
L.S.

prof. Ing. Róbert Lórencz, CSc.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague September 8, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Security Analysis of the Telegram IM

 Student: Bc. Tomáš Sušánka

 Supervisor: Ing. Josef Kokeš

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Computer Systems

 Validity: Until the end of winter semester 2017/18

Instructions

Study the state of modern Instant Messaging applications. Select a few suitable examples and document their
main properties, with particular focus on the security of communication. To a greater depth study the
Telegram IM application and its security protocol MTProto. Describe its structure and properties and
compare the actual implementation with the official documentation. Evaluate your findings with respect to a
possible application of attacks such as Padding Oracle, Timing Attacks or similar. If you find a weakness,
attempt to demonstrate it practically using a suitable tool. Describe your discoveries and if necessary,
propose a fix for found weaknesses.

References

Will be provided by the supervisor.





Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Master’s thesis

Security Analysis of the Telegram IM

Bc. Tomáš Sušánka

Supervisor: Ing. Josef Kokeš

4th January 2017





Acknowledgements

I would like to thank my thesis supervisor Ing. Josef Kokeš for his essen-
tial help, guidance and an incredible response time. Many thanks to Jakob
Bjerre Jakobsen from the Aarhus University for sharing his source codes of
the MTProto illustrations that I partially modified. Thanks to Prof. Dr.-
Ing. Christof Paar and Dr.-Ing. Juraj Somorovsky from the Ruhr-University
Bochum for encouraging me to pursue this topic. Special thanks to Miriam
for proofreading and last but not least, I would like to thank my family for
supporting me during my studies.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Žižkov, Prague on 4th January 2017 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
© 2017 Tomáš Sušánka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Sušánka, Tomáš. Security Analysis of the Telegram IM. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2017.



Abstrakt

Tato diplomová práce se zabývá studiem programu Telegram a s ńım souvi-
sej́ıćıho protokolu MTProto. Zaměřuje se předevš́ım na kryptografické zázemı́
protokolu, zdrojový kód Android aplikace, zkoumá datový přenos a porovnává
stav aplikace s oficiálńı dokumentaćı. Dále analyzuje potencionálńı bezpeč-
nostńı slabiny a př́ıpadně demonstruje jejich zneužit́ı.

Kĺıčová slova instant messaging, Telegram, MTProto, bezpečná komunikace,
bezpečnostńı analýza

Abstract

This thesis is devoted to an analysis of the Telegram Messenger and the related
MTProto protocol. It studies the cryptographic background of MTProto, the
Android client source code and the generated network traffic. Additionally,
it compares the application to its official documentation. Finally it discusses
potential vulnerabilities and various attempts to exploit them.

Keywords instant messaging, Telegram, MTProto, secure communication,
security analysis

ix





Contents

Introduction 1

1 Current security status of major IMs 3
1.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Security aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 WhatsApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Threema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 WeChat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Telegram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Cryptography behind Telegram 17
2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Regular chats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Secret chats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The Analysis 27
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Undocumented obfuscation . . . . . . . . . . . . . . . . . . . . 32
3.5 Replay attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Conclusion 45

Bibliography 47

A Contents of CD 53

xi





List of Figures

1.1 WhatsApp’s registration process . . . . . . . . . . . . . . . . . . . 6
1.2 WhatsAppSniffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Telegram chat modes . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Message payload in regular chats . . . . . . . . . . . . . . . . . . . 19
2.2 MTProto encryption flow . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 IGE block cipher mode . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Message acceptance check . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 MTProto decryption flow . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Encryption key visualization . . . . . . . . . . . . . . . . . . . . . 23
2.7 Message payload in secret chats . . . . . . . . . . . . . . . . . . . . 25
2.8 Message object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Analysis setup 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Analysis setup 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Expected form of sniffed data . . . . . . . . . . . . . . . . . . . . . 32
3.4 Random bytes used for obfuscation . . . . . . . . . . . . . . . . . . 33
3.5 Incoming data processing . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Trudy setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Trudy’s data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii





List of Tables

1.1 Messengers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 WhatsApp’s secure messaging score . . . . . . . . . . . . . . . . . 9
1.3 Signal’s secure messaging score . . . . . . . . . . . . . . . . . . . . 10
1.4 Threema’s secure messaging score . . . . . . . . . . . . . . . . . . 11
1.5 Telegram regular chat’s secure messaging score . . . . . . . . . . . 14
1.6 Telegram secret chat’s secure messaging score . . . . . . . . . . . . 15

3.1 Telegram vs Signal code metrics . . . . . . . . . . . . . . . . . . . 30

xv





Introduction

Instant messaging is a form of a real-time online communication. The history
of Instant Messengers (IM) dates back as far as 1960s, but the modern IMs
as we currently know them started in the mid-1990s with the very popular
ICQ or AOL Instant Messenger. Nowadays, the human interaction and com-
munication take place more and more often in the digital realm and instant
messaging is the digital version of a spoken dialogue.

A common feature of the IM software is the ability to see if a specific
contact is online and available for chat. Further, IMs are primarily designed
for an alternating exchange of a number of shorter messages, as opposed to
the well-established and typically longer emails.

Today, many social networks provide some form of messaging solution as
well. The users are very demanding. Instant messengers are de facto required
to have both mobile and web access and more advanced capabilities, such as
media, voice, or location sharing. Furthermore, the exposure of mass surveil-
lance leaked by the ex-NSA employee Edward Snowden fuelled the demand
for a secure and privacy-aware communication.

This thesis aims to provide a brief overview of the current Instant Mes-
senger solutions, focusing on their security. We will cover the messengers’
history, origin, their security-related aspects and other information in order
to provide the reader with an insight into the security of today’s modern
instant messaging applications.

Following this summary we will focus in more depth on Telegram, which
stresses the need for users’ privacy. Telegram has 100 million active users and
is especially popular in Iran, but also in the US, Germany, India, Uzbekistan,
Russia, Italy or Brazil [1]. Telegram introduces its own cryptographic pro-
tocol MTProto instead of using already known solutions; this was criticised
by a significant part of the cryptographic community [2, 3]. We will devote
ourselves to its in-depth investigation, study of the cryptography behind the
protocol, how the protocol deals with a key negotiation, message authentica-
tion, integrity and other topics.

1



Introduction

Furthermore, we will dive into the code of Telegram itself, focusing primar-
ily on the official Android application. We will verify its consistency with the
official documentation, focus on its code base, evaluate how it proceeds with
storing user’s data, and finally we will draft an attack scenario and attempt
to execute it.

2



Chapter 1

Current security status of major
IMs

This chapter contains a thorough description of five selected Instant Mes-
sengers and their security related discoveries. For an easier comparison we
decided to select messengers with support for mobile platforms. Individual
software versions mentioned are mostly an estimate based on a date some
findings were published and on the software changelog.

1.1 Selection

For our evaluation we selected five Instant Messenger applications. The selec-
tion was based on various criteria to create a diverse mixture of messengers.
These criteria were amongst others: user base, geographical origin, authors,
proclaimed security, license and price. However, we did not want to simply sort
the IMs according to either one of those criteria. We wanted to present a di-
verse collection. That is why we omitted the Facebook Messenger and Apple’s
iMessage, since the first is owned by the very same company as WhatsApp [4]
and the second is yet ano ther US-based company.

1.1.1 WhatsApp1

A large user base and overall popularity of the application is one of the main
reasons WhatsApp is included. With 1 billion active users it is the most
popular messenger at the moment [5].

1https://www.whatsapp.com

3



1. Current security status of major IMs

1.1.2 Signal2

Signal was endorsed by the community on several occasions and is considered
the most secure messenger by many [6]. It is the only completely open-source
messenger in this collection.

1.1.3 Threema3

Threema is the only paid application in this selection. Furthermore, Threema
comes from Switzerland, and therefore may be considered as an European
alternative to the traditionally US-based services.

1.1.4 WeChat4

WeChat is a China-based messenger and with its 700 million active users the
most popular there [7]. As with Threema, we include WeChat mainly for its
distinct origin.

1.1.5 Telegram5

Telegram developers proclaim it is safer than WhatsApp. It uses its own
messaging protocol MTProto and argues for its security. Telegram’s clients
are open-source but the server side is proprietary. The creators of Telegram
are Nikolaj and Pavel Durov, the authors of the Russian social network VK.

Table 1.1: Messengers

Name First release License User base

WhatsApp January 2010 Proprietary 1 billion6

Telegram August 2013 GPLv2/GPLv3/Proprietary 100 million6

Signal July 2014 GPLv3 10 million7

Threema December 2012 Proprietary 3.5 million 8

WeChat January 2011 Proprietary 700 million9

2https://www.whispersystems.org
3https://www.threema.ch
4https://www.wechat.com/en/
5https://www.telegram.org
6As of February 2016.
7Signal’s predecessor TextSecure as of December 2013.
8As of June 2015.
9As of April 2016.

4



1.2. Security aspects

1.2 Security aspects

The Electronic Frontier Foundation maintains a scoreboard of messaging ap-
plications’ security. The scoreboard was initially released on November 2014
and last updated on 5th June 2016.

It evaluates messengers based on these seven criteria [8]:

• Are messages encrypted in transit? All user communication is re-
quired to be encrypted. Encryption of metadata, such as phone numbers,
usernames or dates, is not required.

• Are messages encrypted in such a way the provider cannot
access it? All user messages need to be end-to-end encrypted from the
moment user sends a message to the moment the other party receives it.
No decrypting and re-encrypting may occur during that process. The
private keys need to be generated at the endpoints, not at a centralized
server. Bulk data collection is therefore meaningless and no third-party
can access the messages unless one party allows it.

• Can user verify contacts’ identities? This requires a verification
mechanism of the opposite side’s identity to prevent Man-in-the-Middle
attacks.

• If the keys are stolen, are past communications secure? All
messages need to be encrypted with routinely changing keys. The for-
ward secrecy minimizes the consequences in a case a private key is stolen
because each key has only a short-time validity. This criterion requires
end-to-end encryption and is therefore directly dependent on the second
criterion.

• Is the code open to an independent review? A sufficient amount
of source-code needs to be available to perform an independent code
review. This provides protection from unintentional encryption flaws,
backdoors or bugs.

• Is the cryptography design properly documented? The crypto-
graphy behind the application needs to be placed on record in detailed
documentation.

• Has there been any recent code audit? An independent security
review of the application must not be older than 12 months. It is not
required that the audit is publicly available.

At the end of each chapter dedicated to one messenger a small note about
the received score will be made.

5



1. Current security status of major IMs

1.3 WhatsApp

WhatsApp is a mobile messaging application. Besides text it enables users to
send pictures, videos, voice and locations. WhatsApp Messenger is available
for iPhone, BlackBerry, Windows Phone, Android and Symbian [9].

In February 2016, WhatsApp has reached 1 billion active users per month
and was the most used messenger to date [5]. Its large user base and over-
all popularity of the application is one of the main reasons WhatsApp was
included in this comparison.

Following section describes WhatsApp’s security-related incidents.

1.3.1 Security-related incidents

1.3.1.1 Flaws in the registration process

WhatsApp’s user identity is bound to the user’s phone number. In order
to verify the connection every user has to enter their phone number during
the first start-up. WhatsApp server then sends SMS with a verification code
to this number. User submits the code from the received text message and
WhatsApp creates their account.

Figure 1.1: WhatsApp’s registration process prompts the user to enter his
phone number, and verifies it by sending a text message.

Up to version 2.6.5, WhatsApp offered an alternative verification process.
Instead of the user waiting for a text message, he was supposed to send an SMS

6



1.3. WhatsApp

to one of WhatsApp’s phone numbers where he included his email. WhatsApp
later sent verification code to the email and user verified himself with this
code [10].

Serious issues were found with this method in 2011 [11]. To hijack user’s
account an attacker chose this verification method. Then using an SMS spoof-
ing service he sent an SMS to a WhatsApp’s phone number pretending it
originated from the victim. The attacker then entered his own email in the
message, resulting in WhatsApp sending the verification code to the attacker.
The attacker then simply entered the code from the email and successfully
hijacked the victim’s account.

Following these findings another method for bypassing the registration
process was revealed. During the registration phase WhatsApp sent a request
for a verification SMS to be sent to the client in HTTP request similiar to
this [10]:

GET [..]?to=4915143[..]&auth=659&[..] HTTP/1.1

User-Agent: WhatsApp/2.6.4 iPhone_OS/4.3.3 Device/iPhone_4

Listing 1: HTTP request to dispatch a text message to a client for verification.

The request contained a final verification code in the GET parameter. This
led to a conclusion the client created the verification code, not the server, and
expected user’s confirmation. An attacker could simply intercept the request,
retrieve the verification code and make sure the request did not arrive to
WhatsApp’s servers to make the victim unaware of his malicious intentions.

The attacker created a fake HTTP OK response to let the messenger think
the request was successful and then entered the retrieved verification code
from the intercepted request. The attacker successfully hijacked the victim’s
WhatsApp identity and could both send and receive all the victim’s messages.

The author of the attack scenario notified WhatsApp developers before-
hand and WhatsApp fixed the issue before the research was made public [10].
At the time of writing this thesis, WhatsApp did not offer the discussed veri-
fication method.

1.3.1.2 Password generation

WhatsApp uses a slightly modified version of the XMPP protocol [12]. During
the registration process it creates a username based on the user’s phone num-
ber. In versions newer than 2.10 the password is generated server-side [13],
older versions however, used the phone’s IMEI number as a password [13, 14].
Any phone number and IMEI was therefore everything an attacker needed to
send messages on victim’s behalf. Numerous applications are collecting plenty
of user data, and the IMEI and phone number might be amongst them. Any

7



1. Current security status of major IMs

database leak of such information would lead directly to a mass accounts ab-
use.

md5(revert(<IMEI>))

Listing 2: Pseudo-code of the password generation on Android in older versions
of WhatsApp.

1.3.1.3 Messages encryption

Up to approximately version 2.8, WhatsApp did not use any message encryp-
tion. The messenger used port 443 (commonly used for HTTPS) to send
content, but it did not encrypt anything at all [15]. Using a simple network
sniffer like Wireshark an attacker was able to read all of the user’s messages.

In May 2012, an application called WhatsAppSniffer was released [16, 17].
It exploited the previously described flaw and enabled the attacker to see all
of the victim’s messages in an easy and comprehensible user interface.

Figure 1.2: WhatsAppSniffer application was able to sniff all the user’s data
and read them [17].

In August 2012, WhatsApp first started to use some sort of encryption.
The developers did not reveal which protocol they used or any other inform-
ation about it. Reports showed that simple message sniffing, as described in
the previous paragraph, ceased to work [18]. Some sources claim the RC4
stream cipher was used for encryption [19, 20].

On November 18th, 2014, the creators behind Signal messenger, Open
Whisper Systems (OWS), announced a partnership with WhatsApp. The
partnership should have resulted in incorporating OWS’ encryption protocol

8



1.4. Signal

into WhatsApp, bringing the end-to-end encryption to all WhatsApp clients.
Open Whisper Systems stated: “We are moving quickly towards a world where
all WhatsApp users will get end-to-end encryption by default” [21]. At the
time WhatsApp confirmed the partnership, but did not comment on it any
further or offered any further information. WhatsApp’s FAQ only briefly
stated that “WhatsApp communication between your phone and our server is
encrypted” [22].

In April 2015, heise.de investigated the current state of WhatsApp’s en-
cryption. The journalists were sniffing messages using the Man-in-the-Middle
technique. They showed that Android versions used end-to-end encryption
and that the messages were encrypted according to the TextSecure protocol [23].
However, during an analysis of the iOS client they concluded the messages
weren’t protected in such a manner. Finally, they concluded that they were
unsure whether end-to-end encryption was actually used in all cases.

In April 2016, WhatsApp finally released an official white paper confirming
all its messages are end-to-end encrypted with the use of Signal Protocol. The
document thoroughly described all aspects and encryption methods. It stated
“WhatsApp messages, voice and video calls between a sender and receiver that
use WhatsApp client software released after March 31, 2016 are end-to-end
encrypted.” [24].

1.3.2 EFF’s secure messaging score

At the time of writing, WhatsApp has six points out of seven in the EFF’s
secure messaging scorecard [8].

Table 1.2: WhatsApp’s secure messaging score

Are messages encrypted in transit? 3

Are messages encrypted so the provider can not access it? 3

Can user verify contacts’ identities? 3

Are past communications secure if keys stolen? 3

Is the code open to independent review? 7

Is the cryptography design properly documented? 3

Has there been any recent code audit? 3

1.4 Signal

Signal is an open-source voice calling and messaging application. It is available
for both Android and iOS. Its messages are end-to-end encrypted. During a
voice call a simple identity check is available when a given word is to be
pronounced by both sides of the call.

9



1. Current security status of major IMs

Signal uses its own Signal Protocol (previously called Axolotl) based on
cryptographic primitives such as Elliptic Curves (Curve25519), AES and HMAC-
SHA256 [25]. As mentioned in Section 1.3, WhatsApp currently uses the very
same protocol.

1.4.1 Security-related incidents

In late 2014, Der Spiegel published several articles claiming NSA considered
Signal’s encrypted voice calling combined with other tools as a serious hindrance
to theirs surveilance missions [26]. Edward Snowden recommended Signal on
various occasions [27, 28].

A research team from the Ruhr-University Bochum provided a security
analysis of the former Signal version titled “How Secure is TextSecure?” [25].
They came to a conclusion that the protocol is susceptible to an Unknown key-
share attack and proposed a correction. The researchers pronounced Signal as
secure in case the suggested patch was implemented, which it eventually was.

Up to this date no other security-related incidents or further analysis of
Signal messenger are known.

1.4.2 EFF’s secure messaging score

Signal fulfilled all the requirments in the EFF’s secure messaging scorecard
and received a full score [8].

Table 1.3: Signal’s secure messaging score

Are messages encrypted in transit? 3

Are messages encrypted so the provider can not access it? 3

Can user verify contacts’ identities? 3

Are past communications secure if keys stolen? 3

Is the code open to independent review? 3

Is the cryptography design properly documented? 3

Has there been any recent code audit? 3

1.5 Threema

Threema is a paid IM application available for three major platforms – An-
droid, iOS and Windows Phone. Text messaging, multimedia, locations, voice
messages and file sharing are all supported. Threema is native to Switzerland
and all servers are located there.

Threema is a paid application. As of December 2016, the price was set
to a single payment of e2.99. Threema is using user IDs and linking user’s
phone number and email address is not required.

10



1.6. WeChat

1.5.1 Security-related incidents

In August 2015, Threema was audited by an independent company. The
Threema documentation states [29]: “The result confirms that Threema’s
concepts fully meet the requirements for secure and trustworthy instant mes-
saging.” The full audit is available on Threema’s web page.

The main point of Threema’s criticism is considered to be its closed-source
nature and subsequently the inability to verify its source code. There are no
other security analyses.

1.5.2 EFF’s secure messaging score

In the EFF’s comparison Threema missed a single point for not completing
an indenpendent code review [8].

Table 1.4: Threema’s secure messaging score

Are messages encrypted in transit? 3

Are messages encrypted so the provider can not access it? 3

Can user verify contacts’ identities? 3

Are past communications secure if keys stolen? 3

Is the code open to independent review? 7

Is the cryptography design properly documented? 3

Has there been any recent code audit? 3

1.6 WeChat

WeChat is a Chinese mobile messenger available to all major mobile platforms
including iOS, Android, Windows Phone and BlackBerry. Besides regular text
messages, WeChat offers media, location, video sharing and even games. As
of May 2016, WeChat had 700 million active users [7].

A special business versions of WeChat named Enterprise WeChat was in-
troduced in April 2016, designed for communication within companies and
offering few additional features.

1.6.1 Censorship

The Internet censorship in China blocks extensive amount of web sites includ-
ing web giants such as Facebook, Twitter or Google [30, 31].

Since WeChat’s servers are located in China, it is subjected to these re-
strictions. Users are required to agree to and obey specific rules, such as
“upholding the socialist system, social morality and authenticity of informa-
tion” [32]. The Chinese government’s reasoning for such actions is allegedly
to build a cleaner cyberspace and to ensure national security [33].

11



1. Current security status of major IMs

1.6.2 Security-related incidents

WeChat operators are capable of accessing messages, contacts and even user’s
location. Numerous countries including United States, India and even China
itself expressed concerns over WeChat being a threat to their national security
issues [34].

1.6.2.1 XcodeGhost malware

In 2015, Apple reported WeChat was infected with XcodeGhost malware [35].
The malware was able to obtain user device information, read clipboard,
prompt alert dialog and other. Apple claimed the malware was not able to
cause any significant damage and could not access any user data.

1.6.3 EFF’s secure messaging score

Regrettably, WeChat was not included in the EFF secure messaging survey.

1.7 Telegram

Telegram is an instant messaging service enabling users to send messages, pho-
tos, videos, stickers and files. Telegram describes itself as fast and secure solu-
tion for instant messaging and claims to be safer than WhatsApp. Compared
to WhatsApp, Telegram is more cloud-based because it stores all messages on
its servers and synchronizes them with all of the user’s devices [36].

Nikolaj and Pavel Durov are the authors of Telegram. After leaving the
social network VK founded by Pavel Durov, they focused on creating safe
forms of communication, eventually resulting in Telegram.

Telegram provides two modes of messaging. Apart from the regular chat,
Telegram provides so-called secret chats. Secret chat messages are end-to-end
encrypted and are not stored on the Telegram’s servers for longer periods of
time than absolutely necessary [36].

Similar to WhatsApp, user can contact someone using his phone num-
ber, but Telegram provides classical username-focused approach as well. User
needs to know the recipient’s phone number or Telegram username in order
to communicate with them.

All clients are licensed under GPLv2 or GPLv3 license, the server-side part
of Telegram is a closed-source and proprietary software [37].

In 2015, a Brazilian judiciary commanded WhatsApp to shut down its
services for 48 hours. During this period, which was ultimately lowered to
only 12 hours, Telegram welcomed 5 million new users [38]. It may therefore
be considered a direct competitor of WhatsApp.

In May 2015, Telegram had 62 million active users [39].

12



1.7. Telegram

(a) Regular chat (b) Secret chat

Figure 1.3: Telegram has two chat modes. Regular chat is meant to be used for
traditional communication and its messages are stored on Telegram’s servers.
Secret chats are supposed to provide another layer of protection and are end-
to-end encrypted.

1.7.1 Security-related incidents

1.7.1.1 SMS authentication

In Section 1.3.1.1 we described how the WhatsApp’s registration process using
SMS works. Telegram works on a similar basis and allows logging in using a
simple SMS as well.

The text messages are fully accessible for mobile network operators who
can and usually do cooperate with the corresponding government. Further-
more, SMS can be intercepted using inexpensive IMSI catchers. If an attacker
is able to steal the authenticating SMS, he is able to login on the user’s behalf.
What is worse, Telegram stores the whole of user’s message history, thus it
allows the attacker to read older messages as well.

In early 2016, it was shown to be a legitimate concern [40]. Some Tele-
gram users experienced an erasure of their accounts and blamed Telegram of
enforcing political censorship which Telegram denied. Russian activist Oleg
Kozlovsky described in his Facebook post [41] how his account was allegedly
hacked.

First, the Russia’s mobile operator disabled SMS service on Oleg’s phone
number. Upon the disconnection the attacker tried to log to the victim’s

13



1. Current security status of major IMs

Telegram account. Because intercepting the SMS is all the attacker needs he
simply entered the authorization code he sniffed and got full access to Oleg’s
account. Telegram recommended to turn on two-factor authentication for
additional security.

These concerns raise a serious question whether SMS authentication is a
valid instrument security-wise.

1.7.1.2 Cracking Contest

On November 4th, 2014, Telegram arranged a contest with a winning price
of $300,000 for cracking its encryption. The contest became quite known in
the community, and probably provided a bit of an advertisement for Telegram.

The contest remained unsolved until its closure. Number of authors con-
sidered it rigged and stated that the contest does not provide any proof of
Telegram’s overall security whatsoever [42, 43].

1.7.1.3 IND-CCA insecurity

In Spring 2015, researchers from Aarhus University performed an independent
audit of the protocol [44]. They concluded that the encryption scheme is
not IND-CCA10 secure, meaning any ciphertext can be altered into another
ciphertext decrypting to the very same plaintext.

The researchers stressed the theoretical nature of the attack and that they
“do not see any way of turning the attack into a full plaintext-recovery at-
tack” [44]. Telegram’s FAQ describes it as a minor issue unaffecting the overall
security [45].

1.7.2 EFF’s secure messaging score

As mentioned Telegram has two types of messages. Telegram is therefore
evaluated twice by the EFF.

Table 1.5: Telegram regular chat’s secure messaging score

Are messages encrypted in transit? 3

Are messages encrypted so the provider can not access it? 7

Can user verify contacts’ identities? 7

Are past communications secure if keys stolen? 7

Is the code open to independent review? 7

Is the cryptography design properly documented? 3

Has there been any recent code audit? 3

10Indistinguishability under Chosen Ciphertext

14



1.7. Telegram

Table 1.6: Telegram secret chat’s secure messaging score

Are messages encrypted in transit? 3

Are messages encrypted so the provider can not access it? 3

Can user verify contacts’ identities? 3

Are past communications secure if keys stolen? 3

Is the code open to independent review? 3

Is the cryptography design properly documented? 3

Has there been any recent code audit? 3

15





Chapter 2

Cryptography behind Telegram

Telegram authors decided to craft a brand new encryption scheme, MTProto,
in order to supposedly achieve better delivery times and stability. In this
section we will describe in detail how the protocol should work based on the
official Telegram documentation and on the research from Aarhus Univer-
sity [44].

2.1 Initialization

During the first launch of Telegram application user needs to enter and verify
their telephone number. The verification is done by sending a five digit code
to the phone via SMS. The user then enters the code into the app and verifies
the phone number. When this process is done, the registration process begins
as follows:

Suppose a client C is registering to a server S:

1. C sends a 128-bit random integer nonce to S.

2. S responds with another 128-bit random integer server nonce, composite
number pq and a fingerprint of a RSA public key.

3. C provides a proof of work by decomposing pq into prime factors p and
q such that p < q.

4. C has several RSA public keys stored locally, and chooses the appropri-
ate one based on the received fingerprint.

5. C crafts a payload of p, q, pq, nonce, server nonce and another new
256-bit random integer new nonce. The payload including its hash is
then encrypted by the RSA key and sent to S.

6. S responds with Diffie-Hellman parameters g, p and ga encrypted with
AES-IGE using a key derived from new nonce and server nonce.

17



2. Cryptography behind Telegram

7. C generates a random 2048-bit b, and computes gb = gb mod p and K =
gba mod p. The gb value is sent to S encrypted as previously described.

8. S calculates K = gab mod p. Both C and S now share a common key K
called as auth key.

Some details were omitted for simplification. During the exchange the
client should check the following requirements:

• p is a safe prime, meaning p−1
2 needs to be prime as well

• 22047 < p < 22048

• g is equal to 2, 3, 4, 5, 6 or 7 and it generates a cyclic subgroup of prime
order p−1

2

• 1 < ga, gb < p− 1

• and finally, it is recommended to check 22048−64 < ga, gb < p− 22048−64

The requirements check might be cached, and the client is allowed to hard-
code the already checked p and q values into the application as well.

We compared these requirements with the FIPS 186-4 publication concern-
ing Digital Signature Algorithm and concluded it requires similar conditions
as Telegram with only minor differences.

The resulting auth key is now used for all client-server communication
and regular chats. Finally, a fingerprint of the exchanged auth key is created
labeled as auth key id. It is crafted from the last 64 bits of SHA1(auth key).

2.2 Regular chats

With the connection to the server established in the previous section we can
now look into the delivery process. The Aarhus research [44] was concerned
with secret chats only, therefore in this section we rely solely on the official
documentation.

2.2.1 Payload

First, let us describe the content of a single message further referred to as
a payload. The payload prior to encryption is depicted in Figure 2.1 and it
contains:

• salt Periodically changed number used for various protection purposes.

• session id Unique number to identify the user and their device.

• msg id Unique ID of the message within a session.

18



2.2. Regular chats

salt length

message Padding

32b64 bit

Variable length 0-120 bit

seq_no

32b

session_id

64 bit

msg_id

64 bit

Figure 2.1: Payload of a single message to be encrypted in the regular chat
contains salt, session and message identifier, sequence number, length and the
text itself.

• seq no Message sequence counter.

• length Length of the actual message.

• message Content of the actual message.

2.2.2 Encryption

The whole encryption process is visualized in Figure 2.2.

First, the message key msg key is calculated. It is composed of the 128
least significant bits of the SHA-1 hash of the payload to be encrypted. Next,
the array is padded with 0-120 random bits in order to be divisible by the
AES block size – 128 bits.

This msg key along with the auth key described in Section 2.1 are taken
as input for the Key Derivation Function (KDF) which performs a number of
SHA-1 hashes and truncations, yielding two 256-bit values: the AES key and
the IGE initialization vector (IV) used for encrypting this particular message.

Finally, two other values are added on top of the encrypted data array:
the already mentioned msg key and the auth key id described in Section 2.1.
The data array is then ready to be transported to the server.

2.2.2.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a symmetric block cipher with
key lengths of 128, 192 and 256 bits respectively, and a block size of 128 bits.
Telegram uses 256 bit key. AES is currently the most widely used symmetric
cipher and is used in many internet standards such as IPsec, TLS, SSH and
number of others [46].

AES was selected through a worldwide open competition and finally defined
in the FIPS-197 publication by the US National Institute of Standards and
Technology (NIST) in 2001. As of today, AES is secure against brute-force
attacks and no viable analytic attacks are currently known [46].

19



2. Cryptography behind Telegram

SHA-1

AES-IGE encryption

KDF

auth_key

msg_key

AES_key

AES_IV

auth_key_id msg_key Encrypted data

Add padding

64 bit 128 bit

2048 bit

2x 256 bit

Payload

11

Figure 2.2: The AES key and IV is derived from the auth key and SHA-1 hash
of the payload msg key. Using these values the padded payload is encrypted.
The encrypted data along with auth key id and msg key are ready to be
transported [44].

2.2.2.2 Infinite Garble Extension

Infinite Garble Extension (IGE) is a lesser-known block cipher mode. It is
shown on Figure 2.3 and defined by the following formula [47]:

ci = fK(mi ⊕ ci−1) ⊕mi−1

where fK stands for the encrypting function with key K (AES in our case),
and i goes from 1 to n – the number of plaintext blocks.

A careful reader notices that for the first output block we need two ini-
tialisation values m0 and c0. Both are taken from the IV values described
earlier. The original paper described m0 as a random block and c0 its encryp-
ted counterpart. The OpenSSL implementation, however, uses a more general
implementation where both m0 and c0 are provided by the user [47].

11The SHA-1 output is truncated to the first 128 bits.

20



2.2. Regular chats

Figure 2.3: Infinite Garble Extension block mode with two Initialization Vec-
tors [44].

2.2.2.3 SHA-1

SHA-1 is the most widely used cryptographic hash function [46]. It produces
a 160-bit digest of a message. The authors opted for SHA-1 because of its low
resource consumption [48]. Some experts consider SHA-1 as outdated and
recommend its replacement by SHA-2 or SHA-3 [48].

2.2.3 Decryption

Before the decryption process starts the auth key id is validated. The re-
ceiver’s auth key id needs to be matched against the value the sender appen-
ded to the byte array. If the values differ, the whole message is discarded.

auth_key_id’ msg_key’ Encrypted data

64 bit 128 bit

auth_key_id’

64 bit

= auth_key_id

64 bit

?

Figure 2.4: Before the decryption process starts the auth key id values are
checked.

The decryption process is, to put it plainly, the encryption process in
reverse. The KDF yields the AES key and IV values used for decrypting
the data. The padding is stripped and the SHA-1 of the payload generates
msg key which is compared to msg key’. The whole process is accurately
visualized in Figure 2.5.

21



2. Cryptography behind Telegram

AES-IGE decryption

KDF

auth_key

AES_key

AES_IV

Encrypted datamsg_key'

msg_keyEqual?

Payload

Accept

128 bit2048 bit

2x 256 bit

128 bit

.

.Padding

SHA-111

Figure 2.5: The KDF produces the AES key and IV from the auth key and
received msg key’. The SHA-1 of the decrypted payload generates msg key

which is compared to msg key’ and only then accepted [44].

2.3 Secret chats

Secret chats are designed to bring an extra level of security compared to the
regular chats. A secret chat can be initiated between two particular devices
only, and therefore the messages can be read on those devices exclusively.

It is essential to note that all the secret chat communication is done us-
ing the established connection described previously in Section 2.1. All data
are considered as an input into the MTProto protocol for regular chats, and
therefore encrypted twice.

2.3.1 Key exchange

The exchange performs traditional Diffie-Hellman key exchange (DH). The DH
parameters are received from the Telegram server and the client verifies them
in the very same manner as in Section 2.1. The exchange proceeds similarly
as earlier, however, with the connection already established is a little more
straightforward. Suppose user A initiates a secret chat with user B:

1. A computes a random 2048-bit number a and sets ga = ga mod p.

22



2.3. Secret chats

2. B receives the request on all authorized devices and a single one accepts
it.

3. B generates random b and sets gb = gb mod p.

4. Both users calculate the master key K = gba mod p = gab mod p. K is
the secret chat’s master key denoted auth key as well.

What is worth mentioning, in secret chats key exchange the client generates
its a (and b respectively) in the following way:

a = rclient ⊕ rserver

Where rclient is a 2048-bit random integer generated on the client’s side
and rserver is 2048-bit random integer generated on the server’s side. These
values are then XORed, constructing the client’s secret value. This is done to
mitigate the client’s poor capabilities to generate a cryptographically secure
random number. This concerned the Android platform in August 2013 [49].

Figure 2.6: Encryption key visualization provides a technique to verify no
malicious intermediary is present.

The DH by itself does not provide any authentication of the communicating
parties and is therefore susceptible to an active Man-in-the-Middle attack.
To mitigate this issue the user is provided with an option to display their

23



2. Cryptography behind Telegram

counterpart’s encryption key. Telegram creates a white-blue box to visualize
the key as may be seen in Figure 2.6. To make sure no malicious mediator
is present users are supposed to meet in person and verify that the keys are
identical. There is no such mechanism in regular chats.

The visualisation used to be based on a 128-bit fingerprint12 of the secret
key. An article published in January 2015 showed [50] that when the attacker
forces (e.g. socially engineers) both sides to initiate the secret chat, a MitM
attack is possible only with 264 operations rather than 2128, thanks to the
Birthday paradox. The article claims the attack is possible for a well financed
adversary and estimates the attack to cost tens of millions of USD. Telegram’s
FAQ addresses this issue and states the cost is around a trillion dollars to
achieve a result in one month. Nevertheless, Telegram later decided to use
additional 160 bits from the key – summing the fingerpint up to 288 bits [45].
This improvement should make this attack impossible.

The article reasons as well that in a real-world scenario the users do not
actually meet to verify the key. Most of them probably ignore the verification
altogether, some send the image via regular chat or using another – possibly
insecure – channel.

To accomplish the Perfect Forward Secrecy model the key is renegotiated
each time it has been used for more than 100 messages or has been used for
more than one week. For the renegotiation the already established chat is used
to send the ga and gb values. The server does not help with the randomness
here, and the same DH parameters are used. The auth key visualization does
not change and is therefore based on the first negotiated key.

It is unclear whether Telegram applies the Trust on First Use mechanism13.

2.3.2 Payload

With the key negotiated we may now focus on the message encryption itself.
The payload slightly differs from its regular chat counterpart. It is composed
of:

• length The length of the payload excluding padding and the length
itself.

• payload type Header related to the protocol version and the message
type.

• random bits Up to 120 random bits generated by the author followed
by 8 bits to specify the length of it in bytes.

12Not to be confused with the 64-bit auth key id fingerprint.
13Trust on First Use is a security mechanism used by a client software which uncondi-

tionally trusts the other side’s identity during the first use. If the key changes later on, the
user is alerted.

24



2.3. Secret chats

length payload
type random bits layer in_seq out_seq message

type

serialized message object padding

32b 32b 128 bit 32b 32b 32b 32b

variable length 0-120 bit

Figure 2.7: Payload of a single message in secret chat contains a number of
additional fields [44].

• layer Integer specifying the protocol version.

• in seq Message counter for incoming messages.

• out seq Message counter for outgoing messages.

• message type Header related to the protocol version and the message
type.

• serialized message object Containing other values and the message
itself as depicted in Figure 2.8.

Both payload and message types are not described rigorously in the doc-
umentation. The Aarhus research [44] states they are both ”headers related
to the version of the protocol“. The serialized message object contains four
values:

random_id ttl message media

32 bit64 bit variable length 32 bit

Figure 2.8: The message object contains the message itself, random integer,
time to live settings and media header.

• random id Random value assigned by the author to identify the mes-
sage; also sent as a plaintext.

• ttl Time to live, an integer specifying the lifetime of a message in
seconds. This concerns the so-called self-destruct mechanism.

• message The actual text of a message provided by the user.

• media Header specifying media attachment if any.

25



2. Cryptography behind Telegram

Throughout this paper we assume that no media attachments are present,
and therefore the media attribute is always empty. This payload is then
serialized as an array of bytes and prepared to be encrypted.

2.3.3 Encryption

The encryption process is the same as described in Figure 2.2. As mentioned
at the beginning, the outcome of the encryption then serves as an input for
MTProto regular communication.

2.3.4 Decryption

Decryption is the same as well. First the auth key ids are validated. Then
the decryption process starts exactly in the same way as in Figure 2.4.

26



Chapter 3

The Analysis

In this chapter we present our analysis approach and share our findings. These
findings are based primarily on these three sources:

• The official open-sourced Telegram application for Android

• The official Telegram documentation

• The Aarhus research [44]

We commenced by installing Telegram for Android and analyzed it with
various tools in order to perform a comparison with the other sources men-
tioned above. The following section describes our actions.

3.1 Setup

First, we cloned the official Telegram repository. Because we realized a simple
code exploration is not satisfactory due to both its complexity and a poor
code quality, we installed the following software:

To run and potentially debug the application, the Android SDK is needed.
Furthermore, the Android NDK is required as well since Telegram uses the
Java Native Interface (JNI) which enables the program to incorporate low-
level programming languages, such as C. For a complete developer-like exper-
ience the Android Studio was installed. Android Studio is the official IDE for
Android platform and is based on the popular IntelliJ IDEA platform [51].

A mobile phone running a rooted Android operating system was connected
to a computer with the mentioned software. The Android Studio itself deals
with the phone-computer connection (using the adb software) and performs
building, compiling and transferring the final .apk file to the phone. It en-
ables the developer to debug the software as well which was crucial for better
understanding of the Telegram’s code.

27



3. The Analysis

Next, we wanted to sniff the data sent from the application. To achieve
that two different approaches were used.

3.1.1 Sniffing using a wireless hotspot

In the first scenario we set up a wireless network on the computer, and in-
structed the cell phone to connect to it. Even though this does require the
victim to connect to the network, there are ways to achieve this by using
special dedicated devices [52]. The Diagram 3.1 shows this setup.

Internet

Router

Computer

ethernet

wifi

Phone

Telegram

Figure 3.1: Computer running the analysis software is connected to the in-
ternet on one interface and creates a WiFi hotspot using another one. Cell
phone running Telegram connects to the computer’s WiFi, and all data are
therefore routed through the computer.

This scenario is easy to set up because most operating systems support
this functionality out of the box. The only downside is that we need two
network interfaces – one for creating the hotspot and another one for internet
connection.

3.1.2 Sniffing using ARP Poisoning

To demonstrate that we can omit the hotspot setup and perform the analysis
without forcing the cell phone to change its network we are introducing a
second scenario shown in Figure 3.2. In this case the computer and the mobile
phone are in the same network.

By using Ettercap, a “comprehensive suite for man in the middle at-
tacks” [53] available in Kali Linux, we launched an ARP Poisoning attack
against the phone.

The Address Resolution Protocol (ARP) is a protocol which transforms an
Internet layer address into a link layer address. Typically, this is the mapping
of an IPv4 address to an Ethernet address. ARP Poising, or ARP spoofing,
is a technique by which the attacker sends fake ARP packets to the victim,
claiming his Ethernet address is associated with an IP address different than
the one that is truly his.

28



3.2. Code

Internet

Router

Computer

ethernet

wifi

Phone

Telegram

wifi

Figure 3.2: Both the computer and the cell phone are connected to the same
network. Computer runs ARP Poisoning software inducing the phone to send
traffic through the computer.

We launched this attack against the phone and the router, meaning the
phone sent all of the communication to the computer instead of directly send-
ing it to the gateway and vice versa. Since all communication is now flowing
through the computer we may thoroughly analyze it.

This setup is also convenient if we are not able to use a WiFi as a hotspot,
for example due to its necessity of it for the internet connection itself. Be
aware that this setup should be used in test networks only.

3.2 Code

The application is publicly available on Github [54] with the first commit
dating back to late October 2013. This thesis is concerned with the latest
Telegram version 3.13.1 as of October 2016, the 64e8ec3 commit in particular.

The application’s main programming language is Java but it uses the
already mentioned JNI to incorporate C libraries such as boringssl, ffmpeg,
sqlite and others. Since version 3.2.2, Telegram moved a significant portion
of the logic into a separate C library called tgnet. The library is responsible
for many connection-related actions including communication with the server
and sending of messages. The codebase closely resembles the previous Java
code. The secret messages are still dealt with within the Java part of the
application.

It should be noted that this was introduced in the 3.2.2 version (September
2015) whereas the Aarhus analysis [44] is based on the 2.7.0 (April 2015) and
therefore was not concerned with the tgnet library at all.

29



3. The Analysis

3.2.1 Code quality

We decided to analyze the code quality using static code analysis tools to
avoid opinion-based reviews. Android Studio itself comes with a code scanning
tool lint [55]. The tool scans for potential bugs, optimization improvements,
security, performance and other.

Lint was run using the default settings and generated 20 errors and 286
warnings. The full output is available on the attached CD. Android Studio can
perform code inspections as well. It runs Lint and adds a number of checks,
such as error handling, security, code style, javadoc coverage, spelling etc. It
found over 650,000 issues in the Telegram project. The results are available
on the CD.

It is important to note that the code analysis concerns the project as a
whole, meaning it includes all the dependencies. Some issues may therefore
relate to the libraries Telegram uses, not to Telegram itself.

Furthermore, some files contain thousands of lines and multiple classes in
one file. For example, the TLRPC.java has 23,010 lines containing 873 static
classes. For a brief comparison we are including Table 3.1 comparing some
of the Telegram metrics with Signal. The comparison excludes all libraries,
binaries, assets etc. and discusses the source code related files only. We leave
it to the reader to draw their own conclusions.

Table 3.1: Telegram vs Signal code metrics

Telegram Signal

Largest file by size 714.6 KB14 87.4 KB15

Largest file by line-count 23,009 2,096

Number of test files16 0 13

It should be noted that Signal’s files are well documented which affects
their size. That is not the case with Telegram at all.

3.3 Storage

In this section we briefly look at how Telegram stores its data. All data are
stored in the phone’s org.telegram.messenger/files folder. Two types of
files are present – SQLite database files and .dat files which are in a Telegram’s
own configuration format:

• cache4.db SQLite database file.

• tgnet.dat Main configuration data.

14TMessagesProj/src/main/java/org/telegram/tgnet/TLRPC.java
15src/org/thoughtcrime/securesms/util/Base64.java
16Number of files each including at least one unit test.

30



3.3. Storage

• dcXconf.db Number of Datacenter specific configuration files.

The cache4.db file is a SQLite database file. It contains 38 tables in
total, containing contacts, messages, chat information and all other user data.
Messages are stored in bytes and therefore de facto in plaintext. Since the
database is available only by physical access to the phone, we do not see this
as a malpractice.

The tgnet.dat file is a place where Telegram stores its configuration direct-
ives. It contains configuration version, currently used datacenter ID, session
IDs, time synchronization values, timestamps and other. For each datacenter
– Telegram stored 5 during our analysis – it stores its ID, IPv4 and IPv6
addresses, salts and most importantly the secret auth key and auth key id

fingerprint.

3.3.1 Extraction scripts

To properly analyze the data Telegram stores we wrote three scripts, all in
Python 3. The first script addresses the tgnet.dat file, the second the regular
messages and the third the encrypted chat information, the last two work with
the SQLite database. Examples of those files are included in the examples

folder of the project and a brief readme file describing how to run the scripts
is present as well. Some values’ meaning is unclear, therefore the scripts print
a simple question mark in such cases to indicate this.

3.3.1.1 Extracting tgnet.dat

The tgnet-extractor.py parses the tgnet.dat file and prints all the values
to the standard output. This file has Telegram’s own binary format and is,
in a nutshell, a collection of values simply written one by one with no keys,
formatting or structure. The most useful values for this research were the
datacenter’s IP addresses and the auth key secrets, mainly the auth key id

we expected to see in the sniffed traffic; more on that in Section 3.4.

3.3.1.2 Extracting messages

The script message-extractor.py works with the bytes stored in the SQLite
database, the column data in table messages in particular. Those bytes store
information on one single message sent in a regular chat.

The script extracts values, such as a message ID, values that identify both
the sender and the receiver, timestamps, flags and most importantly the UTF-
8 encoded string of the message itself.

3.3.1.3 Extracting secret chat information

Last but not least, the encrypted-chat-extractor.py script is responsible
for the bytes in the column data of the enc chats table. Amongst other things

31



3. The Analysis

it describes a secret chat instance and contains ID, dates, identification values
and yet again an auth key secret. Notice that this auth key is used for this
particular secret chat which is then encrypted with the regular chat auth key

as described in Section 2.3.

3.4 Undocumented obfuscation

During the data collection we found that the received data did not correspond
with the documentation. We expected the data to be in a form of auth key id,
msg key and encrypted data as per Figure 3.3.

auth_key_id msg_key Encrypted data

64 bit 128 bit

Figure 3.3: Expected form of sniffed data where 64-bits of key fingerprint are
followed by msg key and encrypted data.

Using the scripts described in 3.3.1 we extracted our testing auth key and
auth key id from our device in order to compare it with the sniffed data –
the auth key id value was not present. The whole packet seemed random
and therefore likely encrypted.

We examined the code and discovered the function responsible for this
behavior is the Connection::sendData function located in TMessagesProj/

jni/tgnet/Connection.cpp file. Before sending the data in the expected
manner, they are encrypted one more time with a random key attached in
front of the data. Interestingly, the Counter block mode is used instead of the
IGE endorsed by Telegram.

To properly explain the obfuscation method we are introducing our own
terminology first to add a little more clarity because Telegram does not prac-
tise a great job in naming variables. The reason is unclear but it may be done
intentionally to make the deobfuscation process even harder.

3.4.1 Terminology

Since the variables are explained in more detail in the following sections, reader
may skip this list and use it as a reference later on. The titles we are intro-
ducing are:

• obf enc key bytes 64 random bytes (512 bits) storing obf enc key
and obf enc iv used for obfuscation. Telegram calls this simply bytes.

• obf enc key The key used for encryption to obfuscate data.

• obf enc iv The IV used for encryption to obfuscate data.

32



3.4. Undocumented obfuscation

• obf dec key bytes 64 bytes derived from obf enc key bytes storing
the server’s encryption key and IV. Labeled in Telegram as temp.

3.4.1.1 Temporary encryption key

The process starts by generating 64 random bytes obf enc key bytes. The
first 8 bytes are unused. Bytes 8 – 39 are used as an encryption key and
bytes 40 – 55 as an IV. Bytes 56 – 63 are composed of the last 8 bytes of
obf enc key bytes encryption of itself. It is unclear what are those bytes
used for. The final obf enc key bytes to be sent is visualized in Figure 3.4.

obf_enc_key

32B

[8][0] [40]

obf_enc_iv

16B

[41] [56]

unused

8B

?

8B

[64]

Figure 3.4: The obf enc key bytes containing random bytes and its usage
for the obfuscation encryption.

The length of the packet, yet again encrypted, and the real data to be
transmitted as expected from the official documentation are then AES-CTR
encrypted using the obf enc key and obf enc iv, and sent. All the other
data in this TCP stream are encrypted using the same obfuscation key. When
another connection is established, a new obf enc key bytes is generated and
the process repeats itself.

3.4.1.2 Temporary decryption key

Besides the obf enc key bytes setup, the very same function deals with set-
ting up the obf dec key bytes. This temporary key is used for decrypting
the incoming traffic.

The obf dec key bytes is derived from the obf enc key bytes. 48 bytes
are reversed from obf enc key bytes, starting at position 8. This may be
seen in Listing 3. The first 32 bytes are then used as a key and the next 16
bytes as an IV for the incoming traffic decryption.

for (int a = 0; a < 48; a++) {

obf_dec_key_bytes[a] = obf_enc_key_bytes[55 - a];

}

Listing 3: Temporary decryption key deduction from the obf enc key bytes

array. First 32 bytes are used as a decryption key, next 16 bytes for an IV.
Telegram for Android source code, file Connections.cpp, line 331.

33



3. The Analysis

We believe Telegram server receives the obf enc key bytes, tampers with
them in a way described in this section and finally encrypts the response with
obf dec key bytes. As mentioned earlier, this is not officially documented
whatsoever. A more conventional approach would be much appreciated, such
as the usage of SSL/TLS – a cryptographic protocol scrutinized thoroughly
by researchers all over the world.

To sum up, the whole function is depicted in Listing 4 in its simplified
version. It also uses our own terminology to comply with this section.

void sendData(payload)

{

obf_enc_key_bytes = byte[64];

if (!firstPacketSent) {

obf_dec_key_bytes = byte[64];

fillWithRandom(obf_enc_key_bytes);

for (int a = 0; a < 48; a++) {

obf_dec_key_bytes[a] = obf_enc_key_bytes[55 - a];

}

setAESEncryptKey(obf_enc_key_bytes + 8);

setEncryptIv(obf_enc_key_bytes + 40);

setAESDecryptKey(obf_dec_key_bytes);

setDecryptIv(obf_dec_key_bytes + 32);

send(obf_enc_key_bytes);

firstPacketSent = true;

}

send(AESCTREncrypt(packetLength));

send(AESCTREncrypt(payload))

}

Listing 4: The function starts by generating random bytes. The de-
cryption key is then derived, and both encrypt and decrypt keys are set.
Finally, the length of the payload (obfuscated), the obf enc key bytes

and the actual IGE encrypted payload are sent. The function’s ar-
gument – the payload – is in the form expected by Figure 3.3.
Telegram for Android source code, file Connection.cpp, line 289, redacted.

34



3.5. Replay attack

3.4.2 Deobfuscation program

To verify these findings and to continue the analysis we created a software to
deobfuscate the traffic. Even though the first choice of language was Python
to keep all the scripts in one package, we finally opted for C++. This has two
major advantages: one, we can be directly inspired by the Telegram code, and
second, we can access OpenSSL functions directly the same way Telegram
does17.

The program is capable of fetching the obfuscation key and transforming
the data to its deobfuscated form and to further analyze it. It takes two or
three arguments as an input:

• incoming stream sniffed incoming data

• outgoing stream sniffed outgoing data

• key file containing the user’s auth key (optional)

The first and second argument are binary files of the sniffed traffic. Since
the obf enc key bytes value is sent by the client, it is stored in the outgoing
stream, and it is therefore not possible to deobfuscate any traffic without
these data. We used Wireshark repeatedly to follow the TCP stream and
then saved both the incoming and outgoing data into a binary file. We then
ran the program with those files which proved to be a viable technique.

The third argument is optional. It is the user’s secret auth key. This
is obviously not available to an attacker, but it is helpful for study purposes.
When extracted, the user may see the real traffic Telegram generates and what
actions are taken.

Readme file is present describing how to build and run the program.

3.5 Replay attack

During the analysis we examined some parts of the code in an attempt to
discover potential vulnerabilities to exploit. To provide a little bit of a context,
let us now briefly describe how Telegram processes all incoming data.

3.5.1 Incoming data processing

The Figure 3.5 shows how Telegram handles all incoming data. First, the
Connection::onReceivedData() function is called, and incoming data are
deobfuscated in the way described in Section 3.4.

Next, the ConnectionsManager::onConnectionDataReceived() function
is called. If the auth key id is not set to 0 (which is only the case during

17Telegram actually uses BoringSSL – a fork of OpenSSL by Google but for our case the
distinction was not relevant.

35



3. The Analysis

the key exchange process; see Section 2.3.1 for more details), the function
Datacenter::decryptServerResponse() is invoked. This function checks
the auth key id and if valid, decrypts the actual payload using the master
secret auth key and the derived msg key. Afterwards, the message ID and
other fields are verified.

If the decryption succeeds, the onConnectionDataReceived() function
proceeds to further process the decrypted payload, and several other checks
are performed. Finally, if all checks succeed, the whole process is finalized by
the ConnectionsManager::processServerResponse function.

onReceivedData()

onConnectionDataReceived()

auth_key_id?decryptServerResponse() discard

decrypt

auth_key_id=0? key exchange

processServerResponse()

check

deobfuscate

Figure 3.5: The incoming data are first deobfuscated. If the non-zero
auth key id is valid, the message gets decrypted and checked for validity.
The process is completed by the processServerResponse() function.

3.5.2 Vulnerability

A replay attack is an attack where an attacker sniffs data sent by the applic-
ation and then maliciously resends them at a different time. By doing so,
the attacker can repeat any message without the user noticing; curiously, the
attacker does not actually know the message. A protection might be realized
by implementing a message counter to keep track of the order the messages
appear in.

36



3.5. Replay attack

We analyzed how Telegram deals with this issue, see Listing 5. After
the decryption it checks if the message was already processed. The function
ConnectionSession holds an internal array of the already processed messages.
If the message is accepted and processed, the message ID is then added into
the array.

if (connection->isMessageIdProcessed(messageId)) {

doNotProcess = true;

}

if (!doNotProcess) {

// process

addProcessedMessageId(messageId);

}

Listing 5: Each incoming message is checked whether it was already processed.
If not, the message is further processed and finally marked as such.
Telegram for Android source code, file ConnectionsManager.cpp, line 728.

The behavior we believe might be exploitable concerns the addProcessed

MessageId() function. The function checks the size of the array and if it
exceeds 300, it erases the first 100 messages as seen in Listing 6.

void addProcessedMessageId(messageId)

{

if (processedMessageIds.size() > 300) {

processedMessageIds.erase(processedMessageIds.begin(),

processedMessageIds.begin() + 100);

}

processedMessageIds.push_back(messageId);

}

Listing 6: After message is successfully processed its ID is added to an internal
array of processed messages.
Telegram for Android source code, file ConnectionSession.cpp, line 55.

The attack scenario is drafted as follows:

1. Sniff a message

2. Wait for 300 other messages

3. Replace the next message with the first one

37



3. The Analysis

4. Telegram processes the first message again

If Telegram does not provide any additional checks and actually deletes
the first 100 IDs, the message would be accepted twice.

With the attack scenario drafted we attempted to perform the attack.

3.5.3 Exploit attempt

To perform the attack we first decided to inject a new TCP packet containing
the payload copied from the very first packet. That proved to be rather
difficult since it is not possible to inject a new TCP packet without interfering
with the TCP connection. We finally opted for replacing the payload of the
next message (i.e. the 301st), meaning we would drop its payload and replace
it with the first one. That should result in the victim receiving the first
message again instead of the new one.

3.5.3.1 Required tools

As we found out, neither Scapy nor Wireshark are the right tools for this task.
Both are useful for passive sniffing, and while Scapy is capable of sending
additional packets, it does not allow for a modification of the packets in real
time as it does not reside in the middle of the traffic as described in the Setup,
Section 3.1.

Furthermore, since Telegram uses its own Application layer protocol, we
were unable to use popular tools such as Fiddler, Burp Suite or OWASP ZAP
which are built for HTTP [56, 57].

Ettercap, already mentioned earlier to perform the MitM, provides a simple
filtering interface allowing to modify the data routed through. We tried this
approach but Ettercap requires the filters to be written in its own language
which is very limiting and unfortunately insufficient for our needs.

The scenario was finally tested with the Trudy software which can modify
any TCP traffic. As its documentation states, Trudy is “a transparent proxy
that can modify and drop traffic for arbitrary TCP connections” [58]. All
traffic is routed through Trudy which then applies so called modules. Trudy
modules are bulks of preprogrammed code to perform modifications desired
by the user. Trudy provides an example stub of such a module, and users are
encouraged to implement it. Because Trudy is written in Go, all modules are
to be written in Go as well. To route the traffic and setup the environment
properly, a prepared virtual machine is available [59].

After setting up the MitM as described in 3.1, a virtual machine is run on
the computer using Vagrant18. The VM installs all the required software and
Trudy itself as well. Then it routes all the traffic in and out of Trudy using

18Vagrant is a simple wrapper around a virtualization provider for building completely
independent virtual environments.

38



3.5. Replay attack

iptables. Trudy receives all the traffic, modifies it based on the used module
and sends it back to internet as seen in Figure 3.6.

Internet

Routerethernet

wifi

Mobile

Telegram

Trudy

Computer

VM

routed

route
d

Figure 3.6: The computer runs Trudy inside a virtual machine. All traffic is
routed bidirectionally through Trudy.

The implementation of a module for Trudy is quite straightforward. Trudy
calls specific methods in fixed order, each designed for one particular action.
The methods of a single module are depicted in 3.7 and a description of the
methods follows.

• Deserialize() converts the raw payload into a known structure of data
(e.g. HTTP)

• Drop() if true is returned, the whole packet is discarded

• DoMangle() if true is returned, Mangle() is called

• Mangle() alters the payload

• DoIntercept() if true is returned, the data are sent to the Trudy in-
terceptor19

• DoPrint() if true is returned, PrettyPrint() is called

• PrettyPrint() prints data in a human friendly format

• Serialize() converts the data back to raw payload if it were previously
deserialized

• BeforeWriteTo() actions taken before the data are written to one side
or the other

• AfterWriteTo() actions taken after the data are written to one side or
the other

19Trudy interceptor is a simple local website the user may use to interfere with the data.
It was not investigated further.

39



3. The Analysis

3.5.3.2 Preliminaries

Deserialize

Drop

DoMangle

Mangle

DoPrint

DoIntercept

PretyPrint

Serialize

AfterWriteTo

BeforeWriteTo

No

Yes

Yes

Figure 3.7: Trudy module’s func-
tions are called in a predefined
fixed order.

To test our settings we didn’t wait for
the next 300 messages; instead we set
up breakpoints on the very lines where
Telegram checks if the ID was already
processed or not, the line 729 and 859
in the ConnectionsManager file in par-
ticular. If the packet was actually send
again, these breakpoints would be fired,
and the message further rejected by Tele-
gram. This would confirm our surmise
and later be adjusted to comply fully
with the scenario.

To further simplify the process we
limited the test messages to the length of
201 bytes to easily distinguish a message
from the other traffic. The length of the
message remained the same throughout
the testing, we only changed some of the
characters each time, to see which mes-
sages arrived. The testing message we
used reads:

“To simplify the process we
are using a message longer
than 200 bytes to easily
identify it in the stream of
data”

When sending such message using
Telegram, its length is always equal to 201 bytes under regular conditions.

3.5.3.3 Execution

We implemented the Trudy module as shown in Listing 7. The DoMangle()

function checks if the source IP address is equal to one of the Telegram data-
centers (149.154.167.91:80). We confirmed our testing application is com-
municating with this server using Wireshark, and also the configuration details
extracted from the tgnet.dat file (see Section 3.3.1) contained a datacenter
with such IP address. Furthermore, the size of the packet is checked to select
the testing messages only.

If those conditions are met, the Mangle() function checks whether some
bytes were already saved. If not, it signifies this is the first message and it
copies the TCP payload into the oldBytes array and sets the saved flag to

40



3.5. Replay attack

true. It does not modify the payload in any way. If saved is already set
to true, it copies the saved bytes into the currently intercepted TCP packet,
replacing its content. Keep in mind, we are attempting the simplified scenario
and therefore not waiting for 300 other messages, we are trying to resend the
message as soon as another one comes in, which should fire the breakpoints.

var saved bool

var oldBytes []byte

func (input Data) DoMangle() bool {

if input.ServerAddr.String() == "149.154.167.91:80"

&& len(input.Bytes) == 201 {

return true

}

return false

}

func (input *Data) Mangle() {

if saved {

copy(input.Bytes, oldBytes)

} else {

oldBytes = make([]byte, len(input.Bytes))

copy(oldBytes, input.Bytes)

saved = true

}

}

Listing 7: The programmed Trudy module code written in Go used to perform
a Replay attack on Telegram. The DoMangle() function limits the packet
modifications only to our messages. Mangle() actually performs the attack.

3.5.3.4 Results and Future Work

Unfortunately, that was not the case. We confirmed Telegram successfully
receives the repeated traffic but none of the desired breakpoints were fired.
Further analysis showed that Telegram incorrectly deobfuscated the traffic.
This is due to the fact that during the communication the obf enc key bytes

changes periodically. The deobfuscated data are therefore completely different
and are rejected in various places as nonsense.

We were unable to continue the attack due to time limitations and the
finite scope of this work. However, we still believe this attack is feasible. In

41



3. The Analysis

order to continue the obfuscation keys would have to be saved as well. The
modified scenario goes as follow:

1. Sniff a message, deobfuscate it and save it

2. Wait for 300 other messages

3. Save the current obfuscation key

4. Replace the next message with the first one obfuscated by the current
key

5. Telegram processes the first message again

This scenario requires the module to have the obfuscation capabilities in-
troduced in the C program in Section 3.4.2. Since Go has a native support of
C, the codebase could be incorporated into the Trudy module.

3.5.3.5 Responsible Disclosure

The findings were reported to the Telegram security team on December 7th,
2016 with a kind request for comments. Two points were discussed in par-
ticular, the obfuscation method and the Replay attack scenario. The first
response from Telegram was received on 12th December 2016.

The obfuscation method was commented only briefly as “unrelated to data
security and is used to counter some of the less sophisticated attempts at ban-
ning our service in certain countries”. In October 2015, Pavel Durov (the
founder of Telegram) stated on his Twitter account that Telegram was blocked
temporarily in Iran as a result of Telegram refusing to collaborate with the
Iranian government [60]. This most likely concerns other countries applying
some form of internet censorship as well but illustrates well that Telegram
indeed faces censorship issues.

MTProto has a fixed structure where the auth key id value is always
present at the beginning of the packet and therefore easily recognizable, which
may be considered as a design flaw of the protocol itself. Another solution
to this might be wrapping the protocol into SSL/TLS. The traffic would be
indistinguishable from other protocols based on SSL/TLS, such as the very
common HTTPS, making it even harder to identify. Telegram developers
dismissed this proposal claiming SSL/TLS too performance heavy.

Under these circumstances it is understandable why the obfuscation method
is not officially documented in any form.

Secondly, Telegram responded to our attack scenario from Section 3.5 and
actually accepted some of our remarks. According to the Telegram team the
Android application (as opposed, allegedly, to the other clients, such as Tele-
gram for iOS, Telegram Desktop etc.) does not perform one of the the security

42



3.5. Replay attack

checks as is required by the protocol, defined in the Security Guidelines for
Client Developers in particular [61].

Among other checks, the Security Guidelines require [61] the message ID
to be checked against the stored ones and Telegram performs that. However, it
requires one more additional check – if the incoming message has an ID lower
than all or equal to any of the stored IDs, such message is to be discarded.
This action does indeed diminish the risk but Telegram for Android did not
carry out this check.

The Telegram team further commented that this vulnerability does not
allow the attacker to cause any severe damage because of the additional pro-
tection on the side of the Telegram API. Message actions (sending, editing,
deleting, and changing read status), group membership, secret chats, and
other important areas are not affected20. Nevertheless, the Telegram team
confirmed the attack would work for nonessential service updates like online
or typing statuses. For example, the scenario would allow the attacker to alter
the statuses of victim’s friends (as seen in the Android application, not in the
Telegram network) or spoof the victim to see typing statuses from contacts
not performing such action in reality.

We briefly reviewed these claims and concluded that the Java part of the
Telegram application does indeed deal with additional identifiers, such as qts,
pts and others. These values do seem to provide additional protection. It is
important to mention that we did not perform any deeper research.

Telegram promised this will be fixed in the next Android update – most
likely in the 3.16 version which should be released in early January 2017.
Telegram also offered a financial reward for our findings.

20According to Telegram, this is because of the checks done in the
MessagesController.java class on lines 5731, 5561, 5765, 5817 and others.

43





Conclusion

In the scope of this thesis our objective was to describe a selection of currently
used Instant Messenger solutions and discuss their security aspects. Further-
more, the thesis aims to investigate the Telegram Instant Messenger in more
detail, mainly its homebrew protocol MTProto and its code.

We have analyzed many security-related incidents and presented their im-
pact on the end user. We have indicated how the messengers respond to such
incidents, and whether they try to improve on their security. A number of
security-related problems still remain. Many messengers are closed-source,
thus not providing an opportunity for an independent code review, and insuf-
ficient or completely missing documentation raises severe questions as well.

Moreover, we have studied the Telegram IM and its MTProto protocol. We
have thoroughly documented the protocol’s internal working, its initialization
and the encryption process. Since Telegram has two types of chat environment
(regular and secret chats), we have covered both and stressed out how they
relate to each other. We have noted the cryptographic primitives it uses as
well.

We set up a testing laboratory using various tools and analyzed the net-
work traffic Telegram produces. We have scrutinized the code base of the
official application for Android and concluded that the state of the applic-
ation is at serious odds with the documentation. This concerns mainly the
undocumented obfuscation method Telegram uses. The MTProto traffic is
encrypted one more time with the key and IV prepended to the data. This
has no effect on the data security and is easily debunked by the deobfuscation
program we have implemented. When the Telegram team was confronted with
these claims, they noted the method is used to circumvent some of the less
sophisticated methods of censorship in certain countries.

Finally, we have localized an exploitable vulnerability and drafted an at-
tack scenario. We concluded that the Android application does not check the
message identification numbers properly and that a Replay attack might be
feasible. Although our primary scenario of the attack turned out not to be ap-

45



Conclusion

plicable, we have drafted an altered scenario which we believe would work. We
have also reported our findings to the Telegram security team which accepted
our remarks and agreed, to a certain degree, that this might be exploitable.
Telegram promised to fix this issue in the next software release.

Our work mainly focuses on the protocol and the Android client, but there
are still many areas where further research might be required. Additional
research might focus on the other Telegram clients, such as the desktop or
iOS version, studying the protocol as a whole, or administering other forms
of attacks.

46



Bibliography

[1] Ahmed, M. Telegram hits 100m users and commits to remaining ad-
free [online]. Feb. 2016, [accessed 2016-12-16]. Available from: https:

//www.ft.com/content/de54c280-d97d-11e5-a72f-1e7744c66818

[2] Cox, J. Encryption App Telegram Probably Isn’t as Secure for Terrorists
as ISIS Thinks [online]. Nov. 2015, [accessed 2016-12-16]. Available from:
https://motherboard.vice.com/read/encryption-app-telegram-
probably-isnt-as-secure-for-terrorists-as-isis-thinks

[3] Leyden, J. Homebrew crypto in Telegram hangout app full of holes,
say security pros [online]. Nov. 2015, [accessed 2016-12-16]. Available
from: http://www.theregister.co.uk/2015/11/23/homebrew_crypto_
in_telegram_app/

[4] Covert, A. Facebook buys WhatsApp for $19 billion [online]. Feb. 2014,
[accessed 2016-01-26]. Available from: http://money.cnn.com/2014/02/
19/technology/social/facebook-whatsapp/

[5] BBC. WhatsApp reaches a billion monthly users [online]. Feb. 2016,
[accessed 2016-02-02]. Available from: http://www.bbc.com/news/
technology-35459812

[6] Chen, B. Worried About the Privacy of Your Messages? Download
Signal [online]. Dec. 2016, [accessed 2016-01-02]. Available from: http:
//www.nytimes.com/2016/12/07/technology/personaltech/worried-
about-the-privacy-of-your-messages-download-signal.html

[7] Custer, C. WeChat blasts past 700 million monthly active users, tops
China’s most popular apps [online]. Aug. 2015, [accessed 2016-06-
23]. Available from: https://www.techinasia.co/wechat-blasts-700-
million-monthly-active-users-tops-chinas-popular-apps

47

https://www.ft.com/content/de54c280-d97d-11e5-a72f-1e7744c66818
https://www.ft.com/content/de54c280-d97d-11e5-a72f-1e7744c66818
https://motherboard.vice.com/read/encryption-app-telegram-probably-isnt-as-secure-for-terrorists-as-isis-thinks
https://motherboard.vice.com/read/encryption-app-telegram-probably-isnt-as-secure-for-terrorists-as-isis-thinks
http://www.theregister.co.uk/2015/11/23/homebrew_crypto_in_telegram_app/
http://www.theregister.co.uk/2015/11/23/homebrew_crypto_in_telegram_app/
http://money.cnn.com/2014/02/19/technology/social/facebook-whatsapp/
http://money.cnn.com/2014/02/19/technology/social/facebook-whatsapp/
http://www.bbc.com/news/technology-35459812
http://www.bbc.com/news/technology-35459812
http://www.nytimes.com/2016/12/07/technology/personaltech/worried-about-the-privacy-of-your-messages-download-signal.html
http://www.nytimes.com/2016/12/07/technology/personaltech/worried-about-the-privacy-of-your-messages-download-signal.html
http://www.nytimes.com/2016/12/07/technology/personaltech/worried-about-the-privacy-of-your-messages-download-signal.html
https://www.techinasia.co/wechat-blasts-700-million-monthly-active-users-tops-chinas-popular-apps
https://www.techinasia.co/wechat-blasts-700-million-monthly-active-users-tops-chinas-popular-apps


Bibliography

[8] Electronic Frontier Foundation. Secure Messaging Scorecard [online].
[accessed 2016-02-02]. Available from: https://www.eff.org/secure-
messaging-scorecard

[9] WhatsApp. WhatsApp homepage [online]. Jan. 2016, [accessed 2016-01-
26]. Available from: https://www.whatsapp.com/?l=en

[10] Kurtz, A. Shooting the Messenger [online]. Sept. 2011, [accessed
2016-01-31]. Available from: http://www.andreas-kurtz.de/2011/09/
shooting-messenger.html

[11] Gevers, R. Hijack Whatsapp with your iPhone [online]. Sept. 2011, [ac-
cessed 2016-01-31]. Available from: http://rickey-g.blogspot.com/
2011/05/hijack-someone-elses-whatsapp-with-your.html

[12] mgp25. WhatsApp Protocol - FunXMPP [online]. Dec. 2014, [accessed
2016-01-31]. Available from: https://github.com/mgp25/Chat-API/
wiki/FunXMPP-Protocol

[13] Heckel, P. C. How To: Sniff the WhatsApp password from your An-
droid phone or iPhone [online]. July 2013, [accessed 2016-01-31]. Avail-
able from: https://blog.heckel.xyz/2013/07/05/how-to-sniff-
the-whatsapp-password-from-your-android-phone-or-iphone/

[14] Damania, D. Use Whatsapp? You Phone number is your Username
and IMEI is the password – Hackable [online]. Sept. 2012, [accessed
2016-01-31]. Available from: http://thednetworks.com/2012/09/09/
whatsapp-imei-password-md5-inverted-hack/

[15] Yourdailymac. WhatsApp leaks usernames, telephone numbers and
messages [online]. May 2011, [accessed 2016-02-02]. Available
from: http://www.yourdailymac.net/2011/05/whatsapp-leaks-
usernames-telephone-numbers-and-messages/

[16] Summerson, C. WhatsAppSniffer Shames WhatsApp’s Plaintext, Un-
protected Chat Transfer Protocol, Shows Off Just How Much Can
Be Sniffed [online]. May 2012, [accessed 2016-02-02]. Available from:
http://www.androidpolice.com/2012/05/02/whatsappsniffer-
shames-whatsapps-plaintext-unprotected-chat-transfer-

protocol-shows-off-just-how-much-can-be-sniffed/

[17] djwm. Sniffer tool displays other people’s WhatsApp mes-
sages [online]. May 2012, [accessed 2016-02-02]. Available from:
http://www.h-online.com/security/news/item/Sniffer-tool-
displays-other-people-s-WhatsApp-messages-1574382.html

48

https://www.eff.org/secure-messaging-scorecard
https://www.eff.org/secure-messaging-scorecard
https://www.whatsapp.com/?l=en
http://www.andreas-kurtz.de/2011/09/shooting-messenger.html
http://www.andreas-kurtz.de/2011/09/shooting-messenger.html
http://rickey-g.blogspot.com/2011/05/hijack-someone-elses-whatsapp-with-your.html
http://rickey-g.blogspot.com/2011/05/hijack-someone-elses-whatsapp-with-your.html
https://github.com/mgp25/Chat-API/wiki/FunXMPP-Protocol
https://github.com/mgp25/Chat-API/wiki/FunXMPP-Protocol
https://blog.heckel.xyz/2013/07/05/how-to-sniff-the-whatsapp-password-from-your-android-phone-or-iphone/
https://blog.heckel.xyz/2013/07/05/how-to-sniff-the-whatsapp-password-from-your-android-phone-or-iphone/
http://thednetworks.com/2012/09/09/whatsapp-imei-password-md5-inverted-hack/
http://thednetworks.com/2012/09/09/whatsapp-imei-password-md5-inverted-hack/
http://www.yourdailymac.net/2011/05/whatsapp-leaks-usernames-telephone-numbers-and-messages/
http://www.yourdailymac.net/2011/05/whatsapp-leaks-usernames-telephone-numbers-and-messages/
http://www.androidpolice.com/2012/05/02/whatsappsniffer-shames-whatsapps-plaintext-unprotected-chat-transfer-protocol-shows-off-just-how-much-can-be-sniffed/
http://www.androidpolice.com/2012/05/02/whatsappsniffer-shames-whatsapps-plaintext-unprotected-chat-transfer-protocol-shows-off-just-how-much-can-be-sniffed/
http://www.androidpolice.com/2012/05/02/whatsappsniffer-shames-whatsapps-plaintext-unprotected-chat-transfer-protocol-shows-off-just-how-much-can-be-sniffed/
http://www.h-online.com/security/news/item/Sniffer-tool-displays-other-people-s-WhatsApp-messages-1574382.html
http://www.h-online.com/security/news/item/Sniffer-tool-displays-other-people-s-WhatsApp-messages-1574382.html


Bibliography

[18] fab. WhatsApp no longer sends plain text [online]. Aug. 2012, [accessed
2016-02-02]. Available from: http://www.h-online.com/security/
news/item/WhatsApp-no-longer-sends-plain-text-1674723.html

[19] Alkemade, T. Piercing Through WhatsApp’s Encryption [on-
line]. Oct. 2013, [accessed 2016-02-02]. Available from: https:

//blog.thijsalkema.de/blog/2013/10/08/piercing-through-
whatsapp-s-encryption/

[20] Brewster, T. WhatsApp Users ’Should Not Trust Broken En-
cryption’ [online]. Oct. 2013, [accessed 2016-02-02]. Available
from: http://www.techweekeurope.co.uk/workspace/whatsapp-
encryption-security-128964

[21] Marlinspike, M. Open Whisper Systems partners with WhatsApp to
provide end-to-end encryption [online]. Nov. 2014, [accessed 2016-01-26].
Available from: https://whispersystems.org/blog/whatsapp/

[22] WhatsApp. WhatsApp FAQ [online]. [accessed 2016-02-02]. Available
from: https://www.whatsapp.com/faq/en/general/21864047

[23] Scherschel, F. Keeping Tabs on WhatsApp’s Encryption [online]. Apr.
2015, [accessed 2016-02-02]. Available from: http://www.heise.de/ct/
artikel/Keeping-Tabs-on-WhatsApp-s-Encryption-2630361.html

[24] WhatsApp. WhatsApp Encryption Overview [online]. Apr. 2016,
[accessed 2016-12-16]. Available from: https://www.whatsapp.com/
security/WhatsApp-Security-Whitepaper.pdf

[25] Frosch, T.; Mainka, C.; Bader, C.; et al. How Secure is TextSecure?
Cryptology ePrint Archive, Report 2014/904, Oct. 2014. Available from:
https://eprint.iacr.org2/014/904

[26] Appelbaum, J.; Gibson, A.; Grothoff, C.; et al. Prying Eyes: Inside the
NSA’s War on Internet Security [online]. Dec. 2014, [accessed 2017-01-
02]. Available from: http://www.spiegel.de/international/germany/
inside-the-nsa-s-war-on-internet-security-a-1010361.html

[27] Franceschi-Bicchierai, L. Snowden’s Favorite Chat App Is Coming
to Your Computer [online]. Dec. 2015, [accessed 2017-01-02]. Avail-
able from: https://motherboard.vice.com/rea/signal-snowdens-
favorite-chat-app-is-coming-to-your-computer

[28] McCormick, R. Edward Snowden’s favorite encrypted chat app is
now on Android [online]. Nov. 2015, [accessed 2016-02-10]. Avail-
able from: http://www.theverge.com/2015/11/3/9662724/signal-
encrypted-chat-app-android-edward-snowden

49

http://www.h-online.com/security/news/item/WhatsApp-no-longer-sends-plain-text-1674723.html
http://www.h-online.com/security/news/item/WhatsApp-no-longer-sends-plain-text-1674723.html
https://blog.thijsalkema.de/blog/2013/10/08/piercing-through-whatsapp-s-encryption/
https://blog.thijsalkema.de/blog/2013/10/08/piercing-through-whatsapp-s-encryption/
https://blog.thijsalkema.de/blog/2013/10/08/piercing-through-whatsapp-s-encryption/
http://www.techweekeurope.co.uk/workspace/whatsapp-encryption-security-128964
http://www.techweekeurope.co.uk/workspace/whatsapp-encryption-security-128964
https://whispersystems.org/blog/whatsapp/
https://www.whatsapp.com/faq/en/general/21864047
http://www.heise.de/ct/artikel/Keeping-Tabs-on-WhatsApp-s-Encryption-2630361.html
http://www.heise.de/ct/artikel/Keeping-Tabs-on-WhatsApp-s-Encryption-2630361.html
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://eprint.iacr.org2/014/904
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://motherboard.vice.com/rea/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
https://motherboard.vice.com/rea/signal-snowdens-favorite-chat-app-is-coming-to-your-computer
http://www.theverge.com/2015/11/3/9662724/signal-encrypted-chat-app-android-edward-snowden
http://www.theverge.com/2015/11/3/9662724/signal-encrypted-chat-app-android-edward-snowden


Bibliography

[29] Threema GmbH. How does Threema audit its code? [online]. Aug.
2015, [accessed 2017-01-02]. Available from: https://threema.ch/en/
faq/code_audit/

[30] Branigan, T. China blocks Twitter, Flickr and Hotmail ahead of Tianan-
men anniversary [online]. June 2009, [accessed 2017-01-02]. Avail-
able from: https://www.theguardian.com/technology/2009/jun/02/
twitter-china

[31] McKerrow, K. Facebook’s Zuckerberg Still Wants to Conquer
China [online]. June 2016, [accessed 2016-06-23]. Available from:
https://www.thestreet.com/story/13615119/1/facebook-s-
zuckerberg-still-wants-to-conquer-china.html

[32] Branigan, T. China intensifies crackdown on social media with curbs
on instant messaging [online]. Aug. 2014, [accessed 2016-06-23]. Avail-
able from: https://www.theguardian.com/world/2014/aug/07/china-
intensifies-social-media-crackdown-curbs-instanrt-messaging

[33] Levin, N. China Tightens Restrictions on Messaging Apps
[online]. Aug. 2014, [accessed 2016-06-23]. Available from:
http://www.wsj.com/articles/china-issues-new-restrictions-
on-messaging-apps-1407405666

[34] Davison, N. WeChat: the Chinese social media app that has dissidents
worried [online]. Dec. 2012, [accessed 2016-06-23]. Available from:
https://www.theguardian.com/world/2012/dec/07/wechat-chinese-
social-media-app

[35] Xiao, C. More Details on the XcodeGhost Malware and Affected
iOS Apps [online]. Sept. 2015, [accessed 2016-06-23]. Available from:
http://researchcenter.paloaltonetworks.com/2015/09/more-
details-on-the-xcodeghost-malware-and-affected-ios-apps/

[36] Telegram. Telegram FAQ [online]. [accessed 2016-01-26]. Available from:
https://telegram.org/faq

[37] Petrielli, P. Telegram Messenger: Review [online]. July 2015, [ac-
cessed 2016-02-02]. Available from: http://techglobule.com/2015/07/
telegram-messenger/

[38] Ruvolo, J. Brazilian Judge Shuts Down WhatsApp And Brazil’s Congress
Wants To Shut Down The Social Web [online]. Dec. 2015, [accessed
2016-01-26]. Available from: http://www.techcrunch.com/2015/12/
16/brazils-congress-has-shut-down-whatsapp-tonight-and-the-

rest-of-the-social-web-could-be-next

50

https://threema.ch/en/faq/code_audit/
https://threema.ch/en/faq/code_audit/
https://www.theguardian.com/technology/2009/jun/02/twitter-china
https://www.theguardian.com/technology/2009/jun/02/twitter-china
https://www.thestreet.com/story/13615119/1/facebook-s-zuckerberg-still-wants-to-conquer-china.html
https://www.thestreet.com/story/13615119/1/facebook-s-zuckerberg-still-wants-to-conquer-china.html
https://www.theguardian.com/world/2014/aug/07/china-intensifies-social-media-crackdown-curbs-instanrt-messaging
https://www.theguardian.com/world/2014/aug/07/china-intensifies-social-media-crackdown-curbs-instanrt-messaging
http://www.wsj.com/articles/china-issues-new-restrictions-on-messaging-apps-1407405666
http://www.wsj.com/articles/china-issues-new-restrictions-on-messaging-apps-1407405666
https://www.theguardian.com/world/2012/dec/07/wechat-chinese-social-media-app
https://www.theguardian.com/world/2012/dec/07/wechat-chinese-social-media-app
http://researchcenter.paloaltonetworks.com/2015/09/more-details-on-the-xcodeghost-malware-and-affected-ios-apps/
http://researchcenter.paloaltonetworks.com/2015/09/more-details-on-the-xcodeghost-malware-and-affected-ios-apps/
https://telegram.org/faq
http://techglobule.com/2015/07/telegram-messenger/
http://techglobule.com/2015/07/telegram-messenger/
http://www.techcrunch.com/2015/12/16/brazils-congress-has-shut-down-whatsapp-tonight-and-the-rest-of-the-social-web-could-be-next
http://www.techcrunch.com/2015/12/16/brazils-congress-has-shut-down-whatsapp-tonight-and-the-rest-of-the-social-web-could-be-next
http://www.techcrunch.com/2015/12/16/brazils-congress-has-shut-down-whatsapp-tonight-and-the-rest-of-the-social-web-could-be-next


Bibliography

[39] Savov, V. Brazil’s WhatsApp ban is driving millions of users
to Telegram [online]. Dec. 2015, [accessed 2016-02-02]. Avail-
able from: http://www.theverge.com/2015/12/17/10386776/brazil-
whatsapp-ban-telegram-millions-users

[40] Jacobs, F. On SMS logins: an example from Telegram in Iran [on-
line]. Apr. 2016, [accessed 2016-06-23]. Available from: https://

www.fredericjacobs.com/blog/2016/01/14/sms-login/

[41] Jacobs, F. On SMS Logins II : an example from Telegram in Rus-
sia [online]. Apr. 2016, [accessed 2016-06-23]. Available from: https:

//www.fredericjacobs.com/blog/2016/04/30/more-on-sms-logins/

[42] Marlinspike, M. A Crypto Challenge For The Telegram Developers
[online]. Dec. 2013, [accessed 2016-01-26]. Available from: http://

thoughtcrime.org/blog/telegram-crypto-challenge/

[43] Crypto Fails. Telegram’s Cryptanalysis Contest [online]. Dec. 2013, [ac-
cessed 2016-01-26]. Available from: http://www.cryptofails.com/post/
70546720222/telegrams-cryptanalysis-contest

[44] Jakobsen, J. B. A practical cryptanalysis of the Telegram messaging pro-
tocol [online]. Sept. 2015. Available from: http://cs.au.dk/~jakjak/
master-thesis.pdf

[45] Telegram. FAQ for the Technically Inclined [online]. [accessed 2016-10-
07]. Available from: https://core.telegram.org/techfaq

[46] Paar, C.; Pelzl, J.; Preneel, B. Understanding cryptography: a textbook
for students and practitioners. Springer, 2010, ISBN 978-3-642-04100-6.

[47] Laurie, B. OpenSSL’s Implementation of Infinite Garble Extension
[online]. Aug. 2006, [accessed 2016-07-09]. Available from: http://

www.links.org/files/openssl-ige.pdf

[48] Schneier, B. SHA-1 Broken [online]. Feb. 2005, [accessed 2016-02-09].
Available from: https://www.schneier.com/blog/archives/2005/02/
sha1_broken.html

[49] Klyubin, A. Some SecureRandom Thoughts [online]. Aug.
2013, [accessed 2016-07-09]. Available from: https://

android-developers.blogspot.de/2013/08/some-securerandom-
thoughts.html

[50] adc. A 264 Attack On Telegram, And Why A Super Villain Doesn’t
Need It To Read Your Telegram Chats. [online]. Jan. 2015, [accessed
2016-02-09]. Available from: http://www.alexrad.me/discourse/a-
264-attack-on-telegram-and-why-a-super-villain-doesnt-need-

it-to-read-your-telegram-chats.html

51

http://www.theverge.com/2015/12/17/10386776/brazil-whatsapp-ban-telegram-millions-users
http://www.theverge.com/2015/12/17/10386776/brazil-whatsapp-ban-telegram-millions-users
https://www.fredericjacobs.com/blog/2016/01/14/sms-login/
https://www.fredericjacobs.com/blog/2016/01/14/sms-login/
https://www.fredericjacobs.com/blog/2016/04/30/more-on-sms-logins/
https://www.fredericjacobs.com/blog/2016/04/30/more-on-sms-logins/
http://thoughtcrime.org/blog/telegram-crypto-challenge/
http://thoughtcrime.org/blog/telegram-crypto-challenge/
http://www.cryptofails.com/post/70546720222/telegrams-cryptanalysis-contest
http://www.cryptofails.com/post/70546720222/telegrams-cryptanalysis-contest
http://cs.au.dk/~jakjak/master-thesis.pdf
http://cs.au.dk/~jakjak/master-thesis.pdf
https://core.telegram.org/techfaq
http://www.links.org/files/openssl-ige.pdf
http://www.links.org/files/openssl-ige.pdf
https://www.schneier.com/blog/archives/2005/02/sha1_broken.html
https://www.schneier.com/blog/archives/2005/02/sha1_broken.html
https://android-developers.blogspot.de/2013/08/some-securerandom-thoughts.html
https://android-developers.blogspot.de/2013/08/some-securerandom-thoughts.html
https://android-developers.blogspot.de/2013/08/some-securerandom-thoughts.html
http://www.alexrad.me/discourse/a-264-attack-on-telegram-and-why-a-super-villain-doesnt-need-it-to-read-your-telegram-chats.html
http://www.alexrad.me/discourse/a-264-attack-on-telegram-and-why-a-super-villain-doesnt-need-it-to-read-your-telegram-chats.html
http://www.alexrad.me/discourse/a-264-attack-on-telegram-and-why-a-super-villain-doesnt-need-it-to-read-your-telegram-chats.html


Bibliography

[51] Google Inc. Android Studio [online]. [accessed 2016-11-09]. Available
from: https://developer.android.com/studio/index.html

[52] Haight, J. Spoofing Wifi with a Pineapple [online]. Feb. 2015, [accessed
2016-11-28]. Available from: https://www.psattack.com/articles/
20150212/spoofing-wifi-with-a-pineapple/

[53] Ettercap. Ettercap homepage [online]. [accessed 2016-11-28]. Available
from: https://ettercap.github.io/ettercap/

[54] DrKLO. Telegram messenger for Android [online]. Oct. 2013, [accessed
2016-11-01]. Available from: https://github.com/DrKLO/Telegram

[55] Google Inc. Improve Your Code with Lint [online]. [accessed 2016-11-
11]. Available from: https://developer.android.com/studio/write/
lint.html

[56] Telerik. Fiddler homepage [online]. [accessed 2016-12-03]. Available from:
http://www.telerik.com/fiddler

[57] Portswigger. Burpsuite homepage [online]. [accessed 2016-12-03]. Avail-
able from: https://portswigger.net/burp/

[58] Ludwig, K. Trudy [online]. [accessed 2016-12-05]. Available from: https:
//github.com/praetorian-inc/trudy

[59] Ludwig, K. Trudy VM [online]. [accessed 2016-12-05]. Available from:
https://github.com/praetorian-inc/mitm-vm

[60] Durov, P. Pavel Durov’s Twitter account [online]. Oct. 2015, [accessed
2016-12-14]. Available from: https://twitter.com/durov/status/
656551981226528768

[61] Telegram. Security Guidelines for Client Developers [online]. [accessed
2016-12-14]. Available from: https://core.telegram.org/mtproto/
security_guidelines#checking-msg-id

52

https://developer.android.com/studio/index.html
https://www.psattack.com/articles/20150212/spoofing-wifi-with-a-pineapple/
https://www.psattack.com/articles/20150212/spoofing-wifi-with-a-pineapple/
https://ettercap.github.io/ettercap/
https://github.com/DrKLO/Telegram
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
http://www.telerik.com/fiddler
https://portswigger.net/burp/
https://github.com/praetorian-inc/trudy
https://github.com/praetorian-inc/trudy
https://github.com/praetorian-inc/mitm-vm
https://twitter.com/durov/status/656551981226528768
https://twitter.com/durov/status/656551981226528768
https://core.telegram.org/mtproto/security_guidelines#checking-msg-id
https://core.telegram.org/mtproto/security_guidelines#checking-msg-id


Appendix A

Contents of CD

readme.txt ....................... the file with CD contents description
data................................... the working data files directory

Telegram...............................Telegram 3.13.1 source code
src.......................................the directory of source codes

Telegram Deobfuscator..Deobfuscator source code; see Section 3.4.2
Telegram Extractor ........Extractor source code; see Section 3.3.1
Trudy module.............written Trudy module; see Section 3.5.3.3
thesis .............................LATEX source codes of the thesis
diagrams .................................. illustrations source code

text..........................................this thesis text directory
appendices...............thesis appendices as mentioned in the text
thesis.pdf...............................this thesis in PDF format

53


