
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague February 9, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Implementation of the ACB compression method improvements in the Java language

 Student: Bc. Jiří Bican

 Supervisor: Ing. Radomír Polách

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

Study the ACB compression method, its implementations, and effective structures for its index. Focus on the
order statistic tree and other binary search tree structures.
Choose and implement an index structure and create an effective ACB compression algorithm with good
entropy coding (arithmetic coding or range coding) in the Java language. Analyse and implement various
variants of this algorithm given by your supervisor. Test and compare these variants based on time and space
complexity and compression ratios on various corpuses.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Implementation of the ACB compression

method improvements in the Java language

Bc. Jiř́ı Bican

Supervisor: Ing. Radomı́r Polách

10th January 2017

Acknowledgements

I would like to thank my supervisor, Ing. Radomı́r Polách, for the idea and
his helpful advices regarding this thesis. I would also like to thank my family
for their support during my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 10th January 2017 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2017 Jǐŕı Bican. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bican, Jǐŕı. Implementation of the ACB compression method improvements in
the Java language. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2017.

Abstrakt

Tato práce se zabývá rozborem kompresńıho algoritmu ACB. V práci je popsán
jak samotný algoritmus, tak všechny jeho předchoźı implementace a vylepšeńı.
Předmětem práce bylo analyzovat datové struktury použitelné pro slovńıkové
indexováńı s ohledem na rychlost a kompresńı poměr algoritmu, navrhnout
možná slovńıková vylepšeńı a to všechno implementovat v jazyce java, ve
kterém algoritmus ACB zat́ım neexistoval. Implementačńı vylepšeńı jsou
podložena experimentálńım měřeńım.

Kĺıčová slova Algoritmus ACB, kontext, content, komprese, dekomprese,
Java.

Abstract

The subject of this thesis is to analyse the compression algorithm ACB and
implement it in Java language, creating probably the first ACB Java imple-
mentation. It covers the basic logic of the algorithm, as well as all previous
implementations and improvements. The goal is to analyse possible data

ix

structure variants for indexing the dictionary with respect to time and com-
pression ratio, and suggest possible dictionary improvements. All improve-
ments are verified by experimental measurements.

Keywords ACB algorithm, contextm content, compression, decompression,
Java.

x

Contents

Introduction 1

Motivation . 1

Main goals . 2

Thesis organization . 2

1 Algorithm 3

1.1 Definitions . 3

1.2 Basic overview . 4

1.3 Modifications . 13

2 Related work 17

2.1 George Buyanovsky . 17

2.2 Martin Děcký . 18

2.3 Lukáš Cerman . 18

2.4 Filip Šimek . 19

2.5 Michal Valach . 19

3 Analysis 23

3.1 Dictionary structure . 23

3.2 Triplet representation and coding 39

3.3 Algorithm improvements . 43

4 Implementation 47

4.1 Overview . 47

4.2 External libraries . 47

4.3 Architecture . 48

4.4 Dictionary . 51

4.5 Coder . 54

4.6 Tests . 56

xi

5 Measurements 57
5.1 Used corpuses . 57
5.2 Dictionary structure experiments 59
5.3 Dictionary memory consumption 59
5.4 Triplet component experiments 61
5.5 Triplet coding . 61

Conclusion 65
Future work . 65

Bibliography 67

A Acronyms 69

B Contents of enclosed CD 71

C User manual 73

xii

List of Figures

3.1 Trie structure example. 25
3.2 Suffix Tree example. 26
3.3 Binary tree with terminology. 29
3.4 Binary tree possible shapes. 30
3.5 Red-Black tree example. 33
3.6 Elementary tree rotations. 33
3.7 Example of a B Tree. 34
3.8 An augmented red-black tree to support order statistics 36
3.9 Tree rotations with size property. 39
3.10 Probabilities of arithmetic coding ”aca” 42

4.1 UML diagram of functional parts provider. 49
4.2 UML diagram of chain manager. 50
4.3 Dictionary interface. 51
4.4 Backing trees relationship. 53
4.5 2-3 tree correspondence to red-black tree. 55

xiii

List of Tables

1.1 ACB dictionary . 5

3.1 Operation complexity of Suffix Tree 27
3.2 Suffixes and suffix array . 27
3.3 Operation complexity of Suffix Array 28
3.4 Complexity of Binary Search Tree 31
3.5 Time complexity for self-balancing trees 32
3.6 B Tree complexities. 35

5.1 Calgary corpus description . 58
5.2 Cantenbury corpus description . 58
5.3 Prague corpus description . 59
5.4 Time complexity of dictionary structures 60
5.5 Memory allocation of dictionary structures 61
5.6 Relationship between compression ratio and distance property . . 62
5.7 Relationship between compression ratio and length property 62
5.8 Forms of triplet representations . 63

xv

Introduction

Motivation

Compression methods have been a very popular branch of computer science
ever since the storing of large amounts of data became an issue. There have
been many compression algorithms invented, described and implemented. Few
of them were so efficient that they became standardized in many more soph-
isticated softwares because of their reliability, speed and compression ratio.
Such algorithms are for example LZW, PPM, Huffman coding, LZ77, LZ78
or Shannon-Fano. They can be divided into groups of statistical methods,
dictionary-based methods and context-based methods. Those mentioned are
well known and frequently used, but there exist countless other compression
methods. These might not be popular either because they are inefficient or for
some other restriction, such as absence of parallelization or that no convenient
data structure was known.

ACB is an unexplored context-based dictionary compression method. It
is called Associative Coder of Buyanovsky or in short ACB, published by
George Buyanovsky in 1994 [1]. The article was written in Russian, and the
compression method was called Associative coding. George Buyanovsky also
created an implementation of this algorithm, but distributed it only as an MS-
DOS executable. The ACB method might have huge potential that has not yet
been discovered but with the arrival of modern technologies and approaches,
this potential may yet be fulfilled.

ACB method might have huge potential that have not been discovered yet,
but with the arrival of modern technologies and approaches, this potential
might be fulfilled.

1

Introduction

Main goals

The main goal of this thesis is to implement the ACB algorithm in Java
language along with all known improvements and adjustments. The first task
is to understand the basics of the algorithm, then do research into all existing
implementations. The next challenge is to find and implement a data structure
which will be efficient enough to serve as a dictionary with fast searches, fast
updates and be able to grow in size without unnecessary effort. The next task
is to find the best way of storing data into the output files, as the raw ACB
input is far too space consuming.

Thesis organization

This chapter introduces and explains the motivation and main goals of the
thesis.

Chapter 1 defines the basic terms used in the field of compression meth-
ods. It also describes the basic algorithm design of ACB, providing some
examples for the better understanding of algorithm compression and decom-
pression steps. It also describes the basic ideas behind common improvements.

Chapter 2 is devoted to describing currently existing implementations.

Chapter 3 analyses the algorithm introduced in Chapter 1 including dic-
tionary structure analysis: in other words which data structures to use and
how to modify them to bring about the best result. There is also a section
describing ACB output representation and improvements to the dictionary.

Chapter 4 describes in detail how the Java version of ACB compression
method is implemented, what issues were faced and how they were solved.

Chapter 5 shows the results of experiments and performance measure-
ments.

2

Chapter 1

Algorithm

This chapter focuses on describing the design of the Associative Coder of
Buyanovsky (ACB) compression method, the details of its dictionary structure
and compression and decompression process in general. Further details about
particular data structures and algorithm implementations made in this thesis
are described in detail in Chapter 3. Most of this chapter is referencing to
description published in ”Data Compression: The Complete Reference” by
David Salomon, [2].

1.1 Definitions

Definition 1.1.1 (Alphabet)
Alphabet is a finite set of symbols.

Definition 1.1.2 (Symbol)
Symbol is an atomic element of an alphabet, usually one byte.

Definition 1.1.3 (String)
String is a sequence of symbols from alphabet.

Definition 1.1.4 (Empty string)
Empty string is the string with zero length and is denoted as ε.

Definition 1.1.5 (Codeword)
Codeword is a sequence of bits.

Definition 1.1.6 (Code)
Code K is an ordered triplet K = (S,C, f), where

• S is a finite set of string,

• C is a finite set of codewords,

3

1. Algorithm

• f is an injective mapping S → C+, ∀s1, s2 ∈ S, s1 6= s2 ⇒ f(s1) 6= f(s2).

By C+ we denote the set of all codewords with non-zero length containing
only symbols from the set C.

Definition 1.1.7 (Uniquely decodable code)
Uniquely decodable code is defined as

∀u1, u2 ∈ C, u1 6= u2 ⇒ f−1(u1) 6= f−1(u2)

Also codeword u ∈ C+ is uniquely decodable with respect to f , if there is at
most one sequence s ∈ S+ such that f(s) = u.

Definition 1.1.8 (Prefix code)
Prefix code is such a set C+ of codewords, where no codeword is a prefix of
another codeword. These codes belong to uniquely decodable codes. Prefix
codes are often used for their unique ability while decoding - reading from left
to right.

Definition 1.1.9 (Compression)
Compression is defined as

f(s) = u; s ∈ S, u ∈ C

Definition 1.1.10 (Decompression)
Decompression is defined as

f−1(u) = s; s ∈ S, u ∈ C

Definition 1.1.11 (Compression ratio)
Compression ratio is the ratio between the compressed

le size and the original file size. Its value is computed using Equation 1.1.

compressionratio =
compressedsize

originalsize
(1.1)

Result of Equation 1.1 is a real number. If its value is lower than 1.0, the
compressed file is smaller than the original file. If the value is greater than
1.0, the compressed file is actually greater than the original file, or in other
words, compression of this file resulted in negative compression.

1.2 Basic overview

Following definitions are important for describing the basic behaviour of ACB
compression method. There are ASCII characters used as an alphabet in these
examples, but it could be any binary data in general. Because of that, we talk
about text, but it could be any input binary sequence.

4

1.2. Basic overview

1.2.1 Structure

Every term ti in the given text can be represented as a position in the text.
Let any substring α in the left vicinity from this position is called context
and any substring β in the right vicinity (including ti) is called content of
term ti. Let the pair Ii = (α, β) be context item of term ti. If context or
content of context item is limited by a number of terms, then the context item
is bound. Any subset of all possible k-bound context items of the text form
k-bound context item collection.

Structure of context dictionary adds a complete order to the context item
collection. The order can be described that the context item I is smaller then
context item J if αI is smaller using reverse comparison then αJ . Reverse com-
parison means right-to-left. Comparison of individual terms is interpretation-
dependent.
Formally holds: αI < αJ −→ I < J

Aside from context dictionary, ACB uses sliding window that can be also
found in some dictionary methods such as LZ77. Sliding window is always
located at the particular index of the text, left side from the index is called
context and right part content. This is shown below.

context ⇐ ...swiss m|iss is missing... ⇒ content

At the beginning of encoding/decoding, the runtime context dictionary is
empty. But if we consider sliding window index to be as shown above, the
context dictionary would look like shown in Table 1.1.

Table 1.1: ACB dictionary

Context|Content
|swiss miss

s|wiss miss
sw|iss miss
swi|ss miss

swis|s miss
swiss| miss

swiss |miss

Context|Content
|swiss miss

swiss |miss
swi|ss miss

s|wiss miss
swis|s miss

swiss| miss
sw|iss miss

1.2.2 Compression

The compression algorithm of the ACB compression method is explained in
Algorithm 1. The algorithm runs in cycle from the beginning of the input file
to the end. Position is represented as an index idx. In the body of the cycle,
the first step is to find the best matching dictionary context to the current

5

1. Algorithm

Algorithm 1 ACB compression algorithm

1: procedure ACBCompress
2: idx← 0
3: while i < FileSize do
4: ctx← best matching context for current context
5: cnt← best matching content for current content
6: l← common length of best matching content and current content
7: c← first non matching symbol of current content
8: Output(cnt− ctx, l, c)
9: UpdateDictionary(idx, l + 1)

10: idx← idx+ l + 1
11: end while
12: end procedure

context (left from index position). The dictionary is sorted by contexts, so
search is not linear, binary search can be used. As a second step, algorithm
finds best matching dictionary content to the current content. Current content
is right from the index and it is data to be encoded, while current context is
data already encoded. The dictionary contents are unfortunately not sorted
in any way and search have to be done in linear time. As dictionary grows in
size, this becomes big disadvantage. As shown in Chapter 3, this is solved by
searching in limited surrounding.

After both best matching context and content are found, this data are
sent to output. Output is called the triplet and its particular form may vary,
but in the original implementation it consists of three parts as shown in the
Example 1.2. The first part is the distance between the best matching context
and content in the dictionary. The second part is the length of common prefix
of current content and the best dictionary content. The third part is the first
non matching symbol of current content.

(cnt− ctx, l, c) (1.2)

After the triplet is put to the output, the index has to be moved to the new
position and the dictionary have to be updated. New index is counted by
adding length + 1 for the extra encoded symbol. And dictionary is updated
for the same amount of context pairs.

For better understanding of the ACB encoding method the simple example
is presented.

Example 1.2.1
Compress text S using ACB compression algorithm.

S = mississippi

6

1.2. Basic overview

The compression starts at index 0 with empty dictionary.

|mississippi

Step 1

Empty dictionary makes searching part of the algorithm pointless, it could
be skipped and the first output triplet is

(0, 0,m)

Encoded length of the text is 0 plus one character contained in the triplet.
Updating the dictionary with this triplet extends it by l + 1 = 1 new lines,
after an update it looks like presented below where ε represents an empty

Context|Content
0 ε|m

context or an empty string. Now we move the pointer in the input data by l
+ 1 symbols, in this case by 1. After the

rst encoded symbol the sliding window looks like

m|ississippi

Step 2

Algorithm first searches for the best matching context. There is only one
item in the dictionary and it’s index is 0. The content-searching part leads to
the same result, best matching content index is 0 too.

Common length between best matching content at index 0 and actual
content of string S is 0. The first non matching symbol of the current content

S: m|ississippi
0: ε|m

is i. The next triplet sent to the encoding output is

(0, 0, i)

The dictionary updated by this triplet looks then like Notice that the vocab-

Context|Content
0 ε|mi
1 m|i

ulary is sorted right-to-left by contexts every time it is updated. ε stands for

7

1. Algorithm

the empty string is in lexicographical ordering lower than any other symbol
so it is always at position 0. After this step, the sliding window looks like

mi|ssissippi

Step 3

Current content, which is mi, is greater than ε at index 0 in reverse order
comparison, but lesser than m at index 1. None of them have any symbol
in common so both can be considered as the best match. It is up to the
implementation which one to pick, but the decision must be deterministic and
same as for decoding, otherwise it will not produce the same data.

This example choose the greater index, 1 in this particular case. Search
for the best matching content gives the same result as in the step 2, and so
the next output triplet is

(0, 0, s)

Then the dictionary is updated and sliding window shifted.

Context|Content
0 ε|mis
1 mi|s
2 m|is

mis|sissippi

Step 4

Last symbol of the current context is lexicographically bigger than the
last context in the dictionary. According to the agreement from previous step
that the algorithm always picks bigger index, it would normally pick context
at index 3, but because there is not any, it picks content index 2.

Content comparison goes much easier here, as there is one common symbol
’s’ with content at index 1. That makes common length to be 1, after that
goes first non matching symbol which is ’i’ and resulting triplet is

(cnt− ctx, l, c) = (1− 2, 1, i) = (−1, 1, i)

Updating dictionary adds there two new records, one for common length and
one representing symbol in triplet. There should always be all the encoded
symbols in the dictionary.

missi|ssippi

Step 5

Context index is 2 in this step. There is one common letter with context at
index 1, but it still relies between 1 and 2 and bigger index is chosen. Content

8

1.2. Basic overview

Context|Content
0 ε|missi
1 mi|ssi
2 m|issi
3 mis|si
4 miss|i

index is easily found to be 1 with three symbols in common. Next symbol
is ’p’. Output triplet and updated dictionary, that grew by 4 symbols are
following along with sliding window.

(2− 1, 3, p) = (1, 3, p)

Context|Content
0 ε|mississip
1 mi|ssissip
2 missi|ssip
3 mississi|p
4 m|ississip
5 mis|sissip
6 missis|sip
7 miss|issip
8 mississ|ip

mississip|pi

Step 6

The best matching context index is 5 and the best matching content is
index 3. The common length of the contents is 1 symbol. The first non
matching symbol is ‘i’. The last output triplet, final dictionary and sliding
window are

(3− 5, 1, i) = (−2, 1, i)

mississippi|

After all the six steps we compressed the text

S = mississippi

into

(0, 0,m), (0, 0, i), (0, 0, s), (−1, 1, i), (1, 3, p), (−2, 1, i) (1.3)

9

1. Algorithm

Context|Content
0 ε|mississip
1 mi|ssissippi
2 missi|ssippi
3 mississi|ppi
4 m|ississippi
5 mississip|pi
6 mississipp|i
7 mis|sissippi
8 missis|sippi
9 miss|issippi
10 mississ|ippi

1.2.3 Decompression

The decompression algorithm of the ACB compression method is explained in
Algorithm 2.

Algorithm 2 ACB decompression algorithm

1: procedure ACBDecompress
2: idx← 0
3: while !EOF do
4: d← read distance from input triplet
5: l← read common length from input triplet
6: c← read next symbol from input triplet
7: ctx← best matching context for current context
8: cnt← d+ ctx
9: s←Copy(cnt, l) + c

10: Output(s)
11: UpdateDictionary(idx, l + 1)
12: idx← idx+ l + 1
13: end while
14: end procedure

Decompression algorithm reads data from previously compressed file and
operates until there are some. It has stream of triplets as an input. Particular
representations of triplets in binary data is further discussed in Chapter 3.
Triplet consists of three data parts, d as distance, l as length of encoded data
and c as another symbol.

(d, l, c)

One triplet is read in every step of the cycle and three variables are ini-
tialized. Then the best matching context to the current context have to be
found. As a current context we consider already decoded data. So, speaking

10

1.2. Basic overview

about sliding window as in compression, it is always at the end of the decoded
data. Best matching context is found by the same method as in compression,
reversed comparison. There is not any common content which means it has
to be computed. Best common context ctx is known as well as distance d in
the dictionary of the best matching content from this context, it is counted
using the equation

cnt← d+ ctx (1.4)

Then l symbols are taken from content at index cnt and they are copied
to the output along with symbol c at the end. As a last step, the dictionary
have to be updated. This works the same way as for compression, l + 1 new
dictionary items are added while keeping it’s context-content pairs sorted in
reverse context comparison.

This process is demonstrated by the following example.

Example 1.2.2
Decompress input triplets using ACB decompression algorithm.

(0, 0,m), (0, 0, i), (0, 0, s), (−1, 1, i), (1, 3, p), (−2, 1, i)

As always, the algorithm starts at index 0 with empty dictionary, but also
empty sliding window. Thing to notice is that the dictionary and the sliding
window looks exactly the same after each step.

Step 1

The first triplet is read from the input stream. There is no context at the
moment, but more importantly this triplet has common length l equal to zero,
so searching part of the algorithm is skipped and symbol c = ’m’ is sent to
the output. The dictionary is updated by this symbol and sliding window is
shifted, it looks like

Context|Content
0 ε|m

m|

Step 2, Step 3

In case of second and third triplet, there is the same situation as in step
1, it has common length l equal to zero so no context comparison is made
and symbols are directly send to output. The updated dictionary and sliding
window looks like

mis|

11

1. Algorithm

Context|Content
0 ε|mis
1 mi|s
2 m|is

Step 4

The next input triplet is

(d, l, c) = (−1, 1, i)

l greater than zero means there is encoded more than one character. Best
context for current context mis is at index 2. This information is enough to
find content that was used for encoding, we follow formula

cnt = d+ ctx = −1 + 2 = 1

The best content is the content with index 1: s. As we have the best matching
content, we can output l = 1 common symbols to the output and add the
next non matching symbol c = ’i’. After updating, the dictionary and sliding
window looks like

Context|Content
0 ε|missi
1 mi|ssi
2 m|issi
3 mis|si
4 miss|i

missi|

Step 5

This step and the last one are very similar to Step 4. For next triplet

(1, 3, p)

is the best matching context ctx = 2, distance d = 1 and using the equation 1.4
the content index is cnt = 1. Then l = 3 symbols are copied and the following
symbol is c = ’p’, ssip is added to the output and resulting dictionary is

mississip|

Step 6

(−2, 1, i)

12

1.3. Modifications

Context|Content
0 ε|mississip
1 mi|ssissip
2 missi|ssip
3 mississi|p
4 m|ississip
5 mis|sissip
6 missis|sip
7 miss|issip
8 mississ|ip

The best matching context for this triplet is ctx = 5, distance d = -2, using
equation 1.4 we get cnt = 3 so we copy l = 1 to the output plus last symbol
c = ’i’.

After those six steps, the text S is decoded

S = mississippi

that is equal to the original input string in the Example 1.2.1.

1.3 Modifications

As well as basic compression and decompression method, there are some modi-
fications to the ACB algorithm presented in Salomon’s book [2]. For complete-
ness they are stated in this section.

1.3.1 Variable output

As the compression or decompression algorithm process, more context-content
pairs are added to the dictionary which is increasing the chance that dictionary
content with as much as possible common symbols to the current content will
be found. But if there is no such content found, only non matching symbol
is sent to the output and zero distance and zero length are wasting space in
the triplet. The triplet will actually increase the compression ration. Same
thing could be seen at every beginning of the compression process, where new
symbols are added to the dictionary.

There is proposed a modification in Salomon [2] to create two different
output cases, one containing non matching symbols alone, and the second one
only distance and common length. To distinguish between them, a bit flag is
needed. So the triplet output looks like

(0, c) or (1, d, l)

13

1. Algorithm

1.3.2 Enable bigger common length than best content length

This modification says that if it is possible to copy more symbols from the
best matching content after the dictionary update, it should be done. That
is solved simply by overlapping buffers, best content comparison continues in
common content if the temporary end is reached. By allowing comparison
of the contents beyond the best matching content bounds, we can actually
improve the performance, as there is no need to check the bounds.

This modification is explained on very simple example.

Example 1.3.1
How would the output look like using modification 1.3.2

S = sssss

Solution:

The compression always begins the same way, first symbol have to be
added to the dictionary and is sent to the output.

(0, 0, s)

Context|Content
0 ε|s

s|ssss

In the next step, both best matching context and content are equal as
there is no other dictionary pair, ctx = cnt = 0. Distance is obviously d = 0
and common length would be 1, but because there is ’s’ following to both
current content and best content, and best content would be updated by this
symbol after this step anyway, it can be taken into account right now and
make common length as long as best content and common content match.

The next and last triplet carries all the same remaining symbols in it.

(0, 3, s)

For decoding, the process of overlapping buffers have to be simulated. The
trick is to continuously copy data between best content buffer and common
content buffer.

14

1.3. Modifications

1.3.3 Sorted contents

Last presented modification in Salomon’s book [2] is sorting contents for com-
mon contexts, but it is not analysed here in detail. It is mentioned later in
Section 2.5 that this modification brings no compression ratio advantage and
runs longer. Basic idea behind it is that:

1. Contents for common context are sorted.

2. Among there contents the search of best matching one is done using the
binary search.

15

Chapter 2

Related work

This chapter discuss existing implementations of ACB algorithm and describes
their behaviour.

Due to the fact that ACB compression method is not very spread, there
are not many implementations available on the internet. All those that could
be found are stated here with their description and distinctions from each
other.

2.1 George Buyanovsky

The original author of ACB compression and decompression method is George
Buyanovsky. ACB stands for associative coder of Buyanovsky. This algorithm
was presented in Russian popular magazine [1] in 1994. It also contained the
source code, but it was distributed as a shareware MS-DOS executable. Part
of it is written in assembler, the rest is written in C. Even though there was this
source code available, the exact algoritmization and functionality is unknown.
Another source code was also found at [3], but the license is unknown. Code
itself is also very hard to understand, but it is obvious that an arithmetic
coding is used for coding lengths and symbols, but not distances, as they are
impossible to predict and could take any value from context vicinity. Another
detail is that probabilities of lengths are initialized, so values 0 to 6 have higher
probability than others, precisely

b[] = {45, 13, 10, 7, 5, 4}

Application was released with a readme file with description how to use
the program and what is program capable of. Those capabilities are:

• The program can not only compress a single file, but is also able to
create containers with multiple files or multi-volume archives.

17

2. Related work

• The program is capable of usage of the context files - here named
”TAUGHT CHANNEL” - MODE. Using the ”TAUGHT CHANNEL”
creates a context file, which size is limited to 1.5 - 1.9 MB.

• The memory consumption during the compression and the decompres-
sion is limited to 16MB, and the maximum size of file is limited to 64MB.

• The program is capable of password protection and error protection.

2.2 Martin Děcký

Another implementation was made at Faculty of Mathematics and Physics
at Charles University in Prague by Martin Děcký in 2006. It is distributed
under the GNU GPL licence. He made it as a proof of concept project to
demonstrate whether it works or not, the performance and compression ratio
were not big issue. It is written in C++.

Dictionary is represented by standard library list, search is linear using
standard library iterator and dictionary is never cleared. That leads to in-
creasing time complexity for big input files and also big memory overhead.
If the growing dictionary buffer reaches maximum allocated memory size, ex-
ception is thrown and compression/decompression is abandoned. Triplets are
not coded in any way, they are outputted as a bit stream. But triplets takes
multiple forms.

2.3 Lukáš Cerman

This implementation was made by Lukáš Cerman in his bachelor thesis [4] in
2003. It was implemented in Microsoft Visual Studio in C.

The dictionary is implemented in two dimensional array. First dimension’s
index is computed as a hash from the first two symbols of the context. It means
hash function is used to access the other array dimension in constant time.
The second dimension is sorted array of contexts. Binary search is used here
with complexity of O(log n). The oldest item is removed if the dictionary
happens to be full, it is checked before each insertion.

Triplets are encoded in two possible ways, Huffman coder is the default
one, another option is range coder. Triplets takes these variations:

• If l >0, (l, d) is sent to output, (0, c) otherwise.

• If l >0, (l + |Σ| - 1, d) is sent to output, (c) otherwise.

• If l >0, (|Σ|, l - 1, d) is sent to output, (c) otherwise.

18

2.4. Filip Šimek

There are two stages of the compression. At first, input file is encoded
by ACB producing raw triplets stored in separate temporary file. This phase
could be modified by specifying used alphabet, there are two possibilities
present, one which groups the upper case and the lower case symbols together,
second which groups the vowels and the vowels with punctuations together.
Then the temporary file is encoded using the Huffman or range encoding,
according to the triplets in temporary file.

2.4 Filip Šimek

The implementation from Filip Šimek was distributed along with ExCom lib-
rary [5] as part of his master thesis [6] under the GNU LGPL license, the same
licensing as for the whole ExCom. It is written in C++.

The dictionary is represented as an array of pointers to the input file.
Block data size, which is defined by the program parameter, determines upper
memory consumption bound that dictionary could consume. After block of
data of the selected size is read, dictionary is cleared and new block of data
starts from scratch. It means dictionary content from one data block is not
used for any other. This is small improvement from the previous versions
where size of the dictionary was dependent of the input file.

Dictionary update is based on merge sort, all new context-content pairs
(represented by pointer to the file block) are added to the end of the diction-
ary at once, then it is sorted using linear probing. This is an improvement,
in previous versions every new context-content pair was inserted separately
leading to multiple shifting of the dictionary.

No innovation was made to the triplets, they are present as mentioned
in Section 1.2.1. No coding is used and instead of distance d, the content
index is part of the triplet. That means first part of the triplet occupies same
amount of triplet as the data block length specified by execution parameter.
The triplet looks like

(cnt, l, c)

Modification 1.3.2 is not used, because best content search is limited to already
encoded data and length l specified as program parameter.

Even though best content is not used for distance calculation, it is searched
anyway. The implementation also contains methods to store the distance and
the length values into a file for later histogram vizualization.

2.5 Michal Valach

The latest and most advanced implementation of ACB compression method
is one made by Michal Valach as his Master’s thesis [7] at Czech Technical

19

2. Related work

University in Prague in 2011. This implementation extended and improved
previous ACB method made by Filip Šimek [6] mentioned 2.4 in ExCom lib-
rary [5]. As well as the ExCom library, this algorithm was published under
the GNU LGPL license and is written in C++.

Michal Valach extends previous work done on ACB compression method by
vast research, analysis and improvements for both time and compression ratio.
His work is significant improvement at the field of compression in ExCom
library.

Dictionary is represented by indexing to the input file. It is backed by vari-
ous data structures under the interface SuffixStructure, particular subclasses
are SuffixTree, SuffixArray and SuffixArray2.

The SuffixTree is implemented using STD library map, which is backed
by the Red-Black tree. The Red-Black tree has the access time of O(log (|Σ|)
and the content is sorted, which allows to use its method upper bound for
searching for the closest higher key.

The SuffixArray is implementation of suffix array data structure based
on the STD library vectors. It is implemented as a two-dimensional vector
array, the first dimension is indexed using the first symbol of the context. The
second dimension is a suffx array for the suffixes that starts with particular
symbol. For searching, binary search is used with the complexity of O(log n).
Dictionary update is done by insertion to vector, leading to it’s shift of O(n)
complexity.

The SuffixArray2 is backed by the B+ Tree and due to the measurements,
it is used as a default implementation for the dictionary. Implementation
of rotations is not present in this B+ Tree. The rotations are procedures
to restructure the tree to be consistent of maximal depth equal to logB n,
happening when some node was filled but there are still free spots elsewhere
in the same depth. Main usage is to save memory, but at the cost of speed. The
SuffixArray2 also contains the implementation of sorted contents as described
in Section 1.3.3.

For triplet representation, all variations listed below were implemented
and tested.

• The whole triplet (l, d, c) is always sent to the output,

• The triplet (1, l, d) or (0, c) is sent to the output,

• The triplet (1, l, d, c) or (0, c) is sent to the output,

• The triplet (l + |Σ| - 1, d) or (c) is sent to the output,

• The triplet (l, d, c) or (l, c) is sent to the output.

20

2.5. Michal Valach

The values 1 and 0 are bit flags, l is the common length, d is the distance, c
is the next symbol, and |Σ| is the size of the alphabet.

In terms of triplet coding, Adaptive Huffman Coding and Adaptive Arith-
metic Coding is implemented.

Research pointed out that B+ Trees are fastest dictionary data structure,
(1, l, d, c)/(0, c) and (l, d, c)/(l, c) are most efficient triplet representations
and Adaptive Arithmetic Coding better method to code emerging triplets to
the final output file. On the other hand, modification of sorted contents, men-
tioned in [2] and in Section 1.3.3, brings no compression or time improvement.

21

Chapter 3

Analysis

This chapter focuses on analysis of all important tasks that have to be ex-
amined and discussed for successful and effective ACB compression method
implementation. It’s structure is divided into three main sections.

The first section examines possible ways to store and represent the dic-
tionary described in Section 1.2.1. It lists the suitable data structures taking
into account frequently performed actions, which is search for best matching
context, traversing it’s surrounding to find the best matching content, and
also to be able to update the dictionary with new pairs without the need of
shifting a lot of data.

The second section covers anything related to triplets. The way triplets
might be represented, ways to store triplets into output bit stream, what data
the triplets should contain and how to determine information needed from
that. The possible ways of coding triplets are discussed too.

3.1 Dictionary structure

The particular dictionary structure was specified in section 1.2.1. It consists
of few main key parts that were mentioned, but requirements to them were
not listed yet.

Dictionary pairs. The dictionary is made of context-content pairs. Context-
content pairs are required in order to store coupled parts of the text that
were once divided by floating window into context and content parts.
The context-content relation must be evident from any type of data
structure used. And all modifications, especially variable output from
section 1.3.1, must be possible.

Search for the best matching context. The first function in the algorithm,
that the dictionary should provide, is searching for the best context.

23

3. Analysis

Search is done in the whole dictionary, so it would have at least linear
complexity if no support is provided. But the search have to be as quick
as possible. As the comparison with the current context is made by
right-to-left bit traverse, it makes sense to sort the dictionary.

Search for the best matching content. This function is called only in com-
pression process. It searches the dictionary for the best matching content
to the current one. This time, it uses normal left-to-right comparison.
By the means of the algorithm, it searches contents as close to the best
matching content as possible, to keep the distance low. The neighbour
dictionary pairs should be accessed as quickly as possible.

Dictionary ordering. Context-content pairs are stored in specific order to
provide context search operation logarithmic time complexity. The or-
dering is made by right-to-left comparison, comparing contexts only, as
the search for the best matching context is made at first. It might make
sense to sort contexts and contents separately, while preserving rela-
tion between context and content for each pair. But then, the distance
between best context and content will not be low.

Dictionary update. After the triplet is created, sliding window is shifted
by common length of contents. All skipped positions in text compose
new context-content pairs and have to be added to the dictionary. The
dictionary must remain sorted.

Requirement for all those steps is to be as fast as possible. Ideally constant
time for both the data access and data update. The problem is that if we want
constant time updates, we cannot have constant time access and vice versa.

The delete operation is not present in compression nor decompression al-
gorithm, so it do not have to be implemented at all.

The aim is to analyse structures that have the most balanced data access
and data update times. In the middle of both requirements happened to be
logarithmic complexity for both operations.

3.1.1 Suffix Structures

Suffix, also called postfix, is lunguistic term describing the ending of a word.
The search for contexts is done by backward comparison, in other words, the
search for the longest common postfix is made. There are few structures that
are designed to do it effectively.

24

3.1. Dictionary structure

3.1.1.1 Suffix Trie

Suffix trie was presented in 1960 by Edward Fredkin [8]. An example contain-
ing words A, to, tea, ted, ten, i, in and inn is shown in Figure 3.11. Each
edge represents a symbol, each node value is created by concatenation of all
edges (symbols) from root and represents a word.

Figure 3.1: Trie structure example.

This trie example could be called a prefix tree as it does not only contains
all named strings, but also all their prefixes. Unlike suffix trie, that is similar
structure with difference that on top of all prefixes of all strings, it also contains
all prefixes of all suffixes of all words it contains. So, for example if the suffix
trie contains word mississippi it also contains ississippi, ssissippi, sissippi and
so on until ε, where ε is the root of the trie. Every single node of a suffix trie
is represented by data structure containing one symbol of the edge leading to
it, list of children of this node and pointers to siblings.

3.1.1.2 Suffix Tree

Suffix tree is structure very similar to suffix trie presented in previous sec-
tion. It was first introduced by Peter Wiener in 1973 [9]. There were some
improvements presented later, but most important one was the first on-line
construction algorithm in linear time by Ukkonen [10] in 1995.

In comparison, suffix trie and suffix tree almost looks identical, the most
noticeable difference is that suffix tree has the non branching nodes that are
not leaves are compacted. The example for string mississippi is shown in
Figure 3.22. Each node represents a sub-string of a suffix with minimal length

1Source: https://upload.wikimedia.org/wikipedia/commons/b/be/Trie example.svg
2Source: https://seqan.readthedocs.io/en/seqan-v2.0.2/ images/streeNoSentinel.png

25

3. Analysis

of 1. To get the whole suffix of a node, all parents of the current node must
be concatenated.

Figure 3.2: Suffix Tree example.

Suffix links are required for the construction of the suffix tree. The suffix
links are links between nodes with lengths l and l + 1, where the shorter one
is the suffix of the longer one. The link is directed from longer one to shorter
one.

A node in a suffix tree is represented as a data structure that contains start
of a suffix in data, length of the text in node, or suffix end, list of children
of the node and pointers to siblings of the node. The siblings are in both
the suffix trie and tree used for linear traversal of the nodes after the best
matching context is found, and traverse have to be done to find best matching
content in proximity.

For the ACB dictionary purpose, both suffix trie and suffix tree are almost
identical structures. The construction algorithm presented by Ukkonen [10]
is designed to create the suffix trees from the source string in ordinary left-
to-right order. Algorithm is noted as on-line, meaning that if there is already
a suffix tree for the string S and new symbol c is added, resulting string
Sc is created easily, without need to rebuild the structure from scratch. The
problem with this algorithm is that for the ACB dictionary usage, new symbol
c needs to be added to the beginning of the string S to form cS. Ukkonen’s
algorithm needs to be reworked to expand suffixes from the start, not from
the end. This approach is presented by Michal Valach [7] in his master thesis.
The complexitis are presented in Table 3.1, but the algorithm itself is not
analysed in detail here.

3.1.1.3 Suffix Array

Suffix array, as the name says, consists of an array containing pointers to the
original text, to suffixes in lexicographical order. This means a huge advantage

26

3.1. Dictionary structure

Table 3.1: Operation complexity of Suffix Tree

Property Complexity

Space O(n)
Search O(m)
Insert (average) O(n)
Insert (worst) O(n exp 2)

over the suffix tree in memory consumption. Another plus is speed of accessing
suffixes, but at a cost of updating speed. This is because the backing data
structure is array and updating an array is always expensive, when a new
suffix is inserted, all the consequent suffixes have to be moved. An example of
the suffix array is shown in Table 3.2 where the original text mississippi was
indexed from number 1 and then when suffix array is appropriately sorted.

Table 3.2: Suffixes and suffix array

SA
1 mississippi
2 ississippi
3 ssissippi
4 sissippi
5 issippi
6 ssippi
7 sippi
8 ippi
9 ppi

10 pi
11 i
12 $

SA
12 $
11 i
8 ippi
5 issippi
2 ississippi
1 mississippi

10 pi
9 ppi
7 sippi
4 sissippi
6 ssippi
3 ssissippi

In 1993, Gene Myers and Udi Manber [11] presented a suffix array as a
potential substitution of suffix trees because of their memory demands. Along
with the algorithm, they introduced inefficient constructing algorithms, which
were later improved up to the linear sorting time algorithm by Pang Ko and
Srinivas Aluru [12] in 2003. There are more algorithms, but all of them op-
erates over the static text, which is inappropriate for ACB dictionary. After
every triplet creation, new elements are added to the dictionary, thus it is
continuously growing. But there exists one exception, it is an algorithm that
is able to update the suffix array after the source string is prolonged.

Data structure used for the suffix array would be ArrayList with Integer
as inner data type for indexing. It has constant time access and search for
the best matching context is done by binary search in O(log n). The search
for the best matching content is done easily too, traversing neighbour array

27

3. Analysis

fields is simply handled by a for loop. Memory consumed equals to n times
data type used for indexing, Integer with 4 byte size in our case. It was
already said that the best problem is dictionary update. For every suffix index
inserted, all following elements have to be shifted, making it O(n) worst case
complexity. Only possible mitigation is to add all newly created dictionary
pairs, represented by suffix indices to the original text, to the end of the suffix
array, and sort them altogether.

Table 3.3: Operation complexity of Suffix Array

Property Complexity

Space O(n)
Search O(n log n)
Traversal O(1)
Insert O(n)

3.1.2 Search Tree Structures

There comes a lot of good ideas from Suffix Structures analysis, but they are
not ideal. Suffix Arrays were good for searches and traversing neighbours and
Suffix Trees were good for fast updating. Now let have a look at tree structure
possibilities and analyse if they might be a fit.

Tree is a hierarchical data structure consisting of nodes and links between
nodes. It has a root node and subtrees of children with parent, represented
as linked nodes. Each node is data structure consisting of value and links to
child nodes, where no link reference is duplicated and none of them points to
the root. It means no link cycle is possible. For the basic tree terminology,
see example in Figure 3.33.

If the node data structure is enhanced by key, forming ¡Key, Value¿ pair,
and keys are comparable, this tree is referred as a Search Tree. If any node
has no more than two child node, this tree is referred as a Binary Tree.

3.1.2.1 Binary Search Tree

To define binary search trees, we may use recursive definition. It is either
empty (null) or a node containing links to two disjoint binary trees. We refer
to the node at the top as the root of the tree, the node referenced by its left
link as the left subtree, and the node referenced by its right link as the right
subtree [13]. Nodes whose links are both null are called leaf nodes. The height
of a tree is the maximum number of links on any path from the root node to
a leaf node. An example of the binary tree is shown in Figure 3.3.

3Source: http://introcs.cs.princeton.edu/java/44st/images/binary-tree.png

28

3.1. Dictionary structure

Figure 3.3: Binary tree with terminology.

A binary search tree is a binary tree that contains a key–value pair in each
node and for which the keys are in symmetric order : The key in a node is
larger than the key of every node in its left subtree and smaller than the key
of every node in its right subtree. It allows all ACB dictionary operations to
operate as described next.

Searching a binary search tree for a specific key can be programmed
recursively or iteratively. If the tree is empty, terminate the search as unsuc-
cessful. If the search key is equal to the key in the node, terminate the search
as successful (by returning the value associated with the key). If the search
key is smaller than the key in the node, search (recursively) in the left subtree.
If the search key is greater than the key in the node, search (recursively) in
the right subtree.

Insertion logic is similar to searching for a key, but the implementation
is trickier. The key to understanding it is to realize that only one link must
be changed to point to the new node, and that link is precisely the link that
would be found to be null in an unsuccessful search for that key. In other
words, we examine the root and recursively insert the new node to the left
subtree if its key is less than that of the root, or the right subtree if its key is
greater than or equal to the root.

Delete operation will not be discussed as it is not present in ACB dic-
tionary.

Traversing a binary search tree is simple, the most basic tree-processing
function is known as tree traversal : given a (reference to) a tree, we want to
systematically process every node in the tree. For linked lists, we accomplish
this task by following the single link to move from one node to the next.
For trees, however, we have decisions to make, because there are two links
to follow. To process every node in a binary search tree, recursively process

29

3. Analysis

every node in the left subtree, then process the node at the root, and then
process every node in the right subtree. This approach is known as inorder tree
traversal because it processes the nodes in a binary search tree in key-sorted
order.

But for ACB dictionary purpose, this function is useless, as it proccess
whole key set and not nodes by siblings of the best matching context. There
is no way of traversing nodes by siblings if they have no reference to the nearest
higher and lesser value, but only to the left and right subtree. For example,
closest higher value of biggest key in left subtree of a root is the smallest value
in the right subtree and there is no link between them.

The running times of algorithms on binary search trees are ultimately
dependent on the shape of the trees, and the shape of the trees is dependent
on the order in which the keys are inserted, because inserted key is appended
to null child link of a proper leaf node. This leads to possibilities of a best
case scenario and a worst case scenario of inserting order, it is shown in Figure
3.44.

Figure 3.4: Binary tree possible shapes.

(a) Best case. (b) Average case. (c) Worst case.

In the best case, the tree is perfectly balanced (each node has exactly two
non-null children), with about log n links between the root and each leaf node.
In such a tree, the cost of every put operation and get request is proportional
to the height of the tree, log n or less.

In average case, a classic mathematical derivation shows that the expected
number of key compares is 2 log n for a random put or get in a tree built from
n randomly ordered keys.

In the worst case, each node (except one) has exactly one null link, so the
binary search tree is essentially a linked list with an extra wasted link, where
put operations and get requests take linear time. Unfortunately this worst
case is not rare in practice. It arises, for example, when we insert the keys in
order.

4Source: http://algs4.cs.princeton.edu/32bst/images/

30

3.1. Dictionary structure

The running times of algorithms on binary search trees depend on the
shapes of the trees 3.4, which, in turn, depends on the order in which keys are
inserted. And in ACB dictionary, the order cannot be affected.

Table 3.4: Complexity of Binary Search Tree

Property Average Worst case

Space Θ(n) O(n)
Search Θ(log n) O(n)
Insert Θ(log n) O(n)

There are two possibilities to minimize operation time, both are trying
to keep tree as close as possible to best-case scenario. First is by enhancing
the tree to optimal binary search tree, presented by Gaston Gonnet in 2013
[14], which is a search tree where the average cost of looking up an item (the
expected search cost) is minimized by statistical optimisations to position
particular items as they are accessed, frequently accessed close to the top and
vice versa. It is not usable for ACB dictionary. Second option is to balance
tree after each dictionary update, which is discussed in the next section.

3.1.2.2 Self-balancing Search Trees

A self-balancing binary search tree or height-balanced binary search tree is a
binary search tree that attempts to keep its height, or the number of levels of
nodes beneath the root, as small as possible at all times, automatically.

In previous section was mentioned that most operations on a binary search
tree take time proportional to the height of the tree, so it is desirable to keep
the height small. Self-balancing binary trees solve this problem by performing
transformations on the tree at key times, in order to reduce the height. Al-
though a certain overhead is involved, it is justified in the long run by ensuring
fast execution of later operations.

A binary tree with height h can contain at most 20+21+ ...+2h = 2h+1−1
nodes. The height of the tree is expressed by Equation 3.1 for a tree with n
nodes and height h. The height must always be at most the dlog2 ne and at
the least blog2 nc.

n ≤ 2h+1 − 1

h ≥ dlog2(n+ 1)− 1e
h ≥ blog2 2c

(3.1)

Knowing this, the time complexities for balancing binary search trees are
shown in Table 3.5.

The feature of balance is achieved differently for different balanced binary
search trees implementations, this thesis states two most common ones.

31

3. Analysis

Table 3.5: Time complexity for self-balancing trees

Operation Time complexity

Lookup O(log n)
Insertion O(log n)
In-order traversal O(n)

An AVL tree was first balanced data structure invented [15] by Georgy
Adelson-Velsky and Evgenii Landis in 1962, where ”AVL” stands for Adelson-
Velsky Landis. If the maximum and minimum height differs more than one,
rebalancing is executed to restore the balance property. Balancing is main-
tained by tree rotations, and the need to balance is recognized by balance
factor which is also characteristic property of AVL trees. Balance factor for a
node acquires values {-1, 0, 1} and means a height difference of its two child
subtrees. Balance factors can be kept up-to-date by knowing the previous
balance factors before insertion and the change in height – it is not necessary
to know the absolute height. For holding the AVL balance information, two
bits per node are sufficient [15].

A Red-Black tree is a binary search tree with one extra bit of storage
per node: its color, which can be either red or black. By constraining the
way nodes can be colored on any path from the root to a leaf, red-black trees
ensure that no such path is more than twice as long as any other, so that the
tree is approximately balanced. Each node of the tree now contains the fields
color, key, left and right link.

A binary search tree is a red-black tree if it satisfies the following red-black
properties:

1. Every node is either red or black.

2. Each null pointer is considered to be black.

3. If a node is red, then both its children are black.

4. Every simple path from a node to a descendant leaf contains the same
number of black nodes.

An example of a red-black tree is shown in Figure 3.5.

As mentioned before, self-balancing binary search trees keeps the balance
by rotations. The rotation is made by reconnecting links between nodes, thus
reforming a tree. Four basic rotations can be distinguished and the elementary
moves are demonstrated in Figure 3.6.

32

3.1. Dictionary structure

Figure 3.5: Red-Black tree example.

Left rotation. During left rotation, the node n is replaced by its right sub-
tree and the node n becomes left sub-tree. The left sub-tree of the node
n.right after rotation is right sub-tree node n.

Right rotation. During right rotation, the node n is replaced by its left sub-
tree and node n becomes its right sub-tree. The right sub-tree of the
node n.left after rotation is left sub-tree node n.

Left-right rotation. Left-right rotation is composition of two rotation oper-
ations, left rotation around node n.left and right rotation around node
n.

Right-left rotation. Right-left rotation is opposite operation to left-right
one. It rotates right around n.right and rotates left around n.

Figure 3.6: Elementary tree rotations.

Both AVL trees and red–black trees are similar tree structures with similar
behaviour. The operations to balance the trees are different; both AVL trees
and red-black require O(1) rotations in the worst case, while both also require
O(logn) other updates (to colors or heights) in the worst case. AVL trees
require storing 2 bits of information in each node, while red-black trees require
just one bit per node. The bigger difference between the two data structures is
their height limit. The AVL tree is more strict about height and requires more
frequent adjustments, taking longer to update but is faster in case of search.

33

3. Analysis

Because update is more frequent operation in ACB dictionary, it makes more
sense to use red-black trees over AVL trees.

3.1.2.3 B-Trees

The B Tree was firstly introduced by Bayer and McCreight in 1970 [16]. The B
Tree is a general form of the Binary search tree, where the node has more than
two children, but the particular terminology and definitions are not uniform.
The definition by Donal Knuth [17] that B-tree of order m is a tree which
satisfies the following properties:

• Every node has at most m children.

• Every non-leaf node (except root) has at least dm2 e children.

• The root has at least two children if it is not a leaf node.

• A non-leaf node with k children contains k-1 keys.

• All leaves appear in the same level.

Figure 3.7: Example of a B Tree.

The example of a b-tree is shown in Figure 3.75. Each internal node keys
separates keys (k1...km) between two children meaning that all keys in the left
child of the key k1 are lower than the key k1, and all the keys in the right
child are greater then the key k1.

The search in the B Tree is identical to search in the binary search tree,
except the fact, that instead of deciding between two nodes, we need to decide
between m nodes. This search in the tree node can be done using the linear
search if m is low, but the binary search is faster.

The insertion in the B Tree consists of two steps. The first step is to
locate the node into which the new value should be inserted. In the B Tree,
the insertion always starts from a leaf node and can end up in two states. The
node is not full, so the value is simply added to the proper position. Or, the
node is full and has to be split into two new nodes with evenly distributed

5Source: https://upload.wikimedia.org/wikipedia/commons/6/68/B-tree example.svg

34

3.1. Dictionary structure

numbers. As a new separation key is taken a median of those numbers. It is
then inserted to its parent and the algorithm is repeated until it fins its place.
If it climbs up to the root and it is full too, new root is created containing one
key and two children.

The complexities of the basic operations in the B Tree can be seen in Table
3.6. The logarithms are not of base 2, but base m which is the size of the
node.

Table 3.6: B Tree complexities.

Operation Average & Worst

Space O(n)
Search O(logm n)
Insert O(logm n)

A modification of the B Tree called the B+ Tree is very similar data
structure. The main difference between the B Tree and the B+ Tree is that
in the B+ Tree the data are all stored in the leaves, and the inner nodes only
contain keys for selecting lower nodes. The B+ Tree leaf nodes can also be
linked using pointers to their left and right siblings. Both these modifications
means that after the desired data are found, it is possible to linearly continue
to the left or to the right for other values without the need of traversing the
tree. This is the main reason why the B+ Tree is much better choice for
implementing the ACB dictionary then the simple B Tree.

3.1.3 Dynamic order statistics

The ACB dictionary consists of few frequently repeated operations introduced
at the beginning of Chapter 3.1. While compressing, best content search is
done in O log n thanks to binary search trees, and the search for best matching
content is done by traversing the siblings. The length might be counted as
number of siblings traversed, positive or negative, depending on direction. In
case of decompression, best content search is similar, but the length is given
to the algorithm, and need to traverse that far by siblings is not very effective
option. Rather than that, some sort of statistical order information have to
be added to the tree.

This property is called dynamic order statistics and the tree with this
property is called order statistic tree. The order statistic tree is a variant
of the binary search tree (or more generally, a B-tree) that supports two
additional operations beyond insertion, lookup and deletion. Both operations
can be performed in O(log n) worst case time when a self-balancing tree is
used as the base data structure [13].

35

3. Analysis

1. Select(i) - find the ith smallest element stored in the tree (sometimes
called SearchByRank(x)).

2. Rank(x) - find the rank of element x in the tree, i.e. its index in the
sorted list of elements of the tree.

Figure 3.8: An augmented red-black tree to support order statistics

A data structure that can support fast order-statistic operations is shown
in Figure 3.8. An order-statistic tree T is simply a red-black tree with ad-
ditional information stored in each node. Besides the usual red-black tree
fields key[x], color[x], p[x], left[x], and right[x] in a node x, we have another
field size[x]. This field contains the number of (internal) nodes in the subtree
rooted at x (including x itself), that is, the size of the subtree. In the Figure

3.8 it is illustrated as
(key[x]
size[x]

)
.

size[x] = size[left[x]] + size[right[x]] + 1

3.1.3.1 Retrieving an element with a given rank

The procedure Select(x, i) returns a pointer to the node containing the ith

smallest key in the subtree rooted at x. To find the ith smallest key in an
order-statistic tree T , we call Select(root[T], i).

The idea behind Select is following. The value of size[left[x]] is the
number of nodes that come before x in an inorder tree walk of the subtree
rooted at x. Thus, size[left[x]] + 1 is the rank of x within the subtree rooted
at x.

In line 2 of Select, we compute r, the rank of node x within the subtree
rooted at x. If i = r, then node x is the ith smallest element, so we return x
in line 4. If i < r, then the ith smallest element is in x ’s left subtree, so we
recurse on left[x] in line 6. If i > r, then the ith smallest element is in x ’s
right subtree. Since there are r elements in the subtree rooted at x that come
before x ’s right subtree in an inorder tree walk, the ith smallest element in the

36

3.1. Dictionary structure

Algorithm 3 Select

1: procedure Select(x, i)
2: r ← size[left[x]] + 1
3: if i = r then
4: return r
5: else
6: if i < r then
7: return Select(left[x], i)
8: else
9: return Select(right[x], i - r)

10: end if
11: end if
12: end procedure

subtree rooted at x is the (i − r)th smallest element in the subtree rooted at
right[x]. This element is determined recursively in line 9.

To see how Select operates, consider a search for the 6th smallest element
in the order-statistic tree of Figure 3.8. We begin with x as the root, whose
key is 13, and with i = 6. Since the size of 13’s left subtree is 4, its rank is 5.
Thus, we know that the node with rank 6 is the 6 - 5 = 1st smallest element
in 13’s right subtree. After the recursive call, x is the node with key 18, and
i = 1. Since the size of 18’s left subtree is 1, its rank within its subtree is
2, which means it is the second smallest element. Thus, a pointer to the left
subtree node with key 16 is returned by the procedure.

Because each recursive call goes down one level in the order-statistic tree,
the total time for Select is at worst proportional to the height of the tree.
Since the tree is a red-black tree, its height is O(log n), where n is the number
of nodes. The running time of Select is O(log n) for a dynamic set of n
elements.

3.1.3.2 Determining the rank of an element

Given a pointer to a node x in an order-statistic tree T, the procedure Rank
returns the position of x in the linear order determined by an inorder tree
walk of T.

The procedure works as follows. The rank of x can be viewed as the
number of nodes preceding x in an inorder tree walk, plus 1 for x itself. The
following invariant is maintained: at the top of the while loop of lines 4-9, r is
the rank of key[x] in the subtree rooted at node y. We maintain this invariant
as follows. In line 2, we set r to be the rank of key[x] within the subtree rooted
at x. Setting y ← x in line 3 makes the invariant true the first time the test
in line 4 executes. In each iteration of the while loop, we consider the subtree

37

3. Analysis

Algorithm 4 Rank

1: procedure Rank(T, x)
2: r ← size[left[x]] + 1
3: y ← x
4: while y 6= root[T] do
5: if y = right[p[y]] then
6: r ← r + size[left[p[y]]] + 1]
7: end if
8: y ← p[y]
9: end while

10: return r
11: end procedure

rooted at p[y]. We have already counted the number of nodes in the subtree
rooted at node y that precede x in an inorder walk, so we must add the nodes
in the subtree rooted at y ’s sibling that precede x in an inorder walk, plus
1 for p[y] if it, too, precedes x. If y is a left child, then neither p[y] nor any
node in p[y]’s right subtree precedes x, so we leave r alone. Otherwise, y is a
right child and all the nodes in p[y]’s left subtree precede x, as does p[y] itself.
Thus, in line 6, we add size[left[y]] + 1 to the current value of r. Setting y ←
p[y] makes the invariant true for the next iteration. When y = root[T], the
procedure returns the value of r, which is now the rank of key[x].

Since each iteration of the while loop takes O(1) time, and y goes up one
level in the tree with each iteration, the running time of Rank is at worst
proportional to the height of the tree, O(log n) on an n-node order-statistic
tree.

3.1.3.3 Maintaining subtree sizes

Given the size field in each node, Select and Rank can quickly compute
order-statistic information. But unless these fields can be efficiently main-
tained by the basic modifying operations on red-black trees, our work will
have been for naught. We shall now show that subtree sizes can be main-
tained for insertion without affecting the asymptotic running times of either
operation.

We noted in Section 3.1.2.2 that insertion into a red-black tree consists of
two phases. The first phase goes down the tree from the root, inserting the
new node as a child of an existing node. The second phase goes up the tree,
changing colors and ultimately performing rotations to maintain the red-black
properties.

The two size fields that need to be updated are the ones incident on the
link around which the rotation is performed. The updates are local, requiring

38

3.2. Triplet representation and coding

Figure 3.9: Tree rotations with size property.

only the size information stored in A, B, and the roots of the subtrees shown
as triangles x, y and z in Figure 3.9.

To maintain the subtree sizes in the first phase, we simply increment size[x]
for each node x on the path traversed from the root down toward the leaves.
The new node added gets a size of 1. Since there are O(log n) nodes on the
traversed path, the additional cost of maintaining the size fields is O(log n). In
the second phase, the only structural changes to the underlying red-black tree
are caused by rotations, of which there are at most two. Moreover, a rotation
is a local operation: it invalidates only the two size fields in the nodes incident
on the link around which the rotation is performed.

Since at most two rotations are performed during insertion into a red-black
tree, only O(1) additional time is spent updating size fields in the second
phase. Thus, the total time for insertion into an n-node order-statistic tree is
O(log n), asymptotically the same as for an ordinary red-black tree.

3.2 Triplet representation and coding

Triplets are the output of the ACB compression algorithm and they, by default,
consists of three parts, that is why they are called triplets. There exists more
variations and usage of triplets, this is summarized in section 3.2.1.

Storing triplets into output is not very efficient if no further coding is done.
Various approaches should be analyzed to decide which to chose and how to
handle it in section 3.2.2.1.

3.2.1 Triplet variations

Few possible variations were already presented in Chapter 2. To remind, they
were:

• Default triplet (l, d, c),

• the triplet (1, l, d) or (0, c) presented by Salomon [2],

39

3. Analysis

• the triplet (1, s, d, l, 0, c) or (1, s, d, l, 1) or (0, 0, c) variation by Děcký

• the triplet (l + |Σ| - 1, d) or (c) presented by Cerman,

• the triplet (|Σ|, l - 1, d) or (c) presented by Cerman too,

• the triplet (1, l, d, c) or (0, c) as improvement to triplet by Salomon,

• the triplet (l, c) or (l, d, c) presented by Valach.

where zeros and ones are bit flags, d is the distance, l is the common
length, c is a new symbol, s is the sign of the distance d, and |Σ| is the size
of the alphabet.

In the thesis done by Valach [7] it is proved that the last two mentioned
triplet variations are the best ones in terms of final compression ratio.

3.2.2 Triplet coding

The coding of triplets, as shown later, needs bounded values to work properly.
A maximum possible value is assigned to each part of the triplet to restrict
its bit size. So if it is defined that any part of a triplet occupies b bits, this
triplet part can contain 2b different values. This changes the behaviour of
ACB dictionary and compression or decompression method as follows:

Bit flag. The bit flag doesn’t change anything. It is just showing what dif-
ferent parts does the triplet have. Bit flag should be stored into 1 bit.

Length. The length shows how many common symbols did actual content
and best matching content have. During the comparing part of the
algorithm, maximal possible length have to be taken into account. Even
if there are more common symbol, the comparison have to stop and
maximal value is stored. This value is always zero or positive, unsigned
data types might be used internally in the triplet representation before
it is serialized into bit output.

Distance. The distance is also bounded into maximal value. When searching
for the best matching content, it cannot be done in the whole dictionary,
as such distance value would not have any specific boundary. Instead,
the vicinity of context with index i is searched in the interval [i−2d−1, i+
2d−1) where d is the number of bits assigned to this triplet property. The
distance takes both positive and negative values so caution should be
taken when serializing and deserializing triplets. Serialization is done
by and operation with bit mask of value 2d − 1 and deserialization
by inverting all leading zeros if it should be a negative number. In
asymptotic complexity, the search for the best matching content is O(1),
because both the distance and the length have upper limit.

40

3.2. Triplet representation and coding

Symbol. Bit size of a symbol triplet property depends on the size of an
alphabet. Commonly used alphabets for compression methods are 256
symbols, thus 8 bits, 1 byte.

Encoding of the triplets, above stated also as a de/serialization, have to be
done using an uniquely decodable code. It has to be uniquely decodable, so that
the decoder decodes the input stream without any guessing. It satisfies many
codes, but the most effective appeared to be the adaptive arithmetic coding
[7]. About the requirements and demands over the adaptive arithmetic coding
is the next section 3.2.2.1. But arithmetic coding is not the only such code,
there exists similar Range coding, covered in section 3.2.2.2.

3.2.2.1 Arithmetic coding

The most important advantage of arithmetic coding is its flexibility: it can
be used in conjunction with any model that can provide a sequence of event
probabilities. This advantage is significant because large compression gains
can be obtained only through the use of sophisticated models of the input data.
Models used for arithmetic coding may be adaptive, and in fact a number of
independent models may be used in succession in coding a single file.

The other important advantage of arithmetic coding is its optimality.
Arithmetic coding is optimal in theory and very nearly optimal in practice, in
the sense of encoding using minimal average code length. When the probabil-
ity of some single symbol is close to 1, arithmetic coding does give considerably
better compression than other methods. So the bigger probability of symbols,
the more efficient the arithmetic coding is. And in case of some triplet com-
ponents, the probability is pretty high.

A disadvantage of arithmetic coding is that it does not in general produce
a prefix code, excluding parallel coding with multiple processors. A minor
disadvantage is the need to indicate the end of the file.

The algorithm for encoding a file using arithmetic coding works conceptu-
ally as follows:

1. We begin with a ”current interval” [L, H) initialized to [0; 1).

2. For each symbol of the input, we perform two steps:

a) We subdivide the current interval into subintervals, one for each
possible alphabet symbol. The size of a symbol’s subinterval is
proportional to the estimated probability that the symbol will be
the next symbol in the input.

b) We select the subinterval corresponding to the symbol that actually
occurs next in the input, and make it the new current interval.

41

3. Analysis

3. We output enough bits to distinguish the final current interval from all
other possible final intervals.

The length of the final subinterval is clearly equal to the product of the
probabilities of the individual symbols. Also, some mechanism to indicate the
end of the input is needed, either a special end-of-file symbol coded just once,
or some external indication of the file’s length. An example of probabilities
and interval division is shown in Figure 3.10.

Aside from other compression algorithms, where some code is created after
every encoded symbol, arithmetic coding produces just one decimal number
between zero, included, and one, excluded. Division by the number according
to probabilities is made in every step. It is not possible to divide a number
stored in bits huge amount of times without a precision lost, this is solved
by shifting bounds of the bits, replacing least significant bytes with most
significant ones, underflowing, rescaling etc. More about this algorithm can
be found in [2].

Figure 3.10: Probabilities of arithmetic coding ”aca”

The adaptive arithmetic coding works that every symbol in the arithmetic
coding starts with the same non-zero probability. This starting probability
could be adjusted, if any assumption for the probable values could be made.
During the encoding/decoding these probabilities are updated after each sym-
bol is encoded/decoded.

As arithmetic coding depends only on the symbol probabilities and the
position of the selected probability, it allows to use multiple probability distri-
butions in one arithmetic code. In other words, it is possible to use multiple
alphabets in one code, if there is a deterministic algorithm to select, which
alphabet is the correct one at any time during the decompression. Or, another
possibility is to have separate arithmetic coder with its own frequencies and

42

3.3. Algorithm improvements

final interval number for every alphabet. Those alphabets are in our case the
triplet components.

3.2.2.2 Range coding

The range encoder is an entropy coder similar to the arithmetic coder. Com-
pared to an arithmetic coder the files are almost the same size (less than 0.01%
in most cases) but the operation speed is faster [18]. It is so similar to arith-
metic coder that I would say it is identical. Small differences are stated in
Martin’s paper [18], that is such range encoders have the tendency to perform
renormalization a byte at a time, rather than one bit at a time (as is usually
the case). In other words, range encoders tend to use bytes as encoding di-
gits, rather than bits. While this does reduce the amount of compression that
can be achieved by a very small amount, it is faster than when performing
renormalization for each bit. In fact, it does not matter whether range or
arithmetic coder is used.

3.3 Algorithm improvements

This section deals with possible new features and improvements of the ACB
compression method and dictionary management. Section 3.3.1 is featuring
the possibilities and potential trouble of use of the second best content and
the longest common prefix of the 1st and 2nd best one.

3.3.1 Second best content

As a reminder, the original coding process presented by G. Buyanovski [1] will
be repeated.

Lets have a string and compression method in progress. Actual position of
the algorithm in the string is index i. Then the dictionary is searched for the
best matching context, which is the part of the string before the index i, by
right-to-left comparison. The best matching context is found. The context’s
neighbourhood is then searched for the best matching content, which is the
part of the string after the index i. When it is (or is not) found, the length
variable has value between zero and the maximum value defined by maximal
bit size of a resulting triplet property, no matter if the found context would
have even more symbols in common. This all is then handled to any triplet
coder. The decompression works in the same manner, but it is not that
important for this case. Even if the best matching content would fit longer
length, it could not to preserve triplet coding functionality.

Features search for the second best content tries to solve this potential
issue. It takes an adventage of a fact that the dictionary is, for any given index
i, at the very same state for both compression and decompression. Otherwise

43

3. Analysis

the indices for context and contents would not find the same context-content
pairs. If the content of the dictionary and every context-content pair are the
same, search for the second best content would be the same too. And when the
content is second best one, there is a decent probability that they share many
symbols in common. This number, called longest common prefix (LCP) of
two best contents, can be substracted from found length, increasing maximum
boundary by the same value and potentially offering better compression ratio.
Cases when the maximal allowed length is not enough and content shares even
more symbols might not be frequent, but on contrary, this improvement do
not affect compression ratio in any negative way, and speed probably not too,
because all near contents are searched anyway.

Good way to demonstate it is to provide an example. Because this modi-
fication do not alter context behaviour, they are omitted.

Example 3.3.1
Construct a triplet from provided text and dictionary state. Then deconstruct
the text from the triplet.

...|alfaab

Context|Content
0 ...|alfx
1 ...|alfaaxy1st
2 ...|alfaaxz2nd

3 ...|alfab
4 ...|ao

Search for the best matching content is done iteratively. At 0, the common
length is 3. At 1, it increases to 5. The content at next index has the same
length, so in normal compression method, it would not matter which one to
take, but because now the second best matching content is important too, let
the content at index 2 mark as the second best one. Third and fourth index
length is shorter so do nothing. lcp(alfaaxy, alfaaxz) = 6, but length = 5.
Length output should be substitution of LCP and original length, 5 - 6 = -1
in this case, but length can not be negative. So zero is outputted instead,
forming triplet

(d, 0, b)

Decompression now. The input is previous triplet and dictionary looks the
same.

44

3.3. Algorithm improvements

At distance d from the context, there is a dictionary pair at index 2, which
was previously selected as the best matching content. Search among contents
have to be done to reveal the second best one. It is at index 1, sharing 6
symbols in common. LCP is 6, length from triplet is 0 so 6 symbols should
be copied to the output, forming

...alfaa x b|

And that is definitively not what was inputted. The mistaken part was mark-
ing the second best matching content. Allowing it to have LCP with the
best one greater than common length is wrong. To prevent this, the best
matching content should be lexicographically smallest possible with maximal
found length, and the second best matching content should be lexicographic-
ally smaller, disallowing LCP overflow and even length to be zero. This helps
a lot to other triplet variations where the coder behaviour depends on zero
or non-zero length property. In fact, when there is no content with common
symbol, the search for the content during the decompression should not be
done at all.

So once again the example 3.3.1. The dictionary looks like

Context|Content
0 ...|alfx2nd

1 ...|alfaaxy1st
2 ...|alfaaxz
3 ...|alfab
4 ...|ao

with best matching content at index 1. See, alfaxy < alfaxz. The second
best matching content is chosen at index 0, having LCP equal to 3. Common
length is 5, making 5 - 3 = 2. Outputted triplet is

(d, 2, b)

When decompressing, the same roles have to be followed. The best content,
second best content and LCP are the same. Final length is 3 + 2 = 5 and
that is exactly what it should be, output is

...alfaab|

Important remarks:

• Search for the 2nd best content is not needed when no symbols in com-
mon are found between best and actual content.

45

3. Analysis

• The best matching content have to be lexicographically smallest among
all contents fulfilling common symbols found.

• Second best content have to be lexicographically smaller than the first
one.

• Length cannot be 0 if there are symbols in common between best and
actual content.

• Contents are searched during decompression when the triplet length
property is not zero to find 2nd best content and to count longest com-
mon prefix.

46

Chapter 4

Implementation

This chapter deals with the way ACB comression method is implemented and
what problems had to be challenged to achieve fully functional program.

Basic overview of development environment is presented in Section 4.1.
External libraries and technologies used are in Section 4.2. Following Section
4.3 presents program architecture and design. The dictionary behaviour along
with chosen backing data structures is presented in Section 4.4, after which
the Section 4.5 focused on final triplet coding is located.

4.1 Overview

The program is written in Java language, version 8. There are no other ACB
implementation is java, those mentioned in Chapter 2 are mainly in C or C++.
It had to be built from scratch, including complete architecture design.

As a repository and version control system was used Git6. Build process
system was chosen to be Maven7 and whole development work was done in
IDE IntelliJ IDEA8 from JetBrains.

4.2 External libraries

There are many various libraries well optimised providing reliable and well
documented functionality. It is good to use them rather than ”inventing a
wheel” again. Because this program consists of just one complex algorithm, no
massive frameworks, databases or other business-heavy libraries are needed, I
could get by general ones to outsource only simple thing. Their list is following.

6http://git-scm.com/
7http://maven.apache.org/
8http://www.jetbrains.com/idea

47

4. Implementation

Commons CLI. 9 The Apache Commons CLI library provides an API for
parsing command line options passed to programs. It’s also able to
print help messages detailing the options available for a command line
tool. Commons CLI supports different types of options and is very well
customizable.

Apache Log4j2. 10 Apache Log4j is a Java-based logging utility among many
others java logging frameworks. Apache Log4j 2 is an upgrade to Log4j
that provides significant improvements over its predecessor, Log4j 1.x,
and provides many of the improvements available in Logback while fix-
ing some inherent problems in Logback’s architecture. The framework
was rewritten from scratch and has been inspired by existing logging
solutions, including Log4j 1 and java.util.logging. It has very manu new
features and improvements, for the full list, see project site.

JUnit. 11 JUnit is a simple, open source framework to write and run repeat-
able tests. It is an instance of the xUnit architecture for unit testing
frameworks. JUnit features include assertions for testing expected res-
ults, test fixtures for sharing common test data and test runners for
running tests. JUnit was originally written by Erich Gamma and Kent
Beck.

4.3 Architecture

This ACB implementation was probably first of a kind in java. Completely
new design was made to work fast, fulfil all the ACB compression method
requirenments and to offer potentially extensible environment for further im-
provements. Architecture research and design was made mainly in topics
showed by following sections.

4.3.1 Functional parts provider

At the beginning, the issue was to how to decouple execution logic from ini-
tialization logic, so the algorithm runs solely with configured components and
is not delayed by initialization during runtime.

Solution was in form of data provider, that takes parsed command line ar-
guments, initialize proper instance constructors and offers them under unified
interface methods. Of course that every functional module, such as diction-
ary or triplet coder, have to share the same class interface. The compression
algorithm can then treat all the instances the same way and the data provider
gives the right instance every time it is asked.

9http://commons.apache.org/cli/
10http://logging.apache.org/log4j/2.x/
11http://junit.org/

48

4.3. Architecture

The interface ACBProvider provides methods to get all the important com-
ponents of the compression method, those are dictionary, coder, converter
between bytes and triplets, and the backing dictionary structure. Class ACB-
ProviderImpl has to be instantiated by constructor, by which all the parsed
information from user input are handled. In constructor, it creates instances
of constructor method references of all those important parts. Then, when
particular get method is called, it forwards its parameters to constructor ref-
erence and return the intended class instance. UML diagram is shown at figure
4.1.

Figure 4.1: UML diagram of functional parts provider.

4.3.2 Data stream

Issue here was to design program data flow such that it is as fast as possible,
all the components should start their process immediately, while keeping the
communication between parts general and extensible. Inspiration was taken
from Java Stream API that becomes available in Java 8. It first creates whole
streamline, sometimes also called a pipe, with the input logic at the beginning
and output logic, called terminator, at the end.

The object composition is chained using ChainBuilder forming a chain of
processes in which the data flow freely. There is a contract that every method
that wants to be part of a chain have to have two parameters, as input para-
meter of any type that it can start the work with, and the second parameter
is a Consumer that is able to consume the output, forwarding it to following
chain segment. This ensures every part of the chain to be fully responsible
over the handling with object input and to output the result whenever it want
and mainly how many times it wants, Consumer is always there forwarding
everything.

The flow od data, or the chain, is illustrated below. Brief information
describes the purpose of the process, arrow indicates direction and text above
arrow tell what type of data flows there.

Compression: Read from file
byte[]
===⇒ parse if needed

byte[]
===⇒ ACB compres-

sion
triplet
===⇒ triplet coding

byte[]
===⇒ Write to file.

49

4. Implementation

Figure 4.2: UML diagram of chain manager.

Decompression: Read from file
byte[]
===⇒ triplet decoding

triplet
===⇒ ACB de-

compression
byte[]
===⇒ concatenate if needed

byte[]
===⇒ Write to file.

UML diagram of ACB chain manages is shown in Figure 4.2.

4.3.3 Input Output

In previous section was said that the chain is created and terminated by IO
logic. For this purpose, the class ACBFileIO was created. It has no interface. It
contains methods to access files in various ways for both opening and closing.
The list of methods is:

ACBFileIO. Constructor, it has one argument variant with integer, the
number indicated a block size to which is opened file parsed and for-
warded, and no argument variant, which initialize the class so the whole
file is forwarded as byte array.

openParallel. This method opens a file in mode allowing paralelism, it con-
tains ExecutorService that handles creation of threads. Those threads
hosts next processes, namely ACB compression. Parallelization was not
completes, because triplet coder - adaprive arithmetic coding - do not
allow processing in parallel mode.

openParse. Opens file in regular mode, parsing it if specified by constructor
parameter. Parsed blocks are forwarded to next chain segment.

saveParse. The opposite process, concatenating and saving bytes into file.

openObject and saveObject Unused methods, they were saving final Ar-
rayList of Bytes by java serialization, not by concatenating inner parts,
causing memory overhead. It is deprecated, openArray should be used.

openArray. Method used for decompression, opens array of bytes.

50

4.4. Dictionary

saveArray. Terminal method of compression, saves stream of bytes.

For opening and closing purposes, bytes are manipulated as java ByteBuffer
for the better support of java IO api.

4.4 Dictionary

ACB dictionary was introduced in Section 1.2.1 and closely analyzed in Section
3.1. Now lets have a look at the implementation facts and issues.

The dictionary consists of context-content pairs. This functionality, along
with searches and updates, is managed by backing data structure. Dictionary
class is wrapping this tree data structure, enhancing it and providing some
dictionary-related logic.

The sliding window is represented by byte array wrapping object. It was
inspired by String and wrapped byte array inside. Interface ByteSequence is
similar to CharSequence, providing uniform access to bytes. ByteArray is the
same as String, immutable array of bytes. If is used at a time of compression,
because whole input sentence could be read and is known at the start. And if
a programmer wants to build long Strings efficiently, he uses StringBuilder, the
same is used is case of decompression - byte array is slowly build by copying
symbols from dictionary or adding symbols from triplets. ByteBuilder was used
with exactly same inner logic as StringBuilder, including dynamically growing
arrays of bytes.

The dictionary does not contain any part of the original text, only men-
tioned sliding window. All context-content pair values are represented as
indices to this sliding window. This index is of type integer, as integer’s value
is large enough to index any type of text, nevertheless block partitioning is
probably done during the input part.

The dictionary interface provides following operations. To be more obvi-
ous, UML diagram is presented in Figure 4.3.

Figure 4.3: Dictionary interface.

51

4. Implementation

clone. Cloning dictionary is useful only for testing, cloning every state of a
dictionary for later comparison with dictionary states created by decom-
pression.

copy. This method have two integer attributes specifying how many symbols
to copy from which index. It is used only for decompression.

search. This is the most used method. It gets index number from its call
parameter, calls method searchContext and with obtained best matching
context, it calls searchContent returning its return value.

searchContext. Delegates call to rank method of a backing ordered statist-
ical tree.

searchContent. Searches the defined proximity of given context for the best
matching content. This method is overriden in inherited dictionary
structure to the base one, handling differently the second best matching
contents, mentioned in Section 3.3.1.

update. Called after every triplet was handled, it updates backing dictionary
tree by values that have been encoded/decoded.

select. Delegates call to select method of a backing ordered statistical tree.
It is used only for best matching content handling, as the select result is
needed to know where the search for second best matching content was
originally made.

4.4.1 Dictionary order

ACB dictionary has unusual ordering for the context part. It orders by right-
to-left comparison, for example za is smaller than az. There were two options
how to handle this type of ordering.

First one was to wrap every index into data structure extending Compar-
able<T> where T is that wrapper. Compare method would have access to the
dictionary’s sliding window because the reference would have been given to
the wrapper object, that is why it was created. Then compare method would
access it every time it is called, traversing backward until it finds inequality.
This variant was memory consuming, because every index stored had to be
wrapped by object referencing to the text.

The second variant which I have chosen is by creating custom Compar-
ator<Integer> with access to the sliding window and handling backward tra-
versing. It means backing tree structures does not have comparable keys, but
comparator is given to them instead. This variant looked to me more conveni-
ent, but primitive integer indices has to be also substituted by Integer object
for the possibility to be part of the comparator and backing tree, as java do
not allow primitives to do so.

52

4.4. Dictionary

Another issue was that in some cases, when two contexts were too much
similar, it took a lot of time to decide which one was smaller or greater, res-
ulting into almost no impact as they were probably siblings anyway. It makes
sence to bound those comparisons by some constant. When two contexts
are similar up to some point, they are called identical and are stored to the
dictionary in deterministic order. I choose this constant to be 10 and when
reached, I compared them based on the context length, because every context
has different length.

4.4.2 Ordered statistical trees

We know from analysis that self-balanced tree structures are best for backing
the dictionary. It have to be adjusted by dynamic order statistics to provide
full functionality for the dictionary. The search trees are defined by set of
nodes containing keys and corresponding values, usually written as Tree<Key,
Value>. The Key is crucial for us, it points to the original text. Its value is
exactly the index at which was the sliding window positioned at the time of
processing it. The content lies right from index, context lies left from index.
By key, the dictionary is able to access both. So what use Value for? Value
is not needed and shell be removed from any backing tree to save
some memory.

There are three backing dictionary structures implemented in the program.
Their inheritance relationships are showed in Figure 4.4. All three have been
taken from [19] and slightly refactored not to contain values, just keys, and
not to require keys to be comparable, but rather use comparator.

Figure 4.4: Backing trees relationship.

53

4. Implementation

4.4.2.1 BinarySearchST

This is actually not a tree, but binary search symbol table. The underlying
data structure is array, with the keys kept in order. For the insert operation,
all larger keys are moved to make room for inserted value. Search is done by
binary search in sorted array. This implementation is apparently not effective,
it was included to see and compare trees and arrays.

4.4.2.2 BST

This implementation uses an unbalanced binary search tree. There is an inner
private class to define nodes in BST. Each node contains a key, a value, a left
link, a right link, and a node count. The left link points to a BST for items
with smaller keys, and the right link points to a BST for items with larger
keys. The instance variable N gives the node count in the subtree rooted at
the node.

4.4.2.3 RedBlackBST

This implementation uses a left-leaning red-black binary search tree. It is
also called 2-3 search tree, because it takes the advantage of B Trees, but
is implemented as a red-black tree. The basic idea behind red-black binary
search trees is to encode 2-3 trees by starting with standard BSTs (which
are made up of 2-nodes) and adding extra information to encode 3-nodes. We
think of the links as being of two different types: red links, which bind together
two 2-nodes to represent 3-nodes, and black links, which bind together the
2-3 tree. Specifically, we represent 3-nodes as two 2-nodes connected by a
single red link that leans left. We refer to BSTs that represent 2-3 trees in
this way as red-black BSTs. Given any 2-3 tree, we can immediately derive
a corresponding red-black BST, just by converting each node as specified.
Conversely, if we draw the red links horizontally in a red-black BST, all of
the null links are the same distance from the root, and if we then collapse
together the nodes connected by red links, the result is a 2-3 tree. Node and
correspondence between trees is shown in Figure 4.512 [19].

4.5 Coder

Triplet coder and decoder are different. They are represented by classes
ByteToTripletConverter and TripletToByteConverter. They serves as a wrap-
per to any coder, handling communication with preceding and following chain
segments. They create coder for every element of triplet, allowing adaptive
arithmetic coding to have separated frequency table for each alphabet thus

12Source: http://algs4.cs.princeton.edu/33balanced/images/redblack-encoding.png

54

4.5. Coder

Figure 4.5: 2-3 tree correspondence to red-black tree.

(a) 3-node (b) Transition between trees.

achieving better compression. Two variants of triplet coding were implemen-
ted.

4.5.1 Adaptive Arithmetic Coding

Opensource project Nayuki [20] was used and adjusted for arithmetic coding
purpose.

Two pairs of command-line programs fully demonstrate how this software
package can be used to encode and decode data using arithmetic coding. One
pair of programs is the classes ArithmeticCompress and ArithmeticDecompress,
which uses a static frequency table. The other pair of programs is the classes
AdaptiveArithmeticCompress and AdaptiveArithmeticDecompress, which uses an
adaptive/dynamic frequency table and was used for ACB triplet coding.

The classes ArithmeticCoderBase, ArithmeticEncoder, and ArithmeticDecoder
implement the basic algorithms for encoding and decoding an arithmetic-
coded stream. The frequency table can be changed after encoding or decoding
each symbol, as long as the encoder and decoder have the same table at the
same position in the symbol stream. At any time, the encoder must not
attempt to encode a symbol that has a zero frequency.

Objects with the interface FrequencyTable keep track of the frequency of
each symbol, and provide cumulative frequencies too. The cumulative fre-
quencies are the essential data that drives arithmetic coding.

The classes BitInputStream and BitOutputStream are bit-oriented I/O streams,
analogous to the standard bytewise I/O streams. However, since they use an

55

4. Implementation

underlying bytewise I/O stream, the bit stream’s total length is always a mul-
tiple of 8 bits [20].

4.5.2 Bit Array Composing

Different approach was to implement simple bit array composer and decom-
poser in classes BitArrayComposer and BitArrayDecomposer. It just takes the
triplet value and stores it into byte array, buffering and aligning bits. It was
implemented for comparison with adaptive arithmetic coding, to see how much
more efficient it is than using no coding at all. It’s functionality is supported
by BitStreamInputStream and BitStreamOutputStream classes that implements
an enhanced I/O stream which allows to read a stream of bit fields ranging in
size from 1 bit (a true bit stream) to 32 bits (a stream of integers). The size
of the current bitfield can be changed at any point while reading the stream.

4.6 Tests

Unit tests are implemented using JUnit test framework. The tests are written
so that all the parameters and the whole compression and decompression chain
is tested. It may be mor eclear to call them functional tests rather that unit
tests, as thez do not test small units, but mainly whole consistency, data flow
and completeness.

Various mocked objects and ACB data structure wrappers were used to
control the flow and the processes correctly.

56

Chapter 5

Measurements

This chapter shows results and outcomes of implementations presented in
previous chapters. Experiments and performance measurements are covered,
showing what king of implementation is better. Special attention was given
to new improvement presented in Section 3.3.1 and also to comparison of new
java implementation and C++ ones presented in Chapter 2.

Memory management was tested and observed by and observed by JVM
Debugger Memory View for IntelliJ IDEA plugin, time was measured by in-
ternal JVM clock. Correctness of compression and decompression was tested
by comparing original file and file after compression and decompression for all
the combinations of program modules.

Testing platform was Intel R©CoreTMi5-430M, 2,26 GHz, 3 MB L3 cache,
quadro core, with RAM 4 GB DDR3, Windows 7 64-bit architecture, Java
64-bit 1.8.0 102.

5.1 Used corpuses

Compression corpuses are used for even comparison over manifold set of data.
Their advantage is that they contains various commonly used data sets that
tests algorithms from every side of usage.

Only Calgary corpus was used in this measurements, but let mention more
of them for completeness.

5.1.1 Calgary Corpus

The Calgary Corpus was founded by Ian Witten, Tim Bell and John Cleary
at University of Calgary in 1987. It contains 18 files of 9 different types
with complete size 3,266,560 bytes. A Table 5.1 contains all of those files
descriptions.

57

5. Measurements

Table 5.1: Calgary corpus description

File name Size [B] Description

bib 111,261 bibliographic references
book1 768,771 english text
book2 610,856 english text
geo 102,400 geophysical data
news 377,109 news articles
obj1 21,504 executable code
obj2 246,814 executable code
paper1 53,161 english text
paper2 82,199 english text
pic 513,216 bitmap black and white picture
progc 39,611 C source code
progl 71,646 Lisp source code
progp 49,379 Pascal source code
trans 93,695 transcript of a terminal session

5.1.2 Cantenbury Corpus

The Canterbury Corpus was published by Ross Arnold and Tim Bell in 1997.
The aim was to replace outdated Calgary Corpus and to provide more relevant
testing for new compression algorithms. The files were selected based on their
ability to provide representative performance results. It contains 11 files with
size of 2,810,784 bytes showed in Table 5.2.

Table 5.2: Cantenbury corpus description

File name Size [B] Description

alice29.txt 152,089 English text
asyoulik.txt 125,179 Shakespeare
cp.html 24,603 HTML source code
elds.c 11,150 C source code
grammar.lsp 3,721 LISP source code
kennedy.xls 1029,744 Excel spreadsheet
lcet10.txt 426,754 technical writing
plrabn12.txt 481,861 poetry
ptt5 513,216 CCITT test set
sum 38,240 SPARC Executable
xargs.1 4,227 GNU manual page

58

5.2. Dictionary structure experiments

5.1.3 Prague Corpus

Prague corpus was created as a part of master thesis by Jakub Řezńıček in
2010. This corpus contains 30 files of the total size 58,265,600 bytes, being
the largest from those three corpuses. Files are also described in Table 5.3.

Table 5.3: Prague corpus description

File name Size [B] Description

abbot 349,055 binary file
age 137,216 spreedsheet
bovary 2,202,291 german text
collapse 2,871 JavaScript source code
compress 111,646 HTML source code
corilis 1,262,483 graphics
cyprus 555,986 XML data
drkonqi 111,056 binary file
emission 2,498,560 database file
firewrks 1,440,054 audio file
flower 10,287,665 audio file
gtkprint 37,560 binary file
handler 11,873 Java source code
higrowth 129,536 spreedsheet
hungary 3,705,107 XML file

File name Size [B] Description

libc06 48,120 binary file
lusiadas 625,664 portuguese text
lzfindmt 22,922 C source code
mailflder 43,732 Python source code
mirror 90,968 binary file
modern 388,909 swedish text
nightsht 14,751,763 graphics
render 15,984 C++ source code
thunder 3,172,048 audio file
ultima 1,073,079 english text
usstate 8,251 Java source code
venus 13,432,142 graphics
wnvcrdt 328,550 database file
w01vett 1,381,141 database file
xmlevent 7,542 PHP source code

5.2 Dictionary structure experiments

This section presents tests and measurements over all three implemented data
structures presented in Section 4.4.2. Those are binary search symbol table,
binary search tree without self-balancing property and finally self-balancing
2-3 tree (or red-black tree). The Table 5.4 presents it.

BinarySearchST is implemented by array that have to shift the data larger
than inserted key every time the dictionary is updated. It explains the longest
time and compression ratio.

BST, as binary search tree, is quite more efficient, but in few cases, when
the inserting output is unfortunate, it reporting strong behaviour changes.

RedBlackBST is the most stable one for its balancing property and optim-
ised operations.

5.3 Dictionary memory consumption

Context based dictionary compression methods have big requirement for memory
allocation during its runtime. In this field, array-based structures have ad-
vantage over the tree based, because trees needs internal node data structure

59

5. Measurements

Table 5.4: Time complexity of dictionary structures

Compression time [µ s]
File BinarySearchST BST RedBlackBST

bib 449,055 360,416 266,125
book1 4,014,775 2,516,040 1,890,435
book2 3,769,551 2,100,647 1,850,437
geo 326,017 220,143 180,670
news 1,619,001 1,001,431 776,641
obj1 62,554 52,789 44,658
obj2 140,966 125,920 99,647
paper1 111,257 70,102 55,786
paper2 250,123 190,019 149,600
pic 10,440,054 6,450,179 3,982,702
progc 87,593 67,233 50,833
progl 187,400 177,926 135,074
progp 130,707 89,904 80,414
trans 222,410 201,405 130,956

to store keys, links and other properties. Table 5.5 shows how memory de-
manding were those three dictionary backing structures.

In general, the heap memory used by a Java object in Hotspot consists of:

• an object header, consisting of a few bytes of ”housekeeping” informa-
tion,

• memory for primitive fields, according to their size,

• memory for reference fields (4 bytes each),

• padding: potentially a few ”wasted” unused bytes after the object data,
to make every object start at an address that is a convenient multiple
of bytes and reduce the number of bits required to represent a pointer
to an object.

A single-dimension array is a single object. As expected, the array has the
usual object header. However, this object head is 12 bytes to accommodate a
four-byte array length. Then comes the actual array data which, as expected,
consists of the number of elements multiplied by the number of bytes required
for one element, depending on its type. The memory usage for one element is
4 bytes for an object reference. List of the memory usage of primitive types
is not a case for ACB dictionary so it is not discussed here.

60

5.4. Triplet component experiments

Table 5.5: Memory allocation of dictionary structures

Memory allocation [B]
File name Size [B] BinarySearchST BST RedBlackBST

bib 111 261 445208 1335256 1780200
book1 768 771 3075248 9225372 12300360
book2 610 856 2443584 7330392 9773720
geo 102 400 409760 1228920 1638424
news 377 109 1508600 4525432 6033768
obj1 21 504 86176 258168 344088
obj2 246 814 987416 2961888 3949048
paper1 53 161 212808 638056 850600
paper2 82 199 328960 986512 1315208
pic 513 216 2053024 6158712 8211480
progc 39 611 158608 475456 633800
progl 71 646 286744 859872 1146360
progp 49 379 197680 592672 790088
trans 93 695 374944 1124464 1499144

5.4 Triplet component experiments

This section experiments with adjustable triplet components, which are dis-
tance and length. Alphabet size representing symbol is not customizable,
because it does not make sense.

Distance means how far is search for best matching contents done after
the best matching context is found. Increasing distance parameter insigni-
ficantly increases search time, but significantly increases probability at which
the better content is found, reducing compression ratio.

Length stands for the maximum length of symbols shared in common
between actual text content and best matching content, saving both time
and compression ratio.

Table showing relationship between compression ratio and distance bits is
showed in Table 5.6 and relationship between compression ratio and length
bits is showed in Table 5.7.

5.5 Triplet coding

There were implemented all known triplet forms to test how they do differ in
compression ratio. They were named after their discoverers or implementators.
Implemented triplet forms are:

• Simple - default triplet (l, d, c),

61

5. Measurements

Table 5.6: Relationship between compression ratio and distance property

Distance property [b]
File 3 5 7 9 11

bib 0.289 0.286 0.282 0.276 0.297
book1 0.358 0.339 0.360 0.344 0.323
book2 0.323 0.305 0.301 0.300 0.286
geo 0.641 0.596 0.604 0.586 0.573
news 0.341 0.351 0.345 0.332 0.347
obj1 0.487 0.460 0.517 0.500 0.518
obj2 0.357 0.352 0.344 0.334 0.332
paper1 0.344 0.350 0.327 0.353 0.347
paper2 0.356 0.340 0.337 0.323 0.338
pic 0.108 0.103 0.114 0.111 0.108
progc 0.336 0.333 0.331 0.335 0.330
progl 0.228 0.240 0.232 0.218 0.232
progp 0.224 0.219 0.221 0.219 0.221
trans 0.203 0.187 0.191 0.196 0.204

Table 5.7: Relationship between compression ratio and length property

Length property [b]
File 3 5 7 9 11
bib 0.329 0.301 0.300 0.301 0.318

book1 0.373 0.373 0.369 0.377 0.382
book2 0.341 0.327 0.320 0.326 0.322
geo 0.657 0.633 0.662 0.636 0.651
news 0.385 0.367 0.359 0.365 0.372
obj1 0.539 0.509 0.500 0.524 0.547
obj2 0.405 0.359 0.354 0.358 0.357
paper1 0.382 0.363 0.359 0.360 0.368
paper2 0.367 0.363 0.356 0.366 0.371
pic 0.149 0.124 0.116 0.108 0.110
progc 0.379 0.345 0.343 0.362 0.362
progl 0.285 0.249 0.239 0.241 0.258
progp 0.277 0.236 0.231 0.236 0.243
trans 0.273 0.216 0.206 0.208 0.211

• Salomon - the triplet (1, l, d) or (0, c),

• Salomon2 - the triplet (1, l, d, c) or (0, c),

• Valach - the triplet (l, c) or (l, d, c),

• LCP - longest common prefix is used.

62

5.5. Triplet coding

It is showed that for some data, the LCP improvements really works, but
it can not be generalized. Data where there are more repetitive strings, the
LCP improvement seems to work well, though.

Table 5.8: Forms of triplet representations

Compression ratio
File Simple Salomon Salomon2 Valach LCP

bib 0.314 0.312 0.298 0.304 0.308
book1 0.387 0.386 0.381 0.376 0.374
book2 0.342 0.341 0.340 0.329 0.320
geo 0.699 0.691 0.682 0.652 0.656
news 0.377 0.374 0.372 0.370 0.364
obj1 0.532 0.529 0.523 0.522 0.519
obj2 0.381 0.371 0.366 0.362 0.350
paper1 0.376 0.373 0.367 0.367 0.367
paper2 0.381 0.380 0.377 0.376 0.373
pic 0.126 0.123 0.116 0.115 0.115
progc 0.370 0.368 0.362 0.358 0.352
progl 0.251 0.254 0.252 0.248 0.248
progp 0.254 0.254 0.248 0.237 0.236
trans 0.218 0.216 0.216 0.210 0.205

63

Conclusion

This thesis deals with not very well examined context based compression
method named ACB after its inventor George Buzanovsky. The algorithm was
described in detail, followed by list of contributors and their implementations
of this method. After, depth analysis of possible data structure improvements
was made, along with other initiatives and observations. The outcome of this
thesis is functional implementation of the ACB algorithm in java language,
opening potential possibilities of future improvements. All relevant elements
were implemented and they underwent technical measurements such as com-
pression efficiency, memory consumption and time requirements.

Future work

This java implementation does still have some weak spots, such as linked leaves
in dictionary backing structure or more sophisticated adaptive arithmetic cod-
ing. But brand new implementation in java opens a lot of options, the most
significant ones are easy algorithm parallelization using java threads. It was
already slightly designed, but not finished nor tested.

65

Bibliography

[1] Buyanovsky, G. Associative coding. Monitor, 10 - 22 pp.

[2] Salomon, D. Data Compression: The Complete Reference. Springer-
Verlag, fourth edition.

[3] Large text compression benchmark. Available from: mattmahoney.net/
dc/text.html#2185

[4] Cerman, L. Acb compression algorithm.

[5] Excom library. Available from: http://www.stringology.org/
projects/ExCom/

[6] Šimek, F. Data compression library.

[7] Valach, M. Effcient implementation of ACB compression algorithm for
ExCom library.

[8] Fredkin, E. Trie memory. ACM Computer Survey, 490 - 499 pp.

[9] Wiener, P. Linear pattern matching algorithms. Switching and Automata
Theory, 1 - 11 pp.

[10] Ukkonen, E. On-line construction of suffix trees, volume 14. Algorithmica,
249 - 260 pp.

[11] Gene Myers, U. M. Suffix arrays: a new method for on-line string
searches, volume 22. SIAM Journal Computing, 935 - 948 pp.

[12] Pan Ko, S. A. Space efficient linear time construction of suffix arrays,
volume 2676. In Combinatiorial Pattern Matching (CPM 03).LNCS, 203
- 210 pp.

67

mattmahoney.net/dc/text.html#2185
mattmahoney.net/dc/text.html#2185
http://www.stringology.org/projects/ExCom/
http://www.stringology.org/projects/ExCom/

Bibliography

[13] Cormen, T.; Leiserson, C.; Rives, R.; et al. Introduction to Algorithms.
MIT Press and McGraw-Hill, third edition, ISBN 0-262-03384-4.

[14] Gonnet, G. Optimal Binary Search Trees. Scientific Computation.

[15] Sadgewick, R. Algorithms. Addison-Wesley, ISBN 0-201-06672-6, 199 pp.

[16] Bayer, R.; McCreight, E. Organization and Maintenance of Large Ordered
Indices. Boeing Scientific Research Laboratories.

[17] Knuth, D. Sorting and Searching, volume 3. Addison-Wesley, second edi-
tion, ISBN 0-201-89685-0.

[18] Martin, G. N. N. An algorithm for removing redundancy from a digitized
message. Video & Data Recording Conference.

[19] Sadgewick, R.; Wayne, K. Algorithms. Addison-Wesley Professional,
fourth edition, ISBN 032157351X 9780321573513. Available from: http:
//algs4.cs.princeton.edu

[20] Nayuki. Reference arithmetic coding. Available from: https://

www.nayuki.io/page/reference-arithmetic-coding

68

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
https://www.nayuki.io/page/reference-arithmetic-coding
https://www.nayuki.io/page/reference-arithmetic-coding

Appendix A

Acronyms

ACB Asociative Coder of Buyanovsky

API Application Programming Interface

AVL Adelson-Velsky and Landis

BST Binary Search Tree

EOF End Of File

IDE Integrated Development Environment

IO Input/Output

JDK Java Development Kit

JRE Java Runtime Environment

JVM Java Virtual Machine

LCP Longest Common Prefix

ST Symbol Table

VCS Version Control System

69

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
license.txt..........................the file with licence specification.
src.......................................the directory of source codes
dist..distributed jar file
text..the thesis text directory

src the directory of LATEX source codes of the thesis
thesis.pdf...........................the thesis text in PDF format

71

Appendix C

User manual

This appendix summarizes usage of implemented ACB compression method
by console parameters.

usage: acb.jar input output [options]
input - input file or directory
-af, –arith-freq 〈freq〉 〈freq〉 is comma separated array of integers defining

init values
of arithmetic coding frequency table
(default is 45,13,10,7,5,4,1...)

-bs, –bit-stream-array no coding is used for triplets (default is adaptive arithmetic coding)
-d, –distance 〈N〉 N bits used for distance triplet element (default is 6)

maximal context-content distance is 2(̂N - 1)
-de, –decompress decompress input (default is to compress)
-ds, –dict-struct 〈struct〉 〈struct〉 represents data structure used

in dictionary (default is red black)
values = [RED BLACK, BST, ST]

-h, –help print this help
-l, –length 〈N〉 N bits used for length triplet element (default is 4)

maximal length is 2(̂N)-1
-log, –log-level 〈level〉 sets logging level of the application
-m, –measure measured program process data printed to file 〈out〉

or to standard output if no file specified
-tc, –triplet-coder 〈coder〉 〈coder〉 represents triplet coding strategy (default is simple)

values = [SALOMON, SALOMON2, SIMPLE, VALACH, LCP]

73

	Introduction
	Motivation
	Main goals
	Thesis organization

	Algorithm
	Definitions
	Basic overview
	Modifications

	Related work
	George Buyanovsky
	Martin Decký
	Lukáš Cerman
	Filip Šimek
	Michal Valach

	Analysis
	Dictionary structure
	Triplet representation and coding
	Algorithm improvements

	Implementation
	Overview
	External libraries
	Architecture
	Dictionary
	Coder
	Tests

	Measurements
	Used corpuses
	Dictionary structure experiments
	Dictionary memory consumption
	Triplet component experiments
	Triplet coding

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD
	User manual

