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Abstrakt

V našej diplomovej práci sme sa venovali kryptoanalýze pomocou nemožných diferenciálov ako
mierke na testovanie slabín šifier. Kvôli relatívnej novosti, oproti lineárnej a diferenciálnej
analýze, nie je táto analýza veľmi známa a existuje len málo jednoduchých “ako na to“ ná-
vodov. Zaumienili sme si poskytnúť presne tento jednoduchý “ako na to“ návod. Na testovanie
tejto techniky sme si zvolili šifru Baby Rijndael. Podarilo sa nám zaútočiť na 4 rundy Baby
Rijndaelu a poskytnúť detailný návod. Prišli sme na to, že potrebujeme len 13436 časových
jednotiek oproti 32768 jednotiek potrebných na útok hrubou silou. Potvrdili sme užitočnosť
kryptoanalýzy pomocou nemožných diferenciálov a s vyššie spomínaným detailným návodom
sme k nej zjednodušili prístup.

Klíčová slova Baby Rijndael, Kryptoanalýza, Kryptoanalýza pomocou nemožných diferen-
ciálov
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Abstract

In our diploma thesis we focused on the impossible differential cryptanalysis as a benchmark to
test weaknesses of ciphers. Because of its relative novelty, compared to linear and differential
analysis, this analysis is not so well-known and there are few-to-none simple tutorials on how
to do it. We set to provide exactly this simple how to tutorial. We chose Baby Rijndael cipher
to test this technique. We performed a successful attack on 4 rounds of Baby Rijndael and
provided a step-by-step tutorial. We found out that we need only 13436 units of time instead
of 32768 needed for brute-force attack. We confirmed the usefulness of this technique and with
the provided how to simplified an access to its workings.

Keywords Baby Rijndael, Cryptanalysis, Impossible differential cryptanalysis
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Introduction

People have been developing tools to hide information from the dawn of time. This allowed
them to gain an advantage over another people (societies). The most noticeable example would
be wars. Naturally these tools became better and better, century after century. These improve-
ments resulted in the existence of Enigma during World War II. For a long part of World War II
this cipher remained unsolved and Germans could transfer messages between each other without
problems. Solving of Enigma cipher became the most important problem for Allies. When they
did finally solve Enigma – it changed the tide of war drastically.

With gradual increase of popularity of computers, ciphers became more mathematical. We (as a
society) started using them as a tool to secure almost every piece of information moving through
a network of computers. We have recognized the importance of cipher design and have incor-
porated analysis of proposed ciphers to it.

It is crucial to know and perform various types of analyses of a cipher before making it a stand-
ard for securing information. Because of that, the analysts have developed a lot of methods.
One of these methods is the impossible differential cryptanalysis. Because of its relative
novelty, the analysis is not so well known. This makes harder to find study materials for future
cryptanalysts – let alone find “how to“ tutorial like [3] for differential and linear cryptanalysis.
As a result, we focus on providing this “how to“ in our diploma thesis.

Our aim is to acquaint ourselves with the workings of impossible differential cryptanalysis
and its current state-of-the-art. This knowledge can be later used to formulate an easy to use
tutorial. And finally implement and demonstrate the application of the tutorial to a real cipher.

Research gives us theoretical basis for further understanding of this technique. Part of the re-
search provides a comparison of impossible differential cryptanalysis to other techniques which
helps us to better understand the differences and the similarities between them. The emphasis
on a tutorial is mostly because it is often the quickest way of explaining something new to
another person. We have selected Baby Rijndael as a suitable cipher for demonstration. It is
simple to understand so we can focus mainly on the analysis.
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Introduction

We divided our diploma thesis into two parts: theoretical and practical. The theoretical
part consists of three chapters. The first one is Baby Rijndael which gives us details on the
chosen cipher – Baby Rijndael. The second one is Cryptanalysis which describes linear, differ-
ential and algebraic cryptanalysis – so that we can compare impossible differential cryptanalysis
to them. The third one is Impossible differential cryptanalysis which provides history and
current development of this technique. After that we described the principle and offered a simple
example. Following these chapters we continued with the practical part of diploma thesis which
consists of one chapter Impossible differential cryptanalysis of Baby Rijndael, providing
the implementation, analysis of the cipher and the execution of the attack.
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Chapter 1
Baby Rijndael

Baby Rijndael is a symmetric block cipher derived from Rijndael cipher – the algorithm selected
as the Advanced Encryption Standard (AES1). The reason behind the choice of this scaled-down
version of Rijndael is simple: the behaviour and the structure of cipher are the same but the
analysis is much less time and space consuming due to the reduced size of a block and key.
Instead of 128 bit long block and 128 bit long key (one version of Rijndael), Baby Rijndael is
using only 16 bit long block and 16 bit long key. This gives us an opportunity to even perform
a brute-force attack which provides a good benchmark for any type of analysis.

1.1 Cipher structure
Baby Rijndael consists of only four rounds (instead of Rijndael’s 10), identical in structure [4].
Each round consists of these four successive operations: SubBytes, ShiftRows, MixColumns and
AddRoundKey.

The state, but also the plaintext, ciphertext and key of Baby Rijndael is 16 bits long, arranged
in 2 × 2 matrix with every element consisting of 4 bits. This gives us 2 × 2 × 4 = 16 bits. In
contrast, Rijndael has a 128 bit long state and a 4 × 4 matrix with every element consisting
of 8 bits (1 byte). However, the structure is the same, meaning: positions in columns are filled
from top to bottom and columns are filled left to right.

A =
(
a0 a2
a1 a3

)
, ai ∈ GF (24) (1.1)

Note: We usually write the state as a sequence of four hexadecimal digits.

Suppose we have a block = 0110 1011 0101 1101; we translate it to (6, b, 5, d)16 and state then

looks like this:
(

6 5
b d

)
.

1AES – more at http://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard.
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1. Baby Rijndael

fffffPTffff fffffKeyffff fffffPTffff

fffffAddRoundKeyffff fffffAddRoundKeyffff
fffffInvSubBytesffff
fffffAddRoundKeyfffffffffKeyExpansionffff

fffffRoundf4ffff

fffffRoundf3ffff

fffffInvMixColumnsffff
fffffAddRoundKeyffff
fffffInvSubBytesffff
fffffInvShiftRowsffff

fffffRoundf1ffff
fffffSubBytesffff
fffffShiftRowsffff

fffffMixColumnsffff
fffffAddRoundKeyffff

fffffRoundf3ffff
fffffSubBytesffff
fffffShiftRowsffff

fffffMixColumnsffff
fffffAddRoundKeyffff

fffffRoundf4ffff
fffffSubBytesffff
fffffShiftRowsffff

fffffAddRoundKeyffff
fffffRoundf1ffff

fffffInvMixColumnsffff
fffffAddRoundKeyffff
fffffInvSubBytesffff
fffffInvShiftRowsffff

fffffAddRoundKeyffff

fffffCTfffffffffCTffff

fffffW[091]ffff

fffffW[293]ffff

fffffW[697]ffff

fffffW[899]ffff

Figure 1.1: Structure of Baby Rijndael [1, page 14].
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1.2. SubBytes

Figure 1.1 (cipher structure) can be written down as follows2:

E(a) = r4 ◦ r3 ◦ r2 ◦ r1(a⊕ k0) (1.2)

where a stands for state, k0, .., k4 are the round keys and ri is round

ri(a) = (t · σ(s(a)))⊕ ki (1.3)

where in r4, multiplication by t is absent. The component operations are:

s (SubBytes)
σ (ShiftRows)
t· (MixColumns)
⊕ki (AddRoundKey)

1.2 SubBytes
Operation SubBytes can be imagined as a substitution table where every position (one hexa-
decimal digit) is translated to a new value.

a0 a2

a1 a3

b0 b2

b1 a6a11b3a3

SubBytes

S

Figure 1.2: Baby Rijndael’s SubBytes [1, page 15].

The substitution table (SubBytes):

Input 0 1 2 3 4 5 6 7 8 9 a b c d e f
Output a 4 3 b 8 e 2 c 5 7 6 f 0 1 9 d

Table 1.1: Baby Rijndael’s SubBytes.

2Symbol ◦ stands for composition of functions.
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1. Baby Rijndael

An important feature of SubBytes is its non-linearity. This operation is the only non-linear one
in the cipher.

A proof that Baby Rijndael’s SubBytes has the same properties as Rijndael’s can be found in
diploma thesis [1, page 16-18] and paper [5, page 16-17].

1.3 ShiftRows
Operation ShiftRows in Baby Rijndael is just swapping of two positions in the second row. It is
based on Rijndael’s ShiftRows, where every row (from top to bottom) is shifted i−1 positions to
the left where i is row number starting with 1. In Baby Rijndael it means that we get the same
operation, because swapping of two positions in the second row is just shifting one position to
the left.

a0 a2

a1 a3

a0 a2

a3 a1

ShiftRows
No

change
Shift 1

Figure 1.3: Baby Rijndael’s ShiftRows [1, page 18].

1.4 MixColumns
Operation Mixcolumns performs a matrix multiplication modulo 2 of the (transformed – see
below) state by t on the left.

a0 a2

a1 a3

b0 b2
b9

b1 b3
b10

MixColumns

    t ·

a3

a2
a9

a10
b3

b2

Figure 1.4: Baby Rijndael’s MixColumns [1, page 20].
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1.5. AddRoundKey

Where matrix t is:

t =



1 0 1 0 0 0 1 1
1 1 0 1 0 0 0 1
1 1 1 0 1 0 0 0
0 1 0 1 0 1 1 1
0 0 1 1 1 0 1 0
0 0 0 1 1 1 0 1
1 0 0 0 1 1 1 0
0 1 1 1 0 1 0 1


(1.4)

And the state is considered not to be a 2 × 2 matrix with 4 bit long positions, but rather a 1
× 2 matrix with 8 bit long positions. When we recall an example of state from section 1.1,
we can transform it to:

A =
(

6 5
b d

)
=



0 0
1 1
1 0
0 1
1 1
0 1
1 0
1 1


(1.5)

A proof that Baby Rijndael’s MixColumns has the same properties as Rijndael’s can be found
in diploma thesis [1, page 19-22].

1.5 AddRoundKey
Operation AddRoundKey performs an addition (modulo 2) of key and state in corresponding
positions.

a0 a2

a1 a3a11

b0 b2

b1 b3a11b3a3

AddRoundKey

k0 k2

k1 k3a11k3

Figure 1.5: Baby Rijndael’s AddRoundKey [1, page 22].
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1. Baby Rijndael

1.6 Key schedule
Key schedule’s purpose is to generate several round keys from one main key. This is done by
introducing an array of 8 bit long columns of the round keys – w.

k0 k2

k1 k3

w0 w1 f

+

w2 w3

+

Figure 1.6: Baby Rijndael’s Key schedule [1, page 23].

From figure 1.6 we can notice that w0 and w1 are columns (respectively) of main key.

w0 =
(
k0
k1

)
w1 =

(
k2
k3

)
(1.6)

Function f operates as follows:
w2i = w2i−2 ⊕ s(rotation(w2i−1))⊕ yi

w2i+1 = w2i−1 ⊕ w2i
(1.7)

• i = 1, 2, 3, 4

• rotation – function which shifts a given wi half-byte to the left.

• yi – stands for xi−1 reduced by the polynomial m(x) 3. In other words, we can write down
yi as:

yi =
(

2i−1

0

)
(1.8)

Finally, the other round keys ki are obtained from w array as follows (i = 1, 2, 3, 4):

ki =
(
w2i w2i+1

)
(1.9)

3m(x) = 1 + x + x4

8



1.7. Implementation

1.7 Implementation
We implemented Baby Rijndael cipher in a C++ environment, using version C++11 of the
standard. All source codes and executable files are available in the attached CD.

Implementation of Baby Rijndael is handled by class BabyRijndael defined in babyrijndael.h
and implemented in babyrijndael.cpp.

Our public methods:

• BabyRijndael() – is an empty constructor.

• sbox() – performs the operation SubBytes on state.

• shiftRows() – performs the operation ShiftRows on state.

• mixColumns() – performs the operation MixColumns on state.

• addRoundKey(int round) – performs the operation AddRoundKey on state.

• makeKeys() – performs the Key schedule operation.

• Inverse methods – inverse versions of Baby Rijndael’s operations.

• Printing methods – print various information about cipher’s state.

Our private variables:

• state[] – represents the state of Baby Rijndael. We chose to implement it as an array of
two 8 bit long integers.

• key[] – represents the main key of cipher. In other words, w[0] and w[1] of the key
schedule.

• w[] – represents the array of columns of round keys. Retrieved from Key schedule. This
means we have an array of ten 8 bit long integers.

There are some other helper functions and versions of Baby Rindael’s operations (SubBytes,...)
not bounded by class. Methods are not optimized for speed. Generally, operations are imple-
mented as defined in the Baby Rijndael specification. SubBytes (sbox()) uses a table look-up.

9





Chapter 2
Cryptanalysis

2.1 Definition

Cryptanalysis is focused on analyzing systems and their secrets. The secret can be a key with
which the system is encrypted.

Cryptanalyst, the person performing the cryptanalysis, is not limited to study cipher only from
a mathematical angle, but from every direction including the use of side-channel attack (e.g.
power consumption), which is an attack on a specific implementation.

2.2 Availability of Plaintext and Ciphertext

Depending on the extent of access to cipher by analyst, we have numerous types of analyses:

• Known-plaintext analysis – the analyst has access to some plaintexts and their corres-
ponding ciphertexts. The secret key is then deduced from this information.

– Simple known-plaintext analysis could be performed on the Caesar cipher4, where
each letter of plaintext is shifted a defined number of places (that is a key) alphabet-
ically and that shifting resulting in final ciphertext.

• Chosen-plaintext analysis – the analyst can choose any plaintext and put it through
the cipher to get the corresponding ciphertext. The key is still unknown.

– The best known chosen-plaintext analyses are part of differential cryptanalysis
category; a detailed description is presented in section 2.4.4.

• Ciphertext-only analysis – the ciphertext is known to analyst but the plaintext is
unknown. Most of the time the style or phrasing of the plaintext is known, too. The
analyst has to work with this information to decrypt the ciphertext or deduce the key.

4Caesar cipher – more on this can be found at: http://practicalcryptography.com/ciphers/caesar-
cipher/

11
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2. Cryptanalysis

– The best known case of a successful ciphertext-only analysis is the breaking of the
Enigma code.

2.3 Notation

In this section we introduce the notation which is used throughout whole thesis. For:

Input we will use X, which consists of individual bits [X1,X2,X3..XU].
Output we will use Y, which consists of individual bits [Y1,Y2,Y3..YU].

Exclusive or we will use symbol ⊕ or word XOR.
Logical conjunction we will use symbol ∗ or word AND.

Difference between two texts (plaintexts or ciphertexts) we will use ∆ with the meaning
∆X′′ = X⊕X′.

2.4 Types of cryptanalysis

Common types of cryptanalysis for symmetric block ciphers are the linear, differential and
algebraic cryptanalysis. In the following subsections we briefly explain these types. For a better
understanding of these analyses we define brute-force and side-channel attacks as well.

2.4.1 Brute-force attack

A type of attack in which an analyst is trying every possible option (key). This approach is
infallible, but extremely time consuming.

The main obstacle to this approach is the way time complexity grows with an increasing key size
– if the key is 4 bits long we have to go through 8 guesses in the average case / 16 guesses
in the worst case. If the key is 8 bits long (2 times longer than the previous key) we have to
go through 128 guesses in the average case / 256 guesses in the worst case. The increase
is, as we can notice, not linear (2 times larger, 2 times more time consuming), but exponential
(2 times larger, 16 times more time consuming).

2.4.2 Side-channel attack

A type of an attack where analysts are not exploiting the algorithm itself but its specific imple-
mentation, hardware or software.

Typically, we exploit the timing and power consumption of algorithms. Most of the time we
use this information with statistical methods to build a successful attack. Further material on
this subject can be found in the well-recognized paper by Paul C. Kocher: “Timing Attacks on
Implementations of Diffie-Hellman, RSA, DSS, and Other Systems“ [6].

12



2.4. Types of cryptanalysis

2.4.3 Linear cryptanalysis

Linear cryptanalysis was published in 1993 for the first time. It is a known-plaintext analysis
in which an analyst is trying to approximate the linear behaviour of the cipher using equations
where some bits of plaintext, ciphertext and subkeys are used. Generally, this equation can be
written in the form:

X1 ⊕X2 ⊕ ...XU ⊕ Y1 ⊕ Y2 ⊕ ...⊕ YV = 0 (2.1)

Analyst’s final goal is to find an equation with the same form as equation 2.1 and a high (or
low) probability of occurrence [7].

Suppose we have 4 random bits X1, X2, X3, X4. Then the probability of this equation

X1 ⊕X2 ⊕X3 ⊕X4 = 0 (2.2)

holding true is

Pr(even number of ones) = 1/2, (2.3)

provided that these bits are truly random. But if they are not, then the probability has a value
different from 1/2. Difference between 1/2 and the actual value is called a bias (ε)

Pr(even number of ones) = 1/2 + ε (2.4)

and the linear cryptanalysis is working exactly with these biases where ε ∈ 〈−1/2, 1/2〉.

Suppose a bias is distant enough from 0, then the non-linear component of cipher can be re-
placed with a linear equation [1, page 28].

Simple example:
Imagine that our cipher consists only of one substitution box which needs three bits on input
(X1, X2, X3) and gives us three bits on output (Y1, Y2, Y3). Substitution goes as follows:

Input 000 001 010 011 100 101 110 111
Output 011 110 000 001 111 010 100 101

Table 2.1: Linear cryptanalysis example – Substitution table.
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2. Cryptanalysis

We try some equations with same form as equation 2.1:

X1 ⊕X3 ⊕ Y2 = 0
X1 ⊕X2 ⊕ Y2 = 0

X3 ⊕ Y1 ⊕ Y2 ⊕ Y3 = 0
X1 ⊕ Y1 = 0
X2 ⊕ Y2 = 0

(2.5)

and we get this table with their truth values and biases:

Input 000 001 010 011 100 101 110 111 Pr BiasOutput 011 110 000 001 111 010 100 101
X1 ⊕X3 ⊕ Y2 = 0 0 1 1 0 1 0 0 1 1/2 0
X1 ⊕X2 ⊕ Y2 = 0 0 0 0 0 1 1 1 1 1/2 0

X3 ⊕ Y1 ⊕ Y2 ⊕ Y3 = 0 1 0 1 1 0 1 0 0 1/2 0
X1 ⊕ Y1 = 0 1 0 1 1 1 0 1 1 3/4 1/4
X2 ⊕ Y2 = 0 0 0 0 0 0 0 0 0 0/8 -1/2

Table 2.2: Linear equations table.

Table 2.2 shows that our cipher is prone to linear cryptanalysis, because we found some equations
with bias much higher than 0, the best one being the last one with bias equal to −1/2 a so-called
affine approximation.

14
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2.4.4 Differential cryptanalysis

We have now introduced the basic principle of linear cryptanalysis. Differential cryptanalysis
was revealed in the late 1980’s5 and takes a slightly different approach.

First of all, this type of analysis is part of chosen-plaintext analysis, hence it is working with much
more information than linear cryptanalysis. The core idea behind it is in checking difference
between two plaintexts and their state in the last round of a cipher, resulting in the difference
of output Y (∆Y ) derived from the difference of input X (∆X), in other words differential
(∆X,∆Y ). The occurrence of this differential among others has probability equal to:

Pr(occurrence of (∆X,∆Y )) = 1/2n (2.6)
where n is the number of bits of input X.

However, in real world ciphers it is common to get this probability with much higher value then
1/2n.

Differential cryptanalysis is working exactly with those cases.

Simple example:
Assume that our cipher consist only of one substitution box which needs two bits on input and
gives us two bits on output. Substitution goes as follows:

Input 00 01 10 11
Output 11 10 00 01

Table 2.3: Differential cryptanalysis example – Substitution table.

Consider the input difference = 01. It is possible to get this difference with 4 pairs of input
plaintexts.

00 and 01
01 and 00
10 and 11
11 and 10

Putting these inputs through the substitution box:

00→ 11 01→ 10 10→ 00 11→ 01
01→ 10 00→ 11 11→ 01 10→ 00

11⊕ 10 = 01 10⊕ 11 = 01 00⊕ 01 = 01 01⊕ 00 = 01

always results in the output difference = 01.
5For more on history of differential cryptanalysis go to: http://www.liquisearch.com/differential_

cryptanalysis/history.
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2. Cryptanalysis

Probabilities are as follows:

Pr(∆01,∆00) = 0
Pr(∆01,∆01) = 1
Pr(∆01,∆10) = 0
Pr(∆01,∆11) = 0

By calculating the probabilities of other individual differentials we get:

Out ∆

In ∆

00 01 10 11
00 1.0 0 0 0
01 0 1.0 0 0
10 0 0 0 1.0
11 0 0 1.0 0

Table 2.4: Differential cryptanalysis example – probabilities of individual differentials.

This substitution box is prone to the differential cryptanalysis because probabilities are much
higher than 1/4 of the ideal case. Specifically, in our case we always get just one output difference
for given input difference. Probability in those cases is 1.
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2.4.5 Algebraic cryptanalysis

The main idea behind this type of cryptanalysis is to rewrite the cipher into a form of system
of polynomial equations over finite fields [8] and then solve these equations.

Substantial issue with this approach is the fact that solving a system of polynomial equations
over finite fields is a NP-hard problem [8, page 199-202]. Recognizing this issue, analysts have
to try to get the shortest possible system of equations.

Simple example:
Assume we have got two LFSRs6:

Figure 2.1: An example of two LFSRs [2, page 10].

and a non-linear function

f(o1, o2) = o1 ⊕ (o1 ∗ o2) (2.7)

where o1 is output from first register (R1) and o2 is output from second register (R2).

Our goal is to calculate x0..x4 ∈ GF(2), knowing the function’s output 10100.

When we perform a step by step analysis of the states of this system, we get:

Step content of R1 content of R2 o1, o2
1. (x2, x1, x0) (x4, x3) x0, x3
2. (x0 ⊕ x2, x2, x1) (x3 ⊕ x4, x4) x1, x4
3. (x0 ⊕ x1 ⊕ x2, x0 ⊕ x2, x2) (x3, x3 ⊕ x4) x2, x3 ⊕ x4
4. (x0 ⊕ x1, x0 ⊕ x1 ⊕ x2, x0 ⊕ x2) (x4, x3) x0 ⊕ x2, x3
5. (x1 ⊕ x2, x0 ⊕ x1, x0 ⊕ x1 ⊕ x2) (x3 ⊕ x4, x4) x0 ⊕ x1 ⊕ x2, x4

Table 2.5: States of registers and their outputs [2, page 11].

6LFSR – Linear-feedback shift register; more at https://en.wikipedia.org/wiki/Linear-feedback_shift_
register.
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2. Cryptanalysis

Now we can substitute outputs from the equation 2.7 with calculated ones from table 2.5 and
we get a system of five equations:

x0 ⊕ (x0 ∗ x3) = 1
x1 ⊕ (x1 ∗ x4) = 0

x2 ⊕ (x2 ∗ x3)⊕ (x2 ∗ x4) = 1
x0 ⊕ x2 ⊕ (x0 ∗ x3)⊕ (x2 ∗ x3) = 0

x0 ⊕ x1 ⊕ x2 ⊕ (x0 ∗ x4)⊕ (x1 ∗ x4)⊕ (x2 ∗ x4) = 0

(2.8)

Figure 2.2: Algebraic cryptanalysis equations [2, page 12].

Solution of these gives us the desired key, or the initial state of the registers:

x0 = 1, x1 = 0, x2 = 1, x3 = 0, x4 = 0 (2.9)
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Chapter 3
Impossible differential cryptanalysis

As the title suggests, impossible differential cryptanalysis is a special kind of differential crypt-
analysis, where an analyst is not looking for differentials with high probability, but rather for
those with zero probability. Hence the word impossible.

This variant of differential cryptanalysis was described for the first time by Biham, Biryukov
and Shamir [9] in 1999 and was focused on the Skipjack cipher7. We should point out that
impossible events in a cipher were used a few times before – so it was not a totally new idea,
but the combination of those impossible events and methods of a differential cryptanalysis was
formally described only then.

3.1 History
After the first success with this technique, the team of Biham, Biryukov and Shamir continued
analyzing other ciphers. In the same year (1999) they applied impossible differential cryptana-
lysis to IDEA and Khufu in a paper: “Miss in the Middle Attacks on IDEA and Khufu“ [10].
They achieved considerable improvement over then-current cryptanalytic results:

IDEA
Before: Paper:
3.5 rounds 3.5 rounds

truncated-differential impossible differential
time: 267 units time: 253 units

256 chosen plaintexts 238.5 chosen plaintexts

The following year (2000) Biham with Keller published a paper in which they described im-
proved attacks on Rijndael, at that time an AES candidate, with the name: “Cryptanalysis of
Reduced Variants of Rijndael“ [11]. One of the improved attacks was impossible differential.

7Skipjack - more at http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf.
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3. Impossible differential cryptanalysis

Rijndael
Before: Paper:
5 rounds 5 rounds
square impossible differential

time: 240 units time: 231 units
211 chosen plaintexts 229.5 chosen plaintexts

In December of 2001, a team of Cheon, Kim M., Kim K., Lee and Kang extended previous
impossible differential attack on Rijndael to 6 rounds in a paper: “Improved Impossible Dif-
ferential Cryptanalysis of Rijndael and Crypton“ [12]. This attack was more time and space
demanding than the best previously known 6 round attack (square), but still less demanding
than brute-force attack.

Rijndael
Before: Paper:
6 rounds 6 rounds
square impossible differential

time: 272 units time: 2122 units
232 chosen plaintexts 291.5 chosen plaintexts

Another team, Kim J., Hong S., Sung J., Lee S., Lim J. and Sung S. then (2003) wrote a paper
about impossible differential cryptanalysis of block ciphers: “Impossible Differential Cryptana-
lysis for Block Cipher Structures“ [13]. They focused on introducing method for finding im-
possible characteristics in ciphers with bijective round functions.

In the same year (2003), Raphael C.-W. Phan extended previous works on Rijndael cipher by
introducing an attack on 7 rounds of Rijndael in paper: “Impossible differential cryptanalysis
of 7-round Advanced Encryption Standard (AES)“ [14]. It was possible due to exploiting weak-
nesses in the AES key schedule.

Rijndael
Paper (AES-192): Paper (AES-256):

7 rounds 7 rounds
impossible differential impossible differential

time: 2186 units time: 2250.5 units
292 chosen plaintexts 292.5 chosen plaintexts

This attack (impossible differential) was then further improved by many papers. We would like
to mention one other paper from past few years, specifically from year 2010, in which Mala H.,
Dakhilalian M., Rijmen V. and Modarres-Hashemi M. greatly improved time complexity of the
attack to 7 rounds of Rijndael (AES-128): “Improved Impossible Differential Cryptanalysis of
7-Round AES-128“ [15]. Results:
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3.2. Basic principle

Rijndael
Paper (AES-128):

7 rounds
impossible differential

time: 2110.2 units
2106.2 chosen plaintexts

3.2 Basic principle

As we mentioned, impossible differential cryptanalysis builds on never-occurring differences.
Which means that if particular cipher is decrypted with the correct key, there is no chance of that
difference arising. Suppose we have a pair of texts (plaintexts and corresponding ciphertexts).
Then we are guessing some (round) keys and decrypting those ciphertexts to a predetermined
place in cipher. If the difference of those texts belongs to the set of impossible differentials then
we can surely say that the guessed key is not the right one. This way we eliminate all the
incorrect keys and we are left with only correct one.

3.2.1 Example

Imagine that one round of a cipher consist of only one substitution box which needs three bits
on input and gives us three bits on output, a simple permutation and finally the addition of a
round key. Our cipher has two rounds. The substitution goes as follows:

Input 000 001 010 011 100 101 110 111
Output 011 110 000 001 111 010 100 101

Table 3.1: Impossible differential cryptanalysis example – Substitution table.

The permutation goes as follows:

1 → 2
2 → 3
3 → 1

In other words, the permutation shifts one bit to the right.

Our secret key is 6 bits long and it is divided into two 3 bit long parts. The First (Second) part
serves as the round key for first (second) round.

Suppose we choose 010101 as our key. The first round key is therefore 010 and the second
round key is 101. Then we got two plaintexts 111 and 001. To write this information down
more clearly:
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3. Impossible differential cryptanalysis

P0 = 111
P1 = 001
−−−−

k0 = 010
k1 = 101

1st round:
We are starting with the input difference equal to:

∆in = P0 ⊕ P1 = 110

Then we transform the plaintexts with the substitution:

P
′
0 = S(P0) = S(111) = 101
P

′
1 = S(P1) = S(001) = 110

Next we put the result of previous step through permutation:

P
′′
0 = Perm(P ′

0) = Perm(101) = 110
P

′′
1 = Perm(P ′

1) = Perm(110) = 011

And finally we perform the addition of a round key:

P
′′′
0 = P

′′
0 ⊕ k0 = 110⊕ 010 = 100

P
′′′
1 = P

′′
1 ⊕ k0 = 011⊕ 010 = 001

Difference after the first round:

∆btwn = P
′′′
0 ⊕ P

′′′
1 = 101

Note: We can see that the difference did not change with the key addition.

2nd round:
Substitution:

R
′
0 = S(P ′′′

0 ) = S(100) = 111
R

′
1 = S(P ′′′

1 ) = S(001) = 110
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3.2. Basic principle

Permutation:
R

′′
0 = Perm(R′

0) = Perm(111) = 111
R

′′
1 = Perm(R′

1) = Perm(110) = 011

Addition of the round key:

R
′′′
0 = R

′′
0 ⊕ k1 = 111⊕ 101 = 010

R
′′′
1 = R

′′
1 ⊕ k1 = 011⊕ 101 = 110

Output difference:
∆out = R

′′′
0 ⊕R

′′′
1 = 100

Now we try to determine which differences are even possible after the first round of our cipher.
For this we should analyze substitution and permutation.
Note: Addition of a round key does not change difference. Because we XOR same values of the
key to both plaintexts. For the further explanation see section 4.4.

Note: We perform the same analysis as in the simple example from section 2.4.4.

∆out

000 001 010 011 100 101 110 111
000 1.0 0 0 0 0 0 0 0
001 0 0.5 0 0 0 0.5 0 0
010 0 0 0 0.5 0 0 0 0.5
011 0 0 0.5 0 0 0 0.5 0
100 0 0 0 0 1.0 0 0 0
101 0 0.5 0 0 0 0.5 0 0
110 0 0 0 0.5 0 0 0 0.5

∆in

111 0 0 0.5 0 0 0 0.5 0

Table 3.2: Impossible differential cryptanalysis example – probabilities of individual differentials
(Substitution box).

Permutation just shifts the difference one position to the right.

Notice (from the table 3.2) that we have fifty impossible differentials for substitution. Recall
that difference from substitution box is then shifted with permutation. If we have (after substi-
tution) difference 101, then (after permutation) we obtain difference 110.

Finally, after the whole first round we still have fifty impossible differentials, but shifted one
position to the right because of the permutation.
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3. Impossible differential cryptanalysis

Now we guess a second round key and decrypt the ciphertexts to the start of the second
round. After that we compare real obtained difference with those from the impossible differ-
entials (with corresponding input difference) and in case of a match, it is apparent that the
guessed key is wrong.

Decryption:
C0 = 010
C1 = 110

Addition of a guessed round key:

kg = 100
−−−−

R
′′
0 = C0 ⊕ kg = 010⊕ 100 = 110

R
′′
1 = C1 ⊕ kg = 110⊕ 100 = 010

Inverse permutation:
R

′
0 = Perm−1(R′′

0) = Perm−1(110) = 101
R

′
1 = Perm−1(R′′

1) = Perm−1(010) = 100

Inverse substition:
P

′′′
0 = S−1(R′

0) = S−1(101) = 111
P

′′′
1 = S−1(R′

1) = S−1(100) = 110

Difference:
∆btwn = P

′′′
0 ⊕ P

′′′
1 = 001

We know that after the first round with the input difference = 110, we can possibly obtain
only these differences:

∆0 = 101
∆1 = 111

Everything else is impossible. We list the impossible differentials for this input difference
(110) after one round for better clarity:

(110,000), (110,100), (110,001),
(110,010), (110,110), (110,011)
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3.2. Basic principle

At this point we are able to determine whether the calculated difference belongs to set of im-
possible differences.

Comparing differences:

∆btwn = 001
∆btwn ∈ impossible differences

⇓
The guessed key (100) is wrong.

We guessed a wrong key, which means we can delete it and guess another. This way we narrow
down the key space. If we exhaust all possibilities, then we can choose another input difference
or the same input difference with other plaintexts and perform the analysis again.

3.2.2 Notes about example

Clarifying the selection of example: substitution and permutation were chosen at random, but
the existence of the permutation in our cipher was substantial.

Imagine this example without permutation, but with the same substitution. We could have
guessed whatever key, but we would never get to the impossible difference. As follows:

1. We would guess the key. Difference remains the same, i.e. is still possible.

2. We would then do inverse substitution. But the difference would change only in possible
way (see table 3.2). Difference remains possible.

It is necessary to have some operation like permutation to set off the difference. To explain
it differently: go to the inverse substitution with unanticipated difference (considering input
difference).
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Chapter 4
Impossible differential cryptanalysis of

Baby Rijndael

In this section we use information from previous chapters to deploy an attack on the chosen
cipher – Baby Rijndael. We introduced Baby Rijndael cipher, including its implementation, in
chapter 1. We characterized its operations: SubBytes, ShiftRows, MixColumns and AddRoundKey,
which is significant for further understanding and cryptanalysis. This implementation is then
used for impossible differential cryptanalysis in class Differential, which contains meth-
ods needed for an attack. These will be described more in depth in the following sections.

4.1 Analysis of SubBytes
We perform the same analysis as in the example from section 2.4.4 (Differential cryptanalysis)
in table 2.4 and from section 3.2 (Impossible differential cryptanalysis – Basic Principle) in table
3.2. Simply put, we want to know the possible / impossible differentials. In other words: we are
searching for probabilities of individual differentials.

We implemented this functionality in the method sboxDiffs(int inverse), which tries every
possible input pair (difference) and logs what difference we get on output. Recall that SubBytes
in Baby Rijndael has 4 bits on input and gives us 4 bits on output. After performing the ana-
lysis, we obtain a table with 16 rows and 16 columns (4 bits give 24 = 16 possibilities).

Information known before the result:

• Differential (0000,0000) – should have 100% probability, because every pair of a same
input text (without difference) is transformed to same output text (without difference),
due to bijectivity of operation SubBytes.

• Probability will always take the form: (even number/16) – we know, that the
order of a pair does not affect output difference – that is, the difference of (A,B) is the
same as the difference of (B,A) due to the symmetry of the XOR operation.
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4. Impossible differential cryptanalysis of Baby Rijndael

Final result:

∆in

0 1 2 3 4 5 6 7 8 9 A B C D E F

∆
o
u

t

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 2 0 2 0 2 0 2 2 0 0 0 0 4 0
2 0 0 2 2 0 0 0 0 2 4 2 0 2 0 0 2
3 0 4 0 0 2 0 0 2 2 0 2 0 2 2 0 0
4 0 2 4 0 0 2 2 2 0 0 2 0 0 0 0 2
5 0 0 0 0 4 0 2 2 0 2 0 2 2 0 0 2
6 0 0 0 0 0 2 2 0 4 0 2 2 2 0 2 0
7 0 0 0 2 0 0 4 2 2 0 0 0 0 2 2 2
8 0 2 0 2 2 2 0 0 2 0 0 2 0 0 0 4
9 0 2 0 0 0 2 0 0 0 2 0 0 2 4 2 2
A 0 2 2 2 0 0 2 0 0 0 0 2 4 2 0 0
B 0 0 2 2 2 4 0 2 0 0 0 0 2 0 2 0
C 0 0 0 2 2 2 2 0 0 2 4 0 0 2 0 0
D 0 0 2 0 2 0 0 0 0 0 2 4 0 2 2 2
E 0 2 0 4 0 0 0 2 0 2 2 2 0 0 2 0
F 0 0 2 0 0 2 0 4 2 2 0 2 0 2 0 0

Table 4.1: Probabilities of individual differentials (Baby Rijndael’s SubBytes).

Legend:

• All numbers (probabilities) are shown as nominator to denominator 16.

• For example: 2 → 2/16 = 0.125

Because of the method of calculation of probabilities, this table could be used for differential
cryptanalysis as well. However, for our purpose we only need to know if individual differential
is possible or not. There is no need to know specific values of probability.

Observation:

Every input difference has precisely seven possibilities of output difference.

Original output file from method sboxDiffs(int inverse), which was further processed to
form the table 4.1, is located in src/results/sbox-diffs.txt.
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4.2. Analysis of ShiftRows

4.2 Analysis of ShiftRows
Recalling the structure of a state of Baby Rijndael

A =
(
a0 a2
a1 a3

)
, ai ∈ GF (24)

and the knowledge, that operation ShiftRows switches positions a1 and a3, then we can easily
conclude, that same happens to difference of texts.

Therefore there is no need for a special method for handling difference after ShiftRows, but we
need to keep it in mind for computation of impossible differentials.

Example:

Suppose we have a pair of plaintexts:

P0 = 0101 1010 1110 0100
P1 = 0110 1110 0010 0001

and their input difference:

∆in(P0, P1) = P0 ⊕ P1

= 0101 1010 1110 0100⊕ 0110 1110 0010 0001
= 0011 0100 1100 0101

Now we put those plaintexts through operation ShiftRows:

ShiftRows(P0) = 0101 0100 1110 1010
ShiftRows(P1) = 0110 0001 0010 1110

and calculate their output difference after this operation:

∆out(ShiftRows(P0),ShiftRows(P1)) = ShiftRows(P0)⊕ ShiftRows(P1)
= 0101 0100 1110 1010⊕ 0110 0001 0010 1110
= 0011 0101 1100 0100

Output difference is just input difference after operation ShiftRows.

ShiftRows(∆in) = 0011 0101 1100 0100
∆out = 0011 0101 1100 0100
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4.3 Analysis of MixColumns
Operation MixColumns is handled by method mixColumnsDiffs(int inverse). Before further
explanation, please recall the changed view of state from section 1.4. Meaning, we put 8 bits
on input and we get 8 bits on output.

For implementation we utilize the knowledge that we can put difference through operation
MixColumns the same way as state and we get output difference (differential).

Note: Notation “5D“ means two hexadecimal numbers 5 and D in a form of 8 consecutive bits.
This example would be 5D = 01011101.

Example:

Suppose we have this pair of texts:

P0 = 10101010 (AA)
P1 = 01001000 (48)

They have input difference:

∆in = 11100010 (E2).

Now we put them through operation MixColumns:

MixColumns(P0) = MixColumns(10101010) = 11111111
MixColumns(P1) = MixColumns(01001000) = 01011111

Output difference:
∆out = 11111111⊕ 01011111 = 10100000

Now we try to put the input difference itself through operation MixColumns.

MixColumns(∆in) = MixColumns(11100010) = 10100000

Apparently it does not matter whether we transfer a pair of texts (with some input difference)
and then calculate their output difference or put the input difference itself through MixColumns.

Finally, because of 8 bits on input, we end up with list of 28 = 256 one-to-one transformations.

The result of analysis (transformation table) is shown in table 4.2. The original output file from
method mixColumnsDiffs(int inverse) is in src/results/mixDiffs.txt.
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How to read the table 4.2:

MixColumns requires 8 bits on input and these 8 bits are composed of two 4 bit long positions.
We used those positions to better navigate through table.

Reading:

Input A7 = 1st position A
= 2nd position 7

Output = 13

2nd position
0 1 2 3 4 5 6 7 8 9 A B C D E F

1s
t
po

si
ti
on

0 00 D5 9A 4F 17 C2 8D 58 2E FB B4 61 39 EC A3 76
1 5D 88 C7 12 4A 9F D0 05 73 A6 E9 3C 64 B1 FE 2B
2 A9 7C 33 E6 BE 6B 24 F1 87 52 1D C8 90 45 0A DF
3 F4 21 6E BB E3 36 79 AC DA 0F 40 95 CD 18 57 82
4 71 A4 EB 3E 66 B3 FC 29 5F 8A C5 10 48 9D D2 07
5 2C F9 B6 63 3B EE A1 74 02 D7 98 4D 15 C0 8F 5A
6 D8 0D 42 97 CF 1A 55 80 F6 23 6C B9 E1 34 7B AE
7 85 50 1F CA 92 47 08 DD AB 7E 31 E4 BC 69 26 F3
8 E2 37 78 AD F5 20 6F BA CC 19 56 83 DB E 41 94
9 BF 6A 25 F0 A8 7D 32 E7 91 44 0B DE 86 53 1C C9
A 4B 9E D1 04 5C 89 C6 13 65 B0 FF 2A 72 A7 E8 3D
B 16 C3 8C 59 01 D4 9B 4E 38 ED A2 77 2F FA B5 60
C 93 46 09 DC 84 51 1E CB BD 68 27 F2 AA 7F 30 E5
D CE 1B 54 81 D9 0C 43 96 E0 35 7A AF F7 22 6D B8
E 3A EF A0 75 2D F8 B7 62 14 C1 8E 5B 03 D6 99 4C
F 67 B2 FD 28 70 A5 EA 3F 49 9C D3 06 5E 8B C4 11

Table 4.2: Transformation of the difference during Baby Rijndael’s MixColumns.

4.4 Analysis of AddRoundKey

Analysis of operation AddRoundKey is unnecessary, because it does not change the difference.

Example:

Suppose we have a pair of plaintexts and their difference:
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4. Impossible differential cryptanalysis of Baby Rijndael

P0 and P1

∆(P0, P1) = P0 ⊕ P1

If we XOR the same key to both of them and then calculate their difference we obtain:

(P0 ⊕ k)⊕ (P1 ⊕ k)
= P0 ⊕ P1 ⊕ k ⊕ k
= (P0 ⊕ P1)⊕ (k ⊕ k)
= P0 ⊕ P1

XOR of a key does not make any change to the difference of plaintexts.

4.5 Conjuction of SubBytes and MixColumns

For the purpose of our cryptanalysis we decided to join SubBytes with MixColumns into a single
operation. This means we had to move operation ShiftRows to the start of a round. The reason
why we are able to do that is justified in [1, page 42-43]. Now we explain what we gain from
this move.

One Round

ShiftRows

SubBytes

MixColumns

AddRoundKey

One Round

ShiftRows
SubBytes

MixColumns

AddRoundKey

+

Figure 4.1: One round of Baby Rijndael for the purpose of our analysis – original and changed.

Suppose we think about differentials in the original sequence of operations, ShiftRows would
have interchange differences between two halves and our table would have all 216 = 65536 pos-
sibilities on input. In contrast, we can easily compute differentials for operation SubBytes+Mix-
columns without thinking about ShiftRows, because this joint operation has only 28 = 256
possibilities on input. Information gained from the result table of differentials can be used for
the first half (8bits) and second half (8bits) of state of Baby Rijndael separately.
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4.6. Analysis of SubBytes+MixColumns

4.6 Analysis of SubBytes+MixColumns
Note: When we compute differentials we calculate the possible ones. Impossible differentials
are computed as final product of cryptanalysis as a complement to them.

We implemented this joint operation in method sMixDiffs(int inverse) where we try every
possible pair on input (256 × 256). Method first gets the difference of this pair, then puts it
through SubBytes and MixColumns and finally gets the difference after these operations. Res-
ults (possible differentials) are saved in src/results/sMixDiffsValues.txt.

The results give us further understanding of which input differences should be analyzed. That
is due to shorter list of possible differentials in some cases. Notice that this shorter list always
has seven differentials. The reasons for this fact are:

• When we recall the outcome of the analysis of SubBytes, we notice that we always have
seven differentials for a given input difference. Because of its bijective characteristic,
MixColumns only transforms a difference to another one.

• Shorter lists are achievable due to one difference (of two 4 bit long positions going into
SubBytes) being zero. This difference always gives us a zero difference on the output.

• If both 4 bits positions are non-zero, then we get seven possibilities for each of them, so
combined it gives us final 7 × 7 = 49 possibilities for longer lists of possible differentials.

• We can conclude that we are only interested in those input differences to cipher
which have one of 4 bits positions equal to zero. This way we obtain shorter
lists of differentials, which implies shorter computation time.

• These interesting differences are: 01, 02, ... , 0F and 10, 20, ... , F0

4.7 Computation of differentials
At this stage of our work we have enough tools and pre-computed values to get (im)possible
differentials for a whole round or for multiple rounds of Baby Rijndael. In this section we de-
scribe this procedure and its implementation, which can be found in method computePossible(
uint16_t inDiff, int numOfRounds), where arguments are:

• inDiff – Input difference at the beginning of cipher.

• numOfRounds – Number of rounds we want to get the differentials of.
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4. Impossible differential cryptanalysis of Baby Rijndael

Pseudo algorithm:

1: possible_differences← input_difference ; start← 0 ; end← 1
2: for i = 0 to number_of_rounds do
3: repeat
4: difference ← ShiftRows(possible_differences[start])
5: first_column← first half of difference
6: second_column← second half of difference
7: start← start+ 1
8: first_differences← analysis of SubBytes+MixColumns(first_column)
9: second_differences← analysis of SubBytes+MixColumns(second_column)
10: for j = 0 to size(first_differences) do
11: for k = 0 to size(second_differences) do
12: possible_differences← first_differences[j] + second_differences[k]
13: end for
14: end for
15: until start < end
16: end← size(possible_differences)
17: end for

1 We create a set with one entry at the start – input difference. We create variables
start and end which are used later for going through unprocessed differences from a set of
possible_differences

2 Loop a defined number of rounds (numOfRounds).

3 Loop through all unprocessed differences.

4 Perform ShiftRows on them.

5+6 We split a difference into two columns (of 8bits), first column and second column.

8+9 We define first_differences/second_differences as sets of differences we have from the
analysis of SubBytes + MixColumns; more precisely – possible output values of difference
equal to first/second_column.

10 Loop through all output differences of first_differences.

11 Loop through all output differences of second_differences.

12 For every output difference from second_differences: add the combination of differ-
ences from step 10 and this output difference to the end of the set.

We will use the knowledge of computation of the differentials in the following sections.

Note: We should stress the fact that we do not need to know the key for determining dif-
ferentials. That is, we are able to pre-calculate impossible differentials, save them and then
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4.8. Structure of attacks

use them multiple times regardless of round keys which are actually used for encryption. This
pre-calculation is a one-time operation.

4.8 Structure of attacks

Last round

Guess key

Impossible
difference

σs-1 ⊕k

Ciphertexts

Figure 4.2: Decrypting through the last round of Baby Rijndael for the impossible differential
cryptanalysis.

Note: We assume that we have performed the calculation of impossible differentials beforehand
and that we have a pair of plaintexts and corresponding ciphertexts; the attack should recover
the key.

All following attacks / analyses have the same structure. At the beginning we guess a round
key and then we go backwards through the last round of Baby Rijndael, decrypting the cipher-
texts. We stop after SubBytes−1 with some difference. This difference is then compared with
the pre–computed values of (im)possible differences. If the difference is impossible, then the
guessed key is wrong and we drop it.

35



4. Impossible differential cryptanalysis of Baby Rijndael

4.9 Attack on 2 rounds of Baby Rijndael

Guess kDifference

0.

1.

2.

Plaintexts

Ciphertexts

s σ t⋅ ⊕k

⊕k

⊕kσs

Figure 4.3: Attack on 2 rounds of Baby Rijndael (1st variant).

This simplification of an attack (2 rounds instead of all 4 rounds) allows us to further understand
impossible differential cryptanalysis. We will later use knowledge gained in this way to mount
an attack on full 4 rounds of Baby Rijndael.

In the demonstration of the attacks we always use these round keys:

k2k0 k1

6 3

5 8

6 5

B D

1 2

E 6

Figure 4.4: Attack on 2 rounds of Baby Rijndael – key schedule.

Note: The operation ShiftRows (σ) is, in the Baby Rijndael, equal to its inversion ShiftRows−1

(σ−1). Because of that, we always use ShiftRows (σ) without the inversion symbol.

4.9.1 1st variant of an attack:

We want to know the (im)possible differentials after the first round of Baby Rijndael. In our
first variant we are working with the original sequence of operations: SubBytes, ShiftRows,
MixColumns and AddRoundKey.
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4.9. Attack on 2 rounds of Baby Rijndael

Attack:

1. We calculate impossible differentials for the given input difference. See figure
4.5.

We start with this simple input difference:

(
1 0
0 0

)

Now we use results of the previous analyses (sections 4.1 to 4.6) to determine transform-
ation (or branching) of the difference.
Note: We calculate impossible differentials as a complement to possible differentials (it is
easier in this case).

Input
Difference

⊕k01 0

0 0

1 0

0 0

s 6 0

0 0

4 0

0 0

2 0

0 0

1 0

0 0

8 0

0 0

9 0

0 0

E 0

0 0

σ 6 0

0 0

4 0

0 0

2 0

0 0

1 0

0 0

8 0

0 0

9 0

0 0

E 0

0 0

t⋅ D 0

8 0

7 0

1 0

A 0

9 0

5 0

D 0

E 0

2 0

B 0

F 0

3 0

A 0

σ

σ

σ

σ

σ

σ

0

0

0

0

0

0

0

0

0

0

0

0

0

0

t⋅

t⋅

t⋅ ⊕k1

t⋅

t⋅

t⋅

⊕k1

⊕k1

⊕k1

⊕k1

⊕k1

⊕k1

D

8

7

1

A

9

5

D

E

2

B

F

3

A

Possible
differentials

0. 1.

Figure 4.5: Attack on 2 rounds of Baby Rijndael – possible differentials (1st variant).
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2. We select a pair of plaintexts with the chosen input difference.
Our choice:

P0 =
(

2 A
C 5

)
P1 =

(
3 A
C 5

)

3. We run them through 2 rounds of Baby Rijndael. Remember that the second
round is without MixColumns. We recieve a pair of corresponding ciphertexts.

C0 =
(

9 2
3 8

)
C1 =

(
6 2
3 7

)

4. We guess the second round key.
Our choice:

k2 =
(

0 E
0 B

)

5. We decrypt these ciphertexts to the start of the second round with the guessed
round key.

Last round

σs-1 ⊕k2
C0

σs-1 ⊕k2

Difference

9 2

3 8

6 2

3 7

9 C

3 3

6 C

3 C

9 C

3 3

6 C

C 3

E 7

2 2

A 7

7 2

4 0

5 0

C1

0 E

0 B
k2

Figure 4.6: Attack on 2 rounds of Baby Rijndael – decrypting the last round (1st variant).

6. We compare the difference of the decrypted ciphertexts with the pre-calculated
set of impossible differences.
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4.9. Attack on 2 rounds of Baby Rijndael

∆ =
(

4 0
5 0

)
/∈ possible differences

⇓
We have an impossible difference.

7. If we get an impossible difference, we drop this guessed key.

We drop the key
(

0 E
0 B

)
.

8. We return to step 4 and guess another round key.

After we go through all possible keys, we end up left with 3072 keys8.

9. Now we choose different plaintexts and go through attack from step 2 once
again.

To end up with 256 possible keys, we need to go through 2.45 plaintext pairs in average9.

8Number 3072 is specific to this particular example.
9We ran program 100 times and calculated the average number.
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4.9.2 2nd variant of an attack:

In the second variant of an attack we work with the changed sequence of operations: ShiftRows
(σ), SubBytes+MixColumns (s + t·) and AddRoundKey (⊕).

The first noticeable change is in the computation of (im)possible differentials, where we use the
analysis of operation SubBytes+MixColumns from section 4.6.

Input
Difference

⊕k01 0

0 0

1 0

0 0

s+t⋅σ 1 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

⊕k1

⊕k1

⊕k1

⊕k1

⊕k1

⊕k1

⊕k1

D

8

7

1

A

9

5

D

E

2

B

F

3

A

Possible
differentials

0. 1.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

8

7

1

A

9

5

D

E

2

B

F

3

A

Figure 4.7: Attack on 2 rounds of Baby Rijndael – possible differentials (2nd variant).

Flow of the attack is altered from step 4 of the previous attack (1st variant) from section 4.9.1.

Note: Values, unless stated otherwise, are the same as in the attack from previous section 4.9.1.
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4.9. Attack on 2 rounds of Baby Rijndael

Attack:

1. We calculate the impossible differentials for the given input difference. See figure 4.7.

2. We choose a pair of plaintexts with the defined input difference.

3. We run them through 2 rounds of Baby Rijndael. Do not forget that the second round is
without MixColumns. We receive a pair of corresponding ciphertexts.

4. We guess a half of the second round key.
We choose the first 4 bits (1st position) of the key and the last 4 bits (4th position) of the
key. The reason behind is indicated in the figure 4.8 and further explained in the following
text. The key only affects the positions printed in pink. As a result of this shorter guess,
we decrease the time complexity.

Last round

Guess key

Impossible
difference

σs-1 ⊕k2

Ciphertexts

Figure 4.8: Attack on 2 rounds of Baby Rijndael – guessing half of the second round key (2nd
variant).

Our choice:

k2 =
(
E 0
0 B

)

5. We decrypt these ciphertexts to the start of a second round with the guessed
half of round key.
Note: We get first 8 bits of difference at the start of a second round.

The result is shown in figure 4.9.

6. We compare the first half of a difference of the decrypted ciphertexts with
first-halves of the pre-calculated set of impossible differences.

∆ =
(
D 0
5 0

)
/∈ possible differences

⇓
We have an impossible difference.
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Last round

σs-1 ⊕k2
C0

σs-1 ⊕k2

Difference

9 2

3 8

6 2

3 7

8 2

3 C
C1

E 0

0 B
k2

4 6

7 2

7 2

3 3

9 6

2 2

7 2

3 3

D 0

5 0

8 2

C 3

Figure 4.9: Attack on 2 rounds of Baby Rijndael – decrypting last round (2nd variant).

7. If we get a match, we drop this guessed key and every other key with the
matching 1st position and 4th position.

Note: In our case it means that we drop 28 = 256 keys.

All the dropped keys have this form (Guessed 1st position, Anything, Any-
thing, Guessed 4th position).

Reason: if we would consider every key in the mentioned form, we would get the same half
of difference at the start of a second round. A change would only occur in the second-half.
This means we can surely drop that key too, because a decryption with it results in an
impossible difference.

We drop the set of keys with this form
(

E 0− F
0− F B

)
.

8. We return to the step 4 and guess half of another round key (from remaining
keys).

Note: We need to go through just 28 = 256 keys instead of all 216 = 65536 needed in the
previous variant of the attack.
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4.9. Attack on 2 rounds of Baby Rijndael

We go through the remaining possible halves of keys. We end up with 3072 possible
keys10 left.

9. Now we change plaintexts and go through the attack from step 2 again.

To end up with 256 keys, we need to go through 2.5 plaintext pairs on average11.

10. Notice the form of the result. We use it in the following attack for further
improvement.

The possible keys take the form:
(

1 0− F
0− F 6

)
. Notice that 1st and 4th position of

the second round key are resolved.

10Number 3072 is specific to this particular example.
11We ran the program 100 times and calculated the average number.
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4.10 Attack on 4 rounds of Baby Rijndael

Guess kDifference

0.

1.

4.

Plaintexts

Ciphertexts

s σ t⋅ ⊕k1

⊕k0

⊕k4
σs-1

2.
s σ t⋅ ⊕k2

3.
s σ t⋅ ⊕k3

Figure 4.10: Attack on 4 rounds of Baby Rijndael.

In the following attack we always use these round keys:

k2k0 k1

6 3

5 8

6 5

B D

1 2

E 6

k4k3

7 5

D B

0 5

3 8

Figure 4.11: Attack on 4 rounds of Baby Rijndael – key schedule.

We attained some previous knowledge about analysis of Baby Rijndael from two attacks de-
scribed in previous subsections. We use them to construct an attack on all 4 rounds.
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Attack:

1. We calculate the impossible differentials for the given input difference.

We choose ∆in =
(

1 0
0 0

)
.

The result of calculation of the (im)possible differentials with this input difference is in
src/results/1000.txt. The result was calculated using the algorithm described in sec-
tion 4.7.

2. We choose a pair of plaintexts with the given input difference.
Our choice:

P0 =
(
F 1
C E

)
P1 =

(
E 1
C E

)

3. We run them through 4 rounds of Baby Rijndael. Remember that the fourth round is
without MixColumns. We receive a pair of corresponding ciphertexts.

C0 =
(
F 1
1 8

)
C1 =

(
3 1
F 4

)

4. We guess a half of the fourth round key.
Our choice:

k2 =
(
E 0
0 B

)

5. We decrypt these ciphertexts to the start of a fourth round with the guessed
half of the round key.
Result is shown in figure 4.12.

6. We compare the first half of the difference of the decrypted ciphertexts with
first-halves of the pre-calculated set of impossible differences.
Note: For the purpose of comparing only first-halves we made a special file with half-sized
differences and no duplicate values. The file is in src/results/1000-halves.txt.

∆ =
(

2 0
9 0

)
∈ possible differences

⇓
We have a possible difference.
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Last round

σs-1 ⊕k4
C0

σs-1 ⊕k4

Difference

F 1

1 8

3 1

F 4

D 1

F F
C1

E 0

0 B
k4

F D

B B

1 1

1 3

D D

2 D

1 1

3 1

2 0

9 6

D 1

F F

Figure 4.12: Attack on 4 rounds of Baby Rijndael – decrypting last round.

7. If we get an impossible difference, we drop this guessed key and every other
key with the matching 1st position and 4th position.

We got possible difference. So we do not cross anything.

8. We return to step 4 and guess half of another round key (from the remaining
keys).

We go through all remaining possible halves of keys. We end up with 55296 keys12 left.
We dropped 10240 (40 ∗ 28) keys by checking just 256 key halves.

9. Now we change plaintexts and go through attack from step 2 again.

To end up with 256 keys we need to go through 25.7 = 51 plaintext pairs on average13.

The possible keys take this form:
(

0 0− F
0− F 8

)

10. Eventually we end up with solved 1st and 4th positions.
12Number 55296 is specific to this particular example.
13We ran the program 100 times and calculated the average number.
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11. Now we have two possible options. Either perform the impossible differential
cryptanalysis on the remaining 256 possible keys with full differentials (a) or
apply brute-force attack on the rest (b). We evaluate both options.

a) We go through all the remaining 256 keys with full differences (differ-
entials). This means we use method from 1st variant of an attack on 2
rounds (section 4.3).

Note: We use the original file mentioned in step 1 (src/results/1000.txt). We
guess all bits of the fourth round key.

To end up with one key we need to go through 25.81 = 56 plaintext pairs on
average14.

The one possible key left is:
(

0 5
3 8

)
which matches k4. This means we successfully

performed an attack on all 4 rounds of Baby Rijndael and recovered the correct key.

b) We go through all 256 left possible keys and decrypt ciphertexts to the
start of a fourth round (= the end of a third round). Then we check, if
we get a match of texts after three rounds.

Note: We are able to do so with just one pair of plaintexts.

After going through 27 = 128 possibilities in the average case we end up with the

correct fourth round key
(

0 5
3 8

)
.

14We ran program 100 times and calculated the average number.
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Conclusion

In our thesis we described the important parts which, combined, provide view on impossible
differential cryptanalysis. From the beginning where we outlined cipher on which this technique
was implemented, through a general look at cryptanalysis and comparison of other techniques
to build foundations on which the impossible differential cryptanalysis is constructed. After this
theoretical background we moved to a practical example, because it is better to see something
even once in reality than hear hundred times about it (in this case: read about it). All the
theoretical parts came together so that we could perform a proper analysis and devise an al-
gorithm. Finally we were able to execute complete attack on all 4 rounds of Baby Rijndael. In
the last chapter (4.10) we provided what we set out to do in the introduction – a tutorial on
how to perform a basic attack with this technique.

Once again we saw, that is better to look at things from various different perspectives. What the
original differential cryptanalysis started (and did well), the impossible differential cryptanalysis
took and applied from another point – from the other side. We looked at the cipher and its
impossibilities which gave us much more information than we thought at the start. At the end
we performed a successful attack on all 4 rounds of Baby Rijndael with:

1. Time complexity equal to 25.7 ∗ 28 + 25.81 ∗ 28 = 27671 units and space complexity
equal to 216 = 65536 units with type a of the attack – two consecutive impossible
differential attacks (one on halves of keys and second one on remaining keys).

2. Time complexity equal to 25.7 ∗ 28 + 27 units = 13436 units and space complexity
equal to 28 = 256 units with type b of the attack – an impossible differential cryptanalysis
followed by an exhaustive search of the remaining possibilities.

It is apparent that time needed for this type of attack is significantly smaller than for the brute-
force attack where we have to go through 215 = 32768 possibilities in the average case. For
that reason we are able to conclude that this type of cryptanalysis is effective. Because of that,
we think it can be beneficial to study this technique in more detail and show its workings to
students. It can at least stimulate other points of view on analysis and the design of ciphers.
After all, what we want for the future is a safe environment and that is not possible without
safe communication.
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Appendix A
Contents of CD attachment

readme.txt.............................................short description of CD contents
exe ................................ folder with the executable files of the implementation

babyRijndael-original.exe .... the executable file of the implementation of the Baby
Rijndael cipher
impdiff.exe the executable file of the impossible differential cryptanalysis on 4 rounds
of Baby Rijndael (type b of the attack)

src
impl ............................................. source codes of the implementation
results...................................................files containing the results

1000.txt........file containing the impossible differentials for input difference 1000
1000-halves.txt..file containing the first halves of impossible differentials for input
difference 1000
mixDiffs.txt..................file containing the results of analysis of MixColumns
sbox-diffs.txt..................file containing the results of analysis of SubBytes
sMixDiffsValues.txt..................... file containing the results of analysis of
SubBytes+MixColumns

thesis.............................................source form of the thesis in LATEX
text........................................................................thesis text

thesis.pdf.................................................thesis text in pdf format
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