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Abstrakt

Pre danú konečnú grupu G skladajúcu sa z morfizmov a antimorfizmov, pop-
isujeme konečné slová s jazykom uzavretým na grupe G. Definujeme súvisiace
pojmy a defińıcie, pričom sa zameriavame na G-bohatosť a k tomu úzko
súvisiaci pojem G-palindromický defekt. Analyzujeme použitelnosť vybraných
algoritmov a dátových štruktúr na implementáciu nenaivného algoritmu na
výpočet G-defektu. Implementujeme a testujeme náš návrh, pričom výsledky
vykonanıych testov potvrdzujú správnosť nášho algoritmu. Veŕıme, že v
bĺızkej budúcnosti sa náš algoritmus stane súčasťou softvéru SageMath.

Kĺıčová slova slová, kombinatorika, palindromická bohatosť, palindromický
defekt

Abstract

For a given finite group G consisting of morphisms and antimorphisms, we
study finite words with language closed under the group G. We introduce re-
lated notions and definitions focusing on G-richness and its related notion of
G-palindromic defect. We discuss and consider several algorithms and data
structures for the implementation of a non-naive algorithm for G-defect com-
putation. We implement and test our the proposed solution. Tests confirm
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the correctness of our solution. We believe that our implemented algorithm
will become a part of the SageMath in the near future.

Keywords words, combinatorics, palindromic richness, palindromic defect
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Introduction

Words are the basis of human interaction and the smallest element of language
with a literal or practical meaning. It is not a surprise that the notion of word
can be found in many ancient mathematical works [3]. Over time, words have
become a research topic of their own.

A generally considered starting point of mathematical research on words
is the paper on repetition-free words by A. Thue published in 1906 [21]. The
systematic research on words culminated in the second half of the 20th century
when a group of mathematicians under the pseudonym M. Lothaire released
the summarization of the research done until then [14].

In recent years there has been a growing interest in the research of words
that read the same forward and backward - palindromes. This interest comes
from many areas – from number theory [2] and theoretical physics [11] to ge-
netics [12]. It was observed [8] that a finite word w of length |w| contains at
most |w|+ 1 different palindromes. If the word w contains the maximal num-
ber of different palindromes, it is called rich [8, 10]. The difference between
the maximal number of distinct palindromes and the actual number of palin-
dromes in w is called the palindromic defect [6].

Attempts to generalize the notion of palindrome and palindromic richness
appeared soon [12, 17]. Instead of classical palindromes defined as words in-
variant under the reversal mapping appeared Θ-palindromes defined as words
invariant under an involutive antimorphism Θ [12]. A further generalization
was suggested in [16], under the name of G-palindromes. G-palindromes are
words invariant under more symmetries [17]. This thesis aims to describe
related notions of G-palindromes and to design an algorithm for computing
G-palindromic defect.

Main definitions and relevant notions of words, palindromes and gener-
alized palindromes are introduced in Chapter 1. Several interesting string
algorithms and data structures are described in Chapter 2. In Chapter 3 a
mathematical open source software SageMath and its internal methods rel-
evant to the notion of word are introduced. Chapter 4 investigates possible
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implementations of G-palindromic defect. Chapter 5 describes the implemen-
ted solution, discusses the final time complexity and presents the results of
performance testing.
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Chapter 1

Notation and Terminology

1.1 Words

Let A denote a finite nonempty set of symbols, called the alphabet. The
elements of A are letters and a (finite or infinite) string formed by letters of
A is a word. Let A∗ denote the set of finite words over the alphabet A, and
by A+ the set of all nonempty finite words over the alphabet A:

A+ = A∗ \ {ε} ,

where ε denotes the empty sequence, called the empty word. Any subset of
A∗ is called a language.

Let w be a finite word defined as follows:

w = a1a2 · · · an, ai ∈ A and 1 ≤ i ≤ n.

The length of w, denoted by |w|, is n. We denote by |w|a the number of
occurrences of the letter a in the word w, and by An the set of all words of
length n over A:

An = {u ∈ A | |u| = n} = {a1a2 · · · an | ai ∈ A}.

The set of all letters occurring in w at least once is denoted by alph(w).
Therefore a letter a ∈ A belongs to alph(w) if and only if |w|a ≥ 1.

A word can be represented as an array of letters. Throughout the thesis,
the zero based array indexing is used, when appropriate:

w[i− 1] = ai, ai ∈ A and 1 ≤ i ≤ n.

Two words u = a1a2 · · · an and v = b1b2 · · · bm are equal if and only if
they are of the same length, and the letters at corresponding positions are the
same:

m = n and ai = bi, for 1 ≤ i ≤ n.
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1. Notation and Terminology

A monoid M = (M, ◦) is a set closed under a binary operation ◦ that is
associative and it has an identity element. Note that A∗ is a monoid over A.
The binary operation of A∗ is concatenation. The concatenation of two words
u = b1b2 · · · bp and v = c1c2 · · · cq is the word w such that:

w = uv = b1b2 · · · cpc1c2 · · · cq, |w| = |u|+ |v|.

The identity element of A∗ is ε; hence, for any word u it is true that εu =
uε = u, u ∈ A∗.

A word x ∈ A∗ is a factor of w if there exist words u, v ∈ A∗ such that

w = uxv.

An index i ∈ N is called occurrence of x, such that

x = wiui+1 · · ·ui+|x|−1.

If u = ε, then x is called a prefix of w, and if v = ε, then x is called a suffix
of w. We denote by L(w) the set of all factors of w, and by Ln(w) the set of
all factors of length n of w.

For example, if z = caba, then

L0(z) ={ε}
L1(z) ={c, a, b}
L2(z) ={ca, ab, ba}
L3(z) ={cab, aba}
L4(z) ={caba}

A finite word w is a factor of u if there exists an index i
The reversal of w is the word

R(w) = R(a1a2 · · · an) = anan−1 · · · a1,

where R is the reversal mapping. A word equal to its reversal (w = R(w)) is
a palindrome.

The set of all palindromes in L(w) is denoted by Pal(w). It was proved [8]
that w contains at most |w|+1 distinct palindromes (including ε). If w contains
the maximum number of different palindromic factors it is called rich.

For example, if we take z = caba, then

L(z) ={ε, c, a, b, ca, ab, ba, cab, aba, caba}
Pal(z) ={ε, c, a, b, aba}.

The word z is rich because |Pal(z)| = |z|+ 1.
We denote by D(w) the palindromic defect. It is defined as the differ-

ence between the maximal number of palindromes and the actual number of
palindromes in w [5]:

D(w) = |w|+ 1− |Pal(w)|.

In this notion, finite rich words have defect equal to 0.
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1.2. Morphisms and Antimorphisms

1.2 Morphisms and Antimorphisms

Let A and B be two finite alphabets. A mapping ϕ : A∗ → B∗ on A∗ is

• a morphism if ϕ(uv) = ϕ(u)ϕ(v), for any u, v ∈ A∗;

• an antimorphism if ϕ(uv) = ϕ(v)ϕ(u), for any u, v ∈ A∗.

We denote the set of all morphisms and antimorphisms on A∗ by AM(A∗).
We denote the set of all morphisms on A∗ by M(A∗). Note, that the reversal
mapping R is an antimorphism. Any antimorphism is a composition of R and
a morphism: R(M(A∗)). Thus,

AM(A∗) = M(A∗) ∪R(M(A∗)).

Given an antimorphism ϕ, a word w is a ϕ-palindrome if w = ϕ(w).

1.3 Words with language closed under a group G

The following definitions were introduced in [16] and [17].

All the following notions are defined for G which stands for a finite sub-
group of AM(A∗). Moreover, to generate non-trivial results, we require G to
contain at least one antimorphism.

Let w, v ∈ A∗. The words w, v are G-equivalent if there exists µ ∈ G such
that

w = µ(v).

The class of equivalence containing w is denoted by [w] and it is a set defined
as

[w] = {µ(w) | µ ∈ G}.

A word w is G-palindrome if there exists an antimorphism Θ ∈ G such
that

w = Θ(w), i.e., w is a Θ-palindrome.

G-occurrence of v in w is an index i such that there exists v′ ∈ [v] having
occurrence i in w. If there is exactly one G-occurrence of v in w we say v is
G-unioccurrent in w.

A suffix u ∈ A∗ of a word w is called a G-longest palindromic suffix of
w if u is a G-palindrome and there is no longer G-palindromic suffix in w.
It is denoted by G-lps(w). Note that ε is always a suffix of w and a G-
palindrome. Thus, if there is no non-empty G-palindromic suffix that satisfies
this condition, then G-lps(w) = ε.
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1. Notation and Terminology

1.4 G-richness

To define the G-analogy of richness we need to recall its connection to the
palindromic defect. Let us recall that the palindromic defect is the difference
between the maximal number of palindromes and the actual number of palin-
dromes in a word. Thus, a finite word is called G-rich if and only if G-defect
is equal to 0.

As described and proved in [17], there are two equivalent characterizations
of G-defect :

1. We first define the set of all G-palindromic classes of equivalence in w
as follows

PalG(w) = {[v] | v is a factor of w and a G-palindrome}.

The G-defect is defined as

DG(w) = |w|+ 1−#PalG(w)− γG(w) (1)

where

γG(w) = #{[a] | a ∈ A is factor of w, a 6= Θ(a)

for all antimorphisms Θ ∈ G}.

2. Let w = w1 · · ·wn ∈ A∗. A number i such that 1 ≤ i ≤ n is called G-
lacuna in w if wi and G-lps(w1 · · ·wi) are not G-unioccurrent in w1 · · ·wi.
Then

DG(w) = the number of G-lacunas in w. (2)

Let us demonstrate both these definitions on an example.
Take a word w = abbab and two antimorphisms: Θ1 = a 7→ b, b 7→ a and

Θ2 = a 7→ a, b 7→ b. Let us prove that w is G-rich by computing its defect.
The set of all distinct factors of w is:

L(w) = {ε, a, b, ab, ba, bb, abb, bab, bba, abba, bbab, abbab}

We decide whether factors in L(w) are G-palindromes or not and we generate
their classes of equivalence. The list of G-palindromes and their classes of
equivalence are:

Θ1(ab) = ab
Θ1(ba) = ba
Θ2(a) = a
Θ2(b) = b
Θ2(bb) = bb
Θ2(bab) = bab
Θ2(abba) = abba

[ab] = {ab; ba}
[ba] = {ba; ab}
[a] = {b, a}
[b] = {a, b}
[bb] = {aa, bb}
[bab] = {aba, bab}
[abba] = {baab, abba}

6



1.4. G-richness

We can see that [a] = [b] and [ab] = [ba]. Therefore, the set of all G-
palindromic classes of equivalence of w is:

PalG(w) = {[ε], [a], [ab], [bb], [bab], [abba]}.

Since there is no letter in w that is not a G-palindrome we have γG(w) = 0.
The final G-palindromic defect can be then computed as follows:

DG(w) = |w|+ 1−#PalG(w)− γG(w) = 5 + 1− 6− 0 = 0

Word w is G-rich.
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Chapter 2

Algorithms

This chapter describes data structures and algorithms that have been studied
and considered for our implementation. These algorithms are mostly related
to string searching.

2.1 Manacher’s algorithm

Manacher’s algorithm, introduced in [15], is an algorithm for finding the
longest palindromic factor of a word in a linear time. Since G-defect can
be computed using G-longest palindromic suffixes of a word, we introduce
this algorithm to later analyze whether we can use some of its properties for
our implementation or not.

A factor q of length m can be either of odd length or even length. Odd
length factor q has a centre at the index bm/2c. Even length factor q has a
centre between two letters at the indices m/2−1 and m/2. To better illustrate
the algorithm and have one index for a factor of any size, we transform q to
a word q′ by inserting a special letter # that is not in alph(q) between every
letter of q:

q = B A N A N A

q' = # B # A # N # A # N # A #

The transformed word q′ has length 2m+ 1 and its centre is at the index m.

The output of this algorithm is an array where every index represents the
longest palindrome centered at the index location.

• We set these variables with the initial values 0:

– C: the index of the centre of the current palindrome

– R: the index of the right side of the current palindrome

– i: the index of the current position

9



2. Algorithms

– i': the mirror index of the current position (2× C − i)

• We iterate through q' from the left to the right incrementing value of i
with every shift.

• For a particular position C we compare its neighbours on left (i') and
right (i). If they are equal, we move further to the right from C and we
repeat this step, otherwise the longest palindrome centered at C is found
and its size is written to P[C]. We save the index of palindrome’s right
edge to R.

• Palindromes are symmetric. We can use this property and expect that
right side of a palindromic factor is the same as its left side. But this
is not true if the difference of the index of palindrome’s right edge and
the current index is greater or equal to the length of the palindrome
centered at the mirrored index (R-1<=P[i']).

• If the palindrome centered at i expands past R, we update C to i and
extend R to the new palindrome’s right edge.

2.2 Boyer-Moore Algorithm

Boyer-Moore algorithm introduced in [4] is a string searching algorithm. The
algorithm has been studied and described in the thesis because it is considered
as “the most efficient string matching algorithm in usual applications” [7]. In
this section we compare the algorithm to the naive solution and we describe
its basic properties and rules.

Given a text t and a word p called pattern, over a finite alphabet Σ, the
algorithm finds an occurrence of the pattern in t. Set m = |p| and n = |t|.

We will consider here a simpler version of this problem, when our goal is
just to find the first occurrence of p in t since it is more illustrative and it can
be adapted easily for the more general problem.

The naive string search algorithm runs through all positions in t and checks
whether an occurrence of p starts there or not. A pseudocode of this approach
is shown in Algorithm 2.1. As one can see in Algorithm 2.1, the outer loop
runs at most n−m+ 1 times and the inner loop runs at most m times. Thus,
the time complexity of the naive string search algorithm is clearly O(nm) in
the worst case (such as p = aaab, t = aaaaaaaab). With this naive approach
we always shift p by one letter to the right when the comparison fails.

In Boyer-Moore algorithm the start of p is aligned with the start of t:

t = I G U A N A S E A T B A N A N A S

p = B A N A N A

Words are matched from the end of p to the start of p. If there is a match
starting at t[i] where 0 ≤ i < n, it starts by comparing letters p[m − 1] and

10



2.2. Boyer-Moore Algorithm

Algorithm 2.1 Naive string search algorithm

1: n← length t
2: m← length p
3: i← 0
4: while i ≤ (n−m) do
5: j ← 0
6: while j < m and t[i+ j] = p[j] do
7: j ← j + 1

8: if j = m then
9: return i . p is a factor of t

10: i← i+ 1

11: return no valid result . There is no factor p in t

t[i+m−1]. This allows us to move the word p to the right over more than just
one letter when a mismatch is encountered. The shift value is precomputed
by a number of rules. After each alignment, a rule which skips more letters is
used.

2.2.1 Bad Character Shift

Consider an example:

t = I G U A N A S E A T B A N A N A S

∦ ‖ ‖ ‖
p = B A N A N A

Matching from the end of p to its start, a mismatch is encountered at t[2] and
p[2]. Since a letter ”U” located at t[2] does not appear anywhere in p, we can
shift p by m and start looking for a match at t[2 +m]:

t = I G U A N A S E A T B A N A N A S

B A N A N A

B A N A N A

B A N A N A

If a mismatch letter of t occurs in p, we need to shift p to the last occurrence
of that letter in p:

t = I G U A N A S E A T B A N A N A S

B A N A N A

B A N A N A

B A N A N A

B A N A N A

The final alignments of the given pattern to the given text are:

11



2. Algorithms

t = I G U A N A S E A T B A N A N A S

B A N A N A

B A N A N A

B A N A N A

B A N A N A

B A N A N A

In order to get the number of positions to shift p to the right, the algorithm
preprocesses p and creates a shift table.

The algorithm starts at the end of p with a count of 1 and it moves to
the start of p. First time it moves left it does not change the count value.
Every other time it moves left, it increases the count by 1. The current letter
absent from the table is added, along with the current count. The letter that
is already in the table is ignored. A unique letter that represents all other
characters that does not appear in alph(p) is added to the table along with a
count m [13].

The shift table that stores the number of positions to shift the pattern
banana is shown in Table 2.1.

A B N *

1 5 1 6

Table 2.1: Bad character shift table for a word BANANA

2.2.2 Good Suffix Rule

Let s denote the longest suffix of p that matches t in the current position.
Good suffix rule defines 3 possible cases that are applied in the following
order:

1. If there is a factor s′ in p such that it is equal to s and it is not a suffix
of p and the letter to the left of s′ in p is not equal to the letter to the
left of s in p, shift p to the right so that s′ aligns with the factor s in t.

2. If there is no such factor, shift p to to the right to align the longest suffix
of s in t with a matching prefix of p.

3. If none of above is possible, shift p by n places to the right.

2.2.3 Performance

When pattern occurs in the text, the worst case running time is O(nm) and
the best running time possible is O(n/m). When pattern does not occur in
the text, the algorithm requires O(n+m) time.
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2.3. Suffix Tree

2.3 Suffix Tree

A tree is a collection of nodes starting at a root node. Each node contains a
value and a list of references to other nodes called children. No reference is
duplicated and none points to the root node. A node with at least one child
is an inner node and a node with no child is a leaf.

A suffix trie is a tree representing all suffixes of a word where every edge is
labelled with a single letter. A suffix tree is a compressed suffix trie, where no
two edges starting out at the same node can have the same prefixes. Meaning,
individual edges may represent factors of a word longer than one letter. The
difference of suffix trie and suffix tree is shown in Figure 2.1.

Suffix trie Suffix tree

b a n

6

$

a

n

a

n

a

0

$

n

5

$

a

n

3

$

a

1

$

a

n

4

$

a

2

$

0

banana$ a na

6

$

na

5

$

1

na$

3

$

2

na$

4

$

Figure 2.1: Difference between a suffix trie and a suffix tree for the word
banana.

To avoid situations that a factor ends in an inner node and not in a leaf, a
terminal letter that is unique within the word alphabet and is lexicographically
smaller than all the other letters is added at the end of a factor. A suffix tree
without a terminal letter is called an implicit suffix tree. Every leaf holds a
number that represents the starting position of the corresponding suffix.

Let us count the number of nodes in a suffix tree for a word w of length n
over a fixed alphabet Σ:

13



2. Algorithms

• There is exactly 1 root.

• Each suffix corresponds to a path from the root to a leaf so there are
exactly n+ 1 leaves with the terminal letter.

• Every inner node creates a new branch (with at least 2 children) that
eventually leads to a leaf. There are n + 1 leaves in the suffix tree,
therefore, the maximum number of inner nodes is n with the root. Since
we do not consider the root as an inner node, the maximum number of
inner nodes in the suffix tree is n− 1.

• Obviously, the maximum number of nodes in the suffix tree is 2n + 1
which is the sum of the number of the root node, all leaves and all inner
nodes of the suffix tree.

An example of a suffix tree with the maximum number of nodes is shown in
Figure 2.2.

a

3$

a

2
$

1
$

0
a$

Figure 2.2: Suffix tree for the word aaa.

The construction of a suffix tree of w takes O(n) using Ukkonen’s al-
gorithm. A reader who wishes to study this algorithm is advised to read
[22].

Let us assume that |Σ| ∈ O(1) and that one node also consumes O(1)
memory. The construction of a suffix tree of w takes O(n) using Ukkonen’s
algorithm. The algorithm begins with an implicit suffix tree for the first
character of w. A reader who wishes to study this algorithm is advised to
read [22].

A suffix tree that has edge labels represented as factors of w will take O(n2)
memory space. However, to avoid this situation we can use two numbers rep-
resenting starting index and ending index of each factor of w. This decreases
the memory space to O(n). Thus, the overall memory space consumed by the
suffix tree is O(n) but this can vary from implementation.

2.3.1 Applications

Let us have a word p of length m.

To count all occurrences of p in w we follow the path for p starting from
the root and we try to match p on a path. Three possible cases can occur:

14



2.3. Suffix Tree

1. The word p does not match.

2. The match ends in a node. All leaves below this node represent occur-
rences of p in w.

3. The match ends in an edge. All leaves below the ending node represent
occurrences of p in w.

Finding p takes O(m) time and collecting the leaves (for example by traversing
a tree) takes O(occ) time where occ is the number of occurrences of p in w.
Thus, the overall time complexity of this algorithm is O(m+ occ).

To traverse a suffix tree, depth-first search algorithm can be used. Depth-
first search algorithm visits the edges of a tree. We start in the root node.
If we are visiting a node, then we next visit its children that has not yet
been visited. If there is no such node, we return to the parent node. This
is repeated until every node in a tree has been visited (Algorithm 2.2). Its
worst case time complexity is proportional to the number of nodes in a graph.
Thus, the worst case time complexity for a suffix tree of w is O(n).

Algorithm 2.2 Depth-first search algorithm

1: procedure DFS(t, v) . t is a subtree, v is a node
2: v.discovered← true
3: m← length P
4: while all edges in t.edges(v) do
5: if v.discovered = false then DFS(t, v)

15





Chapter 3

SageMath

SageMath is an open source mathematical software [18] that already supports
combinatorics on words [20]. It contains a set of tools that we can build on
and the opportunity to contribute to the user community, delivering a visible
outcome of this thesis. These are the reasons why SageMath has been chosen
as the software of choice for this thesis.

3.1 Introduction

SageMath is a free open source mathematical software created as an altern-
ative to other proprietary mathematical software. Instead of implementing
everything from scratch, SageMath integrates a number of established and
narrow-specialized open source mathematical and statistical software [19] into
a unified interface and it contains a lot of its own functionalities as well. It is
intended to be easy to use and still to cover what is expected by any scientific
tool, so it can be used both for studying and for research.

3.2 SageMath Development

SageMath development is driven by community of volunteers supported by
various grants and mathematical associations.

It is written in several programming languages – Python, Cython and C.
The source code is public and it is managed by Git.

SageMath is licensed under the GNU Public License [18] allowing com-
mercial use. However, any modifications to the source code should stay under
the same license agreement [9].
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3. SageMath

3.3 Words Relevant Classes

SageMath covers a broad spectrum of combinatorics [20]. In this section, we
introduce classes which are connected with the notion of word and with our
implementation. Python data containers list, tuple, set and dictionary are
described in Appendix A.

3.3.1 Word Morphism

The class WordMorphism located in the sage.combinat.words.morphism mod-
ule, represents a morphism as defined in Section 1.2. Internally, it is repres-
ented as a Python dictionary where every key-value pair is one rule of a given
morphism.

Useful methods implemented in the WordMorphism class:

• constructor
The constructor can handle string, list, dictionary or another WordMorphism
object.

• is_erasing()

Returns True if the given morphism is an erasing morphism, i.e. the
image of a letter is the empty word. Otherwise returns False.

• is_growing()

Returns True if a given morphism is a growing morphism. A morphism
ϕ = A∗ 7→ A∗ is growing if

lim
n→∞

|ϕn(w)| = +∞, where w is the given word.

Otherwise returns False.

The example below demonstrates these methods:

sage: m = WordMorphism("0->1,1->0"); m

WordMorphism: 0->1, 1->0

sage: m.is_erasing()

False

sage: m.is_growing()

False

3.3.2 Finite Word

Finite words are internally represented as FiniteWord_class. There are more
than hundred methods defined for this class and its .

• length()

Returns the length of a word.

18



3.3. Words Relevant Classes

• is_empty()

Returns True if the word is ε, otherwise returns False.

• reversal()

Returns the reversal word of the word.

• apply_morphism(morph)

Applies the morphism morph to the word and returns the result.

As described in Section 3.3.1, a WordMorphism object is internally im-
plemented as a dictionary. It takes O(1) time to get an item from a
dictionary. Given a word of the length n and a morphism morph, the
method applies all rules in the morphism to all n letters of the word.
Therefore, the time complexity of this method is O(n).

• suffix_tree()

Creates an implicit suffix tree. Uses Ukkonen’s algorithm for a linear-
time suffix tree construction (See Section 2.3 for tree description).

• factor_iterator(n)

Builds a suffix tree of a given word and uses a depth-first search al-
gorithm to return all distinct factors of length n. If n is not set, all
distinct factors are returned.

• find(sub,start,end)

Returns the index of the first occurrence of sub in the factor of the
word starting from the index start and ending at the index end. It
uses Boyer-Moore algorithm (Described in Section 2.2). The worst case
running time of this method is quadratic.

The example below demonstrates some of the methods available for Word

instances:

sage: w = Word("0100100101"); w

word: 0100100101

sage: w.find("100",1)

1

sage: w.find("100",2)

4

sage: wm = w.apply_morphism(WordMorphism("0->1,1->0")); wm

word: 1011011010

sage: wm.reversal()

word: 0101101101

sage: t = Word("abba").suffix_tree()

sage: sorted(t.factor_iterator(2))

[word: ab, word: ba, word: bb]
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Chapter 4

Problem Analysis

In this section we analyze possible implementations of G-defect calculation
and discuss their efficiency.

Throughout this section, the following setup is considered: The input is
a finite word w of length n over a fixed alphabet Σ and a set of morphisms
and antimorphisms denoted by G. The number of morphisms is denoted by
m and the number of antimorphisms is denoted by r. Since G is a finite group
m = r.

4.1 Analysis

As shown in the Section 1.4, there are two equivalent characterizations of
G-defect to be considered:

• Method 1: DG(w) = |w|+ 1−#PalG(w)− γG(w);

• Method 2: DG(w) = the number of G-lacunas in w.

Let us break down these characterizations into several subproblems.

4.1.1 Method 1

Considering Method 1, to obtain #PalG(w), we have to loop through all
factors of w, validate whether they are G-palindromes or not and count the
number of unique classes of equivalence in the set of found G-palindromes.
There is, at most, n × (n + 1)/2 non-empty factors in w. However, there is,
at most, n+ 1 elements in PalG(w) since DG(w) ≥ 0.

To obtain γG(w), we count the number of unique classes of equivalence
in the set of one-letter factors that are not G-palindromes. There is exactly
alph(w) such factors and they generate at most alph(w) unique classes of
equivalence.
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4. Problem Analysis

4.1.2 Method 2

Considering Method 2, we have to loop through every prefix of w and validate
whether its last letter and its G-longest palindromic suffix are G-unioccurrent
in the prefix or not. Let us be reminded that G-lps(w) is a suffix u of w such
that u is a G-palindrome. To find G-longest palindromic suffix of a prefix, we
have to check whether all suffixes of the prefix are G-palindromes or not. It is
certain that iterating over all suffixes of all prefixes of w is iterating over all
factors of w. For every prefix of w, there is exactly one G-longest palindromic
suffix. Therefore, we validate G-unioccurrence of G-longest palindromic suffix
of all prefixes exactly n times. From the definition of G-lacuna we also check
G-unioccurrence of every letter of w, G-unioccurrence is checked 2n times in
total.

4.1.3 Discussion

As discussed above, both methods loop through all factors of w to find G-
palindromes. However, Method 1 later works withO(n2) elements and Method 2
with O(n) elements. Counting the number of unique classes of equivalence
(Method 1) can be simplified to the string comparisons. G-unioccurrence
(Method 2) can be simplified to the string matching problem. Both these
problems have the same asymptotic time complexity.

Let us focus on analysis and implementation of Method 2 since in the worst
case, it is working with significantly less amount of data than Method 1.

4.2 Applying Morphisms and Antimorphisms

As described in Section 3.3.2, SageMath already implements an efficient method
for applying a morphism to a given word with the time complexity O(n). An-
timorphism is a composition of the reversal mapping and a morphism. To
obtain a word by applying an antimorphism, the same method is used as in
case of applying a morphism. The obtained result is reversed. The asymptotic
time complexity stays the same as in case of applying a morphism.

Since this action is very frequent and takes a significant time to run, it
is suggested to precompute and store all words obtained through applying
needed morphisms and antimorphisms.

4.3 Finding All G-palindromes in a Word

Finding all G-palindromes in a word means iterating over factors of the given
word and decide whether they are G-palindromes or not. Let us recall that
a factor u of w is G-palindrome if there exists an antimorphism Θ ∈ G such
that u = Θ(u). Different solutions for the described problem follows.
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4.3. Finding All G-palindromes in a Word

4.3.1 Naive Solution

The most straightforward way is to iterate over all factors of w, apply all given
antimorphisms to every factor and compare obtained words with the initial
factor. The performance of this solution is:

• picking all possible starting and ending positions to loop over all factors
of w takes O(n2) time;

• loop over all antimorphisms requires O(r) time;

• applying an antimorphism to all letters of a factor of w takes O(n) time;

• comparing two words takes O(n) time.

Thus, the overall time complexity of this naive approach is O(rn4).

4.3.2 Suffix Tree

We can get all distinct factors of a word by traversing a suffix tree. It takes
O(n) time to construct a suffix tree using Ukkonen’s algorithm and since a
suffix tree has at most 2n+ 1 nodes, traversal of this tree can be done in O(n)
time. However edges of a suffix tree can contain factors longer than one letter.
Thus, we have to iterate over all letters of each edge to get all distinct factors
of w.

The performance of individual steps of this algorithm is:

• construction of a suffix tree takes O(n) time;

• getting all distinct factors from a suffix tree takes O(n2) time;

• loop over all antimorphisms requires O(r) time;

• comparing two words takes O(n) time.

The construction of a suffix tree is the pre computation step, so the overall
time complexity is calculated as O(n) + O(rn3). Thus, this solution takes
O(rn3) time and O(n) memory space.

4.3.3 Dynamic Programming

If w contains a factor u ∈ A+ which is G-palindrome for an antimorphism
Θ ∈ G, then a word tuv such that t, v ∈ A and Θ(t) = v, Θ(v) = t, is also
G-palindrome. We can use this property to avoid re-computation in validating
G-palindromes.

The idea is to create a 2D table for every antimorphism where rows repres-
ent length of a factor denoted by len and columns represent an index where a
factor starts in a word denoted by idx. An entry at the index [len-1][idx]
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4. Problem Analysis

stores a boolean value, whether a factor of the length len starting at the index
idx in w is G-palindrome for a given antimorphism or not.

With three or more letter factor tuv, the precomputed value for u is stored
at the index [len-3][idx+1]. If the value stored at this index is False, a
current factor tuv is automatically not a G-palindrome. If the value is True,
the antimorphism should be applied to the first and last letter of a factor and
do just two comparisons.

Now, let us demonstrate the above idea by an illustrative example. Take
a word ABBAB and the antimorphism Θ determined by A 7→ B and B 7→ A:

1. We iterate over all one and two letter factors of w, apply Θ and store
whether an obtained word is equal to an initial word. The result can be
seen in Figure 4.1.

A

False

B

False

B

False

A

False

B

False

AB

True

BB

False

BA

True

AB

True

ABB

-

BBA

-

BAB

-

ABBA

-

BBAB

-

ABBAB

-

Figure 4.1: Demonstration of finding all G-palindromes in the word ABBAB,
Step 1

2. For next three or more letter factors, stored values can be used. A factor
ABB starts at the index 0 in w and its length is 3. Therefore, its value
is stored at the index [2][0] in the table. As previously described, a
value stored at the index [0][1] is used to decide whether the factor
ABB can be G-palindrome or not. Since the value stored there is False,
we can automatically say that the factor ABB is not G-palindrome for
the given antimorphism (Figure 4.2).

3. Thus, if a precomputed value is True (as in case of a factorBBAB) and it
is true that Θ(first letter) = last letter and Θ(last letter) = first letter,
it is then concluded that a given factor is G-palindrome (Figure 4.3).

4. The final table of w for Θ is shown on Figure 4.4.

Let us discuss the performance of this solution:

• picking all possible starting and ending positions to loop over all factors
of w takes O(n2) time;
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Figure 4.2: Demonstration of finding all G-palindromes in the word ABBAB,
Step 2
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Figure 4.3: Demonstration of finding all G-palindromes in the word ABBAB,
Step 3

• iterating over precomputed words obtained by applying all antimorph-
isms takes O(r) time;

• applying an antimorphism to a letter takes O(1) time;

• comparing two letters O(1) time.

The proposed algorithm has time complexity O(rn2) and memory complexity
O(n2).

Since we only need to store rows two steps back, we can change our table
to store 2 rows and n columns. In that case a value whether a factor of the
length len starting at the index idx in a given word can be G-palindrome is
stored at the index [len&1][idx] in the proposed table, where & is a logical
AND operator. Precomputed values for three and more letter factors are then
stored at [len&1][idx+1].
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Figure 4.4: Demonstration of finding all G-palindromes in the word ABBAB,
Step 4

Thus, the overall time complexity of this solution isO(rn2) and the memory
complexity is O(n).

4.4 G-unioccurrence

Given a suffix of a word we want to find out whether it is G-unioccurrent in
the word or not.

This can be seen as a string matching problem where the patterns are
elements of classes of with finding all possible occurrences. We have introduced
two possible algorithms in Chapter 2:

1. Boyer-Moore algorithm

2. Search in a suffix tree
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Chapter 5

Implementation and Testing

5.1 Generating G

This method was implemented for easier generation of G for G-defect method.

• generate_g(am): Generates subgroup of symmetries by list of anti-
morphisms am.

• Input

– am: list of WordMorphism objects, growing or erasing morphisms
are not accepted

• Output

– Tuple of sets of morphisms and antimorphisms. As described in
Section 1.3, G is a group but we do not need any group operations.
Therefore, we represent G as a tuple.

• Example

m, am = generate_g([WordMorphism("0->0,1->1")])

5.2 G-defect

Let us be reminded, that we chose counting G-lacunas as the preferred char-
acterization of G-defect. To implement this characterization, we have to loop
through every prefix of a given word and validate whether its last letter and
its G-longest palindromic suffix are G-unioccurrent in the prefix or not.

• gdefect(w, g): Computes G-defect of the word w over g

• Input
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– w: word of length n represented as an instance of Word class

– g: G represented as a tuple of sets of morphisms and antimorph-
isms. This can be easily generated from a list of antimorphisms by
using generate_g(am).

• Output

– number representing the G-defect of w

• Example

m, am = generate_g([WordMorphism("0->0,1->1")])

5.2.1 G-longest Palindromic Suffix

Two promising methods to find all G-palindromes in w were analyzed in Sec-
tion 4.3. The algorithm implemented with a suffix tree runs in O(rn3) time
and the proposed dynamic programming solution runs in is O(rn2).

The output of this subproblem is a list of n numbers where each number
at the index i represents the length of a G-longest palindromic suffix ending
at the index i in w.

5.2.2 G-unioccurrence

Already implemented Boyer-Moore algorithm is used to search in a prefix of
w (See detailed description of Boyer-Moore algorithm in Section 2.2).

• iterating over precomputed words obtained by applying all antimorph-
isms takes O(r) time;

• the worst case scenario of Boyer-Moore algorithm takes O(n2) time;

Thus the overall time complexity of this subproblem is O(rn2). However we
break the algorithm immediately after we find at least two occurrences of a
pattern in w.

5.2.3 Overall Time Complexity

Time complexity of the subproblems is as follows:

• G-longest palindromic suffix: O(rn3);

• G-unioccurrence: O(rn2).

Thus, the final time complexity is O(rn3).
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5.3. Testing

5.3 Testing

To load the implemented code, simply load a file bp_guramatu.py into your
locally running SageMath application:

sage: load("<filepath">)

It was proven in [16], that Thue-Morse words has G-defect equal to 0. Thus,
we automatically tested our implementation on huge number of Thue-Morse
words as follows:

sage: for i in range(500):

....: w = words.ThueMorseWord("01")[:i]

....: if gdefect(w,g) != 0:

....: raise Exception("Wrong result!")

All tests passed successfully. The implemented test method is called gdefect_test()

and it is documented in the attached source code.
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Conclusion

This thesis analyses and implements algorithms related to the recently in-
troduced notion of palindromic richness with respect to a finite subgroup of
symmetries generated by antimorphisms.

Combinatorics on words as a relatively new field of discrete mathematics
and its main notions and definitions were presented.

We described and compared multiple algorithms and data structures for a
wide variety of related string processing operations. We introduced the open
source computational software SageMath and briefly presented its capabilities
related to our topic.

We analyzed several algorithms and data structures for the purpose of
designing an algorithm. Based on this analysis and on the available tools in
SageMath, an algorithm for the computation of G-defect was designed and
implemented. The presented solution is definitely better than naive and we
are confident that we achieved a sufficient speed up. We believe that our
contribution can help scientists achieve faster progress in their work.

Future Work

We want to include our work into SageMath, namely as a method of the class
representing a finite word. Thus making the code available to all users of
SageMath.

During our investigation we have found a multiple inefficient implementa-
tions of methods in SageMath and several bugs. We want to stay close to the
SageMath community and contribute with the knowledge we gathered over
the period of writing this thesis.
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Appendix A

Python Data Containers

Python provides several general purpose built-in data containers. We intro-
duce them and we discuss their time complexity classes to better decide in
the future whether they suit our needs or not. In all tables below, n is the
total number of items in a described data container. Time complexity of these
containers were described in [1].

A.1 List

A data type list holds a list of items which do not need to be the same type
in a given order. These items are separated by commas and enclosed within
square brackets. A list is indexed from zero to the total number of items minus
one.

Index Example Time complexity

Get Item l[i] O(1)

Set Item l[i] = 1 O(1)

Append l.append(1) O(1)

Length len(l) O(1)

Containment x in l O(n)

Sort l.sort() O(n log n)

Table A.1: Time complexities of selected list operations

A.2 Tuple

A data type tuple can be expressed as a read-only list since items within can-
not be updated. Therefore, time complexities for all their operations are the
same as their list equivalents (Table A.1). Items are enclosed in parentheses.
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A.3 Set

A data type set stores only unique unordered elements.

Index Example Average Case
Amortized
Worst Case

Add Item s.add(0) O(1) O(n)

Containment x in s O(1) O(n)

Table A.2: Time complexities of selected set operations

A.4 Dictionary

A data type dict is an unordered set of key-value pairs with unique keys.
It is implemented using hash tables therefore, keys have to be hashable. A
dictionary is enclosed in curly braces and its values can be accessed using
square braces.

Index Example Average Case
Amortized
Worst Case

Get Item d[k] O(1) O(n)

Store Item d[k] = v O(1) O(n)

Delete Item del d[k] O(1) O(n)

Table A.3: Time complexities of selected dictionary operations

36



Appendix B

Contents of CD

The visualised content of the enclosed media.

src....................................... the directory of source codes
figures................................. the thesis figures directory
*.bib.................the bibliography source code files of the thesis
*.tex....................... the LATEX source code files of the thesis

text..........................................the thesis text directory
thesis.pdf ...................... the Diploma thesis in PDF format

bp guramatu.py............the source code of the implemented solution
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