
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Mechanical Engineering

Department of Instrumentation and Control Engineering

MASTER THESIS

Design and Implementation of Automatic Tests for

Siemens PROFINET IO Development Kit

2017 Bc. Alexandr Osadcii

i

Annotation List

Authors Name: Bc. Alexandr Osadcii

Name of Master’s Thesis: Design and Implementation of Automatic Tests for

Siemens PROFINET IO Development Kit

Year: 2017

Field of study: Instrumentation and Control Engineering

Department: Department of Instrumentation and Control Engineering

Supervisor: doc. Ing. Ivo Bukovský, Ph.D.

Bibliographical data: Number of pages 79

Number of figures 12

Number of tables 11

Number of attachments 2

Keywords: PROFINET, Seimens PROFINET IO Development Kit,

Python Test Automat, automation, testing, Python,

TShark, Lua

ii

Statement

I declare that I have written this thesis independently assuming that the results of the

thesis can also be used at the discretion of the supervisor of the thesis as its co-

author. I also agree with the potential publication of the results of the thesis or its

substantial part, provided I will be listed as the co-author.

In Prague: Signature:

iii

Acknowledgments

Firstly I would like to express great thanks to my parents and my girlfriend for their

support. Also I would like to express great thanks to my coordinator and supervisor

doc. Ing. Ivo Bukovský, Ph.D. for the advices and the remarks, to Siemens s.r.o.

Company, as the thesis ordering party, and to its employees personally: Miroslav

Dušek, Josef Vopička, Jan Roth, Jan Slováček and Jakub Kováč.

iv

Abstract

This master thesis refers to design and implementation of automated testing for

Siemens PROFINET IO Development Kit. The design of the automated testing is

based on the PROFINET communication standard and the Siemens development kit

functionality. The implementation is done by means of the Python programming

language, the Python Test Automat test tool (which manages the test procedure), a

TIA Portal project for S7-1500 CPU 1511-1 and TShark analyzer with integrated

Lua scripts. The functionality of the automated test implementation is being verified

on the real application by a complete test run.

v

Contents
Abbreviations .. 1

1 Introduction .. 3

2 PROFINET Standard .. 5

2.1 PROFINET Architecture ... 6

2.2 PROFINET Application Services .. 7

2.2.1 Devices Types ... 7

2.2.2 Device Model of an IOD .. 8

2.2.3 Application and Communication Relationships 11

2.2.4 AR Establishment and Startup of Cyclic Communication 12

2.2.5 IO Cyclic Data and Data Hold Time .. 17

3 PROFINET IO Development Kit ... 19

3.1 Connectors Layout ... 20

3.2 Flash Types .. 21

3.3 Application Examples.. 22

3.4 Simulated Devices Types .. 22

3.5 Project Builds and Firmware Test Options ... 23

4 PyTeMat ... 25

4.1 PyTeMat Core .. 25

4.1.1 DCP.py Module .. 26

4.1.2 OPCs.py Module ... 27

4.2 Project with Test Case Definition .. 28

4.2.1 TBL Syntax ... 29

4.3 Launching the PyTeMat Test Case .. 31

5 Test Design ... 34

5.1 Firmware Update Automation ... 34

5.2 Startup and IO Data Exchange Verification .. 36

5.3 Properties of the Simulated Device Verification ... 37

vi

5.4 Acyclic Read or Write Responses Handling Verification 38

5.5 IO Cycle and DHT Timer Verification ... 39

5.6 Regression Test Sequence ... 40

6 Expanding the PyTeMat Core .. 42

6.1 DevKit.py Module ... 42

6.1.1 NameGenerator Class ... 42

6.1.2 Terminal Class .. 45

6.1.3 FirmwareUpdate Class .. 46

6.2 pywireshark.py Module ... 47

6.2.1 TShark Application ... 47

6.2.2 Lua Scripts for TShark .. 48

6.2.3 Wireshark Class .. 51

7 Test Implementation ... 53

7.1 Station Configuration .. 53

7.2 TIA Portal Project .. 55

7.3 Lua Scripts Preparation ... 58

7.4 Test Application in PyTeMat .. 59

7.4.1 PyTeMat Hardware Configuration ... 59

7.5 Test Run ... 62

8 Result Analysis ... 65

9 Conclusions .. 67

References ... 69

Annex A .. 70

Annex B... 71

1

Abbreviations

AR Application Relationship

ARP Address Resolution Protocol

ASIC Application-Specific Integrated Circuit

CM Context Manager

CR Communication Relationship

DevKit Development Kit

DBAI Direct Buffer Access Interface

DCP Discovery and basic Configuration Protocol

DHCP Dynamic Host Configuration Protocol

DHT Data Hold Time

EMC Electromagnetic Compatibility

GPIO General-Purpose Input/Output

GSD General Station Description

ID Identifier

IDE Integrated Development Environment

IO Input/Output

IOC IO Controller

IOD IO Device

IOS IO Supervisor

IP Internet Protocol

IRT Isochronous Real Time Protocol

ISO International Organization for Standardization

I&M Identification and Maintenance Profile

MAC Media Access Control

MRP Media Redundancy Protocol

OPC Open Platform Communications

2

OSI Open Systems Interconnection

PLC Programmable Logic Controller

PN PROFINET

PTCP Precision Transparent Clock Protocol

PyTeMat Python Test Automat

RPC Remote Procedure Call

RTA Real Time Protocol Acyclic

RTC Real Time Protocol Cyclic

TBL Test Box Language

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

UUID Universally Unique Identifier

XML Extensible Markup Language

3

1 Introduction

Nowadays our community can’t imagine modern life without all the technologies

that are involved and actively used in almost all spheres of the society. This

improvement of our life and comfort in comparison to our ancestors plays crucial

role in the development of our society and expanding of our knowledge of the world

around us. All this could be possible only after massive industrialization processes

over the world and the following automation of the industries.

This automation is realized by so called PLCs (Programmable Logic Controllers)

that, after their invention, were installed in the main factories and now are widely

used for control of sequential and combinatorial logic in industrial processes [1].

The production of one type of the technology device (and usually one factory may

produce more types of the devices) expects controlling of large amount of

production units. Moreover these units are located around large areas of the

factories. That’s why one PLC with output and input channels is usually not enough

to handle the whole production and several control nodes are installed in the factory

around the area. As the production processes are highly complicated and detailed the

synchronization between the control nodes is a necessity. This requirement is

fulfilled by the means of the distributed control system and fieldbus protocols [2].

Up to date, great amount of the fieldbus protocols exist. The differences between

them depend on the application, on the type of the devices, companies designed the

protocol and even on the continents, where the protocols are spread, among them are

PROFIBUS, Modbus, AS-Interface, CAN, HART, IOLINK, PROFINET,

EtherCAT, EtherNet/IP and so on [2].

Working with new Siemens devices from Digital Factory division you can find more

factory devices functioning on PROFINET protocol and more of them appears on

the market since this communication protocol was invented. As the Siemens

Company tries to extend the functionality of the PROFINET devices according to

the real requirements from the consumers and to equip by them plants all around the

world, more devices are currently being developed based on the PROFINET

fieldbus.

4

The development of such equipment is a highly complicated process and a lot of

problems may take place during it. In order to reduce the problems and provide

completely functional device to the customer, each new device development

requires complex and intensive testing before it can be released to the market. The

defects in some devices may lead to large problems of the plants, to decreasing of

productivity or even to threatening the life and health of the employees. That’s why

verification and validation (or simply testing) of the functionality according to the

standards is an obligatory procedure, which expects high attention and responsibility

from the testing person. As the result, the producer of the developed devices

guarantees the customer, that the plant devices are fully functional and complies

with all the requirements.

One of the aims of recent engineers involved in testing is including of as much

automation in the procedure as it is possible. Not only the automation saves human

and time resources, but also provides more reliable results.

That’s why design and implementation of automatic tests is the topic concerned

within the framework of the thesis. This automation is done for testing Siemens

development kit based on ERTEC 200P for PROFINET IO.

The objective of this thesis was to design an automated method and to implement

automated testing for the development kit functionality based on PROFINET

standard communication. At the beginning, I investigated the basis of PROFINET

IO standard. Then I familiarized with the development kit and its main tasks and

features. In the next step I studied open source program PyTeMat (Python Test

Automat), created in Prague Siemens inside Corporate Technology division and

based on object-oriented programming with Python language. Based on this

knowledge, I designed test cases that compose part of regression test process

required. During the design of some test cases, I expanded the core of PyTeMat with

two modules. One of them manages communication via serial port with the

development kit. Another handles capturing Ethernet network communication by

means of network protocol analyzer - “TShark”. For solid testing, I needed some

additional hardware equipment, including PLC supporting current version of

PROFINET IO standard. As the development kit under the test is considered as a

unit of a PROFINET station, I created a project for the PLC, which covers the needs

of the test cases. At the end I implemented the whole test process designed by

Python programming language in PyTeMat. The results from the performed tests

were analyzed and some retests were done as needed.

5

2 PROFINET Standard

According to source [3], “PROFINET (pitch acronym for Process Field Net) is an

industry technical standard for data communication over Industrial Ethernet,

designed for collecting data from, and controlling, equipment in the industrial

systems, with a particular strength in delivering data under tight time constraints”.

This standard is created and currently being maintained by Profibus & Profinet

International Organization. Primarily PROFINET was created as a real time

Ethernet application for automation. As the working group declares in source [4],

this application “can be implemented for production and process automation, safety

applications, and the entire range of drive technology up to and including

isochronous motion control applications.”

As the main advantages of this communication standard they offer:

- Highly scalable architectures.

- Access to field devices over the network.

- Maintenance and servicing from anywhere (even over the internet).

- Lower costs for production/quality data monitoring. [5]

This standard is still being developed and new functions are being added to it. And

due to all this we can say, that PROFINET can be optimally used in all spheres of

automation engineering.

6

2.1 PROFINET Architecture

The whole PROFINET concept is based on Industrial Ethernet, as this standard

provides robust cabling and EMC immunity, and Ethernet standard according to

IEEE 802 in IEC 61158 at the fieldbus level, which enables transfer of process data

in real-time communication [2].

Referencing to the ISO/OSI layer model, the PROFINET protocol can be

determined by physical (Layer 1), data link (Layer 2), network (Layer 3), transport

(Layer 4) and application (Layer 7) layers (see Figure 1).

Figure 1: PROFINET ISO/OSI model

Physical layer and data link layers for PROFINET are specified by Ethernet

standard with some concrete definitions [6].

Every PROFINET device has integrated switch technology inside. That enables

switch-based network infrastructure with all types of topologies (star, ring, tree and

line). Nevertheless, it establishes some mandatory requirements for the ports on the

devices. Among them are those as follows:

1. Twisted pair STP and UTP 5e+ are allowed as copper cables.

2. RJ45 and M12 connectors on the copper cables.

3. The switch ports shall support 100BASE-TX form of Fast Ethernet with full

duplicity and automatic crossover functionality.

4. The ports shall support auto negotiation for 10 Mbps speed.

5. Delay time of the port shall be under 10 µs.

7

As PROFINET supports various applications, which will be described later, the

standard includes various protocols. These protocols use different methods of

addressing: some of them are MAC-based addressing (Layer 2 communication) and

others are IP-based addressing (Layer 3 communication).

These applications are distributed as follows:

1. MAC or Layer 2 addressing:

a. PROFINET IO communication (in other words, process data), for

example RT and IRT (RTC class 1 and 3)

b. Some PROFINET services, for example DCP (for setting and

requesting devices’ names and IP addresses)

2. IP or Layer 3 addressing:

a. Other PROFINET services, for instance SNMP protocol for providing

information about the device, RPC protocol allowing read/write

services for devices’ parameterization or reading and writing other

data objects (PNIO-CM), or RTA protocol used for alarm handling

The definition of the application layer with its services for PROFINET is more

complicated and requires plenty of details. Therefore main and crucial part of the

application services are described in the following chapters.

2.2 PROFINET Application Services

2.2.1 Devices Types

Information from this subchapter is adapted from source [6]. The typical plant

automation system is usually based on one or several PLCs that are connected to the

process units by means of the IO system. This IO system is defined as a version of a

hierarchical decentralized system and may consists of smaller subsystems. At the

same time this system and its subsystems are composed from 3 types of devices: IO

controllers (IOC), IO supervisors (IOS) and IO devices (IOD). Therefore the whole

concept is called PROFINET IO. Each type of the device has its own features,

functionalities and associations with other devices. Some of these features may be

common for several types of devices. In PROFINET IO there are defined cyclic,

acyclic and general functionalities, which may be obtained by the devices.

a) IO controller (IOC) defines a device that controls the main automation

processes performing all three types of functionalities. This device can be

8

associated with IO devices either one or several. The number of associated

devices is usually limited by the PROFINET application. The main

functionalities of IOC are:

 Cyclic – exchange of process data (or IO data) with connected IODs;

 Acyclic – parameterization and configuration of IODs, read and write

access to IOD’s record data, sending alarms to and treatment of alarms

from IODs;

 General – manages different PROFINET applications such as system

redundancy or isochronous operation, which require for example clock

synchronization.

b) IO supervisor (IOS) defines a device that manages reading and providing of

configuration, parameterization and diagnosis data from IOCs and IODs that

are associated with the IOS, and for them.

c) IO device (IOD) defines a field device that is able to perform activities based

on functionalities of all three types:

 Cyclic – exchange of process data (or IO data) with connected IOC,

either one or several depending of the class of the IOD;

 Acyclic – processing parameterization and configuration requests from

IOC, providing record and diagnosis data to IOC and IOS, sending

alarms to IOC;

 General – manages different PROFINET applications such as system

redundancy or isochronous operation, which require for example clock

synchronization.

As an easy definition, IOC is typically a PLC which runs the automation program

inside itself and can be compared to PROFIBUS master of class1. IOC provides

output data to the IODs and consumes input data from IODs. IOS can be compared

to PROFIBUS master of class 2 and be represented as programming, personal

computer, human machine interface. And IOD is represented by a field device

connected to IOCs and can be compared to PROFIBUS slave. IOD provides input

process data and consumes output data from the IOCs. [4]

2.2.2 Device Model of an IOD

The IOD itself is composed of different units that represent real hardware or virtual

functional components. Together they create hierarchical internal model of the

device that can be described as follows:

- IOD contains

9

- one or more modules, which contain

- one or more submodules, which may contain

- quantity of channels [6]

Each level of this model is represented with an address which allows designation of

service endpoints, according to the following address attributes:

- one IOD instance with application process identifier, which contain

- one or more slots, which contain

- one or more subslots, which may contain

- quantity of channel numbers [6]

Every instance is identified by an instance number in form of UUID and obtains one

or more application process identifiers (API). Each Module is addressed by a slot

number in range of 0 to 0x7FFF. Each submodule is addresses by a subslot number

in range of 0 to 0x9FFF. Starting from this level of the structure record data

(parameterization, identification and maintenance, diagnosis data), IO data

(summered from channels) and alarms are handled. This means, that objects related

to acyclic communication shall be addressed at least by UUID, API, slot number and

subslot number on the application layer. In different cases some objects may be

specified with additional channel number, when the object relates to a concrete

channel. So each channel is addressed by a channel number in range of 0 to 0x7FFF

and may provide some record data, IO data and diagnosis. [6], [7]

Cyclic communication that handles IO data exchange relates to a separate protocol

and addressing in this case is realized in a different way.

In order to make this entire concept clear, I provide an example of a typical IOD

describing its internal structure with addressing numbers. For this purpose I’ve

chosen an IOD, which is used in my testing station as a partner device to the

development kit under the test. This device is represented by ET200SP station

combined of IM155-6 PN HF interface module, one output module, one input

module and one terminate or server module (Figure 2).

10

Figure 2: ET200SP station picture from TIA portal engineering tool

In Figure 2, we can see a picture of the ET200SP station configured in TIA portal

engineering tool. The numbers above the blue device represent slot numbers starting

from 0 and up to 65. This means, that this interface module supports 64 additional

modules plugged into this single station. The interface module itself is placed in slot

number 0. As we can see, it has 2 Ethernet ports. Then a module with output

channels follows placed on slot 1. One module with input channels is placed in slot

1. And the station is terminated by a server module without any channels in slot 3.

As the result, Figure 2 shows the module structure of the IOD with addresses of the

slots.

According to the definition above, each module shall contain at least one submodule

and slot shall contain at least one subslot. That can be partially seen in Figure 3,

where a device overview of the station is provided by the TIA portal tool.

The first module called “IOD-partner”, which is the project name of the device, is

then divided into 4 lines with the same slot number 0. These lines represent

submodules. In the first line, there is placed the device access point (DAP)

submodule with subslot number address that is usually equal to 0x1. In the second

line, there is a PROFINET interface submodule X1 with subslot number address that

is usually equal to 0x8000. After that, two port submodules (P1 and P2) are placed

in the following subslots. As they follow after the interface submodule, their subslot

numbers are usually equal to 0x8001 and 0x8002 respectively.

Output, input and server modules have only one submodule each, and therefore each

slot has one subslot and the subslot has usually number 0x1.

11

The real slot and subslot numbers are defined by device’s GSD file, which is a XML

file with complete description of the device, designed to make complete

parameterization and configuration possible by any engineering tool [7].

Figure 3: ET200SP device overview from TIA portal engineering tool

In our case, for example, if we need to read some parameters from the interface

submodule, the addressing of this application service would include UUID and API

of the application relationship (this term will be explained in the following

chapters), slot 0x0, subslot 0x8000. The address within the parameters read request

for the server module would consist of the following elements: UUID and API of

the application relationship, slot 0x3, subslot 0x1.

As the result instead of one endpoint for addressing while performing any action

supported by the application functionality, we have a plenty of end points. At the

first sight it may seems as a superfluous complication, but in the real application this

structure makes handling and maintenance of the PROFINET station much easier.

2.2.3 Application and Communication Relationships

In order to establish PROFINET based communication between IOC, IOS and IOD

an application relationship (AR) should be established. PROFINET standard

distinguishes four types of AR: IO AR, Supervisor AR, Device access AR, Implicit

AR. [6]

IO AR provides all the capabilities for regular communication between IOC and

IOD. These capabilities are similar to channels for cyclic IO data exchange, acyclic

data exchange for reading and writing record data explicitly and transmission of

alarm data. Each of these channels can be considered as a separate communication

relationship and they are set up simultaneously. The entire concept of AR and CRs

is schematically figured in Figure 4.

12

Other types of AR are not essential for the tests described in this thesis, therefore

their description is omitted and can be found in [6].

Figure 4: Application and communication relationships (adapted and modified from [4])

An IO controller is able to establish AR with a number of IO devices running

simultaneously.

At the same time PROFINET supports multiple IO controller systems. For this case

there are some special applications for accessing the same data in the IO device by

several IO controllers. These applications are called shared device and shared inputs.

2.2.4 AR Establishment and Startup of Cyclic Communication

One of the most significant parts of the processes involved in AR and CR is their

establishment. This procedure then is followed by startup of cyclic communication,

which is the main point of the PROFINET communication. Successfully established

AR with CRs and startup mean that the IO controller and IO device are configured

correctly and the parameters correspond to the application supported by the devices.

That’s why testing the AR establishment and startup sequence is one of the basic

test cases composing the whole test scenario.

The startup sequence is schematically shown in the sequence graph on Figure A.1

from Annex A.

Several types of protocols that define main phases of the process are involved.

Firstly the IO controller or the IO supervisor searches the target device by means of

device name or NameOfStation. This name shall be preset to the device manually

and correspond to the name in the project uploaded to the IOC/IOS. Setting the

NameOfStation and correct configuration in the project should be enough for the

13

IOC/IOS to specify configured devices on the network and complete AR

establishment and startup procedure with them.

Setting or getting the NameOfStation is handled by Discovery and basic

Configuration Protocol (DCP). This protocol is MAC address (Layer 2) based. So in

order to find a specified device IOC/IOS sends an identification request to the

predefined multicast address with the target NameOfStation. The device with

appropriate NameOfStation shall respond to the request. The response contains

current IP suite (IP address, Subnet mask and Gateway) of the device, its VendorID,

DeviceID, which are crucial for the AR establishment, and some other informative

data. If the VendorID and DeviceID correspond to the configured in the project,

IOC/IOS stores the MAC address from the response and assigns it to the existing

NameOfStation. Then it compares IP suite from the project with IP suite from the

response. In case of some differences, IOC/IOS sends a Set request with the IP suite

configured in the project and the IO device shall accept it by a response with “Set

Ok” acknowledgement. From this point the IO device is ready for the start of AR

establishment.

By the way, the setting of NameOfStation is handled by the DCP protocol as well.

For that so called DCP browsers are used, which are usually integrated into

engineering tools and allow manual setting not only of NameOfStation but of IP

suite too.

This phase can be observed in Figure 5 in frames no. 1 - 4. On the Figure is shown a

screenshot from Wireshark program designed for decoding and displaying the

packets (aka frames) on the Ethernet network.

According to source [5], communication that is based on IP suite requires support of

address resolution protocol (ARP). This is necessary for translation between IP and

MAC addresses. ARP uses its cache to minimize number of requests for address

translation on the network. This cache is divided into static (with unlimited lifetime)

and dynamic (with “aged” type) entries. As IOD and IOC can’t change their

addresses in the framework of one established AR, static type of ARP cache is used.

Therefore after the phase of DCP, IOC/IOS sends ARP request with the same IP

address that is used in DCP. The IOD shall respond to the request (see Figure 5,

frames no. 5, 6). From this moment IOC/IOS is ready for AR establishment too.

The static entry related to the AR shall be kept while the AR is active and shall be

removed after AR abortion or release.

14

The AR establishment itself is handled by configuration and parameterization of the

configured modules and submodules. This procedure is realized by acyclic requests

and responses via remote procedure call protocol (RPC), which is IP address (Layer

3) based.

Figure 5: Startup sequence displayed in Wireshark

The AR establishment itself starts with Connect request from IOC/IOS to IOD (see

Figure 5, frame no. 7). The request carries several blocks with configuration of the

future AR and CRs. The first one is AR block, which contains for example AR

UUID used for acyclic record data handling, AR properties that define mode and

type of the AR and other information.

Then IO CR blocks follow, usually one for Input data and one for Output. In these

IO CR blocks there are defined length of the data, unique frame ID for the CR, IO

cycle time interval and layout of the IO data itself in the data packets.

Expected Submodule blocks follow after that. Each block represents one module

including its submodules and definition of their types, identification numbers and

slot/subslot numbers.

In our case the Connect request block is finished with Alarm CR block that defines

some configuration of alarm handling between the IOC/IOS and IOD.

All the data used in the Connect request is taken over from the configuration in the

project that is uploaded to the IOC/IOS.

15

According to source [8], Connect request frame may contain other blocks with

additional information according to the configuration and application used for the

station.

After sending the request the IO devices related to the AR may start sending IO

data, but without processing the data of the provider (see Figure 5, frames no. 8 –

10, 13 – 19 and so on).

Meanwhile the IO device receives the request and starts to process it. If the

configuration data within the request is valid, corresponds to the real configuration

and supported application, the IOD sends the response (see Figure 5, frame no. 11).

This response contains some additional information required from IOD for AR and

CR establishment, for example Frame ID for Input CR. In case, if there are some

discrepancy between the expected configuration and the real one, the device adds

ModuleDiffBlock to the response with the specification of the problem inside. For

example the software version of IOD may be outdated and it will be mentioned in

the ModuleDiffBlock. This discrepancy isn’t crucial for the AR and CR, as some

versions are compatible and may substitute each other.

From this moment we can consider the AR and the CRs established.

In the next step, IOC/IOS starts parameterization of the IO device by sending Write

requests containing the data (see Figure 5, frame no. 12). The parameterization is

done based on special parameters taken from the GSD file of the device, common

parameters in the project related to the specific type of submodules and applications

supported by PROFINET. The acyclic Write requests (and Read requests as well)

are handled by RPC protocol. The parameterization or other data are packed into

blocks according to its type. The type is specified by Index number according to

PROFINET application protocol. Each of the data blocks relates to the specific

submodule and is addressed according to the model described in 2.2.2. Writing can

be done to a several submodules in one frame, but reading shall always address to a

single submodule.

For example, we can deactivate one of the ports on the device in the engineering

tool; let’s say it would be Port 1. After uploading the project to IO controller and

observing the parameterization of IO device, we will be able to find

PDPortDataAdjust block addressed to Slot 0x0, Subslot 0x8001 with the

deactivation parameter. Parameterization of Port 2 will be sent in a separate

PDPortDataAdjust block addressed to Slot 0x0, Subslot 0x8002.

16

In order to realize the complete parameterization, these blocks can be sent in one

Write request frame, several frames, or separately – one for each parameterization

block.

The IO device shall respond to the Write requests with Write responses and

acknowledge every parameter block within it (see Figure 5, frame no. 20). In case, if

some of the parameter blocks are wrong or not supported, the device rejects this

block with an appropriate Error entry related to the concrete parameterization block.

The end of parameterization phase is signaled by IOC/IOS. When all the Write

responses to all requests are received, the IOC/IOS sends Control request with

ParameterEnd control command (see Figure 5, frame no. 22). The IO device

responds to request after the received parameterization is processed inside the device

(see Figure 5, frame no. 28).

The final phase of the startup is executed by the IO device. When the device is

completely prepared for the configured application, it sends Control request with

ApplicationReady control command (see Figure 5, frame no. 30). And after the IOC

responds to the request (see Figure 5, frame no. 31). Only from this moment both

devices shall switch over IO cyclic data frames from idle data to real data.

But if some mismatches in the configuration of AR and CRs or parameterization of

the device took place, the Control request with ApplicationReady will contain

ModuleDiffBlock with the description of the mismatch. In case of problems crucial

for common IO cyclic data exchange, the data will set its status as “Problem” and

the exchange of real data is impossible on these terms until the problem is fixed. But

in some cases the mismatch is not a problem for the data exchange, for example the

firmware version mismatch or some diagnosis occurred during parameterization that

has no influence on the IO cyclic data exchange. Anyway, this block informs about

some either small or big problem in the configuration or parameterization that is

good to be fixed in order to insure complete functionality of the application as

expected.

The acceptation of the Connect request and the presence of the ModuleDiffBlock in

Control request play the key role in the test cases that I’ve designed for testing the

AR establishment.

17

2.2.5 IO Cyclic Data and Data Hold Time

As it was mentioned in the previous chapter, after the startup procedure is completed

the cyclic IO data exchange between IOC and IOD in the framework of IO CR

established.

This data exchange is handled by Real Time Cyclic (RTC) protocol. In case of

simple real-time (RT) communication this protocol is related to class 1 RTC

protocol (RTC1). The PROFINET standard defines RTC class 3 (RTC3) as well,

which handles isochronous real-time communication (IRT). In this thesis RTC class

1 will be discussed only.

RTC protocol itself is MAC address (Layer 2) based. In order to provide as fast

communication as possible the frames of this protocol contain minimum

information, most needed only. With this approach the minimal size of the frames is

reached for transporting the data.

Besides the source and destination MAC addresses, the RTC frame consists of:

- FrameID according to the Connect request and response

- so called Provider and Consumer status one byte for each submodule

- the IO data itself

- internal cycle counter

- data status

- and transfer status

The data status is represented by one byte. Bits within the byte define the validity of

the data, state of the provider and state of the application. Transfer status represented

by one byte too informs about the transferring problems, such as wrong length of the

frame, buffer overflow or wrong checksum.

Therefore checking the value of the data and transfer status bytes is essential for

verification of correct communication process.

Another important PROFINET standard feature related to the cyclic data exchange

is the time intervals between the provider’s data frames and so call data hold timer.

According to the standard each data frame shall be sent in a fixed time intervals

(some insignificant errors in these intervals are allowed according to the certification

test case description for the PROFINET IO devices [9]).

The intervals or send cycles are defined in IO CR blocks of Connect request by

SendClockFactor and RedactionRatio values. These values shall correspond to the

18

supported values issued in the GSD file of the device and can be configured in the

engineering tool for each device.

Then the send cycle is calculated according to the equation 1:

SendCycle = SendClock × RedactionRatio × 31.25µs (1)

So called Data Hold Time (DHT) timer is related to the SendCycle value directly.

This timer is responsible for detecting defects in the cycles of data exchange (some

kind of watchdog). The DHT timer is executed with each provided data frame. If

there are some problems on the network or in the devices and the last data frame is

left without the response from the consumer (in the form of consumers data frame

with the valid data), the provider shall resend his last data frame with no changes

inside. In this case the DHT timer is not reset. As the result this repetition of the last

frame shall last until the timer expires. After that the AR shall be aborted and the

appropriate alarm is sent to the consumer informing about the abortion by means of

the acyclic communication. [8]

The value of the timer can be set while configuration in the engineering tool by

DataHoldFactor. This configuration value is sent to the IO device during AR

establishment within the IO CR blocks.

The DHT timer itself is calculated according to the equation 2:

DataHoldTime = DataHoldFactor × SendClock (2)

Testing of DHT timer in the framework of regression tests is important for ensuring

the capability of the device under the test to abort the AR, watch the cycles of data

exchange and providing of the errors.

19

3 PROFINET IO Development Kit

In order to simplify the developing and testing processes for PROFINET devices

Siemens AG provides a development kit (DevKit). This kit is based on ERTEC

200P ASIC designed for PROFINET communication performance and assists in

developing of both hardware and software of the PROFINET devices. [10]

Figure 6: Development kit board with connections RJ45, Power supply and Terminal console [10]

Together with the hardware in the form of evaluation board (see Figure 6), the

PROFINET IO stack with user examples are provided to the customer. This stack

contains not only basic PROFINET IO functionalities but some special

functionalities of the standard as well, such as Fast Startup, Shared Device and

Media Redundancy (the description of the functionalities can be found in source

[6]).

A user may choose one of the examples by changing the values of some variables

from the stack source code. After compiling the source code and downloading it to

the board, the development kit starts to behave as a PROFINET IO device. As it has

no real slots for Input and Output modules, they are simulated and can be configured

in the engineering tool. After the AR establishment with IO controller, the

development kit as an IO device performs regular data exchange according to the

configuration and other supported applications.

The GSD file with prepared user examples is provided as well.

20

3.1 Connectors Layout

The development kit has a number of connectors of different types designed for

various purposes. The overview of their designation and location on the board is in

Figure 7.

Figure 7: Overview of DevKit connectors [10]

The connectors which are significant for test performance are mentioned in Table 1.

Connector X1 has 4 Ethernet RJ45 ports, two of them are designed for PROFINET

communication, two others have integrated TAP functionality but only for outgoing

packets [11]. The development kit also exists in another hardware assembly with

two Ethernet plastic fiber optic connectors instead of four RJ45 ports.

Connector X10 is a 2-pin industry plug-in for external 24VDC power supply. The

kit can be connected to a PCI slot and doesn’t require external power supply.

Table 1: DevKit connectors description

Name Type Role

X1 RJ45 socket Ethernet and TAP interface

X10 2-pin industry plug-in External DC power supply

X11 USB Mini-B connector USB UART

X20 38-pin Mictor connectors GPIO

X40 2x10 pin plug connector Configuration pins for ERTEC 200P

X42 2x10 pin plug connector Configuration pins for onboard circuits

Connector X11 is a USB Mini-B connector for UART communication with the user

interface program. This program manages some operations for simulating the IO

21

device, for example triggering alarms, or some system functions, for example

firmware update via TCP communication or changing MAC address. The user

interface is operated via terminal console.

Connector X20 is used for plugging in external flash memory of SPI type.

The activating of different flash memory types is handled by connecting appropriate

pins on X40 connector. The firmware is booted from the selected flash memory after

the device’s reset.

Connector X42 manages configuration of the boot mode. There are the following the

modes available: enabling of synchronization signal for IRT communication,

enabling of trace, enabling of user GPIOs, of UART port is significant for the tests

and some others. Enabling of user GPIOs and UART port I consider as a default

boot mode and the following tests are performed with this configuration. [11]

Other connectors that are displayed in Figure 7 are not used during the tests.

3.2 Flash Types

The DevKit can boot firmware from different flash memories:

- NOR flash 16 bits

- NOR flash 32 bits

- SPI flash [10]

The selection of the source memory is managed by the pins of connector X40. For

use of NOR 32 bits flash all the pins shall be open, for use of SPI 32 flash pins 5-6

shall be closed (connected with the jumper). [11]

16 bits and 32 bits flash memory types require different firmware compilation

according to the bits number. For booting from SPI flash the appropriate flash

memory shall be plugged in connector socket X20.

In the framework of this thesis, these two types of flash memory are tested only,

NOR 16 bits is omitted.

22

3.3 Application Examples

The software part for the DevKit consists of several application examples. These

examples are implemented into provided PROFINET stack and are used for

adaptation of the PROFINET to a wider range of requirements during the

development. To use them, firstly the source code from the stack should be

compiled with the required application example selected. The selecting is done by

changing the value of the appropriate variable.

There exist three applications as templates for improving according to the

requirement:

- Application 1 Standard

- Application 2 DBAI

- Application 3 IsoApp

Each of them supports basic PROFINET application for IO device, such as cyclic IO

data exchange, acyclic services for startup, reading/writing records and alarm

handling. All application examples support RT and IRT communication

functionality. The differences of the examples lie in the properties of some

application service and system performances.

Application 1 Standard can be used as a simple and universal example for fast

implementation of standard PROFINET interface. This application example uses

module/submodule-oriented view onto the cyclic IO data and may not know about

the ARs and IOCRs.

Application 2 DBAI (Direct Buffer Access Interface) has some advantages

compared to Application 1 in case if large number of modules and submodules is

configured. The application example uses IOCR-oriented view onto the cyclic IO

data and the application is capable to manage the ARs and IOCRs.

Application 3 IsoAppl uses the same access method to cyclic IO data as Application

1, but in addition this example requires input/output modules supporting IRT

application.

3.4 Simulated Devices Types

Not only application examples can be selected by the changes in values of the source

code variables, types of simulated IO devices can be selected too. The current GSD

23

file (GSDML-V2.32-Siemens-ERTEC200pEvalkit-20161027.xml) presents six

types of the IO devices. Four of them relate to the RJ45 connector assembly and two

of them relate to the POF connector assembly. Their IDs and key functional

differences issued in GSD file are described in Table 2.

DAP1 example simulates device with no Interface and Port submodules available to

be involved in an AR. Therefore the functions are not specified. But Input and

Output modules can be configured and support cyclic IO data exchange. As my tests

are focus on testing of Interface and Port submodules as well, test configuration with

this type of the device is omitted.

Table 2: Simulated device DAPs

ID Ports MRP functionality
1

DAP1 Not specified Not supported

DAP2 2 RJ45 Not supported

DAP3 2 RJ45 Supported

DAP4 1 RJ45 Not supported

DAP5 1 POF Not supported

DAP6 2 POF Not supported

Also my regression tests in the framework of the thesis are focused on the DevKit

with RJ45 connector assembly only. Therefore testing of DAP5 and 6 is omitted too.

3.5 Project Builds and Firmware Test Options

As was mentioned in the previous chapters, the intervention into PROFINET stack

source code is needed. It’s possible to select one of the options “application + device

type” by changing values of some variables. But selecting of required flash type (16

bits or 32bits) is done by choosing appropriate project build.

Eclipse IDE is provided with the PROFINET stack and ready project builds can be

imported into the IDE. There are four types of the project builds:

- 16 bits on native operating system

- 16 bits on Posix operating system

- 32 bits on native operating system

1
 MRP (Media Redundancy Protocol) functionality – functionality suitable to most Industrial Ethernet

applications. [12] As ring topology in Ethernet network may cause so called broadcast storm and
drop the communication, this protocol was designed to prevent this error by virtual disabling of one
the ports on MRP manager device. This functionality is supported by PROFINET standard as well.

24

- 32 bits on Posix operating system

Each of the flash types shall support booting the firmware with both operating

systems available (native, Posix).

As the focus of test scenarios is on 32 bits flash memories only, the 16 bits project

builds of the firmware are omitted.

After the building the project and setting the values of the appropriate variables

according to the DAP device type required the firmware can be compiled. (Detailed

guideline of selecting, building of the project and setting the application example is

available in source [10].)

The successfully compiled firmware can be downloaded to the appropriate flash of

the DevKit. After resetting the device, the DevKit shall boot the firmware and

simulate the device that was configured in the source code before the compilation.

Downloading the firmware is possible by two methods. The first one by means of

Olimex JTAG debugger (details are in [10]), the second one is via Ethernet

connection directly (by means of TCP protocol). The second method is much faster

and requires the use of user interface. Therefore I focus on this method while test

design, as it reduces the time of test performance and involves testing of user

interface communication simultaneously.

25

4 PyTeMat

PyTeMat (acronym for Python Test Automat) is an open source program designed

in by employers from Siemens s.r.o Corporate Technology division located in

Prague. Currently this program is in active development and new functionalities are

being added. The program has no graphical user interface and is executed from the

command line.

PyTeMat is a Python programming language based and object-oriented

methodology of programming. Currently is used for test automation of PROFINET

and Ethern/IP devices in Siemens Corporate Technology in Prague.

This program is designed to process special TBL (Test Box Language) syntax based

on Python and designed for PyTeMat. This language allows easy implementation of

test sequences without repeating the code responsible for step performances and

result analysis. Also this program provides automatic collecting and filtering of the

results in form of *.txt file.

4.1 PyTeMat Core

The core of PyTeMat consists of two folders.

The first one is System folder. System folder contains codes responsible for basic

PyTeMat functionality. The entry point to the PyTeMat itself is PyTeMat.py script,

which should be executed for launching the program. Other significant script is

Core.py. This script handles the execution of preprocessing of the test script written

TBL and merging the parts of the processed code final executable script.

Preprocessor.py Python module located in the System folder is responsible for

checking the TBL syntax and replacing the key words with prepared Python code.

LogStream.py Python module together with Loggers.py, Enums.py and Filter.py

modules handles the logging of the test step results.

The second folder is PyModules folder. This folder contains Python modules for

handling the structure of devices involved in the test. For some classes of the

devices managing of some their functions is implemented. The basic properties of

the device instance are defined by calling Dev_Struct.py module. Each device

separately can be defined inside the Dev_Struct.py by selecting device class. In this

case appropriate module is called for adding some specific properties and attributes

26

distinctive for the class, for example PN_Devices.py for PROFINET devices or

EIP_Devices.py for Ethernet/IP devices. Among the modules managing the

functionality of the specified devices and the system itself, there are:

- DCP.py module for setting/getting NameOfStation and IP suite to/from

the devices defined in the PyTeMat project;

- OPC.py module as an interface between PyTeMat application and OPC

server;

- RPC.py module for sending Implicit acyclic Read/Write record requests

directly by the PyTeMat application;

- Step7.py module for managing Simatic Controller modes and uploading

and downloading projects to it;

- And other modules.

For my test scenario only two functional Python modules are used: DCP.py and

OPCs.py.

4.1.1 DCP.py Module

While creating a project and configuring any devices in PyTeMat an instance of

Interface class from DCP.py module is automatically created. The name of network

interface on the PC running PyTeMat is defined by the NetworkConnectionName

attribute in LocalSttings.py module. The DCP packets with selected function are

handled by this network interface.

The Interface class from DCP.py module defines several methods corresponding to

the DCP protocol functionality. First method is called Browse. Calling this method

sends multicast DCP Identification request to all devices on the network. The device

shall respond to it according to the specification. The method returns a collection of

the devices responded to the request. The collection includes NameOfStation, IP

suites and MAC addresses of the devices.

Two other methods are used in the test implementation from the Interface class.

SetDeviceName method is one of them. This method handles setting of the

NameOfStation to the device addressed by MAC. The mandatory input parameters

of the method are: mac – the destination MAC address in string format and

devName – NameOfStation to be set on the device in string format. Optional input

parameter is permanent, which is of Boolean type and is set to True by the default.

This parameter defines, if the required NameOfStation should be set as permanent

27

name or temporary one (in case permanent is False). If the permanent value is True,

then the NameOfStation will be kept even after resetting the device until new

NameOfStation set request is received. Otherwise, after resetting the device by

switching the power supply off and on, the NameOfStation is reset to empty string.

The SetDeviceName method returns None value.

Another method is called SetIP. This method handles setting of IP suite to the

addressed device by means of DCP set request. The mandatory input parameters are:

mac – the destination MAC address; ipAddr – the IP address that should be set;

mask – the Subnet mask that should be set; gate – the Gateway that should be set.

All these parameters are in the string format. The same as SetDeviceName method,

the SetIP method has optional input parameter permanent. This parameter has the

same format and purpose as in the SetDeviceName method. The SetIP method

returns None value.

The Interface class of DCP.py module contains other methods that correspond to the

DCP protocol functionality, but they are not used in my tests, therefore their

description is omitted.

4.1.2 OPCs.py Module

The OPCs.py module is designed for interconnecting of the OPC server tool and the

PyTeMat application. The module contains classes, which handles different OPC

servers according to the device connected with the server. There are integrated

classes that represent OPC for Allen-Bradley ControlLogix System, for Siemens

Sinamics class of devices and for Siemens Simatic class. As the devices involved in

the tests are Simatic class only, the OPC for Simatic devices is used only.

The class for OPC managing Simatic devices in PyTeMat is called SimaticOPC. The

class is a descendant of class client from OpenOPC.py module that is freely shared

in the internet.

Definition of a SimaticOPC instance shall be called explicitly. After instance

definition, OPCServerName and OPCTopicName parameters should be specified

according to the real OPC server.

SimaticOPC class contains four methods that handle basic functionality related to an

OPC server.

28

The connection to the specified server can be established by calling ProjectOnline

method. No input parameters are required for the method. The method returns either

True value, if the connection secedes, or None, if the connection fails.

The disconnection of the OPC server is handled by ProjectOffline method. Similar

to ProjectOnline, the ProjectOffline method requires no input parameters and

returns None value in case of failed disconnection. If the disconnection is done

without errors, the method returns integer value 1.

For reading the controller addresses OPCRead method is used. The input parameter

to the method is the symbolic name of the required address (Symbol). The method

returns the value of the Symbol in the format according to the value stored in the

controller address. If some problem occurred while reading, the method returns

empty string.

Writing to the controller addresses is handled by OPCWrite method. This method

requires two input parameters: Symbol – symbolic name of the address; Value – the

value that should be written. The method does not return any values.

4.2 Project with Test Case Definition

The test cases itself are stored separately, in my case in directory Tests. For each

project it’s better to create separate folder in the directory, where number of test

cases can be kept. The folder of a single project contains directory HWconfigs for

hardware configuration files for PyTeMat application and directory TC for test case

design.

The HWconfig directory contains Python source files for description of the hardware

configuration of the test environment. Each file describes one hardware

configuration with instances of the devices that are involved in the test process and

can be managed or checked by PyTeMat application. The IP suite, MAC addresses,

topology of the network, PGPC settings and other parameters are defined in the

source file as needed.

The test case description within TC directory is divided into three directories: prm,

run and src.

The prm directory contains files with *.ptm suffix defining test parameters. The test

parameters can be represented by global variables that define for example time

intervals for execution of separate test steps or number of tries of the steps.

29

The run directory contains files with *.ptc suffix defining the complete test scenario

each one. The test scenarios within the run file has a specified structure that shall be

kept. Firstly the hardware configuration file used for the test scenario is selected.

HWconfig keyword foregoes the path with the hardware configuration file name.

Then definition of the directories with test case source files and parameter files

follows. The keywords for them are PrefixTCS and PrefixPRM respectively. And at

the end the list of test case source files executed with the parameter files are

specified in form of: Testcase <source file> PRM <parameter file>.

In my case of implementation of test for the development kit the content of the run

file (DevKit_Automat.ptc) look as follows:

The last src directory contains the source files defining the test sequence in the

framework of one test case. The files have *.ptm suffix and are written in TBL. The

TBL detailed description is in chapter 4.2.1.

The launching of the test case is described in chapter 4.3.

4.2.1 TBL Syntax

The Test Box Language (TBL) is the language designed for PyTeMat and consists

of special keywords that represent structure of test case and test performance

processing.

Each test case file in src directory shall contain at least four keywords. They are:

- TESTCASE(“<test case name>“):

o introduces new test case

o can be use only once in a test case file

o the following block contains complete test case procedure build

from STEP blocks

- STEP(“<step name>“):

o introduces new step within the test case

o next keyword shall be CRITERION

- CRITERION(<criterion>):

HWconfig Tests\DP_DEVKIT_TESTS\HWconfigs\DevKit_Automat_rack.py

PrefixTCS Tests\DP_DEVKIT_TESTS\TC\src\

PrefixPRM Tests\DP_DEVKIT_TESTS\TC\prm\

Testcase TC_DevKit_Automat.ptm PRM PRM_DevKit_Automat.ptm

30

o as criterion there should be a variable that python evaluate as

condition

o keyword has to be followed by UNTIL

- UNTIL(reached_in = <number> remains_for = <number>):

o terminates the step

o code in forgoing CRITERION block is executed cyclically while

the criterion isn’t evaluated as True

o argument readched_in specifies time for reaching the criterion in

seconds

o argument remains_for specifies time in sec for how long the

criterion have to be fulfilled for passing the step

Besides mandatory keywords TBL supports some optional words as well. The

optional keywords used in my test implementation are:

- INITIALIZATION:

o is used as test case initialization - the following block of code is

executed before test case section

o is the keyword is used, it should be the first keyword in the source

file

- FINALLY:

o the following block of code is executed after the test case section

o this block is always executed even if the test case fails or crashes

by exception

o if the keyword is used, it should be the last keyword in the source

file

- SECTION(“<section name>“):

o introduces new section, can be used for logical separating of code

into sections

- PASS():

o The following block of code is executed if the foregoing criterion

has passed

o this keyword is allowed only between UNTIL and the following

STEP keywords or at the end of the test case

- FAULT():

o he following block of code is executed if the foregoing criterion

has failed

o this keyword is allowed only between UNTIL and the following

STEP keywords or at the end of the test case

31

An example of the test case file content can look like this (red keywords are

mandatory, blue are optional):

4.3 Launching the PyTeMat Test Case

For launching the PyTeMat project, the structure of the project and its content shall

correspond to the requirements described in the previous chapters. When PyTeMat

is installed and the project is ready, the launching is done by running command in

command line in the form: “pytemat <run file>”2.

PyTeMat supports four runtime options. They are selected by adding to the existing

command line and can be combined. The options are:

- “-d” or Debug mode: In this mode the test performance is not executed,

the test cases defined in the run file are processed into final executable

python files and the files is saved in the directory defined in

LocalSettings.py. Later the files can be executed in debug mode in IDE

software.

- “-f” or Force mode: In this mode the test performance is executed and is

forced to continue even if s criterion fails.

2
 Note: it’s important to open the run directory via command line in advance to have the access of

the command promt to the run file.

INITIALIZATION:

 Device.Init()

TESTCASE(“new testcase“):

 STEP(“Power on device - poor step“):

 Device.PowerON()

 CRITERION(Device.getAR()):

 pass

 UNTIL(reached_in = 10 remains_for = 1)

 SECTION(“Logical section“):

 STEP(“Do nothing“):

 pass

 CRITERION(crit):

 crit = A + B

 crit += C

 UNTIL(reached_in=TP.watchdogConstant remains_for=TP.RFconstant)

 FAULT:

 A = B

 PASS:

 B = C

FINALLY:

 Device.CloseConnection()

32

- “-s” or Save mode: In this mode the test performance is executed and the

processed executable python file is saved in the directory defined in

LocalSettings.py.

- “-t” or Terminate mode: In this mode the test performance is executed

and, if some of the criterion fails, the test performance is terminated

without execution of FINALLY block if present.

The execution of the PyTeMat application for a test case passes several passes after

launching it:

1. Setting the arguments (setting the modes) entered from the command entered

to the command line.

2. Checking the run file content for the keywords, directories and files.

3. Checking the content of the source files for correct TBL syntax.

4. Processing the source file into executable python code.

5. Merging the header file, hardware configuration file, parameter file,

processed source file and footer file into single executable python file for

each test case. The order of the parts composing the executable file is exactly

as it was specified in the previous sentence. Header and footer files contain

the logging manager. The files are static, are independent from the PyTeMat

project configuration and are added to each executable python file

unchanged.

6. If the command doesn’t include the Debug mode the test is performed by

executing the executable python file.

As we can see the PyTeMat program meet the requirement for automatic test

performance.

First of all the structure of the PyTeMat project corresponds to the usual test

structure (see Figure 8):

- The test sets are represented by a set of the PyTeMat run files.

- The test scenarios are represented by a run file.

- The test scenarios are represented by source (or test case) files defined in

the run file.

- The test cases are represented by the source files.

- The test steps with the evaluation criteria are represented by the TBL

syntax within a test case.

33

Figure 8: Test structure

The second main advantage is TBL, which simplifies the definition of the test steps

and criteria. And integrated Python modules for managing result logs and some of

the PROFINET functionalities are the last but not the least main advantage of the

PyTeMat.

34

5 Test Design

Taking into consideration the fact, that a great number of variations of firmware and

flash types should be tested with every version released during the development, the

regression test requires great effort, just for verifying basic functionality. In that case

the automation of the tests is extremely necessary.

5.1 Firmware Update Automation

One of the main tasks for the automating the regression test is the automation of the

firmware update.

The DevKit user interface and software tools that are issued together with the board

allow running the update in a relatively easy way. One of the possible methods is via

TCP protocol. This method requires the connection to the DevKit’s active Ethernet

port (connector X1) and connection to the DevKit’s serial port (connector X11) for

running the Terminal console.

Preconditions for the method are:

- The firmware image is compiled and prepared in the as a file

- The user PC is connected to the DevKit’s active Ethernet port (connector

X1)

- The DevKit has valid IP suite set

- The user PC is connected to the DevKit’s serial port (connector X11)

- The terminal console is running and configured correctly for entering the

commands

The procedure of firmware update has the following steps:

a. The user enters command “f” to the console for preparing the DevKit for the

update via TCP

b. “TCP interface wait on connection ...” output line notifies the user about the

DevKit’s readiness

c. The user runs command line from the directory, where the firmware file with

and the TcpFwLoader.exe are located

35

d. User enters the following command to the command line “tcpFwLoader

<firmware file name> <DevKit IP address> 999”

e. The DevKit notifies the user about the connection via TCP in the console and

after receiving the firmware image asks the user for the flash type, where the

uploaded firmware should be booted from.

f. The user select the flash type (NOR or SPI) by the number related to the

flash.

g. The DevKit handles the firmware update and notifies the user about the end

of the process by printing “OK, Flashing firmware finished” line to the

console output.

h. The user shall reset the DevKit in order to boot the new firmware.

As it was described in chapter 4.4, I focused on selected types DAP simulation,

application examples, flash types and project builds. The complete list of all options

are represented in the form of tables (Table 3 and 4), where the tested and not tested

ones are marked.

The switching between the firmware upload from NOR32 or SPI to NOR 16 flash

can’t be automated and require the user intervention. Therefore the automated test

combinations with NOR 16 have to be done separately from NOR 32 and SPI. As

the thesis is focused on implementation of the test cases and not the performance of

the complete test combination sets, only several combinations where selected. The

selection was done with a view to cover all test parameters’ use in the

implementation, and they are: firmware upload with different operation systems and

automatic switching between the flash types.

Table 3: Firmware options (DAP-Application)

 DAP1 DAP2 DAP3 DAP4 DAP5 DAP6

Application 1 Not tested Tested Tested Tested Not tested Not tested

Application 2 Not tested Tested Tested Tested Not tested Not tested

Application 3 Not tested Tested Tested Tested Not tested Not tested

Any option from Table 3 has combination with each option from Table 4. The same

works with the Table 4 relating to the Table 3. For example, I choose option DAP2-

Application 2 and this means that only for this one option I have 6 further option

that can be tested according to the Table 4 (they are: NOR 16-Native, NOR 16-

Posix, NOR 32-Navite, NOR 32-Posix, SPI-Native, SPI-Posix). And this is only for

one option DAP2-Application 2 selected.

36

Table 4: Firmware options (Build-Flash)

 Native Posix

NOR 16 Not tested Not tested

NOR 32 Tested Tested

SPI Not tested Tested

This implies that the possible firmware test options are equal to the number of

options from Table 3 multiplying to the number of options from Table 4. And the

total number is 108. For the thesis I limited the number to 27, selecting 3 options

from Table 4 and applying them to selected 9 options from Table 4.

From this chapter we can see that for automation of this step we need to manage the

serial communication between the DevKit and the PC with PyTeMat application,

manage the execution of the command line with following command entering to it

and we need to handle convenient selection and switching to an appropriate

firmware.

5.2 Startup and IO Data Exchange Verification

As we know from the PROFINET description in chapter 2, one of the main

functionality related to a PROFINET IO device is AR establishment and the startup

of IO data exchange between the IO device and IO controller.

In the framework of the regression tests it is a crucial point of the functional

firmware in the DevKit. Therefore the testing of the functionality should be

automatized.

For minimal verification of the successful startup and AR establishment we need to

capture the communication frames directly from the network. For this purposes

special devices called TAPs exist on the market. For the communication based on

Ethernet I use Profishark 100M from Profitap Company. The most used and free

software capable handling and decoding the Ethernet communication is Wireshark,

which is based on Winpcap library and TShark application. A part of the window

with frame decoding is shown in Figure 5. With installing the Wireshark software,

Winpcap library and TShark application are installed automatically.

37

In order to trace the successful startup two frames will be enough to analyze. The

frames are: Connect response and ApplicationReady request from the DevKit. If the

Connect response is present in the trace and its Status value equals 0, then the

foregoing Connect request is accepted and the AR is established but the startup is

not finished yet. If the ApplicationReady request is present in the trace and it doesn’t

contain ModuleDiffBlock, this means that the startup procedure was completed

without any errors.

For checking the correct IO data exchange is enough to analyze several RTC1

frames provided by the DevKit after the startup sequence. The frames should

contain DataStatus equal to 0x35, which means that the parameterization was

accepted and the data are valid, and TransferStatus equal to 0x0.

From the automation of this step we need to create a project for IO controller,

automatize capturing the trace and analysis of the specified frames including some

of their content.

5.3 Properties of the Simulated Device Verification

For verifying the correct firmware and its correct boot to the DevKit’s processor it’s

crucial to check the correct properties of the simulated IO device according to the

DevKit’s manual.

The main differences in the properties lie in the DAP properties and in Application

examples.

Application 1 and 2 have no differences from the communication point of view. The

only difference with the Application 3 is in the input and output modules that can be

configured (verification of IRT communication and application is omitted in the test

design).

There are two possible differences related to the DAP properties and they are the

number of ports available (1 or 2) and MRP functionality support.

The verification of port numbers can be done by connecting a partner IO device to

the second port of the DevKit. In case if the DevKit should simulate one port IO

device, the AR establishment and startup of the partner shall not occur and no

frames sent by the partner shall be present on the network. Otherwise, if the DevKit

simulate two port IO device, the Connect response and ApplicationReady request

38

sent by the partner shall be present on the network. This verifies that the DevKit

forwards the frames to the partner and from the partner without any errors.

The verification of the MRP functionality supported is realized by reading the

parameters of the device by means of RPC and PNIO-CM read request. If the

DevKit supports MRP functionality, the Read request of PDInterfaceMrpDataReal

(index 0x8050) record addressed to the Interface submodule shall be accepted.

Otherwise, the Read request shall be rejected. The acceptation is verified by

checking the Status value of the response. If the value is 0x0, then the request is

accepted and the response with some required data follows. If the Status has not zero

value, the request is rejected and the value corresponds to some appropriate error,

which causes the rejection.

Besides the trace capture of the communication, automation of this step requires

handling of various simulated devices configuration by the project for IO controller

and triggering the Read request for PDInterfaceMrpDataReal addressed to the

DevKit.

5.4 Acyclic Read or Write Responses Handling Verification

Verification of correct responses to the acyclic read or write requests with

addressing to each submodule is another step of regression test that can be

automatized. During this test step we are able to verify that the DevKit processes the

read/write requests to each of the submodules configured and is able to accept and

reject the request according to its GSD file and the PROFINET standard.

For this purpose I select so called I&M datasets. There are six I&M datasets types

and they are enumerated from 0 till 5. I&M0 is a read-only mandatory dataset that

shall be supported by every submodule of a PROFINET IO device. The submodules

issued in the GSD file may have parameter “Writeable_IM_Records”. The value of

the parameter is a list of numbers of supported I&M datasets, excluding 0, that is

supported by default. If the parameter is missing, the submodule doesn’t support

I&M datasets 1 to 5. [7], [8]

According to source [8] and the GSD file of the DevKit, the responses to the

read/write requests for the datasets shall be as it’s shown in the Table 5.

The lines correspond to the submodules of the DevKit station according to chapter

2.2.2 and the configuration of the station in the project. The columns represent the

39

dataset type and the request type (write or read). The intersection represents the

response type that is expected of the DevKit: X stands for rejecting the request with

an error, OK stands for accepting the request.

Table 5: I&M datasets responses of each DevKit submodule

 I&M0

(Index 0xAFF0)

I&M1

(Index 0xAFF1)

I&M2

(Index 0xAFF2)

I&M3

(Index 0xAFF3)

I&M4

(Index 0xAFF4)

write read write read write read write read write read

DAP X OK OK OK OK OK OK OK OK OK

Interface X OK X OK X OK X OK X OK

Port 1 X OK X OK X OK X OK X OK

Port 2 X OK X OK X OK X OK X OK

Input X OK X X X X X X X X

Output X OK X X X X X X X X

Besides the trace capture of the communication, automation of this step requires

handling of triggering write and read requests for different indexes and for different

destination submodules.

5.5 IO Cycle and DHT Timer Verification

The last step for verification of the functionality of the DevKit firmware is

verification of IO cycle time and DHT timer verification.

As it was described in chapter 2.2.5, the IO cycle time is a time interval between the

data frames sent by the provider. For verification of correct functionality we need to

find the difference between the time stamps of two neighboring data frames sent by

the DevKit. As the time measurement can be caused by some errors, tolerance of

10% is accepted. The verification of IO cycle times will be done on a number of

randomly selected frames from the captured trace.

DHT timer verification covers several functions. First of all, the test verifies the

timer itself, then capability of producing alarms (RTA communication) and

managing the abortion of AR according to the PROFINET standard.

40

As the alarm processing takes more time then data providing processing, there could

be some internal errors in precise timing of sending the alarm and aborting the AR.

Therefore the tolerance in 3 to 6 data frames sent by the DevKit since the last IO

controller’s data frame is accepted.

Besides the trace capture of the communication, automation of this step requires

breaking of the communication between the DevKit and the IO controller while they

provide data exchange.

5.6 Regression Test Sequence

The complete regression sequence can be represented as a flow chart in Figure 9.

For switching the power supply on the DevKit, for selecting the pin configuration on

the connector X40 according to the flash type and for breaking the communication I

use output signals from the output module connected directly to the IO controller.

The output channels on the module are set by use of OPC server on the PC.

Triggering the read and write requests required for the testing is done by managing

the memory bits in the IO controller internal memory.

The process blocks’ description starts from abbreviations, which specify the

automated application that should process the step:

- [OPC] – OPC server commands

- [TSH] – TShark software application for capturing specified frame types

- [CON] – terminal console communication via serial port

- [DCP] – PyTeMat integrated DCP protocol handling module (DCP.py)

Applications for capturing the communication on the network and managing the

communication via serial port with the DevKit were not implemented in the original

version of PyTeMat. Therefore I implemented python modules managing the

applications.

41

Figure 9: Flow chart diagram for automated regression tests on DevKit

42

6 Expanding the PyTeMat Core

For realizing the designed test automation I had to expand the core of the PyTeMat

with two Python modules. One of them managed the communication via serial port

and the firmware update for the DevKit (called DevKit.py), another managed the

capturing of the communication of the network (called pywireshark.py).

6.1 DevKit.py Module

The functionality of DevKit.py was designed to fulfill missing applications in the

PyTeMat in order to make the designed test of the DevKit real. The structure of the

module content including classes and their methods is shown in Table 6.

6.1.1 NameGenerator Class

As there is a great amount of types of the firmware and the automation requires

some adaptation of the substitution of the firmware images on a single DevKit, I

decided to resolve the issue by configuring the DevKits with all the firmware and

test types in the project for IO controller with unique parameters of NameOfStation

for each of them (for the configuration see chapter 7.2). Each DevKit configured in

the project has a unique IP address too. For handling this configuration I included

the class NameGenerator to the DevKit.py module.

The class handles generation of names for NameOfStation parameter according to

the firmware image being tested, NameOfStation according to the IO cycle being

tested, IP address according to the firmware and IO cycle, and the name of the

firmware image that should be uploaded to the DevKit.

As the result the NameGenerator class has four methods for each type of name

generation.

The first one is NameOfStation method, which input parameters are: dap – number

of DAP simulated according to the DevKit GSD file (string or integer); app –

number of the application example tested (string or integer). The method returns the

NameOfStation in string format used in the configuration in the project for the IO

controller. The form of the name is: “dap<num>-ap<num>-250us”.

43

Table 6: DevKit.py module content

Class Method Description

NameGenerator NameOfStation Generates default NameOfStation in format: dap<num>-

ap<num>-250us

NameOfStationForIo Generates NameOfStation with the value of IOCycle at the

end: dap<num>-ap<num>-<num><”us” or “ms”>

EcosFileName Generates file name for ecos binary containing the

firmware for update:

ecos_dap<num>_ap<num>_<flashbitnum>_<flashBuild>

IpAddress Generates IP address according to DAP, Application

example and IO cycle setting

Terminal OpenPort Checks the presence of the portName attribute and

according to it either calls opening of the port or search for

available one.

GetPortName Searches for available DK-ERTEC ports and returns its

name

Enter Enters commands to the open console of serial

communication with DK-ERTEC. If the command is 'f',

stands for firmware update, checks if the device is prepared

for the update by means of CatchOutput method and sets

readyForFwUpdate attribute

ReadOutput Reading the output from the console and writes it down to

return attribute

CatchOutput Checks the console output for a string required and returns

Boolean value

EnablePrint Enters ‘P’ command to enable console output print and

calls CatchOutput for 'enable serial console output'

FlushComPort Flushes the buffers of the terminal

Close Closes the serial port

FirwareUpdate Run Runs the firmware update for a specified firmware image

Reset Resets the attributes that handles the update process and

terminates the TcpFwLoader application

44

The second method handles the changing of the name according to the IO cycle

being tested, and the method is NameOfStationForIo. The input parameters to the

method are: deviceName – the default NameOfStation generated by NameOfStation

method (string); ioCycle – the IO cycle in the form of “<number><us or ms>”

(string).

The third method handles the IP address generation, and the method is called

IpAddress. The input parameters of the method are: dap – number of DAP simulated

according to the DevKit GSD file (string or integer); app – number of the

application example tested (string or integer); io_cycle – the IO cycle in the form of

number itself (integer). The method returns IP address in the following form:

“192.168.<dap><app>.<io_cycle>”. As the standard IO cycle values could be

250µs, 500µs and 1, 2, 4, 8, 16, 32 and so on ms, there is no collision of the last

numbers in the generated IP address. The 500µs address number is solved by

dividing the number by 10, and thus we get 50, which still doesn’t collide with the

ms values.

As was mentioned before, application example 1 and 2 have no differences from the

PROFINET communication point of view, therefore these two options are united in

one DevKit project configuration with the name and IP address according to

application example 1 value.

The same names as generated by these three methods shall be set in the project for

IO controller for the functional test application.

The last method included into the NameGenerator class is EcosFileName. As the

test application expects a great amount of firmware types and their sequential

uploading to the DevKit, this method handles the generation of new names for the

firmware images that shall be prepared in advance. The input parameters to the

method are: dap – number of DAP simulated according to the DevKit GSD file

(string or integer); app – number of the application example tested (string or

integer); flashBit – the number bits of the target flash according to the compilation

configuration (string or integer); flashBuild – the type of the firmware build (see

chapter 5.1). The method returns the string with the name in the following form:

“ecos_dap<num>_ap<num>_<flashbitnum>_<flashBuild>”.

45

6.1.2 Terminal Class

The Terminal class manages the serial communication between the PC and the

DevKit. While initialization of the instance an optional input parameter portName

can be entered. The attribute shall have string format and contain the name of the

port connected to the DevKit. If the parameter is missing the application searches for

active serial ports with the device name ‘DK-ERTEC’.

The opening of the port for communication is handled by OpenPort method. The

method has no input and returns parameters. When the method is called, the

portName attribute is checked firstly. If the attribute is not defined, it takes over the

return value of GetPortName method. The GetPortName method itself by means of

serial Python module handles the searching of the connected serial ports and returns

the name of the port connected to the DevKit (in case if no port is connected returns

None). After defining the portName, the private method _openPort is called. This

method assigns to ComPort attribute the instance of the connected serial port with

the portName. The connection and instance creation is done by means of serial

Python module, Serial class. If the connection succeeded, enabling print of the user

interface is done by special method EnablePrint. The method does nothing more

than enters ‘P’ command to the open terminal console and checks the appropriate

response from the DevKit application.

The result of calling the OpenPort method is expected to be the definition of

ComPort attribute as the instance of the open terminal console.

The entering of the commands is handled by the Enter method. The input parameter

is the command in string format. The command entering is done by means of

ComPort, which should already be an instance of the terminal console. In case if the

command is ‘f’, which stands for firmware update via TCP, the checking of the

appropriate output on the console is automatically run. And if the output

corresponds to the expected one for the successful preparation of DevKit for the

update, the attribute readyForFwUpdate is set to True value. Thus we can check

later the state of the DevKit by other applications. There is no return parameter from

the Enter method.

Reading the console output is handled by ReadingOutput method. The optional

input parameter for the method is myTime of float type with default value of 60.0 .

This parameter stands for the timeout interval for reading process. After the reading

process is finished the method writes the currently read output ComPort.out attribute

and returns the value.

46

The ReadingOutput method is used by CatchOutput method, which handles the

searching of a required output string. So the input parameters of the CatchOutput

method re: output – the searched string (string); myTime – the timeout value (float,

default value is 0.5). The method cyclically calls the ReadingOutput method until

the required output is found or until the timeout interval doesn’t expire.

The next method is FlushComPort. The method has no input and return parameters

and its function is to flush the input and output buffers of the ComPort instance.

The last method of the Terminal class is the Close method. The method has no input

and return parameters and the method handles the buffers flushing (by calling the

previous method), termination of the serial communication and resetting the

ComPort attribute to None value.

6.1.3 FirmwareUpdate Class

The last class of the DevKit.py module is FirmwareUpdate class. The class is

responsible for managing the complete process of the automatic firmware update

according to the settings. As the update process is based on serial communication,

the initialization of an FirmawareUpdate instance requires an input parameter in the

form of terminal console instance.

The class has only two public methods: Run and Reset; and several private auxiliary

methods.

The Run method handles the complete update process. The method requires four

input parameters for that: ecosFileName – the name of the firmware image file

(string), ip – the IP address of the DevKit (string); flashType – the flash type for

uploading the firmware (string); flashBit – the bits of the flash (string).

After calling, the method starts from checking the correctness of the input

parameters. Then the method continues with verification of the files

(TcpFwLoader.exe and the firmware image file) presence in the directory defined in

LocalSettings.py. If no error occurs, the application enters the ‘f’ command for

starting the update process itself. Then the method repeats the update sequence from

the chapter 5.1. After getting the appropriate output, the command for executing the

TcpFwLoader.exe is generated. The execution by Windows command prompt is

done by means of subprocess Python module and Popen class. When the DevKit

application asks for the flash type for firmware booting, the method enters the value

47

according to the flashType attribute specified. After getting the appropriate response

from the DevKit application notifying about the end of the firmware update, the

attribute fwUpdated is set to True, allowing other applications to check the state of

the update process. The method running is finished by terminating the TcpFwLoader

application and resetting the auxiliary attributes to their default values. The Reset

method handles the function.

6.2 pywireshark.py Module

Capturing the communication on the network is one of the crucial functionality

required for the realization of the test automation. Therefore the pywireshark.py

module is the second module added to the PyTeMat core.

The automation of this functionality required great effort, as the complete

application involves investigation of the TShark application and preparation of

scripts in Lua programming language.

6.2.1 TShark Application

According to source [13], “TShark is a network protocol analyzer. It lets you capture

packet data from a live network, or read packets from a previously saved capture

file, either printing a decoded form of those packets to the standard output or writing

the packets to a file.” The analyzer is installed together with the open source

software tool Wireshark and Winpcap library.

The TShark can be executed by the command prompt and, if no additional options

are specified, the application will display a summary line after each received frame

on the configured network interface to the output of the prompt.

The TShark analyzer supports a great number of options, but only few of them are

useful for my application. The first one is ‘-i <network interface>’, which sets the

network interface for capturing the communication by its name. For checking the

presence of the interface, I used ‘-D’ option, which prints the list of accessible

network interfaces. The next option is ‘-a duration:<time>’ , which sets the

duration of capture process in seconds. The following option is ‘w <output file>’,

which saves the captured frames to an output file specified. The file has *.pcap

format, which can be later read by Wireshark program for manual investigation. For

48

capturing specified type of frames only, I used ‘-f <frame type>’ option, which

filters the network communication and prints the frames of specified types only. As

for my application I need concrete information in the frame and the default

information displayed in the summary line is not enough, I preprocess the frame by

extension option ‘-X lua_script:<name of the script>’ and print the information in

the format I require. The processing is done script programmed in Lua programming

language. The detailed description of the scripts’ design is in the chapter 6.2.2. The

TShark application allows using several Lua scripts at once by repeating the

argument with new specified script in the command. As I need only printing the

frames specified by the script, I can switch off printing of the summary lines by ‘-Q’

option. [13]

6.2.2 Lua Scripts for TShark

The extension option with Lua script does nothing more than adds the specified

script to TShark’s other scripts.

By defining a listener in the scripts I get the frames from the network for later

decoding and processing the information from it. In the definition of the listener I

add the filter for my specified type of the frames.

The filters for the frames are used in the form that is used in the Wireshark tool,

where each object in the decoded frame has an appropriate name, so called field

name. This name is used while building the filter rules for displaying the appropriate

frames. For example, for displaying the ApplicationReady request only I use the

following filter: (dcerpc.opnum == 4) and (dcerpc.pkt_type == 0) and

(pn_io.control_block_properties.appl_ready0 == 0x0).

As it was mentioned in the chapter 2, the ApplicationReady request is a part of

PNIO-CM protocol that is based on RPC protocol. Therefore the first two fields of

the filter are related to RPC (dcerpc). The protocol defines the operations being

processed by operation number (opnum) and the packet or frame types (pkt_type).

As the ApllicationReady request relates to Control requests from the RPC protocol

the operation number equals 4, which stands for Control operation, and the packet

type is 0, which stands for request type. As both fields with the specified values

shall be present for specifying RPC Control request, the operand between them is

and. From this moment I have only Control requests filtered, but there are various

types of these requests. Therefore I specify one field more, which relates to the

PROFINET IO itself (pn_io). The field ControlBlockProperties defined by the

49

PROFINET standard can be used for specifying the ApplicationReady request only

and the field value is control_block_properties.appl_ready0 == 0x0.

In this way I unambiguously specified the ApplicationReady request frames by the

filter condition. Thus the listener definition looks as follows:

At this moment the tap variable contains the frames that meet the filter condition.

Then I need to specify the fields from the frame that will be printed. And the items

list contains the fields:

The field definition works similar to the filter fields definition, excluding their

values. In my case, I defined the following fields:

- Time stamp with the time relative to the first frame captured

("frame.time_relative")

- IP destination address of the frame (“ip.dst”)

- IP source address (“ip.src”)

- Block type of the PROFINET IO part of the frame (“pn_io.block_type”)

The printing itself is handled in the framework of the following function:

This function is executed with every coming frame that passes the filter. In the first

step the fields specified in the items list are withdrawn from the received frame,

processed to an array, sorted by their offsets and then parsed to a required format.

These operations are done in the framework of get_frame function.

The parsing operation is responsible for the final string that is printed. Therefore I

describe it in more details.

function tap.packet(pinfo,tvb)

 frame = get_frame(items)

 str = string.format("%s | %s -> %s | APPLRDY_REQ%s",

 frame.time, frame.ip_src, frame.ip_dst, frame.mod_diff)

print(str)

end

items = {

 Field.new("frame.time_relative"),

 Field.new("ip.dst"),

 Field.new("ip.src"),

 Field.new("pn_io.block_type")

 }

local filter = "(dcerpc.opnum == 4) and (dcerpc.pkt_type == 0) and

(pn_io.control_block_properties.appl_ready0 == 0x0)"

local tap = Listener.new(nil, filter)

50

The operation is handled by parseFrame function with input parameter fields. The

fields parameter is the list of the withdrawn and processed fields. While iterating the

fields I compare the field name with the names from the items list and if the names

are equal I add to the frame list the value of the field. In case with the block type

field, I do a further investigation of the value in order to search the

ModuleDiffBlock with block type equal 0x8104.

After all the operation the result line should be printed according to the defined

format. For example, in case of this exact format, the line could look as follows:

, where the first number stands for the time relative to the first frame captured, then

the delimiter ‘|’ follows, then the source IP address ‘->’ destination IP address, then

another delimiter, then ‘APPLRDY_REQ’ token, then delimiter and the

‘ModuleDiffBlock’ token notifying about the presence of the block in the frame

received. In case if the ModuleDiffBlock is absent, the line will be finished by

‘APPLRDY_REQ’ token only.

In the similar way each type of the PROFINET standard frame can be processed and

printed by the means of the Lua scripts.

3.394011 | 192.168.0.50 -> 192.168.0.1 | APPLRDY_REQ | ModuleDiffBlock

function parseFrame(fields)

 nextField = list_iter(fields)

 local frame = {}

 frame.mod_diff = ""

while true do

 field = nextField()

 if field == nil then

 return frame

 elseif field.name == "frame.time_relative" then

 frame.time = field

 elseif field.name == "ip.dst" then

 frame.ip_dst = field

 elseif field.name == "ip.src" then

 frame.ip_src = field

elseif field.name == "pn_io.block_type" then

 block_type = "0x" .. num2hex(field.value)

 if block_type == "0x8104" then

 frame.mod_diff = " | ModuleDiffBlock"

 end

 else

 do end

 end

end

end

51

6.2.3 Wireshark Class

The pywireshark.py module has a single class named Wireshark. This class handles

the capture process on the specified network interface and uses for that the TShark

application with its options.

The class contains four public methods and a number of private auxiliary methods.

The first public method is StartCapture method. This method is responsible for

generating the command for the command prompt for running TShark application

with the specified options. The command generation starts from defining of first two

arguments “tshark” for executing the TShark analyzer and “-Q” option for

switching of printing of the summary frame description. The method itself expects

extension of the TShark options with some Lua scripts, therefore the printing of

ordinary frame description is turned off by default. The following adding of the

arguments to the command is done according to the input parameters specified by

the user. These input parameters are:

- inputPcap – an optional string parameter with the name of the input

*.pcap file for processing by TShark application. If this parameter is

defined the application adds the reading TShark option with the directory

and file specified.

- interface – an optional string parameter with the name of the network

interface. Before adding the appropriate arguments to the command the

method checks the presence of the network interface by InterfaceExists

method. If the parameter is defined, adding of the reading option of the

TShark is skipped.

- filter – an optional string parameter with the filter according to the filter

rules of the Wireshark. If the parameter is defined the application adds

filtering TShark option with the filter itself.

- duration – an optional integer parameter with the value in seconds of the

capture duration. If the parameter is defined the application adds the

argument with the capture duration option.

- savePath – an optional string parameter with the directory to the output

file, which should be saved after the capture process is completed.

- saveName – an optional string parameter with the name of the output

*.pcap file for saving the output from the capturing process. If this

parameter is defined the application adds the writing TShark option with

the directory (savePath) and file specified.

52

- sniffers – a list of the Lua scripts names (string) added as extension option

to the TShark analyzer. If the list is not empty the application iterates

every name and adds it to the command according to the correct definition

of this option.

After the command generation is done, the application defines the Capture instance

of subprocess.Popen class running the generated command, in other words the

Capture attribute is an instance of capture operation.

The following method from the Wireshark class is the GetFrames method. This

method handles the reading the output from the capture operation. The output is the

printed lines coming from the Lua scripts involved in the operation. After getting a

frame as a string the method processes it separating each field inside and from a

single string makes a list of the fields. From this moment the frame is represented by

a list of fields, where the first item is the relative time, the second – the source

address(either MAC or IP), the third – the destination address (either MAC or IP),

and the forth – frame type.

The input to the GetFrames method is presented as a variable length argument list

(*args), which expects to be another filter for the frames in the PyTeMat application

itself. At the moment only source and destination addresses (either MAC or IP) are

implemented as it meets the requirement of my test automation. If the argument list

is defined the first argument stands for source address and the second argument

stands for destination address (either MAC or IP). So the method compares the

addresses from the frame and from the input and if they are equal, the processed

frame is put in the frames list. After finishing the capture process the reading is

finished too and the method returns the gotten and filtered frames in the form of

frames list of lists.

Another public method included in the Wireshark class is InterfaceExists method.

This method is an auxiliary method for verifying the presence of the network

interface, which name shall be the input parameter to the method. Within the method

the TShark analyzer with option ‘-D’ is run by the Popen class. The output of the

command prompt executed by means of the Popen class is the list of the currently

accessible network interfacing. After iterating the list and comparing the input

interface name with the names from the list, the method returns either True value, in

case if the name is present in the list, or False, if the name is absent.

The last public method is StopCapture method that handles terminates the capturing

operation, if it is still running, and resets the Capture attribute to None.

53

7 Test Implementation

The last step in the automation of the regression test is the implementation itself. All

the information that was presented in the previous chapters will be brought together

for creating the real application.

7.1 Station Configuration

I start the implementation of the test design with the assembling of the real station

that meets all the requirements. The final station configuration is shown in Figure

10.

The list of the devices composing the station and their brief description can be found

in Table 7.

Table 7: List of the devices composing the station
Device Order no. Description

1 PC - A computer with PyTeMat application, OPC

server, network interface, 1xEthernet RJ45 port,

2xUSB ports.

2 S7-1500 CPU 1511-1

PN

6ES7 511-1AK01-0AB0 PROFINET IO controller with the appropriate

project uploaded to it

3 S7-1500 Digital Output

module

6ES7 522-1BF00-0AB0 A digital output module with 8xDC 24V/2A

channels plugged to the CPU 1511-1 PN

4 Ethernet Breaker - Homebrood device from Siemens s.r.o. CT in

Prague. A device with 8 ethernet switches

managed by 24V signals.

5 SCALANCE X204IRT 6GK5 204-0BA00-2BA3 An Ethernet switch that can be configured as

PROFINET IO device and supports IRT

communication

6 Profishark 100M C1AP-100 A TAP device for capturing the Ethernet

communication

7 Development Kit

DK-ERTEC 200 PN IO

6ES7 195-3BE00-0YA0 The development kit under the test

8 Partner station

SIMATIC ET200SP

6ES7 155-6AU00-0CN0 The partner station for the DevKit – PROFINET

IO device consisting of IM155-6PN HF, Digital

Output module, Digital Input module and Server

module

9 Relay switch - The relay switch

54

The complete test process is managed by the PyTeMat application. The OPC server

sets the output channels on S7-1500 Digital Output module and some Memory bits

that trigger Write and Read requests in the CPU 1511-1.

Figure 10: Test station

3

The list of output channels used for controlling the test process is provided in Table

8.

Table 8: Digital output channels used for test control
Channel

Function
No. Tag

Q0.0 Q0_EthBreak
The signal breaks the connection between the CPU and the SCALANCE

switch by means of the Ethernet Breaker

Q0.1 Q1_PowerSupply
The signal disconnects the DevKit from the power supply by means of a

relay switch

Q0.3 Q3_FlashSPI
The signal connects the pins on DevKit connector X40 for SPI flash

booting by means of a relay switch

The SCALANCE switch (device no. 5) located between the Ethernet Breaker and

Profishark has the role of IO device, which is not included in the configuration, but

3
 The number on the devices correspond to the numbers in Table 7.

55

is able to forward all the communication. In case, when the connection is broken by

the Ethernet Breaker, the ports on both sides are deactivated. But the SCALANCE

switch keeps the port connected to Profishark always active. Therefore the

Profishark is able to capture even when the connection with the IO controller is

broken. If the Profishark was connected directly to the Ethernet Breaker, it would

stop capturing after deactivation of any port. This functionality is significant for

DHT test step, when the capture process should continue after the ports

disconnection.

7.2 TIA Portal Project

For configuring the PROFINET IO station and programming the CPU 1511-1 I used

TIA Portal V14. This is new generation multifunctional software for configuring,

programming, testing and diagnosis of the controllers. This software was designed

by Siemens AG and principally is similar to Step 7.

Firstly so called hardware configuration is required, where are defined all the

stations involved in the network communication including OPC server. Each station

is represented by IOC module or IOD module with input/output modules or without

them. During the configuration the NameOfStation, IP suite, parameterization are

set on each device. The configuration used for the test implementation is shown in

Figure 11.

In the hardware configuration I defined CPU 1511-1 with “ioc” NameOfStation. Its

IP address is “192.168.0.1” and Subnet mask is “255.255.0.0”. Every device

connected to the CPU shall have the same Subnet mask, therefore the Subnet mask

of the CPU is the Subnet mask specified for the whole network.

The ET200SP station has “partner” NameOfStation and “192.168.0.2” IP address.

The PC station with the OPC server has “opc_pc” NameOfStation and

“192.168.0.3” IP address.

56

Figure 11: The hardware configuration (or Devices and networks) in TIA Portal

Configuring of the DevKit is a little bit more complicated. As it was already

mentioned, there is a great amount of various simulated devices that are involved in

the test. Therefore I decided to configure the network including each tested option.

As the result there are 12 DevKit stations configured covering 27 options chosen

from the chapter 5.1 and two different IO cycle SendClock parameter. The tested

option is specified by the unique NameOfStation and IP address of each station, for

example: NameOfStation is “dap3-ap1-1ms” and the IP address is “192.168.31.1”.

The example configuration stands for DAP3 device simulation with Application

example 1 and the IO cycle set to 1ms. This feature is closely related to the

NameGenerator class from the DevKit.py module.

From the IO controller point of view all the DevKit stations should be present on the

network and, if some of them are missing, it regularly sends DCP Identification

request with the appropriate NameOfStation. Nevertheless this condition doesn’t

inhibit establishment of an AR with any of the DevKits separately. This feature is

used for using a single project for testing various options. As I have only one real

DevKit, I can switch over the test configurations by changing its NameOfStation

only.

According to the test requirements from chapter 5 we need to be able to send Write

and Read requests for specified Record Indexes and the OPC server should be able

to manage the sending process. This can be handled by the CPU program and by

setting appropriate memory bits. The list of memory bits used for triggering the

appropriate Read and Write requests is provided in Table 9.

57

Table 9: Digital output channels control
Memory bit

Function
Addr. Tag Data type

M0.0 M0_ReadInterfaceMrpReal Boolean Triggers PDInterfaceMrpDataReal Read request

M0.1 M1_WriteIMData Boolean
Triggers the sequence of I&M0-I&M4 datasets Write

requests

M0.2 M2_ReadIMData Boolean
Triggers the sequence of I&M0-I&M4 datasets Read

requests

MW1 MW_HWIDArray Integer
Set the number of the bundle of station’s hardware

identified

I prepared a program for the CPU which handles sending the Read request for

PDInterfaceMrpDataReal by triggering the M0_ReadInterfaceMrpReal memory bit.

The Write requests and Read requests for I&M0-I&M4 procedure is represented as

sequences that are divided into several iterations. The first iteration relates to the

submodule address and the second one relates to dataset index. So the application

takes the first dataset index and sends the requests to each submodule in the station

iterating the submodules’ addresses. After finishing processing requests of one

index, the application takes the following index and repeats sending requests to all

submodule addresses once again, but this time with new index. This procedure is

done for all 5 indexes related to I&M0-I&M4 datasets.

The addressing to a specified submodule is done by means of the hardware identifier

number that is assigned to each submodule after connecting it to the CPU. The

hardware identifiers of the tested stations are written down to a bundle within an

array in the database block of the CPU. So the OPC server has an access to the

database and is able to set the appropriate identifier bundle according to the station

being tested at the moment. This setting is done by writing the integer value of

memory word “MW_HWIDArray” that later refers to the bundle from the database

by means of the CPU program. The array with the identifiers should be prepared

before the test run. The array with the first bundle expanded used for the test is

shown in Figure 12.

The complete project with the hardware configuration and the CPU program can be

found in the TIA Portal project provided on the CD attached to the thesis.

58

Figure 12: Database of the hardware idetifiers

7.3 Lua Scripts Preparation

For implementing the designed test I needed to prepare some Lau script sniffers for

getting the required frames to the PyTeMat application. Therefore I programmed

several sniffers (according to the method described in chapter 6.2.2) and each of

them handles a specific type of frames providing the required information from

them. The list of the sniffer scripts is provided in Table 10.

Table 10: TShark sniffer scripts used in the PyTeMat application
Script name Frame type The output line format

appl_req_sniff.lua ApplicationReady -

Control request

<time relative> | <source IP> -> <destination IP> |

APPLRDY_REQ | ModuleDiffBlock*

conn_res_sniff.lua Connect request <time relative> | <source IP> -> <destination IP> |

CONN_RES | Status:<OK or ERROR>

interfacemrpreal_sniff.lua PDInterfaceMrpDataReal

– Read request

<time relative> | <source IP> -> <destination IP> |

READ_RES_PDINTERFACEMRPDATAREAL |

Status:<OK or ERROR>

imdata_sniff.lua I&M data – Write and

Read requests

<time relative> | <source IP> -> <destination IP> |

<READ or WRITE>_RES | Status:<OK or

ERROR> | SlotNumber:<hex number of the slot> |

SubslotNumber:< hex number of the subslot> |

Index:<hex index number of the reacord data>

rtc1_sniff.lua IO cyclic data – RTC1 <time relative> | <source MAC> -> <destination

MAC> | RTC1 | FrameID: <hex number of the

frame ID> | DataStatus: <OK or ERROR> |

TransferStatus: <OK or ERROR>

err_dht_sniff.lua Error - RTA <time relative> | <source MAC> -> <destination

MAC> | ERR-RTA | Status: Error: "RTA error",

"PNIO", "RTA_ERR_CLS_PROTOCOL", "AR

consumer DHT/WDT expired

(RTA_ERR_ABORT)"

* The “ModuleDiffBlock” element is present only under certain conditions specified within the Lua script.

59

Using this Lua scripts as the extension option of TShark application I am able to

provide enough information from the received frames to PyTeMat application in

order to cover all steps of the test designed.

The Lua scripts can be found on the CD attached to the thesis in the directory

\PyTeMat\tshark_sniff\sniffers\.

7.4 Test Application in PyTeMat

The regression test application is implemented in the PyTeMat test tool. I followed

the rules of creating the test application in PyTeMat described in chapter 4.2.

7.4.1 PyTeMat Hardware Configuration

In the DevKit_Automat_rack.py file I defined the hardware configuration used by

PyTeMat. The configuration is composed by project definition and specification of

three device instances. The instances are represented by the real devices in the real

test station and therefore the instances have defined MAC address, IP suite and

NameOfStation arguments taken from their representatives.

The first instance is Controller instance of PN_Devices.Simatic class and is

represented by the CPU 1511-1. The CPU 1511-1 is connected to the OPC server

and the parameters of the connection are specified for the instance too. Thus the

definition of the Controller instance looks as follows:

The first instance is Partner instance of PN_Devices.ET200SP class and is

represented by the ET200SP station. The definition of the instance looks as follows:

Controller = PN_Devices.Simatic()

Controller.Name = "SIMATIC_CPU"

Controller.DeviceNumber = 1

Controller.IPSuite.MAC = "28:63:36:aa:0e:5f"

Controller.IPSuite.IpAddress = "192.168.0.1"

Controller.IPSuite.SubNetMask = "255.255.0.0"

Controller.IPSuite.DeviceName = "ioc"

Controller.OPC = OPCs.SimaticOPC()

Controller.OPC.OPCServerName = "OPC.SimaticNET"

Controller.OPC.OPCTopicName = "S71500ET200MP station_1.IOC"

60

The last instance on the hardware configuration file is DeviceDK instance of

PN_Devices.DK_ERTEC class and is represented by the DevKit. The DeviceDK

instance includes instances of the classes from the DevKit.py module for the

regression test performance. Thus the definition of the instance looks as follows:

The file can be found on the CD attached to the thesis in the directory

\PyTeMat\Tests\DP_DEVKIT_TESTS\HWconfigs\.

7.4.2 PyTeMat Source File

The regression test sequence designed in chapter 5.6 is implemented in the

TC_DevKit_Automat.ptm source file according to the TBL syntax.

The INITIALIZATION section starts from the definition of tests list of dictionaries.

The list contains all firmware option combinations that should be tested and each

dictionary represents one option specified. The examples of three options follow:

tests = [

 {"enum": 0, "dap": 2, "app": 1, "flashType": "NOR", "flashBit": 32, "flashBuild":

"posix", "hw_id": 0, "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 10, "dap": 3, "app": 1, "flashType": "NOR", "flashBit": 32, "flashBuild":

"native", "hw_id": 1, "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

{"enum": 20, "dap": 4, "app": 1, "flashType": "SPI", "flashBit": 32, "flashBuild":

"posix", "hw_id": 2, "2Ports": False, "MRP": False, "DHT": True, "DataSets": True}

]

DeviceDK = PN_Devices.DK_ERTEC()

DeviceDK.GenerateName = DevKit.NameGenerator()

DeviceDK.Console = DevKit.Terminal()

DeviceDK.FWUpdate = DevKit.FirwareUpdate(DeviceDK.Console)

DeviceDK.Name = "dk-ertec"

DeviceDK.IPAddrForFWUpload = LocalSettings.IPAddForFWUpload

DeviceDK.DeviceNumber = 3

DeviceDK.IPSuite.MAC = "08:00:06:02:01:10"

DeviceDK.IPSuite.DeviceName = "dk-ertec"

DeviceDK.IPSuite.IpAddress = LocalSettings.IPAddForFWUpload

DeviceDK.IPSuite.SubNetMask = "255.255.0.0"

DeviceDK.IPSuite.GateWay = "0.0.0.0"

Partner = PN_Devices.ET200SP()

Partner.Name = "partner"

Partner.DeviceNumber = 2

Partner.IPSuite.MAC = "28:63:36:3b:20:90"

Partner.IPSuite.IpAddress = "192.168.0.2"

Partner.IPSuite.SubNetMask = "255.255.0.0"

Partner.IPSuite.GateWay = "192.168.0.2"

Partner.IPSuite.DeviceName = "partner"

61

The keys of the dictionary represent parameters of the firmware option and some

additional parameters for test performance on the specified firmware option. The

keys are described in Table 11.

Table 11: The dictionary of test option

Key Values Description

“enum” integer Enumerator of the test option

“dap” integer DAP value of the simulated device according to the DevKit GSD file

“app” integer Application example value

“flashType” “NOR” of “SPI” Type of the flash, which the firmware will be uploaded to

“flashBit” integer (16 or 32) The bit value of the NOR flash (SPI has value 32 by default)

“flashBuild” “posix” or “native” The operating system build of the firmware

“hw_id” integer (0..5) Hardware indetifier bundle number according to the TIA Portal

project

“2Ports” Boolean True if the simulated device has 2 ports; False if the device has 1 port

“MRP” Boolean The value of the MRP functionality support according to the DAP

“DHT” Boolean The test setting of performance of the IO cycle SendClock and DHT

timer test steps

“DataSets” Boolean The test setting of performance the I&M datasets test steps

 In the similar way the dataSets list of responses to I&M datasets request is defined

for each submodule being tested. Logically the content of the list repeats the content

of the Table 5, where X is replaced by False value and OK is replaced by True

value.

The IO cycles tested in the framework of the test case are represented by ioCycles

dictionary. The key of the dictionary is the string of the IO cycle value with the unit

of time and the value of each key is the float value in milliseconds. In case of my

test case the ioCycles dictionary includes two IO cycle values for the tests, which

looks as follows:

In the INITIALIZATION section I create an instance of pywireshark.Wireshark class,

which is called Wireshark and run the connection to the OPC server by calling

Controller.OPC.ProjectOnline method. Some auxiliary methods are defined as well.

For example, DevicePowerOFF method writes True value to the Q1_PowerSupply

output CPU address via OPC server, causing the power supply turning off on the

DevKit.

The TESTCASE sections starts from iterating the test option taken from the tests list.

So the whole test case performance is repeated as many times as the length value of

the tests list initialized and with the parameters got from the current test option.

ioCycles = {"250us": 0.25, "1ms": 1.0}

62

The TESTCASE section is divided into STEP sections with the appropriate

CRITERION sections. The test case sequence implemented in the PyTeMat is fully

consistent to the designed test sequence described in chapter 5. All the operations

involved in the test process are implemented by means of the original modules from

the PyTeMat (DCP.py, OPC.py), by means of the modules designed and

programmed by me (DevKit.py, pywireshark.py). The complete code from final

version of the TC_DevKit_Automat.ptm source file can be found in the Annex B or

on the CD in \PyTeMat\Tests\DP_DEVKIT_TESTS\TC\src\ directory.

7.4.3 PyTeMat Run File

The run file designed for execution of the test case by the PyTeMat tool

(DevKit_Automat.ptc) corresponds to the structure described in chapter 4.2 and its

content looks as follows:

The DevKit_Automat.ptc file itself can be found on the CD in

\PyTeMat\Tests\DP_DEVKIT_TESTS\TC\run\ directory.

As the presence of parameter file is a mandatory condition for the execution it is

created (PRM_DevKit_Automat.ptm) in the appropriate folder and is mentioned in

the run file. But actually the content of the parameter file includes the definition of

idle method without any function.

After implementing the test sequence by the PyTeMat tool the test scenario is ready

for the performance.

7.5 Test Run

Before starting the test performance by executing the PyTeMat run file, I needed to

perform several actions related to the test preparation, besides the assembling of the

real test station, creating TIA Portal project with the functional program and

implementing the test sequence by the PyTeMat tool.

HWconfig Tests\DP_DEVKIT_TESTS\HWconfigs\DevKit_Automat_rack.py

PrefixTCS Tests\DP_DEVKIT_TESTS\TC\src\

PrefixPRM Tests\DP_DEVKIT_TESTS\TC\prm\

Testcase TC_DevKit_Automat.ptm PRM PRM_DevKit_Automat.ptm

63

The first action is the preparation of the firmware images used in the test sequence. I

compiled 18 firmware images for the test options selected for performance in the

framework of the thesis. The image files where named according to the rules defined

by NameGenerator class from the DevKit.py module (for example,

ecos_dap2_ap1_32_native.bin, ecos_dap4_ap3_32_posix.bin and so on).

The second action is the specification of the settings for the PyTeMat test tool. The

settings are defined in the LocalSetting.py file. In case of the implemented test the

file has the following settings:

With these settings the test sequence was executed by opening the command prompt

with the directory of the run file and entering the following command:

From this moment the test performance starts in the Force PyTeMat mode and the

summary information about the process is printed to the command prompt output.

The first test run was interrupted while performance of test option no. 18 (iterated

test from tests list with key “enum”: 18, for details see Annex A). After I got the

DevKit under the test to its default state, I run the second test performance starting

from the test option no. 18. At this time the test was performed to its end without

interruption.

As the result the test run, I received two log files in *.txt format containing the data

related to the test performance procedure and two folders with the trace log files

with the communication of the network while the test performance. This data should

pytemat DevKit_Automat.ptc -f

import LocalSettings

version of PyTeMat, that will be run

LocalSettings.PyTeMatPath = "c:\\PyTeMat\\"

LocalSettings.IntermediateFilesPath = "c:\\PyTeMat\\Test_System\\"

network card selection - will be used for DCP services

LocalSettings.NetworkConnectionName = "Siemens"

LocalSettings.EthInterfaceIP = "192.168.0.3"

settings for wireshark.py module

LocalSettings.WiresharkInterface = "Profishark"

LocalSettings.LuaPath = "c:\\PyTeMat\\tshark_sniff\\sniffers\\"

LocalSettings.PcapFilePath = "c:\\PyTeMat\\Test_System\\Log_Files\\Captures"

other optional local settings

LocalSettings.TcpLoaderPath = "c:\\PyTeMat\\BootleBinaryTest\\"

LocalSettings.IPAddForFWUpload = "192.168.0.123"

default loggers settings

LocalSettings.LogFilePath = "c:\\PyTeMat\\Test_System\\Log_Files"

LocalSettings.SumFilePath = "c:\\PyTeMat\\Test_System\\Test_Results"

64

be enough for investigation of the test step failures and other problems occurred

while the test performance.

65

8 Result Analysis

Each test procedure ends with the analysis of its results.

The summary at the of output log *.txt file received from the interrupted test run has

the following content:

This test run has one criteria failure that causes the test run interruption.

After investigation of the error and the DevKit serial communication the defect was

found. After uploading firmware image ecos_dap4_ap3_32_native.bin (test case no.

17) to the NOR 32 bit flash the DevKit stops communicating via serial port.

Therefore the uploading of the following firmware is not possible via TCP as the

terminal console application doesn’t work.

The second summary file of the second run has the following content:

19.12.2016 21:33:28 <Testcase_evaluation ; PyTeMat>: =============================

19.12.2016 21:33:28 <Testcase_evaluation ; PyTeMat>: Testcase has failed !

19.12.2016 21:33:28 <Testcase_evaluation ; PyTeMat>: with 7 faults

19.12.2016 21:33:28 <Testcase_evaluation ; PyTeMat>: === Fault recapitulation ===

19.12.2016 20:51:08 <Testcase_evaluation ; Preprocessor>: CRITERION has failed

19.12.2016 20:53:38 <Testcase_evaluation ; DevKit>: The TcpFWLoader is not executed or the

update is not possible.

19.12.2016 20:56:38 <Testcase_evaluation ; DevKit>: The firmware update process FAILED or

exceeded 180 second period.

19.12.2016 20:56:38 <Testcase_evaluation ; Preprocessor>: CRITERION has failed

19.12.2016 21:06:15 <Testcase_evaluation ; Preprocessor>: CRITERION has failed

19.12.2016 21:10:03 <Testcase_evaluation ; Preprocessor>: CRITERION has failed

19.12.2016 21:33:00 <Testcase_evaluation ; Preprocessor>: CRITERION has failed

19.12.2016 21:33:28 <Testcase_evaluation ; PyTeMat>: =============================

19.12.2016 20:14:39 <Exception ; Preprocessor>: ===================== END TRACEBACK

=====================

19.12.2016 20:14:39 line 588 <Finally ; Preprocessor>: FINALLY - Clean up the test environment

19.12.2016 20:14:56 <Testcase_evaluation ; PyTeMat>: =============================

19.12.2016 20:14:56 <Testcase_evaluation ; PyTeMat>: Testcase has failed !

19.12.2016 20:14:56 <Testcase_evaluation ; PyTeMat>: with 5 faults

19.12.2016 20:14:56 <Testcase_evaluation ; PyTeMat>: === Fault recapitulation ===

19.12.2016 20:14:39 <Testcase_evaluation ; Preprocessor>: CRITERION has failed

19.12.2016 20:14:39 <Testcase_evaluation ; PyTeMat>: ========= Exception OCCURED - PyTeMat

stopped =========

19.12.2016 20:14:39 <Testcase_evaluation ; Preprocessor>: ======================= TRACEBACK

=======================

19.12.2016 20:14:39 <Testcase_evaluation ; Preprocessor>: Traceback (most recent call last):

 File "C:/PyTeMat/Test_System/1-executable_code-TC_DevKit_Automat.py", line 628, in <module>

 flashType=test["flashType"], flashBit=test["flashBit"])

 File "c:\PyTeMat\\Core\PyModules\DevKit.py", line 283, in Run

 if self._parent.ComPort.is_open:

AttributeError: 'NoneType' object has no attribute 'is_open'

19.12.2016 20:14:39 <Testcase_evaluation ; Preprocessor>: ===================== END TRACEBACK

=====================

19.12.2016 20:14:56 <Testcase_evaluation ; PyTeMat>: =============================

66

The second test run has four criteria failures and according to the time of their

occurrence I am able to investigate the cause of the failure.

The first failure occurred at 20:56:38 was caused by DevKit’s falling into the defect

state, when the device is not able to communicate at all. This happened when

ecos_dap2_ap1_32_posix.bin firmware image was uploaded to the SPI flash of the

DevKit.

The second and the third failures occurred at 21:06:15 and 21:10:03 respectively

relate to the AR establishment. In this case the DevKit was not able to establish the

AR with the IO controller after uploading the firmware images

ecos_dap3_ap2_32_posix.bin and ecos_dap3_ap2_32_posix.bin.

The last failure occurred at 21:33:00 was caused by wrong IO cycle time interval,

which values were out of the acceptable range.

The received results approve the functionality of the test design and implementation

according to the requirements of regression test. The defects found during the test

performance were reported to the software developers.

The results of the tests are added to the CD and can be found in

\PyTeMat\Test_System\Log_Files\ directory.

67

9 Conclusions

In concordance with the thesis assignment, all the tasks were successfully

accomplished.

I investigated the basis of PROFINET communication standard and briefly

described main functionalities supported by the standard. Then I familiarized with

the Siemens PROFINET IO Development Kit device and its functionality based on

the PROFINET standard and serial communication operations. The main operation

related to the test automation was the firmware update via TCP. After I investigated

the PyTeMat test tool core modules, the structure of the test design by the tool and

the test execution procedure. Based on the knowledge of the PROFINET standard,

the DevKit functionality and PyTeMat application, I designed a test case for

automation of regression tests. The test case covers the main part of the regression

tests, which should be performed on new releases of the DevKit. For the

implementation of the designed test case, I had to expand the PyTeMat core with

two modules. One of them managed the serial communication with the DevKit and

automatic firmware update; another one realized the automatic capturing of the

communication on the network. The automation of capturing was based on the Lua

scripts, which had to be created in advance – one for each type of the analyzed

frame. Then I created the TIA Portal project including the hardware configuration

and the program, which manages sending appropriate requests to the DevKit while

the test performance. After I assembled the test station and implemented the test

sequence in the PyTeMat, I successfully performed the test run. I selected 27 test

options with 18 different firmware options for the test and the results of the test

performance were generated by PyTeMat tool in text format and a number of files

with the frames captured on the network.

The result analysis showed that the tested version of the DevKit release has potential

defects. Therefore I reported about them to the software developers and they fixed

the defects in the final version of the DevKit before its release to the market.

The automation of the tests was a highly reasonable task, due to several facts. The

first one is that the entire test performance lasted for about 2 hours and 20 minutes,

when the manual testing of the same amount of the options could last several

working days. The second fact is that this test design and implementation is being

currently used in the real application while development of the future releases of the

DevKit software. For the real application, it is planned to expand the scope of the

test cases. According to plan, the future version of the test case will cover testing of

the full set of the firmware options and some new test steps will be added (for

68

example testing of the user interface), and the current solution for the developed

automatic test application is designed in a way that these new features can be easily

integrated to the application.

69

References

[1] Programmable logic controller [online]. 2016 [vid. 2016-12-20].

Available: https://en.wikipedia.org/w/index.php?title=Programmable_logic_co

ntroller&oldid=755575480

[2] Fieldbus [online]. 2016 [vid. 2016-12-20].

Available: https://en.wikipedia.org/w/index.php?title=Fieldbus&oldid=750986

345

[3] PROFINET [online]. 2016 [vid. 2016-12-20].

Available: https://en.wikipedia.org/w/index.php?title=PROFINET&oldid=754

378057

[4] PROFINET System Description, Technology and Application. B.m.:

PROFIBUS Nutzerorganisation e. V. (PNO), PROFIBUS & PROFINET

International (PI). October 2014

[5] Profinet, Industrial Ethernet for advanced manufacturing. PI North America

(PTO) [online]. [vid. 2016-12-20].

Available: http://us.profinet.com/technology/profinet/

[6] Application Layer services for decentralized periphery, Technical

Specification for PROFINET IO. B.m.: PROFIBUS Nutzerorganisation e.V.

March 2016

[7] GSDML, Technical Specification for PROFINET. B.m.: PROFIBUS

Nutzerorganisation e.V. April 2016

[8] Application Layer protocol for decentralized periphery, Technical

Specification for PROFINET IO. B.m.: PROFIBUS Nutzerorganisation e.V.

March 2016

[9] PROFINET Test case specification, Basic: V2.32, Title: DataHoldTimer.

B.m.: PROFIBUS Nutzerorganisation e.V. May 2015

[10] Guidelines for Evaluation Kit, ERTEC 200P-2 V4.4.0. November 2016

[11] Evaluation Board ERTEC 200P-2, Manual. B.m.: Siemens AG

[12] Media Redundancy Protocol [online]. 2016 [vid. 2016-12-25].

Available: https://en.wikipedia.org/w/index.php?title=Media_Redundancy_Pr

otocol&oldid=748796764

[13] tshark\ -\ The\ Wireshark\ Network\ Analyzer\ 2.0.0 [online]. [vid. 2017-01-

01]. Available: https://www.wireshark.org/docs/man-pages/tshark.html

70

Annex A

Startup sequence of the IOD

Figure A.1: The schematic representation of the startup sequence

71

Annex B

The Content of TC_DevKit_Automat.ptm Source File

INITIALIZATION:

 tests = [

 {"enum": 0, "dap": 2, "app": 1, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 0,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 1, "dap": 3, "app": 1, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 1,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 2, "dap": 4, "app": 1, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 2,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 3, "dap": 2, "app": 2, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 0,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 4, "dap": 3, "app": 2, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 1,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 5, "dap": 4, "app": 2, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 2,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 6, "dap": 2, "app": 3, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 3,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 7, "dap": 3, "app": 3, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 4,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 8, "dap": 4, "app": 3, "flashType": "NOR", "flashBit": 32,

"flashBuild": "posix", "hw_id": 5,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 9, "dap": 2, "app": 1, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 0,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 10, "dap": 3, "app": 1, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 1,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 11, "dap": 4, "app": 1, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 2,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 12, "dap": 2, "app": 2, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 0,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 13, "dap": 3, "app": 2, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 1,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 14, "dap": 4, "app": 2, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 2,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 15, "dap": 2, "app": 3, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 3,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 16, "dap": 3, "app": 3, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 4,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 17, "dap": 4, "app": 3, "flashType": "NOR", "flashBit": 32,

"flashBuild": "native", "hw_id": 5,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 18, "dap": 2, "app": 1, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 0,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

72

 {"enum": 19, "dap": 3, "app": 1, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 1,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 20, "dap": 4, "app": 1, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 2,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 21, "dap": 2, "app": 2, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 0,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 22, "dap": 3, "app": 2, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 1,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 23, "dap": 4, "app": 2, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 2,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 24, "dap": 2, "app": 3, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 3,

 "2Ports": True, "MRP": False, "DHT": True, "DataSets": True},

 {"enum": 25, "dap": 3, "app": 3, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 4,

 "2Ports": True, "MRP": True, "DHT": True, "DataSets": True},

 {"enum": 26, "dap": 4, "app": 3, "flashType": "SPI", "flashBit": 32,

"flashBuild": "posix", "hw_id": 5,

 "2Ports": False, "MRP": False, "DHT": True, "DataSets": True}

]

 # DAP #Interface #Port1 #Port2 #Input #Output

 hw_sub = [[True, True, True, True, True, True],

 [True, True, True, True, True, True],

 [True, True, True, False, True, True],

 [True, True, True, True, True, True],

 [True, True, True, True, True, True],

 [True, True, True, False, True, True]

]

 ioCycles = {"250us": 0.25, "1ms": 1.0}

 dataSets = [[{"slot": "SlotNumber:0x0", "subslot": "SubslotNumber:0x1"}, {"name":

"I&M0", "wr": False, "rd": True},

 {"name": "I&M1", "wr": True, "rd": True}, {"name": "I&M2", "wr": True,

"rd": True},

 {"name": "I&M3", "wr": True, "rd": True}, {"name": "I&M4", "wr": True,

"rd": True}], # DAP

 [{"slot": "SlotNumber:0x0", "subslot": "SubslotNumber:0x8000"}, {"name":

"I&M0", "wr": False, "rd": True},

 {"name": "I&M1", "wr": False, "rd": True}, {"name": "I&M2", "wr": False,

"rd": True},

 {"name": "I&M3", "wr": False, "rd": True}, {"name": "I&M4", "wr": False,

"rd": True}], # Interface

 [{"slot": "SlotNumber:0x0", "subslot": "SubslotNumber:0x8001"}, {"name":

"I&M0", "wr": False, "rd": True},

 {"name": "I&M1", "wr": False, "rd": True}, {"name": "I&M2", "wr": False,

"rd": True},

 {"name": "I&M3", "wr": False, "rd": True}, {"name": "I&M4", "wr": False,

"rd": True}], # Port1

 [{"slot": "SlotNumber:0x0", "subslot": "SubslotNumber:0x8002"}, {"name":

"I&M0", "wr": False, "rd": True},

 {"name": "I&M1", "wr": False, "rd": True}, {"name": "I&M2", "wr": False,

"rd": True},

 {"name": "I&M3", "wr": False, "rd": True}, {"name": "I&M4", "wr": False,

"rd": True}], # Port2

 [{"slot": "SlotNumber:0x1", "subslot": "SubslotNumber:0x1"}, {"name":

"I&M0", "wr": False, "rd": True},

 {"name": "I&M1", "wr": False, "rd": False}, {"name": "I&M2", "wr": False,

"rd": False},

 {"name": "I&M3", "wr": False, "rd": False}, {"name": "I&M4", "wr": False,

"rd": False}], # Input

 [{"slot": "SlotNumber:0x2", "subslot": "SubslotNumber:0x1"}, {"name":

"I&M0", "wr": False, "rd": True},

 {"name": "I&M1", "wr": False, "rd": False}, {"name": "I&M2", "wr": False,

"rd": False},

 {"name": "I&M3", "wr": False, "rd": False}, {"name": "I&M4", "wr": False,

"rd": False}] # Output

]

73

 Wireshark = pywireshark.Wireshark()

 Controller.OPC.ProjectOnline()

 flashSpi = False

 def DevicePowerOFF():

 Controller.OPC.OPCWrite("Q1_PowerSupply", True)

 time.sleep(2)

 def DevicePowerON():

 Controller.OPC.OPCWrite("Q1_PowerSupply", False)

 time.sleep(15)

 def DeviceInit():

 DevicePowerOFF()

 Controller.OPC.OPCWrite("Q0_EthBreak", False)

 Controller.OPC.OPCWrite("Q3_FlashSPI", False)

 if DeviceDK.Console.ComPort and DeviceDK.Console.ComPort.is_open:

 DeviceDK.Console.Close()

 DevicePowerON()

 def GenerateMacDcp(mac):

 if len(mac) == 17:

 new_mac = ""

 mac_list = mac.split(":")

 for byte in mac_list:

 new_mac += byte

 return new_mac

 elif len(mac) == 12:

 return mac

 else:

 raise AttributeError("MAC Address has wrong format! Check input parameter.")

 def GenerateMacAppl(mac):

 if len(mac) == 12:

 new_mac = ""

 i = 0

 for char in mac:

 if i == 2:

 new_mac += ":"

 i = 0

 new_mac += char

 i += 1

 return new_mac

 elif len(mac) == 17:

 return mac

 else:

 raise AttributeError("MAC Address has wrong format!\nCheck input parameter.")

 testcaseCaptureFolder = "TC_DK_" + time.strftime("%Y%m%d%H%M%S", time.localtime())

TESTCASE("Testing firmware"):

 for test in tests:

 testcaseName = "dap%s_ap%s_%s%s_%s" % (

 str(test["dap"]), str(test["app"]), test["flashType"], str(test["flashBit"]),

str(test["flashBuild"]))

 print

"\n===\n====================================

==============="

 print "Testcase: %s %s" % (str(test["enum"]), testcaseName)

 print "Firmware update testing: ecos_dap%s_ap%s_%s_%s.bin" % (test["dap"],

test["app"], test["flashBit"], test["flashBuild"])

 time.sleep(1)

 STEP ("[OPC] Initialize the station"):

 """

 Sets the station to initial state by means of OPC, gets MAC addresses of the

devices using DCP.Browse

 """

 DeviceInit()

 Controller.OPC.OPCWrite("MW_HWIDArray", test["hw_id"])

74

 Controller.OPC.EthBreak = Controller.OPC.OPCRead("Q0_EthBreak")

 Controller.OPC.PowSupply = Controller.OPC.OPCRead("Q1_PowerSupply")

 # Controller.OPC.NOR16 = Controller.OPC.OPCRead("Q2_FlashNOR16")

 Controller.OPC.SPI = Controller.OPC.OPCRead("Q3_FlashSPI")

 Controller.OPC.HWIDArray = Controller.OPC.OPCRead("MW_HWIDArray")

 initSet = False

 CRITERION(initSet):

 initSet = (Controller.OPC.EthBreak == False and

 Controller.OPC.PowSupply == False and

 # Controller.OPC.NOR16 == flashOpcSettings[1] and

 Controller.OPC.SPI == flashSpi and

 Controller.OPC.HWIDArray == test["hw_id"])

 UNTIL(reached_in = 1 , remains_for = 0)

 PASS:

 time.sleep(1)

 SECTION("Firmware Update"):

 time.sleep(1)

 STEP ("[DCP] Set NameOfStation and IP address for uploading FW under the test"):

 DeviceList = Project.PGPC.DCP.Browse()

 mac = GenerateMacDcp(DeviceDK.IPSuite.MAC)

 Project.PGPC.DCP.SetDeviceName(mac, DeviceDK.Name, permanent=True)

 Project.PGPC.DCP.SetIP(mac, ipAddr=DeviceDK.IPAddrForFWUpload,

mask=DeviceDK.IPSuite.SubNetMask)

 time.sleep(60)

 DeviceDK.IPSuite.IpAddress = DeviceDK.IPAddrForFWUpload

 devicesPing = False

 CRITERION(devicesPing):

 devicesNotPinged = Project.Devices.Ping()

 if Partner.Name in devicesNotPinged:

 devicesPing = True

 elif len(devicesNotPinged) == 0:

 devicesPing = True

 else:

 devicesPing = False

 time.sleep(1)

 UNTIL(reached_in = 3 , remains_for = 2)

 PASS:

 time.sleep(1)

 STEP ("[CON] Open COM port on DK-ERTEC enables serial input/output"):

 DeviceDK.Console.OpenPort()

 portIsOpen = False

 CRITERION(portIsOpen):

 if DeviceDK.Console.ComPort:

 portIsOpen = DeviceDK.Console.ComPort.is_open and True

 else:

 portIsOpen = False

 UNTIL(reached_in = 2, remains_for = 2)

 PASS:

 time.sleep(1)

 STEP ("[CON] Generate EcosFileName. Run the FW update"):

 DeviceDK.FWUpdate.ecosFileName =

DeviceDK.GenerateName.EcosFileName(test["dap"], test["app"],

test["flashBit"], test["flashBuild"])

 DeviceDK.FWUpdate.Run(ecosFileName=DeviceDK.FWUpdate.ecosFileName,

 ip=DeviceDK.IPAddrForFWUpload,

 flashType=test["flashType"],

flashBit=test["flashBit"])

 fwUpdated = False

 CRITERION(fwUpdated):

 fwUpdated = DeviceDK.FWUpdate.fwUpdated

 UNTIL(reached_in = 0 , remains_for = 0)

 FAULT:

 continue

 PASS:

 DevicePowerOFF()

 if test["flashType"] == "SPI":

 Controller.OPC.OPCWrite("Q3_FlashSPI", True)

 print "SPI flash is set."

 else:

75

 Controller.OPC.OPCWrite("Q3_FlashSPI", False)

 print "NOR flash is set."

 DevicePowerON()

 SECTION ("AR and CR establishment"):

 time.sleep(1)

 STEP ("[DCP] Generate and set NameOfStation"):

 deviceNameDefault = DeviceDK.GenerateName.NameOfStation(test["dap"],

test["app"])

 mac = GenerateMacDcp(DeviceDK.IPSuite.MAC)

 Project.PGPC.DCP.SetDeviceName(mac, deviceNameDefault, permanent=True)

 time.sleep(5)

 DeviceDK.IPSuite.IpAddress = DeviceDK.GenerateName.IpAddress(test["dap"],

test["app"],

 250)

 devicesPing = False

 CRITERION(devicesPing):

 devicesNotPinged = Project.Devices.Ping()

 if Partner.Name in devicesNotPinged:

 devicesPing = True

 elif len(devicesNotPinged) == 0:

 devicesPing = True

 else:

 devicesPing = False

 time.sleep(1)

 UNTIL(reached_in = 3 , remains_for = 0)

 FAULT:

 continue

 PASS:

 time.sleep(1)

 STEP ("[OPC]+[TSH] EthBreak-Disconnect. Start capture. EthBreak-Connect. Get

frames. Check AR (Connect.res and ApplRdy.req)"):

 Controller.OPC.OPCWrite("Q0_EthBreak", True)

 time.sleep(6)

 saveNameAr = "%02d_AR_DK_%s" % (test["enum"], testcaseName)

 print "Checking AR establishment. (Capture %s.pcap)" % saveNameAr

 Wireshark.StartCapture(duration=7,

 filter="udp",

 savePath=LocalSettings.PcapFilePath

+"\\"+testcaseCaptureFolder+"\\",

 saveName=saveNameAr,

 sniffers=["conn_res_sniff.lua",

"appl_req_sniff.lua"])

 Controller.OPC.OPCWrite("Q0_EthBreak", False)

 framesAR = Wireshark.GetFrames()

 devicedkConnect = False

 devicedkAppl = False

 partnerConnect = False

 partnerAppl = False

 arEstablished = False

 if framesAR:

 for frame in framesAR:

 if frame[1] == DeviceDK.IPSuite.IpAddress and \

 "CONN_RES" in frame and \

 "Status:OK" in frame:

 devicedkConnect = True

 elif devicedkConnect and frame[1] == DeviceDK.IPSuite.IpAddress and

\

 "APPLRDY_REQ" in frame and \

 not "ModuleDiffBlock" in frame:

 devicedkAppl = True

 elif frame[1] == Partner.IPSuite.IpAddress and \

 "CONN_RES" in frame and \

 "Status:OK" in frame:

 partnerConnect = True

 elif partnerConnect and frame[1] == Partner.IPSuite.IpAddress and \

 "APPLRDY_REQ" in frame and \

 not "ModuleDiffBlock" in frame:

 partnerAppl = True

 CRITERION(arEstablished):

 if test["2Ports"]:

76

 arEstablished = devicedkConnect and devicedkAppl and partnerConnect and

partnerAppl

 else:

 arEstablished = devicedkConnect and devicedkAppl and not partnerConnect

and not partnerAppl

 time.sleep(1)

 UNTIL(reached_in = 10 , remains_for = 0)

 FAULT:

 if not devicedkConnect or not devicedkAppl:

 continue

 PASS:

 time.sleep(1)

 STEP ("[TSH] Check CR (RTC1 frames)"):

 devicedkRtc = False

 partnerRtc = False

 crEstablished = False

 saveNameCr = "%02d_CR_DK_%s" % (test["enum"], testcaseName)

 print "Reading RTC1 frames. (Capture %s.pcap)" % saveNameCr

 Wireshark.StartCapture(duration=1,

 savePath=LocalSettings.PcapFilePath

+"\\"+testcaseCaptureFolder+"\\",

 saveName=saveNameCr,

 sniffers=["rtc1_sniff.lua"])

 framesRtc = Wireshark.GetFrames([DeviceDK.IPSuite.MAC, None],

[Partner.IPSuite.MAC, None])

 if framesRtc:

 for frame in framesRtc:

 if frame[1] == DeviceDK.IPSuite.MAC and (not "DataStatus:OK" in

frame or not "TransferStatus:OK" in frame):

 devicedkRtc = False

 break

 elif frame[1] == DeviceDK.IPSuite.MAC and "DataStatus:OK" in frame

or "TransferStatus:OK" in frame:

 devicedkRtc = True

 if test["2Ports"]:

 for frame in framesRtc:

 if frame[1] == Partner.IPSuite.MAC and (not "DataStatus:OK" in

frame or not "TransferStatus:OK" in frame):

 partnerRtc = False

 break

 elif frame[1] == Partner.IPSuite.MAC and "DataStatus:OK" in

frame or "TransferStatus:OK" in frame:

 partnerRtc = True

 CRITERION(crEstablished):

 if test["2Ports"]:

 crEstablished = devicedkRtc and partnerRtc

 else:

 crEstablished = devicedkRtc

 time.sleep(1)

 UNTIL(reached_in = 10 , remains_for = 0)

 FAULT:

 if not devicedkRtc:

 continue

 PASS:

 time.sleep(1)

 SECTION ("Check MRP configuration on the devices Interface submodule"):

 time.sleep(1)

 STEP ("[TSH]+[OPC] Read PDInterfaceMrpDataReal"):

 deviceInterfaceMrp = False

 readPdRealData = Controller.OPC.OPCRead("M0_ReadInterfaceMrpReal")

 if readPdRealData:

 Controller.OPC.OPCWrite("M0_ReadInterfaceMrpReal", False)

 time.sleep(1)

 saveNamePdInterface = "%02d_InterfaceMrpReal_%s" % (test["enum"],

testcaseName)

 print "Reading PDInterfaceMrpDataReal. (Capture %s.pcap)" %

saveNamePdInterface

 Wireshark.StartCapture(duration=10,

 filter="udp",

 savePath=LocalSettings.PcapFilePath

+"\\"+testcaseCaptureFolder+"\\",

77

 saveName=saveNamePdInterface,

 sniffers=["interfacemrpreal_sniff.lua"])

 time.sleep(3)

 Controller.OPC.OPCWrite("M0_ReadInterfaceMrpReal", True)

 frameInterfaceMrp = Wireshark.GetFrames([DeviceDK.IPSuite.IpAddress, None])

 CRITERION(deviceInterfaceMrp):

 if frameInterfaceMrp and len(frameInterfaceMrp) == 1:

 if test["MRP"] and test["2Ports"]:

 for item in frameInterfaceMrp:

 if "Status:OK" in item:

 deviceInterfaceMrp = True

 elif not test["MRP"] or not test["2Ports"] and "Status:ERROR" in

frameInterfaceMrp:

 deviceInterfaceMrp = True

 else:

 deviceInterfaceMrp = False

 time.sleep(1)

 UNTIL(reached_in = 0 , remains_for = 0)

 PASS:

 time.sleep(1)

 SECTION ("Checks DataSets"):

 print "DataSets test: %s" % str(test["DataSets"])

 if test["DataSets"]:

 time.sleep(1)

 STEP ("[TSH]+[OPC] Check I&M Datasets Write responses"):

 saveNameDatasetsWrite = "%02d_DataSets_Write_%s" % (test["enum"],

testcaseName)

 print "Datasets for Write.res. (Capture %s.pcap)" %

saveNameDatasetsWrite

 Wireshark.StartCapture(duration=7,

 filter="udp",

 savePath=LocalSettings.PcapFilePath + "\\" +

testcaseCaptureFolder + "\\",

 saveName=saveNameDatasetsWrite,

 sniffers=["imdata_sniff.lua"])

 time.sleep(3)

 Controller.OPC.OPCWrite("M1_WriteIMData", True)

 framesDataSets = Wireshark.GetFrames([DeviceDK.IPSuite.IpAddress, None])

DeviceDK.IPSuite.IpAddress

 writeResList = []

 for frame in framesDataSets:

 if "WRITE_RES" in frame:

 if "Status:OK" in frame:

 writeResList.append(True)

 elif "Status:ERROR" in frame:

 writeResList.append(False)

 deviceWriteResList = []

 for i in range(1, 6):

 for j in range(6):

 if hw_sub[test["hw_id"]][j]:

 deviceWriteResList.append(dataSets[j][i]["wr"])

 CRITERION(datasetsWriteOk):

 datasetsWriteOk = writeResList == deviceWriteResList

 time.sleep(1)

 UNTIL(reached_in = 0 , remains_for = 0)

 PASS:

 time.sleep(1)

 STEP ("[TSH]+[OPC] Check I&M Datasets Read responses"):

 saveNameDatasetsRead = "%02d_DataSets_Read_%s" % (test["enum"],

testcaseName)

 print "Datasets for Read.res. (Capture %s.pcap)" % saveNameDatasetsRead

 Wireshark.StartCapture(duration=7,

 filter="udp",

 savePath=LocalSettings.PcapFilePath + "\\" +

testcaseCaptureFolder + "\\",

 saveName=saveNameDatasetsRead,

 sniffers=["imdata_sniff.lua"])

 time.sleep(3)

 Controller.OPC.OPCWrite("M2_ReadIMData", True)

78

 framesDataSets = Wireshark.GetFrames([DeviceDK.IPSuite.IpAddress, None])

DeviceDK.IPSuite.IpAddress

 readResList = []

 for frame in framesDataSets:

 if "READ_RES" in frame:

 if "Status:OK" in frame:

 readResList.append(True)

 elif "Status:ERROR" in frame:

 readResList.append(False)

 deviceReadResList = []

 for i in range(1, 6):

 for j in range(6):

 if hw_sub[test["hw_id"]][j]:

 deviceReadResList.append(dataSets[j][i]["rd"])

 CRITERION(datasetsWriteOk):

 datasetsReadOk = readResList == deviceReadResList

 time.sleep(1)

 UNTIL(reached_in = 0 , remains_for = 0)

 PASS:

 time.sleep(1)

 SECTION ("Checks IOCycleTime and DHT timer"):

 print "DHT test: %s" % str(test["DHT"])

 time.sleep(1)

 if test["DHT"]:

 for io_cycle in ioCycles:

 STEP ("[DCP] Set name for appropriate IOCycle"):

 print "%s IOCycle for %s ms SendClock" % (io_cycle,

ioCycles[io_cycle])

 deviceNameIo =

DeviceDK.GenerateName.NameOfStationForIo(deviceNameDefault, io_cycle)

 mac = GenerateMacDcp(DeviceDK.IPSuite.MAC)

 Project.PGPC.DCP.SetDeviceName(mac, deviceNameIo, permanent=True)

 time.sleep(20)

 DeviceDK.IPSuite.IpAddress =

DeviceDK.GenerateName.IpAddress(test["dap"], test["app"],

ioCycles[io_cycle])

 devicesPing = False

 CRITERION(devicesPing):

 devicesNotPinged = Project.Devices.Ping()

 if Partner.Name in devicesNotPinged:

 devicesPing = True

 elif len(devicesNotPinged) == 0:

 devicesPing = True

 else:

 devicesPing = False

 time.sleep(1)

 UNTIL(reached_in = 0 , remains_for = 0)

 FAULT:

 continue

 PASS:

 time.sleep(1)

 STEP ("[TSH] Check time interval with appropriate IOCycleTime for 5

random frames"):

 saveNameIoCycle = "%02d_IOCycle_%s_%s" % (test["enum"], io_cycle,

testcaseName)

 print "Time intervals for %s IOCycle. (Capture %s.pcap)" %

(io_cycle, saveNameIoCycle)

 Wireshark.StartCapture(duration=1,

 savePath=LocalSettings.PcapFilePath

+"\\"+testcaseCaptureFolder+"\\",

 saveName=saveNameIoCycle,

 sniffers=["rtc1_sniff.lua"])

 framesRtcIoc = Wireshark.GetFrames([DeviceDK.IPSuite.MAC, None])

 limhigh = (ioCycles[io_cycle] + ioCycles[io_cycle] * 0.15) * 0.001

 limlow = (ioCycles[io_cycle] - ioCycles[io_cycle] * 0.15) * 0.001

 ioCycleTimeGood = False

 CRITERION(ioCycleTimeGood):

 if framesRtcIoc:

 for i in range(5):

79

 j = randint(1, len(framesRtcIoc)-1)

 frame1 = framesRtcIoc[j]

 frame0 = framesRtcIoc[j-1]

 difference = float(frame1[0])-float(frame0[0])

 if limlow<= difference <= limhigh:

 ioCycleTimeGood = True

 print "Time interval for frame sent in %s is OK" %

str(frame0[0])

 else:

 ioCycleTimeGood = False

 print "Time interval for frame sent in %s is WRONG.

(Capture %s.pcap)" % (str(frame0[0]), saveNameIoCycle)

 break

 time.sleep(1)

 UNTIL(reached_in = 0 , remains_for = 0)

 PASS:

 time.sleep(1)

 STEP ("[TSH]+[OPC] Check DHT timer"):

 saveNameDht = "%02d_DHT_%s_%s" % (test["enum"], io_cycle,

testcaseName)

 print "Check DHT timer for %s IOCycleTime. (Capture %s.pcap)" %

(io_cycle, saveNameDht)

 Wireshark.StartCapture(duration=,

 savePath=LocalSettings.PcapFilePath

+"\\"+testcaseCaptureFolder+"\\",

 saveName=saveNameDht,

 sniffers=["rtc1_sniff.lua",

"err_dht_sniff.lua"])

 time.sleep(3)

 Controller.OPC.OPCWrite("Q0_EthBreak", True)

 framesRtcDht = Wireshark.GetFrames([DeviceDK.IPSuite.MAC, None],

[Controller.IPSuite.MAC, DeviceDK.IPSuite.MAC])

 Controller.OPC.OPCWrite("Q0_EthBreak", False)

 lastIocFrameNum = 0

 firstDevRtcFrame = False

 rtcFramesNum = 0

 dhtTimerPass = False

 if framesRtcDht:

 for i in range(len(framesRtcDht)):

 frame = framesRtcDht[i]

 if frame[1] == Controller.IPSuite.MAC and frame[2] ==

DeviceDK.IPSuite.MAC and \

 "RTC1" in frame:

 lastIocFrameNum = i

 for i in range(lastIocFrameNum + 1, len(framesRtcDht)):

 frame = framesRtcDht[i]

 if not firstDevRtcFrame and frame[1] == DeviceDK.IPSuite.MAC

and "RTC1" in frame:

 firstDevRtcFrame = True

 rtcFramesNum += 1

 elif firstDevRtcFrame and frame[1] == DeviceDK.IPSuite.MAC

and "RTC1" in frame:

 rtcFramesNum += 1

 elif firstDevRtcFrame and frame[1] == DeviceDK.IPSuite.MAC

and "ERR-RTA-PDU" in frame:

 break

 CRITERION(dhtTimerPass):

 dhtTimerPass = firstDevRtcFrame and 3 <= rtcFramesNum <= 5

 time.sleep(1)

 UNTIL(reached_in = 0 , remains_for = 0)

 PASS:

 time.sleep(1)

FINALLY:

 DeviceInit()

