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1st July 2016





Acknowledgements

In the first place, I would like to thank my supervisor Ing. Martin Nemč́ık,
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Abstrakt

Car-to-infrastructure (C2I) je ad-hoc komunikačńı schéma použ́ıvané v in-
teligentńıch dopravńıch systémech. Jednou z hlavńıch aplikaćı C2I śıt́ı je
Green Light Optimal Speed Advisory (GLOSA). Jej́ım ćılem je podporovat
plynulost provozu a umožnit řidič̊um pr̊ujezd křižovatkou bez nutnosti zas-
taveńı či prudkých změn rychlosti. Hlavńım ćılem této práce je navrhnout a
implementovat vylepšený algoritmus pro výpočet doporučené rychlosti př́ıjezdu
ke křižovatce. Algoritmus je následně integrován do mobilńı aplikace Green-
Light, která implementuje systém GLOSA na straně řidiče. Daľśım tématem je
analýza bezpečnostńıch hrozeb – obecných pro GLOSA systémy a konkrétńıch
pro aplikaci GreenLight. Práce také navrhuje několik metod pro určeńı směru,
kterým zamýšĺı řidič projet křižovatkou. Toto umožńı automaticky vybrat
správný semafor pro výpočet doporučené rychlosti.

Kĺıčová slova Inteligentńı Dopravńı Systémy, Car-to-infrastructure, Křižo-
vatka, Semafor, GLOSA, Bezpečnostńı hrozby, Doporučená rychlost
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Abstract

Car-to-infrastructure (C2I) is an ad-hoc communication scheme used within
Inteligent Transportation Systems. Green Light Optimal Speed Advisory
(GLOSA) is one of the main C2I applications. It increases an overall traf-
fic flow continuity by helping drivers to avoid unnecessary stops at traffic
intersections. Main goal of this thesis is to design and implement an enhanced
algorithm for calculating a recommended approaching speed to an intersec-
tion. It also describes its integration in GreenLight, a mobile application
implementing driver-side part of GLOSA. Furthermore, the thesis identifies
common security threats to GLOSA systems and to the GreenLight applica-
tion. It also proposes several methods for determining direction in which the
driver intends to go through an intersection. This will allow for an automatic
selection of the proper light signal for which a recommended speed should be
calculated.

Keywords Inteligent Transportation Systems, Car-to-infrastructure, Inter-
section, Traffic light, GLOSA, Security threats, Recommended speed
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Introduction

Road transportation systems have undergone a massive technological improve-
ment during the last two decades. Nowadays, Intelligent Transportation Sys-
tem (ITS) is a widely recognized term denoting modern communication tech-
nology applied to various transportation systems. This thesis deals exclusively
with road transportation and automotive systems, but ITS is also defined for
railway, aeronautical and maritime transportation [1].

Existence of Intelligent Transportation Systems is an important condition
for deployment of autonomous (self-driven) vehicles. It is probably not realis-
tic to expect a complete adoption of self-driven cars in the near future, but at
least a partial adoption might be achieved soon. Society of Automotive Engi-
neers (SAE) has defined the following six levels of automated vehicle control
[2], [3]:

• Level 0 – No Automation: The driver controls the vehicle at all
times, no automated assistance systems are used. Only notifications
and warnings to the driver may be issued automatically (e.g. optimal
speed advisory).

• Level 1 – Driver Assisted: Assistance systems are used to support
the driver and partially control the vehicle (e.g. adaptive cruise control,
lane departure warning). However, the Level 2 systems provide only a
limited support and the driver still needs to control the vehicle at all
times.

• Level 2 – Partial Automation: Steering, accelerating and braking are
controlled automatically. All the remaining aspects of the vehicle control
are performed by the driver, e.g. lights, turn indicators. The driver also
needs to be ready to take over control if the automated systems fail to
operate properly, e.g. in bad weather.

• Level 3 – Conditional Automation: Within limited environments
such as highways, the automated systems can completely control the
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Introduction

car. The driver needs to be ready to take over control in a short time
upon a takeover request from the automated systems. This means the
driver is allowed to perform secondary tasks such as calling or internet
browsing during the autonomous operation.

• Level 4 – High Automation: Same as Level 3 but the driver does
not need to provide any fall-back control performance. Within the lim-
ited environments, the automated control must handle all the possible
conditions by itself.

• Level 5 – Full Automation: The car is fully autonomous, the driver is
not expected to control the vehicle at any time. Furthermore, no driver
needs to be physically present in the vehicle during the journey. The
only expected human interaction is determining the route (or only its
destination) and activating the autonomous control.

Currently, many Level 1 systems are being adopted by major car manufactur-
ers. This means the Advanced Driver Assistance Systems (ADAS) are under
rapid development and there is an incredibly increasing demand for technol-
ogy support from roadside infrastructure. Furthermore, organizations such as
IEEE, ETSI and SAE are working on a standardization of various ITS-related
elements and supporting technology. In certain limited domains, systems of
higher levels have also been introduced already. Example of such technology is
Remote Valet ParkingTM, a driver-less parking system developed by BMW [4].
It can be considered as a Level 4 system but only in a very limited application
domain.

ITS may include all types of communication in vehicles, between vehicles
(car-to-car, C2C), between vehicles and static road infrastructure elements
(car-to-infrastructure, C2I) and between infrastructure elements and their
backend components (e.g. datacenters). When this communication is used
to improve traffic effectiveness, safety or environmental impact, the system is
denoted as Cooperative ITS (C-ITS) [5].

There are many different C-ITS use cases and applications. In this work,
I focus on Green Light Optimized Speed Advisory (GLOSA) which is a C-ITS
application designed to increase traffic flow efficiency at road intersections. It
involves communication between a car and an intelligent traffic intersection
(car-to-infrastructure network). In this scenario, an intersection controller
broadcasts information about the phase schedule of each traffic light signal to
nearby vehicles. Approaching vehicles can calculate the optimal approaching
speed and avoid any unnecessary stops [6]. GLOSA is described in detail in
section 1.3.

An essential aspect of any Intelligent Transportation System is security.
There have been several successful attacks already, for example remotely dis-
abled brakes of a moving Jeep Cherokee [7]. Security will get particularly
crucial once the autonomous driving systems are adopted (phase 3 as defined
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Goals of the Thesis

above). Therefore, it is important to pay adequate attention to the security
aspect when designing or deploying any ITS-related technologies.

Goals of the Thesis

It might be useful to outline the most important goals and desired outcomes
of this thesis. The list is not complete, some partial goals are neglected here:

• Introduce car-to-infrastructure networks and their applications in C-ITS
(especially GLOSA). Expected outcome: Reader should get a general
understanding of car-to-infrastructure networks and the role they play
in C-ITS systems.

• Identify and describe common security threats in car-to-infrastructure
networks. On top of this analysis, provide suitable security measures for
GreenLight, a mobile application representing a car-side implementation
of a GLOSA system. Expected outcome: Reader should get an overall
overview of security threats in C2I-based systems. Moreover, this should
provide a simple guideline for a security design of future GreenLight
versions.

• Design, implement and evaluate an enhanced algorithm for calculating
the advised speed in the GreenLight application. Expected outcome:
The newly implemented algorithm should improve performance and re-
sult quality of the original (simple) algorithm.

• Analyze possible methods for determining an intended driving direction
through an intersection. This is necessary for selecting a proper traffic
light signal in the GreenLight application when the car is approaching
an intersection. Expected outcome: An algorithm for determining a
proper traffic light is expected to be implemented by the end of 2016.
The implementation will be based on this theoretical analysis.

Thesis Structure

The first chapter briefly introduces car-to-infrastructure communication net-
works and their usage in C-ITS systems. Special focus is given to the recom-
mended speed advisory systems (GLOSA). Furthermore, the chapter outlines
related technology background and looks into the current industry standards.

Chapter 2 moves focus to an existing mobile application implementing
GLOSA in a vehicle – GreenLight. The application is described in detail
together with the MirrorLinkTM technology it uses.

The third chapter presents common security threats to C2I-based GLOSA
systems and also for the GreenLight application. Based on the identified
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threats, several possible security measures for the application are discussed.
These should be considered for the future development of the application.

There are often more than one different traffic lights at an intersection
approach (e.g. separate signal for left / right / straight directions). Cur-
rent version of the GreenLight application displays only the straight direction
signal which is clearly not optimal and might not be acceptable for a produc-
tion version of the application. Therefore, a theoretical analysis of possible
methods for determining a proper traffic light signal is provided in chapter 4.

Another important feature of a GLOSA system is the algorithm for calcu-
lating a recommended speed displayed to the driver. Current version of the
GreenLight application contains just a very simple algorithm and its perfor-
mance is insufficient. Therefore, an enhanced calculation of the advised speed
is presented in chapter 5.

Chapter 6 deals with the implementation and testing of the enhanced speed
calculation proposed in the previous chapter and its integration in the Green-
Light application. GreenLight is an Android application written in C# using
.NET libraries and the Xamarin platform. Therefore, the same programming
language and tools are used for the new speed algorithm. After that, updated
GreenLight with the newly implemented speed algorithm is tested in real traf-
fic. In addition, a theoretical comparison with the original algorithm is also
presented in this chapter.
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Chapter 1
Car-to-Infrastructure Networks

(C2I)

1.1 Overview of C2I networks

An Intelligent Transportation System involves a wireless communication be-
tween vehicles and roadside infrastructure elements. It may vary in the com-
munication scheme and actual technology used. The basic classification is the
following:

• Centralized approach: All the communication is routed through cen-
tral nodes using an existing network infrastructure. For the automo-
tive usage, the most common technologies are mobile networks such as
3G/LTE.

• Ad-Hoc approach: Usually denoted as Vehicular Ad Hoc Network
(VANET). Decentralized approach where the communication does not
rely on an existing network infrastructure. Instead, each node partici-
pates in the routing by forwarding data for other nodes [8]. The most
common technology is IEEE 802.11p which is an amendment to the
well-known Wi-Fi protocol (more in section 1.2.1).

Car-to-infrastructure is an ad-hoc communication scheme involving an On-
Board ITS Unit (OBU) in a vehicle, a static Roadside Infrastructure ITS Unit
(RSU) and a wireless communication network between these two. Similarly,
car-to-car is a scheme involving communication between two or more on-board
units. Both schemes may be also referenced as car-to-x (C2X). Possibly, there
might be also a Central ITS Unit communicating with the RSU units pro-
viding them with backend services such as central database access. Since
this communication is not ad-hoc, it is, strictly speaking, not part of C2X
networking. All these communication schemes are illustrated in figure 1.1.

5



1. Car-to-Infrastructure Networks (C2I)

Figure 1.1: Communication Schemes of C2X Networking

There are many possible use cases of C2X communication within C-ITS
systems. The Drive C2X Consortium has defined and standardized eighteen
potentially usable C2X applications (use cases) listed in table 1.1. They are
divided into three categories according to their main purpose: Traffic Safety,
Traffic Efficiency and Infotainment and Business [9]. Some of the most com-
mon uses cases are the following:

• Traffic jam ahead warning (C2C, C2I): Vehicles approaching a traffic
jam receive warning messages from roadside infrastructure (C2I) or from
the cars that are already stuck in the jam (C2C). Probability of a rear-
end collision is decreased.

• Road works warning (C2I): A roadwork acts as a roadside communi-
cation unit and broadcasts warning messages to the approaching vehi-
cles. Similarly to the previous use case, drivers are informed in advance
and possible collisions can be avoided.

• Approaching emergency vehicle (C2C): An emergency (privileged)
vehicle informs nearby vehicles about its approach. The drivers receiv-
ing this message may react in advance which can increase both traffic
efficiency and safety.

• In-vehicle signage (C2I): Traffic signs act as roadside units and inform
the nearby vehicles about themselves. This decreases the chance that a
driver does not notice an important traffic sign. A different approach is

6



1.1. Overview of C2I networks

C2X Use Case Purpose
Traffic Safety

Traffic jam ahead warn-
ing

Avoiding collisions with jammed vehicles

Road works warning Awareness of potentially dangerous road work
conditions

Car breakdown warning Avoiding collisions with disabled vehicles
Approaching emergency
vehicle

Awareness of approaching privileged vehicles

Weather warning Awareness of critical weather conditions ahead
Emergency electronic
brake lights

Avoiding collisions with an unexpectedly brak-
ing vehicle ahead

Slow vehicle warning Avoiding collisions with slower vehicles ahead
Post crash warning Awareness of traffic accidents ahead
Obstacle warning Avoiding collisions with obstacles blocking the

road
Motorcycle warning Awareness of approaching motorcycles
In-vehicle signage Awareness of traffic signs along the route

Traffic Efficiency
GLOSA Improving traffic flow at road intersections
Traffic information Improving traffic flow by route recommenda-

tions
Infotainment and Business

Insurance and Financial
Services

Providing information to insurance companies
after accidents

Dealer Management Offering products to drivers (advertising)
Point of interest notifi-
cation

Awareness of places such as sights and parkings
along the route

Fleet management Fleet management collaboration across organi-
zations

Transparent leasing Enforcing agreed leasing parameters (e.g. dis-
tance driven)

Table 1.1: C2X Use Cases [9]

that a car recognizes traffic signs using a built-in camera. This is part
of the Advanced Driver Assistance Systems (ADAS).

• GLOSA (C2I): An intersection controller broadcasts information about
the phase schedule of each traffic light signal to nearby vehicles. Ap-
proaching vehicles can calculate an optimal driving speed and avoid any
unnecessary stops. This helps to maintain the traffic flow continuity and
generally increases the traffic efficiency.
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1. Car-to-Infrastructure Networks (C2I)

Figure 1.2 illustrates expected phases of C-ITS technology adoption. Since
most of the applications defined above provide only notifications and warn-
ings to the driver, their successful adoption can be expected during the first
two phases. The third and fourth phase deal primarily with adoption of auto-
mated assistant systems and will become important in the future, especially
for deployment of partially or fully autonomous cars [10].

Figure 1.2: Phase Concept of C-ITS Adoption [10]

1.2 Technical Background of C2I Communication
Systems

There are different technologies used for car-to-x communication networks
around the world. This work focuses on European ITS technologies and pro-
tocols as defined by the European Telecommunications Standards Institute
(ETSI). Although many standards are still under development and change
rapidly, ETSI has already defined a complete protocol suite to be used for
ITS/C2I systems [11]. Furthermore, the European Committee for Standard-
ization (CEN) has published first European Standards based on the ETSI
technical standards.

Besides ETSI, organizations such as IEEE, SAE (Society of Automotive
Engineers), ARIB (Association for Radio Industry and Business) and ISO are
the major players in developing technical ITS standards around the world.

As shown in figure 1.3, the ETSI protocol stack consists of several layers:
Access, Networking & Transport, Facilities, Applications, Management and
Security. The rest of this section describes each layer in detail.

8



1.2. Technical Background of C2I Communication Systems

Figure 1.3: ETSI ITS Network Architecture [11]
(Abbreviations MS, MN, MF etc. are names of interfaces between

the corresponding layers)

1.2.1 Access Layer

The Access Layer corresponds to the physical (L1) and data link (L2) layers
of the well-known ISO/OSI networking model [11]. Thus, it deals with the
hardware connection to the physical medium, link control and transmission of
the data frames between the communicating devices.

It is possible to use various technologies within the access layer according
to the application needs and available resources. For the car-to-x networks
ETSI defines a protocol called ITS-G5 which is just a very slightly modified
IEEE 802.11p. The only distinction is a different frequency range since the
802.11p is designed to be used primarily in North America, while ITS-G5
targets Europe. Both protocols operate in the licensed ITS band of 5.9 GHz,
but ITS-G5 uses the 5.855–5.925 GHz range and IEEE 802.11p the 5.850–5.925
GHz range. In comparison, a different frequency range of 5.770–5.850 GHz is
used in Japan [12][13]. These frequency bands are shown in figure 1.4 together
with a corresponding frequency band reserved by the Radiocommunication
Sector of the International Telecommunication Union (ITU-R) for industrial,
scientific and medical application (ISM band).

9



1. Car-to-Infrastructure Networks (C2I)

Figure 1.4: C2X Frequency Bands [13]

IEEE 802.11p is an amendment to the 802.11 standard for WLAN, better
known as Wi-Fi. The main difference is that 802.11p can operate outside a
Basic Service Set (BSS), while the traditional Wi-Fi cannot [14]. It means
data can be transmitted at any time with no need to wait for an association
and authentication to a wireless access point. In the car-to-infrastructure
networks, this eliminates an unacceptably long delay before an actual data
transfer may take place. However, since there is no authentication, there is
also no identity protection and no data confidentiality. Thus, all the security
services must be provided by upper network layers.

Theoretical communication range of the 802.11p is 1,000 meters line of
sight as specified by the standard. However, several experimental evaluations
have proved that this requirement cannot be satisfied in a real traffic. For ex-
ample, a reliable communication distance of only 300 meters was achieved in
a city environment (Hamburg, Germany) as presented in [15]. Another eval-
uation determined the maximum distance as 750 meters (with a 90% packet
delivery rate) but in a highway scenario instead of city [16].

1.2.2 Network & Transport Layer

Analogously to the ISO/OSI model, ETSI Network & Transport Layer cor-
responds to the ISO/OSI network (L3) and transport (L4) layers. They deal
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1.2. Technical Background of C2I Communication Systems

mainly with addressing of communication nodes, message routing and reli-
able data delivery. ETSI defines two protocols to be used within this layer:
GeoNetworking and Basic Transport Protocol (BTP). Alternatively, TCP/IP
protocols such as IP, TCP and UDP may be used for specific applications [11].

GeoNetworking is a network-layer protocol that provides two basic func-
tions – geographical addressing and geographical forwarding. Instead of tra-
ditional addressing scheme where an address is based on a node identity (e.g.
MAC and IP addresses), GeoNetworking address is based on a geographical
location of the communicating node. It means each packet carries an ex-
act geographical location of both sender and receiver. When a node receives a
packet, it may forward it further depending on the destination address (multi-
hop transfer). Thus, all nodes may act as routers/forwarders, but there is no
need to setup routing tables or any similar infrastructure in advance. This
also allows for a data transfer between distant nodes that cannot communicate
directly [17].

Five different routing and forwarding schemes for GeoNetworking have
been defined. These are illustrated in figure 1.5 and described below:

• GeoUnicast: A packet is destined for a single receiver (geographical
point). The route may involve multiple hops and each node along the
way forwards the packet until it reaches its destination.

• GeoMulticast: A packet is destined for a specific group of nodes. This
may consist of multiple GeoUnicast transmissions.

• GeoBroadcast: A packet is destined for all nodes in a specific geo-
graphical area. Similarly to the GeoUnicast routing, the packet is being
forwarded until it reaches the destination area. The receiving nodes
within the destination area rebroadcast the packet so it can reach all
the nodes in that specific area.

• GeoAnycast: A packet is destined for any node in a specific geograph-
ical area. Routing is the same as GeoBroadcast, but there are no re-
broadcasts within the destination area.

• Topologically-scoped broadcast: A packet is destined for all nodes
in an n-hop neighborhood (i.e. nodes that can be reached in up to n
hops). Routing is similar to a traditional broadcast, but a number of
allowed rebroadcasts is limited by the value of n. This also corresponds
to broadcasting packets with a time-to-live value equal to n.

Basic Transport Protocol is a transport-layer protocol similar to UDP. It pro-
vides a connection-less data transport between end nodes. This means that
any intermediate hops (e.g. caused by the GeoNetworking forwarding) are
completely transparent to BTP. It is a lightweight protocol with unreliable

11



1. Car-to-Infrastructure Networks (C2I)

GeoUnicast

GeoBroadcast

GeoAnycast

GeoMulticast

Other Node

Destination AreaOriginating Node

Receiving Node

Forwarding Node

Figure 1.5: GeoNetworking Routing Examples [17]

packet delivery. Packets might be received out-of-order or even dropped dur-
ing the transfer. The main function of BTP is (de)multiplexing messages of
different applications. For this purpose, it uses source and destination port
numbers in the same way as UDP and TCP do [18].

1.2.3 Facility Layer

ETSI Facility Layer covers the relation (L5), presentation (L6) and partially
also application (L7) layers of the ISO/OSI model [11]. Its main purpose
is to provide standardized messages (called facilities here) that can be used

12



1.2. Technical Background of C2I Communication Systems

by applications. It also defines specific facilities to support communication,
session and information (data) management [19].

Facilities can be split into several categories. A few examples of existing
facilities are listed for each category:

• Common facilities: These facilities provide core services common to
all applications and should be supported by all ITS stations (communi-
cation nodes).

– Application support facilities: CAM management (see below), time
management, security access management etc.

– Communication support facilities: communication management,
addressing mode etc.

– Information support facilities: position management, data presen-
tation etc.

• Domain-specific facilities: These facilities provide specific services
relevant to a certain group of applications or only to a single application.
Implementation at an ITS station is optional.

– Application support facilities: DEN management (see below), billing
and payment, GIS support etc.

– Communication support facilities: session support
– Information support facilities: LDM (see below), map data base,

user repository etc.

There are three particularly important facilities that should be mentioned
here: Co-operative Awareness Message (CAM), Decentralized Environmental
Notification (DEN) and Local Dynamic Map (LDM).

Co-operative Awareness Message is an application-independent facility de-
signed to be periodically (1-10 Hz) exchanged between all road users (ITS
stations) including vehicles, roadside infrastructure or possibly even bicycles,
pedestrians and similar. This might be achieved by using e.g. GeoBroadcast
messages. Basic information such as station position, type, moving direction
and speed are transmitted. Such co-operative awareness might be very useful
for applications dealing with traffic safety and efficiency [20].

Unlike CAM, Decentralized Environmental Notification is a domain-specific
event-driven facility, completely controlled by the application. It defines a
standard message format for general event notifications. Information such as
event position, type (e.g accident, traffic jam, roadworks), duration and status
(e.g. new, update, cancellation) are transmitted [21].

Local Dynamic Map is the most important information-support facility.
It provides a data storage and information management for the Application
Layer. For example, data received by CAM and DEN messages are maintained
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by the LDM. Additional services such as time (and/or location) based data
retention rules and data request prioritization are also supported by the LDM
[22].

1.2.4 Application Layer

ETSI has defined a Basic Set of Applications (BSA) covering most of the
considered use cases of an ITS system. This specification includes require-
ments of functions, performance, message contents etc. It also provides basic
implementation guidelines, but exact technical details are left unspecified.
All the applications are supposed to use the ETSI protocol stack (ITS-G5,
GeoNetworking, BTP, Facilities). However, there might be many other pos-
sible applications using different technologies, but these are not specified by
ETSI [19].

There are 32 ITS applications (use cases) in the BSA divided into four
different categories as outlined below:

• Active road safety: Applications mostly intended to warn drivers of
unexpected and potentially dangerous conditions along the way. Exam-
ples of these applications are: Emergency Vehicle Warning, Intersection
Collision Warning, Wrong Way Driving Warning, Roadwork Warning.

• Co-operative traffic efficiency: Applications intended to help drivers
(through notifications or assist systems) to achieve a higher traffic effi-
ciency. Examples of these applications are: Green Light Optimal Speed
Advisory (GLOSA), Speed Limits Notification, Route Guidance and Nav-
igation, Detour Notification.

• Co-operative local services: Location based services, mostly in-
tended for supplementary non-critical purposes. These deal neither with
traffic safety nor efficiency. Examples of such applications are: Point of
Interest Notification, Local Electronic Commerce, Media Downloading.

• Global internet services: Unlike the local services, Global internet
services strongly depend on a backend infrastructure such as internet
connection. Examples of such applications: Insurance and Financial
Services, Fleet Management, Vehicle Software/Data Provisioning and
Update.

1.2.5 Management Entity

ETSI Management Entity provides a cross-layer management functions with
interfaces to all the other layers within the ETSI protocol stack. Its main
purpose is to handle common management for the core services and to al-
low certain cross-layer communication channels that are needed for correct
functionality of the ETSI protocol stack [11].
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A core component of the Management Entity is a Management Information
Base (MIB) that stores all the parameters (settings) of the ITS communication
objects, i.e. of the addressable instances of functionality of ITS stations. The
MIB is designed in accordance with RFC 3410 and thus it can be accessed
using the Simple Network Management Protocol (SNMP) version 2 [23].

Another important feature is a Decentralized Congestion Control (DCC). It
attempts to optimize the transmit parameters of the outgoing packets based on
the current congestion level of the communication channel. It also determines
priorities between different types of messages to achieve required quality of
service (QoS) [24].

1.2.6 Security Entity

ETSI Security Entity consists of two separate parts as depicted in figure 1.6.
A cross-layer Security Management Plane and layer-by-layer core security ser-
vices [25].

Figure 1.6: ETSI Security Entity [25]

Security Management Plane is a cross-layer entity similar to the Manage-
ment Entity which is described in section 1.2.5. It provides security services
common to all the layers within the ETSI protocol stack. Examples of such
services are Firewall and Intrusion Management, Identity Management, Au-
thentication and Authorization Management, Enrolment Management.

Most of the security services are, however, provided on a layer-by-layer
basis so that each service is part of either Access, Network & Transport,
Facility or Application Layer. Examples of these services are the following:
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• Access Layer: Sender and Receiver Identification

• Network & Transport Layer: Message Integrity Verification, Mes-
sage Digital Signature

• Facility Layer: Message Payload Encryption and Decryption, Message
Payload Timestamp

• Application Layer: Not defined by ETSI.

Definitions of all the security services specified by ETSI can be found in [26],
but it is beyond the scope of this work to describe them here. Nevertheless,
ETSI specifies neither exact technical methods nor implementation details of
any particular service and thus actual implementations may vary.

1.3 Green Light Optimized Speed Advisory
Systems (GLOSA)

Green Light Optimized Speed Advisory Systems (GLOSA) is one of the ITS
applications defined in the ETSI Basic Set of Applications. It is categorized
as a speed management application within the co-operative traffic efficiency
application class.

Main purpose of GLOSA is to increase traffic efficiency by helping drivers
to prevent any unnecessary stops at traffic lights. It involves a car-to-in-
frastructure communication between a car and an ITS-equipped traffic inter-
section. The intersection controller broadcasts information about the phase
schedule of each traffic light signal to nearby vehicles. The broadcasted mes-
sages should contain at least the intersection topology (map), current phase
of each light signal (green/yellow/red) and remaining time to the end of that
phase. Using this information, the approaching vehicles can calculate an op-
timal approaching speed and avoid any unnecessary stops [6].

Benefits of a functional GLOSA system are primarily an improved traffic
flow continuity, higher travel comfort, lower fuel consumption (up to 20%
difference [27]) and lower environmental impact, especially reduced noise and
CO2 emissions. This is particularly beneficial in urban areas with a dense
road traffic.

1.3.1 ETSI specification of GLOSA

ETSI specified and standardized functional, operational and message content
requirements for GLOSA systems [19]. These requirements are specified on a
high level of abstraction and do not include any technology or implementation
related requirements.
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Operational requirements:

1. Availability of a GLOSA application should be announced by an autho-
rized roadside ITS station (intersection controller).

2. The roadside unit should provide information about the signal phase
schedule in a Signal Phase and Timing (SPaT) message and informa-
tion about the intersection topology in an Intersection Topology (MAP)
message. GeoBroadcast should be used for transmitting these messages.

3. SPaT and MAP messages should be broadcasted periodically at a given
frequency, exact transmission frequency is not specified by ETSI. The
SPaT message should be updated with each transmission. This process
is fully controlled by the roadside unit.

4. The on-board unit (vehicle) should keep receiving the broadcasted mes-
sages and possibly update the speed recommendation.

The operational requirements presented above cover the basic operation of a
GLOSA system. ETSI also defined eleven functional requirements, but these
are only formalized principles already contained in the operational require-
ments. Nevertheless, a few of these requirements are worth mentioning:

• An authorized roadside ITS station shall transmit the relevance area for
the traffic light phase and timing information.

• The relevance area shall allow matching to a specific road section or
specific lane, if the provided traffic light phase and timing is lane specific.

• The receiving vehicle ITS station shall check the relevance of the infor-
mation.

• The vehicle ITS station should keep the speed advice information at
least when vehicle is still located in the intersection area.

1.3.2 SPaT and MAP messages

The ETSI operational requirements for GLOSA specify usage of the Signal
Phase and Timing (SPaT) and Intersection Topology (MAP) messages. These
messages have been defined and standardized by the Society of Automotive
Engineers as SAE J2735 [28]. However, this standard is intended to be used
primarily in North America. A corresponding European standard (ISO/CEN
TS 19091) is still under development and not available to public as of March
2016 [29]. This European standard will be, however, based on SAE J2735 with
only minor adjustments for European usage. Furthermore, an Europe variant
of the SAE J2735 message set definition is available [30]. According to SAE,
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Intersection Status Object

fixedTimeOperation: bool
trafficDependentOperation: bool
standbyOperation: bool
failureMode: bool

... many intersection attributes ...

Movement Event

eventState: enum
  -- red, green, yellow, dark ...
startTime: int
  -- event start time (optional)
endTime: int
  -- event end time

Movement State

state-time-speed: MovementEvent[1..16]
  -- light signal event data of future events
signalGroup: int
  -- ID for mapping to MAP message data

Signal Phase and Timing (SPaT)

intersections: IntersectionState[1..32]
  -- intersection list

Intersection State

timeStamp: int
  -- message construction time
status: IntersectionStatusObject
  -- overall intersection state
states: MovementState[1..255]
  -- light signals

1

1..16

1..255

1..32

Figure 1.7: SPaT Message Structure (simplified) [30]

it is using both SAE J2725 and ISO 19091 draft. The following description is
based on the 1.0 version of this document.

The Signal Phase and Timing message contains information about phase
schedule of each traffic light in one or more (up to 32) intersections. A sim-
plified structure of the message is shown in figure 1.7 in form of a UML class
diagram. The Intersection State entity represents a single intersection and the
Intersection Status Object carries its attributes. Examples of the attributes are
intersection operation status (ok, failure, standby ...), current signal schedul-
ing mode (fixed, depending on traffic ...) and similar.

An intersection consists of up to 255 Movement States. A Movement State
is a set of lanes belonging to a single traffic light signal. The key information
is contained in the Movement Event entity. This represents a particular signal
phase (e.g. green) and its timing, especially end time of the phase. Other time
values such as start time are optional. Up to 16 Movement Events might be
associated with a single Movement State. This allows to include information
about the current and also the future signal phases in a single message.

Figure 1.8 demonstrates a SPaT message data mapped to a sample inter-
section. Each red or green arrow belongs to a particular Movement State and
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Figure 1.8: Intersection Example (SPaT) [31]

its color represents the current signal phase, i.e. an Movement Event entity.
Any future phases, which can be included in the message as well, are not
shown here.

The Intersection Topology (Map Data, MAP) message contains geograph-
ical data of one or more (up to 32) intersections. A simplified structure of
the message is shown in figure 1.9. Complexity and all the possible content of
this message is beyond the scope of this work and thus only the main parts
are presented here.

The Intersection Geometry entity represents a single intersection consisting
of up to 255 road lanes (Generic Lane). Each lane has various attributes (Lane
Attributes) such as its type (car, bus, bicycle) and allowed move direction
(one-way, two-way). It is described by a list of geographical points encoded as
additive offsets to an Intersection Reference Point (any fixed point with exact
geographical coordinates). A lane can also connect to other lanes and such
connection is represented by the Connection entity. This means a vehicle can
arrive at the intersection in certain lane and leave it in any of its connecting
lanes.

Figure 1.10 demonstrates a MAP message data mapped to a sample inter-
section. Each colored thick arrow corresponds to a Generic Lane. The black
circles are its geographical points (Nodes) with a single Intersection Reference
Point among them. The thin black arrows are Connections between lanes.

Upon receiving SPaT and MAP messages, it is necessary to map the light
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Connection

connectingLane: int
 -- ID of connecting lane
signalGroup: int
  -- ID for mapping to SPaT message data

Node

deltaX: int
deltaY: int
  -- additive offsets to refPoint
speedLimit: int[0..9]
  -- regulatory speed limits

... many node attributes ...

Lane Attributes

directionalUse: BitString
  -- directions of lane use
sharedWith: BitString
  -- lane co-users (bus, taxi ...)
laneType: BitString 
  -- lane type data (car, bus ...)

Generic Lane

laneID: int
  -- ID for mapping to connecting lanes
laneAttributes: LaneAttributes
  -- lane specific properties
nodeList: Node[2..63]
  -- lane spatial path
connectsTo: Connection[0..16]
  -- List of connecting lanes

Position 3D

lat: int
long: int
  -- geo coordinates
elevation: int
  -- geo elevation (optional)

Map Data (MAP)

intersections: IntersectionGeometry[0..32]
  -- intersection list

Intersection Geometry

refPoint: Position3D
  -- reference geo point
laneSet: GenericLane[1..255]
  -- list of road lanes

10..16

2..63

1

1..255

1

0..32

Figure 1.9: MAP Message Structure (simplified) [30]

signals to the corresponding geographical data. This can be achieved by using
the signalGroup attribute of the Movement State (SPaT message) and Con-
nection (MAP message) entities. Each Movement State should have a unique
value of signalGroup and all the Connections with the same value belong to
this Movement State, i.e. traffic light signal.

1.3.3 Existing GLOSA Implementations

There have been several successful realizations of GLOSA systems in a real
world environment. Most of these projects were implemented as proofs of con-
cept, usually to demonstrate abilities of the cooperative ITS technology and
its potential for the future. Most of them are also part of ongoing research

20



1.3. Green Light Optimized Speed Advisory Systems (GLOSA)

Figure 1.10: Intersection Example (MAP) [31]

activities of major car manufacturers. Some projects even do not satisfy the
requirements for GLOSA as defined by ETSI (see 1.3.1). This section presents
three interesting examples of successful GLOSA realizations.

Audi Travolution is a collaboration between Audi and many of its part-
ners (City of Ingolstadt, Scheidt & Bachmann GmbH, TaxiFunk Ingolstadt,
ADAC etc.). One part of this project is a GLOSA system deployed at 25
intersections in Ingolstadt, Germany. 15 of these intersections use car-to-
infrastructure WLAN networks allowing for a direct communication between
cars and the intersections. The remaining intersections send data to a backend
server located in Ingolstadt city centre. It is then distributed to vehicles using
3G (UMTS) mobile network. The transmitted messages are similar to SPaT
and MAP described in 1.3.2. Besides displaying a recommended speed to the
driver, two of the test cars have been equipped with an adaptive cruise control
connected to the GLOSA system. In this setup, car speed is automatically
adjusted to match the recommended speed [32].

Another interesting example is a recent C-ITS project funded by the Eu-
ropean Union called Compass4D (Cooperative Mobility Pilot on Safety and
Sustainability Services for Deployment). Particularly important is the Energy
Efficient Intersection service, designed and deployed in Verona, Italy. It in-
cludes a GLOSA system using the ITS-G5 (IEEE 802.11p) access technology
and SPaT/MAP messages to communicate with passing vehicles. The project
involves 25 intersections, 10 buses and 30 cars equipped with the correspond-
ing C-ITS technology. In addition to the WLAN approach, some intersections
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use 4G (LTE) network as a possible alternative to the ITS-G5 [33].

A large GLOSA implementation has been carried out by Swarco and Audi
in Berlin. It involves over 800 intersections. However, they do not use any
form of a direct car-to-infrastructure communication. Data are sent to a
central server and then distributed to vehicles using 3G/4G mobile networks.
It uses SPaT and MAP messages as standardized in SAE J2735. An interesting
additional feature is a connection with the start-stop system in Audi vehicles.
When the time to green is below a predefined threshold, the engine is not
stopped [34].
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Chapter 2
Application Implementing

GLOSA (GreenLight)

2.1 Detailed Description of GreenLight
Application

GreenLight is a mobile application being developed by the Intens Corporation
[35] in co-operation with e4t electronics for transportation [36]. Since e4t is a
member of Volkswagen Group, it benefits from its strong internal research and
can be a reliable partner for application development. The current version
(released in 2015) can still be considered as a tech-alpha and a few more
years are expected until the production phase is reached. The application is
currently available only for mobile devices with the Google Android operating
system.

The GreenLight application provides a user-faced car-side implementa-
tion of a GLOSA system. It periodically receives data from the intersection,
calculates an optimal driving speed and displays it to the driver. An im-
portant feature is an integration into the car infotainment system through
the MirrorLinkTM technology described in section 2.2. The application is de-
signed universally and can be used with any ITS system satisfying the GLOSA
requirements as defined by ETSI (see 1.3.1). This allows for an extensive de-
ployment once the ITS technology becomes common. A sample photo of the
running application integrated in the car infotainment system is shown as
figure 2.1.

2.1.1 System Architecture

The overall communication architecture is illustrated in figure 2.2. The in-
tersection controller (RSU unit) broadcasts SPaT and MAP messages as de-
scribed in section 1.3. The exact communication schemes at the RSU side may
vary and can be neglected here. The broadcasted messages are received by an

23



2. Application Implementing GLOSA (GreenLight)

Figure 2.1: Running GreenLight Application

ITS communication unit within the car (OBU unit) which further provides
an interface (API) for higher-level applications. GreenLight connects to the
OBU unit by the Bluetooth protocol and obtains SPaT and MAP data using
its API.

The application can also access information about the current state of the
car. This includes car speed, acceleration or breaking force and blinking state.
It uses a proprietary technology called Škoda SmartGateTM and thus is only
relevant for Škoda Auto cars. The connection is based on an in-car Wi-Fi
network controlled by the SmartGateTM unit [37].

To achieve a better integration with the car infotainment system, Green-
Light uses the MirrorLinkTM technology. It allows the application to be
hosted and run on a smartphone, but the user interface is mirrored to the
car head-unit display (HUD). In addition, the driver can fully interact with
the application using the HUD human-machine interface (HMI) instead of the
smartphone itself. This is further described in section 2.2.

2.1.2 On-board ITS Unit

The GreenLight application does not handle the network communication by
itself since that is controlled by a dedicated ITS communication unit in the
car. Therefore, it is not required to use any specific communication technology

24



2.1. Detailed Description of GreenLight Application

Car Head-unit 

display

Škoda mu lt im edia

M
ir

ro
rL

in
k

T
M

Android

SmartPhone

Hosted 

GreenLight App

SIM

U
S

B
 2

.0

ETSI ITS-G5

C2I ITS 

Communication 

Module

SmartGate
TM

 Unit

Traffic Light

Controller

Direct

Figure 2.2: GreenLight Communication Architecture

between the car and an intersection controller. This increases a versatility of
the application but requires to use an appropriate ITS unit.

Unfortunately, most of the existing ITS units provide proprietary and non-
standardized application interfaces for communication with higher-level appli-
cations. This means GreenLight must have been designed with respect to a
specific ITS unit type. In case it was needed to change the ITS unit, it would
be necessary to adjust GreenLight accordingly or at least implement an ap-
propriate wrapper library.

On-board ITS units supporting the ETSI protocol stack are developed
by several different manufacturers. So far, GreenLight supports and has been
tested with units produced by Commsignia, a company specialized in research,
development and manufacturing of various C2X hardware and software prod-
ucts [38]. Another major player in the field of ITS unit development is Kapsch,
an Austrian road telematics company [39].

2.1.3 GreenLight Function Explained

Displaying an optimal recommended speed is a fundamental and seemingly
the only important goal of the application. However, it is not a trivial task
and there are many particular features to achieve this functionality. The
basic function and data processing flow within the GreenLight application
is depicted in flowchart 2.3. The exact architecture of the application is an
intellectual property of the Intens Corporation and cannot be described in
this thesis.
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Figure 2.3: GreenLight Data Processing Flow

The simplified data processing flow is the following:

1. Obtaining, parsing and processing the input data. These are SPaT
and MAP messages received from an OBU ITS unit, current location
and time obtained through the phone GPS sensor, car speed, blinking,
acceleration and braking force available from the SmartGateTM unit.

2. Matching the signal phase information (SPaT) to the geographical loca-
tion data (MAP).

3. Determining the traffic light signal belonging to the straight direction.

4. Calculating the remaining distance to the intersection and the time until
the signal phase is changed. This is based on SPaT data of the light
signal determined in the previous step and the current time and location
obtained from GPS.
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5. Calculating an optimal approaching speed based on the remaining time
and distance.

6. Displaying the current signal phase, remaining time and the recom-
mended speed in the application user interface (mirrored to the car
HUD).

The first, second and fourth functions have been implemented already and
perform quite well. On the other hand, the remaining functions still need
major improvements before the production phase can be reached. Only the
traffic light corresponding to the intended driving direction should be dis-
played instead of the straight direction signal. This is further analyzed in
chapter 4. Furthermore, performance and reliability of the current algorithm
for calculating the recommended speed is insufficient and thus a completely
new calculation is proposed, implemented and tested in chapters 5-6. Finally,
the application user interface will possibly need to be adjusted to reflect all
the implemented improvements in the application, but this is not an objective
of this thesis.

2.1.4 GreenLight User Interface

Figure 2.4 shows the relatively simple user interface of the GreenLight appli-
cation. The traffic light picture on the left side symbolizes the current state
of the actual traffic light. In this situation, only the green light should be
on, although all the lights are shown in the picture. The “08:20” value at the
top shows the current time, but it is just an additional information for the
driver and has nothing to the with the GLOSA system itself. On the other
hand, the “K30” at the upper right corner signifies an intersection name as
received from the intersection controller. In the future, this identification is
expected to be used automatically by the car infotainment system for any
location-related services such as navigation. Purpose of the remaining fields
is self-explanatory. All the values are updated every second including recal-
culation of the recommended speed.

2.2 MirrorLinkTM – Technology Used in the
Application

MirrorLinkTM is a car interoperability standard that started as a research
project at Nokia Research Center in Palo Alto, USA. It is currently standard-
ized by the Car Connectivity Consortium (CCC) consisting of many companies
from different areas. Some of the most important members are the following
[40]:

• Car Manufacturers: Volkswagen Group, Daimler, General Motors
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Figure 2.4: GreenLight User Interface

• Phone Manufacturers: HTC, LG, Samsung, Sony, Microsoft

• Infotainment System Manufacturers: Panasonic, Pioneer, Bosch

• Other Partners: Garmin, TomTom, QNX

MirrorLinkTM is a technology for connecting a smartphone to the car info-
tainment system. An application can be hosted and run on the smartphone
but its user interface is mirrored to the car head-unit display. In addition, the
driver can fully interact with the application using the HUD HMI instead of
the smartphone itself.

2.2.1 Certification of MirrorLinkTM Applications

It is not possible to use the MirrorLinkTM technology with an arbitrary mo-
bile application. The application needs to satisfy predefined criteria in order
to get certified by CCC for the MirrorLinkTM usage. There are several cer-
tification levels as depicted in figure 2.5. Naturally, the higher levels request
stricter requirements (and include the requirements of lower levels), but the
application is then allowed to be used in more situations [41].

• Regular Application: Any mobile application

• MirrorLinkTM Aware Application: Application with implemented
MirrorLinkTM services but without a valid certification. This includes
applications with expired or revoked certificates.
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Figure 2.5: MirrorLinkTM Certification Levels [41]

• Base-Level Certified Application: MirrorLinkTM services are avail-
able when the car is not moving.

• Drive-Level Certified Application: MirrorLinkTM services are avail-
able also when driving.

Aim of the base-level certification requirements is to make sure that the ap-
plication is fully compatible with the MirrorLinkTM technology. This includes
display compatibility (resolution, landscape mode support), adequate control
support (rotary-knobs, voice commands, single-touch events) and all the tech-
nical requirements described further in the next section.

A drive-level certified application is required to minimize any possible
driver distraction. Since the driver distraction is usually limited and reg-
ulated by legal authorities, the exact requirements may differ according to
the region (EU, North America, Asia-Pacific). However, CCC has defined a
general guideline that is usable globally. Some of the major points are the
following:

• Restricted Content: No video, animations, flashing or automatic
scrolling text
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• Visual Accessibility: High color contrast, text legibility

• Control Accessibility: No two-handed operations (e.g. multi-touch),
forbidden keyboard usage

• Pace of Interaction: Input retention, responsiveness, no notifications

From the technical point of view, a MirrorLinkTM application certificate is
an X.509 public key infrastructure certificate issued and digitally signed by
the CCC certification authority (CA). CCC CA is an implicitly trusted CA
for all MirrorLinkTM devices. A certificate contains information about the
application (unique app ID), issuer and validity period. Management of these
certificates is thus very similar to any other public key certificates, such as
common personal or SSL certificates.

2.2.2 Technical Background

The MirrorLinkTM technology is based on the client-server communication
model as illustrated in figure 2.6. A MirrorLinkTM server is a device (usu-
ally smartphone or tablet) running certified applications. It connects to a
MirrorLinkTM client which is an infotainment display in the car, usually the
head-unit display. Figure 2.7 overviews the protocol suite used for the client-
server communication. It can be divided into three basic layers: connectivity,
data services and Common API [42].

Figure 2.6: MirrorLinkTM Communication Architecture [41]
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Figure 2.7: MirrorLinkTM Protocol Suite [42]

The connectivity layer enables a general data transfer between connected
devices. This can be achieved by one of the two supported protocols: Wi-Fi or
USB 2.0 (also used by GreenLight). Since each of these protocols use different
addressing scheme and frame format, there needs to be an extra abstraction
layer providing a common packet format and addressing schema. This is
achieved by using the IPv4 protocol running on the top of the connectivity
layer [43].

The data services layer offers the core MirrorLinkTM services. A high level
device discovery, addressing and control event notifications (e.g. play, pause,
volume) are handled by the Universal Plug and Play (UPnP) protocol. The
message format used by UPnP is XML. Remote access to the application user
interface is managed by RealVNC service using the Remote Frame Buffer pro-
tocol. Audio can be forwarded using the Real-time Transport Protocol (RTP)
with support of the DVD quality, i.e. 48 kHz sampling rate, 16 bit depth,
stereo. Certificate management and security services are also provided on
this layer. These are based on asymmetric cryptography (data encryption
and digital signatures) using the PKI certificates as described in the previous
section.

At the server side, Common API is the top layer of the MirrorLinkTM

protocol suite. It is a standardized interface that enables applications to access
information related to the current MirrorLinkTM session. Implementation of
this API is platform-specific, currently available only for Android devices.
Some of the information accessible through Common API are the following
[44][45]:

• MirrorLinkTM Device Info: This includes, for example, information
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2. Application Implementing GLOSA (GreenLight)

about the client device manufacturer and model number which can be
used to adjust the application settings with e.g. a predefined profile for
the given device.

• Certification Information: This can be used to check whether the
application certificate is valid and successfully verified.

• Display Information: This provides information about the client de-
vice display such as its size, resolution and scaling support.
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Chapter 3
Security Threats to C2I-based

GLOSA Systems

3.1 Motivation to the Threat Analysis

Nowadays, security is an important aspect of any software or hardware system
and it should be considered during entire design and implementation phases.
It is especially crucial for ITS systems that use C2X communication, including
C2I-based GLOSA implementations. There are several reasons for this:

• GLOSA influences an overall traffic flow in a specific area including one
or multiple road intersections. A successful attack may have critical
consequences including major accidents and traffic collapses.

• C2I-based GLOSA involves a wireless communication between cars and
roadside infrastructure. The communication medium (air) is implicitly
shared, and hence an attacker does not need to have a physical access
to the network infrastructure to carry out a successful attack.

• C2I systems are based on an ad-hoc network design where centralized
authentication and security services might be limited or completely un-
available. It may be easier for an attacker to legitimately join such
network and perform malicious actions.

This chapter presents an analysis of security threats to general C2I-based
GLOSA systems and more specifically to the GreenLight application. A secu-
rity threat can be defined as a potential cause of an incident that may breach
security and cause harm [46]. A concrete example of a threat is leakage of a
credit card information to unauthorized parties when paying at an online shop.
Identification and analysis of relevant threats is an important precondition for
security design of any hardware or software system. Without the analysis it
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Figure 3.1: GLOSA Security Perimeters

would not even be possible to determine whether the system is secure or not
since there are no identified threats and possible dangers.

3.2 Analyzed Security Perimeters

Figure 3.1 shows a C2I-based GLOSA system decomposed into its main com-
ponents. In this case, it includes the GreenLight application as a car-side
user-facing part of the system. The connectors represent the used communi-
cation interfaces and the arrows determine the expected communication flows.
For a reference, a slightly different diagram illustrating the same architecture
was presented in the previous chapter in figure 2.2.

Figure 3.1 identifies two main security perimeters that are included in this
threat analysis. The GLOSA System Perimeter represents a general GLOSA
system using a C2I wireless communication between RSU and OBU units.
Although the OBU unit itself can also be considered as part of this perimeter,
the main focus is given to the road-side part of the system and especially
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to the wireless communication channel. The GreenLight Perimeter includes
the GreenLight application consisting of the smartphone and the HUD part
connected with the MirrorLinkTM protocol. It also covers interfaces to the
driver (GUI), SmartGateTM and the OBU unit.

3.3 Threat Classification and Evaluation Method

The threats presented in the following sections are classified according to the
STRIDE threat modeling method developed and promoted by the Microsoft
Corporation [47]. STRIDE is a mnemonic representing the initial letters of
the following six threat categories:

• Spoofing identity: Attacker pretends to be someone else.

• Tampering with data: Data intended for other parties is maliciously
modified.

• Repudiation: Action is repudiated by its performer and nobody can
prove otherwise.

• Information disclosure: Confidential information leaks to unautho-
rized individuals.

• Denial of service: Service is denied to legit users due to an attack or
system fault.

• Elevation of privilege: Attacker gains (and abuses) privileges which
is not entitled to.

To evaluate an overall security risk of each identified threat, another method
called DREAD is used. This was also created by Microsoft and was proposed
to be used together with STRIDE [48]. The following five ratings are used by
DREAD:

• Damage: Damage potential of a successful attack.

• Reproducibility: How difficult it is to reproduce (simulate or repeat)
a successfully performed attack.

• Exploitability: How difficult it is to create an exploit and perform a
successful attack.

• Affected Users: Amount or ratio of users affected by a successful
attack.

• Discoverability: How difficult it is to discover a vulnerability related to
this threat. The category is related to an actual system implementation,
and hence it is not used in this generally-oriented threat analysis.
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3. Security Threats to C2I-based GLOSA Systems

The DREAD method rates each category (D, R, E, A, D) with a value of
0-10 where a higher number means a higher risk, e.g. higher damage or more
affected users. An overal risk score is then determined as an average value
of all the ratings. Therefore, this analysis calculates the DREAD score with
the following expression. Note that the Discoverability rating is skipped as
mentioned above:

RiskDREAD = D + R + E + A

4 (3.1)

3.4 Identified Threats in the Relevant Security
Perimeters

3.4.1 GLOSA System Perimeter

The identified threats in the GLOSA System Perimeter are presented in tables
3.1–3.10. These are mostly general threats common to any GLOSA system
based on C2I communication. Therefore, the DREAD ratings are very ap-
proximate and intended to provide only a rough idea about severity of the
identified threats.

The threats can be organized in a hierarchic structure as shown in figure
3.2. A parent threat can be viewed as a prerequisite for its child threats. This
relation is represented by an arrow from the parent to the child.
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3.4. Identified Threats in the Relevant Security Perimeters
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Figure 3.2: Threat Structure – GLOSA System Perimeter
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3. Security Threats to C2I-based GLOSA Systems

ID GLOSA-S-1
Category Spoofing Identity
Threat Attacker identified as an intersection.
Description Attacker is able to transmit spoofed C2I messages with a

valid identity of a specific intersection or entire group of
intersections. This is a general threat that may lead to
many subsequent threats (attacks) described separately.

Attacker
Motivation

Described separately for subsequent threats.

DREAD Ratings
Damage 6 – Seemingly valid (but spoofed) C2I messages advertis-

ing arbitrary traffic light states can be delivered to users
(cars). This may cause further harm as described for
threats GLOSA-T-1 and GLOSA-T-2.

Reproducibility 6 – Requires advanced technical knowledge to spoof C2I
messages but no specific user privileges (e.g. system ad-
ministration rights) are needed to reproduce the attack.

Exploitability 4 – Hard to find an exploit if the communication is han-
dled properly, i.e. encrypted and digitally signed mes-
sages (see 1.2.6). On the other hand, no physical access
to the intersection controller is required, the attacker can
e.g. sit in a car near the intersection.

Affected Users 5 – Theoretically, all the GLOSA users approaching the
intersection might be affected. It can be, however, ex-
pected that some users still receive legit C2I messages.
Exact amount of affected users depends on ability of the
attacker.

DREAD Score 5.3

Table 3.1: Threat Details – GLOSA-S-1
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3.4. Identified Threats in the Relevant Security Perimeters

ID GLOSA-T-1
Category Tampering with Data
Threat Attacker sends “green light” messages for all/specific

lanes.
Description Attacker transmits spoofed messages advertising a green

light state for all or specific intersection approach lanes
even if the actual light state is red. This becomes more
dangerous when the GLOSA system can directly influ-
ence a car control (e.g. control of autonomous cars). Such
car may not stop although the traffic light is red.

Attacker
Motivation

• Attacker wants to cause a general traffic accident (e.g.
terrorism, sabotage).
• Attacker wants a specific vehicle to crash (e.g. police

car, business partner).
DREAD Ratings

Damage 7 – In an extreme case, a major traffic accident can
happen. However, this is unlikely unless there are au-
tonomous cars relying on the information received from
the GLOSA system.

Reproducibility 6 – Same as GLOSA-S-1
Exploitability 4 – Same as GLOSA-S-1
Affected Users 5 – Same as GLOSA-S-1
DREAD Score 5.5

Table 3.2: Threat Details – GLOSA-T-1
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3. Security Threats to C2I-based GLOSA Systems

ID GLOSA-T-2
Category Tampering with Data
Threat Attacker sends “red light” messages for all/specific lanes.
Description Attacker transmits spoofed messages advertising a red

light state for all or specific intersection approach lanes
even if the actual light state is green. Analogously to
threat GLOSA-T-1, a car may stop although the traffic
light state is green.

Attacker
Motivation

• Attacker wants to block all the traffic (e.g. terrorism,
sabotage).
• Attacker wants to block a specific car (e.g. police,

emergency).
• Attacker wants to block a specific direction to make

another direction free (e.g. to have a free escape way).

DREAD Ratings
Damage 4 – In an extreme case, all the intersection approaches

can be blocked by the stopped cars resulting in a traffic
collapse. However, this is unlikely unless there are au-
tonomous cars relying on information received from the
GLOSA system. Furthermore, a blocked traffic is consid-
ered to be less severe in comparison with a major traffic
accident.

Reproducibility 6 – Same as GLOSA-S-1
Exploitability 4 – Same as GLOSA-S-1
Affected Users 5 – Same as GLOSA-S-1
DREAD Score 4.8

Table 3.3: Threat Details – GLOSA-T-2
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3.4. Identified Threats in the Relevant Security Perimeters

ID GLOSA-R-1
Category Repudiation
Threat Attacker denies their previous actions.
Description Attacker successfully conceals that they performed cer-

tain malicious actions (represented by any other threat).
It might not be possible to prove identity of the attacker
which is needed for e.g. legal purposes.

Attacker
Motivation

• Attacker does not want to be identified and accused.
• Attacker wants someone else to be accused.

DREAD Ratings
Damage 7 – If the attacker cannot be identified, they can easily

continue with malicious activities and cause further prob-
lems. A potential damage is hence considered to be quite
high.

Reproducibility N/A – Cannot be determined for this general threat.
Exploitability 5 – Since a physical access to the infrastructure is not

required for most of the attacks, the attacker can easily
stay anonymous. This can be partially mitigated with a
proper security design of the system, e.g. by using ETSI
security services as described in 1.2.6 and a good security
logging.

Affected Users N/A – Only the attacker is directly affected by this
threat but potential future attacks can affect any number
of users. Therefore, the rating is skipped for this threat.

DREAD Score 6.0

Table 3.4: Threat Details – GLOSA-R-1
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3. Security Threats to C2I-based GLOSA Systems

ID GLOSA-I-1
Category Information Disclosure
Threat Information about vehicle movement is leaked.
Description A GLOSA system might be designed in such way that

all the vehicles passing an intersection are monitored and
logged, e.g. for specific safety purposes. The collected
data might be stored at each intersection separately or
more likely at a central ITS unit if available. If an at-
tacker is able to access such information, they may be
able to monitor movements of all the vehicles included in
the database.

Attacker
Motivation

• Attacker wants to monitor movements of certain vehi-
cles (e.g. police cars to keep track of their common
routes).

DREAD Ratings
Damage 3 – Leaking information about car movement is consid-

ered to be less dangerous than possibility of a traffic ac-
cident or other serious threat consequences presented in
this section.

Reproducibility 2 – It can be expected that collected data is stored at
a well-secured central ITS unit (server). Therefore, high
privileges and access rights are required to reproduce a
successful attack.

Exploitability 1 – It is expected to be much harder to compromise a
well-secured central server in comparison with attacks to
the wireless communication channel between RSU and
OBU units.

Affected Users 10 – Information about all the cars passing through a
group of intersections (connected to a common central
server) can possibly be leaked.

DREAD Score 4.0

Table 3.5: Threat Details – GLOSA-I-1
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ID GLOSA-D-1
Category Denial of Service
Threat Traffic lights switched to flashing yellow for all lanes.
Description Attacker shuts down an intersection signaling and the in-

tersection goes to the out-of-order state (flashing yellow).
Traffic flow is disrupted or it may even collapse (e.g. dur-
ing peak periods).

Attacker
Motivation

• Attacker wants to cause a traffic accident (e.g. terror-
ism, sabotage).
• Attacker wants to block or disrupt the traffic flow.

DREAD Ratings
Damage 7 – Traffic flow is disrupted and can possibly collapse,

especially during peak periods. Moreover, probability of
a traffic accident is increased.

Reproducibility 2 – Same as GLOSA-E-1
Exploitability 1 – Same as GLOSA-E-1
Affected Users 8 – Same as GLOSA-E-1
DREAD Score 4.5

Table 3.6: Threat Details – GLOSA-D-1
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ID GLOSA-D-2
Category Denial of Service
Threat No C2I messages from an intersection are delivered.
Description Attacker blocks all the C2I messages coming from an in-

tersection. The intersection then appears to be a normal
non-ITS infrastructure unit. This may become a serious
issue when there are cars (e.g. autonomous) that assume
an ITS-equipped intersection and rely on the received in-
formation.

Attacker
Motivation

• Attacker wants to cause a traffic accident (e.g. terror-
ism, sabotage).
• Attacker wants to block or disrupt the traffic.

DREAD Ratings
Damage 3 – Traffic flow might be disrupted, but most of the cars

should be able to easily cope with a non-ITS intersection
(which they would consider it to be).

Reproducibility 9 – No specific privileges or access rights are required
to be able to e.g. run a Wi-Fi jamming device near the
intersection.

Exploitability 8 – Since the C2I communication is based on a variant
of the Wi-Fi protocol (see 1.2.1), the threat is easily ex-
ploitable e.g. by running a Wi-Fi jamming device near
the intersection.

Affected Users 5 – All the GLOSA users approaching the intersection
can possibly be affected. However, the exact amount of
affected users depends on efficiency and magnitude of the
attack.

DREAD Score 6.3

Table 3.7: Threat Details – GLOSA-D-2
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ID GLOSA-E-1
Category Elevation of Privilege
Threat Attacker controls an intersection.
Description Attacker gains privileges to control an intersection,

change its signaling plan or set invalid signals (e.g.
green/red for all directions). This is a general threat that
may lead to many subsequent threats (attacks) described
separately.

Attacker
Motivation

Described separately for subsequent threats.

DREAD Ratings
Damage 9 – Ability to control an intersection is much more serious

than just spoofing C2I messages. This threat is not only
a GLOSA-related but also a general intersection-related
threat. This may yield in subsequent threats such as
GLOSA-D-1, GLOSA-E-2 and GLOSA-E-3.

Reproducibility 2 – High privileges and access rights are generally re-
quired to control an intersection.

Exploitability 1 – It is expected to be much harder to completely take
over an intersection control in comparison with attacks
to the wireless communication channel between RSU and
OBU units. Furthermore, a physical access to the inter-
section controller might be required.

Affected Users 8 – All the cars passing through the intersection are af-
fected, not only the GLOSA users.

DREAD Score 5.0

Table 3.8: Threat Details – GLOSA-E-1
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ID GLOSA-E-2
Category Elevation of Privilege
Threat Attacker sets “green light” for all/specific lanes
Description Attacker is able to control an intersection and to set a

green light state for all or specific intersection approach
lanes. Similarly to threat GLOSA-T-1, a car may not
stop even if the original state of the traffic light was red.

Attacker
Motivation

• Attacker wants to cause a general traffic accident (e.g.
terrorism, sabotage).
• Attacker wants a specific vehicle to crash (e.g. police

car, business partner).
DREAD Ratings

Damage 10 – A traffic accident can happen with a high probabil-
ity. This is considered to be the most dangerous state of
an intersection.

Reproducibility 2 – Same as GLOSA-E-1
Exploitability 1 – Same as GLOSA-E-1
Affected Users 8 – Same as GLOSA-E-1
DREAD Score 5.3

Table 3.9: Threat Details – GLOSA-E-2
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ID GLOSA-E-3
Category Elevation of Privilege
Threat Attacker sets “red light” for all/specific lanes
Description Attacker is able to control an intersection and to set a red

light state for all or specific intersection approach lanes.
Similarly to threat GLOSA-T-2, a car may stop even if
the original state of the traffic light state was green.

Attacker
Motivation

• Attacker wants to block all the traffic (e.g. terrorism,
sabotage).
• Attacker wants to block a specific car (e.g. police,

emergency).
• Attacker wants to block a specific directions to make

another directions free (e.g. to have a free escape way).

DREAD Ratings
Damage 8 – All the intersection approaches are likely to be

blocked by the stopped cars causing the traffic to col-
lapse.

Reproducibility 2 – Same as GLOSA-E-1
Exploitability 1 – Same as GLOSA-E-1
Affected Users 8 – Same as GLOSA-E-1
DREAD Score 4.8

Table 3.10: Threat Details – GLOSA-E-3
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3. Security Threats to C2I-based GLOSA Systems

3.4.2 GreenLight Perimeter

The identified threats in the GreenLight Perimeter are presented in tables
3.11–3.16. Unlike the general GLOSA threats, these are predominately fo-
cused on the present situation and do not consider for example autonomous
cars controlled by GLOSA systems.

Similarly to the Glosa System Perimeter threats, the GreenLight Perime-
ter threats can also be organized in a hierarchic structure as shown in figure
3.3.

GREEN-S-1:

Attacker identified 

as OBU

GREEN-T-1:

 Attacker advertises 

"green" states

GREEN-T-2:

 Attacker advertises 

"red" states

GREEN-S-2:

Attacker identified 

as SmartGate
TM

GREEN-D-1:

Communication 

with OBU blocked

GREEN-D-2:

Communication 

with SmartGate
TM 

blocked

Figure 3.3: GreenLight Perimeter
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ID GREEN-S-1
Category Spoofing Identity
Threat Attacker identified as an on-board ITS unit.
Description Attacker is able to deliver spoofed messages with a valid

identity of a car on-board ITS unit to the GreenLight
application. This is a general threat that may lead to
several subsequent threats (attacks) described separately.

Attacker
Motivation

Described separately for subsequent threats.

DREAD Ratings
Damage 6 – Seemingly valid (but spoofed) OBU messages adver-

tising arbitrary traffic light states can be delivered to the
GreenLight application. This may cause further harm as
described for threats GREEN-T-1 and GREEN-T-2.

Reproducibility 4 – Requires advanced technical knowledge to spoof mes-
sages from OBU. No specific user privileges (e.g. system
administration rights) are needed to reproduce the at-
tack. However, a physical access to the car might be
necessary.

Exploitability 5 – Connection between the GreenLight application and
the on-board unit uses the Bluetooth protocol. A man-in-
the-middle attack is possible under certain circumstances
as presented in [49]. Since the car is moving and Blue-
tooth has a limited communication range, a reasonable
attack needs to be performed from a distance less than
10 meters, ideally right from the attacked car.

Affected Users 1 – Only one car is directly affected.
DREAD Score 4.0

Table 3.11: Threat Details – GREEN-S-1
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ID GREEN-S-2
Category Spoofing Identity
Threat Attacker identified as a SmartGateTM unit
Description Attacker is able to deliver spoofed messages with a valid

identity of a SmartGateTM unit to the GreenLight appli-
cation. This is a general threat that may lead to several
subsequent threats (attacks). Spoofing SmartGateTM

messages is however evaluated as a low-risk threat (see
below) and thus the subsequent attacks are not individ-
ually described in this analysis.

Attacker
Motivation

• Attacker wants to confuse the driver with an incor-
rect speed recommendation. The confused driver might
make a driving mistake with an increased probability.

DREAD Ratings
Damage 3 – The speed calculation can be affected by the spoofed

messages resulting in an incorrect speed recommendation.
However, the displayed signal phase and timing informa-
tion remain correct.

Reproducibility 4 – Requires advanced technical knowledge to spoof
SmartGateTM messages, but no specific user privileges
(e.g. system administration rights) are needed to repro-
duce the attack. However, a physical access to the car
might be necessary.

Exploitability 6 – Connection between the GreenLight application and
the SmartGateTM unit uses the Wi-Fi Direct protocol.
There is no additional security layer involved and it is
relatively easy to perform a successful attack. Security
of SmartGateTM is briefly evaluated in [50]. Similarly
to threat GREEN-S-1, a reasonable attack needs to be
performed from a short distance of about 20 meters as
mentioned in [50].

Affected Users 1 – Only one car is directly affected.
DREAD Score 3.5

Table 3.12: Threat Details – GREEN-S-2
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ID GREEN-T-1
Category Tampering with Data
Threat Attacker advertises green light phases to the GreenLight

application
Description Attacker delivers spoofed messages from OBU to the

GreenLight application advertising a green light state re-
gardless the actual light state at an upcoming intersec-
tion.

Attacker
Motivation

• Attacker wants to confuse the driver by displaying an
incorrect signal phase, timing and recommended speed.
The confused driver might make a driving mistake with
an increased probability.
• Attacker wants the affected vehicle to crash (extreme

case, low probability).
DREAD Ratings

Damage 7 – Incorrect signal phase, timing and recommended
speed may be displayed to the driver. Advertising a green
light phase is considered to be more dangerous than a red
phase.

Reproducibility 4 – Same as GREEN-S-1
Exploitability 5 – Same as GREEN-S-1
Affected Users 1 – Same as GREEN-S-1
DREAD Score 4.3

Table 3.13: Threat Details – GREEN-T-1

51



3. Security Threats to C2I-based GLOSA Systems

ID GREEN-T-2
Category Tampering with Data
Threat Attacker advertises red light phases to the GreenLight

application
Description Attacker delivers spoofed messages from OBU to the

GreenLight application advertising a red light state re-
gardless the actual light state at an upcoming intersec-
tion.

Attacker
Motivation

• Attacker wants to confuse the driver by displaying an
incorrect signal phase, timing and recommended speed.
The confused driver might make a driving mistake with
an increased probability.
• Attacker wants the affected vehicle to stop at the in-

tersection and possibly to disrupt the traffic (extreme
case, low probability).

DREAD Ratings
Damage 5 – Incorrect signal phase, timing and recommended

speed may be displayed to the driver. Advertising a red
light phase is considered to be less dangerous than a green
phase.

Reproducibility 4 – Same as GREEN-S-1
Exploitability 5 – Same as GREEN-S-1
Affected Users 1 – Same as GREEN-S-1
DREAD Score 3.8

Table 3.14: Threat Details – GREEN-T-2
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ID GREEN-D-1
Category Denial of Service
Threat No messages from an on-board ITS unit are delivered to

the GreenLight application
Description Attacker blocks all the communication between an on-

board ITS unit and the GreenLight application.
Attacker
Motivation

• Attacker wants to confuse the driver by pretending that
the intersection does not broadcast any C2I messages.
The confused driver might make a driving mistake with
an increased probability.

DREAD Ratings
Damage 3 – It is not possible to calculate a recommended speed

since the needed input data is not available to the Green-
Light application. The driver perceives the intersection
as a regular non-GLOSA infrastructure unit.

Reproducibility 6 – No specific privileges or access rights are required to
jam a Bluetooth network. However, a physical access to
the car might be necessary.

Exploitability 8 – Both Wi-Fi and Bluetooth use the same frequency
band (2.4 GHz) and it is quite easy to jam either of these
networks. For the best results, a jamming device should
be installed on the car itself.

Affected Users 3 – It is possible to affect more than one vehicle with a
single jamming device (depending on its power).

DREAD Score 5.0

Table 3.15: Threat Details – GREEN-D-1
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ID GREEN-D-2
Category Denial of Service
Threat No messages from a SmartGateTM unit are delivered to

the GreenLight application
Description Attacker blocks all the communication between a

SmartGateTM unit and the GreenLight application.
Attacker
Motivation

• Attacker wants to confuse the driver with an incor-
rect speed recommendation. The confused driver might
make a driving mistake with an increased probability.

DREAD Ratings
Damage 2 – The speed calculation can be disrupted resulting in an

incorrect speed recommendation. However, the displayed
signal phase and timing information remain correct.

Reproducibility 6 – No specific privileges or access rights are required to
jam a Wi-Fi network. However, a physical access to the
car might be necessary.

Exploitability 8 – Both Wi-Fi and Bluetooth use the same frequency
band (2.4 GHz) and it is quite easy to jam either of these
networks. For the best results, a jamming device should
be installed on the car itself.

Affected Users 3 – It is possible to affect more than one vehicles with a
single jamming device (depending on its power).

DREAD Score 4.8

Table 3.16: Threat Details – GREEN-D-2
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3.4.3 Summary of the Identified Threats

All the threats presented in sections 3.4.1 and 3.4.2 are summarized in table
3.17. Column chart 3.4 shows the same threats in order of their DREAD
scores.

Threat ID Threat Description DREAD
Score

GLOSA-S-1 Attacker identified as an intersection 5.3
GLOSA-T-1 Attacker sends “green” messages 5.5
GLOSA-T-2 Attacker sends “red” messages 4.8
GLOSA-R-1 Attacker denies actions 6.0
GLOSA-I-1 Vehicle pass info leaks 4.0
GLOSA-D-1 Traffic lights stop working 4.5
GLOSA-D-2 No C2I messages delivered 6.3
GLOSA-E-1 Attacker controls an intersection 5.0
GLOSA-E-2 Attacker sets green lights 5.3
GLOSA-E-3 Attacker sets red lights 4.8
GREEN-S-1 Attacker identified as OBU 4.0
GREEN-S-2 Attacker identified as SmartGateTM 3.5
GREEN-T-1 Attacker advertises “green” state 4.3
GREEN-T-2 Attacker advertises “red” state 3.8
GREEN-D-1 Communication with OBU blocked 5.0
GREEN-D-2 Communication with SmartGateTM blocked 4.8

Table 3.17: Summary of GLOSA and GreenLight Threats
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3.5 Proposed Security Measures for the
GreenLight Application

This section proposes suitable security measures for the GreenLight applica-
tion. These are based on the threat analysis and should be used as a security
guideline for future development of the application.

3.5.1 Secure Connection to the On-board Unit

Connection between the application and the on-board unit should be always
secured. This requirement can be further divided into two sub-parts:

• Secure hardware protocols: Wireless protocols are generally more
vulnerable to network attacks in comparison with the wired networks.
The GreenLight application currently uses Bluetooth to connect to an
on-board unit. Unfortunately, Bluetooth is potentially vulnerable to
man-in-the-middle (MiM) attacks as presented in [49]. It is advised to
consider other protocols that are commonly provided by on-board ITS
units:

– IEEE 802.11 (Wi-Fi): Generally provides a level of security
comparable to Bluetooth. Security services are, however, standard-
ized as IEEE 802.11 amendments such as IEEE 802.11i-2004 known
as Wi-Fi Protected Access II (WPA2) [51]. Although WPA2 would
effectively mitigate MiM attacks, the protocol would still remain
vulnerable to denial-of-service attacks caused by e.g. a signal jam-
ming. This vulnerability is the same for Bluetooth.

– USB: Implicitly more secure since the connection is wired. How-
ever, it might be infeasible to connect the smartphone directly to
the on-board unit using a USB cable (depending on the on-board
unit location and accessibility).

– CAN: Seems reasonable to connect the on-board unit directly to
the car network and access it using a car infotainment system. This
would, however, require a further effort from car manufacturers to
integrate and support on-board units in their car networks.

• High-level software security: Even if an insecure hardware protocol
is used, the required security services can be provided at higher network
layers. However, this depends primarily on the protocols supported by
the on-board unit. Therefore, it is advised to prefer on-board units that
provide secure connection methods.
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3.5.2 Limited Dependency on SmartGateTM

SmartGateTM unit uses the Wi-Fi Direct technology which is vulnerable to
network attacks as presented in [50]. Therefore, the GreenLight application
should not be fully dependent on data received from SmartGateTM. This
means the application should remain operating and be able to handle situa-
tions when no SmartGateTM data is available or the obtained data is invalid.
Furthermore, SmartGateTM data should have a limited impact on the recom-
mended speed calculation. This would prevent an attacker from completely
controlling the speed calculation.

3.5.3 Input Data From Multiple Sources

Certain input data might be available from multiple independent sources. An
example is speed of the car that can be obtained from both SmartGateTM

unit and phone GPS sensor. It is advised to always obtain data from all the
available sources. Benefits of this approach are evident:

• Increased security: If the obtained values differ significantly, it is
possible that one or more of the data sources or communication channels
have been attacked and some of the values are spoofed. In that case, a
warning should be displayed to the driver or any other predefined action
can be taken. It is, however, possible that the input data could not be
obtained because of a technology-related fault such as a lost GPS signal.

• Increased accuracy: All the obtained values can be averaged to in-
crease a resulting accuracy. Furthermore, a different weight can be
assigned to each input channel to favor accurate/reliable/secure data
sources.

3.5.4 Detection of Unexpected Input Data Changes

Most of the input values are obtained periodically, e.g. once per second when
a recommended speed calculation is triggered. Each obtained value should
naturally correspond to the previous values of the same type. This means
it is, for example, extremely unlikely that the car accelerates from 20 to 90
km/h in one second. Or that a traffic light in the middle of a red phase would
switch directly to green skipping a yellow phase.

For an increased security, implementation of a simple intrusion detection
system can be considered. It should evaluate all the received input values
based on a predefined set of rules and change thresholds. If a value is evaluated
as “suspicious”, a predefined action can be taken (e.g. warning displayed).
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Chapter 4
Proper Light Signal

Determination Analysis

4.1 Motivation for Determining the Proper Signal

Figure 4.1: Intersection in Coralville in Iowa, USA [52]

Intersection topologies may differ as well as their lane designs. There is often
more than one light signal for a given intersection approach. An example of
such intersection is shown in photo 4.1 taken in Coralville near Iowa City, USA.
Imagine this is an ITS-equipped intersection and a car with the GreenLight
application is approaching. The driver might want to either go straight or
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take a left or right turn. In either case a different traffic light is relevant for
them and they does not care about the remaining ones. Then the question is:
which traffic light should GreenLight consider for recommending an optimal
speed? There are a few possible answers:

• Straight Direction Only: This was an initial approach used in Green-
Light. It can be assumed that a relative frequency of going straight is
higher than frequency of left or right turns. Unfortunately, in case the
driver wants to turn, the displayed information (remaining time and rec-
ommended speed) is useless. In the worst scenario it may even confuse
a driver who forgets to ignore the application when turning.

• All the Signals: The relevant information is always displayed but the
driver needs to pay an extra attention to distinguish the proper signal
according to their driving direction. This could be considered as an
unacceptable driver distraction and may lead to a problem, for example,
with obtaining a MirrorLinkTM certification (see 2.2.1).

• The Proper Signal: An ideal solution. However, it is not a trivial task
to automatically choose the proper light signal. The application needs
to determine in which direction the driver intends to go. This can be
achieved using several different methods. These are analyzed further in
this chapter.

The current version of GreenLight calculates a remaining time and recom-
mended speed only for the straight direction signal and this is clearly not
sufficient for a production version of the application. At this point, a theoreti-
cal analysis of possible methods for determining the intended driving direction
(and consequently the proper traffic light) needs to be done. An actual im-
plementation of this feature is planned for Q4 2016 and it should be based on
the analysis provided in this thesis.

4.2 Overview of Considered Selection Methods

As mentioned in the previous section, the goal is to determine a particular di-
rection in which the driver intends to go through an intersection, i.e. straight,
left, right. This section outlines potentially usable methods and sources of
input data that could be used to cope with the task. Most of the presented
methods consider only intersections with up to three different driving direc-
tions possible (straight, left, right). Since this covers most of the existing
intersections, the limitation has been considered acceptable.
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4.2.1 Car Navigation

When a car navigation system is active, information about the planned route
may be used as a hint for determining the driving direction. There is a high
chance that the driver will follow the suggested route. Many drivers however
do not use navigation on daily basis, especially for short and repetitive routes
such as to and from their work.

Effort to implement: Medium. In theory, it is only needed to allow
the GreenLight application to access data about the planned route. In fact,
this would require a lot of effort and support from the car manufacturer or
developer of the navigation system used. This might be a bit easier if the nav-
igation is running right in the smartphone instead of a car built-in navigation
system.

4.2.2 Turn Indicators

Turn indicator (blinker) is another quite reliable source of information. When
a left/right indicator is active, there is a high probability for turning to the
corresponding direction. However, in some cases the driver may decide not to
use the indicators or forget to do so. It is also possible that the driver just
wants to change lanes before the intersection and uses a turn indicator.

Effort to implement: Low for Škoda Auto cars. Information about the
active turn indicator is already accessible through the SmartGateTM unit (see
2.1.1).

4.2.3 GPS Data

Location data can be obtained easily with a phone GPS sensor. The idea is
to use this information to determine the current driving lane and match it
to a Generic Lane entity received in a MAP message. The MAP message
includes all the possible connecting lanes for each approach lane. Therefore,
this possibly determines or at least limits the number of possible driving di-
rections. Usability of such approach depends heavily on an intersection lane
topology though. Moreover, the driver may change lanes when approaching
the intersection and thus a new calculation would be necessary.

According to the official GPS specification, a guaranteed free-space hori-
zontal accuracy is 7.8 meters at 95% confidence interval [53]. There are several
augmentation systems such as the European Geostationary Navigation Over-
lay Service (EGNOS) used in Europe and Wide Area Augmentation System
(WAAS) used in North America providing accuracy of about 3 meters [54][55].
Unfortunately, these are usually not utilized by phone GPS sensors. The only
common augmentation technology for smartphones is called Assisted GPS (A-
GPS). Besides the GPS data itself, it considers location of cell phone towers
and Wi-Fi access points to improve the accuracy. Even still, a real-world
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achievable accuracy of A-GPS phones is around 3-8 meters as shown in [56],
[57], [58].

Since a typical lane width is 2-4 meters [59] it is not possible to reliably
determine the current driving lane with a phone GPS sensor. On the other
hand, it is expected that the accuracy of phone GPS sensors will keep improv-
ing with new models and the described method may become feasible soon.
For now, it can be used as an additional factor with a low confidentiality.

Effort to implement: Low. GPS data is already used within the Green-
Light application. However, it needs further effort to implement the location
matching with MAP message data.

4.2.4 Road Marking Recognition

Figure 4.2: Horizontal Road Marking in Zlin, Czech Republic [52]

Recognizing horizontal lane marks (as illustrated in figure 4.2) gives the al-
lowed driving directions from the current lane. This can be viewed as another
method for determining the driving lane. However, this approach might be
problematic in certain cases: there are no direction-related road marks at some
intersections. And similarly to the previous method (GPS data), the driver
may change the lane when approaching the intersection, i.e. a new calculation
would be necessary.

Effort to implement: Very high. Camera-based road marking recog-
nition is currently used only for specific applications such as lane departure
warning systems. This is for example implemented as the Lane AssistTM tech-
nology for selected Škoda Auto models [60]. Recognizing direction-related road
marks and providing this data to external application (i.e. GreenLight) would
require a lot of effort from car manufacturers including implementation of a
completely new technology.
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4.2.5 Route Memory

If the application knew the previous routes, it could statistically determine a
driving direction with the highest probability. This could be especially bene-
ficial for repetitive routes such as to and from work. For example, the driver
turns right at a certain intersection every morning. Thus, it can be assumed
that the next morning they will turn right again. This can be further enhanced
with advanced methods such as machine learning or pattern recognition. Nev-
ertheless, this approach is naturally not usable for unique and completely new
routes.

Effort to implement: Medium. It is quite an easy task to log the taken
routes using e.g. the phone GPS sensor. On the other hand, a big chal-
lenge would be an effective data management including storing, accessing and
searching through a high amount of collected data. It should be sufficient to
store a list of passing times and taken directions for each considered intersec-
tion. This can still be problematic for phones with a very limited memory
though and an external storage such as cloud services would need to be con-
sidered too. The complexity of the direction determination itself is entirely
dependent on the used decision method and can range from a simple statistical
calculation to very complex machine learning algorithms.

4.2.6 Personal Schedule

If the application could access a driver’s personal calendar, it may consider
an upcoming planned meeting as a possible driving destination. Using this
location, it can internally calculate the optimal route and use it as a decision
factor similarly to the Car Navigation method (see 4.2.1). This method is
perhaps usable only for a small set of drivers, especially those who often travel
for business purposes.

Effort to implement: Medium. The phone calendar data can be ac-
cessed easily from the GreenLight application. Calculating the route to an
upcoming meeting is not a trivial task and it would most likely need to be
delegated to an external navigation software.

4.2.7 Summary of the Proposed Methods

All the selection methods presented in sections 4.2.1–4.2.6 are summarized in
table 4.1. The table lists main advantages and disadvantages of each method.
A quantitative comparison of the methods is then presented in the following
section.
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Selection
Method

Advantages Disadvantages

Car
Navigation

High reliability Usable only when car navigation is
active

Turn
Indicators

Easy to implement for
Škoda Auto cars, fair re-
liability

Implementation for non-Škoda cars
can be problematic

GPS Data Good potential for the
future, easy to imple-
ment

Low reliability with current GPS
sensors

Road
Marking

Good potential for the
future, fair reliability

Almost impossible to implement
unless road marking recognition is
widely available

Route
Memory

Fair reliability Usable only for driver’s frequent
routes

Personal
Schedule

Fair reliability Usable only in very specific cases
(driving to a calendar event)

Table 4.1: (Dis)Advantages of Proposed Selection Methods

4.3 Proposal of a Method to Determine the
Proper Light Signal

Each method proposed in the previous section can be implemented separately
and independently of the other ones. It is expected that only one or a very
few methods will be implemented in the initial phase. More methods can be
added later to improve the determination accuracy. Therefore, it does not
really make sense to come up with an exact decision algorithm at this point.

This section proposes relative weights of the methods outlined in the pre-
vious section. Supposing each method selects one or more possible driving
directions, the proposed weights can be used to compare these results and to
determine the final decision. Since the weights are strictly relative, it is suffi-
cient to count “points” for each possible direction. These points are granted by
the selection methods where number of points is the weight of the correspond-
ing method. This can be formalized with the following simple expression:

di =
n∑

j=1
(wj ·mj) (4.1)

where di is the i-th driving direction (or consequently the i-th light signal),
n is number of utilized selection methods, wj is relative weight of the j-th
method and mj is either 1 or 0 depending on whether the j-th method selects
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the i-th direction or not. Naturally, direction with the highest amount of
points is determined as the final decision.

4.3.1 Relative Comparison of the Proposed Methods

A relative comparison of the proposed methods is presented in table 4.2. This
is just an initial estimation which should be later re-evaluated depending on
the implemented methods and their exact abilities. There are three different
columns in the table: Weight is a method relative weight as explained above.
It represents a relative performance of the method (higher is better). Effort
represents time and resources needed for a successful implementation of the
method (lower is better). Finally, W/E Ratio is simply the weight divided by
the effort and it stands for a relative benefit of implementing the given method
(equivalently to price/performance ratio, higher is better). All the methods
are also shown in column chart 4.3 in order of their W/E Ratios.

Selection Method Weight Effort W/E Ratio
Car Navigation 6 4 1.5
Turn Indicators 4 1 4
GPS Data 2 2 1
Road Marking 3 10 0.3
Route Memory 3 5 0.6
Personal Schedule 2 5 0.4

Table 4.2: Relative Comparison of Proposed Selection Methods
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Figure 4.3: W/E Ratios of Proposed Selection Methods
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In general, implementing the Turn Indicator method seems to be the best
choice at this point in time. Although its performance is expected to be
slightly worse than the Car Navigation method, it benefits especially from the
lowest implementation effort. Implementation of both Car Navigation and
GPS Data looks to be reasonable too, but it strongly depends on external
factors such as accuracy of a phone GPS sensor and ability to access a car
navigation data.

All the remaining methods (Route Memory, Road Marking, Personal Sched-
ule) currently appear as not suitable for an implementation. However, this
will definitely change in the future once the technology needed for a success-
ful deployment becomes widely available. For example, it can be expected
that a camera-based road marking recognition is going to be a standard car
equipment in the near future. Then the Road Marking method will become
significantly easier to implement. Therefore, it is not a good idea to deprecate
this method now.
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Chapter 5
Enhanced Calculation of an

Advised Speed for the
GreenLight Application

5.1 Speed Calculation Procedure

The overall procedure of determining a recommended speed can be seen in
figure 5.1 in a slightly simplified form. It reflects the present state of the
GreenLight application, but there is no plan to dramatically change this high-
level logic in the future. The process can be decomposed into two main parts
labeled as Inner Calculation and Outer Loop.

The Inner Calculation performs the speed calculation itself. Its important
property is that it does not know anything about the intersection signal timing,
including unawareness of a current signal phase (current traffic light color).
Its inputs are simply time, distance and possibly additional information such
as current speed of the car. The speed is calculated to match exactly the
input time, i.e. to reach the intersections exactly at the requested input time,
not earlier or later. In certain cases, such speed cannot be calculated and an
error value is returned. This however depends on exact design of the Inner
Calculation algorithm as described further in this chapter.

The Outer Loop is responsible for determining a recommended speed using
the Inner Calculation algorithm. It handles all the logic related to signal
phases and their timings. It means it can, for example, behave differently and
query the Inner Calculation with different inputs depending on the current
signal phase. Naturally, when the traffic light is green, the calculation needs to
be different in comparison with a red light. Nevertheless, the Inner Calculation
part remains the same, only its inputs may be different.

Sections 5.2 and 5.3 deal solely with the Inner Calculation part. Moreover,
when referring to “recommended speed calculation” or “algorithm for calcu-
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Figure 5.1: Recommended Speed Calculation Procedure

lating a recommended speed”, it predominantly means the Inner Calculation
part. The Outer Loop is analyzed in detail in section 5.4.

5.2 Reasons for Proposing a New Algorithm

An algorithm for calculating the recommended speed (Inner Calculation as
defined above) is a crucial part of any GLOSA system. It can be viewed as
a core component strongly influencing an overall performance of the system.
There are many factors that can possibly affect a theoretically ideal recom-
mendation. This makes the calculation a non-trivial task and an appropriate
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attention should be paid to its design and implementation. The current ver-
sion of the GreenLight application uses a very simple algorithm providing an
insufficient performance. Its exact drawbacks are outlined in the following
section.

5.2.1 Pros and Cons of the Original Calculation

The originally implemented calculation is based on the basic velocity equation
vadv = s

t where vadv is a resulting recommended (advised) speed, s is a distance
to the intersection and t is the target time. Advantages and drawbacks of this
calculations are the following:
Advantages:

• The calculation is very simple and fast, only one single division is re-
quired.

• Calculation succeed always when t > 0. It does not make sense to
calculate the speed for a zero time anyway.

• It does not need any extra input data beyond time and distance. This
makes the implementation very simple and calculation results predictable.

Drawbacks:

• It is supposed that the driver is able to achieve the recommended speed
in zero time. However, this is not true since a non-zero time is needed
to (de)accelerate to the final speed.

• Similarly to the previous point, it takes some time until the driver notices
the recommended speed and reacts accordingly.

Although there are only two main drawbacks identified, they seem to be im-
portant for performance and reliability of the calculation algorithm. Thus,
the rest of this chapter deals with a proposal of a new enhanced algorithm de-
signed to eliminate the listed issues. Theoretical and experimental evaluation
and comparison of both algorithms is presented in chapter 6.

5.3 Proposal of a New Speed Calculation

5.3.1 Additionally Considered Input Data

Besides the distance and time, the newly designed algorithm will use three
new input values to enhance the calculation. These are listed below:

• Current Speed of the Car: Real car speed at the time of the advised
speed calculation. This can be easily obtained from a phone GPS sensor
or the SmartGateTM unit.
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• Car Acceleration Speed: Average car acceleration speed when (de)ac-
celerating to the recommended speed. It strongly depends on the car
model and driver’s driving style. It is usually also different for accelera-
tion and deceleration and depends on an actual speed range (e.g. 10 to
20 km/h vs. 50 to 60 km/h). However, it is considered to be a constant
number (e.g. 5 ms−2) for now. This is clearly not ideal and it is further
discussed in section 5.5.

• Driver Reaction Time: Average time interval between the recom-
mended speed is displayed and the driver actually starts (de)accelerating.
Similarly to the car acceleration speed, this value is also considered to
be constant for now (e.g. 3 seconds).

5.3.2 Idea behind the Calculation

Assume a car to intersection distance of s and a requested target time of t.
At this point, a speed calculation takes place and the resulting recommended
speed is displayed to the driver. Then it takes treact time until the driver starts
to act. This means that the first treact time after the advised speed is displayed,
the car keeps going with the initial speed v0. Possible initial (de)acceleration is
neglected here, but it can be considered as a possible future improvement, see
section 5.5 for more information. During the first treact time, a corresponding
distance of sreact is traveled.

After treact time, the driver starts to (de)accelerate with a constant acceler-
ation speed of a (simplification mentioned in 5.3.1). They keep (de)accelerating
until the displayed advised speed vadv is reached. It takes tacc time and a dis-
tance of sacc is traveled during the (de)acceleration phase. After the final
speed is reached, the car continues with the vadv speed until it passes the
intersection. This takes trest time and srest distance. Another simplification
is that this calculation neglects any traffic-related situations when the driver
is forced to unexpectedly change the speed during the intersection approach.

Timing of this entire process is examined in figure 5.2. A graph with an
x axis displaying distance instead of time would be analogous. However, for
any particular intersection approach, both graphs would look a bit differently
since the time and distance progresses would not be necessarily the same.
Furthermore, in the displayed graph, v0 > vadv and thus the driver needs to
decelerate to the final speed. Analogous graphs could also be drawn for the
v0 < vadv and v0 = vadv cases. However, when v0 = vadv, the calculation is
trivial since there is no speed change needed.

The main idea behind the calculation is the following: Using the known
variables s, t, a, v0 and treact, it is possible to mathematically calculate vadv.
This calculation is described in detail in the next section.

There is one more important note. In some cases, there is no vadv > 0
satisfying the process illustrated in graph 5.2. This happens when there is not
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Figure 5.2: Advised Speed Calculation

enough time and/or distance to accelerate or decelerate to vadv before passing
the intersection. This means it is not possible to reach the intersection exactly
at the requested time. In such case, a reserved error value needs to be returned
and the error indicated to the Outer Loop which is responsible for handling
the situation.

5.3.3 Deduction of the Speed Expression

This section describes step-by-step a deduction of an expression to calculate
vadv. The entire calculation is also available as an interactive Wolfram Math-
ematica notebook included on the enclosed CD and attached as appendix
C.1 to this thesis. It demonstrates the expression deduction performed self-
automatically by the Mathematica computation engine. Moreover, second part
of the notebook includes dynamic graphs demonstrating a possible usage of
the calculated expression. It is highly recommended to evaluate the notebook
as well.

The calculation is based on the basic distance equation. Total distance to
the intersection (s) is a sum of the following sub-distances:

s = sreact + sacc + srest (5.1)

Each sub-distance from (5.1) is then expanded using the well-know velocity
and acceleration formulas. Conventionally, s represents a distance, t is a time,
a is an acceleration, v is a speed and v0 is an initial speed:

71



5. Enhanced Calculation of an Advised Speed for the GreenLight
Application

• Distance: s = v · t

• Acceleration Distance: s = v0t + a·t2

2

• Acceleration Speed: v = v0 + a · t

The expansion of sreact is obvious. The car goes with a constant initial speed
v0 for treact time and hence:

sreact = v0 · treact (5.2)

A similarly easy approach can be used for sacc. It is modeled as a linear
motion with a constant acceleration a. The speed is changed from v0 to vadv.
Note that deceleration is the same as acceleration but a < 0.

sacc = v0 · tacc + a · t2
acc

2 (5.3)

Things get a bit trickier with srest. Analogously to equation (5.2), the car
goes with a constant final speed vadv for the remaining time trest and hence
srest = vadv · trest. To avoid using an extra unknown variable trest, it can be
expressed as t − treact − tacc. Furthermore, vadv can be expressed using the
“Acceleration Speed” formula mentioned above. Combining all these into a
single equation results in the following:

srest = (v0 + tacc · a) · (t− treact − tacc) (5.4)

(5.1) is then expanded using expressions (5.2), (5.3) and (5.4). This results in
an equation with a single unknown variable tacc. After some basic algebraic
simplifications, the following equation can be obtained:

2 · s + a · tacc · (−2 · t + tacc + 2 · treact) = 2 · t · v0 (5.5)

(5.5) is a quadratic equation, and hence it generally has two complex solutions.
It means there might be two different tacc satisfying the basic distance equation
(5.1) for a given set of input values s, t, a, treact, v0. This is clearly not possible
as follows from section 5.3.2, especially diagram 5.2. To always obtain only a
valid solution, equation (5.5) needs to be solved with two additional conditions
(5.6) and (5.7):

tacc ≥ 0 (5.6)

tacc + treact ≤ t (5.7)

In case treact > t there might be a seemingly valid solution with tacc < 0.
Condition (5.6) eliminates such solutions. Similarly, in any other case when
there is not enough time to (de)accelerate to the final speed vadv, there might

72



5.3. Proposal of a New Speed Calculation

be a solution with tacc being too long, i.e. vadv is reached after the target time.
In this case tacc + treact > t and such solutions are eliminated by condition
(5.7).

(5.5) is then solved together with (5.6) and (5.7) as a system of three
(in)equations over real numbers. 5.8 is the resulting expression for tacc:

tacc = t− treact −

√
(t− treact)2 − 2 · (s− t · v0)

a
(5.8)

From the “Acceleration Speed” formula mentioned above, it follows that vadv

can be simply expressed as v0 + a · tacc. This is also valid for the deceleration
case since in that case a < 0. The resulting speed expression (equation) is
then the following:

vadv = v0 + a · (t− treact −

√
(t− treact)2 − 2 · (s− t · v0)

a
) (5.9)

5.3.4 Conditions of a Valid Solution Existence

The speed expression (5.9) is valid only when certain conditions are satisfied.
A trivial example of such condition is a 6= 0 since a is a fraction denominator.
If at least one of those conditions is broken, then there is no valid solution
to the speed equation. It means that the intersection cannot be reached ex-
actly at the target time. Contrarily, a valid solution guarantees that it is
theoretically possible to reach the intersection at the target time. Note that
these solution-existence conditions are different from the conditions eliminat-
ing seemingly valid solutions as mentioned in 5.3.3, this section deals solely
with the solution-existence conditions.

The conditions strongly depend on possible values of the speed expression
inputs (s, t, a, treact, v0). However, they can be simplified using the following
list of assumptions. Some of the assumptions are common for both acceleration
and deceleration cases, but some of them are different:

• Common Assumptions: s > 0, t > 0, v0 ≥ 0, treact ≥ 0

• Acceleration Assumptions: a > 0, s
v0

> t

• Deceleration Assumptions: a < 0, s
v0

< t

Most of the assumptions listed above are self-evident. It does not really make
sense to calculate a recommended speed for zero or negative remaining time
or distance. On the other hand, a zero v0 is theoretically possible as well as
a zero treact for e.g. an autonomous car where the reaction time might be
negligible.

A notable assumption is s
v0

> t which is always true for the acceleration
case. This compares a hypothetical time in which the car would arrive at
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the intersection if continued with the initial speed v0. If this arrival time is
greater than the target time t, then the car needs to accelerate to arrive at the
intersection exactly at the target time. Condition s

v0
< t for the deceleration

case is analogous.
Finally, there is a valid solution to the speed equation (i.e. valid vadv) if

and only if all the following conditions are satisfied. These were determined
when mathematically deducting the speed equation and simplified using the
assumptions listed above.

• Common Conditions: t > treact

• Acceleration Conditions: a > 2·(s−t·v0)
(t−treact)2

• Deceleration Conditions: a < 2·(s−t·v0)
(t−treact)2 , vadv > 0

5.3.5 Algorithm for Calculating the Advised Speed

From the mathematical point of view, calculation of the recommended speed
is complete. However, the speed expression and its conditions need to be
transformed to an actual algorithm which is described in this section. Im-
plementation-related aspects of the proposed algorithm are then examined in
chapter 6.

Figure 5.3 illustrates the speed calculation algorithm and related data
flows. The algorithm can be decomposed into five main steps:

1. Acceleration / Deceleration Determination: First, it needs to be
determined whether the car should accelerate or decelerate. It can be
done easily by calculating s

v0
which is a hypothetical time in which the

car would arrive at the intersection if continued with a constant initial
speed v0. Three different situations may occur:

• s
v0

> t: The car would reach the intersection after the target time.
Hence, the driver needs to accelerate to arrive exactly at the target
time.
• s

v0
< t: The car would reach the intersection before the target time.

Hence, the driver needs to decelerate to arrive exactly at the target
time.
• s

v0
= t: The car would reach the intersection exactly at the target

time. In this case, no speed change is needed and vadv = v0. All
the remaining steps of the algorithm can be skipped.

2. Acceleration Conversion: The deceleration case is assumed to be the
same as the acceleration but with a < 0. However, a is currently a fixed
positive real number and thus it needs to be inverted if and only if the
car is expected to decelerate. This can be done easily by calculating
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Figure 5.3: Algorithm for Calculating the Advised Speed

a′ = (−1) · a. From this point, the algorithm would work only with the
converted value a′ instead of the original a.

3. Evaluation of Conditions: All the relevant solution-existence condi-
tions are evaluated. The only exception is the condition vadv > 0 which
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cannot be evaluated at this step since vadv is not available yet. Note
that the conditions are different for acceleration and deceleration cases.
If at least one the conditions is not satisfied, an error is indicated and
no actual calculation is performed. Otherwise, the algorithm continues
with the next step.

4. Advised Speed Calculation: Finally, the speed expression is evalu-
ated with the input values s, t, a′, treact, v0, resulting in a recommended
speed vadv. As already discussed in 5.1, this is not necessarily a final
value to be displayed to the driver but only a result of the Inner Calcu-
lation part.

5. Evaluation of Calculated Speed: In certain cases, it is possible that
vadv ≤ 0. Therefore, an extra condition check is required. This is
relevant only for the deceleration case. If vadv ≤ 0 then an error is
indicated. Otherwise, vadv is returned. The algorithm ends after this
step.

5.4 Algorithm Usage in Various Traffic Scenarios

The algorithm proposed in the previous section acts as the Inner Calculation
as defined in 5.1. It can be seen as a black-box function with five input values
(s, t, a, treact, v0) and two outputs (vadv, err). This section describes its usage
for determining an actual recommended speed to be displayed to the driver.
This process represents the Outer Loop part of the calculation.

The Outer Loop algorithm is based on an original GreenLight implemen-
tation done by the Intens Corporation. Since there have been no problems
identified with this part, only a few minor adjustments and improvements
are proposed for the new application update. The main difference is that the
Inner Calculation changes from the simple s/t expression to the complex algo-
rithm proposed in 5.3. Thus, the Outer Loop needs to be modified to support
this enhanced calculation. First, it might be useful to describe the original
implementation.

5.4.1 Original Implementation of Outer Loop

As already described in section 1.3.2, a single SPaT message includes a signal
plan and timing for the current and up to 15 future signal phases. The main
idea of the Outer Loop is to iteratively query the Inner Calculation with time
values t until a reasonable recommended speed vadv is obtained. Each input
time t corresponds to a start or end time of one of the signal phases obtained
in the SPaT message.

Furthermore, a MAP message may optionally include a maximum allowed
speed (regulatory speed limit) for the relevant intersection approach. Each
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obtained vadv is compared with this limit and rejected if it is higher. However,
a speed limit may not be available in the received MAP message. In that case,
a fixed default limit is used (e.g. 50 km/h).

The originally implemented Outer Loop algorithm is visualized in flowcharts
5.4 and 5.5 in slightly simplified forms. The processing depends on the current
phase of the light signal. For an easy understanding, there is one flowchart
for the green phase and another for the remaining phases (red or yellow).

START – GREEN PHASE

vlim = regulatory speed limit

tend = time to current green phase end

Query Inner Calculation:

vadv-end = advised speed for tend  

vadv-end   vlim 
Yes

Return final advised speed as 

vlim

No

Continue with red-phase part

Figure 5.4: Original Outer Loop – Green Phase

If the current signal phase is green, the algorithm is quite straightforward.
A speed to reach the intersection at the end of the current (green) phase is
calculated. If it is higher than the speed limit, it means the intersection cannot
be passed during the current signal phase. Hence, the processing continues
with the algorithm for red or yellow phase in which the future green phases
are considered. Otherwise, the final recommended speed is set as the speed
limit since there is a preference of recommending the maximum possible speed
(see below).

For a red or yellow signal phase, the algorithm is a bit more complicated.
It iterates over the future green phases until there is a phase for which the
intersection can be passed with a lower or the same speed as the speed limit.
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tstart = time to i-th next green phase start

tend = time to i-th next green phase end

vadv-end   vlim 

No

Yes

START – RED OR YELLOW PHASE

Query Inner Calculation:

vadv-start = advised speed for tstart 

vadv-end = advised speed for tend  

vlim = regulatory speed limit

i = 1

Return final recommended speed as:

min(vadv-start, v lim )

i = i + 1

Figure 5.5: Original Outer Loop – Red or Yellow Phase

Since this phase begins in the future, it is needed to also consider the maxi-
mum speed that guarantees passing the intersection during this phase. The
maximum passing speed is calculated as an advised speed to reach the in-
tersection at the beginning of that particular phase. Then, a minimum of
the speed limit and the calculated maximum passing speed is set as the final
recommended speed to be displayed to the driver.

A notable attribute of both algorithms is a preference of recommending the
highest possible speed (up to a speed limit). According to Intens Corporation,
this strategy was chosen to improve a traffic flow continuity. However, the
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driver might be forced to accelerate even if it is not necessary.

5.4.2 Proposed Improvements to Outer Loop

The original Outer Loop algorithm is considered to be satisfactory and there
is no intention to replace it with a completely new algorithm. There are,
however, a few improvements and modifications proposed for the upcoming
GrenLight release. These are mainly aimed towards a full support of the new
Inner Calculation algorithm and to enhance the general speed recommenda-
tion performance. Some of the modifications are only implementation-related
and thus neglected in this section.

The main proposed change is to always recommend a speed range instead
of a single speed. This gives the driver a better information and allows some
flexibility in choosing an actual driving speed. For any considered green phase
(current or future), the recommended speed range bounds are determined as
follows:

• Lower bound: Calculated as a speed to reach the intersection at the
end of the phase. In certain cases, it may not be possible to reach the
intersection after the end of the phase according to the calculation. This
can happen, for example, when the current phase is green and speed of
the car is too hight to decelerate enough to pass the intersection after
the phase end. In such cases, the lower bound (minimum) speed is set
to 0.

• Upper bound: Calculated as a speed to reach the intersection at the
start of the phase. In certain cases, it may not be possible to reach the
intersection before the start of the phase according to the calculation.
For example, this is true when the considered green phase is the current
phase. In such cases, the upper bound (maximum) speed is set to the
speed limit.

Difference between both recommendation variants is demonstrated in exam-
ples shown in figure 5.6. The original algorithm prefers recommending the
highest possible speed. This is especially imperfect in cases shown in the fig-
ure. For example, suppose that the car is approaching the intersection with
an initial speed of 30 km/h, current signal phase is green and the intersection
can be passed smoothly with a speed of at least 30 km/h. The original algo-
rithm recommends a speed of 50 km/h which is a speed limit in this example.
The driver does not know if they can pass smoothly with any lower speed,
making them to accelerate to 50 km/h which is actually not necessary in this
case. In contrast, the newly proposed algorithm recommends a speed range
of 30-50 km/h allowing the driver to keep their initial speed. Moreover, the
driver knows that they can accelerate if they prefer to.
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Figure 5.6: Difference Between Speed Recommendation Methods
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5.5 Possible Further Improvements

The speed algorithm presented in this chapter uses a few simplifications that
could be possibly considered problematic for a production deployment. On the
other hand, the GreenLight application is still in the proof-of-concept develop-
ment phase, and all these simplifications have been evaluated as acceptable.
Nevertheless, there is a big room for improvements that could significantly
increase performance of the proposed algorithm. Some of them are discussed
in this section.

5.5.1 Adaptive Reaction Time

The proposed algorithm uses a reaction time of the driver as one of the new
inputs for the calculation. It is currently designed to be a constant value set in
a configuration file (see 6.1.3 for implementation details). This is not an ideal
solution since a real reaction time varies depending on many factors. These
include a level of driver’s attention to the application, current traffic situation
and others.

A possible method to improve accuracy of the reaction time estimation is
to use an adaptive algorithm. The saved reaction time value would automat-
ically keep adjusting depending on real reaction times measured in previous
situations. In its simplest form, it can be just an arithmetic mean of reaction
times observed in last n situations, where n is a reasonably small positive
integer. This is quite easy to implement, but the biggest problem would be to
reliably measure the actual reaction time.

Reaction time is intuitively a time between the recommended speed is
displayed and the driver starts to (de)accelerate. This period can be prob-
lematic to measure since the car can be accelerating due to traffic conditions
instead of the displayed recommended speed. Moreover, it is not guaranteed
(nor probable) that the car has a zero acceleration at the beginning of the
calculation.

5.5.2 Variable Acceleration Speed

Similarly to the reaction time, acceleration speed is a calculation input cur-
rently designed as a constant value set in a configuration file. The same
method (adaptive learning algorithm) as described for the reaction time can
also be used for the acceleration time, but there is even more variability factors
involved:

• Acceleration vs. deceleration: Acceleration speed (absolute value)
is likely different for acceleration and braking.
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• Acceleration curve: Acceleration speed depends on speed the vehicle
is moving with. It is determined by vehicle construction as well as other
factors such as aerodynamics, current gear etc.

• Speed Difference: Driver can react differently depending on the needed
speed change. For example, they would probably accelerate faster from
20 to 50 km/h in comparison with a slight speed adjustment from 45 to
50 km/h.

• Driving style: Each driver can have a slightly different driving style.
Some prefer a dynamic style with faster (de)acceleration while others
can be more calm and steady.

• Traffic conditions: Possible speed change might be limited by current
traffic conditions. For example, it could be difficult or even impossible
to rapidly (de)accelerate in a heavy traffic.

The factors listed above show that the acceleration speed is rather a function
of multiple input variables (factors) than a constant number. Moreover, it can
even vary during a single calculation. This would require a detailed standalone
analysis to be able to choose a proper model and method for estimating the
acceleration speed.

5.5.3 Initial Acceleration

The proposed algorithm supposes that the car has a constant speed with a
zero acceleration at the moment of the recommended speed calculation. This
is, however, not guaranteed and a possible initial acceleration should be taken
into account. Technically, it is not a problem to obtain the acceleration speed
information since it is available from the SmartGateTM unit and possibly also
from a phone GPS sensor. However, this would complicate the calculation,
hence it is currently neglected.

5.5.4 Traffic Conditions

In certain traffic situations, it is not possible to follow the recommended speed.
Example might be a dense, slowly moving or completely congested traffic.
Such situations are currently not considered and the algorithm keeps calculat-
ing an advised speed regardless the traffic conditions. It would be better if the
application could react accordingly and e.g. modify the calculation to reflect
the traffic situation. However, this is another complex topic which should be
analysed separately.
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Chapter 6
Implementation and Verification

of the Proposed Speed
Algorithm

6.1 Implementation of the Algorithm

The newly proposed algorithm to calculate a recommended speed was pre-
sented in chapter 5. This section discusses its implementation and a successful
integration in the GreenLight application which has been performed as part
of this thesis project.

6.1.1 Technologies Used for the Implementation

As already described in section 2.1, GreenLight is a mobile application for
devices with the Google Android operating system. It is being developed in
the C# programming language using the Xamarin platform.

Xamarin is a Microsoft-owned company known for their cross-platform
implementations of .NET Framework called Mono. GreenLight uses the Xa-
marin.Android platform (formerly called Mono for Android) that allows to
build native Android applications in C# using .NET Framework libraries.
Additionally, Xamarin.iOS is an analogous product for Apple iOS [61]. This
means that a possible future port of the GreenLight application for iOS de-
vices is certainly possible since most of the code-base would be fully compati-
ble. On the other hand, iOS is currently not supported by the MirrorLinkTM

technology, refer to section 2.2 for more information.
GreenLight is currently being developed and maintained by the Intens

Corporation. Due to legal issues, the application source code could not be
completely available for the purposes of this thesis project. Nevertheless,
Intens is actively supporting the project and they agreed to adjust the appli-
cation to bypass this limitation. It is fortunately possible to dynamically load
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an external application module (assembly) from a running .NET application.
Intens provided a compiled underlying application logic in a form of an An-
droid .apk package and a template of an external assembly to implement the
speed calculation. More specifically, the external assembly was intended to
include entire Outer Loop as described generally in 5.1 and concretely in 5.4.

6.1.2 Architecture of the Speed Calculation Component

Composition of the speed calculation component can be seen in figure 6.1 in
form of a UML class diagram. SampleExternalRecommendedSpeedCalculator
is a class responsible for the calculation. Its settings are loaded as a Sample-
ExternalRecommendedSpeedCalculatorSettings instance during the application
initialization. These are the acceleration speed and reaction time values, as
discussed in the previous chapter.

The speed calculation itself is performed by the GetRecommendedSpeed()
method. It is called periodically every time the calculation is triggered, i.e.
once per second when the car is approaching a GLOSA-equipped intersection.
Input data for the calculation are passed as an ExternalRecommendedSpeed-
CalculatorArgs instance. It includes a current speed of the car, allowed maxi-
mum speed and all the available information about the intersection, especially
its distance and complete signaling plan. A calculated recommended speed is
then returned as a RecommendedSpeed instance. It either contains the calcu-
lated speed range or it can be marked as an invalid recommendation in case
of any calculation-related error such as a wrong input data.

6.1.3 XML Configuration Files

Configuration of the application including the speed calculation component
is loaded from external XML files during the application initialization. It in-
cludes the acceleration speed and reaction time values that are mapped to the
SampleExternalRecommendedSpeedCalculatorSettings instance as mentioned
above. The rest of the configuration files is mostly related to the underlying
application logic and it is not important to describe it here.

Nevertheless, one notable feature of the application is a possibility to com-
pletely define one or more “virtual” intersections in the configuration files. All
the details including intersection location, approach lanes, signaling plan and
speed limits are configurable. It means the specified intersection would appear
as a real GLOSA-equipped intersection to the application. This approach can
be very beneficial for various debugging and testing purposes.

6.2 Algorithm Testing in Real Traffic

After the successful implementation, the only remaining task was to verify the
performance and reliability of the newly implemented speed algorithm. This
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«Class»
RecommendedSpeed

+ DisplayText : string
+ IsValidRecommendation : bool
+ MaxSpeed : double
+ MinSpeed : double

«Class»
ExternalRecommendedSpeedCalculatorArgs

+ Crossing : ICrossing
+ CrossingDistance : double
+ CrossingMatchState : CrossingMatchState
+ CrossingSignalGroupName : string
+ Heading : double
+ MaxSpeedAvgFact : double
+ MaxSpeedAvgRaw : double
+ MaxSpeedLocal : double
+ Position : GeoPosition
+ Speed : double
+ UtcNow : DateTime

«Class»
SampleExternalRecommendedSpeedCalculatorSettings

+ AccelerationSpeed : double
+ ReactionTime : double

«Class»
SampleExternalRecommendedSpeedCalculator

+ GetRecommendedSpeed (ExternalRecommendedSpeedCalculatorArgs args) : RecommendedSpeed

«constructor»
+ SampleExternalRecommendedSpeedCalculator
      (SampleExternalRecommendedSpeedCalculatorSettings config)

«Interface»
IExternalRecommendedSpeedCalculator

+ GetRecommendedSpeed (ExternalRecommendedSpeedCalculatorArgs args) : RecommendedSpeed

«create»«use»

 -m_config

1

1

«implement»

Figure 6.1: UML Class Diagram of Speed Calculation Component

section presents an experimental verification in real traffic conditions.

6.2.1 Testing Environment

The original idea was to use an existing GLOSA-equipped intersection to
test the updated GreenLight application. Unfortunately, there are currently
no intersections permanently equipped with compatible ITS technology in a
reasonable distance from Prague, Czech Republic in which this thesis project is
based. Furthermore, due to a complicated administrative process and related
legal issues, it was not even possible to temporarily equip an intersection with
relevant ITS technology.

As an alternative approach, we used the method described in section 6.1.3.
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A virtual intersection and its timing were defined in the GreenLight config-
uration file instead of actual receiving data from the intersection using C2I
communication. This is, in fact, not considered to be a problem since the test
objective is the speed calculation algorithm and not the C2I communication
itself. To be able to test it in a real traffic, location and signaling plan of
the virtual intersection was set to location and signaling plan of an existing
intersection.

This required to find an existing intersection with a static signaling plan,
i.e. length of a signal period (e.g. green to green) is fixed as well as length
of each green, red and yellow phase. Most of the modern intersections, how-
ever, change their signaling plan dynamically depending on factors such as
current traffic situation, waiting pedestrians and passing public transport ve-
hicles. Such intersections are generally not ideal for GLOSA systems since
the signaling plan and consequently also the recommended speed can change
frequently. Figure 6.2 shows a statically timed intersection at street Radlická
in Prague. This one was chosen and used for the testing.

The GreenLight application with the new speed algorithm was loaded in a
Sony Xperia Z3 Compact tablet (running Android 5.1.1) and placed in a test-
ing car. Unfortunately, it was not possible to use a MirrorLinkTM integration
since the originally certified application has been modified and thus needs a
new MirrorLinkTM certification. This process takes further time and could
not be finished before the testing session. The infotainment display was used
to display a current speed of the car instead. The used test setup can be seen
in figure 6.3.

6.2.2 Test Results

The testing itself consisted of multiple passes through the intersection de-
scribed in the previous section. The testing driver always tried to follow the
speed recommendation. As expected, this was not always possible due to a
dense traffic or other traffic related events such as crossing pedestrians or a
slow vehicle ahead.

Results of the tests are summarized in table 6.1. Each row in the table
represents one of the monitored metrics. The Count and Percentage fields rep-
resent the number and ratio of intersection passes for which the corresponding
metric was satisfied. Meanings of individual metrics are the following:

• Total pass count: Total number of passes through the intersection
that were performed during the testing session.

• Application not failed: Number of passes when the application was
working properly. Any unexpected application behavior noticed by the
driver or by another tester would be considered as a failure for this
metric.
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Figure 6.2: Statically Timed Intersection in Prague, Czech Republic [52]

• Advised speed reasonable: Number of passes when the recommended
speed seemed to be “reasonable”, i.e. it seemed possible to pass the in-
tersection during a green phase with the displayed recommended speed.
This is a subjective metric relying on a manual evaluation from the
tester. The only reason to include it is to detect cases when no applica-
tion error had been observed, but the recommended speed was clearly
incorrect.

• Advised speed could be followed: Number of passes when the driver
was able to follow the speed recommendation. As mentioned above, this
was not always possible due to a dense traffic, crossing pedestrians, slow
vehicle ahead or a stopped vehicle of public transport. This includes
cases when following the recommended speed would disrupt the traffic
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Figure 6.3: GreenLight Test Setup

flow, e.g. by going much slower than other vehicles in a dense traffic.

• Passed as advised: Number of passes when the recommended speed
was followed and the intersection was passed during a green phase in
accordance with the speed recommendation.

Metric Count Percentage
Total pass count 20 100%
Application not failed 20 100%
Advised speed reasonable 20 100%
Advised speed could be followed 8 40%
Passed as advised 8 40%

Table 6.1: Results of Speed Algorithm Testing

As can be seen in table 6.1, the application worked properly during the entire
testing session. Nonetheless, in 60% cases it was not possible to fully follow
the speed recommendation since the testing was conducted at a busy intersec-
tion in a dense traffic. Unfortunately, there were limited options for selecting
a feasible intersection since a statically timed intersection was required (refer
to section 6.2.1 for more details). In all the remaining cases, the speed recom-
mendation had been successfully followed and the intersection was smoothly
passed during a green phase.

Although the scope of the testing and number of performed tests were quite
limited, it was demonstrated that the newly implemented speed algorithm
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is reliable and performs with good results. Nevertheless, an extensive and
much more detailed testing should be definitely performed before reaching
the production phase of the application. This is, however, beyond the scope
of this thesis project.

A short video documenting selected parts of the testing session is included
on the CD that is enclosed to this thesis.

6.3 Comparison with the Previously Implemented
Algorithm

Although the new enhanced algorithm has been tested in real traffic situations,
it is important to compare it with the original simple calculation which is
described in section 5.2. Due to limited opportunities for a real-traffic testing,
a theoretical comparison is presented in this section.

6.3.1 Statistical Evaluation Using Randomly Generated Data

Statistical comparison using randomly generated data has been selected as
a suitable method to compare both algorithms. The evaluation has been
implemented as a notebook for Wolfram Mathematica and it is included on the
enclosed CD and attached as appendix C.2 to this thesis. The notebook also
describes the entire comparison in detail, including determination of feasible
parameters, generating input data, querying the algorithms and obtaining the
needed statistic metrics.

The main idea behind the method is to generate a large set of input vectors
such that the same vectors can be used as inputs for either of the algorithms.
Each vector represents a random car approaching a hypothetical intersection.
It consists of a distance to the intersection, light signal timing, current speed
of the car, driver’s reaction delay, car acceleration speed and regulatory speed
limit. The last three parameters are fixed for entire evaluation in order to
match the values used for the real-traffic testing described in section 6.2.
The remaining parameters are generated as random numbers from predefined
ranges. More specifically, these are random variates from corresponding uni-
form distributions. The only exception is the current speed of the car which
is a random variate from normal distribution shown in figure 6.4. This was
chosen to approximate speed distribution of cars approaching the intersection.

After the set of input vectors is generated, both algorithms are queried
with all this data. The resulting recommended speeds are stored in pairs
such that each pair contains calculated speeds corresponding to one of the
vectors but obtained with different algorithms. All the comparisons are then
performed pair-wise, i.e. only speeds obtained with the same input vector are
compared together.
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Figure 6.4: Probability Distribution of Initial Speed Parameter
f() stands for probability density function

Prior description of the comparison and evaluation methods themselves,
please recall how the recommended speeds are determined by each of the
algorithms in the following situations (refer to chapter 5 for more details):

• Considering current green phase

– Original algorithm: If a calculated minimum speed is not higher
than the regulatory speed limit (vlim), then the value of vlim is
recommended. Otherwise, the intersection cannot be passed during
the current phase.

– Newly implemented algorithm: If a calculated minimum speed
(vadv−end) is not higher than the speed limit (vlim), then a speed
range of [vadv−end, vlim] is recommended. Otherwise, the intersec-
tion cannot be passed during the current phase.

• Considering future green phase

– Original algorithm: If a calculated minimum speed (vadv−end) is
not higher than the regulatory speed limit (vlim), then the value of
min(vadv−start, vlim) is recommended. vadv−start stands for a cal-
culated maximum speed. Otherwise, the intersection cannot be
passed during the considered phase.

– Newly implemented algorithm: If a calculated minimum speed
(vadv−end) is not higher than the speed limit (vlim), then a speed
range of [vadv−end, min(vadv−start, vlim)] is recommended.
vadv−start stands for a calculated maximum speed. Otherwise, the
intersection cannot be passed during the considered phase.
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Regarding the comparisons, calculated speeds are compared together in each
pair and evaluated whether they differ or not. In some cases, a degree of
difference is also quantified (see below). Entire evaluation is divided in two
parts processed separately:

• Green Phase Part: In this part, it is assumed that the current state
of the signal is green. The signal timing parameter consists only of a
remaining time to the phase end. All the calculations are performed with
respect to this phase, no future phases are considered. The following
situations may occur:

– If both algorithms recommend valid speeds, then the speed recom-
mended by the original algorithm is always within the range rec-
ommended by the new algorithm. Thus, the results are evaluated
as not differing.

– If only one of the algorithms recommends a valid speed, the results
are evaluated as differing.

– If neither of the algorithms recommends a valid speed, the results
are ignored. These cases are mostly caused by input vectors for
which it is not realistic to calculate a reasonable speed, e.g. 5 sec-
onds to red and a distance of 500 meters. Such cases do not indicate
anything about relative qualities of the algorithms.

• Red Phase Part: In this part, it is assumed that the current state
of the signal is red. The signal timing parameter consists of times to
the start and the end of the next green phase. All the calculations
are performed with respect to that phase, no other future phases are
considered. The following situations may occur:

– If both algorithms recommend valid speeds, the evaluation depends
on whether the speed recommended by the original algorithm is
within the range recommended by the new algorithm or not. If it
is, then the results are evaluated as not differing. If it is not, then
the results are evaluated as differing and distance from the closest
range bound is interpreted as a degree of difference.

– If only one of the algorithms recommends a valid speed, the results
are evaluated as differing.

– If neither of the algorithms recommends a valid speed, the results
are ignored (analogously to the green phase case).

6.3.2 Results of the Statistical Evaluation

Results presented in this section were obtained using 1,000,000 of randomly
generated input vectors for each evaluation part. It means each algorithm
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was queried 2,000,000 times and 2,000,000 result pairs were compared in to-
tal. The Mathematica notebook attached to this thesis (on the CD and as
appendix C.2) is configured to use only 10,000 input vectors and the evalu-
ation should take no more then a few seconds. The vectors were generated
with the following configuration of parameter ranges:

• Distance to the intersection: 1–500 m

• Time to current green end: 1–60 s

• Time to next green start: 1–60 s

• Time to next green end: Time to next green start + 15–60 s

• Car speed: random variate from N (40 km/h, 11.1 km/h), limited to
0–100 km/h

• Reaction delay: 3 s

• Acceleration speed: 5 m.s−2

• Speed limit: 50 km/h

The results are listed in table 6.2.

Metric Count Percentage
Green Phase Part

Number of pairs w/o ignored 712,059 100%
Not differing pairs 698,494 98.1%
Differing pairs 13,565 1.9%

Red Phase Part
Number of pairs w/o ignored 986,016 100%
Not differing pairs (in range) 380,391 38.6%
Differing pairs (total) 605,625 61.4%
Differing pairs (out of range) 603,800 61.2%
Differing pairs (no recommendation) 1,825 0.2%

Table 6.2: Statistical Comparison of Speed Algorithms

Regarding the Green Phase Part, the algorithms differ in only 1.9%. This is
caused by the recommendation logic of the original algorithm, more specifically
its preference of recommending the highest possible speed (i.e. speed limit).
If both algorithms recommend a valid speed, then the speed recommended
by the original algorithm is always equal to upper bound of the speed range
recommended by the new algorithm. Therefore, both algorithms are evaluated
as not differing even though the new algorithm provides driver with a better
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6.3. Comparison with the Previously Implemented Algorithm

information and allows flexibility in choosing an actual driving speed. This
was already discussed in section 5.4.

Regarding the Red Phase Part, the algorithms differ in 61.4%. Only in
0.2%, one of the algorithms was not able to calculate a reasonable recom-
mended speed while the other one was. Therefore, the difference is caused
predominately (61.2%) by missing the speed range.

Besides this simple metric, it is also important to examine how “far” from
range bounds the recommended speeds are. This is visualized in figure 6.5
which is a histogram of distances to the closest bound of the speed range.
Only the differing results are displayed. Width of each bin (interval) is 0.1
km/h. Positive values are the cases where the recommended speed is above
the upper bound of the range. Analogously, negative values would stand for
cases where the recommended speed is below the lower bound of the range. In
fact, this is very unlikely since the lower bound of the range is calculated as
minimum speed to pass the intersection during the phase, while the original
algorithm calculates the speed as maximum possible speed.
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Figure 6.5: Histogram of Speed Differences

It can be seen in the histogram that the differing speeds recommended
by the original algorithm are close to the corresponding upper range bounds
calculated by the new algorithm. Point estimate of expected value of the
difference is 2.9 km/h and standard deviation 3.4 km/h. Nevertheless, there
is a non-negligible amount of results for which the difference is more than
10 km/h. In such cases, both recommendations can clearly be considered as
significantly different and most likely would lead to different outcomes for the
driver.
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Conclusion

First part of the thesis introduced car-to-infrastructure (C2I) networks, an
important wireless communication scheme used within Intelligent Transporta-
tion Systems. Main focus was given to Green Light Optimal Speed Advisory
(GLOSA), one of the main applications of C2I networks. It helps drivers to
avoid any unnecessary stops at traffic intersections and thus it increases an
overall traffic flow continuity. GreenLight is a mobile application providing a
driver-side part of GLOSA. When the car is approaching a GLOSA-equipped
intersection, the application displays the current state of the traffic light sig-
nal and a recommended approaching speed. Furthermore, GreenLight can be
integrated in a car infotainment system using the MirrorLinkTM technology.

Security is an important aspect of any technical system involving wireless
communication. This is especially true for intelligent transportation systems
where successful attacks may have serious consequences for all traffic partici-
pants. The analysis of possible security threats presented ten general threats
for C2I-based GLOSA systems and six more specific threats for the GreenLight
application. The threats were categorized and evaluated using the STRIDE
and DREAD methods. On top of this analysis, several suitable security mea-
sures for the GreenLight application were identified and will be considered for
implementation.

Inability to determine direction in which the driver intends to go through
an intersection is considered to be a current drawback of GreenLight. The
application is unable to show the proper light signal and considers only the
straight direction. The thesis proposed and discussed six promising methods
to determine the intended direction. A method following states of turn indi-
cators currently seems to be the best choice for implementation. In addition,
using car navigation to follow the planned route and also using GPS data to
determine the current driving lane were evaluated as reasonable choices as
well. Most of the remaining methods were recommended to be postponed un-
til the time when the required technology, such as road marking recognition,
is widely available. First method is planned to be implemented and deployed
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Conclusion

by the end of 2016.
Previous version of the GreenLight application contained a very simple

algorithm for calculation of the recommended speed to be displayed to the
driver. It was based on the v = s/t velocity equation. A new enhanced
algorithm was designed, implemented and integrated in the application. Be-
sides the distance and remaining time, it takes into account also the needed
(de)acceleration and reaction delay of the driver. Furthermore, it recommends
a speed range instead of a single speed. This is especially beneficial when the
car is approaching intersection during a red light phase and thus both mini-
mum and maximum speeds can be important.

The enhanced algorithm was successfully tested in real traffic. Although
the testing was limited by the available resources currently allocated in the
project, the updated application worked exactly as expected in all the tests.
Moreover, when the driver followed the recommended speed, they always
passed the intersection as advised. It can be concluded that the new algo-
rithm provides better results than the original one and hence it will remain as
the main speed calculation algorithm in the official GreenLight development
branch.

Besides the limited real-traffic testing, a simulated comparison with the
original algorithm was performed. Both algorithms were queried with 2,000,000
randomly generated input vectors in order to compare and statistically eval-
uate the resulting speeds. Difference between the algorithms was especially
significant in test where a red light phase was simulated and the speed was
calculated for the next green phase. In this scenario, speed recommended by
the original algorithm did not comply with the new algorithm in 61.4% cases,
i.e. speed recommended by the original algorithm was not within the range
calculated by the new algorithm.

After all, I consider this thesis project successful and contributive to the area
of intelligent transportation systems. I believe the new enhanced algorithm
is the most important outcome and will significantly improve performance of
the GreenLight application.
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Appendix A
Acronyms

3G Third Generation of Mobile Telecommunications Technology

4G Fourth Generation of Mobile Telecommunications Technology

A-GPS Assisted Global Positioning System

ADAS Advanced Driver Assistance Systems

AG Aktiengesellschaft

API Application Programming Interface

.apk Android Application Package (file format)

App Application

ARIB Association of Radio Industries and Businesses

BMW Bayerische Motoren Werke AG

BSA Basic Set of Applications

BSS Basic Service Set

BTP Basic Transport Protocol

C-ITS Cooperative Intelligent Transportation System

C2C Car-to-Car

C2I Car-to-Infrastructure

C2X Car-to-X (Car-to-Anything)

CA Certification Authority

CAM Co-Operative Awareness Message
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A. Acronyms

CAN Controller Area Network

CCC Car Connectivity Consortium

CD Compact Disc

CEN European Committee for Standardization

CO2 Carbon Dioxide

Compass4D Cooperative Mobility Pilot on Safety and Sustainability Ser-
vices for Deployment

CTU Czech Technical University in Prague

DCC Decentralized Congestion Control

DEN Decentralized Environmental Notification

DREAD Damage, Reproducibility, Exploitability, Affected Users, Discover-
ability

DVD Digital Video Disc

e4t electronics for transportation

EGNOS European Geostationary Navigation Overlay Service

Err Error

ETSI European Telecommunications Standards Institute

EU European Union

FA Interface between Facility Layer and ITS-S applications

FIT Faculty of Information Technology (CTU Prague)

GHz GigaHertz

GIS Geographic Information System

GLOSA Green Light Optimized Speed Advisory

GmbH Gesellschaft mit Beschränkter Haftung

GPS Global Positioning System

GUI Graphical User Interface

h Hour
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HMI Human Machine Interface

HUD Head-unit Display

Hz Hertz

IEEE Institute of Electrical and Electronics Engineers

ID Identifier

IN Interface between Access Layer and Networking & Transport Layer

iOS iPhone Operating System

IP Internet Protocol

IPv4 Internet Protocol version 4

ISO International Organization for Standardization

ISM Industrial, Scientific and Medical Radio Bands

ITS Intelligent Transportation System

ITU-R Radiocommunication Sector of International Telecommunication Union

kHz Kilohertz

km Kilometer

L1-7 Layer 1-7

LDM Local Dynamic Map

LTE Long-Term Evolution

MA Interface between Management Entity and ITS-S applications

MAC Media Access Control

MAP Map Message

MF Interface between Management Entity and Facility Layer

MI Interface between Management Entity and Access Layer

MIB Management Information Base

MiM Man-in-the-middle Attack

MN Interface between Management Entity and Networking & Transport
Layer
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A. Acronyms

MS Interface between Management Entity and Security Entity

N/A Not applicable

NF Interface between Networking & Transport Layer and Facility Layer

OBU On-Board Unit

OSI Open Systems Interconnection

PKI Public Key Infrastructure

Q1-4 Year Quarter 1-4

QoS Quality of Service

RFC Request for Comments

RSU Roadside Unit

RTP Real-time Transport Protocol

SA Interface between Security Entity and ITS-S applications

SAE Society of Automotive Engineers

SF Interface between Security Entity and Facility Layer

SI Interface between Security Entity Access Layer

SN Interface between Security Entity and Networking & Transport Layer

SNMP Simple Network Management Protocol

SPaT Signal Phase and Timing Message

SSL Secure Sockets Layer

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial
of Service, Elevation of Privilege

TCP Transmission Control Protocol

TM Trademark

TS Technical Standard

UDP User Datagram Protocol

UML Unified Modeling Language

UPnP Universal Plug and Play
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UMTS Universal Mobile Telecommunications System

USB Universal Serial Bus

USA United States of America

VANET Vehicular Ad Hoc Network

VNC Virtual Network Computing

W/E Weight/Effort Ratio

w/o Without

WAAS Wide Area Augmentation System

WLAN Wireless Local Area Network

WPA2 Wi-Fi Protected Access II

XML Extensible Markup Language
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Appendix B
Contents of enclosed CD

Readme.txt .............................Brief summary of CD content
Thesis

DP Beran Jan 2016.pdf ........................ This thesis in PDF
LaTeX .............................. LATEX source files of this thesis

DP Beran Jan 2016.tex ............. Text of the thesis in LATEX
ref.bib .......................................Bibliography file
FITthesis.cls ....................Thesis template of FIT CTU
iso690.bst ......................Bibliography format definition
cvut-logo-bw.pdf ........................Logo of CTU Prague
Assignment Beran Jan.pdf ..................Thesis Assignment
images ...........................Images needed for compilation

...
resources ...............Other resources needed for compilation

...
Source

SampleExternalRecommendedSpeedCalculator.cs
..........................C# source file of the new speed algorithm

Mathematica ........................ Wolfram Mathematica notebooks
Advised Speed Calculation.nb ... Recommended speed calculation
Speed Algorithms Comparison.nb
.. ..................... Statistical evaluation of the speed algorithms

Videos
GreenLight Testing PRG.mp4
..................Moments from testing session of the new algorithm
GreenLight Old HK.mp4
................Promotional video of original GreenLight application
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Appendix C
Wolfram Mathematica

Notebooks

C.1 Advised Speed Calculation

GLOSA - Advised Speed Calculation
This Wolfram Mathematica notebook describes a method (algorithm) for calculating an advised driving speed to be used 

within a GLOSA system. This is part of the “Car-to-Infrastructure Communication in the Context of Intelligent Traffic Intersec-

tions” Diploma thesis (Jan Beran, FIT CTU, Prague 2016).

Speed Expression
In[1]:= (* Delete all symbols and set global options *)

ClearAll["Global`*"];
SetOptions[Manipulator, Appearance → "Labeled"];

Overview
The simplest possible method for calculating an advised speed is to use the basic velocity equation v = s /t. However, 
several important factors would be ignored: car initial speed, time/distance needed for (de)acceleration and driver’s 
reaction delay. The calculation described in this notebook takes all these factors into account. This is the same calcula-
tion as the calculation described in chapter 5 of the thesis, but this notebook presents a strictly theoretical approach not 
applied to any concrete GLOSA system or application. Therefore, the explanation might be slightly different in both 
documents.

Inputs
s: Distance to the intersection [m].
t: Time to a light signal change [s], e.g. green to yellow (to red).

v0: Initial car travel speed m.s-1], assuming the car is not (de)accelerating at the beginning.

tReact: driver’s reaction delay [s], i.e. time when the car starts to (de)accelerate after the advised speed is displayed.

a: Acceleration speed m.s-2, i.e: how fast the car’s speed changes when (de)accelerating (constant value for simplifica-

tion, same for both (de)acceleration).

SpeedLimit: Allowed speed limit m.s-1, advised speed cannot be greater than this limit.

Output

vAdv: Advised driving speed m.s-1, might be further converted to km.h-1 and displayed to the driver.

Notes
This Mathematica notebook has been created and tested under Wolfram Mathematica 10.0.1.0. It is recomended to 
evaluate entire notebook at once (Evaluation -> Evaluate Notebook). In case of any problems related to this notebook, 
please contact Jan Beran (beranj29@fit.cvut.cz).
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Let's start with the basic distance equation (distEq). Total distance to the intersection (s) is a sum of the following sub-
distances:
sReact: distance travelled during driver's reaction time [m]
sAcc: distance travelled during (de)acceleration to the resulting (advised) speed [m]
sRest: remaining distance to the intersection [m]

In[3]:= distEq = s ⩵ sReact + sAcc + sRest;

Next, we expand distEq with the well-know velocity/acceleration formulas:
distance formula: s = v * t

acceleration distance: s = v0 * t + a* t2 2

acceleration speed: Δv =Δt*a, Δv = v - v0 => v = v0 + a* t

There is also one more variable used:
tAcc: time needed for (de)acceleration to the final (advised) speed

In[4]:= sReact = v0 * tReact;

sAcc = (v0 * tAcc) +
a * tAcc2

2
;

sRest = (v0 + tAcc * a) * (t - tReact - tAcc); (* sRest=vAdv*tRest, vAdv=v0+tAcc*a *)

This gives us a single equation with one unknown variable (tAcc):

In[7]:= Simplify[distEq]

Out[7]= 2 s + a tAcc (-2 t + tAcc + 2 tReact) ⩵ 2 t v0

All the equations presented above are valid in case the car is accelerating. Fortunately, the same equations might also be 
used for the deceleration case, but a must be inverted (a := a*(-1)). Thus, the calculation is divided in two cases solved 
separately. Whether the car is (de)accelerating is determined as s /v0 > t. I.e. Remaining time is compared with the 
needed travel time (to the intersection) at initial speed. If the needed travel time is greater than the remaining time, the 
car needs to accelerate (it would pass the intersection after the signal changes otherwise). 

We solve the equation for tAcc, with additional conditions that tAcc ≥ 0 and (tAcc + tReact) ≤ t. Without these conditions, 
we could obtain more solutions satisfying distEq, but only one (or zero) would be correct anyway. Incorrect solutions are 
formally eliminated by these conditions.

To simplify the solution, we add a list of assumptions such as all the times, distances and speeds are > 0.

In[8]:= tAccRuleAcc = Simplify[Solve[{distEq, (tAcc + tReact) ≤ t, tAcc ≥ 0}, tAcc, Reals],
{a > 0, s > 0, t > 0, v0 ≥ 0, tReact ≥ 0, s / v0 > t}]

tAccRuleDec = Simplify[Solve[{distEq, (tAcc + tReact) ≤ t, tAcc ≥ 0}, tAcc, Reals],
{a < 0, s > 0, t > 0, v0 ≥ 0, tReact ≥ 0, s / v0 < t}]

Out[8]= tAcc → ConditionalExpressiont - tReact - (t - tReact)2 -
2 (s - t v0)

a
, t > tReact && a >

2 (s - t v0)

(t - tReact)2


Out[9]= tAcc → ConditionalExpressiont - tReact - (t - tReact)2 -
2 (s - t v0)

a
, t > tReact && a <

2 (s - t v0)

(t - tReact)2


The resulting expression is the same for both (de)acceleration cases. However, the conditions (for a valid solution to 
exist) are slightly different. Since we have an expression for the (de)acceleration time (tAcc), we can calculate the 
advised speed (vAdv) easily: vAdv = v0 + tAcc*a

We also need to invert a in the deceleration condition since negative a is assumed in the condition expression, but we will 
always get a positive a as an input.

C. Wolfram Mathematica Notebooks
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In[10]:= vAdvExpr = tAccRuleAcc[[1, 1, 2, 1]] * a + v0
tAccCondAcc = tAccRuleAcc[[1, 1, 2, 2]]
tAccCondDec = tAccRuleDec[[1, 1, 2, 2]] /. a → -a

Out[10]= v0 + a t - tReact - (t - tReact)2 -
2 (s - t v0)

a

Out[11]= t > tReact && a >
2 (s - t v0)

(t - tReact)2

Out[12]= t > tReact && -a <
2 (s - t v0)

(t - tReact)2

Now we can just define the advised speed function using the previously computed expression and conditions. For the 
deceleration case, we add a condition that the resulting speed must be > 0 (which might not be satisfied in some cases)

In[13]:= getAdvSpeedIn[s_, t_, v0_, tReact_, a_] := Evaluate[vAdvExpr];

getAdvSpeed[s_, t_, v0_, tReact_, a_] := Which

s / v0 == t, v0,

s / v0 > t, Ift > tReact && a >
2 (s - t v0)

(t - tReact)2
, getAdvSpeedIn[s, t, v0, tReact, a], -1,

s / v0 < t, Ift > tReact && -a <
2 (s - t v0)

(t - tReact)2
&& (getAdvSpeedIn[s, t, v0, tReact, -a] > 0),

getAdvSpeedIn[s, t, v0, tReact, -a], -2



Demonstration - Interactive Graphs
In this section, possible usage of the speed expression (determined in the previous section) is demonstrated on two 
interactive graphs. There are two basic cases that can occur in a real traffic:

1. Light signal is green (or yellow before green): In this case, we calculate a minimum speed to pass the intersection 
within the current green phase. We neglect the “yellow before green” phase and consider it to be part of the green phase. 
Calculated advised speed might be limited by an allowed speed limit (if available).  
2. Light signal is red (or yellow before red): In this case, we calculate a speed range - a maximum speed to pass the 
intersection after the signal changes to green and a minimum speed to pass during the next green phase (coming after 
the current red). “Yellow before red” phase is considered to be part of the red phase.

Note: The algorithm described in chapter 5 of the thesis is more general and considers up to 15 future green phases in a 
single calculation. This is neglected in this notebook in order to keep the demostration as simple and understandable as 
possible.

All the Mathematica code below is just to create reasonable interactive graphs. Since the graphs themselves should be 
self-explanatory, there is no need for further comments. The manipulable parameters are the following:
timeToRedSec / timeToGreenSec / timeToNextRedSec: Remaining time to a corresponding signal change [s]

initSpeedKph: Initial car speed [km.h-1]

carAccSpeed: Car average acceleration speed [m.s-2]
reactionTimeSec: driver's reaction delay [s]

speedLimitKmh: Allowed speed limit  [km.h-1]

C.1. Advised Speed Calculation
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1. Signal is green (or yellow before green)

In[15]:= plotYrange = 100;
getAdvSpeedGreen[s_, t_, v0_, tReact_, a_] := Switch[getAdvSpeed[s, t, v0, tReact, a],

-1, plotYrange,
-2, 0,
_, getAdvSpeed[s, t, v0, tReact, a]

]

In[17]:= (* calculating speed to pass the intersection on (current) green *)

Manipulate[
Plot[
{getAdvSpeedGreen[distance, timeToRedSec, initSpeedKph / 3.6, reactionTimeSec, carAccSpeed] * 3.6,
speedLimitKmh},

{distance, 1, 500},
AxesLabel → {"distance [m]", "speed [km/h]"},
PlotRange → {0, plotYrange},
GridLines → Automatic,
Method → {"GridLinesInFront" → True},
PlotStyle → {{}, Red},
PlotLegends → {"Advised speed (minimum) [km/h]", "Speed limit [km/h]"},
Filling → {1 → {{2}, {LightGreen, None}}, 2 → {Top, LightRed}}

],
{{timeToRedSec, 20}, 0.001, 60},
{{initSpeedKph, 30}, 0.001, 100},
{{carAccSpeed, 2}, 0.001, 10},
{{reactionTimeSec, 3}, 0.001, 10},
{{speedLimitKmh, 50}, 20, plotYrange}

]

Out[17]=

timeToRedSec 20

initSpeedKph 30

carAccSpeed 2

reactionTimeSec 3

speedLimitKmh 50

0 100 200 300 400 500
distance [m]

20

40
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80

100

speed [km/h]

Advised speed (minimum) [km/h]

Speed limit [km/h]
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2. Signal is red (or yellow before red)

In[18]:= plotYrange = 100;
getAdvSpeedRed[s_?NumericQ, t_?NumericQ, v0_?NumericQ, tReact_?NumericQ, a_?NumericQ] :=

Switch[getAdvSpeed[s, t, v0, tReact, a],
-1, plotYrange,
-2, 0,
_, getAdvSpeed[s, t, v0, tReact, a]

]

In[20]:= (* calculating speed range to pass the intersection on the next green *)

Manipulate[
Plot[
{getAdvSpeedRed[distance, timeToNextRedSec,

initSpeedKph / 3.6, reactionTimeSec, carAccSpeed] * 3.6,
getAdvSpeedRed[distance, timeToGreenSec, initSpeedKph / 3.6, reactionTimeSec, carAccSpeed] * 3.6,
speedLimitKmh,
Min[getAdvSpeedRed[distance, timeToGreenSec,

initSpeedKph / 3.6, reactionTimeSec, carAccSpeed] * 3.6, speedLimitKmh]},
{distance, 0, 500},
AxesLabel → {"distance [m]", "speed [km/h]"},
PlotRange → {0, plotYrange},
GridLines → Automatic,
Method → {"GridLinesInFront" → True},
PlotStyle → {{}, {}, Red, None},
Filling → {1 → {{4}, {LightGreen, None}}, 3 → {Top, LightRed}},
PlotLegends →

{"Advised speed (minimum) [km/h]", "Advised speed (maximum) [km/h]", "Speed limit [km/h]"}
],
{{timeToGreenSec, 20}, 0.001, 60},
{{timeToNextRedSec, 40}, timeToGreenSec, 90},
{{initSpeedKph, 30}, 0.001, 100},
{{carAccSpeed, 2}, 0.001, 10},
{{reactionTimeSec, 3}, 0.001, 10},
{{speedLimitKmh, 50}, 20, plotYrange}

]

Out[20]=

timeToGreenSec 20

timeToNextRedSec 40

initSpeedKph 30

carAccSpeed 2

reactionTimeSec 3

speedLimitKmh 50

0 100 200 300 400 500
distance [m]
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40
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speed [km/h]

Advised speed (minimum) [km/h]

Advised speed (maximum) [km/h]

Speed limit [km/h]
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C. Wolfram Mathematica Notebooks

C.2 Comparison of Speed Algorithms

GLOSA - Statistical Comparison of Advised 
Speed Algorithms

This Wolfram Mathematica notebook deals with a statistical comparison of two algorithms for calculating a recommended 

speed in a GLOSA system. This is part of the “Car-to-Infrastructure Communication in the Context of Intelligent Traffic 

Intersections” Diploma thesis (Jan Beran, FIT CTU, Prague 2016).

Overview
This document compares the newly proposed enhanced speed algorithm with the originally implemented simple algo-
rithm. Please refer to chapter 5 of the thesis for a detailed information about both algorithms. Idea of this comparison is to 
generate a large set of random input vectors for both algorithms, each vector simulates a random car approaching the 
intersection. All these vectors are evaluated by both algorithms and the results are then compared. This should provide 
an approximate information about difference between the original and the newly implemented algorithm.

Notes
This Mathematica notebook has been created and tested under Wolfram Mathematica 10.0.1.0. It is recommended to 
evaluate entire notebook at once (Evaluation -> Evaluate Notebook). In case of any problems related to this notebook, 
please contact Jan Beran (beranj29@fit.cvut.cz).

Definition of the Speed Algorithms to Compare
In[1]:= (* Delete all previously defined symbols *)

ClearAll["Global`*"];

Function getAdvSpeed[] represents the newly implemented speed algorithm. It has been copied from the 
Advised_Speed_Calculation.nb. Please refer to that notebook for a detailed description:

In[2]:= getAdvSpeedIn[s_, t_, v0_, tReact_, a_] := v0 + a t - tReact - (t - tReact)2 -
2 (s - t v0)

a
;

getAdvSpeed[s_, t_, v0_, tReact_, a_] := Which

s / v0 == t, v0,

s / v0 > t, Ift > tReact && a >
2 (s - t v0)

(t - tReact)2
,

getAdvSpeedIn[s, t, v0, tReact, a], Infinity, (* acceleration *)

s / v0 < t, Ift > tReact && -a <
2 (s - t v0)

(t - tReact)2
&& (getAdvSpeedIn[s, t, v0, tReact, -a] > 0),

getAdvSpeedIn[s, t, v0, tReact, -a], 0 (* deceleration *)

;

Function getAdvSpeedSimple[] represents the originally implemented simple calculation based on the basic velocity 
equation:

In[4]:= getAdvSpeedSimple[s_, t_, v0_, tReact_, a_] := s / t; (* v = s/t *)
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Input Parameters for the Algorithms
Values of the following parameters will be fixed for entire comparison.

carAcceleration m.s-2: Approximate acceleration speed of the car.

driverReactTime [s]: Approximate reaction delay of the driver.

speedLimit [km.h-1]: Regulatory allowed maximum speed.

In[5]:= carAcceleration = 5;
driverReactTime = 3;
speedLimit = 50;

Values of the following parameters will be randomly generated from predefined ranges of allowed values.

distMin, distMax [m]: Distance to the intersection

initSpeedMin, initSpeedMax [m.s-1]: Initial speed of the car
timeGreenEndMin, timeGreenEndMax [s]: Time to the end of the current light phase. Only relevant when assuming that 
the current light phase is green.
timeNextGreenStartMin, timeNextGreenStartMax [s]: Time to the start of the next green phase. Only relevant when 
assuming that the current light phase is red.
nextGreenLengthMin, nextGreenLengthMax [s]: Length of the next green phase. Only relevant when assuming that the 
current light phase is red.

All the values will be generated as random numbers from corresponding uniform distributions unif(<min_value>, 

<max_value>). Only the Initial speed will be generated from a normal distribution norm(40 km/h, 10.8 km/h). This should 
provide a better approximation of speed distribution of approaching cars at the intersection (e.g. probability of 40km/h is 
usually higher than 5 km/h).

(* distance 1-500m *)

distMin = 1;
distMax = 500;

(* init speed: 1-100 km/h generated from norm(40 km/h, 10.8 km/h) *)

(* Values stored in m/s *)

initSpeedMin = 1 / 3.6;
initSpeedMax = 100 / 3.6;
initSpeedMean = 40 / 3.6;
initSpeedVar = 3;

(* current green end: 1-60s *)

timeGreenEndMin = 1;
timeGreenEndMax = 60;

(* next green start: 1-60s *)

timeNextGreenStartMin = 1;
timeNextGreenStartMax = 60;

(* next green length: 15-60s *)

nextGreenLengthMin = 15;
nextGreenLengthMax = 60;

The normal distribution for the initial speed values is displayed in the following plot of its probability density function 
(speeds are displayed in km/h):
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In[20]:= Plot[PDF[NormalDistribution[initSpeedMean * 3.6, initSpeedVar * 3.6], x],
{x, 1, 100}, AxesLabel → {"Speed [km/h]"}]

Out[20]=
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For a basic comparison, it should be enough to generate 10 000 random input vectors . This number can be decreased to 
achieve a faster calculation with less resources or increased to achieve a better precision.

In[21]:= sampleCnt = 10 000;

Case 1 - Signal is Green

Data Preparation

First, let’s generate a set of sampleCnt random input vectors. The same set will be used by both algorithms.

In[22]:= getRandomInputs[count_] := Table[

{RandomReal[{distMin, distMax}],
RandomReal[{timeGreenEndMin, timeGreenEndMax}],
(While [tmp = RandomVariate[NormalDistribution[initSpeedMean, initSpeedVar]];

tmp < initSpeedMin || tmp > initSpeedMax]; tmp),
driverReactTime,
carAcceleration},

{count}
];

randData = getRandomInputs[sampleCnt];

Now we can use the generated data as input vectors for the speed algorithms. The obtained resulting speeds are con-
verted to km/h:

In[24]:= advSpeedsNewAlg = Apply[getAdvSpeed, randData, {1}] * 3.6;
advSpeedsOldAlg = Apply[getAdvSpeedSimple, randData, {1}] * 3.6;

We obtained two lists of calculated speeds to reach the intersection at the end of the current green phase. These are, 
however, “raw” values that do not consider the speed limit. Both algorithms differ in the way they handle the speed limit. 
For a detailed explanation, please refer to chapter 5 of the thesis. Nevertheless, the main difference between both algo-
rithms is, in our case, the following:

Original algorithm:
If the calculated speed is not higher than the speed limit, then the final recommended speed is set to the speed limit 
(preference of the highest possible speed). Otherwise, it is indicated that reaching the intersection during the current 
phase is not possible.

New algorithm:
If the calculated speed is not higher than the speed limit, then a speed range from the calculated speed to the speed limit 
is recommended. Otherwise, it is indicated that reaching the intersection during the current phase is not possible.
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The “raw” calculated speeds need to be transformed to actual recommended speeds in accordance with the considered 
algorithms as described above. This is easily achieved with the following two replace rules:

applySpeedLimit1: All the speeds higher than the speed limit are replaced by Infinity. This is a special value reserved for 
cases when it is not possible to pass the intersection during the considered phase. This rule is applied to both lists.

applySpeedLimit2: All the speeds not higher than the speed limit are replaced by the speed limit. This rule is applied 
only to the list corresponding to the original algorithm.

After applying these replace rules, advSpeedsOldAlg holds the speeds recommended by the original algorithm and 
advSpeedsNewAlg holds the speeds recommended by the new algorithm. In both lists, a value of Infinity means that it is 
not possible to reach the intersection during the current green phase.

In[26]:= applySpeedLimit1[list_, speedLimit_] := Replace[list, n_?(# > speedLimit &) → Infinity, {1}];

applySpeedLimit2[list_, speedLimit_] := Replace[list, n_?(# < speedLimit &) → speedLimit, {1}];

advSpeedsNewAlg = applySpeedLimit1[advSpeedsNewAlg, speedLimit];
advSpeedsOldAlg = applySpeedLimit1[advSpeedsOldAlg, speedLimit];
advSpeedsOldAlg = applySpeedLimit2[advSpeedsOldAlg, speedLimit];

Statistical Comparison of Both Algorithms

The goal is to statistically compare the obtained recommended speeds with respect to the considered algorithms. For an 
easier manipulation with the results, the lists can be merged to a common list of result pairs. Both elements in each pair 
were obtained with the same input vector but with different algorithms. Thus, the resulting list looks like:
{
   {<oldAlg_input1>,<newAlg_input1>},
   {<oldAlg_input2>,<oldAlg_input2>},
   ...
}

Furthermore, we are not interested in cases for which neither of the algorithms could recommend a reasonable speed. 
These are mostly caused by input vectors for which it is simply not realistic to calculate a reasonable speed. Such pairs 
cannot help us to compare the algorithms and thus they can be safely removed.

In[31]:= advSpeedsPairs = Transpose[{advSpeedsOldAlg, advSpeedsNewAlg}];
advSpeedsPairs = DeleteCases[advSpeedsPairs, x_ /; x[[1]] ⩵ Infinity && x[[2]] ⩵ Infinity];

The result pairs can be now divided in three separate groups:

bothValid: Both algorithms recommend valid speeds for a given input vector.
The new algorithm recommends a speed range of <calculated_speed> - <speed_limit>.
The original algorithm recommends a single speed of <speed_limit>

oldValid: Only the original algorithm recommends a valid speed for a given input vector.
newValid: Only the new algorithm recommends a valid speed (range) for a given input vector.

In[33]:= bothValid = DeleteCases[advSpeedsPairs, x_ /; MemberQ[x, Infinity]];

oldValid = Cases[advSpeedsPairs, x_ /; x[[2]] ⩵ Infinity];

newValid = Cases[advSpeedsPairs, x_ /; x[[1]] ⩵ Infinity];

Percentages of results in each group are the following:

In[36]:= (Length[bothValid] / Length[advSpeedsPairs]) * 100 // N
(Length[oldValid] / Length[advSpeedsPairs]) * 100 // N
(Length[newValid] / Length[advSpeedsPairs]) * 100 // N

Out[36]= 98.1396

Out[37]= 1.73451

Out[38]= 0.125892
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In the bothValid group, all the speeds recommended by the original algorithm are within the corresponding speed ranges 
recommended by the new algorithm. Thus, in this case, the results do not differ. 

In both oldValid and newValid group, the algorithms provided different results for each input vector. Thus, in this case, the 
results do differ. The total percentage of the differing results is:

In[39]:= (1 - (Length[bothValid] / Length[advSpeedsPairs])) * 100 // N

Out[39]= 1.8604

Case 2 - Signal is Red

Data Preparation

Again, let’s generate a set of sampleCnt random input vectors. The time included in each of these vectors represents 
start of the next green phase. Then copy all the generated vectors and adjust the time to represent the end of the next 
green phase instead of its start.

In[40]:= getRandomInputs[count_] := Table[

{RandomReal[{distMin, distMax}],
RandomReal[{timeGreenEndMin, timeGreenEndMax}],
(While [tmp = RandomVariate[NormalDistribution[initSpeedMean, initSpeedVar]];

tmp < initSpeedMin || tmp > initSpeedMax]; tmp),
driverReactTime,
carAcceleration},

{count}
];

getRandomPhaseLengths[count_] := Table[

{0,
RandomReal[{nextGreenLengthMin, nextGreenLengthMax}],
0,
0,
0},

{count}
];

randDataPhaseStart = getRandomInputs[sampleCnt];
randPhaseLengths = getRandomPhaseLengths[sampleCnt];
randDataPhaseEnd = randDataPhaseStart + randPhaseLengths;

We can use the generated data as input vectors for the speed algorithms. For an easier manipulation, the calculated 
phase-end and phase-start speeds are grouped together.

In[45]:= advSpeedsNewAlgPhaseStart = Apply[getAdvSpeed, randDataPhaseStart, {1}] * 3.6;
advSpeedsNewAlgPhaseEnd = Apply[getAdvSpeed, randDataPhaseEnd, {1}] * 3.6;
advSpeedsOldAlgPhaseStart = Apply[getAdvSpeedSimple, randDataPhaseStart, {1}] * 3.6;
advSpeedsOldAlgPhaseEnd = Apply[getAdvSpeedSimple, randDataPhaseEnd, {1}] * 3.6;

advSpeedsNewAlg = Transpose[{advSpeedsNewAlgPhaseEnd, advSpeedsNewAlgPhaseStart}];
advSpeedsOldAlg = Transpose[{advSpeedsOldAlgPhaseEnd, advSpeedsOldAlgPhaseStart}];
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We obtained two lists (one for each algorithm) of calculated minimum (phase-end) and maximum (phase-start) speed 
pairs to reach the intersection during the next green phase. These are, however, “raw” values that do not consider the 
speed limit. Both algorithms differ in the way they handle the speed limit. For a detailed explanation, please refer to 
chapter 5 of the thesis. Nevertheless, the main difference between both algorithms is, in our case, the following:

Original algorithm:
If the calculated phase-end speed is not higher than the speed limit, then the final recommended speed is 
min(<speed_limit>, <calculated_speed_phase_start>). Otherwise, it is indicated that reaching the intersection during the 
next green phase is not possible.

New algorithm:
If the calculated phase-end speed is not higher than the speed limit, then a speed range from 
<calculated_speed_phase_end> to min(<speed_limit>, <calculated_speed_phase_start>) is recommended. Otherwise, it 
is indicated that reaching the intersection during the next green phase is not possible.

The “raw” calculated speeds need to be transformed to actual recommended speeds in accordance with the considered 
algorithms as described above. This is easily achieved with the following two transformations:

limitMaxSpeed: All the phase-start speeds higher than the speed limit are replaced by the speed limit. This transforma-
tion is applied to both lists.
 

applySpeedLimit: All the results with phase-end speeds higher than the speed limit are replaced by an {Infinity, Infinity} 

pair. This is a special value reserved for cases when it is not possible to pass the intersection during the considered 
phase. This transformation is applied to both lists.

One extra transformation is performed with the advSpeedsOldAlg list. All the phase-end-speeds are discarded and the 
phase-start-speeds become the final recommendations.  After the transformations, advSpeedsOldAlg holds the speeds 
recommended by the original algorithm and advSpeedsNewAlg holds the speed ranges recommended by the new algo-
rithm. In both lists, a value of Infinity means that it is not possible to reach the intersection during the next green phase.

In[51]:= limitMaxSpeed[pair_] := If[pair[[2]] > speedLimit, {pair[[1]], speedLimit}, pair];

applySpeedLimit[pair_] := If[pair[[1]] > speedLimit, {Infinity, Infinity}, pair];

advSpeedsNewAlg = Map[limitMaxSpeed, advSpeedsNewAlg];
advSpeedsNewAlg = Map[applySpeedLimit, advSpeedsNewAlg];

advSpeedsOldAlg = Map[limitMaxSpeed, advSpeedsOldAlg];
advSpeedsOldAlg = Map[applySpeedLimit, advSpeedsOldAlg];
advSpeedsOldAlg = advSpeedsOldAlg[[All, 2]];

Statistical Comparison of Both Algorithms

The goal is to statistically compare the obtained recommended speeds with respect to the considered algorithms. For an 
easier manipulation with the results, the lists can be merged to a common list of result “pairs”. Both elements in each pair 
were obtained with the same input data but with different algorithms. Note that each element corresponding to the new 
algorithm is a speed range instead of a single speed. Thus, the resulting list looks like:
{
   {<oldAlg_input1>, {<newAlg_input1_min>,<newAlg_input1_max>}},
   {<oldAlg_input2>, {<newAlg_input2_min>,<newAlg_input2_max>}},
   ...
}

Furthermore, we are not interested in cases for which neither of the algorithms could recommend a reasonable speed. 
These are mostly caused by input vectors for which it is simply not realistic to calculate a reasonable speed. Such results 
cannot help to compare the algorithms and thus they can be safely removed.

In[58]:= advSpeedsPairs = Transpose[{advSpeedsOldAlg, advSpeedsNewAlg}];
advSpeedsPairs = DeleteCases[advSpeedsPairs, x_ /; x[[1]] ⩵ Infinity && x[[2, 1]] ⩵ Infinity];

The obtained results can be now divided in three separate groups:

bothValid: Both algorithms recommend valid speeds for a given input vector.

C.2. Comparison of Speed Algorithms
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The new algorithm recommends a speed range 
from <calculated_speed_phase_end> to min(<speed_limit>, <calculated_speed_phase_start>)

The original algorithm recommends a single speed 
of min(<speed_limit>, <calculated_speed_phase_start>)

oldValid: Only the original algorithm recommends a valid speed for a given input vector.
newValid: Only the new algorithm recommends a valid speed (range) for a given input vector.

In[60]:= bothValid = DeleteCases[advSpeedsPairs, x_ /; MemberQ[x, Infinity, 2]];

oldValid = Cases[advSpeedsPairs, x_ /; x[[2, 1]] ⩵ Infinity];

newValid = Cases[advSpeedsPairs, x_ /; x[[1]] ⩵ Infinity];

Percentages of results in each group are the following:

In[63]:= (Length[bothValid] / Length[advSpeedsPairs]) * 100 // N
(Length[oldValid] / Length[advSpeedsPairs]) * 100 // N
(Length[newValid] / Length[advSpeedsPairs]) * 100 // N

Out[63]= 99.8479

Out[64]= 0.152145

Out[65]= 0.

The bothValid group can be further divided in the following three sub-groups.

inRange: For any given input vector, the speed recommended by the original algorithm is within the range of the new 
algorithm result
belowRange: For any given input vector, the speed recommended by the original algorithm is below the lower bound of 
the new algorithm result
aboveRange: For any given input vector, the speed recommended by the original algorithm is above the upper bound of 
the new algorithm result

In[66]:= inRange = Cases[bothValid, x_ /; x[[1]] ≥ x[[2, 1]] && x[[1]] ≤ x[[2, 2]]];

belowRange = Cases[bothValid, x_ /; x[[1]] < x[[2, 1]]];

aboveRange = Cases[bothValid, x_ /; x[[1]] > x[[2, 2]]];

Percentages of results in each sub-group are the following:

In[69]:= (Length[inRange] / Length[bothValid]) * 100 // N
(Length[belowRange] / Length[bothValid]) * 100 // N
(Length[aboveRange] / Length[bothValid]) * 100 // N

Out[69]= 37.8403

Out[70]= 0.

Out[71]= 62.1597

The belowRange and aboveRange groups can be examined further. It might be interesting to determine “how far” are the 
speeds calculated by the original algorithm from the corresponding range bounds calculated by the new algorithm.

In[72]:= subLow[a_] := a[[1]] - a[[2, 1]];

subHigh[a_] := a[[1]] - a[[2, 2]];

belowRangeDiffs = Map[subLow, belowRange];
aboveRangeDiffs = Map[subHigh, aboveRange];
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The differences can be visualized in a histogram. Positive speed differences are the aboveRange results, negative are 
the belowRange results. All the differences are from the closest speed range bound calculated by the new algorithm:

In[76]:= Histogram[{belowRangeDiffs, aboveRangeDiffs}, {-10, 20, 1}, "PDF",
AxesOrigin → {0, Automatic}, AxesLabel → {"Speed difference\n[km/h]", "Relative frequency"}]

Out[76]=
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Only the results from the inRange group can be considered as not differing. Thus, the total percentage of the differing 
results is:

In[77]:= (1 - (Length[inRange] / Length[advSpeedsPairs])) * 100 // N

Out[77]= 62.2173

C.2. Comparison of Speed Algorithms

125


	Introduction
	Goals of the Thesis
	Thesis Structure

	Car-to-Infrastructure Networks (C2I)
	Overview of C2I networks
	Technical Background of C2I Communication Systems
	Green Light Optimized Speed Advisory Systems (GLOSA)

	Application Implementing GLOSA (GreenLight)
	Detailed Description of GreenLight Application
	MirrorLink™ – Technology Used in the Application

	Security Threats to C2I-based GLOSA Systems
	Motivation to the Threat Analysis
	Analyzed Security Perimeters
	Threat Classification and Evaluation Method
	Identified Threats in the Relevant Security Perimeters
	Proposed Security Measures for the GreenLight Application

	Proper Light Signal Determination Analysis
	Motivation for Determining the Proper Signal
	Overview of Considered Selection Methods
	Proposal of a Method to Determine the Proper Light Signal

	Enhanced Calculation of an Advised Speed for the GreenLight Application
	Speed Calculation Procedure
	Reasons for Proposing a New Algorithm
	Proposal of a New Speed Calculation
	Algorithm Usage in Various Traffic Scenarios
	Possible Further Improvements

	Implementation and Verification of the Proposed Speed Algorithm
	Implementation of the Algorithm
	Algorithm Testing in Real Traffic
	Comparison with the Previously Implemented Algorithm

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Wolfram Mathematica Notebooks
	Advised Speed Calculation
	Comparison of Speed Algorithms


