Dvouosý naklápěcí stojan pro zkoušení spalovacích motorů

Two Axis Tilting Stand for Combustion Engines Testing

Autor: Bc. David Světlík
Studijní obor: 2301T047 Dopravní, letadlová a transportní technika
Vedoucí práce: Ing. Jiří Vávra, Ph.D.

Praha 2016
ABSTRAKT

Diplomová práce se zabývá návrhem vybraných částí dvouosého naklápěcího stojanu pro testování spalovacích motorů. Motivací pro tuto diplomovou práci je výzkum chování motorových kapalin za působení dynamických účinků v celém pracovním rozsahu spalovacího motoru. Dynamické účinky jízdy vozidla budou emulovány naklápěním spalovacího motoru ve dvou osách. Hlavním cílem práce je návrh komponent pro zajištění převodu výkonu od spalovacího motoru na dynamometr. Další cíle jsou návrhy pružného uložení motoru a vyřešení odvodu spalin od spalovacího motoru.

Klíčová slova: chování motorových kapalin, dvouosý naklápěcí stojan pro testy spalovacích motorů, torzní kmitání, dynamická analýza, hydrostatický převod, uložení motoru.

ABSTRACT

This thesis deals with the design of selected parts of a combustion engine dual-axis tilt test stand. An investigation of engine fluids behavior during working cycle of the combustion engine with dynamic forces simulation is provided. The main goal of the thesis is the design of power transverse components of what. Additional goals are to design the engine mounts and exhaust gases handling system out of the engine.

Key words: engine fluids, combustion engine dual-axis tilt test stand, dynamic analysis, torsion vibration, hydrostatic transmission, engine mounts.
PROHLÁŠENÍ

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze podklady uvedené v přiloženém seznamu.

V Praze dne 19. 12. 2015

David Světlík
Obsah

ÚVOD .. 7

CÍLE PRÁCE ... 8

MOTIVACE PRO KONSTRUKCI DVOUOSÉHO NAKLÁPČÍHO STOJANU ... 9

1 ZÁKLADNÍ VSTUPNÍ POZNAKY .. 10
 1.1 Fyzikální popis působení dynamických sil na kapalinu ... 10
 1.2 Navozování dynamických účinků .. 11
 1.3 Řešení - výrobci a provozovatelé nklápcích rámů ... 11
 1.3.1 Naklápcí plošiny od výrobce CFM SCHILLER ... 11
 1.3.2 Patent od General Motors Corporation .. 12
 1.3.3 Shrnutí výsledků hledání ... 14
 1.4 Prostor pro novou konstrukci ... 14

2 KONCEPCE DVOUOSÉHO NAKLÁPČÍHO STOJANU ... 15
 2.1 Zkušební stanoviště .. 15
 2.2 Výběr vhodného spojení mezi motorem a dynamometrem ... 17
 2.3 Hydrostatický převod .. 19
 2.3.1 Návrh a kontrola hlavních komponent hydrostatického převodu 20
 2.3.2 Torzní tuhost hydrostatického převodu .. 23
 2.3.3 Vliv pružnosti hydraulického vedení ... 28

3 KONTROLA A MINIMALIZACE TORZNÍCH KMITŮ SOUSTAVY .. 29
 3.1 Podmínky pro návrh a kontrolu pružné spojky ... 29
 3.1.1 Podmínka nejvýššího středního momentu a nejvyšších provozních otáček 30
 3.1.2 Podmínka vzdálenost volnoběhu od hlavních kritických otáček 31
 3.1.3 Závěr návrhu spojek .. 36
 3.2 Návrh spojení hydrogenerátoru a dynamometru ... 37
 3.3 Návrhy spojení spalovacího motoru a hydrogenerátoru ... 40
 3.3.1 Spojení bez reduktoru, spojky Centaflex .. 40
 3.3.2 Spojení bez reduktoru, spojka Vulkan .. 41
 3.3.3 Spojení s reduktorem, převod ozubeným řemenem .. 41
 3.3.4 Spojení s reduktorem, převod planetovou převodovkou .. 42
 3.3.5 Spojení s reduktorem, převod automobilní převodovkou .. 42
 3.4 Závěr návrhu spojení spalovacího motoru a hydrogenerátoru .. 45
 3.5 Dynamická analýza torzních kmitů vícehmotné soustavy – kontrola spojky 46
3.5.1 Rozdělení hmot torzní soustavy ... 47
3.5.2 Výpočet vlastních frekvencí a vlastních tvarů soustavy 48
3.5.3 Kontrola namáhání spojky v provozu - spojkový tvar kmitu 52

4 ULOŽENÍ MOTORU ... 55
4.1 ULOŽENÍ MOTORU V SILENTBLOCÍCH ... 55
4.2 Kontrola povoleného výosení pružné spojky ... 55

5 KONSTRUKCE DVOUOSÉHO NAKLÁPĚCIHO STOJANU .. 56
5.1 VEDENÍ HADIC S TLAKOVÝM OLEJEM .. 56
5.2 Flexibilní odvod spalin ... 56

6 ZÁVĚR .. 60

PODĚKOVÁNÍ ... 61

POUŽITÁ LITERATURA ... 62

SEZNAM PŘÍLOH NA CD .. 64
ÚVOD

Předložený text se zabývá návrhem vybraných částí dvouosého naklápěcího stojanu pro výzkum chování kapalin ve spalovacím motoru osobního automobilu. Hlavním předmětem výzkumu na hotovém zkušebním zařízení bude chování olejové náplně v mazací soustavě spalovacího motoru za emulace dynamických účinků jízdy vozidla. Text navazuje bakalářskou práci: Dvouosý naklápěcí stojan pro testy spalovacích motorů [1]. Kde je proveden průzkum již existujících řešení, jejich zhodnocení a jsou zde uvedeny důvody k návrhu nové konstrukce. Okrajově v diplomové práci nejdloužitější poznatky zopakuji.

Hlavní oblastí zájmu práce je zvážení možností přenosu výkonu od spalovacího motoru na dynamometr (i opačnou cestou), výběr nejvhodnějšího řešení a jeho rozpracování v rozsahu zadání. Na to navazuje uložení motoru a dalších částí na stojanu. Samostatnou kapitolu tvoří návrh částí spojujících spalovací motor relativně se pohybující vůči zařízením na nehybné podložce. Poslední část shrnuje dosažené poznatky a uvádí náměty pro další práce na jednotlivých částech konstrukce.

Posloupností kapitol a informacích v nich jsem se snažil kopírovat časovou osu vývoje. Tak aby na sebe informace logicky navazovaly. Vzájemné vztahy mezi součástmi jsou zmíněny v textu a konstrukční uspořádání jsou uváděna v tu chvíli, kdy jsou již známy největší vlivy ovlivňující jejich podobu. Připojovací rozměry jsou rovněž zmíněny v místech, kde tvoří vstupy pro aktuální problémy. Konstrukční návrhy jsou prováděny v 3D CAD programu Creo Elements Pro.

Práce se nezabývá polohováním standu, ale výsledky (rozložení největších hmot) budou vstupem pro návrh pohonů.
CÍLE PRÁCE

Vyrovnejte připojovacím rozměrům konkrétního spalovacího motoru, ale současně zajistit možnost zkoušení motorů různých velikostí. Při návrhu jednotlivých částí mít na paměti technologičnost konstrukce a vzájemné ovlivňování části konstrukce. Navrhnout takové řešení části stojanu, jejichž rozměry a provedení budou vstupem pro pevnostní analýzy, dynamické analýzy a optimalizace.

Optimalizovat z hlediska požadované funkce částí, technologických a ekonomických hledisek. V největší míře používat při návrhu již hotové díly, normalizované díly nebo díly vyrobíte v rámci pracoviště. Dále pak používat sériově vyráběné díly od průmyslových partnerů či jiných dodavatelů.

Tato práce by měla být jedním ze vstupů pro výrobní výkresy jednotlivých částí konstrukce. Některé bych chtěl uvést již na konci práce. Dále pak zdrojem pro návrh prvků, které bude muset dvouosý naklápěcí stojan obsahovat (pohon naklápění) nebo s nimi spolupracovat (například elektronické ovládání naklápění).
MOTIVACE PRO KONSTRUKCI DVOUOSÉHO NAKLÁPĚCÍHO STOJANU

Na automobil mění svoji rychlost nebo směr jízdy působí dynamické účinky setrvačných sil. Tyto účinky se projevují na jednotlivých částech automobilu i na provozních kapalinách.

1 ZÁKLADNÍ VSTUPNÍ POZNATKY

1.1 Fyzikální popis působení dynamických sil na kapalinu

Fyzikálně popisuje působení dynamických sil na nádobu s kapalinou princip relativní rovnováhy kapalin. K relativní rovnováze dojde tehdy, je-li kapalina v klidu vzhledem ke stěnám nádoby a nádoba se pohybuje vzhledem k absolutnímu prostoru rovnoměrně zrychleným unášivým pohyblem se zrychlením \vec{a}_u. Doplňkové zrychlení \vec{a} je stejně velké jako \vec{a}_u ale opačného smyslu. Nádoba se nachází v prostoru gravitačního pole Země definovaném vektorem \vec{g}. Hladina kapaliny je potom kolmá na vektor intenzity hmotových sil \vec{K} [4].

![Diagram kapaliny v nádobě pohybující se rovnoměrně zrychleným pohybem]

Obr. 1.1 Nádoba pohybující se rovnoměrně zrychleným pohybem [4]

Úhel náklonu hladiny je dán vztahem (1.1) [4], který je graficky zobrazen na obr. 1.2

$$\varphi = \tan^{-1} \frac{a}{g}$$

(1.1)

V této publikaci se nádobou s kapalinou rozumí olejová vana spalovacího motoru s olejem. \vec{a}_u je rovnoměrně unášivé zrychlení automobilu (podélné nebo příčné). Podrobněji viz. [1] a [4].

![Grafické zobrazení vztahu (1.1) pro $g = -9,81 m.s^{-2}$]

Obr. 1.2 Grafické zobrazení vztahu (1.1) pro $g = -9,81 m.s^{-2}$
1.2 Navození dynamických účinků

Úvahami o možnostech simulace dynamických účinků se věnuje publikace [1]. Existuje podobnost stavů hladiny oleje při rovnoměrné akceleraci a jízdou konstantní rychlostí do svahu, rovnoměrným brzděním a jízdou konstantní rychlosti ze svahu. Stejně tak jako mezi zatáčením a naklopení vozidla v příčné ose jízdou konstantní rychlostí po svahu rovnoběžně s vrstevnicí. Z předchozích porovnání je zřejmé, že polohou vozidla (a tím i spalovacího motoru) v různých naklopených polohách lze dosáhnout stejného chování olejové náplně jako působením dynamických sil. Stejně tak jako mezi zatáčení m a naklopení vozidla v příčné ose jízdou konstantní rychlostí po svahu rovnoběžně s vrstevnicí. Z předchozích porovnání je zřejmé, že polohou vozidla (a tím i spalovacího motoru) v různých naklopených polohách lze dosáhnout stejného chování olejové náplně jako působením dynamických sil. Jedná se o emulaci dynamických účinků jízdních režimů jízdy vozidla. Na tomto principu fungují dvouosé naklápěcí stojany od výrobců v následující kapitole [1].

1.3 Rešerše - výrobci a provozovatelé naklápěcích rámů

1.3.1 Naklápěcí plošiny od výrobce CFM SCHILLER

CFM SCHILLER vyrábí naklápěcí plošiny pro zkoušení převodových ústrojí, palivových soustav a spalovacích motorů (Obr. 1.3) [16].

Obr. 1.3 Naklápěcí plošiny pro zkoušení kapalinových soustav [16]

Na naklápěcích plošinách určených pro zkoušení spalovacích motorů (Obr. 1.3 - uprostřed) se zkouší chování oběhu tlakového oleje v mazací soustavě během naklápění plošiny do různých poloh. Toto zkoušení je důležité při vývoji spalovacích motorů určených pro pohon terénních vozidel, lesnických, zemědělských a stavebních strojů. Zkoušejí se takto lodní i letecké motory. Naklápění je možné provádět dynamicky v podélné i příčné ose. Sklopná rychlost je plynule nastavitelná. Obě osy mají rozsah úhlu náklonu ± 45°. [1]
1.3.2 Patent od General Motors Corporation

FIG. 3

Obr. 1.5 Nárys - GM POWERTRAIN DYNAMIC TILT TEST RIG [15]
Obr. 1.6 Půdorys - GM POWERTRAIN DYNAMIC TILT TEST RIG [15]

Obr. 1.7 Bokorys - GM POWERTRAIN DYNAMIC TILT TEST RIG [15]
1.3.3 Shrnutí výsledků hledání

Obě nalezené konstrukce pro zkoušení motorů v různých polohách se skládají z vnitřního rámu pro emulaci akcelerace a brzdění a vnějšího rámu pro emulaci příčného zrychlení. Umožňují zkoušení velkých motorů a podle těch jsou dimenzovány. V obou případech se zřejmě jedná o prostorově náročné konstrukce (naklápění motoru s dynamometrem. Vzhledem k rozměrům a pravděpodobně i vysoké ceně jsou výše uvedená zařízení pro testování motorových kapalin nepoužitelná na zkušebně univerzitního výzkumného pracoviště [10].

1.4 Prostor pro novou konstrukci

První návrh dvouosého naklápěcího stojanu má být navržen na testování chování motorových kapalin na konkrétním motoru. Oproti zahraničním strojům v předchozím pojednání bude moci mít nový testovací stojan mnohem menší rozměry, protože se na něm bude testovat relativně malý motor (malé motory) [10]. Zatěžovací (poháněcí) soustrojí musí mít na naklápěném rámu co nejmenší hmotnost. Všechny části, které se nemusí naklápět s motorem musí být umístěny mimo rám.
2 KONCEPCE DVOUOSÉHO NAKLÁPĚCÍHO STOJANU

2.1 Zkušební stanoviště

Zkušební stanoviště je v našem případě místnost vybavená dynamometrem Dyno-Exact 202/12 220kW/525Nm, jehož charakteristika je na obr. 2.1.

![Obr. 2.1 Charakteristika dynamometru](image)

Dynamometr s osovou výškou 700 mm je připevněn k litinovému loži 3500 x 1500 mm s T-drážkami (obr. 2.2). Dále je stanoviště vybaveno přívody paliva a přívody vody k chlazení motoru s průtokovými trubkami. Spaliny jsou od zkoušeného spalovacího motoru odváděny flexibilní vysokoteplotní hadicí. Spolu se spalinami je přisáván čerstvý vzduch, který je ředí a tím ochlazuje.

Při standardních zkouškách je spalovací motor ustaven na pevném rámu přes pružné silentbloky (ve statické rovnovážné poloze) tak, aby klikový hřídel motoru a hřídel dynamometru byly co možná nejvíce v jedné ose. V provozu motor vůči pevné podložce kmitá vlivem nevyvážených sil a momentů. To nesnází, že vzájemná poloha klikového hřídele a pevného hřídele dynamometru se mění. K zjednodušení popisu změn poslouží dvě horizontální roviny jedna proložená klikovým hřídelem dynamometru, druhá proložená klikovým hřídelem spalovacího motoru. V jednotkách milimetrů se posouvá druhá rovina vertikálně. V jednotkách
stupňů kmitá stejná rovina kolem osy klikového hřídele a též kolem os kolmých na osu klikového hřídele (jedna osa je ve statické rovnovážné poloze vertikální, druhá horizontální). Spojení pro přenos výkonu mezi motorem a dynamometrem musí tedy tyto změny polohy umožňovat. Většinou se používají výsuvné hřídele s kloubky doplněné o vhodné pružné spojky. Ty však povolují nesouososti pouze v řádu jednotek milimetrů a stupňů.

![Obr. 2.2 Rozměry zkušebního stanoviště](image)

Vzájemná poloha pevného hřídele dynamometru a spalovacího motoru na naklápčícím stojanu se bude měnit v řádu desítek stupňů (desítek až stovek milimetrů). Tady vzniká požadavek nahrazení kloubového hřídele prostorově velmi flexibilním spojením, které dokáže přenést výkon v obou směrech. Jak od spalovacího motoru na dynamometr (brzdění motoru), tak od dynamometru na spalovací motor (protáčení motoru). Další možností je naklápění dynamometru společně s spalovacím motorem (obr. 2.3). Tím ale narůstají rozměry konstrukce téměř desetinásobně (vztaženo na naklápěnou hmotu), a z univerzálního zkušebního
stanoviště by se rázem stalo jednoúčelové (vzhledem k složité montáži a demontáži zařízení). S přihlédnutím k faktu, že by se takto velké zkušební zařízení ani na stanoviště nevešlo, byla možnost zavrhnut a hned v zárodku.

Obr. 2.3 Zařízení pro naklápnutí spalovacího motoru s dynamometrem [15]

2.2 Výběr vhodného spojení mezi motorem a dynamometrem

Obě dvě zbývající varianty se jeví jako vhodné. Oba stroje, jak elektromotor s permanentními magnety, tak i hydrostatický stroj, mohou být za určitých podmínek provozovány v generátorickém i motorickém režimu. Elektrický stroj s permanentními magnety je dražší než hydrostatický stroj, má však vhodnější otáčkový rozsah. Ale mezi hydrostatickým strojem a spalovacím motorem musí být zařazen reduktor, který zvyšuje cenu této varianty. Vedění výkonu (kably, tlakovými hadicemi) je porovnatelné, co do vlivu na konstrukci (ohodnot, poloměry ohybu). Po převodu výkonu z konstrukce na klápěcí stojan je potřeba v obou případech dalšího stroje, ideálně stejného, který odevzdá výkon dynamometru. Výhodou hydrostatického převodu je možnost okamžitého rozpojení hnacího a hnaného stroje v případě havárie pojistnými ventily (které spojí výtlačnou a sací větev). Rozhodl jsem se pro převod hydrostatickou cestou a tak jsou další kapitoly práce věnovány pouze variantě s hydrostatickým převodem.

\[\text{Obr. 2.4} \quad 	ext{Způsoby odvodu (přívodu) výkonu od (ke) SM}\]

Obě dve zbývající varianty se jeví jako vhodné. Oba stroje, jak elektromotor s permanentními magnety, tak i hydrostatický stroj, mohou být za určitých podmínek provozovány v generátorickém i motorickém režimu. Elektrický stroj s permanentními magnety je dražší než hydrostatický stroj, má však vhodnější otáčkový rozsah. Ale mezi hydrostatickým strojem a spalovacím motorem musí být zařazen reduktor, který zvyšuje cenu této varianty. Vedění výkonu (kably, tlakovými hadicemi) je porovnatelné, co do vlivu na konstrukci (ohodnot, poloměry ohybu). Po převodu výkonu z konstrukce na klápěcí stojan je potřeba v obou případech dalšího stroje, ideálně stejného, který odevzdá výkon dynamometru. Výhodou hydrostatického převodu je možnost okamžitého rozpojení hnacího a hnaného stroje v případě havárie pojistnými ventily (které spojí výtlačnou a sací větev). Rozhodl jsem se pro převod hydrostatickou cestou a tak jsou další kapitoly práce věnovány pouze variantě s hydrostatickým převodem.
2.3 Hydrostatický převod

Obr. 2.5 Rychlostní charakteristiky v pracovní oblasti dynamometru
2.3.1 Návrh a kontrola hlavních komponent hydrostatického převodu

Návrh hlavních komponent hydrostatického převodu se odvijí od hnacího stroje, který se bude na stojanu naklápět-zkoušet. Tím bude nejdríve čtyřválcový zážehový motor o objemu válců 1,6l (Obr. 3.1). Nejvyššího točivého momentu \(M_{max} = 170 \, \text{Nm} \) dosahuje při \(4000 \, \text{ot.min}^{-1} \), nejvyššího výkonu \(P_{max} = 88 \, \text{kW} \) při \(6000 \, \text{ot.min}^{-1} \) (moment při nejvyšším výkonu \(M_{P_{max}} = 140 \, \text{Nm} \)). Klikový hřídel motoru bude spojen s vstupním hřídelem reduktoru.

2.3.1.1 Návrh hydrogenerátoru a hydromotoru

Na výstupním hřídeli reduktoru s převodovým poměrem \(i=2 \) (nezapočítávám účinnost) budou návrhové hodnoty pro hydrogenerátor: \(M_{i=2} = 340 \, \text{Nm} \) při \(2000 \, \text{ot.min}^{-1} \), \(P_{i=2} = 88 \, \text{kW} \) při \(3000 \, \text{ot.min}^{-1} \) (moment při nejvyšším výkonu \(M_{P_{i=2}} = 280 \, \text{Nm} \)). Výpočet bude prováděn podle katalogu Parker [12] pro řadu hydrogenerátorů/motorů F12 velikost 60 až 110. Všechny stroje ze kterých budu vybírat mohou pracovat jako hydrogenerátor i hydromotory. Velikost stroje budu navrhovat pro generátorický režim, proto se dále bude zmiňovat z větší části označení hydrogenerátor.

V katalogu [12] je uveden vztah (2.1) pro výpočet momentu \(M[\text{Nm}] \) při známé velikosti hydrogenerátoru a rozdílu tlaku na vstupu a výstupu \(\Delta p[\text{bar}] \) (2.2) a mechanické účinnosti.

\[
M = \frac{V_g \cdot \Delta p \cdot \eta_{hm}}{63} \quad (2.1)
\]

\[
\Delta p = p_{out} - p_{in} \quad (2.2)
\]

Pro potřeby návrhu velikosti stroje je dobré vztah upravit na (2.3). Podle nejvyššího momentu na vstupu do hydrogenerátoru \(M_{i=2} = 340 \, \text{Nm} \) se určí nejmenší potřebný výtlačný objem na jednu otáčku \(V_g[\text{cm}^3/\text{ot}] \) (v katalogu značeno \(D \)).

\[
V_g = \frac{M_{i=2} \cdot 63}{\Delta p \cdot \eta_{hm}} \quad (2.3)
\]

Před tím se musí zvolit mechanická účinnost \(\eta_{hm} \) a rozdíl tlaků výstup-vstup \(\Delta p \). Předběžnými výpočty jsem zjistil, že se bude vybírat mezi hydrogenerátoru řady F12 velikosti 60 až 110. Všechny tyto stroje mají samonasávací otáčky (otáčky při kterých ještě nedochází ke kavitaci při sání) nižší než jsou požadované nejvyšší otáčky.
(3000\text{min}^{-1}). Z obr. 2.6 je zřejmé, že se bude muset sací větev hydrogenerátoru přeplňovat. Potřebný vstupní tlak bude $p_{in}=1\text{bar}$. Podle katalogu Parker [12] je nejvyšší výtlacný tlak dlouhodobě dosažitelný všemi generátory $p_{HG_{\text{max}}}=420\text{ bar}$. Takový tlak je ale příliš vysoký pro zatím bliže nespecifikované hydraulické vedení, proto jej snížím návrhovým koeficientem $k=1,5$.

Obr. 2.6 Tlak na vstupu hydrogenerátoru [12]

$$p_{\text{out}} = \frac{p_{HG_{\text{max}}}}{k} = \frac{420}{1,5} = 280\text{ bar}$$ (2.4)

Nyní lze určit i rozdíl tlaků mezi vstupem a výstupem:

$$\Delta p = 280 - 1 = 279\text{ bar}$$ (2.5)

Ze známého výtlacného tlaku hydrogenerátoru lze určit mechanickou účinnost η_{hm} (obr. 2.7).

Obr. 2.7 Mechanická účinnost hydrogenerátoru [12]

Pro 3000\text{min}^{-1} a 280 bar (4060\text{psi}) bude hodnota účinnosti $\eta_{hm} = 0,96$. Nyní lze spočítat minimální výtlacný objem hydrogenerátoru:
\[V_g = \frac{340.63}{279.096} = 79.97 \text{cm}^3 \cdot \text{ot}^{-1} \]
(2.6)

Nejbližší vyšší výtlačný objem má hydrogenerátor F12-80 a to 80,4 \text{cm}^3 \cdot \text{ot}^{-1}. V dalších výpočtech budu počítat se strojem F12-80. Ještě zbývá zkontrolovat F12-80 z hlediska nejvyššího průtoku \(q_{\text{max}} \) (2.7) [12].

\[q_{\text{max}} = \frac{V_g \cdot n_{\text{max}}}{1000 \cdot \eta_v} \]
(2.7)

Kde \(n_{\text{max}} = 3000 \text{min}^{-1} \) jsou otáčky při maximálním výkonu \(P_i=2 \) a \(\eta_v \) je objemová účinnost stroje (obr. 2.8).

Obr. 2.8 objemová účinnost hydrogenerátoru [12]

\[q_{\text{max}} = \frac{80.4 \cdot 3000}{1000 \cdot 0.99} = 263.6 \text{ l. min}^{-1} \]
(2.8)

Největší dlouhodobě přípustný průtok strojem F12-80 je 322 l.min^{-1}. Vybraný hydrogenerátor tedy mohu použít. Hydromotor volím ze zřejmých důvodů stejný.

Obr. 2.9 Hydrogenerátor/hydromotor F12-80
2.3.1.2 Návrh hydraulického vedení

Návrh hydraulického vedení - hadic se provádí podle zvoleného hydraulického stroje. Tak aby při přechodu hydraulického oleje mezi hadicemi a vstupy/výstupy strojů nedocházelo k nadměrným ztrátám škrcením. F12-80 má vstupní i výstupní průměr stejný a to 25 mm. Dále musí být určena pro hydraulické kapaliny o tlaku vyšším než 28 MPa, mít velkou radiální tuhost. Proto se pro danou aplikaci hodí hadice ze syntetické pryže se čtyřmi spirálovitými ocelovými výztužemi 731-16. Její vnitřní průměr je 25,4 mm (1 INCH), vnější průměr 39 mm a maximální dynamický pracovní tlak dovoluje 36 Mpa [13].

V oddílu 2.3.1.2 jsem počítal s návrhovým (bezpečnostním) koeficientem, který snížil maximální tlak na výstupu z hydrostatického stroje. Nyní je hydraulické vedení specifikováno a je jim určen i maximální tlak, který může hydrogenerátor produkovat. Podmínka maximálního tlaku je kritičtější u hadice.

2.3.2 Torzní tuhost hydrostatického převodu

Při pracovních tlacích hydrostatického převodu se musí brát v úvahu stlačitelnost minerálního oleje HM 46. Podélná stlačitelnost oleje v trubce způsobí fázový posun hřídele hydrogenerátoru a hydromotoru. Z toho předpokladu vychází úvaha pro výpočet torzní tuhosti hydrostatického převodu. Nejdříve se vypočítá podélná tuhost oleje v trubce a ta se následně přepočítá na torzní.

2.3.2.1 Výpočet podélné tuhosti oleje v trubce

Podélná tuhost oleje K v trubce o délce l se odvodí podle schématu na obr. 2.10. Síla F_p způsobí posunutí pístu kruhového průřezu o ploše A o malou vzdálenost x. Posunutí způsobí nárůst tlaku (napětí) σ v oleji o modulu pružnosti E. Při tom se předpokládá, že trubka v níž je olej je absolutně tuhá. Z Pascalova zákona (2.9) a Hookova zákona (2.10) se odvídí vztah pro výpočet síly na píst (2.12). Kde ε je poměrné prodloužení2 (2.11).

2 V našem případě zkrácení sloupců v trubce.
\[\sigma = \frac{F_p}{A}\] (2.9)
\[\sigma = E \cdot \varepsilon\] (2.10)
\[\varepsilon = \frac{x}{l}\] (2.11)

\[F_p = A \cdot \sigma = A \cdot E \cdot \varepsilon = A \cdot E \cdot \frac{x}{l}\] (2.12)

Pak podélná tuhost oleje bude:

\[K = \frac{F_p}{x} = \frac{A \cdot E \cdot x}{x \cdot l} = \frac{E \cdot A}{l}\] (2.13)

Práce potřebná k posunu pístu o vzdálenost \(x\):

\[W_x = \frac{1}{2} \cdot F_p \cdot x = \frac{1}{2} \cdot K \cdot x^2 = \frac{E \cdot A}{2 \cdot l} \cdot x^2\] (2.14)

Obr. 2.10 Stlačení oleje v trubce

2.3.2.2 Výpočet torzní tuhosti oleje v trubce

Experimentálně by bylo možné statickou torzní tuhost \(C_{THS_P}\) (2.15) vypočítat z momentu \(M\) potřebného k pootočení hřídele hydrogenerátoru o úhel \(\delta\) při zastaveném hřídeli hydro-motoru.

\[C_{THS_P} = \frac{M}{\delta}\] (2.15)

Dynamickou torzní tuhost bude možné spočítat ze vzájemného natočení hřídelů hydrogenerátoru a hydromotoru. Otáčky (natočení) obou hřídelů se budou snímat rychlými snímači otáček.
Schéma na obr. 2.11 ukazuje úvahu pro odvození torzní tuhosti hydrostatického pře-vodu. Podle toho se sestaví matematický model experimentu. Model vychází z předpokladu rovnosti práci \(W_{HG} \) a \(W_x \). \(W_{HG} \) je práce potřebná k potočení hřídele hydrogenerátoru o úhel \(\delta \).

Práci \(W_{HG} \) vykoná síla \(F_{HG} \) na dráze \(s \) (obr. 2.12). Předpokládám, že síla poroste od nulové hodnoty na \(F_{HG} \) lineárně. Ve vztahu (2.16) je tedy dosazena její průměrná hodnota.

\[
W_{HG} = \frac{1}{2} F_{pump} \cdot s \tag{2.16}
\]

Dále přepokládám malé natočení hřídele \(\delta \), tím pádem mohu délku dráhy \(s \) linearizovat:

\[
s = \tan \delta \cdot r \cong \delta \cdot r \tag{2.17}
\]

K potočení hřídele hydrogenerátoru, jehož osa prochází kolmo k listu bodem \(O_{HG} \), je potřeba působit momentem \(M \):

\[
M = F_{HG} \cdot r \tag{2.18}
\]
Dosazením (2.17) a (2.18) do (2.16) dostaneme:

\[W_{HG} = \frac{1}{2} F_{HG} \cdot \delta \cdot r = \frac{1}{2} M \cdot \delta \]
(2.19)

Ze známého vztahu pro torzní tuhost (2.15) vyjadřím moment (2.20) a dosadím do (2.19). Vyjde (2.21) závislost práce na hřídeli hydroparkátoru závislá na torzní tuhosti hydromotoru.

\[M = C_{THSP} \cdot \delta \]
(2.20)

\[W_{HG} = \frac{1}{2} F_{HG} \cdot \delta \cdot r = \frac{1}{2} C_{THSP} \cdot \delta^2 \]
(2.21)

Další vztah (2.22) vychází z předpokladu, že práce vykonaná na hřídeli hydroparkátoru musí být rovna práci, která deformuje kapalin v absolutně tuhé trubce při zastaveném hřídeli hydromotoru.

\[W_{HG} = W_x \]
(2.22)

Dosazením (2.14) a (2.21) do (2.22):

\[\frac{E \cdot A}{2l} \cdot x^2 = \frac{1}{2} C_{THSP} \cdot \delta^2 \]
(2.23)

Dále vyjádřím \(C_{THSP} \):
\[C_{THSP} = \frac{E \cdot A \cdot x^2}{l \cdot \delta^2} = \frac{E \cdot A \cdot (x_0 \delta)}{l \cdot \delta^2} \]
(2.24)

\(E, A \) a \(l \) jsou konstanty závislé na typu použitého oleje a hydraulického vedení. \(E=1800\text{MPa} \) je modul pružnosti oleje\(^3\) (obr. 2.13). \(A \) je průřez hadice o průměru \(d=25\text{mm} \) a délce \(l=3m \). Vztah mezi \(x \) a \(\delta \) je jednoznačně dán přes geometrický objem hydroparkátoru vztážený na jednu otáčku \(V_g=80,4cm^3/ot \). Hřídel hydroparkátoru se natočí o úhel \(\delta \) a axiální pístky vytlačí malý objem \(\Delta V_g (2.25) \), který se pro zjednodušení nenedefinuje. Malý objem \(\Delta V_g \) vytlačí myšlený píst v hydraulickém vedení o vzdálenost \(x \) (2.26).

\[^3\text{pro pracovní podmínky hydrostatického převodu. Přibližně 40+80^\circ C, 20+30 \text{MPa.}}\]

26
Obr. 2.13 Modul pružnosti oleje pro různé teploty v závislosti na pracovním tlaku [2]

\[
\Delta V_g = \frac{V_g}{2.\pi}.\delta
\] (2.25)

\[
x = \frac{\Delta V_g}{A}
\] (2.26)

Do (2.24) se dosadí (2.25) a vyjádří se hledaná závislost \(x/\delta\) (2.28).

\[
x = \frac{V_g}{2.\pi.A}.\delta
\] (2.27)

\[
x \frac{\delta}{A} = \frac{V_g}{2.\pi.A}
\] (2.28)

Konečně torzní tuhost hydrostatického převodu je tedy:

\[
C_{THSP} = \frac{E.A}{l} \frac{x^2}{\delta^2} = \frac{E.A}{l} \left(\frac{V_g}{2.\pi.A}\right)^2
\] (2.29)

\[
C_{THSP} = \frac{E.V_g^2}{A.l.4.\pi^2} = \frac{1800.10^6.(80.4.10^{-6})^2}{\pi.0.025^2.3.4.\pi^2} = 200,14 Nm.rad^{-1}
\] (2.30)
2.3.3 Vliv pružnosti hydraulického vedení

Pružnost hadic hydraulického vedení má na torzní tuhost hydrostatického převodu také vliv. Protože se od dodavatele hadic (z důvodu obchodního tajemství) nepodařilo zjistit hodnotu radiální pružnosti hadic, bylo nutné přijmout předpoklad absolutně tuhé trubky.

Obr. 2.14 Řez čtyřvrstvou hadicí [13]

Důkazem je analýza vztahu (2.31) [7] pro modul pružnosti oleje ve vedení E_T,

$$E_T = E \cdot \frac{1}{\sqrt{1 + \frac{E \cdot d}{E_{hadice} \cdot s}}} \quad (2.31)$$

kde E_{hadice} je modul pružnosti hadice, d vnitřní průměr vedení a s je tloušťka stěny. Absolutně tuhá trubka má za E_{hadice} dosazeno ∞, výsledek zlomku pod odmocninou je 0. Potom $E_T = E$. Pružná hadice je kompozitem ocelových drátků a pryží, kde dominantní vliv na modul pružnosti budou mít ocelové drátky. Konečná tuhost E_{hadice} bude E_T vždy zmenšovat.
3 KONTROLA A MINIMALIZACE TORZNÍCH KMITŮ SOUSTAVY

Hlavní komponenty soustavy pro zkoušení motoru jsou: spalovací motor, otáčkový reduktor, hydrostatický převod a dynamometr. Tok výkonu může být obousměrný. Spalovací motor může být brzděn dynamometrem nebo dynamometr může protáčet spalovací motor.

Pístový spalovací motor je zdrojem intenzivních kmitů, které zatěžují zařízení s ním spojená. Tuhé (přímé) spojení spalovacího motoru a reduktoru s hydrogenerátorem s axiálními pístky by mělo za následek brzké zničení pístků. Je tedy nutné zařadit pružnou spojku, která zmírní účinek nerovnoměrnosti chodu spalovacího motoru na hydrogenerátor. Pružná spojka musí být navržena tak, aby byly splněny podmínky v podkapitole 3.1. Provedení návrhu a kontroly⁴ je podle přednáškových materiálů z předmětu Výpočetní metody dopravních strojů pana Ing. Václava Zoula, CSc. [10].

3.1 Podmínky pro návrh a kontrolu pružné spojky

1. Nejvyšší střední krouticí moment přenášený spojkou nesmí být vyšší než její jmenovitý moment T_{KN} (Nominal Torque).
2. Maximální provozní otáčky soustrojí musí být nižší než dovolené otáčky spojky n_{max} (Maximum Speed).
3. Volnoběžné otáčky musí být dostatečně vzdáleny od hlavních kritických otáček:

$$n_{volnoběžně} \geq n_{krit} \cdot \sqrt{2} \quad (3.1)$$

4. Namáhání spojky při přejezdu rezonance musí být nižší než dovolené namáhání pro krátkodobé přetížení T_{KMAX} (Maximum Torque).
5. Namáhání v provozní oblasti musí být nižší než dovolené dynamické namáhání při trvalém provozu T_{KW} (Continuously Oscillating Torque).

⁴ Jedná se v podstatě o celou kapitolu 3
3.1.1 Podmínka nejvyššího středního momentu a nejvyšších provozních otáček

První dvě podmínky musí být splněny již při návrhu spojky. Z katalogových listů výrobce se vyberou vhodné spojky porovnáním s momentovou rychlostní charakteristikou hnaného stroje. Strojem pohánějícím soustrojí bude čtyřdobý čtyřválcový spalovací zážehový motor o objemu válců 1,6 l. Na obr. 3.1 je jeho momentová a výkonová rychlostní charakteristika (pozn.: návrhové průběhy jsou ty vyznačené plnou čárou).

Spojky mající nominální točivý moment větší než 170 Nm a zároveň dovolují otáčky rovné nebo větší než 6000 min⁻¹ vyrábí například firmy CENTA Antriebe a VULKAN Couplings a Reich Kupplungen.

Z katalogu CENTA Antriebe [11] jsem pro další kontrolu vybral spojku Centaflex CF-16-A mající nominální moment $T_{KN}=200$ Nm a maximální dovolené otáčky $n_{max}=6000$ min⁻¹. Z katalogu VULKAN Couplings [14] spojku Vulcanrdan E velikosti K1714 ($T_{KN}=210$ Nm, $n_{max}=7500$ min⁻¹)

5 Spalovací motor může být i hnaným strojem (protáčeni motoru), ale namáhání je v tomto případě zanedbatelné v porovnání s opačným tokem výkonu.
3.1.2 Podmínka vzdálenosti volnoběhu od hlavních kritických otáček

Třetí podmínka porovnává volnoběžné otáčky \(n_{\text{volnoběh}} = 800 \text{min}^{-1} \) s hlavními kritickými otáčkami. Při hlavních kritických otáčkách stroje je jedna z vlastních frekvencí intenzivně buzena od nějakého stroje v soustavě. V úvahu přichází buzení jak od spalovacího motoru, tak i od hydrogenerátoru. Čtyřdobý čtyřválcový pístový spalovací motor nejintenzivněji budí svoji druhou harmonickou složkou točivého momentu [8]. O tento poznatek se rozšíří vztah (3.1) na (3.2) zahrnutím členu \(\kappa \), který značí řád harmonické složky. Algebraickou úpravou vznikne vztah (3.3). Dosazení \(\kappa = 2 \) zohledňuje fakt, že při volnoběžných otáčkách je soustava od spalovacího motoru buzena dvojnásobnou frekvencí otáčení klikového hřídele (3.4) a (3.5) [8].

\[
\begin{align*}
 n_{\text{volnoběh}} \kappa &\geq n_{\text{krit}} \sqrt{2} & (3.2) \\
 n_{\text{krit}} &\leq \frac{n_{\text{volnoběh}} \kappa}{\sqrt{2}} & (3.3) \\
 f_{\text{krit}} &\leq \frac{n_{\text{volnoběh}} \kappa}{\sqrt{2} \cdot 60} & (3.4) \\
 f_{\text{krit}} &\leq \frac{800 \cdot 2}{\sqrt{2} \cdot 60} = 18,86 \text{ Hz} & (3.5)
\end{align*}
\]

Obr. 3.2 Řez hydrogenerátorem Parker F12-80 [12]
Hydraulický olej je v hlavě hydrogenerátoru vytlačován sedmi axiálními písty (obr. 3.2). Pokud by se hřídel hydrogenerátoru otáčel se stejnou frekvencí jako klikový hřídel spalovacího motoru, měla by hlavní složka buzení od hydrogenerátoru sedminásobnou frekvencí otáčení klikového hřídele (κ=7). Ale reductor s převodovým poměrem blízkým dvěma (i=2) pozmění podmínku maximální kritické frekvence buzené od hydrogenerátoru na (3.6).

\[f_{\text{krit}} \leq \frac{n_{\text{volnobeh}} \cdot \kappa}{\sqrt{2} \cdot i \cdot 60} = \frac{800.7}{\sqrt{2} \cdot 2.60} = 33 \text{ Hz}^{-1} \]

(3.6)

Pokud bude splněna podmínka plynoucí z buzení od spalovacího motoru druhou harmonickou složkou točivého momentu (3.5), bude splněna i podmínka (3.6). Provozní režim bude vzhledem ke kritické frekvenci otáčení pružné spojky nadrezonanční.

3.1.2.1 Výpočet vlastních frekvencí soustavy

Každé vlastní frekvenci odpovídá řada kritických otáček, které ji mohou budít. Obecně má spojitá soustava nekonečně mnoho stupňů volnosti (nekonečně mnoho vlastních frekvencí). Pro technické účely se kmitající soustavy nahrazují matematickými modely. Matematický model torzní soustavy se skládá z konečného počtu hmotných kotoučů a nehmotných torzních pružin. Hmotné kotouče jsou charakterizovány momenty setrvačnosti \(I \) a nehmotné pružiny torzními tuhostmi \(C \). Při sestavování modelu se zanedbají malé momenty setrvačnosti a velké tuhosti. Nejjednodušší náhradní soustavou, kterou lze s výhodou použít pro technické výpočty, je dvouhmotá torzní soustava.

Soustava se sestává ze dvou hmotných kotoučů spojených torzní pružinou. Pomocí této lze navrhnout požadovanou tuhost spojky, případně pozměnit některé parametry soustavy – naladit soustavu. Později lze ověřit, jestli vlastní tvar (spojkový) kmitá podle předpokladů dvouhmoté soustavy. Jednu hmotu bude představovat klikový mechanismu spalovacího motoru se setrvačníkem a část pružné spojky. Této hmotě zatím přiřadí moment setrvačnosti \(I_1 = 0.1 \text{ kg.m}^2 \).

6 Volí se jen takový počet elementů, jaký je nutný z hlediska kontroly soustavy. Čím více elementů, tím složitější výpočet je. Rozhodování o počtu elementů je na výpočtáři a často je nutný iterativní postup návrhu matematického modelu.
Druhou hmotu bude představovat druhá část spojky, spojovací hřídel a rotační části reduktoru před samotným převodem \(I_2 = 0,02 \text{ kg} \cdot \text{m}^2 \). Části soustavy za převodem zatím zanedbám. Jednak se jejich momenty setrvačnosti zmenšují kvadrátem převodového poměru (obr. 3.3), jednak do problému zasahuje hydrostatický převod.

Ze známých momentů setrvačnosti lze vypočítat redukovaný moment setrvačnosti \(I \) (3.7) dvouhmoté soustavy (pozn.: jedná se o jinou redukci, než je na obr. 2.3).

\[
I = \frac{I_1 \cdot I_2}{I_1 + I_2} = \frac{0,1 \cdot 0,02}{0,1 + 0,02} = 0,01667 \text{ kg} \cdot \text{m}^2
\] (3.7)

Z redukovaného momentu \(I \) a známých tuhostí pružných spojek \(C_{TI} \) se podle (3.8) vypočítají úhlové vlastní frekvence \(\Omega_i \) \([\text{rad} \cdot \text{s}^{-1}]\). Ty se přepočítají na kritické vlastní frekvence \(f_{krit-i} \) soustavy podle (3.9). Výpočet se rozdělí na dvě větve. Jedna bude náležet spojce Centaflex CF-A-16 s torzní tuhostí \(C_{T-CF} = 3400 \text{ Nm/rad} \), druhá spojce Vulkan K1714 \(C_{T-K1714} = 650 \text{ Nm/rad} \).

\[
\Omega_i = \sqrt{\frac{C_{T-i}}{I}}
\] (3.8)

\[
f_{krit-i} = \frac{\Omega_i}{2 \cdot \pi}
\] (3.9)

\[
f_{krit-CF} = \sqrt{\frac{C_{T-CF}}{I}} = \sqrt{\frac{3400}{0,01667}} = 71,88 \text{ s}^{-1}
\] (3.10)

Obr. 3.3 Redukce soustavy do osy rychloběžného hřídele [3]

\[f_{krit-κ1714} = \frac{\sqrt{\frac{C_{T-κ1714}}{I}}}{2.\pi} = \frac{\sqrt{\frac{650}{0.01667}}}{2.\pi} = 31.43 \, s^{-1} \quad (3.11) \]

Z výsledků (3.10) a (3.11) je vidět, že ani jedna spojka nesplňuje podmínku (3.5). Fyzikální význam poznatků je, že by byla vlastní frekvence soustavy v obou případech v provozu (buzena od 2. harmonické složky točivého momentu).

Úpravou tuhostí pružných spojek \(C_T \) a (nebo) redukovaného momentu \(I \) lze zřejmě dosáhnout takové kritické frekvence soustavy, která by splňovala podmínku (3.5). Výsledné vlastní frekvence (3.10) a (3.11) potřebují snížit. To znamená ve (3.8) zmenšit jmenovatele a (nebo) zvětšit čitatele.

Zvětšení redukovaného momentu setrvačnosti \(I \) je možné dosáhnout přidáním hmoty k setrvačnému momentu \(I_i \) nebo \(I_2 \). V krajním případě k oběma. Na jaké hodnoty se musí redukované momenty setrvačnosti \(I_i \) (pro každou spojku počítáno zvláště) změnit je vidět ve vztazích (3.13) a (3.14), které vzniknou dosazením (3.10) a (3.11) do (3.5) a vyjádřením.

\[f_{krit-i} = \frac{\sqrt{\frac{C_{T-i}}{I_i}}}{2.\pi} \leq 18.86 \, Hz \quad (3.12) \]
\[I_{CF} \geq \frac{C_{T-CF}}{(18.86.2.\pi)^2} = \frac{3400}{14042.46} = 0.242 \, kg.m^2 \quad (3.13) \]
\[I_{κ1714} \geq \frac{C_{T-κ1714}}{(18.86.2.\pi)^2} = \frac{650}{14042.46} = 0.046 \, kg.m^2 \quad (3.14) \]
Preferuji zvětšení redukovaného momentu setrvačnosti \(I \) zvětšením \(I_2 \), před \(I_1 \). Kvůli rovnoměrnějšímu chodu reduktoru a hydrogenerátoru (ochrana axiálních pístků). Moment setrvačnosti \(I_1 = 0,1 \) kgm\(^2\) zůstane a velikost momentu \(I_2 \) se zvolí podle obr. 3.4 (grafické vyjádření vztahu (3.7) pro \(I_1 = 0,1 \) kgm\(^2\) a \(I_2 = (0÷0,5) \)).

Obr. 3.4

Redukovaný moment \(I_1 \) za daných podmínek konverguje k hodnotě 0,1 kg.m\(^2\). Je tedy zřejmé, že nelze pouze zvětšením \(I_2 \) dosáhnout \(I_{CF} \geq 0,242 \) kg.m\(^2\) (splnit vztah (3.13)) pro spojku Centaflex CF-A-16. Vztah (3.14) \(I_{K1714} \geq 0,046 \) kg.m\(^2\) pro spojku Vulkanrad E K1714 (obr. 3.5) splnit lze, pokud bude \(I_2 \geq 0,086 \) kg.m\(^2\). V praxi to bude znamenat přidání setrvačníku na vstupní hřídel reduktoru. Zatím volí setrvačník tak, aby celková hmota 2 měla moment setrvačnosti \(I_2 = 0,09 \) kg.m\(^2\). Pro kontrolu uvádím vztah (3.16) který dokazuje splnění podmínky (3.5) dostatečné vzdálenosti vlastní frekvence od hlavních frekvencí buzení při volnoběhu.

\[
I_{K1714} = \frac{I_1 \cdot I_2}{I_1 + I_2} = 0,1 \cdot 0,09 \quad \text{a} \quad 0,1 + 0,09 = 0,047 \text{ kg.m}^2
\] (3.15)

\[
f_{krit-K1714} = \frac{\sqrt{C_{T-K1714}}}{\sqrt{I_{K1714}}} = \frac{\sqrt{650}}{0,047} = 18,64 \leq 18,86 \text{ Hz}
\] (3.16)
3.1.3 Závěr návrhu spojek

Navrhl jsem dvě spojky s pryžovými elementy, které za určitých opatření splňují podmínky 1 až 3. Ověření, zda jsou splněny další nutné podmínky, bude možno provést až detailnější analýzou torzní soustavy. K té je potřeba znát momenty setrvačnosti a torzní tuhosti všech členů. Výpočtem vlastních frekvencí a vlastních tvarů volného kmitání se rozhodne, pro které tvary kmitu se budou počítat dovolená namáhání pro krátkodobé přetížení, dynamické momenty a ztracený výkon v provozu. Následuje návrh členů soustavy nutných pro bezpečný převod výkonu od spalovacího motoru na dynamometr.
3.2 Návrh spojení hydrogenerátoru a dynamometru

Pro spojení hydrogenerátoru a dynamometru jsem vybral torzně tuhou lamelovou spojku Mayr ROBA-DS velikosti 64 (obr. 3.6). Se speciální mezipřírubou pro dynamometr na jedné straně a kotoučem pro svěrné spojení na straně druhé. Uprostřed je krátký kotouč spojený přes lamely s přírubou a kotoučem (kotoučem se svěrným spojem). Tato konstrukce dovoluje nesouosost hřídele dynamometru a hydrogenerátoru 0,3 mm a úhlovou odchylku hřídelů 1,4°. Jmenovitý moment této spojky je 1100 Nm, což je o hodně více než je pro danou aplikaci potřeba. Důvody volby spojky o tak vysoké únosnosti jsou dva. Prvním je její velká torzní tuhost $C_{T,ROBA} = 675 \text{kNm/} \text{rad}$ a z ní plynoucí vlastní frekvence spojky vysoko nad provozem. Druhým důvodem je, aby spojka byla použitelná i pro další aplikace. Pro zkoušení větších motorů s nižšími maximálními otáčkami a vyššími momenty. Nejvyšší otáčky spojky mohou být po vyvážení až 6000 min$^{-1}$. Bez vyvážení nejvíce 4000 min$^{-1}$.

![Obr. 3.6 Spojka ROBA DS 64 s přírubou](image)

Ustavení hydrogenerátoru do požadované polohy umožní sestava stojanu pro hydromotor (obr. 3.7) se třemi stupni volnosti. První stupeň volnosti – regulaci výšky zajišťují šroubovice M58x3 na nohách stojanu. Požadované osové výšky půjde bez problémů dosáhnout. Otočením matic o 1/12 otáčky – 30° se osa hydromotoru vertikálně posune pouze o 0,25 mm. Což je méně než dovolená odchylka daná spojkou ROBA. Druhý stupeň volnosti – natočení nosníku pro hydromotor (obr. 3.8) se provádí kolem osy válcového kolíku. Natočení je umožněno dírami nekruhového průřezu (obr. 3.10), které jsou vyřezány vodním paprskem v nosníku. V požadované poloze se nosník ustaví šrouby. Třetí stupeň volnosti – horizontální posuv desky pro hydromotor ± 5 mm by měl být zřejmý z obr. 3.8 a 3.10.
Postup montáže bude následující: nejprve se na hřídel dynamometru (na vnější středici průměr 75 mm) připevní přípravek, který bude mít na druhé straně v dostatečné vzdálenosti (okolo 150 mm) od dynamometru tolerovaný vnější průměr 140 mm. Potom se výše uvedenými postupy dostane osová výška desky pro hydromotor do požadované polohy a zajistí se. Přípravek se může odstranit. Namontuje se mezipříruba spojky k dynamometru spojka ROBA a nakonec hydromotor. Svěrným spojem se spojí hřídel hydromotoru s dírou v kotouči spojky.

Obr. 3.7 Stojan pro hydromotor

Obr. 3.8 Stupně volnosti stojanu pro hydromotor
Obr. 3.9 Řez sestavou spojení hydromotoru a dynamometru

Obr. 3.10 Ukázka výkresu svařence nosníku pro hydromotor
3.3 Návrhy spojení spalovacího motoru a hydrogenerátoru

3.3.1 Spojení bez reduktoru, spojky Centaflex

Nejjednodušší soustavou pro převod výkonu od spalovacího motoru na hydrogenerátor je spojení bez reduktoru (obr. 3.11). Rozpracování není zadáním diplomové práce přímo vyžadováno. Spojení zmiňuji z důvodu ukázky vývoje projektu a faktu, že první zkoušky možná budou v takovém uspořádání probíhat. Ověří se tím funkce jednotlivých částí soustavy a včas bude možno reagovat na případné problémy. Otáčky motoru musí být omezeny na nejvýše 3000 \(\text{min}^{-1} \). Na setrvačníku spalovacího motoru je připevněn přídavný setrvačník stejně tak jako na hřídeli hydrogenerátoru. Jednak setrvačníky tvoří spojovací díly mezi pružnými spojkami Centaflex, jednak mají za úkol splnění podmínky 3 návrhu spoje - volnoběžné otáčky musí být dostatečně vzdáleny od hlavních kritických otáček. Soustava dvou pružných elementů spojených hřídelem snižuje torzní tuhost. Pro účely výpočtu vlastních frekvencí se jedná o spojení dvou stejných torzních pružin zapojených sériově. Výsledná tuhost bude tedy poloviční. Což je výhodné pro spojkový tvar kmitu. Ale současně přichází problém kmitání spojovacího hřídele mezi dvěma spojkami při otáčkách okolo 2500 \(\text{min}^{-1} \) buzený až 6. harmonickou složkou rozkladu točivého momentu. Vzhledem k malému momentu setrvačnosti spojovacího hřídele by se nemělo jednat o nebezpečné kmitání, není však od věci jej při provozu kontrolovat.

![Obr. 3.11 Spojení motoru a hydrogenerátoru bez reduktoru, spojky Centaflex](image-url)
Dále toto uspořádání pružných elementů spojených hřídelem umožňuje jak výškové výchylky kmitajícího motoru v uložení, tak i úhlové natočení osy klikového mechanismu vůči hydrogenerátoru pevně uloženého na rámu.

3.3.2 Spojení bez reduktoru, spojka Vulkan

3.3.3 Spojení s reduktorem, převod ozubeným řemenem

Zkoušení spalovacího motoru v celém otáčkovém spektru vyžaduje zařazení reduktoru mezi spalovací motor a hydrogenerátor. Reduktor může mít různé podoby.

Jako první jsem rozpracovával převod ozubeným řemenem. Převod, který by pravděpodobně vyšel levněji než další způsoby zpřevodování a měl nejkratší zástavbovou délku. Ale nevýhody převažovaly nad výhodami. První, největší nevýhodou bylo radiální namáhání ložisek hydrogenerátoru a hlavních ložisek klikového mechanismu od předepnutí řemene (v řádu kN) a od reakce na tažnou sílu. Ložiska hydrogenerátoru by měla velmi omezenou trvanlivost. Na hlavních ložiskách klikového mechanismu by mohlo docházet k porušení olejového filmu mezi čepy klikového hřídele a pánvemi. S velkou pravděpodobností by se klikový hřídel přidíral.7 Druhou nevýhodou byla neznalost tuhosti řemene a tedy nebylo možné ověřit dynamické vlastnosti soustavy. Výrobci nebyly s to dodat potřebná data. Poslední nevýhodou by byla velká hlučnost řemene v provozu.

7 Vhodně navržená pomocná ložiska by odlehčila ložiskům na strojích ale těžko by se dosahovalo sousovislosti a rostla by zástavbová délka.
3.3.4 Spojení s reduktorem, převod planetovou převodovkou

Po opuštění myšlenky s řemenovým převodem jsem začal hledat průmyslově vyráběné převodovky. Většina převodovek je vyráběna pro aplikace s elektromotory. Jejich maximální dovolené otáčky jsou jim přizpůsobeny, to znamená 1500 nebo 3000 min⁻¹. Dále mají nevyhovující převodové poměry. Tak jsem začal s koncepčním návrhem nové planetové převodovky speciálně pro naše použití. Připojovací rozměry jsem volil tak, aby bylo možné použít díly z otáčkově omezených variant (bez převodovky). To znamená vstup do převodovky bude hřídel průměru 40 mm s tolerančním polem k6 a délku 70 mm. Výstup z převodovky umožňuje zasunout hřídele stejným parametrem. Návrhové vstupní hodnoty jsou dány vyšší momentovou rychlostní momentovou spalovacího motoru (obr. 3.1). Předimenzování průměru vstupního hřídele jsem si vědom. Převodový poměr planetové převodovky měl být nejblíže i=2.8 Převodovku detailně navrhl Bc Michal Vrátil. Výsledky jeho práce použijí pro dynamickou analýzu torzní soustavy a ve výkresech (modelech) soustavy pro převod výkonu. Více se tato práce popisu funkce planetové převodovky věnovat nebude.

3.3.5 Spojení s reduktorem, převod automobilní převodovkou

Poslední návrh uspořádání, který zmíním, je spojení spalovacího motoru s automobilní převodovkou. Mělo by se jednat o převodovku, která se s daným motorem sériově montuje do automobilů. Bude zde vyřešena souosost klikového hřídele a vstupního hřídele do převodovky. Skříň bude společná pro převodovku a rozvodovku s diferenciálem ilustračně na obr. 3.12. Zapůjčení převodovky a dílů rozběhové spojky zajistí průmyslový partner. Z hlediska nákladů na samotné převodové ústrojí se jedná o výhodnější variantu než u planetové převodovky, která se musí vyrobít. Vyžadovaný převodový poměr se v dostupných převodovkách najde snadno na některém z nižších převodových stupňů, ale pak se ještě musí vynášet převodovým poměrem stálého převodu. Ten je obvykle větší než 3.5. Mezi převodovkami, které se mohou montovat se zkoušeným motorem, se musí hledat některá s nízkým převodovým poměrem (do rychla). Čím nižší převodový poměr v převodovce bude, tím lépe.

8 viz. návrh hydrogenerátoru a hydromotoru
9 3D CAD model a parametry planetové převodovky, semestrální práce
Nakonec byla vybrána převodovka se šesti rychlostními stupni. Stálým převodovým poměrem 3,65 a rychloběžným poměrem na šestý rychlostní stupeň 0,625. Celkový převodový poměr je tedy \(i_{\text{celkovy}} = 0,625 \cdot 3,65 = 2,28 \). Diferenciál rozděluje tok výkonu na dvě poloosy. Pro naši aplikaci je žádoucí jen jeden výstup a to na levou poloosu. Klec diferenciálu s ozubeným věncem se musí pevně spojit s levou poloosou, výstup na pravé kolo se zaslepí. Moment vystupující na levou stranu bude dvakrát větší než moment, který by dlouhodobě zatěžoval díly pohonu kol při běžném provozu. Podle mě nebude od věci kontrolovat teplotu skříně v blízkosti levého ložiska. Teplota vyšší než obvyklá bude indikovat nadměrné zatěžování ložiska, její sledováním se bude moci předejít případné nehodě.

Z hlediska torzní analýzy je velmi důležitá torzní tuhost rozběhové spojky. Kterou představují válcové tlačné pružiny spojující náboj spojky a kotouč s obložením (obr. 3.13). Konkrétní hodnoty torzní tuhosti nebyly toho času k dispozici. Z dostupných pramenů a vlastními výpočty (které neuvádím) plyne, že se torzní tuhost bude pohybovat v intervalu \(l = 2 \) \(kNm/rad \). Čím nižší tuhost skutečně bude, tím lépe. Nevýhodou nejspíše bude nemožnost připojení přídavného setrvačníku před samotnou převodovkou, z důvodu nedostatku místa v prostoru pro přítlačný kotouč se spojkou.
Výhodně by bylo zapojit jej na (v našem případě) rychloběžný hřídel převodovky, kde by jeho moment setrvačnosti redukovaný na klikový hřídel byl dělen 0,625. Avšak znovu chybí větší prostor pro jeho umístění. Umístění setrvačníku až za stálým převodem má za následek dělení momentu setrvačnosti $I_{\text{celký}}^2 = 2,28^2 = 5,2$.

To znamená, že jeho hmota musí být 5x větší než před převodovkou. Kdyby se podařilo získat spojku o co nejnižší tuhosti, dejme tomu stejně jako má spojka Vulkan, musel by mít setrvačník za převodovkou moment setrvačnosti $I_z = I_{\text{celký}}^2 \cdot I_2 = 5,2 \cdot 0,09 = 0,468$ kg.m². Pro představu je to moment setrvačnost válce o vnějším průměru 300 mm s dírou 250 o délce 140 mm (hmotnost 24 kg). Opatření, které by mohlo vyřešit problém s hmotností, je setrvačník paralelně spojený s hřídelem hydrogenerátoru. Setrvačník by se točil rychleji než hřídel hydrogenerátoru a jeho moment setrvačnosti by mohl být zřejmě nižší - v závislosti na převodovém poměru kola (velké řemenice) na hydrogenerátoru a pastorku setrvačníku (malé řemenice). Výsledky rozboru varianty s automobilní převodovkou bych shrnul následovně: provést opatření vedoucí k malé torzní tuhosti spojky, zvětšit hmotu na přítlačném kotouči spojky podle možností a zbytek hmoty přiřadit k hřídeli hydromotoru (ochrana axiálních pístů hydrogenerátoru).

10 přítlačný kotouč bude stále držet spojku v zapnutém stavu. Její rozběhová nebo rozpojovací funkce pravděpodobně nebude důležitá. Bylo by možné s ní řídit moment mezi motorem a následným ústrojím přítlačnou silou kotouče – proklouznutí v případě nebezpečí

11 Třeba i za cenu výměny válcových tlacích pružin za poddajnější
3.4 Závěr návrhu spojení spalovacího motoru a hydrogenerátoru

Všechny zmíněné návrhy spojení spalovacího motoru a hydrogenerátoru lze za určitých okolností provést. Kontrola - dynamická analýza torzních kmitů pro všech pět zmíněných návrhů by probíhala podobně. Protože účelem práce je kontrolovat soustavy s reduktorem, nebdu se prvním dvěma (otáčkově omezeným variantám) dále věnovat. Třetím návrhem (ozubeným řemenem) se také nebdu dále zaobírat, z důvodů zmíněných v textu. Výpočet pro zbývající návrhy bude probíhat stejně, jen umístění převodu, rozdělení hmot, jejich velikosti a tuhosti budou odlišné. Vyčíslení bude provedeno pro soustavu s planetovou převodovkou, protože je u ní známo nejvíce hodnot a je univerzální i pro další motory.
3.5 Dynamická analýza torzních kmitů vícehmoté soustavy – kontrola spojky

3.5.1 Rozdělení hmot torzní soustavy

Pro kontrolní výpočet rozdělim soustavu s planetovou převodovkou navrhnutou v předchozí podkapitole na několik hmot spojených torzními tuhostmi. Následně vyhodnotím, která z vlastních frekvencí by mohla být pro soustavu nebezpečná a pro tu budu soustavu kontrolovat.

<table>
<thead>
<tr>
<th>SOUČÁST</th>
<th>MOMENT SETRVAČNOSTI [kg.m²]</th>
<th>REDUKCE</th>
<th>REDUKOVANÝ MOMENT SETRVAČNOSTI [kg.m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>klikový mechanismus se setrvačníkem</td>
<td>0,0848</td>
<td>1</td>
<td>0,0848</td>
</tr>
<tr>
<td>příruba setrvačník-spojka Vulkan</td>
<td>0,0293</td>
<td>1</td>
<td>0,0293</td>
</tr>
<tr>
<td>1.část spojky Vulkan</td>
<td>0,0010</td>
<td>1</td>
<td>0,0010</td>
</tr>
<tr>
<td>2.část spojky Vulcan</td>
<td>0,0010</td>
<td>1</td>
<td>0,0010</td>
</tr>
<tr>
<td>1.část kloubového hřídele</td>
<td>0,0006</td>
<td>1</td>
<td>0,0006</td>
</tr>
<tr>
<td>2.část kloubového hřídele</td>
<td>0,0006</td>
<td>1</td>
<td>0,0006</td>
</tr>
<tr>
<td>3.část kloubového hřídele</td>
<td>0,0006</td>
<td>1</td>
<td>0,0006</td>
</tr>
<tr>
<td>4.část kloubového hřídele</td>
<td>0,0006</td>
<td>1</td>
<td>0,0006</td>
</tr>
<tr>
<td>setrvačník na planetovku</td>
<td>0,0800</td>
<td>1</td>
<td>0,0800</td>
</tr>
<tr>
<td>vstupní hřídel s planetovým kolem</td>
<td>0,0016</td>
<td>1</td>
<td>0,0016</td>
</tr>
<tr>
<td>výstupní hřídel s korunovým kolem</td>
<td>0,0465</td>
<td>4,12</td>
<td>0,0113</td>
</tr>
<tr>
<td>hřídel hydrogenerátoru</td>
<td>0,0084</td>
<td>4,12</td>
<td>0,0020</td>
</tr>
<tr>
<td>hřídel hydromotoru</td>
<td>0,0084</td>
<td>4,12</td>
<td>0,0020</td>
</tr>
<tr>
<td>1.část spojky Roba</td>
<td>0,0113</td>
<td>4,12</td>
<td>0,0028</td>
</tr>
<tr>
<td>2.část spojky Roba</td>
<td>0,0148</td>
<td>4,12</td>
<td>0,0036</td>
</tr>
<tr>
<td>hřídel dynamometru</td>
<td>0,3200</td>
<td>4,12</td>
<td>0,0776</td>
</tr>
</tbody>
</table>

Tab 3.1 Rozdělení hmot torzní soustavy

Rozdělení hmot12 popisuje tabulka 3.1. Momenty setrvačnosti a tuhosti za převodem jsou redukovány podle obr 3.3 v pododdílu 3.1.2. Moment setrvačnosti hydraulického oleje v hydrostatickém převodu zanedbávám. Součet hmot podle tabulky 3.1 a doplnění o tuhosti mezi nimi ukazuje tabulky 3.2 a 3.3

12 Momenty I\textsubscript{6}, nejsou totožné s momenty z pododdílu 3.2.1. Jedná se o nové označení v rámci oddílu 47.
3.5.2 Výpočet vlastních frekvencí a vlastních tvarů soustavy

Nejprve se metodou uvolňování sestaví pohybové (Newton-Eulerovy) rovnice pro volné kmitání nebuzené soustavy [9].

Maticový zápis rovnic:

\[I \dot{\phi} + C \cdot \varphi = 0 \] \hspace{1cm} (3.17)

kde \(I \) je matice momentů setrvačnosti:

\[
I = \begin{bmatrix}
I_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I_2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I_3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I_4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & I_6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I_7
\end{bmatrix}
\] \hspace{1cm} (3.18)

\(C \) je matice torzních tuhostí:

\[
C = \begin{bmatrix}
C_1 & -C_1 & 0 & 0 & 0 & 0 & 0 \\
-C_1 & C_1 + C_2 & -C_2 & 0 & 0 & 0 & 0 \\
0 & -C_2 & C_2 + C_3 & -C_3 & 0 & 0 & 0 \\
0 & 0 & -C_3 & C_3 + C_4 & -C_4 & 0 & 0 \\
0 & 0 & 0 & -C_4 & C_4 + C_5 & -C_5 & 0 \\
0 & 0 & 0 & 0 & -C_5 & C_5 + C_6 & -C_6 \\
0 & 0 & 0 & 0 & 0 & -C_6 & C_6
\end{bmatrix}
\] \hspace{1cm} (3.19)

a \(\dot{\varphi} \) je matice úhlových zrychlení a \(\varphi \) je matice úhlových výchylek.
Do matice (3.18) a (3.19) se dosadí hodnoty z tabulek 3.2 a 3.3. Vyčíslené matice se dosadí do (3.17). Matlabem se vyřeší vlastní čísla a vlastní vektory soustavy rovnice. Vlastním čísům odpovídají vlastní frekvence a vlastním vektorům poměrné výchylky volného kmitání. V tabulce 3.4 je výpis přepočtených vlastních frekvencí na [Hz]. Dále výpis přepočtených poměrných výchylek pro každou hmotu. Poměrné výchylky seřazené pod vlastní frekvencí dohromady tvoří vlastní tvar kmitu, kterým soustava kmitá při této frekvenci.

<table>
<thead>
<tr>
<th>Vlastní frekvence</th>
<th>1 VF = 4,4</th>
<th>2 VF = 17,5</th>
<th>3 VF = 484,9</th>
<th>4 VF = 957,9</th>
<th>5 VF = 1712,6</th>
<th>6 VF = 2508,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I₂</td>
<td>0,86</td>
<td>-1,15</td>
<td>-1,64E+03</td>
<td>-6,42E+03</td>
<td>-2,05E+04</td>
<td>-4,40E+04</td>
</tr>
<tr>
<td>I₃</td>
<td>0,86</td>
<td>-1,17</td>
<td>-1,24E+03</td>
<td>-7,64E+01</td>
<td>4,48E+04</td>
<td>2,57E+05</td>
</tr>
<tr>
<td>I₄</td>
<td>0,86</td>
<td>-1,20</td>
<td>-5,35E+02</td>
<td>8,54E+03</td>
<td>6,05E+04</td>
<td>-2,29E+05</td>
</tr>
<tr>
<td>I₅</td>
<td>0,86</td>
<td>-1,23</td>
<td>3,75E+01</td>
<td>1,17E+04</td>
<td>-3,19E+02</td>
<td>5,62E+02</td>
</tr>
<tr>
<td>I₆</td>
<td>-2,32</td>
<td>0,06</td>
<td>1,10E-02</td>
<td>-8,31E+08</td>
<td>3,99E-02</td>
<td>-2,66E-02</td>
</tr>
<tr>
<td>I₇</td>
<td>-2,32</td>
<td>0,06</td>
<td>-3,06E-03</td>
<td>4,90E+07</td>
<td>-7,08E-04</td>
<td>2,18E-04</td>
</tr>
</tbody>
</table>

Tab. 3.4

Polohu kritických otáček zobrazuje Campbellův diagram (obr. 3.13) a Campbellův diagram – detail start (obr. 3.14). Jedná se o stejná se stejné diagramy, pouze měřítka jsou různá. Na svislé ose jsou vlastní frekvence soustavy (1 - 4 VF), na vodorovné otáčky motoru. Přímkami 2 - 8 je naznačeno buzení harmonickými složkami točivého momentu spalovacího motoru v závislosti na otáčení klikového hřídele (2 je tedy 2.harmonická složka). Kritické otáčky jsou takové, při kterých je jedna z vlastních frekvencí buzena n-tou harmonickou složkou točivého momentu. Kritické otáčky náležící 1. vlastní frekvenci jsou nižší než 150 min⁻¹, toto pásmo bude rychle překonáno při startu (obr. 3.14). Na obr. 3.15 je vidět, že při 1.tvaru kmitu spojka se otáčí jako tuhý celek, jedná se o tvar hydrostatického převodu, proto zde není nutné spojku kontrolovat.

13 Nulové vlastní frekvencí odpovídá otáčení soustavy jako tuhého celku. Tímto řešením se nezabývám.
14 5. a 6. vlastní frekvenci jsem nezobrazoval, protože by se diagram stal nepřehledným. Tyto vlastní frekvence jsou tak vysoko, že by byly buzeny nejdříve 16. harmonickou složkou točivého momentu.
Obr. 3.13

CAMPBELLŮV DIAGRAM

Obr. 3.14

CAMPBELLŮV DIAGRAM-DETAIL START

50
Kritické otáčky náležící 2. vlastní frekvenci jsou již pro spojku nebezpečné. Při této sadě otáček dochází k nadměrnému namáhání spojky při startu (obr. 3.15 – 2. spojkový tvar). Nyní lze pouze říci, že podmínka vzdálenosti kritických otáček od volnoběhu (3.5) je splněna. Splnění dalších podmínek15 se musí ověřit výpočtem, který bude proveden v dále.

\textbf{Obr. 3.15}

\begin{center}
\includegraphics[width=\textwidth]{diagram.png}
\end{center}

15 Podmínky v oddílu 3.1
16 S 5. a 6. vlastní frekvencí je to málo pravděpodobné
17 Přídavný setrvačník bude opatřen značkami, které se budou snímat.
3.5.3 Kontrola namáhání spojky v provozu - spojkový tvar kmitu

Na obr. 3.15 je vidět které hmoty při spojkovém tvaru kmitu kmitají spolu. Jednou hmotou je klikový mechanismus s prvním kotoučem spojky a jako druhá hmoda se chová vše, co je za druhým kotoučem spojky až po hřídel hydrogenerátoru. Podle známého vztahu (3.7) se vypočte redukovaný moment setrvačnosti. Dále se pro kontrolu spojky v provozu se musí vyhodnotit buzení (postup podle schématu výpočtu na obr. 3.12). Z průběhu indikovaných tlaků v závislosti na otáčkách se vypočtou točivé momenty (vyhodnocení na přiloženém CD), které se rozloží na harmonické složky (použit program prof. Macka harmonicka_analyza.xls) a ty se následně vypíší do programu VulkanKontrolaDynMomentu.xlsx též na (přiloženém CD). Tento vyhodnotí průběh dynamických momentů mezi kotouči spojky podle následujících vztahů (3.20) až (3.25) [10].

Vlastní frekvence \(N \) [min\(^{-1}\)]:

\[
N = \frac{30}{\pi} \sqrt{\frac{C_{T-K1714}}{l}}
\]
(3.20)

Součinitel naladění \(\eta \) [1], kde \(n \) [min\(^{-1}\)] jsou otáčky (nezávisle proměnná):

\[
\eta = \frac{n \cdot \kappa}{N}
\]
(3.21)

V katalogu [14] se vyhledá relativní tlumení \(\psi = 0,75 \) a vypočte se součinitel zesílení v rezonanci:

\[
V_R = \frac{2 \cdot \pi}{\psi}
\]
(3.22)

Součinitel zesílení v závislý na součiniteli naladění:

\[
v = \sqrt{\frac{1 + \left(\frac{1}{V_R}\right)^2}{(1 - \eta^2)^2 + \left(\frac{1}{V_R}\right)^2}}
\]
(3.23)

Potom dynamický \(M_{DK} \) moment namáhající spojku závislý na složce budícího momentu od motoru \(M_k \) je

\[
M_{DK} = M_k \cdot \frac{1}{1 + \mu} \cdot v
\]
(3.24)
kde \(\mu \) je poměr hmot. Ztracený výkon na spojce se vypočítá podle vztahu:

\[
P_{vk} = \frac{\pi^2 \cdot \psi}{(4 \cdot \pi^2 + \psi^2)} \cdot \frac{M_{Dk}^2 \cdot n}{30 \cdot C_{T-K1714}}
\]

(3.25)

Počítá se vždy pro jednu harmonickou složku točivého momentu a celý rozsah otáček. Výsledné dynamické momenty a ztrátové výkony všech složek se sečtou a jejich součet je na obr. 3.16 a 3.17.

Obr. 3.16

Před samotným vyhodnocením bych chtěl popsat průběh dynamického momentu na spojce a průběh ztraceného výkonu. Obě veličiny jsou závislé na budícím momentu od motoru. Otáčky 0-800 min\(^{-1}\) budou rychle přejety při startu, kdy k roztáčení bude použit dynamometr. Pro tyto otáčky jsem počítal točivý moment z indikovaných tlaků pro protáčený motor a plně otevřenou škrtní klapku. Pro otáčky 800-1000 min\(^{-1}\) jsem počítal s točivým momentem pro volnoběh. Pro otáčky 800-1000 min\(^{-1}\) jsem použil buzení z vnější charakteristiky. Nyní lze zkontrolovat zbývající podmínky pro kontrolu spojky. Podmínka 4 je splněna, protože dynamický moment na spojce při přejezdu rezonance je nižší než dovolené namáhání pro krátkodobé přetížení \(T_{KMA} = 580 \text{ Nm} \).
Dynamické namáhání18 v provozní oblasti je nižší než dovolené dynamické namáhání při trvalém provozu $T_{KW} = 80 \text{ Nm}$. 5. podmínka je také splněna.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{diagram.png}
\caption{Obr. 3.17}
\end{figure}

Poslední podmínka je také splněna. Disipovaný výkon na spojce způsobující její zahřátí je v provozní oblasti nižší než povolený $P_{KV} = 147 \text{ W}$.

18Nejedná se o točivý moment přenášený spojkou ale o krouticí moment mezi kotouči spojky daný jejich vzájemným natočením.
4 ULOŽENÍ MOTORU

4.1 Uložení motoru v silentblocích

Pro uložení motoru jsem vybral silentbloky z programu ContiTech Cone Mounts [20]. Jedná se o silentbloky, které mohou být namáhány ve všech třech osách. Jejich kontrolu se mi nepodařilo zdokumentovat do diplomové práce, ale mohu uvést závěr, ke kterému jsem došel. Nejprve tuhost (únosnost) silentbloků navrhoval podle amplitud maximálních sil od nevyvážených sil druhého řádu. To se ale později ukázalo jako chybné, protože vlastní frekvence byly těmito řádem buzeny. Silentbloky takto navrhnuté se ukázaly být příliš tuhé.

Obr. 4.1 Silentbloky Cone Mounts [20]

4.2 Kontrola povoleného vyosení pružné spojky

Kontrola bezprostředně navazuje na výpočet kmitání motoru v silentblocích a je pozůstatkem po spojení spalovacího motoru s reduktorem dvěma spojkami v kardanovém uspořádání. Mnou navržené spojení využívá kloubový hřídel, který eliminuje namáhání spojky od vyosení motoru.
5 KONSTRUKCE DVOUOSÉHO NAKLÁPĚCÍHO STOJANU

5.1 Vedení hadic s tlakovým olejem

V oddílu 2.3 je zmíněna podoba hadic pro vedení tlakového oleje mezi hydrogenerátorem a hydromotorem. Navrhnuté tlakové hadice mají minimální poloměr ohybu 340 mm a nesmějí být namáhány krutem. Na obr. 5.2 až 5.7 je znázorněno, jak bych se chtěl za pomocí tří ohybů dostat hadicemi (zobrazena pouze jedna) z rámů pro emulaci podélného zrychlení.

5.2 Flexibilní odvod spalin

Spaliny budou od motoru odváděny výfukem složeným ze sériových dílů. Díly na sto- janu budou stíněny od ohřátého potrubí plechovou izolací jak je vidět na obrázcích 5.4, 5.5 a 5.6. Jak je vidět na stejných obrázcích, snažil jsem se vyústění výfuku dostat co nejblíže k průsečíku os otáčení. Důvodem je co nejmenší rozsah pohybu vyústění při naklápění.

Pro odvod spalin od vyústění výfuku jsem navrhl flexibilní hadici, která odolává tep- lotám plynů do 650°C. Hadice bude připevněna k pohyblivému vedení, které je součástí zkušebního stanoviště a povede spodem pod stojan. Odtud vzhůru k vyústění výfuku (na obrázcích není zobrazena). Hadici jsem navrhl dostatečně dlouhou, aby pokryla rozsah pohybů vyústění.
Obr. 5.1 Dvouosý naklápěcí stojan v základní poloze

Obr. 5.2 Emulace akcelerace v přímém směru

Obr. 5.3 Akcelerace při výjezdu z pravé zatáčky
Obr. 5.4 Akcelerace při výjezdu z levé zatáčky

Obr. 5.5 Brzdění v pravé zatáčce

58
Obr. 5.6 Brzdění v levé zatáčce

Obr. 5.7 Brzdění v přímém směru
6 ZÁVĚR

Doufám, že se mi podařilo seznámit čtenáře s účelem a uvést do projektu dvouosého naklápěcího stojanu. Snažil jsem se věnovat jak teoretické, tak praktické stránce věci.

Ukázal jsem prostředky k brzdění a protáčení spalovacího motoru na zkušebně. Vybral jsem hydrostatický převod s reduktorem jako pružný hřídel mezi motorem a dynamometrem. Uvedl jsem případové a odvodil jsem vztahy pro výpočet torzní tuhosti hydrostatického převodu.

Pro díly hydrostatického převodu společně pro různé varianty – spojení hydromotoru a dynamometru jsem provedl pokročilejší konstrukční návrh.

Uvedl jsem návrh silentbloků, ale nepodařilo se mi provést následující výpočty. Vhodnými opatřeními jsem zajistil funkci spojky nezávisle na výchylkách motoru v mezích daných pevností uložení.

Navrhl jsem vedení hadic s tlakovým olejem, flexibilní odvod spalin a uvedl jsem schématická zobrazení zkušebního zařízení v různých polohách.
PODĚKOVÁNÍ

Děkuji vedoucímu práce panu Dr. Jiřímu Vávrovi za vedení a cenné rady, panu Bc. Michalu Vrátíloví za vypracování CAD modelu planetové převodovky. Děkuji panu Ing. Václavu Zoulovi, CSc. za poskytnutí návodů a podkladů pro návrh spojky. V neposlední řadě děkuji Centru vozidel udržitelné mobility za možnost na tomto projektu pracovat a finanční podporu.
POUŽITÁ LITERATURA

SEZNAM PŘÍLOH NA CD

1. Katalogové listy použitých součástí
2. Soubory s výpočty
3. CAD soubory
4. Podklady pro výrobu