baseline method FV128 (top-
right) and the proposed method FV128 w-norm (bottom-right) along with its rank.
Here we show examples, where proposed method performs worse than the baseline.
Regarding the difficult queries, we observed that our method typically fails on queries
containing a big portion of the sky clouds or vegetation, narrow streets or tunnels and
sometimes retrieves images capturing the same building from a different viewpoint
or a larger distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Tables

3.1 An important part of the panorama metadata. The JSON metadata are parsed to
the Python data object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Panorama resolution and the number of image tiles. At the time of writing this work,
for all zoom levels, the image tile size was 512x512. Notice that panorama resolution
is not multiple of 512 hence, after stitching, the panorama must be cropped to the
appropriate size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Evaluation of the learned bag-of-visual-words representation on the Pittsburgh 25k
dataset. The table shows the fraction of correctly recognized queries (recall@K) for
the different values of K ∈ {1,2,5,10,20} retrieved database images. The learned
representations (BOW w-norm and BOW p-val) outperform the raw bag-of-visual-
words baseline (BOW) as well as the learned representation without calibration
(BOW SVM no calib). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Evaluation of the learned Fisher vector representation on the Pittsburgh [27] and
24/7 Tokyo [64] datasets. The table shows the fraction of correctly recognized queries
(recall@K) for the different values of K ∈ {1,2,5,10,20} retrieved database images.
The learned Fisher vector representation (FV w-norm) consistently improves over
the standard Fisher vector matching baseline (FV) for all target dimensions. . . 65



LIST OF TABLES xxiv



1 Introduction

“All things are difficult before they are easy.”
— Dr. Thomas Fuller

The Internet contains a vast collection of imagery that grows every moment. In 2013 the
social network Facebook claimed [31] that every single minute users upload about 208,300
new images, for Instagram, this number was about 27,800. Thus, at the time of writing

this thesis, there are about 340,000,000 new images uploaded per day. Beside of images, Youtube
users upload more than 100 hours of video every minute. A considerable portion of these images
and videos does not contain a geo-location information. Hence, a substantial amount of attention
has been paid to developing techniques to pinpoint the location of the images or videos, commonly
referred to as visual place recognition or geo-localization.

1.1 Objective

The goal of the thesis is twofold; We aim at building a geo-referenced place recognition dataset
from imagery available on the Internet, and, second, we wish to develop a new method for place
recognition in an outdoor urban environment.

While several place recognition datasets have been released in the past, these datasets often suffer
from noisy ground truth labels, do not cover entire city uniformly, are biased towards landmarks,
or suffer from the pure image quality. To cope with these drawbacks it is necessary to build a
dataset that covers street side imagery uniformly across the urban environment, a dataset that has
reasonably accurate geotags, image resolution and the image quality. The dataset should cover the
same scene captured at a different time.

Using the dataset, the goal of the place recognition is to localize an unknown query image by
finding similar images from the database depicting the same place and retrieving a shortlist of
these images. The location of the query image is then performed by assigning a geotag of the
most similar image from the shortlist. The images within the shortlist can be re-ranked by a
more expensive method such as geometric verification. Hence the primary challenge of the place
recognition lies in building a small shortlist containing at least one database image capturing the
same place as the query image. Notice that we do not aim at camera pose estimation. To design
a method amenable of building the shortlist, one has to design a method that is able to deal with
the camera viewpoint changes, illumination changes, confusing objects (the objects such as traffic
signs, zebra crossings or road marks appearing at the multiple places).

The objective of this thesis is to create a system that builds a geo-referenced dataset from data
available on the Internet and to design a system capable of localizing an unknown image in a
large urban area of the scale of a city. First, We develop a method that can fetch high-resolution
Google StreetView panoramas with associated metadata including depth-maps and automatically
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generate databases for place recognition. Finally, the thesis develops a place recognition method
that exploits the structured manner of the database, casts the place recognition problem as a
classification task and learns a calibrated per-location classifier for each location in the database.
This is illustrated in figure 1.2 where the heat map layer indicates distribution of the calibrated
classification score for the given query image shown in blue. The four top-ranked database images
are shown in green (correct location) and red (incorrect location).

1.2 Motivation

The image geo-location plays an important role in several fundamental tasks in computer vision,
robotics, augmented reality, navigation and photogrammetry, the ancestor of computer vision.
Knowing where the image or video was captured is essential in the systems that organize and
analyze imagery by its geographical location. For instance, Geographic Information System (e.g.
QGIS, ArcGIS) registers aerial and satellite imagery with the maps, robot navigation systems
perform ego-localization based on image content captured by its camera sensors. Regarding the
navigation, an accurate indoor localization is often performed by analyzing an image or a short
video sequence captured by a user. One of the most popular online photo repositories Panoramio
organizes its content by geo-location. Panoramio [23] is a geolocation-oriented photo sharing
mashup that and presents its content to a user in geographically structured manner. It can be
accessed as a layer in the Google Earth [22]. It allows Google Earth users to learn more about
a given area by viewing the photos that other users have taken at that place. Geo-localizing the
photographs can also be used for city reconstruction.

A substantial amount of attention has been paid to developing techniques to pinpoint the location
of the images or videos. At the beginning of the century, most systems targeted at satellite and
aerial imagery where geo-referenced datasets consist of images captured from an overhead view.
Query images were mostly captured by aircraft or satellites hence methods developed in that end
in view predominantly stand on registration of a planar scene.

The availability of visual data has shifted dramatically in the last decade due to emerging new
data storage technologies, distributed systems, mobile devices and social networks. A considerable
portion of the visual data is formed by street view imagery. Big companies put an effort in collecting
large geo-referenced databases. For instance, the Google Street View, provides panoramic views
from positions along many streets, cities and rural areas worldwide. It is worth noting that
geo-referenced datasets play a fundamental role in emerging techniques for autonomous driving.
Private companies such as HERE, Zoox, Uber and Tesla Motors are currently collecting their own
street side imagery and combining it with data from other sensors such as inertial measurement
unit, LiDAR, GPS or GLONASS. Petabytes of data serve as a fundamental source of information
in designing systems amenable to localize and navigate an autonomous vehicle in complex urban
environments.

1.3 Challenges

How can we recognize the same street-corner in the entire city or on the scale of the entire country
despite the fact it can be captured in different illuminations or change its appearance over time?
The fundamental scientific question is also what is the appropriate representation of a place that
is rich enough to distinguish similarly looking places yet compact to, represent entire cities or
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Figure 1.1: Challenges in place recognition. The place recognition system must achieve
robustness to the large variability in a scene such as time of the day, weather changes,
seasonal effects, repetitive elements such as traffic signs, pedestrians, and cars, occlusions
or changes in the camera viewpoint. Some of these challenges are illustrated above. The
three images capture the same place in San Francisco captured at a different time of the
year.

countries.

The goal of place recognition is to find a reference database image that depicts the same place
(scene) as is captured in the unknown query image. The query image is then assigned a geo-location
of the reference image, as illustrated in figure 1.2. One strategy to apply is image matching or
instance retrieval based methods, which are, in nature, similar to the place recognition regarding
the goal and challenges to deal with.

For instance, the query and database images may depict the same 3D object (e.g. building)
from a different camera viewpoint, under different illumination conditions (day, evening, sunny,
cloudy) or the object can be partially occluded by nonstatic objects such as cars or pedestrians.
The structured geo-referenced database may contain from few thousands to a couple of millions of
images. Driven by prominent advances in the large-scale image retrieval of the Internet imagery,
the image matching based approach was adopted to the place recognition.

While place recognition and image retrieval are similar regarding the goals and difficulties, it
differs from the place recognition in several angles. In image matching, the goal is to find many
images similar to the query image. However in the place recognition, rather than retrieving many
similar images, the goal is to find a reference image (or a handful of reference images) that depicts
exactly the same location shown in the query image. While image retrieval databases are typically
unstructured collections of images, place recognition databases are usually structured: images have
geotags, are localized on a map and depict a consistent 3D world. Knowing the structure of the
database can be leveraged, and leads to significant improvements in both speed and accuracy of
the place recognition.

A major challenge for visual place recognition system is to achieve robustness to the large vari-
ability in scene appearance that can be observed in the real world. Such changes (induced by the
time of day, weather or seasonal effects as well as human activity) are a ubiquitous challenge for all
place recognition systems. Another challenging problem to deal with are the confusing or repet-
itive elements that are present in urban environments (traffic signs, road marks, cars, windows,
vegetation). The system should be able to recognize the same place captured from different camera
viewpoints, under very different illumination conditions and, very often, captured in a different
season. Some of these challenges are illustrated in figure 1.1.
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1.4 Contributions

This thesis has three main contributions listed below.

First, we propose a method for building geo-referenced place recognition datasets from images
available on the Internet and offer it to the community of researchers in the form of software
package [25] named streetget. The proposed method (chapter 3) is capable of downloading
recent and historical spherical panoramas, and its associated meta-data including approximate
depth-maps. The spherical panoramas can be used to generate perspective cameras with known
location and intrinsic parameters. In our recent work of Aranjelovic et al. [2], it was shown that
using the historical spherical panoramas was crucial to train the convolutional neural network for
place recognition as, without using it, the network does not generalize well.

Second, equipped with the geo-referenced dataset, we cast the place recognition problem as a
classification task where we use available geotags as a weak form of supervision to train a classifier
for each location in the database (chapter 4). These classifiers are subsequently used for ranking
the database images at query time.

Finally, as only a few positive training examples are available for each location, we propose two
methods to calibrate all the per-location SVM classifiers without the need for additional positive
training data. The first method (section 4.2) relies on p-values from statistical hypothesis testing.
The second method (section 4.3) performs an affine calibration by appropriately normalizing the
learned decision hyperplane. We also describe a memory efficient classifier representation for the
sparse bag-of-visual-word vectors (section 4.4) and experimentally demonstrate benefits of the
proposed approach (chapter 5).

1.5 Thesis summary

1.5.1 Building geo-referenced datasets

We developed a method for building geo-referenced datasets for place recognition from images
available on the Internet. The algorithm collects imagery available on Google Street View. The
proposed method is capable of collecting both recent and historical panoramas and can collect
depth information along with additional metadata. Subsequently, we build the geo-referenced
database of perspective images (55k) from the collected data.

Google Street View provides panoramic 360-degree views from designated roads throughout its
coverage area. Google Maps API v3 provides a way to embed the Street View service into a
custom website using the JavaScript. The possibilities are, however, quite restricted. The user
can only display the most recent panorama (the panoramas are being updated periodically), it is
not possible to view the whole panorama, the maximum resolution can not be accessed, a depth
information is also not accessible, and only approximate location of the panorama is available.

To deal with the above-mentioned drawbacks, we exploit the communication between the web
browser and the Google Street View server and discover a structure of HTTP requests necessary
for getting the raw Street View data. These HTTP requests are then used by the algorithm to
fetch raw data and to build a geo-referenced dataset from the desired area.

Using the method described in this thesis, we are able to collect full resolution (90 Mpx) spherical
panoramas, historical panoramas, accurate GPS coordinates, inertial measurement unit data and
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Query 
image

Figure 1.2: Place recognition by per-location classifiers. At each place on the map
we train per-location classifier. The classifier learns relative importance of the image
features for recognizing certain location. Given the unknown query image (blue frame),
the similarity with the database images is measured by the calibrated classification score.
The heat map layer indicates distribution of the calibrated classification score for the given
query image. The four top-ranked database images are shown with its respective location
in the map. Notice that one retrieved image is correct (green frame) and depicts the same
place while other three top-ranked are incorrect (red frame).

a scene depth representation from post-processed LiDAR point cloud.

We will describe how the Street View data are internally organized as a large directed graph,
how to build this graph to get the raw Street View data and, finally, how to use these data to
generate a geo-referenced dataset for place recognition.

1.5.2 Per-location classifiers

So far, we have discussed how the geo-referenced database can be built. Armed with the geo-
referenced database, we developed a method which is able to localize a query photograph by
finding database reference images depicting the same place. We cast the place recognition problem
as a classification task, and for each database image, in turn, we train a classifier. The classifier
learns relative importance of the image features for recognizing the location. At the query time, a
similarity with the database images is evaluated using the classifiers. This is illustrated in figure 1.2
where the heat map layer indicates distribution of the calibrated classification score for a given
query image across the designated area.

The local features such as Scale Invariant Feature Transform (SIFT) are heavily used in the
computer vision literature. In this work, we use the SIFT features for their befitting properties
such as view and scale invariance and robustness to partial occlusion. We aggregate the features
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into L2 normalized bag-of-visual-words (BOW) vector which is used as an image representation.

The image retrieval can be done by extracting the SIFT features from the query image, computing
its BOW vector and, finally, measuring the similarity with the query by performing a dot product
with each database BOW. Besides of the BOW representation, other popular aggregation methods
for image representation recently used in the computer vision literature are Vector of Locally
Aggregated Descriptors (VLAD) [35] and Fisher Vectors (FV) [36]. In this thesis, we will also
utilize FV image representation.

One particular challenge we address here is the problem of confusing features. Man-made struc-
tures in the urban area are often similar to each other and appear the same at different geographical
locations, cars, pedestrians and vegetation are not relevant for recognizing the place. For instance,
consider the Starbucks coffee logo that looks the same at multiple locations in the city, a stop traffic
sign or a zebra crossing sign that looks the same across the country, cars buses and pedestrians that
typically move, hence can not be a strong indicator for place recognition. Some of these features
are, in general, non-informative, but notice that in a particular context at a certain location can
be very discriminative. For instance, there are few dozens Starbucks coffee in the city, thousands
of zebra crossings and hundreds of stop traffic signs, but there might exist only one place where
the Starbucks coffee is situated next to the stop traffic sign and the zebra crossing.

Following this intuition, we aim at learning relative importance of the features in the database
image. This is achieved by learning an exemplar support vector machine (e-SVM) classifier for each
database image in turn. The learned weight vector will give a higher weight to the discriminative
features related to the learned location (the positive training data) and will down weight features
that are non-discriminative with respect to the far-away locations (the negative training data).

Since these classifiers are learned independently of each other, their output scores are not directly
comparable. Typically, for each trained classifier, this problem can be solved by fitting a sigmoid
function (logistic regression) to the distribution of the output scores for negative and positive
data. The sigmoid function is then used as a calibration function for the classifier. The output of
the classifier can be then treated as a probability score and can be directly compared with other
calibrated score.

However, this requires bellyful amount of both positive and negative training data or a held out
set devoted only for calibration. This is a problem in place recognition task since we typically
have one (or a handful) positive training example for each location and this example is used for
training. However, there is plentiful negative examples, all the images that are sufficiently far
away (say 200m) from the positive training example can be treated as negative data, because they
can not capture the same scene. We take advantage of this fact and propose a new method for
calibrating the classifiers from the only negative data.

To summarize, rather than learning the importance of image features globally, we learn its
relative importance locally for each database image in turn. This is achieved by learning per-
exemplar classifiers. Because each classifier is trained independently, the calibration of the classifier
score appears to be a critical issue. Because of the lack of positive training data, the traditional
calibration methods can not be used. Therefore we propose calibration procedure that utilizes only
the negative data.

We will show how to train the per-location classifiers on top of the bag-of-word features and Fisher
vectors image representations, how to calibrate the classifiers from the negative data and how to
store them efficiently. Finally, we will demonstrate its performance on three place recognition
datasets.
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1.6 Thesis outline

In chapter 2 we give an overview of the state-of-the-art related to our work. Namely, we focus
on image features and image representations, existing place recognition methods, discriminative
learning, support vector machines (SVM) and linear discriminant analysis (LDA). In chapter 3,
we present a method for building geo-referenced databases for place recognition. We show how
to get full resolution panoramas of the street side panoramas and depth representation from the
Google Streetview and how to generate perspective images with depth information from this data.
In chapter 4, we introduce per-location classifiers for place recognition and propose two calibration
methods. Finally, in chapter 5 we present experimental results of the proposed methods on three
datasets obtained by the framework proposed in chapter 3.

1.7 Publications related to the thesis

Journal papers

Gronat, P., Obozinski, G., Sivic, J., Pajdla, T. (2016) Learning and calibrating per-location clas-
sifiers for visual place recognition. International Journal of Computer Vision (IJCV), Springer
USA, 10.1007/s11263-015-0878-x [50%]

Conference papers

Gronat, P., Obozinski, G., Sivic, J., Pajdla, T. (2013) Learning and calibrating per-location clas-
sifiers for visual place recognition, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), p.907-914 [50%]

Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J. (2016) NetVLAD: CNN architecture
for weakly supervised place recognition, R. Arandjelovic, P. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). [15%]

Workshop papers and techreports

Gronat, P., Sivic, J., Pajdla, T. (2012) Learning local distance functions for place recognition. In
Proceedings of the 17th Computer Vision Winter Workshop, CVWW2012. [50%]

Gronat, P., Havlena, M., Sivic, J., Pajdla, T. (2011) Building streetview datasets for place recog-
nition and city reconstruction. Tech. Rep. CTU-CMP-2011-16, Czech Tech University. [50%]

Software

Gronat, P. (2015) streetget, A small package for fetching Google StreetView data with easy to
use CLI and Python API. http://www.di.ens.fr/willow/research/streetget [100%]





2 Related work

“My definition of an expert in any field is a person
who knows enough about what’s really going on to
be scared.”

— P.J. Plauger

The task of geo-localizing a given input query photograph has recently received considerable
attention. There is a lot of applications where the organization of the geographical data
is used. The output of the geo-localization system can be a coarse geo-localization on the

level of continents and cities [16, 30, 37] or a name of the depicted landmark [40]. In this work, we
focus on visually recognizing the “same place" by finding an image in the geo-referenced database
that depicts the same building facade or street-corner as shown in the query [10, 13, 39, 56, 66, 69].

2.1 Local Features and Image Representations

Over the years, researchers have proposed a plethora of different visual features spanning a wide
spectrum, from very local to full-image representations. The Scale Invariant Feature Transform
(SIFT) descriptor [43] is popular in image retrieval and large scale place recognition. The SIFT
is a local feature descriptor invariant to translations, rotations and scaling transformations in the
image domain and robust to moderate perspective transformations and illumination changes. The
descriptor generally describes the spatial distribution of pixel intensity gradients in a patch. A
similar approach is adopted by [6] who present the Speeded Up Robust Features (SURF).

Histogram of Oriented Gradients (HOG), also relies on describing gradients in the image but
is mostly used in object detection as a representation of an entire object or its part. Dalal et al.
[14] introduce Histograms of Oriented Gradient (HOG) features for pedestrian detection. In this
work they study the question of feature sets for robust visual object recognition, adopting linear
SVM based human detection as a test case. Authors show experimentally that grids of features
significantly outperform existing feature sets for human detection. Finally, it is shown that fine-
scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local
contrast normalization in overlapping descriptor blocks are all important for good results. In this
work, authors also introduced new dataset for human recognition.

Sivic et al. [61] propose a method of object retrieval which searches for and localizes all the
occurrences of an object in a video, given a query image of the object. Local viewpoint invariant
SIFT features are quantized using a pre-trained visual word vocabulary and aggregated into a
term frequency-inverse document frequency (tf-idf) vector. In computer vision and text retrieval
community, this approach is also known as bag-of-words (BOW). The temporal continuity of the
video within a shot is used to track the regions in order to reject unstable regions and reduce the
effects of noise in the descriptors. A benefit of the tf-idf representation is that it can be stored
in the inverted file structure which yield in an immediate ranking of the video key frames/imags
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containing the object.

It is worth noting that this is the first effective and scalable approach for image retrieval, still
very popular. A lot of research has been done on top of this work [47, 46, 67, 33, 50]. For
instance, Philbin et al. [47] address problem of building a vocabulary for large-scale image retrieval
and introduce a quantization method based on randomized trees and propose an efficient spatial
verification stage to re-rank the results returned from our bag-of-words model. Nister et al. [46]
present recognition scheme that efficiently scales to a large number of objects. The local region
descriptors are hierarchically quantized in a vocabulary tree. The vocabulary tree allows a larger
and more discriminatory vocabulary to be used efficiently. Authors demonstrate that the proposed
scheme leads to a significant improvement in retrieval quality. The most significant property of the
scheme is that the tree directly defines the quantization, hence, the quantization and the indexing
are therefore fully integrated.

Turcot and Lowe [67] takes an additional step to bag-of-words (BOW) method to reduce the
memory footprint by selecting only a small subset of the training features. After training the BOW
vocabulary, each database image is treated as a query image. Then, m−best scoring images are
geometrically verified via RANSAC for affine transform and survived features are further eliminated
by estimating the epipolar geometry. In addition to the feature pruning, authors propose query
augmentation by building a graph of geometrically adjacent images. Using this graph, the image
can be augmented by adding pruned features from adjacent images.

Motivated by that the Fisher kernels have been introduced to combine the benefits of generative
and discriminative approaches, Jegou et al. [33] propose to apply the Fisher kernel framework to
the image categorization. In the Fisher kernel framework generative models can process data of
variable length and discriminative methods can have flexible criteria. The underlying generative
model for the Fisher kernel is a visual vocabulary represented as a Gaussian mixture model which
approximates the distribution of low-level features in images. Authors showed that Fischer kernel
can be viewed as an extension of the bag-of-words (BOW) approach and demonstrate superior
performance on two datasets.

In another work, Jegou et al. [36] aim at large-scale image search and addresses search accuracy,
efficiency, and memory usage. They present and evaluate different ways of aggregating local image
descriptors into a vector and show that the Fisher kernel achieves better performance than the ref-
erence BOW approach for any given vector dimension. Finally, they jointly optimize dimensionality
reduction and indexing in order to achieve accurate, yet compact image representation.

To reduce the memory footprint of the image representation, Jegou et al. [34] introduce product
quantization for approximate nearest neighbor search. Descriptor space is decomposed into a
Cartesian product of low dimensional subspaces where each subspace is quantized separately. A
vector is then represented by a short code composed of its subspace quantization indices. Finally,
the Euclidean distance between two vectors can be efficiently estimated from their codes. Authors
present extensive search accuracy even on image representation encoded into few dozens of bits.

Mid-level visual representations aim to capture information at the level of complexity higher
than typical “visual words”, but lower than full-blown semantic objects. Singh et al. [60] aim
at discovering a set of discriminative patches which can serve as a fully unsupervised mid-level
visual representation. The learned mid-level patches should be representative (occur frequently
in the visual world) yet discriminative (must be different enough from the rest of visual world).
This is achieved by discriminative clustering where each iteration consists of k-means clustering
random patches, learning the SVM classifier for each cluster as positive training data and, finally,
updating the cluster with the new examples discovered by utilizing the SVM on the validation set.
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The method exhibits consistent semantic entities over the clusters. Given a weakly-labeled image
collection, Doerch et al. [15] propose a method that discovers visually-coherent patch clusters that
are maximally discriminative with respect to the labels and demonstrating state-of-the-art results
for scene classification.

Similar to other work in large scale place recognition [13, 39, 56, 66] and image retrieval [46, 47,
61, 36], we describe each image by a set of local invariant features [6, 43] that are encoded and
aggregated into a fixed-length single vector descriptor for each image. In particular, in this work
we consider the sparse tf-idf weighted bag-of-visual-words representation [61, 47] and the compact
Fisher vector descriptors [36].

The resulting vectors are then normalized to have unit L2 norm and the similarity between the
query and a database vector is measured by their dot product. This representation has some
desirable properties such as robustness to background clutter and partial occlusion. Efficient
retrieval can then achieved using inverted file indexing [34].

2.2 Place recognition

Visual place recognition [13, 39, 56] is a challenging task as the query and database images may
depict the same 3D structure (e.g. a building) from a different camera viewpoint, under different
illumination, or the building can be partially occluded. In addition, the geotagged database may
be very large. For example, we estimate that Google Street View of France alone contains more
than 60 million panoramic images. It is, however, an important problem as automatic, accurate
and fast visual place recognition would have many practical applications in robotics, augmented
reality or navigation.

The visual place recognition problem is typically treated as large-scale instance-level retrieval [13,
10, 39, 56, 66, 69], where images are represented using local invariant features [43] encoded and
aggregated into the bag-of-visual-words [12, 61] or Fisher vector [36] representations.

While in image retrieval databases are typically unstructured collections of images, place recog-
nition databases are usually structured: images have geotags, are localized on a map and depict a
consistent 3D world. Knowing the structure of the database can lead to significant improvements
in both speed and accuracy of place recognition. Examples include: (i) the image database can
be further augmented by 3D point clouds [38, 41, 32], automatically reconstructed by large-scale
structure from motion (SfM) [1, 38, 58], which enables accurate prediction of query image camera
position [42, 52, 70, 53]. (ii) constructing an image graph [8, 48, 67], where images are nodes
and edges connect close-by images on the map [65], or (iii) using the geotagged data as a form of
supervision to select local features that characterize a certain location [39, 56] or re-rank retrieved
images [69].

2.2.1 Building explicit 3D reconstruction.

Agarwal et al. [1] present a system that can match and reconstruct 3D scenes from extremely large
collections of photographs. The system uses a collection of novel parallel distributed matching and
reconstruction algorithms that minimize serialization bottlenecks. Authors show that it is possible
to reconstruct cities consisting of 150K images in less than a day on a cluster. Such a 3D point
cloud can be further used for city scale place recognition. Klinger et al. [38] describe a structure-
from-motion framework that handles generalized cameras, such as moving rolling-shutter cameras,
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and works at an unprecedented scale of billions of images covering millions of linear kilometers of
roads by exploiting a good relative pose prior along vehicle paths.

Irschara et al. [32] address efficient view registration with respect to a given 3D reconstruction.
Authors present a fast location recognition technique based on structure from motion point clouds.
Vocabulary tree-based indexing of features directly returns relevant fragments of 3D models. Fi-
nally, they propose a compressed 3D scene representation which improves recognition rates while
simultaneously reducing the computation time and the memory consumption. The paper demon-
strates the approach by matching hand-held outdoor videos to known 3D urban models, and by
registering images from online photo collections to the corresponding landmarks.

Li et al. [42] address the problem of place recognition by estimating a full 6-DOF-plus-intrinsic
camera pose with respect to a large geo-referenced 3D point cloud. The main contribution is a
scalable method for accurately recovering 3D camera pose from a single photograph taken at an
unknown location. Authors claim that proposed 2D-to-3D matching approach to image localization
is advantageous compared with image retrieval approaches because the pose estimate provides a
powerful geometric constraint for validating a hypothesized location of an image, thereby improving
recall and precision.

Their approach combines geometric constraints and image based recognition and proposes to
compute a representative set of 3D point fragments that cover a 3D scene from arbitrary viewpoints
and utilize a vocabulary tree data structure for fast feature indexing. A subsequent matching
approach and geometric verification directly delivers the pose of the query image.

Sattelr et al. [52] propose a pipeline for determining the pose of a query image relative to a 3D
point cloud reconstruction. They propose a search method based on both 2D-to-3D and 3D-to-2D
search to establish matches between image features and scene points needed for pose estimation.
A unified formulation of search in both directions allows exploiting the distinct advantages of
both strategies. In [53] Sattler et al. propose a localization approach based on prioritization
scheme of feature matches that allows to significantly accelerate 2D-to-3D matching. Because
the scheme itself suffers from the feature quantization artifacts, authors propose to recover the
matches lost due to the quantization by a 3D-to-2D search. Finally, it is shown how to exploit
co-visibility information from the reconstruction process and to use it to improve the efficiency of
the localization pipeline.

In [70], Zeisl et al. propose to shift the task of finding correct image correspondences from the
matching stage to the pose estimation step. Instead of using first nearest neighbors and retaining
matches that are likely to be inliers, authors simplify the matching problem and consider one-
to-many correspondences, which however results in a large number of matches with a very small
inlier ratio. Then an extensive spatial verification is performed early on in the pose estimation
procedure. Authors introduce a voting-based spatial verification process that exploits a known
gravity direction and an approximate knowledge of the camera height using a setup.

Li et al. [41] use a 3D point cloud built from a large photo collection to localize given query
photograph. Based on the knowledge about features visibility in the 3D model authors devise an
adaptive, prioritized algorithm for matching a representative set of SIFT features covering a large
scene to a query image for efficient localization. Their approach is based on considering features in
the scene database, and matching them to query image features, as opposed to more conventional
methods that match image features to visual words or database features.
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2.2.2 Constructing an image graph.

Turcot and Lowe [67] authors propose query augmentation by building a graph of geometrically
adjacent images. Using this graph the image can be augmented by adding features from adjacent
images.

Cao et al. [8] exploit a structure of a geo-referenced database and build a graph of images based
on visual connectivity. Then they identify subgraphs and learn a local distance function for each.
Given the query image, each database image is ranked according to the learned local distance
functions in order to place the image in the right part of the graph. Torii et al. [65] formulate
place recognition problem as a regression on an image graph with geotagged images as nodes and
edges connecting close by images. Given a query image, a similarity between the query and pairs
of database images is computed using edges of the graph and considering linear combinations of
their feature vectors. Finally, the query location can be predicted by interpolating locations of
matched images in the graph without estimation of multi-view geometry.

2.2.3 Using the geotagged data as a form of supervision.

One of the successful data-driven place recognition approaches were presented by Hays and Efros [30].
They target on recognition on the scale of the entire planet. Authors propose a simple algorithm for
estimating a distribution over geographic locations from a single image using a purely data-driven
scene matching approach. Given the query image, a set k-nearest neighbors in the multi-feature
space forms an estimate of a geographic location - a probability graph over the entire globe. This
is achieved by leveraging a large geo-referenced dataset of the size of 6 million images. Zamir et
al. [69] propose a feature matching based scheme. They quantize SIFT features into a learned
vocabulary tree. At the query time, each feature is pruned based on proposed pruning strategy
and survived features are quantized. Quantized features votes for location on a map using the
geotags, weak votes are removed by measuring the Kurtosis of the vote distribution. Finally, Vote
distribution is smoothed by a Gaussian and the query image is localized by the identifying the
database image corresponding to the highest peak of the voting distribution.

Knopp et al. [39] propose a method to avoid features leading to confusion in place recognition
using geotags attached to database images as a form of supervision. One of the key problems in
place recognition is the presence of objects such as trees or road markings, which frequently occur
in the database and hence cause significant confusion between different places. Authors develop
a method for automatic detection of image-specific and spatially-localized groups of confusing
features.

Torii at al. [66] deal with repeated structures that are notoriously hard for establishing corre-
spondences using multi-view geometry or for place recognition since repeated structures violate
the feature independence assumed in the bag-of-visual-words representation. Authors describe a
representation of repeated structures suitable for scalable retrieval and geometric verification which
yield an important distinguishing feature for many places.

Sattler et al. [51] aim at re-ranking the retrieved images within the shortlist. Standard re-ranking
technique utilizing spatial verification via RANSAC [29] implicitly assume that the number of inliers
found by spatial verification can be used to distinguish between a related and an unrelated database
photo with high precision. Authors show that this assumption does not hold for large datasets due
to the appearance of geometric bursts, for instance, sets of visual elements appearing in similar
geometric configurations in unrelated database photos, and propose algorithms for detecting and



2.3 Support Vector Machines 14

handling geometric bursts by exploiting the geo-tags obtained from GPS or SfM.

Schindler et al. [56] look at the problem of place recognition in a large image dataset using a
vocabulary tree. In this work, authors demonstrate that traditional feature matching approaches
do not work very well as the size of the dataset increases and show retrieval performance can be
significantly improved by carefully selecting the vocabulary.

Chen et al. [10] use a large geo-referenced database of street-level images and use facade-aligned
and viewpoint aligned representations to localize the query photograph. Authors present their
own geo-referenced dataset as well as a set of query images from mobile devices with the ground
truth labels. However, it is worth noting that their ground truth is very noisy and contains many
false positive images. This makes it difficult to use this dataset for accurate evaluation of place
recognition. Gronat et al. [26] proposed method for building geo-referenced datasets for place
recognition and city reconstruction. Described pipeline is amenable to downloading Google Street
view panoramas with the corresponding metadata.

Kalogerakis et al. [37] aim on estimating a geographic location of sequences of time-stamped
photographs. A prior distribution over travel describes the likelihood of traveling from one location
to another during a given time interval. An image likelihood for each location is defined by matching
a test photograph against the training database. Inferring location for images in a test sequence is
then performed using the Forward-Backward algorithm. Utilizing temporal constraints allows the
method to geolocate images without recognizable landmarks.

� � �

In contrast to the related work summarized above, in this thesis, we investigate learning a dis-
criminative place-specific image representation. A similar idea has been recently explored in [8] who
learn a graph-based discriminative representation for landmark image collections where typically
many images are available for each landmark. In this thesis, we focus on street-level images such as
Google Street View, which have greater coverage, but typically only one or a small number of im-
ages are available for each place. To address this issue, we learn a discriminative re-weighting of the
descriptor unique to each image in the database using per-exemplar support vector machine [44].

2.3 Support Vector Machines

In two decades, Support Vector Machine (SVM) became an indivisible component of computer
vision techniques. Below, we give a brief overview of the most relevant publications related to the
thesis.

2.3.1 Support Vector Machines for Place Recognition

Li et al. [40] aim at image classification using multiclass SVM. They exploit geotags of a large col-
lection of photos from Flickr to identify peaks in the density distribution. These peaks correspond
to frequently photographed landmarks. They learn models for these landmarks with a multiclass
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SVM, using vector-quantized interest point descriptors as features. Authors conclude that in some
cases image features alone yield comparable classification accuracy to using text tags as well as to
the performance of human observers.

Zadrozny et al. [68] show how to obtain accurate probability estimates for multiclass SVM prob-
lems by combining calibrated binary probability estimates. Authors also propose a method for
obtaining calibrated two-class probability estimates that can be applied to any classifier that pro-
duces a ranking of examples.

Doersch et al. [16] seek to automatically find visual elements, e.g. windows, balconies, and street
signs, that are most distinctive for a certain geo-spatial area, for example, the city of Paris. They
use discriminative clustering approach that is able to take into account a weak geographic supervi-
sion, in order to identify the visual elements distinguishing architectural elements of different places.
Authors show that these elements are visually interpretable and perceptually geo-informative.

2.3.2 Per-exemplar support vector machines

The exemplar support vector machine (e-SVM) has been used in a number of visual recognition
tasks including category-level recognition [44], cross-domain retrieval [59], scene parsing [62] or as
an initialization for more complex discriminative clustering models [16, 60]. The main idea is to
train a linear support vector machine (SVM) classifier from a single positive example and a large
number of negatives. The intuition is that the resulting weight vector will give a higher weight to
the discriminative dimensions of the positive training data point and will downweight dimensions
that are non-discriminative with respect to the negative training data.

Malisiewicz et al. [44] propose a method object detection based on training a separate linear
SVM classifier for every exemplar in the training set. Each the exemplar-SVMs is defined by a
single positive instance and potentially millions of negatives examples. While each detector is quite
specific to its exemplar, it is observed that an ensemble of such exemplar-SVMs offers surprisingly
good generalization.

The objective of Shrivastava et al. [59] is to find visually similar images such as photos taken
over different seasons or lighting conditions, paintings, hand-drawn sketches, etc. They propose a
method that estimates the relative importance of different features in a query image based on the
notion of “data-driven uniqueness". To learn the weight vector, they utilize per-exemplar SVMs
similarly to Malisiewicz et al. [44] except that the negative training data are not guaranteed to
contain negative examples only. In practice, this does not seem to hurt the SVM, suggesting that
this approach is yet another application where the SVM formalism can be successfully applied.
The exemplar support vector machine is learned at query time where the weight vector is used as
a new query image representation. However, this requires training a new classifier afresh for each
query that is computationally demanding.

An interesting alternative to linear exemplar-SVM is presented in work of Gharbi et al. [19].
They re-interpret the exemplar-SVM between a single point and set of negative examples as the
computation of the tangent to the manifold of images at the query. They show that in high-
dimensional space of the image features all points lie at the periphery, and they are usually separable
from the rest of the set. The set of all images in the feature space is approximated by a Gaussian
fitted by computing the covariance matrix. The computation of the tangent at a query point is
performed by multiplication by the inverse of the covariance matrix. This approach results in a
speedup of the image retrieval tasks and is shown that is equivalent to feature space whitening.
This approach related to [28] and shares many similarities with Linear Discriminant Analysis briefly
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discussed in the section below.

Tighe et al. [62] utilize exemplar SVM for labeling each pixel in an image with its semantic
category, achieving a broad coverage across hundreds of object categories. The system combines
region-level features with per-exemplar SVM sliding window detectors.

In this work, similar to [44] who learn per-exemplar object category representation, we learn
per-exemplar classifiers for each place in the database offline. A key advantage is that each per-
exemplar classifier is trained independently and hence the learning can be heavily parallelized. The
per-exemplar training brings, however, also a significant drawback. As each classifier is trained
independently a careful calibration of the resulting classifier scores is required [44].

2.3.3 Calibrating classifier scores

Several calibration approaches have been proposed in the literature (see [18] and references therein
for a review). The most known consists of fitting a logistic regression to the output of the SVM [49].

Platt et al. [49] present calibration of the SVM classifier using the sigmoid function. The output of
the classifier is turned into the posterior probability to enable post-processing. Instead of creating
probabilities directly by training a kernel classifier with a logit link function and regularizing
maximum likelihood score, which produces non-sparse kernel machines, authors first train the SVM
and then train the parameters of an additional sigmoid function to map the SVM outputs into
probabilities. The SVM and sigmoid yields probabilities of comparable quality to the regularized
maximum likelihood kernel method, while still retaining the sparseness of the SVM.

This approach, however, has a major drawback as it imposes a parametric form (the logistic a.k.a.
sigmoid function) of the likelihood ratio of the two classes, which typically leads to biased estimates
of the calibrated scores. Another important calibration method is the isotonic regression [68], which
allows for a non-parametric estimate of the output probability. Unfortunately, in our setup, the fact
that we have only a single positive example (or only very few of them which are almost identical,
and which are all used for training) essentially prevents us from using any of these methods. To
address these issues, we develop two classifier calibration methods that do not need additional
labeled positive examples.

Related to propsed calibration methods is also the recent work of Scheirer et al. [55] who develop
a classifier calibration method for face attribute similarity search. Scheirer et al. [55] aim at
classifying multiple visual attributes utilizing a large dataset of face images. A raw attribute score
is obtained by training the SVM classifier. To compare the raw scores, authors propose a calibration
procedure that fits a Weibull distribution to the distribution of scores. The calibration turns a
binary SVM to a probabilistic decision. Their method (discussed in more detail in section 4.2) also
does not require labeled positive examples but, in contrast to us, uses a parametric model (the
Weibull distribution) for the scores of negative examples.

2.4 Linear discriminant analysis and whitening

Our work is also related to linear discriminative transformations of feature space that have shown
good performance in object recognition [19, 28] and 2D-3D alignment [5, 4]. Aubry et al. [5]
present a technique that can reliably align arbitrary 2D depictions of an architectural site, including
drawings, paintings, and historical photographs, with a 3D model of the site. They develop a new
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compact representation of complex 3D scenes. The 3D model of the scene is represented by a small
set of discriminative visual elements that are automatically learned from rendered views. The set
of visual elements, as well as the weights of individual features for each element, are learned in a
discriminative fashion. The authors present closed form solution which is tightly related to LDA.

Aubry et al. [4] aim on object category detection of “chair” as a type of 2D to 3D alignment prob-
lem. They utilize the large quantities of 3D CAD models that have been made publicly available
on-line and propose an exemplar-based 3D category representation. Authors learn view-dependent
mid-level visual elements utilizing approach similar to LDA and propose affine calibration from
negative examples. Their system is able to align 3D models with 2D objects in images in complex
scenes containing chairs.

While conceptually the idea of finding a discriminative projection of the original feature space is
similar to our work, the main difference is in the used loss function. While we use hinge loss [57]
to train the new discriminative representation of each place, [5, 19, 28] use the Euclidean loss.
The advantage of using the Euclidean loss is that the discriminative projection can be computed
in closed form. Hariharan et al. [28] point out that training SVM over HOG features can become
expensive as the number of classes increases. In such cases, instead of SVM, they propose to
utilize LDA models. Estimated covariance matrices capture properties of the natural images, and
whitening HOG features with these covariances removes naturally occurring correlations between
the HOG features. Authors demonstrate that whitened features are considerably better than the
original HOG features and demonstrate its performance experimentally.

Using the Euclidean loss, the resulting projection is tightly related to Linear Discriminant Anal-
ysis and whitening the feature space [5, 19, 28]. Such whitened representations have shown promise
for image retrieval [33] or matching HOG [14] descriptors [15], however, we have found they do not
perform well (chapter 5) for place recognition.





3 Building datasets for place recognition

“Amazing things happen when you pull individual
pieces of information together into larger linked
datasets: meaning emerges, as you produce facts
from figures.”

— Ben Goldacre

Google Maps combined with Street View images can serve as a powerful tool for place
recognition or city reconstruction tasks. In this chapter, we present a way how to build
geotagged datasets of perspective views from Google Maps. Given the GPS coordinates

and the parameters of the area of interest, the algorithm can build a graph of panorama locations,
download corresponding panoramas and depth maps, and generate perspective views.

Each panorama on Google Maps Street View has associated metadata from which the GPS
location and the direction of the view can be extracted. The metadata also contains information
about the neighboring panoramas, hence a list of panoramas covering a certain area can be built.
The metadata also contains links to the temporal neighbors which are the panoramas of the same
place captured at a different time. Temporal data turned to be a very valuable source of data.

Finally, each downloaded panorama is cut into a set of overlapping perspective views and stored
while the camera GPS location, yaw, and pitch, date are coded in the filename of the perspective
view and the associated metadata file. Such geotagged database can be subsequently used for place
recognition and structure from motion 3D reconstruction.

The Google Maps API v3 provides convenient access to some of the Google Street View data.
However, it has some limitations in terms of accessibility to the data and number of requests per
hour. Hence, the proposed algorithm does not use the Google Street View API but is build on
HTTP request communication between the Street View client and the Google Maps server.

In this chapter, we provide an abstraction of how the Street View data are represented at the
Google Maps server, what particular HTTP requests to use to fetch the Street View data and how
to decode the obtained data. Then we describe how to build a spherical panorama out of this data,
how to retrieve underlying depth information, and finally, how to generate perspective views from
the spherical panoramas.

3.1 A big picture

The Street View data is mostly captured by cars equipped with various kind of sensors attached
to the data capturing equipment(see Figure 3.1). Some sensors important for the Street View
are spherical ladybug camera, LiDAR, inertial measurement unit (IMU) and accurate GPS. Other
sensors such as WiFi and 3G/4G signal are involved only in the Goole Maps services helping the
localization when used on a cell phone. It is worth noting that since 2015 the cars began carrying
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(a) (b)

Figure 3.1: Google Street View capturing equipment. (a) A Google car with capturing
equipment. (b) Detail of the capturing equipment. The Street View capturing device
contains a spherical camera system, LiDAR, inertial measurement unit (IMU), accurate
GPS, WiFi monitor and pollutant sensors.

sensors to detect pollutants such as nitrogen dioxide, ozone, and particulate matter.

The Street View data is captured approximately every 15m on the road. At each panorama
location, the device captures a panoramic image, a GPS data, and IMU data are along with
the LiDAR point cloud. The spherical panorama is then stored at different resolutions called
zoom levels, and for efficiency, each panoramic image is broken into few dozens of image tiles that
can be stitched back together. The details are given in the section below.

The LiDAR data are post-processed, the scene depth is approximated as a set of 3D planes. The
planes are fitted to the LiDAR point cloud via RANSAC. The parameters of the planes can be
retrieved from the Google server as metadata. The details will be given later in this chapter.

The metadata also contains a GPS location, IMU data such as a yaw w.r.t. the absolute North,
hence the car heading in the world, and the gravity vector, is just to name a few. Most importantly,
the metadata contains links to the spatially adjacent panorama locations. For instance, at the
panorama location at a street crossing the adjacent panoramas can be backward, forward left and
right. This is illustrated in the Figure 3.2 where the Street View is depicted as a large graph. Each
of the neighbor panorama locations contains its own list of spatial neighbors and so on.

Finally, each panorama location contains links to the temporal neighbors. The temporal neighbor
is a panorama location that is captured approximatelly at the same GPS position but is captured
at a different time, typically a different year or month. This is illustrated in Figure 3.2. The
temporal links can be retrieved from metadata, details will be given later in this chapter.

To conclude, the street view can be viewed as a large directed graph where a node represents the
data (spherical panorama, IMU, depth representation e.t.c.) and edges represent the adjacency
(see Figure 3.2) of the panorama locations. There are two types of adjacency, the spatial adjacency,
and the temporal adjacency.
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Figure 3.2: Google Street View as a graph. Each node in a graph represents a panorama
location, green. There are three layers of nodes, green, yellow and red. Each layer corre-
sponds to a set of panorama locations captured in a different year. Solid edges represent
spatial adjacency while dashed edges represent temporal adjacency. Notice that panorama
locations captured at different year lie approximately at the same location (they have very
similar GPS coordinates), however, for some years a panorama location may not be sam-
pled (see the yellow layer), the node is missing. Notice that in general the graph is directed
edges, however for brevity, we depict the graph as undirected.
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3.2 Algorithm overview

As mentioned in the previous section, the Street View can be viewed as a large graph. Thus, given
a starting node, and an area of interest, for instance, a GPS rectangle, the goal is to (i) build
the graph and (ii) for each node download the spherical panorama and metadata. We use the
breadth-first search (BFS) algorithm and rather than first building the graph and then fetching
the data we fetch the data while exploring the graph. The algorithm is sketched below.

Algorithm 1 Crawler
1: procedure Crawler(id_start, validArea())
2: V ← empty set . visited panoramas
3: Q← empty queue . queued panoramas
4: Enqueue(Q,id_start)
5: while not Empty(Q) do
6: id←Dequeue(Q)
7: if Has(V,id) then
8: continue
9: Add(V,id)

10: gps← getGPS(id)
11: if not validArea(gps) then
12: continue
13: saveData(id) . save panorama and metadata
14: for id_n in getNeighbours(id) do
15: if not Has(V,id_neighbour) then
16: Enqueue(Q,id_neighbour)
17: for id_n in getTemporalNeighbours(id) do
18: if not Has(V,id_neighbour) then
19: Enqueue(Q,id_neighbour)

return

A speed of a download is limited by the Internet connection and latency between HTTP requests.
While there is nothing to do about the former problem, the overall latency can be amortized by
parallelizing the BFS. Fetching one panorama location requires from a few dozens to hundreds of
HTTP requests each of which has some associated latency. Hence, while waiting for the response
of the first HTTP request, another request can be send and so on. Hence, the while-loop in
Algorithm 1 can be parallelized by (i) using multiple threads and thread-safe implementation of
the queue data structure and (ii) by parallelizing the function saveData which has to fetch many
panorama image tiles as described in the section below. Detailed implementation can be found in
the documentation of the streetget package [25].

3.3 Getting initial panorama hash ID

Each panorama location, a node in the graph (see Figure 3.2), is identified by a unique hash id.
Hence, the adjacency list of neighbor panorama locations is represented by a list of unique hash
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Feature name: Location in JSON object:
Panorama hash ID data[’Location’][’panoId’]
Panorama latitude data[’Location’][’lat’]
Panorama longitude data[’Location’][’lng’]
Panorama heading data[’Projection’][’pano_yaw_deg’]
Panorama date data[’Data’][’image_date’]
Panorama width data[’Data’][’image_width’]
Panorama height data[’Data’][’image_width’]
Tile width data[’Data’][’tile_width’]
Tile height data[’Data’][’tile_height’]
Zoom levels data[’Location’][’zoomLevels’]
Depth binary string data[’model’][’depth_map’]

Table 3.1: An important part of the panorama metadata. The JSON metadata are
parsed to the Python data object.

identifiers. The hash id is required to fetch the panorama image and the metadata. Hence, the
algorithm must be supplied by a panorama id of the initial location.

To retrieve the panorama hash id a geocode HTTP request must be sent. The request is supplied
by initial GPS coordinate and a search radius in meters. If a panorama is present at the initial
location within the specified radius, a server’s response is metadata in a JSON format. This
metadata contains, among the other information, a hash id of the found panorama. The detail of
the HTTP geocoding request is given in the Appendix A. The relevant components of the JSON
metadata, including the panorama location hash id, are discussed next.

3.4 Metadata

There are two important HTTP requests, each retrieving different portion a panorama location
metadata as a serialized object. The first portion of the metadata contains information about
the panorama location such as a panorama hash id, GPS location, panorama heading w.r.t. the
absolute North, available zoom levels, a size of the image tiles, and a depth information encoded
in a binary string, is just to name a few. The second portion of the metadata contains temporal
links to adjacent panorama locations. We first discuss where to find important data about the
panorama location and then, second, we discuss how to retrieve temporal links contained in the
second metadata object.

The HTTP request for the first portion of the metadata can be found in Appendix A. Response
to the request is a serialized object in JSON format. For brevity, let assume that JSON string
has been deserialized in Python programming language into the object data. The data structure
is fairly complex, Table 3.1 highlights how to navigate to the most important piece of information
inside the data object. A conversion to other programming languages such as R, C++ or Matlab
is straightforward.

A detail of the HTTP request for the second portion of the metadata can be found in Appendix
A. A response to the request is a serialized javascript object which does not exactly follow the



3.5 Stitching a spherical panorama 24

Figure 3.3: Panorama tile mosaic at zoom level 3 before stitching and cropping. Notice
that panorama is wrapped around. After stitching the tiles, the panorama must be cropped
to the appropriate size.

JSON format, but can be converted to JSON (see A for details).

performing the following steps; (i) remove the first line and (ii) replace each ’,‘ with ’null,‘
if the comma ’,‘ does not have a value on its left size. For example, the string [3,4,1, , , [ ,
, ,[6]]] would be converted to [3,4,1,null,null,[null,null,null,[6]]].

After applying these steps, the string can be parsed as JSON. For brevity, let assume that JSON
string has been deserialized in Python programming language into object data. A conversion to
other programming languages such as R, C++ or Matlab is straightforward. The available dates of
temporal neighbors can be found in the list at data[1][0][5][1][8] and corresponding hash id’s
can be than found in the list data[1][0][5][1][3][0] when iterated backwards. The extraction
of the information requires more work and the details are given in Appendix A.

3.5 Stitching a spherical panorama

The 360◦ x 180◦ panorama in the equirectangular projection model is stored on Google server at
different zoom levels. The panorama is saved as a few dozens of image tiles, 1 to 299, depending on
the zoom level, that can be downloaded and stitched together to form an equirectangular image.
This is illustrated in Figure 3.3. Each tile can be fetched by sending an HTTP request. The
request is supplied by panorama hash id, the zoom_level and x,y coordinate of a particular tile
(see Appendix A for details). At the time of writing this thesis, each panorama tile has a size of
512 x 512 pixels and can be retrieved from metadata (see Table 3.1).

The number of tiles and resolution of the spherical panorama at different zoom levels was de-
termined experimentally, and results are shown in table 3.2. Notice that panorama dimensions
are typically not multiples of the tile size, hence the stitched panorama must be cropped. This is
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Zoom level Panorama size Number of tiles
5 13312 x 6656 26 x 13
4 6656 x 3328 13 x 7
3 3329 x 1664 7 x 4
2 1665 x 832 4 x 2
1 833 x 416 2 x 1
0 417 x 208 1 x 1

Table 3.2: Panorama resolution and the number of image tiles. At the time of writing
this work, for all zoom levels, the image tile size was 512x512. Notice that panorama
resolution is not multiple of 512 hence, after stitching, the panorama must be cropped to
the appropriate size.

illustrated in Figure 3.4.

Figure 3.4: Panorama crop and absolute North direction. After stitching the image
tiles, the panorama must be cropped to the appropriate size (red). Notice that stitched
panorama wraps around. A center of the panorama matches the Google car heading
(blue), the angle Θ. A direction of the absolute North (green), the angle Θ0, is different
for each panorama and can be found in the metadata.
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3.6 Cutting perspective images

Figure 3.5: From panorama to perspective image. Equirectangular image (left) is pro-
jected onto a surface of the unit sphere and is then projected to a tangent plane (center).
Resulting perspective image is shown on the right.

Perspective views are cut out from the downloaded panoramic images. A given panorama, the
equirectangular image, can be mapped onto a surface of a unit sphere using the transformation
from image points to unit vectors of their rays which can be formulated as follows. For the equirect-
angular image having the dimensions Ih and Iw, a point u = (ui,uj)T in the image coordinates is
transformed into a unit vector p = (px,py,pz)T in spherical coordinates such that:

px = cosΦ sin(Θ−Θ0), py = sinΦ, pz = cosΦ sin(Θ−Θ0) (3.1)

where angles Θ and Φ are computed as follows

Θ−Θ0 =
(
ui−

Iw

2

)2π
Iw

(3.2)

Φ =
(
vj −

Ih

2

) π
Ih

(3.3)

To generate the perspective image, we project a surface of the unit sphere to the tangent plane
of a perspective image as follows. We (i) compute the unit vector p for each pixel of the tangent
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......

...

...

Figure 3.6: Internal structure of the depth binary data string. The string consists of
three parts, a header, plane labels and plane parameters. The header contains information
about its length in bytes and offset. Then it contains a size of a label matrix width and
height and, finally, a number of planes. Another part contains width x height plane labels
as unsigned short integers. The last part contains plane parameters, the normal vector
n = (n1,n2,n3)T and bias b all represented as floats.

plane, (ii) convert it to spherical coordinates and finally (iii) convert the spherical coordinates to
the Cartesian coordinates of the equirectangular panorama and sample the corresponding pixel
value. Typically, we generate perspective images of the size 1024 x 768 pixels with a horizontal
field of view (HFOV) of 90◦ by projecting the surface of the unit sphere to its tangent planes
in 12 different directions per 360◦. Technically, we perform a bilinear interpolation in the source
equirectangular image coordinates.

Angle Θ = 0◦ corresponds to the center of the stitched panorama, the Google capturing de-
vice heading, while Θ0 indicates a direction of the absolute North as illustrated in the image
3.4. Relevant angles Θ0 for generating cutouts are can be found in corresponding metadata (see
item ‘Panorama heading’ Table 3.1). Figure 3.9 at the end of this chapter shows an example of
perspective cutouts.

3.7 Depth representation

A depth of a scene is captured by a LiDAR and is initially represented as a point cloud. Then, the
depth representation is simplified such that the scene is approximated by a set of 3D planes. It is
a reasonable representation as the Street View mostly captures the urban areas where the scene
objects are planar (building facades, pavements, traffic signs, etc.) or can be approximated by a
set of planes.

The scene depth representation is contained inside the first portion of the metadata file (see Table
3.1). The depth representation is stored in a binary string. Its structure is depicted in Figure 3.6

The binary string can be divided into three parts; a header, plane labels, and plane parameters.
The first byte in the header represents a length of the header in bytes. The header contains three
unsigned short integers that represent a number of 3D planes and a plane label matrix width and
heigth. The entire binary string is represented in little endian notation.
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Figure 3.7: From label matrix to the depth map. To compute a depth at position x,
here illustrated as a small black pixel with the white edge, of the label matrix L (top), we
get label id L(x) and retrieve the respective plane parameters n and b from the metadata.
Similarly to perspective image cutout, we compute unit vector p and, finally, compute the
depth as an intersection of the ray defined by p with the 3D plane.

After the header follow witdh x height unsigned short integers that represent a label matrix.
Last part of the binary string contains the number of planes x 4 signed floats that represent normal
vector v of a plane and its distance from origin b. Finally, it is worth noting that the binary string
in metadata is compressed. Details of the binary string unpacking and decoding are given in
Appendix A.

Finally, the label matrix L can be composed by stacking the label values into a matrix of the
size width x depth. Each entry of the label matrix L can be converted to the depth as depicted
on figure 3.7. Each label at coordinate x = (x,y)T has assigned a unit vector p, see Equation 3.1,
and associated plane parameters, the normal vector n and bias b. The corresponding depth is then
computed as an intersection of the ray defined by unit vector p and the plane defined by n and b
as follows

d= b

pT n
(3.4)

The result is a depth matrix that can be thought as an equirectangular depth map. A procedure
to generate perspective depth maps is be described next.
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3.8 Perspective depth map

A generation of the perspective depth map is a combination of the perspective cut out and the depth
map generation described above. A generation of the pixel-aligned perspective depth map consists
of two steps; (i) computation of perspective cutout from the label matrix and (ii) computation of
depth for each pixel of the perspective label matrix, hence the intersection of rays with respective
planes. The first step is essentially identical to cutting the perspective images except that instead
of RGB channels there is only one channel and instead of linear interpolation, the nearest neighbor
interpolation is performed since the pixel values correspond to the integer plane label. Perspective
depth maps are illustrated in Figure 3.10 at the end of this chapter.

(a) (b) (c) (d) (e) (f)

Figure 3.8: Examples of the Google Street View temporal imagery. Each column shows
perspective images generated from panoramas from nearby locations, taken at different
times. The goal of this work is to learn from this imagery an image representation that:
has a degree of invariance to changes in viewpoint and illumination (a-f); has tolerance
to partial occlusions (c-f); suppresses confusing visual information such as clouds (a,c),
vehicles (c-f) and people (c-f); and chooses to either ignore vegetation or learn a season-
invariant vegetation representation (a-f).

3.9 Importance of the temporal data

Regarding the place recognition task, the temporal data has recently been used in [2] where au-
thors propose a new Convolutional Neural Network architecture for place recognition. Authors
implement a layer that that mimics behavior of the Vector of Locally Aggregated Descriptors
(VLAD) which is a popular descriptor pooling method for both instance level retrieval [36] and
image classification [20].

In the work, the dataset is built by the method proposed in this chapter. Examples of collected
temporal imagery are shown in figure 3.8. The figure captures several places captured at different
times. Notice slight changes in the camera viewpoint, changes illumination conditions, nonstatic
objects such as cars, pedestrians, billboards and other occluders and the vegetation that makes
place recognition task challenging. It has been shown that the temporal data is crucial for good
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place recognition accuracy as, without it, the neural network does not generalize well, and learns,
for example, that recognizing cars is important for place recognition, as the same parked cars
appear in all images of a place. It was shown that using the temporal data, it is possible to train
representation that is invariant to such confusing features.

3.10 Conclusion

We have described the internal representation of the Google Street View and its analogy to a
directional graph, and how this graph can be fetched. We have shown how to get a panorama
metadata, panorama images and stitch them together, where to find and how to interpret the most
relevant information about the panorama locations and its neighbors. Finally, we have shown how
to generate panorama images, depth maps and how to generate perspective images and perspective
depth maps.
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Figure 3.9: Panorama perspective cutouts. Twelve perspective cutouts per 360◦ each
having 90◦ horizontal field of view and pitch 4◦.
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Figure 3.10: Depth map perspective cutouts. Equirectangular depth map (top) and
twelve perspective cutouts (bottom) per 360◦ each having 90◦ horizontal field of view and
pitch 4◦. All images were generated from the label matrix and plane parameters.



4 Per-location classifiers

“The more original a discovery, the more obvious it
seems afterwards.”

— Arthur Koestler

In the previous chapters we explained recent challenges in place recognition [13, 39, 56, 66],
reviewed different approaches [32, 41, 42, 8, 48, 67, 65, 39, 56, 69] and described how to
build a datasets for place recognition (Chapter 3). Here, we formulate place recognition

as a classification task, and train per-location classifier for each location stored in the database
utilizing linear per-exemplar support vector machine (e-SVM). Finally, we show that each learned
per-location classifier must be calibrated and we propose two calibration methods, one is well suited
for bag-of-words image representations while the latter one works well with Fisher vectors.

4.1 Per-location classifiers for place recognition

We are given an image descriptor xj , one for each database image j. This representation can be
a sparse tf-idf weighted bag-of-visual-words vector [61] or a dense compact descriptor such as the
Fisher vector (FV) [36]. The goal is to learn a score fj for each database image j, so that, at test
time, given the descriptor q of the query image, we can either retrieve the correct target image as
the image j∗ with the highest score

j∗ = arg max
j

fj(q) (4.1)

or use these scores to rank candidate images and use geometric verification to identify the correct
location in an n-best list. Instead of approaching the problem directly as a large multiclass classi-
fication problem, we tackle the problem by learning a per-exemplar linear SVM classifier [44] for
each database image j. Similar to [39], we use the available geotags to construct the negative set Nj

for each image j. The negative set is constructed so as to concentrate difficult negative examples,
i.e. from images that are far away from the location of image j and similar to the target image as
measured by the dot product between their feature vectors. The details of the construction proce-
dure will be given in section 5.1. The positive set Pj is represented by e single positive example,
which is xj itself. Each SVM classifier produces a score sj which is a priori not comparable with
the score of the other classifiers. A calibration of these scores will therefore be key to convert them
to comparable scores fj . This calibration problem is more difficult than usual given that we only
have a single positive example and will be addressed in section 4.2.
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4.1.1 Learning per-location SVM classifiers

Each linear SVM classifier generates a score sj of the form

sj(q) = qT wj + bj (4.2)

where wj is a weight vector re-weighting contributions of individual visual words and bj is the
bias specific for image j. Given the training sets Pj and Nj , the aim is to find a vector wj and
bias bj such that the score difference between xj and the closest neighbor from its negative set Nj

is maximized. Learning the weight vector wj and bias bj is formulated as a minimization of the
convex objective

Ω(wj , bj) = ||wj ||2 +C1
∑

x∈Pj

h(wT
j x + bj)

+C2
∑

x∈Nj

h(−wT
j x− bj), (4.3)

where the first term is the regularizer, the second term is the loss on the positive training data
weighted by scalar parameter C1, and the third term is the loss on the negative training data
weighted by scalar parameter C2. This is a standard SVM [7] formulation (4.3), also used in
exemplar-SVM [44]. In our case h is the squared hinge loss, which we found to work better in
our setting than the standard hinge-loss. Parameters wj and bj are learned separately for each
database image j in turn.

4.1.2 The need for calibrating classifier scores

Since the classification scores sj are learned independently for each location j, they cannot be
directly used for place recognition as in eq. (4.1). As illustrated in figure 4.1, for a given query
q, a classifier from an incorrect location (b) can have a higher score (eq. (4.2)) than the classifier
from the target location (a). Indeed, the SVM score is a signed distance from the discriminating
hyperplane and is a priori not comparable between different classifiers. This issue is addressed by
calibrating scores of the learned classifiers. The goal of the calibration is to convert the output
of each classifier into a probability (or in general a “universal" score), which can be meaningfully
compared across classifiers. In the following two sections we develop two classifier calibration
methods that do not need additional labelled positive examples.

4.2 Non-parametric calibration of the SVM-scores from negative
examples only

In this section we describe a classifier calibration method that exploits the availability of large
amounts of negative data, i.e. images from other far away locations in the database. In particular,
the method estimates the significance of the score of a test example compared to the typical score
of the (plentifully available) negative examples. Intuitively, we will use a large dataset of negative
examples to calibrate the individual classifiers so that they reject the same number of negative
examples at each level of the calibrated score. We will expand this idea in detail using the concepts
from hypothesis testing.
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4.2.1 Calibration via significance levels

In the following, we view the problem of deciding whether a query image matches a given location
based on the corresponding SVM score as a hypothesis testing problem. In particular, we appeal to
ideas from the traditional frequentist hypothesis testing framework also known as Neyman-Pearson
(NP) framework (see e.g. [9], chap. 8).

We define the null hypothesis as H0 = {the image is a random image} and the alternative as
H1 = {the image matches the particular location}. The NP framework focuses on the case where
the distribution of the data under H0 is well known, whereas the distribution under H1 is not
accessible or too complicated to model, which matches perfectly our setting.

In the NP framework, the significance level of a score is measured by the p-value or equivalently
by the value of the cumulative density function (cdf) of the distribution of the negatives at a given
score value. The cdf is the function F0 defined by F0(s) = P(S0 ≤ s), where S0 is a random variable
corresponding to the scores of negative data (see figure 4.2 for an illustration of the relation between
the cdf and the density of the function). The cdf ( or the corresponding p-value1 ) is naturally
estimated by the empirical cumulative density function F̂0, which is computed as:

F̂0(s) = 1
Nc

Nc∑
n=1

1{sn≤s}, (4.4)

where (sn)1≤n≤Nc are the SVM scores associated with Nc negative examples used for calibration.
Note that no positive examples are involved in the construction of the cumulative density function.
F̂0(s) is the fraction of the negative examples used for calibration (ideally held out negative ex-
amples) that have a score below a given value s. Computing F̂0 exactly would require to store all
the SVM scores for all the calibration data for all classifiers, so in practice, we only keep a fraction
of the larger scores. We also interpolate the empirical cdf between consecutive datapoints so that
instead of being a staircase function it is a continuous piecewise linear function such as illustrated
in figure 4.1. Given a query, we first compute its SVM score sq and then compute the calibrated
probability f(q) = F̂0(sq). We obtain a similar calibrated probability fj(q) for each of the SVMs
associated with each of the target locations, which can now be ranked.

Two other examples of score calibration functions are shown in figure 5.8 in section 5.2. Note
that while figure 4.1 illustrates only few points on the cdf, the two plots in figure 5.8 show a
complete cdf that contains on the order of 25k data points. Note also that the two cumulative
density functions in figure 5.8 are similar but not identical.

4.2.2 Summary of the calibration procedure

For each trained place-specific classifier sj we construct the empirical cumulative density func-
tion (4.4) of scores of the negative examples and keep only its top K values. This can be done
offline and the procedure is summarized in Algorithm 2. At query time, given a query image
descriptor q, we compute the uncalibrated classification score sj(q) and then use the stored cdf
values to compute the calibrated score fj(q). This procedure is performed for each database im-
age j and is summarized in Algorithm 3. Finally, the best candidate database image is selected

1 The notion most commonly used in statistics is in fact the p-value. The p-value associated to a score
is the quantity α(s) defined by α(s) = 1−F0(s); so the more significant the score is, the closer to 1 the cdf
value is, and the closer to 0 the p-value is. To keep the presentation simple, we avoid the formulation in
terms of p-values and we only talk of the probabilistic calibrated values obtained from the cdf F0.
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Figure 4.1: An illustration of the proposed normalization of SVM scores for database
images. In each plot, the x-axis shows the raw SVM score. The y-axis shows the calibrated
output. For the given query, the raw SVM score of image (b) is lower than for image (a),
but the calibrated score of image (b) is higher than for image (a).
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Figure 4.2: Cumulative density function. Illustration of the relation between (a) the
probability density of the random variable S0 modeling the scores of the negative examples
and (b) the corresponding cumulative density function F0(s) = P(S0 ≤ s).
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by equation (4.1). Alternatively, candidate database images can be also ranked according to the
calibrated score.

Algorithm 2 P-value calibration: offline stage
Input: X . . . column wise matrix of image descriptors
. wj , bj . . . learned SVM weights and biases
Output: F̂0j . . . calibration functions
1: procedure p-value calibration
2: N ← database size
3: X ← descriptor matrix of negative examples
4: for ∀j ∈ 1 . . .N do
5: Nc← number of negative examples
6: w← learned SVM weight for image j
7: b← learned SVM bias for image j
8: σ←wTX + b
9: Compute the cdf:

10: sj← sorted σ in descending order
11: F̂0j ← [Nc . . .0]/Nc

4.2.3 Discussion

It should be noted that basing the calibration only on the negative data has the advantage that
we privilege precision over recall, which is justified given the imbalance of the available training
data (many more negatives than positives). Indeed, since we are learning with a single positive
example, intuitively, we cannot guarantee that the learned partition of the space will generalize
well to other positives, whose scores in the test set can potentially drop significantly. By contrast,
since we are learning from a comparatively large number of negative examples, we can trust the
fact that new negative examples will stay in the half-space containing the negative training set,
so that their scores are very unlikely to be large. Our method is therefore based on the fact that
we can measure reliably how surprising a high score would be if it was the score of a negative
example. This exactly means that we can control false positives (type I error) reasonably well but
not false negatives (type II error or equivalently the power of our test/classifier), exactly as in the
Neyman-Pearson framework.

An additional reason for not relying on positive examples for the calibration in our case is that
(even if we had sufficiently many of them) the positive examples that we collect using location and
geometric verification from the geotagged database typically have illumination conditions that are
extremely similar to each other and not representative of the distribution of test positives which
can have very different illuminations. This is because of the controlled nature of the capturing
process of geotagged street-level imagery (e.g. Google Street View) used for experiments in this
work. Close-by images are typically captured at a similar time (e.g. on the same day) and under
similar imaging conditions.

Scheirer et al. [55] propose a method, which is related to ours, and calibrate SVM scores by
computing the corresponding cdf value of a Weibull distribution fitted to the top negative scores.
The main difficulty is that the Weibull model should be fitted only to the tail of the distribution
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Algorithm 3 P-value calibration: online stage
Input: q . . . query image descriptor
. wj , bj . . . learned SVM weights and biases
. F̂0j . . . learned calibration function
Output: fj(q) . . . calibrated score
1: procedure calibrating scores
2: q← query image descriptor
3: N ← database size
4: for ∀j ∈ 1 . . .N do // for each database image
5: w← learned SVM weight for image j
6: b← learned SVM bias for image j
7: F̂0← F̂0j // Empirical cdf
8: s← sj // Corresponding sorted scores
9: sq← qT w + b // compute uncalibrated classifier score
10: Find n such that sn ≤ sq < sn+1
11: Compute the interpolated empirical cdf value:

F̂0(sq)≈ F̂0(sn) + sq−sn

sn+1−sn
(F̂0(sn+1)− F̂0(sn)).

12: fj(q) = F̂0(sq) // output the calibrated score

of the negatives, which is in general difficult to identify. As a heuristic, Scheirer et al. propose to
fit the Weibul model to false positives (i.e. the negative samples classified incorrectly as positives).
But in our case, most of the exemplar SVMs that we are training have zero false positives in a
held out set, which precludes the application of their method.

Finally, we should remark that we are not doing here calibration in the same sense of the word
as the calibration based on logistic regression (or isotonic regression), since logistic regression
estimates the probability of making a correct prediction by assigning a new data to class 1, while
we are estimating how unlikely it would be for a negative example to have such a high score. The
calibration with either methods yields “universal" scores in the sense that they are comparable from
one SVM to another, but the calibrated values obtained from logistic regression are not comparable
to the values obtained from our approach.

4.3 Affine calibration by normalizing the classification hyperplane

The non-parametric calibration method described in the previous section has two computational
disadvantages, which make it hard to scale-up to very large datasets. First, the method requires
storing the non-parametric model of the calibration function for each learned classifier. This has
memory complexity of O(NK), where N is the number of images (classifiers) in the database and
K the number of stored elements of the non-parametric model. For typical values of K = 1000
and N = 1M this would require additional 4GB of memory, comparable to the size of the inverted
index itself. Second, computing the cumulative density function requires applying all N learned
classifiers to the entire set of negative examples, which has also size N . As a result computing the
cdf has complexity O(N2), which becomes quickly infeasible already for datasets with N larger
than 100,000.
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To address these issues we first describe an affine calibration model that calibrates the classifier
score with a simple linear function defined by only two parameters: its slope and offset, greatly
reducing the required storage. Second, we show that the parameters of the affine calibration
function can be obtained by normalizing the learned classification hyper-plane without applying
the classifiers on the negative data and thus bringing down the computational complexity to O(N).
As a result, computing and storing the calibration functions becomes feasible for very large datasets
with 1M images.

4.3.1 Affine calibration model

Using the affine calibration model we transform the uncalibrated score sj(q) of query q with a
linear function

fj(q) = αjsj(q) +βj , (4.5)

where fj(q) is the output calibrated score, and αj and βj are scalar calibration parameters specific
to each classifier j. In this work we use linear classifiers, hence substituting for sj(q) the linear
classifier from (4.2) results also in a linear calibrated classifier

fj(q) = w̃T
j q + b̃j , (4.6)

where w̃j = αjwj and b̃j = αjbj + βj . Note that the calibrated classifier (4.6) has the same form
as the original classifier (4.2) and hence this representation does not require any additional storage
compared to storing the original classifier. The question remains how to set the parameters αj and
βj of the calibration function (4.5), which is discussed next.

4.3.2 Calibration by normalization

Parameters of the affine calibration function (4.5) could be learned from negative training data
in a similar manner to, for example, [4]. We have tried to estimate the parameters in a similar
manner by fitting a line to the tail of the cdf, however this procedure did not yield satisfactory
results. In addition, as discussed above, in our case this requires running all N classifiers on all N
images, which is prohibitive for large datasets. Instead, we have found that a good calibration can
be obtained by normalizing the learned hyperplane w. In particular, we set

αj = 1
||wj ||

, (4.7)

βj =−bjαj , (4.8)

where wj and bj are the parameters of the learned SVM hyper-plane for location j and ||w|| is the
L2 norm of w . Given this choice of αj and βj the calibrated classification score (4.6) reduces to

fj(q) = 1
||wj ||

wT
j q = w̃T

j q. (4.9)

The intuition is that when q is L2 normalized, equation (4.9) is equivalent to computing the nor-
malized dot-product between vectors q and w. This was found to work well in image retrieval [61]
or matching whitened HOG descriptors [15]. In this work we investigate whether this intuition
about descriptor matching can be used as a form of calibration for the learned place-specific clas-
sifier. Note that this form of calibration by normalization is scalable to very large datasets as it (i)
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requires only O(N) computations offline to pre-compute the calibration parameters for each of the
N learned classifiers (equations (4.7) and (4.8)), and (ii) does not need any additional storage or
computation at query time as the calibration parameters can be included in the classifier (4.6). In
Appendix we examine the per-exemplar SVM cost and give an additional intuition why calibration
by re-normalization works.

4.4 Memory efficient classifier representation

We learn a linear discriminative classifier with weight vector wj and bias bj for each image j in
the database. These classifier parameters become the new representation for each image. In this
section we discuss how the classifier parameters can be stored in a memory efficient manner that
is amenable for indexing. The goal is to apply all the learned classifiers to the query descriptor q

s = qTW + b, (4.10)

where W is d×N matrix storing all the learned wj classifiers as columns, b is a 1×N vector
storing all the learned bias values bj , q is the input query descriptor, s is a 1×N vector of output
scores for all classifiers in the database, N is the number of images in the database and d is the
dimensionality of the image representation. As discussed in detail in section 5.1 we investigate two
different image representations: (i) the compact Fisher vectors [36] and (ii) the bag-of-visual-word
vectors [61]. The learned classifiers for these two image descriptors have different statistics and
require different methods for storing and indexing. Next, we discuss the classifier representations
for the two types of image representations.

Fisher vectors: The Fisher vector descriptors are not sparse, but have a relatively low-dimension
d ∈ {128,512,2048} hence it is possible to store directly the (non-sparse) matrix W containing the
learned classifier parameters w. In this work we exhaustively compute the classifier scores for all
images in the database (given by equation (4.10)) using efficient (but exact) matrix-vector multi-
plication routines. However, this computation can be further sped-up using product quantization
indexing as described in [34].

Bag-of-visual-words: In the bag-of-visual-words representation, each image is represented by a
high dimensional vector x, where the dimensionality d is typically 100,000, but the vector is very
sparse with only about 2,000 non-zero entries. The learned wj are of the same (high) dimension d
but are not sparse. As a result, directly storing the learned classifiers becomes quickly infeasible.
To illustrate this, consider a database of N = 1,000,000 images. Storing the original descriptors
with about 2,000 non-zero entries for each image would take around 8GB. However, directly storing
the learned non-sparse 100,000×1,000,000 matrixW would require 400GB of memory. To address
this issue we have developed an alternative indexing structure taking advantage of the dual form of
the linear classifier as a sparse linear combination of a small number of support vectors [57]. The
key observation is that the number of support vectors k is significantly lower then dimensionality
d of the original image descriptor. In the following we omit index j for clarity. In detail, we
represent each w by its corresponding coefficients αi of the linear combination of the support
vectors (individual image descriptors) xi such that

w =
∑

i

αixi = X ·α, (4.11)
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where αi, the elements of vector α, are coefficients of the linear combination of the training data
points xi and the matrix X contains (as columns) descriptors of the entire database. Note that the
vector α is sparse and the number of non-zero elements depends on the number of support vectors
k.

As a result, matrix W containing all learned classifier weights can be expressed in the dual form
as

W = XA, (4.12)

where X is the (sparse) matrix of the bag-of-visual-words image descriptors and A is the (sparse)
matrix of α coefficients, where each column corresponds to vector α from (4.11). Instead of storing
all (non-sparse) weight vectors W, which has memory complexity O(dN) where d (= 100,000) is
the dimensionality of the image representation and N is the size of the database, we store two
sparse matrices X and A, which has memory complexity O(mN + kN) where m (=2,000) is the
number on non-zero elements in the original bag-of-visual-word descriptors, and k is the typical
number of support vectors. In our case k is about the size of the training data which is around
500. As a result, the storage requirements are significantly reduced. For example, for a database
of 1M images the dual representation requires only about 10 GB of storage compared to 400GB for
directly storing classifiers W. Note that sparsity can be imposed directly on the learned classifiers
w by appropriate regularization [57]. However, we found this approach did not yield competitive
results in terms of accuracy.

4.5 Intuition why calibration by normalization works

In section 5.2 we show that the simple calibration by normalization often results in surprisingly good
place recognition performance without the need for any additional positive or negative calibration
data. In this appendix, we give a possible explanation why this simple calibration works. We
focus on the case of a single positive training example, i.e. when training set P = x+, which is the
typical case for place recognition where only one positive example is available for each place. The
analysis holds also for the case of multiple expanded positive examples as in our case the positive
examples are coming from the same database of Street View images, and hence have very similar
statistics (illumination, capturing conditions, the same camera, etc.).

In particular, we first analyze the SVM objective and show that the learned hyperplane w can be
interpreted as a new descriptor x∗ that replaces the original positive example x+ and is re-weighted
to increase its separation from the negative data. Second, we show that when x∗ is normalized,
i.e. x∗ = w

||w|| , the dot-product qT x∗ corresponds to measuring the cosine of the angle between the
(normalized) query descriptor q and the new descriptor x∗, which was found to work well in the
literature for descriptor matching, as discussed in section 4.3.2. The two steps are given next.

4.5.1 Analysis of per-exemplar SVM objective

For a single positive example P = x+, the per-exemplar SVM objective (4.3) can be written as

Ω(w, b) = ||w||2 +C1 ·h(wT x+ + b)

+C2
∑
x∈N

h(−wT x− b). (4.13)
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(a) C2 > 0 (b) C2→ 0

Figure 4.3: An illustration of the effect of decreasing parameter C2 in the exemplar
support vector machine objective. The positive exemplar x+ is shown in green. The
negative data points are shown in red. All training data is L2 normalized to lie on a
hyper-sphere. (a) For C2 > 0, the normal w of the optimal hyper-plane moves away from
the direction given by the positive example x+ in a manner that reduces the loss on the
negative data. (b) As the parameter C2 decreases the learned w becomes parallel to the
positive training example x+ and its magnitude ||w|| goes to 0.

In the following, we analyze the objective (4.13) and provide intuition why re-normalized weight
vector w can be interpreted as a new descriptor. In particular, we show first that when the weight
C2 of the negative data in objective (4.13) goes to zero the learned normalized w̃ is identical to
the original positive training data point x+. Second, when C2 > 0, the learned vector w̃ moves
away from the positive vector x+ to increase its separation from the negative data. The two cases
are detailed next.

Case I: C2 → 0. The goal is to show that when the weight C2 of the negative data in ob-
jective (4.13) goes towards zero, the resulting hyperplane vector w is parallel with the vector of
positive training descriptor x+. When w is normalized to have unit L2 norm the two vectors are
identical. First, let us decompose w into parallel and orthogonal part with respect to the positive
training data point x+, i.e. w = w⊥+ w||, where (w⊥)T x+ = 0. Next, we observe that when the
weight of the negative data diminishes (C2 → 0), any non-zero component w⊥ will increase the
value of the objective. As a result, for C2→ 0 the objective is minimized by w||, i.e. the optimal
w is parallel with x+.

In detail, for w = w⊥+ w||, the objective (4.3) can be written as

||w⊥+ w||||2 +C1 ·h
(

(w⊥+ w||)T x+ + b
)

(4.14)

+C2
∑
x∈N

h
(
−(w⊥+ w||)T x− b

)
.

Note that the orthogonal part w⊥ does not change the value of the second term in (4.14) because
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(w⊥+ w||)T x+ = (w||)T x+, and hence (4.14) reduces to

||w⊥+ w||||2 +C1 ·h
(

w||T x+ + bj

)
(4.15)

+C2
∑
x∈N

h
(
−(w⊥+ w||)T x− b

)
.

In the limit case as C2 → 0 any non-zero component w⊥ will increase the value of the objec-
tive (4.15). This can be seen by noting that the third term vanishes when C2→ 0 and hence the
objective is dominated by the first two terms. Further, the second term in (4.15) is independent of
w⊥. Finally, the first term will always increase for any non-zero value of w⊥ as ||w⊥+w||||2 ≥ ||w||||
for any w⊥ , 0.

As a result, in the limit case when C2 → 0 the optimal w is parallel with x+. Note also, that
when C2 is exactly equal to zero, C2 = 0, the optimal w vanishes, i.e. the objective (4.15) is
minimized by trivial solution ||w|| = 0 and b = −1. The effect of decreasing the parameter C2 is
illustrated in figure 4.3.

Case II: C2 > 0. When the weight C2 of the negative data in the objective (4.15) increases the
direction of the optimal w will be different from w|| and will change to take into account the loss
on the negative data points. Explicitly writing the hinge-loss h(x) = max(1−x,0) in the last term
of (4.15), we see that w will move in the direction that reduces

∑
x∈N max

(
1 + wTx+ b,0

)
, i.e.

that reduces the dot product wT x on the negative examples that are active (support vectors).

4.5.2 The need for normalization

Above we have shown that the learned hyperplane w moves away from the positive example x+

in a manner that reduces the loss on the negative data. The aim is to use this learned vector w as
a new descriptor x∗ replacing the original positive example x+. However, we wish to measure the
cosine of the angle between the the new descriptor x∗and the query image q. This is equivalent to
the normalized dot product, hence the vector w needs to be normalized.



5 Experiments

“There’s a fine line between fishing and just
standing on the shore like an idiot.”

— Steven Wright

Thus far, in chapter 3 we discussed how to build geo-referenced datasets for place recognition.
In chapter 4 we hereafter proposed per-location classifiers for place recognition and showed
that calibration of the trained classifiers is critical. It was shown how to train the classifiers

utilizing exemplar-SVM, and two calibration methods have been proposed, one suitable for BOW
image representation, the latter for Fisher vectors image representation.

In this chapter, we present experiments on three geo-referenced datasets collected by the earlier
version of the streetget package presented in chpater 3. First, we describe datasets and imple-
mentation details of performed experiments. Second, we discuss the results, show how proposed
method performs over the baselines and provide some intuition about the trained classifiers by
visualizing learned weights. Finally, we discuss improvement and failure cases, and scalability of
the method.

5.1 Experimental setup and implementation details

In this section we first describe the geo-referenced datasets used for the experiments. Then we
outline local feature descriptors and the two types of used image descriptors, namely the bag-of-
visual-word (BOW) and the Fisher vector (FV), and finally give implementation details of the
classifier and calibration function learning procedure.

5.1.1 Image datasets

Experiments are performed on datasets collected by early version of the streetget package de-
scribed in chapter 3. There are two versions of the Pittsburgh dataset [27] that differ in size, and
challenging Tokyo 24/7 dataset [64]. The datasets and its query sets are described next.

Pittsburgh dataset. The first dataset contains Google Street View panoramas downloaded from
the Internet covering an area of 1.3× 1.2 km2 of the city of Pittsburgh (U.S.). Similar to [10],
we generate for each panorama 12 overlapping perspective views corresponding to two different
elevation angles 4◦ and 28◦ to capture both the street-level scene and the building façades. This
results in a total of 24 perspective views each with 90◦ FOV and resolution of 960×720 pixels. In
this manner, we generate two versions of this dataset. The first version is generated in the same
manner as [65], it contains the panoramas within the perimeter of the 50m from the query images
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Figure 5.1: Example query images from the Pittsburgh dataset. The first row shows a
sample of the query images from the Pittsburgh Google Street View research dataset [21].
The second row contains corresponding ground truth database images from the database.
Notice changes in the camera viewpoint, illumination conditions, occlusion and change of
the urban environment over time.

(described below) resulting in the dataset of the size 25k. The latter includes all panoramas in the
area and contains 55k images.

As a query set with known ground truth GPS positions, we use 8999 panoramas from the Google
Street View research dataset [21], which cover approximately the same area, but were captured at
a different time, and typically depict the same places from different viewpoints and under different
illumination conditions. We generate a test query set such that we first select a panorama at
random, and second, we generate a perspective image with a random orientation and random
elevation pitch. This way we synthesize 4,000 query test images. Both the query and database
images are available upon request at [24]. Examples of the query images and database images are
shown in figure 5.1.

24/7 Tokyo dataset. The 24/7 Tokyo dataset [64] contains Google Street View panoramas
downloaded from the Internet covering an area of 1.6× 1.6 km2 of the city of Tokyo. The dataset
contains 76k perspective views. The query set contains 315 query images from 105 distinct locations
captured by different types of camera phones. This query dataset is very challenging as each
location is captured at three different times: during a day, at sunset and during night. The dataset
is available upon request at [63]. Examples of the query images and database images are shown in
figure 5.2.

5.1.2 Image descriptors

We perform experiments with two types of image descriptors: the sparse high-dimensional bag-of-
visual-word vectors [61] and the compact (not-sparse) Fisher vectors [36]. Details of each are given
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Figure 5.2: Example query images from the 24/7 Tokyo dataset. Each place in the
query set is captured at different times of day: (a) daytime, (b) sunset, and (c) night. For
comparison, the database street-view image at a close-by position is shown in (d). Note
the major changes in appearance (illumination changes in the scene) between the database
image (d) and the query images (a,b,c). (Courtesy of Akihiko Torii.)

next.

Bag-of-visual-word representation. We extract SURF descriptors [6] for each image and learn
a vocabulary of 100k visual words by approximate k-means clustering [47] from a subset of features
from 5,000 randomly selected database images. Then, a tf-idf weighted vector [61] is computed for
each image by assigning each descriptor to the nearest cluster center. Finally, all database vectors
are normalized to have unit L2 norm.

Fisher vectors. Following [36] we project the extracted 128-dimensional rootSIFT [3] descrip-
tors to 64 dimensions using PCA. Default parameters have been used to extract the SIFT de-
scriptors. The projection matrix is learned on a set of descriptors from 5,000 randomly selected
database images. This has also the effect of decorrelating the rootSIFT descriptor. The 64-
dimensional descriptors are then aggregated into Fisher vectors using a Gaussian mixture model
with N = 256 components, which results in a 2× 256× 64 = 32,768-dimensional descriptor for
each image. The Gaussian mixture model is learned from descriptors extracted from 5,000 ran-
domly sampled database images. The high-dimensional Fisher vector descriptors are then projected
down to dimension using PCA learned from all available images in the database. The resulting
low-dimensional Fisher vectors are then normalized to have unit L2-norm, which we found to be
important in practice.

5.1.3 Parameters of per-location classifier learning

To learn the exemplar support vector machine for each database image j, the positive and negative
training data are constructed as follows. The negative training set Nj is obtained by: (i) finding the
set of images with geographical distance greater than 200m; (ii) sorting the images by decreasing
value of similarity to image j measured by the dot product between their respective descriptors
(BOW of FV); (iii) taking the top N = 500 ranked images as the negative set. This is illustrated in
figure 5.3. In other words, the negative training data consists of the hard negative images, i.e. those
that are similar to image j but are far away from its geographical position, hence, cannot have the
same visual content. The positive training set Pj consist of the descriptor xj of the target image
j.
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400m

Figure 5.3: Per-location classifier training data. (left) The positive training set Pj

consist of the descriptor of the target image j. The negative training set Nj consist of
hard negative examples that are geographically further than 200m from the target image
j. (right) An illustration of learned exemplar-SVM hyperplane with margin.

We found that for the bag-of-visual-words representation it was useful to further expand [11]
positive training set by close by images that view the same scene structures. These images can
be identified by geometric verification [47] as follows. We first build a graph where each image in
the database represents a node and an edge represents a spatial adjacency in the world. An edge
is present if the positions of the two images are within 50m of each other. Then, we score each
edge by the number of geometrically verified matches [47]. Finally, we remove edges with the score
below a threshold of tm = 40 matches. It is worth noting that the resulting graph contains many
isolated nodes. This typically indicates that the viewpoint change between two adjacent panoramas
is large. For each image in the database, we include between zero and five extra positive examples
that are directly connected in the graph.

For the support vector machine classifier (SVM) training we use the libsvm [17] library. The
same C1 and C2 parameters are used for all per-exemplar classifiers, but find the optimal value
of the parameters for each image representation by a cross-validation evaluating performance on a
held out query set.

For the calibration by re-normalization, we L2 normalize the learned wj using equation (4.9) and
use this normalized vector as the new image descriptor x′j for image j. At query time we compute
the descriptor q of the query image and measure its similarity score to the learned descriptors x′j
for each database image by equation (4.1).

For the p-value calibration, we take the learned classifier for each database image j and compute
its SVM score for all other database images to construct its empirical cumulative density func-
tion (4.4). We keep only the top 1,000 values that, in turn, represent the calibration function. At
query time, given the query descriptor q, we compute the SVM score (4.2) for each database image
j, and compute its calibrated SVM score fj (4.4).
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5.2 Results

We evaluate the proposed per-location classifier learning approach on two different image descrip-
tors: the bag-of-visual-words model (section 5.2.1) and Fisher vectors (section 5.2.2). We also
compare the recognition accuracy of the two learned representations relative to their compactness
measured by their memory footprint (section 5.2.3). Finally, we compare results to linear dis-
criminant analysis (LDA) and whitening baselines (section 5.2.4), outline the main failure modes
(section 5.2.5) and discuss the scalability of our method (section 5.2.6). Since the ground truth
GPS position of each query image is available, for each method we measure performance using the
percentage of correctly recognized queries (Recall) similarly to, e.g., [10, 39, 54]. We deem the
query as correctly localized if at least one of the top K retrieved database images is within 20
meters from the ground truth position of the query.

5.2.1 Bag-of-visual-words model

Results for the bag-of-visual-words image representation are shown in table 5.1. Learning per-
location classifiers with either calibration method (p-val and w-norm) clearly improves over the
standard bag-of-visual-words baseline (BOW) that does not perform any learning. In addition,
both calibration methods significantly improve over the learned SVM classifiers without any cal-
ibration (BOW SVM no calib) underscoring the importance of calibration for the independently
learned per-location classifiers. In table 5.1, we also compare performance to our implementation
of the confuser suppression approach (Conf. supp.) of [39] that, in each database image, detects
and removes features that frequently appear at other far-away locations (using parameters t= 3.5
and w = 70). The results show an improvement by our method, especially at recall@1.

Inspecting the detailed plots in figure 5.4 we further note that the p-val calibration performs
slightly better than the w-norm calibration for shorter top K shortlists but this effect is reversed
for larger K. This could be attributed to the fact that the p-val calibration uses the negative data
to control false positive errors, but has less control over false negatives, as discussed in section 4.2.3.

In figure 5.8 we visualize the learned SVM weights on BOW for p-val. We visualize the contri-
bution of each feature to the SVM score for the corresponding query image. Red circles represent
features with negative weights while green circles correspond to features with positive weights.
The area of each circle is proportional to the contribution of the corresponding feature to the SVM
score. For instance for the left figure notice that the correctly localized queries (c) contain more
green colored features than queries from other places (b) and (a). Query (b) gets a high score
because the building has orange and white stripes similar to the sun-blinds of the bakery, which
are features that also have large positive weights in the query image (c) of the correct place. In the
top row, we visualize the calibration of raw SVM score for three different queries. The calibration
function of the target image j is shown in the blue and the corresponding SVM scores of the three
queries are denoted by red circles. Notice that both images (b) and (c) have high calibrated score
even their respective SVM score was different.

In figures 5.9 - 5.11 at the end of this section we show examples of query images correctly and
incorrectly localized by our and the baseline methods. Finally, examples of correctly and incorrectly
localized queries are shown in figure 5.16 at he end of this chapter.
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Figure 5.4: Evaluation of the learned bag-of-visual-words representation on the Pitts-
burgh 25k [27] dataset. The graph shows the fraction of correctly recognized queries
(recall@K, y-axis) vs. the number of top K retrieved database images for the raw bag-of-
visual-words baseline (BOW) and the learned representation with two different calibration
methods (p-val and w-norm).
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Calibrated classifier score fj
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Figure 5.5: A visualization of learned feature weights for two database images. In each
panel: first row: (Right) Target database image j. (Left) Cumulative density function
(or calibrated score) learned for the SVM scores of the corresponding classifier fj ; three
query images displayed on the second row are represented by their SVM scores and cdf
values F0(s), denoted (a)-(c) on the graph. Third row: A visualization of the contribution
of each feature to the SVM score for the corresponding query image. Red circles represent
features with negative weights while green circles correspond to features with positive
weights. The area of each circle is proportional to the contribution of the corresponding
feature to the SVM score. Notice that the correctly localized queries (c) contain more
green colored features than queries from other places (b) and (a). Please also note that
the calibration cdfs in the left and right panel are similar but not identical.
Query (b) gets a high score because the building has orange and white stripes similar to
the sun-blinds of the bakery, which are features that also have large positive weights in
the query image (c) of the correct place.
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Calibrated classifier score fj
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Figure 5.6: A visualization of learned feature weights for two database images. In each
panel: first row: (Right) Target database image j. (Left) Cumulative density function
(or calibrated score) learned for the SVM scores of the corresponding classifier fj ; three
query images displayed on the second row are represented by their SVM scores and cdf
values F0(s), denoted (a)-(c) on the graph. Third row: A visualization of the contribution
of each feature to the SVM score for the corresponding query image. Red circles represent
features with negative weights while green circles correspond to features with positive
weights. The area of each circle is proportional to the contribution of the corresponding
feature to the SVM score. Notice that the correctly localized queries (c) contain more
green colored features than queries from other places (b) and (a). Please also note that
the calibration cdfs in the left and right panel are similar but not identical.
Query (b) is in fact also an image of the same location with a portion of the left skyscraper
in the target image detected in the upper left corner and the side of the rightmost building
in the target image detected in the top right corner. Both are clearly detected by the
method as indicated by a large quantity of green circles in the corresponding regions.
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Figure 5.7: A visualization of learned feature weights for two database images. In each
panel: first row: (Right) Target database image j. (Left) Cumulative density function
(or calibrated score) learned for the SVM scores of the corresponding classifier fj ; three
query images displayed on the second row are represented by their SVM scores and cdf
values F0(s), denoted (a)-(c) on the graph. Third row: A visualization of the contribution
of each feature to the SVM score for the corresponding query image. Red circles represent
features with negative weights while green circles correspond to features with positive
weights. The area of each circle is proportional to the contribution of the corresponding
feature to the SVM score. Notice that the correctly localized queries (c) contain more
green colored features than queries from other places (b) and (a). Please also note that
the calibration cdfs in the left and right panel are similar but not identical.
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Figure 5.8: A visualization of learned feature weights for two database images. In each
panel: first row: (Right) Target database image j. (Left) Cumulative density function
(or calibrated score) learned for the SVM scores of the corresponding classifier fj ; three
query images displayed on the second row are represented by their SVM scores and cdf
values F0(s), denoted (a)-(c) on the graph. Third row: A visualization of the contribution
of each feature to the SVM score for the corresponding query image. Red circles represent
features with negative weights while green circles correspond to features with positive
weights. The area of each circle is proportional to the contribution of the corresponding
feature to the SVM score. Notice that the correctly localized queries (c) contain more
green colored features than queries from other places (b) and (a). Please also note that
the calibration cdfs in the left and right panel are similar but not identical. It is worth
noting that query (b) is in fact an image of the target location but seen from further away
and from a different angle.
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Query image BOW p-val Conf. supp. [39] BOW
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Figure 5.9: Examples of query images correctly localized by all methods. (a) query
image. (b) top-ranked image retrieved by the per-location classifiers (proposed method).
(c) top-ranked image retrieved by the baseline confuser suppression method. (d) top-
ranked image retrieved by the baseline bag-of-visual-words method.
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Query image BOW p-val Conf. supp. [39] BOW
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Figure 5.10: Examples of query images incorrectly localized by all methods. (a)
query image. (b) top-ranked but incorrect image retrieved by the per-location classifiers
(proposed method). (c) top-ranked but incorrect image retrieved by the baseline confuser
suppression method. (d) top-ranked but incorrect image retrieved by the baseline bag-
of-visual-words method. Occlusions by trees often present significant challenge for tested
visual place recognition methods.
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Query image BOW p-val Conf. supp. [39] BOW
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Figure 5.11: Examples of query images incorrectly localized by our method but correctly
localized by the baselines. (a) query image. (b) top-ranked but incorrect image retrieved
by the per-location classifiers (proposed method). (c) top-ranked image retrieved by the
baseline confuser suppression method. (d) top-ranked image retrieved by the baseline
bag-of-visual words method. The proposed method is sometimes confused by high-scoring
similar repeated texture patterns on facades.
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recall@K [%] 1 2 5 10 20
Method: 25k Pittsburgh
BOW SVM no calib. 6.4 8.1 13.5 17.5 20.5
BOW 28.7 35.7 45.8 53.7 61.5
BOW Conf. supp [39] 29.6 37.3 48.9 59.3 69.2
BOW w-norm 31.8 38.7 49.7 60.2 69.4
BOW p-val 33.0 40.3 50.2 58.7 66.4

Table 5.1: Evaluation of the learned bag-of-visual-words representation on the Pittsburgh
25k dataset. The table shows the fraction of correctly recognized queries (recall@K)
for the different values of K ∈ {1,2,5,10,20} retrieved database images. The learned
representations (BOW w-norm and BOW p-val) outperform the raw bag-of-visual-words
baseline (BOW) as well as the learned representation without calibration (BOW SVM no
calib).

5.2.2 Fisher vectors

Results of the proposed per-location learning method for the Fisher vector image representation
for different dimensions are shown in table 5.2 and figure 5.12. Similar to bag-of-visual-words,
the learned representation (w-norm) significantly improves the place recognition performance over
the baseline Fisher vector (FV) matching without learning. The improvements are consistent
across different lengths of shortlist K and for the different dimensionality of the Fisher vector
representation. We report results only for the w-norm calibration as we found that the p-val
calibration did not perform well for the learned Fisher vector classifiers (top 1 recall of 25.3%
compared to baseline performance of 33.6% for dimension 128).

When examining the results we have observed that for bag-of-visual-words the cdf estimated on
the database well represents the scores of (unseen) negative query images at test time. However,
this is not the case for Fisher vectors where estimated cdf on the database does not represent well
the scores of negative query images at test time. The scores of (unseen) negative query images
often fall outside of the estimated cdf or at the very tail that is only sparsely sampled. As a result,
the estimated query image p-values for Fisher vectors are often over-confident and incorrect.

Notice that the proposed per-location learning method consistently improves performance over
the raw Fisher vector descriptors on the larger Pittsburgh 55k dataset and the challenging 24/7
Tokyo dataset (76k images). Examples of correctly and incorrectly localized queries are shown in
figures 5.17 and 5.16 at the end of this chapter. Next, we compare the performance of the two
learned representations relative to their memory footprints.

5.2.3 Analysis of recognition accuracy vs. compactness

Here we analyze the recognition accuracy of the learned representations vs. their compactness
measured by their memory footprint on the Pittsburgh 25k image dataset. Ideally, we wish to
learn a more compact representation, which still improves the recognition accuracy. However,
usually, there is a trade-off between the discriminative power of the representation and its size,
where having a more compact representation reduces the recognition accuracy [36]. We observe a
similar behavior but our learned representation results in a higher recognition accuracy for a given
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Figure 5.12: Evaluation of the learned Fisher vector representation on the Pittsburgh
25k [27] dataset. The graph shows the fraction of correctly recognized queries (recall@K,
y-axis) vs. the number of top K retrieved database images for the raw Fisher vector
baseline (FV) for different dimensions compared to the learned representation (w-norm).
Note the consistent improvements over all lengths of shortlist K for all dimensions.

size, or alternatively, significantly reduces the size of the representation for a given accuracy. The
results are summarized in figure 5.13. The figure shows the recognition performance (y-axis) for the
different dimensionality of the Fisher vector representation, which corresponds to different memory
footprints (x-axis). For example, for d = 128 the memory footprint is about 24 MB, whereas for
d= 2048 the memory footprint is about 384 MB. Note that the x-axis is in log-scale. The bag-of-
visual-words representation has a fixed dimensionality (and fixed memory footprint) and hence each
bag-of-visual-words method is shown only as a single point on the graph. For Fisher vectors, the
results demonstrate that for a given level of accuracy (y-axis) the proposed method learns a more
compact (lower-dimensional) representation (x-axis). For example, our learned 128-dimensional
descriptor (memory footprint of 24 MB) achieves a similar accuracy (around 65%) as the 256-
dimensional raw Fisher descriptor (memory footprint of 51MB, interpolated from figure 5.13).
This corresponds to 50% memory savings for the same level of recognition performance. Note that
similar to [36], we observe a decrease in performance at high-dimensions for both the FV baseline
and our method. The results also demonstrate the benefits of using the compact FV descriptors
compared to the bag-of-visual-words baseline achieving significantly better recognition accuracy
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Figure 5.13: The recognition performance vs. the memory requirements for the Pitts-
burgh 25k dataset. The fraction of correctly localized queries at the top 10 retrieved
images (y-axis) vs. the memory footprint (x-axis) for the different representations. For
Fisher vectors, the learned descriptor (FV w-renorm) clearly outperforms the raw Fisher
vector descriptor (FV) for all dimensions corresponding to different memory footprints (x-
axis). Learnt per-location representations for the bag-of-visual-words model (BOW p-val
and BOW w-norm) also improve performance over the raw bag-of-visual-words (BOW).
However, the Fisher vectors provide much better recognition performance for the same
memory footprint.
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for a similar memory footprint.

5.2.4 Comparison to linear discriminant analysis (LDA) and whitening baselines

We have compared our method to the linear discriminant analysis (LDA) [5, 28, 19] and whiten-
ing [33] baselines. Results are reported on the Pittsburgh 25k dataset. The LDA baseline finds
a discriminative linear projection of the feature space by minimizing a Euclidean loss rather than
hinge loss used in our work. In detail, following [5] we have used all available database to learn
the covariance matrix and used calibrated LDA score (see [5] eq. 11) to obtain a classifier for each
database image. We have applied the LDA method on the 128-dimensional Fisher vector descriptor
but have obtained significantly worse performance (31.9% for recall@1) than our method (recall@1
of 38.3%). We believe the better performance of our method can be attributed to (i) the use of
hinge-loss and (ii) training using the top scoring hard negative examples that are specific to each
place. Next, we compare results to PCA compression followed by whitening as suggested in [33].
For bag-of-visual-words, we follow [33] and compare performance to PCA whitening to a target
dimension of 4096. We have observed performance drop compared to the raw bag-of-visual-words
baseline (28.7% to 26.1% for recall@1). We hypothesize this could be attributed to the large dic-
tionary size used in our work (100k), whereas [33] report improved results for single dictionary
whitening only for dictionaries of up to 32k visual words. Finally, we have also applied PCA
whitening on Fisher vector descriptors of dimensions 128, 512 and 2048, but have not observed sig-
nificant improvements over the baseline raw descriptors. In fact, for the highest dimension (2048)
we have observed a performance drop (49.6% to 41.3%), which could be attributed to amplification
of low-energy noise as also reported in [33].

5.2.5 Analysis of improvements and failure cases

We have examined the improvement and failures of the w-norm method w.r.t. the Fisher vector
baseline on the Pittsburgh 25k dataset. We analyzed the cases for which the w-norm method
improves the rank of the first ground truth image compared to the baseline and for which the rank
of the first ground truth image is made worse. For brevity, in the following text, we use “positive"
image to denote the first ranked ground truth image for a given query.

In detail, we consider a list of tuples, each tuple corresponds to a query image and contains two
elements. The first element is a rank of the first positive image retrieved by the raw FV128 while
the second element is a rank retrieved by the FV128 w-norm method. Tuples in the list are then
sorted w.r.t. the FV128 w-norm rank.

A visualization of the sorted list is provided in figure 5.14 (a). The red curve represents the
rank of the FV128 w-norm while the corresponding rank given by the raw FV128 is depicted in
blue. For instance, the blue peak at the query ID value 3395 means that for that particular query
image the first positive image was originally found at the rank of 481 but the rank was improved
by FV128 w-norm method to 64. The similar plot is constructed by sorting the list w.r.t. the
raw FV128 and the result is shown in figure 5.14 (b). In this case, the red curve indicates rank
obtained by the raw FV128 while a rank obtained by the FV128 w-norm is depicted in blue.

The plots indicate that the FV128 w-norm not only improves the results for small shortlists but
improves the results for difficult queries that are typically ranked very low. Notice that for difficult
queries, some images are ranked close to 1000 when using the raw FV128, while none is ranked
above 500 when using the FV128 w-norm method. A few examples of the difficult queries along
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Figure 5.14: Analysis of the change in ranking. Each data point in the plot shows a rank
of the best positive image for given a query obtained by two different methods shown in
red (the baseline method) or blue (the alternative method). The baseline ranks (red) are
sorted in the ascending order. Each blue bar shows a difference in ranking obtained by the
alternative method. The blue being above the red curve means that the ranking got worse
and vice versa. (left) The FV128 w-norm method has been used as a baseline. (right)
The raw FV128 method has been used as a baseline. Notice the trend of improving the
ranking when FV 128 w-norm is used.

with retrieved positive images are shown in figure 5.18.

We further analyze how the method affects the ranking in smaller shortlists, which is not obvious
from figure 5.14. The scatter plot in figure 5.15 shows how the ranks are improved or made worse
by the FV128 w-norm method. Each point represents a rank of the best scoring positive image
for a given query image. The plot suggests that FV128 w-norm attracts images into the smaller
shortlists but sometimes the best scoring positives are pushed out.

For example, considering a shortlist of the size 20 we want to identify when: (i) an image with
the rank of 20 is attracted into the shortlist (improvement), and (ii) an image with the rank of
≤ 20 is pushed out of the shortlist using our method (aggravation).

In figure 5.15, we observe that in many cases a low-ranked true positive image by the baseline
(ranked 30− 70) is attracted into the shortlist of size 20 by the w-norm method, resulting in an
improvement. Note that in many other cases our method improves ranking but here we only count
the cases for which the baseline method does not have any true positives in the top 20 shortlist.
On the other hand, in 39 cases our method makes the results worse and removes a correct image
from the top 20 shortlist but typically only to top 40.

Finally, we observe that aggravation typically occurs on hard examples where the baseline per-
formance is already bad. When visually inspecting the failure cases we observed that our method
typically fails on queries containing a big portion of the sky clouds or vegetation, narrow streets
or tunnels and sometimes retrieves images capturing the same building from a different viewpoint
or a larger distance. Examples of difficult queries along with the first correct image are shown in
figure 5.18 at the end of this chapter.
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Figure 5.15: Rank scatter plot. Each data point in the scatter plot corresponds to two
different rankings of the best scoring positive image. The rank obtained by the raw FV128
is shown on abscissa while the rank obtained by the FV128 w-norm method is shown on
the ordinate. If a point appears below the diagonal line, it is better ranked by the proposed
method than the baseline.
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5.2.6 Scalability

In the offline stage, our method collects hard negative examples for each location in the database,
which are consequently used to train exemplar SVM classifiers. As only a constant number of
examples (1-5 positives and 500 negatives) is used to train each per-location classifier the overall
complexity of training is linear, O(N), i.e. we need to train one classifier (with constant training
time) for each of N images in the database. The bottleneck of the offline stage is collecting the
negative examples that is quadratic O(N2) in the database size. In other words, for each of N
database images, we need to find the top 500 most similar negatives among all N database images.
However, we believe that even finding negatives can be scaled-up to very large datasets with
standard compression techniques such as product quantization (PQ) [34] combined with sub-linear
approximate nearest neighbor search [45].

At query time our method needs to compute the calibrated e-SVM score (equation (4.2)) of the
query for each image in the database. In the case of w-norm method, the calibration weights can
be included in the classifier weight matrix, as discussed in section 4.4. For the p-val calibration
method, each e-SVM score must be calibrated using K stored values of the non-parametric CDF
model. This requires a search for the two closest values and subsequent interpolation, which yields
complexity of O(N logK). Since K is only a constant both the w-norm and p-val methods have
a linear time complexity (in the size of the database) at query time but with different constants.
However, in practice, the constant in the p-val method can be quite large. The actual running time
per query is 340ms for the bag-of-visual-words representation with p-val calibration and 3ms for
the FV128 descriptor with w-norm calibration. Both timings are on the 25k Pittsburgh dataset on
a desktop with CPU Intel Xenon E5 using a single thread. Hence in practice, the p-val method may
be scalable only to medium size datasets. For the w-norm method, the query time can be further
sped up using sub-linear approximate nearest neighbor search [45] on compressed descriptors [34],
making the method scalable to very large datasets.
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recall@K [%] 1 2 5 10 20
Method / Dataset: 25k Pittsburgh
FV128 33.6 41.8 52.0 59.8 67.7
FV128 w-norm 38.3 47.5 57.7 65.8 72.7
FV512 44.3 51.7 61.4 68.7 75.2
FV512 w-norm 47.6 55.4 65.1 72.4 78.8
FV2048 46.9 54.1 63.8 70.5 76.8
FV2048 w-norm 50.2 57.3 67.0 73.8 78.0
FV16384 45.3 54.1 63.8 69.4 75.3
FV16384 w-norm 49.3 56.0 65.9 72.5 76.8

55k Pittsburgh
FV128 10.9 14.1 20.2 26.4 33.2
FV128 w-norm 13.5 17.7 25.0 31.8 39.0
FV512 17.3 21.1 28.4 34.2 40.3
FV512 w-norm 19.8 25.1 32.7 38.7 46.0
FV2048 19.2 23.5 29.9 35.2 41.9
FV2048 w-norm 20.8 25.9 33.1 38.7 45.9

24/7 Tokyo
FV128 14.2 20.0 27.9 34.2 41.5
FV128 w-norm 16.9 22.0 29.6 37.2 44.8
FV512 35.2 40.3 43.8 48.2 57.1
FV512 w-norm 36.1 42.0 46.8 52.8 61.4
FV2048 37.4 42.5 48.5 53.9 58.7
FV2048 w-norm 42.9 46.7 52.8 58.8 66.7
FV4096 42.9 46.3 54.0 59.0 64.8
FV4096 w-norm 44.3 47.1 54.7 61.1 66.5

Table 5.2: Evaluation of the learned Fisher vector representation on the Pittsburgh [27]
and 24/7 Tokyo [64] datasets. The table shows the fraction of correctly recognized queries
(recall@K) for the different values of K ∈ {1,2,5,10,20} retrieved database images. The
learned Fisher vector representation (FV w-norm) consistently improves over the standard
Fisher vector matching baseline (FV) for all target dimensions.
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Figure 5.16: Examples of correctly and incorrectly localized queries for the learned bag-
of-visual-words representation. Each example shows a query image (left) together with
correct (green) and incorrect (red) matches from the database obtained by learned bag-
of-visual-words representation p-val method (top) and the standard bag-of-visual-words
baseline (bottom). Note that the proposed method is able to recognize the place depicted
in the query image despite changes in viewpoint, illumination and partial occlusion by
other objects (trees, lamps) and buildings. Note also that bag-of-visual-words baseline is
often confused by repeating patterns on facades and walls.
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Figure 5.17: Examples of correctly and incorrectly localized queries for the learned
Fisher vector representation. Each example shows a query image (left) together with
correct (green) and incorrect (red) matches from the database obtained by the learned
Fisher vector representation w-norm method (top) and the standard Fisher vector baseline
(bottom) for dimension 128. Note that the proposed method is able to recognize the
place depicted in the query image despite changes in viewpoint, illumination and partial
occlusion by other objects (trees, lamps) and buildings. Note that the baseline methods
often finds images depicting the same buildings but in a distance whereas our learned
representation often finds a closer view better matching the content of the query.
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Figure 5.18: Failure cases on difficult queries. In each column, we show a difficult query
image (left) and the first correct image obtained by the baseline method FV128 (top-
right) and the proposed method FV128 w-norm (bottom-right) along with its rank. Here
we show examples, where proposed method performs worse than the baseline. Regarding
the difficult queries, we observed that our method typically fails on queries containing a big
portion of the sky clouds or vegetation, narrow streets or tunnels and sometimes retrieves
images capturing the same building from a different viewpoint or a larger distance.



6 Discussion

“There are no such things as applied sciences, only
applications of science.”

— Louis Pasteur

In this thesis we proposed a method for building place recognition datasets and releaseed it to
public in the form of a software package [25]. We proposed a new approach for the place
recognition. In particular, we cast the place recognition problem as a classification task, we

show that subsequent calibration of the classification score is crucial and propose two calibration
strategies. The major contributions and future work are summarized below.

6.1 Contributions

We developed an algorithm capable of building geo-referenced datasets for, but not limited to,
place recognition. We released this package as open source project called streetget [25]. We
have discussed the internal representation of the Google StreetView panoramas, how the data and
metadata are stored, how to fetch them and, finally, how to use the data to generate a place
recognition dataset. The method is also capable of getting the historical panoramas and the scene
depth maps.

We have shown that place recognition can be cast as a classification problem and have used
geotags as a readily-available supervision to train an ensemble of classifiers, so called per-location
classifiers, one for each location in the place recognition database. As only a few positive examples
are available for each location, we have developed two procedures to calibrate the output of each
classifier without the need for additional positive training data. We have shown that learning
the per-location representations improves the place recognition performance over the raw bag-of-
visual-words and Fisher vector matching baselines. The developed calibration methods are not
specific to place recognition and can be useful for other per-exemplar classification tasks, where
only a small number of positive examples are available [44].

6.2 Future work

Being able to generate a large geo-referenced temporal dataset with panoramas capturing the same
scene at different times of the year/decade, yet being able to retrieve the scene depth opens new
research opportunities not limited to place recognition.

Using the temporal data, we would like to train a convolutional neural network (CNN) to predict
which parts of a scene within the image are correlated with the arrow of are likely to look differently
in the future. Examples may include a crack on the wall that grows in the time, flaking off the
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facade is only getting worse, a coffee shop that changes owner and changes its appearance (e.g.
turns into the Starbuck’s coffee).

Another opportunity is to exploit the scene depth information. Despite the fact that the scene
is approximated by a set of planes, this representation can be used as a weak form of supervision
for a CNN that could rectify the input image, learn the approximate camera projection matrix or
help with the semantic segmentation of an input image.
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A - HTTP requests

“Computer Science is no more about computers
than astronomy is about telescopes.”

— EW Dijkstra

Below we show several important HTTP GET requests for fetching the panorama image and its
associated metadata. For brevity alle data structures are are considered as Python objects.

A.1 GPS to hash identifier id

This is a geocoding request. Supplied with the GPS coordinate and search radius it finds any
panorama within the radius. A response to the request is metadata in JSON format. A hash
identifier can be further retrieved from the metadata.

Base URL
https://geo0.ggpht.com/cbk

Query parameters
{’authuser’: ’0’,
’cb_client’: ’maps_sv.tactile’,
’hl’: ’en’,
’ll’: ’50.000000,14.410000’,
’output’: ’json’,
’radius’: 15}

An example of full URL string
https://geo0.ggpht.com/cbk?authuser=0&cb_client=maps_sv.tactile&ra...

where ellipses denote rest of the string.

A.2 Metadata - the first portion

The first portion of the metadata contains information about the panorama location such as a
panorama hash id, GPS location, panorama heading w.r.t. the absolute North, available zoom
levels, a size of the image tiles, and a depth information encoded in a binary string. Supplied with
panoid hash identifier a response to the HTTP request is metadata in JSON format. Important
portion of the metadata is highlighted in Chaprer 3.

Base URL:
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https://cbks1.google.com/cbk

Query parameters:
{’cb_client’: ’apiv3’,
’dm’: 1,
’dmz’: 0,
’hl’: ’en-US’,
’oe’: ’utf-8’,
’output’: ’json’,
’panoid’: ’KzDzUS3ub-yrzbOLNomavw’, # <- panorama hash ID
’pm’: 0,
’pmz’: 0,
’v’: 4}

An example of full URL string
https://cbks1.google.com/cbk?dmz=0&dm=1&panoid=KzDzUS3ub-yrzbOLNomavw&h...

where ellipses denote rest of the string.

A.3 Metadata - temporal links

The second portion of the metadata contains temporal links to adjacent panorama locations.
Supplied with hash identifier a response to the HTTP request is metadata in in serialized ob-
ject. The response to the request is a serialized javascript object which does not exactly fol-
low the JSON format, but can be converted to JSON performing the following steps; (i) re-
move the first line and (ii) replace each ’,‘ with ’null,‘ if the comma ’,‘ does not have a
value on its left size. For example, the string [3,4,1, , , [ , , ,[6]]] would be converted to
[3,4,1,null,null,[null,null,null,[6]]].

Location of the temporal links within this data structure is discussed in Chaprer 3.

Base URL:
https://www.google.fr/maps/photometa/v1

Query parameters:
{’authuser’: 0,
’hl’: ’en’,
’output’: ’json’,
’pb’: ’!1m1!1smaps_sv.tactile!2m2!1sen!2sfr!3m3!1m2!1e2!2s’ \

’KzDzUS3ub-yrzbOLNomavw’ \ # <- panorama hash ID
’!4m17!1e1!1e2!1e3!1e4!1e5!1e6!1e8!4m1’ \
’!1i48!5m1!1e1!5m1!1e2!6m1!1e1!6m1!1e2’ \

}

An example of full URL string
https://www.google.fr/maps/photometa/v1?pb=%211m1%211smaps_sv.tactile...
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A.4 Extraction of the temporal links

The code snipped below assumes that JSON was deserialized into a Python data object.

def extract_temporal_links(data):
aux = data[1][0][5][1] # an interesting part of the metadata

# Get timestamps of available time machine panoramas
tstamps = [] # time stamps
for x in aux[8]:

tstamps.append(tuple(x[1])) # (year, month)

# Get corresponding panoID hashes
pano_ids = [’’] * len(tstamps) # an empty string list alloc
for j in range(1, len(tstamps) + 1):

pano_ids[-j] = aux[3][0][-j][0][1] # pano_id hash string

# List of tuples (pano_id, tstamp)
return zip(pano_ids, tstamps)

For coherence note that in rare cases the time stamps are not available, in this case the metadata
must be handled in a different way. More details can me found in the streetgetpackage [25].

A.5 Getting panorama tiles

The HTTP request for panorama tile is supplied with the zoom level and location x, y of the tile
within the panorama (see Figure 3.3 in Chapre 3). A response to the request is a jpg image.

Base URL:

url =’https://geo2.ggpht.com/cbk’

Query parameters:

{
’output’: ’tile’,
’zoom’: zoom,
’x’: x,
’y’: y,
’panoid’: ’KzDzUS3ub-yrzbOLNomavw’ # <- panorama hash ID

}

An example of full URL string

https://geo2.ggpht.com/cbk?x=25&y=2&output=tile&panoid=KzDzUS3ub-yrz...
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A.6 Unpacking the depth binary sting
def getDepthData(data):

encoded = data[’model’][’depth_map’]

# Decode
encoded += ’=’ * (len(encoded) % 4)
encoded = encoded.replace(’-’, ’+’).replace(’_’, ’/’)
data = encoded.decode(’base64’).decode(’zip’) # base64 encoded

# Read header
hsize = ord(data[0]) # header size in bytes
fmt = Struct(’< x 3H B’) # little endian, padding byte, 3x unsigned short int and unsigned char
n_planes, width, height, offset = fmt.unpack(data[:hsize])

# Read plane labels
n = width * height
fmt = Struct(’%dB’ % n)
lbls = fmt.unpack(data[offset:offset+fmt.size])
offset += fmt.size

# Read planes
fmt = Struct(’< 4f’) # little endian, 4 signed floats
planes = []
for i in xrange(n_planes):

unpacked = fmt.unpack(data[offset:offset+fmt.size])
planes.append((unpacked[:3], unpacked[3]))
offset += fmt.size

return (width, height), lbls, planes
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“The time you enjoy wasting is not wasted time.”
— Bertrand Russell

A majority of my Ph.D. I spent in Paris, which became my home for last four years. During
my studies, sometimes, it was very helpful to switch the brain off, leave my 24” screen
behind and relax a bit. Paris is a beautiful city with dynamic live and lot of options for

leisure. However, one thing is tough to find when living in Paris, the outdoor rock climbing. During
the years, I found several rock climbing spots that are reachable within a couple of hours, some of
them even reachable by a train.

In this appendix, I would like to share these spots with whoever wants to clear his head in nature
while playing the chess with the rock. Finally, I would like to acknowledge my rope, quickdraws,
harness and my climbing partners. Despite many dramatical falls we always survived with no
injuries. Thank you!

Spots

Viaduc des Fauvettes (48.678423, 2.152275)

The Viaduct des Fauvettes is a disused railway bridge damaged during the WWII and renovated
in 70’s. It is located on the communes of Gometz-le-Châtel and Bures-sur-Yvette, in Essonne. The
bridge is used as a training site for rock climbing and speleology. The spot can be reached from
the center of Paris by RER and walk within about forty minutes. The routes are very well secured,
mostly the 50m rope and eight quickdraws are needed, however, the longest route requires a 70m
long rope.

Saint-Vaast-les-Mello (49.268537, 2.401343)

Close to the Saint-Vaast-les-Mello, there is a lovely abandoned limestone mine which is being used
as a rock climbing site for a few decades. Despite being close to Paris, it is not very busy. It is
even possible to camp there. The are routes up to 12 meters and all well secured. Few routes are
tough and are difficult catch the fall when clipping the second quickdraw.

Les Andelys (49.252093, 1.383858)

This lovely city with a castle on the bank of the river Seine can be tracked back in the history up to
the 6th century. West from the city at the river bank, between Les Andelys and Val-Saint-Martin
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there is a huge white rock massive with more than one hundred secured routes. When visiting this
area, it is worth mentioning few smaller spots lying around; Le Thuit, La Roquette, and Conelles.
The last spot may be closed for few months during the year because of nesting of kites.

It is worth noting that the rock is sometimes fragile and you may expect unexpected falls or
falling rocks, hence wearing a helmet is a good idea.

Saffres (47.371920, 4.581067)

Saffres is one of best spots close to Dijon or Auxerre, however it takes about two and half hours
to get there by a car from Paris. Close to the climbing spot, there is a free camping place with
tap water, toilets, and a fireplace. The routes are reasonably secured, the rock is solid and falls
only on wet spots covered by vegetation. There are two other climbing spots in this region, Surgy
and Clamecy, the topo can sometimes be found at the outdoor shop. When visiting this area, do
not miss an opportunity to visit Vézelay Abbey monastery, one of the four major routes through
France for pilgrims going to Santiago de Compostela in Galicia, in the north-western corner of
Spain.
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