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Abstract 

Trapezoidal steel sheets are very popular in the construction industry, they are part of a 
structure as walls and roofing systems. It is because its low weight, easy assembly and 
durability that they are widely used in all kinds of building types, ranging from small residential 
buildings to big industrial warehouses. 

In roofing systems, single overlap joints in the supports are one of the most common ways to 
make connections between two profiles, and the location of the fasteners that connect this 
profiles vary from different designers and engineers. 

By using different positions for the fasteners in the overlap section, the structural behavior of 
the system will be different from one to another. For this thesis, a single bay trapezoidal steel 
sheet profile (LHP200) is used, which is made by the International Group Lindab.  

The goal of this research is to test and analyze the current single overlap connection in order to 
get the spring stiffness acting there and see if improvements can be made. Theoretical analysis, 
Finite Element Modelling and an Experimental Test were implemented to do the investigation. 
Any differences between the two approaches were avoided to have the most accurate 
comparison between the results. 
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Symbols and Abbreviations 

 

δ              Deflection of the Whole System  

δg            Total Gap Between the Profiles 

δo             Deflection of the Overlap 

δt              Theoretical Deflection Without Overlap  

E               Modulus of Elasticity 

e               Overlap Length 

f                Factor that Depends on the Span Configuration 

FEM         Finite Element Model 

Fs             Overlap Reaction Force that Depends on the Overlap Connection Screws 

Fu             Overlap Reaction Force that Depends on the Profiles 

g               Total Gap of the Overlap 

g1             Gap on the Bottom of the Overlap 

g2             Gap on the Top of the Overlap 

I                Moment of Inertia 

k               Spring Stiffness of the Overlap 

L               Span Length 

M              Bending Moment 

P               Point Load 

t                Nominal Thickness of the Profile 

td               Design Thickness of the Profile 
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1 Introduction 
 

1.1 Background 
 
1.1.1 Cold-Formed Steel Sections 
 
Cold-formed members are steel based products that are made by putting flat strip of steel coils 
into a cold-roll forming machine to get the desired shape, that can have a constant or a variable 
cross-section. There are a lot of different type of cold-formed structural members, but they are 
usually divided into two major types: 
 

 Individual structural framing members 
 Panel decks 

 
The individual structural framing members, which are also called bar members, are the sections 
that include open sections like “C” and “Z” shape channels, open built-up sections, like joining 
two “C” shape members back to back, and closed built-up sections, which could be two “C” 

shape sections front to front.  
 
In this master thesis, the aim is to study the behavior of a modified overlap joint between two 
single bay trapezoidal steel profiles. For this reason, we will be focusing on panel decks, or 
more specifically roof decks. 
 
Panel and decks are made from profiled sheets and liner trays, usually with trapezoidal cross 
section like shown in figure 1.1. They are widely used in the construction industry as roof 
systems and wall cladding thanks to their many advantages that will be mentioned later in this 
chapter. The depth of the panels usually ranges from 20 to 200mm, and they have thicknesses 
between 0.6 and 1.5mm [1]. 
 
 

 
Figure 1.1. Typical Trapezoidal Steel Sheet Cross-Sections 

 



 

8 
 

Figures 1.2a, b and c, show examples of Rannila corrugated sheets for roofing, wall cladding 
systems and load-bearing deck panels. 

 

a) 

 

b) 

 

c) 

Figure 1.2. Corrugated Sheets for Roofing and Wall Cladding 

 

Cold-formed steel sections have many advantages in the building construction industry, which 
make them very popular all over the world. In general, the main advantages are the following: 

 

 Can be manufactured for relatively light loafs and short spans, compared to hot-rolled 
sections, which are thicker and heavier. 

 The way that they can be packed, offer a more efficient way of shipping compared to 
other type of section. 

 Because the sections are produced with cold-forming process, unusual configurations 
can be economically made, and favorable strength to weight ratio can be obtained. 

 Load carrying panels and decks provide useful surfaces for floors, roofs and walls. 
 Beside of withstanding loads normal to their surfaces, load carrying panels and decks 

can act as a diaphragm for the structure if connected properly between the supporting 
members. 

 

Cold-formed steel structural members can also be compared with other materials such as timber 
and concrete, and they have plenty of advantages as well: 

 

 Lightness of the elements 
 High strength and stiffness of the material 
 Ability to provide long spans, up to 12m 
 Ease of prefabrication and mass production 
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 Fast and easy erection and installation 
 Substantial elimination of delays due to weather 
 More accurate detailing 
 Non-shrinking and non-creeping at ambient temperatures 
 Formwork unnecessary 
 Termite proof and rot proof 
 Uniform quality 
 Non-combustibility 
 Recyclable material 

 

Taking into account all the previous advantages, the use of cold-formed elements in the 
construction industry, can lead into a big cost savings [1]. 

 

1.1.2 Metal cladding 
 
Metal cladding can be used as a building envelope system, in an efficient, appealing and safe 
way. For a long time, they have been used as part of the agricultural constructions as a single 
skin cladding, but over the years they have evolved into a more sophisticated and developed 
systems that are used in industrial buildings. Nevertheless, the functionality of the building 
envelope, depend on the correct installation and interaction between all the components of a 
building. 
 
Metal cladding can be used in a variety of types for different buildings, which are mainly 
divided into two categories: 
 
 
Single skin trapezoidal sheeting: 

In buildings where no insulation is needed, single skin trapezoidal sheeting is used, this 
commonly tend to be industrial and agricultural buildings. the sheeting is installed by fixing it 
directly to the purlins or side rails like shown in figure 1.3. 

 

 

 
Figure 1.3. Single Skin Trapezoidal Steel Sheet 
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Built-up double skin cladding: 

Built-up double skin cladding systems are usually used when a middle layer is needed in the 
envelope, most commonly for insulation. It is made of a metal liner, a layer of insulation, a 
spacer system and an outer metal sheet. Figure 1.4 shows an example of this system [2].  

 

 
Figure 1.4. Built-Up Double Skin Cladding 

 

1.2 LHP 200 Profile 
 
The primary structural function of roof decks is to carry gravity loads, wind loads, and 
sometimes, based on the location of the structure, snow loads normal to its plane. Depending 
on the cross section and thickness of the sheet, the load capacity of the roofing will be different. 
For this reason, there is a wide range of profiles available in the market [3]. 
 
LHP200 profile is a single bay trapezoidal steel sheet used for roof decking produced by the 
company Lindab, which develops construction products and systems worldwide. Due to its 
geometry, this profile is made for large spans, often present in stadiums and other type of large 
buildings. It is is mounted with special supports, or support cleats, which increase the load 
capacity of the profile. Figures 1.5, and 1.6 show the geometric properties of the LHP200 
profile and its support cleat respectively [4]. 
 
 

 
Figure 1.5. LHP200 Profile Cross-Section 
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Figure 1.6. Support Cleats Cross-Section 

 

 

1.3 Aim, scope and limitations 

The work done in this thesis, is a research proposal from the Lindab Group located in Luleå, 
Sweden. They are interested in studying the behavior of a single overlap connection over a 
mid-support from the LHP200 profile that it is used for large spans. 

The main objective is to find the spring stiffness of this overlap joint, by testing, making a 
theoretical analysis based on the test results, and finally to simulate the experimental test in 
order to do a parametric study. 

The reason of finding the spring stiffness of the overlap joint is because the company needs 
this parameter to implement it into a software that they use for design. Nevertheless, the interest 
of doing this study is also to understand the behavior of the connection and give room for a 
possible optimization of this connection. 
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2 State of the Art 
 

2.1 Theoretical Background 

2.1.1 Structural Analysis 

Structural analysis describes or predicts how a structure will perform under specific loading 
and/or external effects, like support movements and temperature changes. Its role is a 
fundamental piece in the development of structural engineering projects, assuring a safety 
performance in the structure designed. 

In structural analysis, the determination of stresses or stress resultants, such as axial forces, 
shear forces, bending moments, deflections and support reactions, are the quantities of most 
interest to assure a good design, which are caused by a given loading condition [5]. 

2.1.2 Slope-Deflection Equations 

A continuous beam that is under the influence of an external load, it will usually develop 
internal moments at the ends of its individual members. This moments located at the ends, can 
be related to the rotations and displacements of its ends, and the external loads acting on the 
beam by using the slope-deflection equations. 

In order to understand the derivation of slope-deflection equations, we need to define first the 
behavior of a structural element, and its response under a given load. Imagining an arbitrary 
member AB of a continuous beam (figure 2.1(a)) subjected under external loads and supported 
settlements, the member will deform, and it will consequently generate internal moments at its 
ends. Figure 2.1(b) shows the free-body diagram and the elastic curve of member AB, where 
we can appreciate the end moments MAB and MBA, which correspond to the end moments of 
end A and B, respectively. The end moments have double-subscript notations, where the first 
indicate the member end at which the moment is acting and the second subscript indicate the 
other end of the member. 

The rotations of the member ends A and B are indicated as θA and θB, respectively, and they are 
with respect to the horizontal undeformed position of the member. In this same figure, it is also 
shown a relative translation between the two ends A and B of the member, which are denoted 
with Δ, and it’s in the direction perpendicular to the undeformed axis of the member [5]. 
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(a) 

 

(b) 
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(c) 
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(d) 

 

 

 

Figure 2.1 

 

A rotation on the member’s chord is also present, denoted with ψ, which is caused by the 
relative translation Δ. This deformation is assumed to be small, hence the chord rotation can be 
expressed as: 

 

𝜓 =
Δ

𝐿
                                                                (2.1) 

 

In figure 2.1(b), the moments and rotations are shown in the positive sense (counterclockwise 
direction). By applying the second moment area theorem, the slope-deflection equations can 
be derived by doing a relation between the moments and rotations of the member ends. 
Moreover, from figure 2.1(b) we can recognize the following:  

 

𝜃𝐴 =
Δ𝐵𝐴+Δ

𝐿
                                                        (2.2a) 
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𝜃𝐵 =
Δ𝐴𝐵+Δ

𝐿
                                                        (2.2b) 

 

By substituting Δ/L = ψ; we write: 

 

𝜃𝐴 − 𝜓 =
Δ𝐵𝐴

𝐿
                                                    (2.3a) 

 

𝜃𝐵 − 𝜓 =
Δ𝐴𝐵

𝐿
                                                   (2.3b) 

 

From the previous equations, and, also illustrated in figure 2.1(b), ΔBA represent the tangential 
deviations of the end B from the tangent to the elastic curve at end A, and ΔAB is the tangential 
deviation of the end A from the tangent to the elastic curve at end B. These tangential deviations 
can be obtained by applying the second moment-area theorem, where ΔBA and ΔAB, can be 
obtained by summing the moments about the ends A and B, respectively, of the area under the 
M/EI diagram between the two ends. 

To build the bending moment diagram of the member, MAB, MBA, and the external loading are 
applied separately on the member with simply supported ends. The three resultant bending 
moment diagrams under the M/EI are then summed about the ends B and A, respectively to 
determine the tangential deviations. It is important to point out that the member is assumed to 
be prismatic, which means that EI is constant along the member’s length. Figure 2.1(c) shows 

the diagrams obtained. 

 

Δ𝐵𝐴 =
𝑀𝐴𝐵𝐿2

3𝐸𝐼
−

𝑀𝐵𝐴𝐿2

6𝐸𝐼
−

𝑔𝐵

𝐸𝐼
                                            (2.4a) 

 

 

Δ𝐴𝐵 = −
𝑀𝐴𝐵𝐿2

6𝐸𝐼
+

𝑀𝐵𝐴𝐿2

3𝐸𝐼
+

𝑔𝐴

𝐸𝐼
                                        (2.4b) 

 

From equations (2.4a) and (2.4b), the three terms shown, are the representations of the 
tangential deviations caused by MAB, MBA, and the external loading, acting separately on the 
member as illustrated in figure 2.1(d). The negative term represents the tangential deviation 
that is opposite to the elastic curve of the member shown in figure 2.1(b). And ցB and ցA are 
the moments about the ends B and A, respectively, of the area under the simple-beam bending 
moment diagram due to external loading (ML diagram in figure 2.1(c)). 

Making a substitution of the expressions of ΔBA and ΔAB (equations (2.4)), into equations (2.3), 
result in the following: 
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𝜃𝐴 − 𝜓 =
𝑀𝐴𝐵𝐿

3𝐸𝐼
−

𝑀𝐵𝐴𝐿

6𝐸𝐼
−

𝑔𝐵

𝐸𝐼𝐿
                                      (2.5a) 

 

𝜃𝐵 − 𝜓 = −
𝑀𝐴𝐵𝐿

6𝐸𝐼
+

𝑀𝐵𝐴𝐿

3𝐸𝐼
+

𝑔𝐴

𝐸𝐼𝐿
                                  (2.5b) 

 

To be able to express the member end moments in terms of the rotations and external loading, 
equations (2.5a) and (2.5b) must be solved simultaneously for MAB and MBA, and equation 
(2.5a) can now be written as: 

 

𝑀𝐵𝐴𝐿

3𝐸𝐼
=

2𝑀𝐴𝐵𝐿

3𝐸𝐼
−

2𝑔𝐵

𝐸𝐼𝐿
− 2(𝜃𝐴 − 𝜓)  

 

Now this equation can be substituted into equation (2.5b) and solving the resulting equation 
for MAB, we get: 

𝑀𝐴𝐵 =
2𝐸𝐼

𝐿
(2𝜃𝐴 + 𝜃𝐵 − 3𝜓) +

2

𝐿2
(2𝑔𝐵 − 𝑔𝐴)                       (2.6a) 

 

And by substituting equation (2.6a) into either equation (2.5a) or (2.5b), we obtain the 
expression for MBA: 

 

𝑀𝐵𝐴 =
2𝐸𝐼

𝐿
(𝜃𝐴 + 2𝜃𝐵 − 3𝜓) +

2

𝐿2
(𝑔𝐵 − 2𝑔𝐴)                      (2.6b) 

 

Equations (2.6) show the end moments of the member are dependent of the rotations and 
translations on its ends, and of the external loading applied.  

So far, the member has been considered as a part of a bigger structure, but if this is changed by 
considering it now as an isolated member with its ends completely fixed against rotations and 
translations (figure 2.1(e)), moments would develop at the end the fixed ends of the beam. This 
moments are known as fixed-end moments, and their expressions can be obtained from 
equations (2.6) by setting θA = θB =ψ = 0: 

 

𝐹𝐸𝑀𝐴𝐵 =
2

𝐿2
(2𝑔𝐵 − 𝑔𝐴)                                                   (2.7a) 

 

𝐹𝐸𝑀𝐵𝐴 =
2

𝐿2 (2𝑔𝐵 − 𝑔𝐴)                                                  (2.7b) 
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Where FEMAB and FEMBA are the fixed-end moments caused by the external loading at the 
fixed ends A and B. respectively, of the beam AB (figure 2.1(e)). 

Checking equations (2.6), we can see that the second terms on the right side are equal to the 
fixed-end moments that would develop if the member had fixed ends, restricting rotations and 
translations (equations (2.7)). Moreover, of equations (2.7) are substituted into equations (2.6) 
we will obtain the following: 

 

𝑀𝐴𝐵 =
2𝐸𝐼

𝐿
(2𝜃𝐴 + 𝜃𝐵 − 3𝜓) + 𝐹𝐸𝑀𝐴𝐵                             (2.8a)  

 

𝑀𝐵𝐴 =
2𝐸𝐼

𝐿
(𝜃𝐴 + 2𝜃𝐵 − 3𝜓) + 𝐹𝐸𝑀𝐵𝐴                                (2.8b) 

 

Equations (2.8), are called the slope-deflection equations, and they express the end moments 
of a member in terms of its rotations and translations originated for a defined external loading. 
It is important to mention that the slope-deflection equations are valid only for prismatic 
members with linear elastic material properties, and that are subjected to small deformations. 
These equations take into account the bending deformations of members, for this reason, the 
deformations due to axial forces and shears are neglected. 

Since equations (2.8) have the same form, both can be obtained one from the other just by 
switching the A and B subscripts. For this reason, it is favorable to express them as a single 
slope-deflection equation: 

   

𝑀𝑛𝑓 =
2𝐸𝐼

𝐿
(𝜃𝑛 + 2𝜃𝑓 − 3𝜓) + 𝐹𝐸𝑀𝑛𝑓                                (2.9) 

 

Where the subscript n and f define the near end of the member where the moment Mnf acts, and 
the far (other) end of the member, respectively [5]. 

Equations (2.8) and (2.9), are the slope-deflection equations considering both ends of the 
member rigidly connected to the joints, this means that the member end rotations θA and θB are 
equal to the rotations of the adjacent joints. 

On the other hand, in the situation of having one of the member’s ends with a hinged 

connection, the moment at the hinged end will be equal to zero, and the slope-deflection 
equations can be modified to reflect this condition: 

 

𝑀𝑟ℎ =
3𝐸𝐼

𝐿
(𝜃𝑟 − 𝜓) + (𝐹𝐸𝑀𝑟ℎ −

𝐹𝐸𝑀ℎ𝑟

2
)                                       (2.10a) 

 

𝑀ℎ𝑟 = 0                                                                   (2.10b) 
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2.1.3 Member Stiffness 

A beam AB, which is considered to be prismatic with one end hinged and the other end fixed, 
A and B, respectively, is illustrated in figure 2.2(a). In this figure, a moment M is applied at the 
end hinged A. The moment applied makes the beam rotate by an angle θ at the hinged end A 
and it develops a moment MBA at the fixed end B. By using the slope-deflection derived in 
Section 2.1.2, a relationship between the applied moment M and the rotation θ can be 
established. In this manner, substituting Mnf = M; θn = θ; θf = ψ = FEMnf = 0 into the slope-
deflection equation, leads to: 

 

𝑀 = (
4𝐸𝐼

𝐿
) 𝜃                                                         (2.11) 

 

The moment that must be applied at an end of the member to cause a unit rotation of that end 

is called the bending stiffness K . Therefore, giving a value of θ = 1rad in the equation (2.11), 

the bending stiffness of the beam illustrated in figure 2.2(a) will be obtained: 

 

�̅� =
4𝐸𝐼

𝐿
                                                               (2.12) 

 

 

(a) 

 

(b) 

Figure 2.2 
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If the modulus of elasticity E of all the members of a structure is constant, it is favorable to use 
the relative bending stiffness K of the members when doing the analysis. This is obtained by 

dividing the bending stiffness K  of the member by 4E. Therefore, the relative bending 

stiffness of the beam of figure 2.2(a) will be the following: 

 

𝐾 =
�̅�

4𝐸
=

𝐼

𝐿
                                                                (2.13) 

 

Equations 2.11 to 2.13 were obtained from the hinged-fixed beam of figure 2.2(a). Now, 
considering a beam with both ends hinged like the one shown in figure 2.2(b), the applied 
moment M and the rotation θ of the end A of the beam, can be obtained by applying equations 
2.10 (modified slope-deflection equations), defined in section 2.1.2. When substituting Mrh = 
M; θr = θ; and ψ = FEMrh = FEMhr = 0 into equation (2.10a), equation (2.14) is acquired:  

 

𝑀 = (
3𝐸𝐼

𝐿
) 𝜃                                                                (2.14) 

 

As done in equation (2.11), giving a value of θ = 1rad, will lead to the expression for the 
bending stiffness of the beam of figure 2.2(b): 

 

�̅� =
3𝐸𝐼

𝐿
                                                                   (2.15) 

 

Looking closely to equations (2.11) and (2.15), it is shown that when the fixed support at the 
end B is replaced by a hinged support, the bending stiffness is reduced by 25 percent. Similarly 
as in equation (2.13), the relative bending stiffness is acquired by dividing the bending stiffness 
by 4E: 

𝐾 =
3

4
(

𝐼

𝐿
)                                                                (2.16) 

 

The relationship between the applied end moment M and the corresponding rotation θ of 
equations (2.12) and (2.15), can be summarized as shown in equation (2.17). 

 

𝑀 = {
(
4𝐸𝐼

𝐿
) 𝜃              𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 𝑓𝑖𝑥𝑒𝑑

(
3𝐸𝐼

𝐿
) 𝜃                   𝐹𝑎𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 ℎ𝑖𝑛𝑔𝑒𝑑

                           (2.17) 
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And in the same way, based on equations (2.11) and (2.15), the bending stiffness of a member 
is given by: 

 

�̅� = {
(
4𝐸𝐼

𝐿
)                       𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 𝑓𝑖𝑥𝑒𝑑

(
3𝐸𝐼

𝐿
)                    𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 ℎ𝑖𝑛𝑔𝑒𝑑

                             (2.18) 

 

Finally, the relative bending stiffness of a member can be expressed as: 

 

𝐾 = {

𝐼

𝐿
                   𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 𝑓𝑖𝑥𝑒𝑑

3

4
(

𝐼

𝐿
)               𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 ℎ𝑖𝑛𝑔𝑒𝑑

                                  (2.19) 

 

2.1.4 Carryover Moment 

When a moment M is applied to a hinged end A of a hinged-fixed beam like the one shown in 
figure 2.2(a), the beam generates a moment MBA at the fixed end B. This moment MBA, is 
defined as the carryover moment of that member. If we write the slope-deflection equation for 
MBA, the relationship between the applied moment M and the carryover moment MBA can be 
done, and by substituting Mnf = MBA; θf = θ; and θn = ψ = FEMnf = 0 into equation (2.9) we 
have: 

 

𝑀𝐵𝐴 = (
2𝐸𝐼

𝐿
) 𝜃                                                             (2.20) 

And substituting θ = ML/(4EI) from equation (2.1) into equation (2.20), we have: 

 

𝑀𝐵𝐴 =
𝑀

2
                                                                 (2.21) 

 

Equation (2.21) shows that when a moment M is applied to a hinged end of a beam, half of the 
magnitude of the applied moment is carried over to the far end, with the assumption that the 
far end is fixed. It is important to notice that the direction of the carryover moment MBA and 
the applied moment M are the same. 

As seen previously, figure 2.2(b) is a hinged-hinged beam. In this situation, the carryover 
moment will be equal to zero. Hence, the carryover moment can be expressed as: 

 

𝑀𝐵𝐴 = {
𝑀

2
                     𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 𝑓𝑖𝑥𝑒𝑑

0                    𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 ℎ𝑖𝑛𝑔𝑒𝑑
                              (2.22) 
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The carryover factor (COF) is the ratio of the carryover moment to the applied moment 
(MBA/M), and it represents the fraction of the applied moment M that is carried over to the far 
end of the member. Thus, the carryover factor of equations (2.22) will be [5]: 

 

𝐶𝑂𝐹 = {
1

2
                     𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 𝑓𝑖𝑥𝑒𝑑

0                    𝐹𝑎𝑟 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑏𝑒𝑟 ℎ𝑖𝑛𝑔𝑒𝑑
                             (2.23) 

 

2.1.5 Distribution Factors 

To explain how to distribute a moment applied (by moment-distributed method) on a joint 
where several members are connected, a joint with three members belonging to a frame can be 
considered. When applying a moment M to the joint B, a rotation with the angle θ is caused, 
like shown in figure 2.3(a). Each member resists a fraction of that moment M applied, and in 
order to determine the corresponding value of each member the drawing of the free-body 
diagrams of joint B and for the three members AB, BC and BD must be done (figure 2.3(b)). 
By considering the moment equilibrium of the free body of joint B (i.e., ΣMB = 0), we write: 

 

𝑀 + 𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐷 = 0
𝑜𝑟

𝑀 = −(𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐷)
                                            (2.24) 

 

 

(a) 
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Figure 2.3 

 

Member AB, BC and BD are rigidly connected to joint B, this means that the rotations at the 
end B of these members is the same as in the joint. Moreover, by applying equations (2.17) 
through (2.19), the moments at the end B of the members can expressed in terms of the joint 
rotation θ to each member. 

 

𝑀𝐵𝐴 = (
4𝐸𝐼1

𝐿1
) 𝜃 = �̅�𝐵𝐴𝜃 = 4𝐸𝐾𝐵𝐴𝜃                                       (2.25) 

 

𝑀𝐵𝐶 = (
4𝐸𝐼2

𝐿2
) 𝜃 = �̅�𝐵𝐶𝜃 = 4𝐸𝐾𝐵𝐶𝜃                                       (2.26) 

 

𝑀𝐵𝐷 = (
4𝐸𝐼3

𝐿3
) 𝜃 = �̅�𝐵𝐷𝜃 = 4𝐸𝐾𝐵𝐷𝜃                                      (2.27) 

 

And substituting the equations (2.25) through (2.27) into the equilibrium equation (eq. (2.24)): 

 

𝑀 = −(
4𝐸𝐼1

𝐿1
+

4𝐸𝐼2

𝐿2
+

3𝐸𝐼3

𝐿3
) 𝜃 = −(�̅�𝐵𝐴 + �̅�𝐵𝐶 + �̅�𝐵𝐷)𝜃 = −(Σ�̅�𝐵)𝜃             (2.28) 

 

Where Σ K B is the sum of the bending stiffnesses of the members connected to joint B. 

The moment needed to cause a unit rotation of a joint is defined as the rotational stiffness. 
Equation (2.28) shows that the sum of the bending stiffnesses of the member rigidly connected 
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to the joint is equal to the rotational stiffness acting there. The adopted sing convention 
considers the member end moments as positive when are in the counterclockwise direction, 
and the moments acting on joints are considered positive when they act in the clock wise 
direction. 

The member end moments can be expressed in terms of the applied moment M, to accomplish 
this, the first thing is to rewrite equation (2.28) in terms of the relative bending stiffness of the 
members: 

 

𝑀 = −4𝐸(𝐾𝐵𝐴 + 𝐾𝐵𝐶 + 𝐾𝐵𝐷)𝜃 = −4𝐸(Σ𝐾𝐵)𝜃 

Where: 

 

𝜃 = −
𝑀

4𝐸Σ𝐾𝐵
                                                            (2.29) 

 

Substituting equation (2.29) into equations (2.25) through (2.27) into the equilibrium equation 
(eq. (2.24)), getting: 

 

𝑀𝐵𝐴 = −(
𝐾𝐵𝐴

Σ𝐾𝐵
)𝑀                                                     (2.30) 

 

𝑀𝐵𝐶 = −(
𝐾𝐵𝐶

Σ𝐾𝐵
)𝑀                                                     (2.31) 

 

𝑀𝐵𝐷 = −(
𝐾𝐵𝐷

Σ𝐾𝐵
)𝑀                                                    (2.32) 

 

As shown in equations (2.30), (2.31), and (2.32), the distribution of the applied moment M is 
proportional to the relative bending stiffness of the three members. Where the distribution 
factor of that member for end B, is the ratio K/ΣKB, and symbolizes the portion of the applied 
moment M that is distributed to the end B of the member. Consequently, equations (2.30), 
(2.31), and (2.32), can be expressed as: 

 

𝑀𝐵𝐴 = −𝐷𝐹𝐵𝐴𝑀                                                     (2.33) 

 

𝑀𝐵𝐶 = −𝐷𝐹𝐵𝐶𝑀                                                     (2.34) 
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𝑀𝐵𝐷 = −𝐷𝐹𝐵𝐷𝑀                                                    (2.35) 

Where DFBA = KBA/ΣKB; DFBC = KBC/ΣKB and DFBD = KBD/ΣKB are the distribution factors for 
ends B of the members AB, BC and BD, respectively [5]. 

 

2.1.6 Fixed-End Moments 

The moment distribution method also takes into account joint translations caused by support 
settlements and side-sway, through fixed-end moments. To explain this, a beam fixed at both 
ends is taken into consideration (figure 2.4(a)), the beam’s chord is rotating counterclockwise 

by the angle ψ = Δ/L, which is caused by a small settlement Δ of the left end A of the beam 
with respect to the right end B. 

The slope-deflection equation (equation (2.9)), can be written for two end moments with ψ = 
Δ/L and by setting θA, θB, and fixed-end moments FEMAB, and FEMBA due to external loading 
equal to zero, we have: 

 

𝐹𝐸𝑀𝐴𝐵 = 𝐹𝐸𝑀𝐵𝐴 = −
6𝐸𝐼Δ

𝐿2
 

 

FEMAB and FEMBA define the fixed-end moments caused by the relative translation Δ between 
the two ends of the beam. In order to keep the beam’s ends to rotate, the two fixed-end moments 
must act in the clockwise (negative) direction (figure 2.4(a)), when a relative displacement 
causes a chord rotation in the counterclockwise direction. In the same way, if the relative 
displacement creates a clockwise rotation (figure 2.4(b)), then fixed-end moments act in the 
counterclockwise (positive) direction [5]. 

 

 

(a) 
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(b) 

Figure 2.4 

  

2.2 Matrix Structural Analysis 

2.2.1 Analytical Model 

The matrix stiffness analysis, considers the structure to be assembled by straight members 
connected all together at its ends to joints. A member, which is also called element, can be 
defined as a part of a structure where the force-displacement relations can be used. This means 
that when applying displacements on a member ends, the forces and moments at its ends should 
be able to be determined by using the force-displacement relations. A joint, also referred as 
node, is the structural part of infinitesimal size to which the member ends are connected. 

In the analytical model, the joints and members of the structure are identified with numbers, in 
which the member’s numbers are enclosed by a rectangle, and the joint’s numbers by a circle. 
Figure 2.5(a) illustrates a frame, the analytical model of the frame is represented in figure 
2.5(b), where members and joints can be distinguished from each other. Also in this figure, it 
is shown that the frame is composed by four members and five joints. As mentioned before, 
the member force-displacement relations can only be used in for prismatic members only, for 
this reason, the vertical column of the frame has been subdivided into two members, each with 
constant cross-sectional properties (I and A) along its length [5]. 
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Figure 2.5 

 

2.2.2 Global and Local Coordinate Systems 

The stiffness method uses a Cartesian or rectangular global coordinate system to describe the 
overall geometry and behavior of the structure. A right-handed XYZ, with the plane structure 
on the XY plane is used for the global coordinate system. This can be seen in figure 2.5(b). 

To get the basic force-displacement relations in reference of the forces and displacements in 
the directions along and perpendicular to members, it is favorable to define a local coordinate 
system for each member of the structure. The local xyz coordinate system’s origin can be 

arbitrary positioned in one of the member’s ends, with the x axis directed along its centroidal 
axis. To choose the direction of the y axis, its positive direction must be set so that the 
coordinate system is right-handed, with the local z axis pointing to the global Z axis positive 
direction. 

Each member indicates the positive direction of the x axis with an arrow along the member line 
diagram of the structure, like shown in figure 2.4(b). In more detail, this figure displays that 
the origin of the member 1 is located at its end on joint 1, and that the direction of the x1 axis 
is from joint 1 to joint 2. Also, each member has a beginning joint and an end joint. The 
beginning joint is defined as the joint in which the end member end with the origin of the local 
coordinate system is connected, while the end joint is the one adjacent to the opposite end of 
the member. 

An example of this can also be seen in figure 2.5(b), where the member 1 begins at joint 1 and 
ends at joint 2, and member 2 begins at joint 2 ending at joint 3, and so on. After the local x 
axis for the members are determined, by applying the right-hand rule the local y axes are 
defined (figure 2.5(c)). 
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Finally, when applying the right-hand rule, the extended thumb (pointing out of the plane of 
the page) will indicate the local z axis, which is the same as the positive direction of the global 
Z axis [5]. 

 

2.2.3 Degrees of Freedom 

The necessary displacements or translational rotations to define the deformed shape of a 
structure under loading are defined as the structure’s degrees of freedom. The deformed shape 
of the frame used in the previous section (figure 2.5(a)) is displayed in figure 2.5(d). In this 
figure, the support conditions of the joints of the structure can be visualized, hence the degrees 
of freedom of the structure can be obtained. In the left column, joint 1 is located at a hinged 
support, which means that the member can freely rotate in the X and Y plane, but it won’t 

translate in any direction, therefore joint 1 has one degree of freedom d1. Joint 2 is not attached 
to any support, so it can freely translate in X and Y axes (d2 and d3), and rotate about the Z axis 
(d4), so joint 2, has three degrees of freedom. Joints 3 and 4 are in the same case as joint 2 (free 
joints), thus, they have three degrees of freedom each. Joint 5, is fully fixed in the support of 
the right column, and it will not generate any translations and rotations, hence, it does not have 
any degrees of freedom. The frame has in total ten degrees of freedom, and the displacements 
are in accordance to the global coordinate system. The translations are defined as positive when 
in positive directions of the X and Y axes, the rotations are positive when they act on the 
counterclockwise direction. The matrix form of the joint displacements can be written as: 

 

𝑑 =

[
 
 
 
 
𝑑1

𝑑2

⋮
𝑑9

𝑑10]
 
 
 
 

 

 

Where d is the joint displacement vector of the structure. 

In the stiffness method, it is unnecessary to sketch the deformed shape of the structure to 
distinguish the degrees of freedom. Usually, they are represented by numbered arrows on each 
joint of the line diagram of the structure like is displayed in figure 2.5(b). A suitable way of 
numbering the degrees of freedom of joints that have more than one degree of freedom, is to 
put first the translation on the X axis, followed by the translation on the Y axis, and finally the 
rotation.  

In the case of continuous beams, lateral loads do not produce any axial deformations, 
consequently, the joint displacements along the centroidal axis of the member are omitted. 
Figure 2.6(a) represents a continuous beam with four degrees of freedom shown in figure 
2.6(b), it can be noticed that each joint of the beam has up to two degrees of freedom and not 
three [5]. 
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Figure 2.6. Degrees of Freedom in a Continuous Beam 

 

 

2.3 Member Stiffness Relations in Local Coordinates 

The structure’s joint displacements are obtained by solving a simultaneous system of equations 
defined in equation (2.36). 

 

�̅� = 𝑆𝑑                                                              (2.36) 

 

As mentioned in section 2.2.3, d represents the joint displacement vector, while the effects of 

external loads are at the joints are symbolized by P , and S is the structure stiffness matrix. To 

acquire the structure’s stiffness matrix, it is necessary to assemble the individual member’s 

stiffness matrices of the structure. The stiffness matrix of a member expresses the forces at the 
ends of the member as a function of its end displacements [5]. 

 

2.3.1 Continuous Beam Members 

As mentioned previously, continuous beam member’s degrees of freedom in the direction of 

its centroidal axis are not considered. Consequently, the members of plane continuous beams 
have only four degrees of freedom to be considered. Figure 2.7(a) show the degrees of freedom 
acting in a continuous beam plane member. 
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Figure 2.7 

 

The member’s end displacements with its corresponding end forces are represented by u1 
through u4 and by Q1 through Q4, respectively. 

The relationships between the member end forces and end displacements in terms of the 
external loads acting on the member, can be arranged by separately subjecting the member to 
each of the four end displacements and external loads, and by expressing the algebraic sum of 
the end forces required to cause the individual end displacements and the forces caused by the 
external loads, as the total member end forces. And according to figures 2.7(b) through (e), it 
can be expressed: 

 

𝑄1 = 𝑘11𝑢1 + 𝑘12𝑢2 + 𝑘13𝑢3 + 𝑘14𝑢4 + 𝑄𝑓1                               (2.37a)  

 

𝑄2 = 𝑘21𝑢1 + 𝑘22𝑢2 + 𝑘23𝑢3 + 𝑘24𝑢4 + 𝑄𝑓2                              (2.37b) 

 

𝑄3 = 𝑘31𝑢1 + 𝑘32𝑢2 + 𝑘33𝑢3 + 𝑘34𝑢4 + 𝑄𝑓3                              (2.37c) 

 

𝑄4 = 𝑘41𝑢1 + 𝑘42𝑢2 + 𝑘43𝑢3 + 𝑘44𝑢4 + 𝑄𝑓4                              (2.37f) 

 

From the previous equations, the stiffness coefficients kij are the forces at a joint required to 
have a unit displacement uj in the direction of Qi, without having any other end displacements. 
Finally, the dixed-end forces caused by the external loads are represented as Qfi. 

Equations (2.37) can be represented in the matrix form by using the matrix multiplication 
definition: 

[

𝑄1

𝑄2

𝑄3

𝑄4

] = [

𝑘11 𝑘12 𝑘13 𝑘14

𝑘21

𝑘31

𝑘41

𝑘22 𝑘23 𝑘24

𝑘32 𝑘33 𝑘34

𝑘42 𝑘43 𝑘44

] [

𝑢1

𝑢2
𝑢3

𝑢4

] +

[
 
 
 
 
𝑄𝑓1

𝑄𝑓2

𝑄𝑓3

𝑄𝑓4]
 
 
 
 

                           (2.38) 
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Or, symbolically as: 

 

𝑄 = 𝑘𝑢 + 𝑄𝑓                                                      (2.39) 

 

Where the member end force is represented as Q, u is the member end displacement vectors, k 
represents the member stiffness matrix, and Qf is the member fixed-end force vector, all in the 
local coordinate system. 

To acquire the stiffness coefficients kij, the four end displacements of the member are subjected 
independently to unit values. Then, by applying the principals of mechanic of materials, the 
slope-deflection equations and the equations of equilibrium, the member end forces required 
to cause the individual unit displacement can be determined, and they represent the stiffness 
coefficients for the member. 

Figure 2.7(b), displays a beam with its deformed shape caused by a unit displacement u1, while 
all the other end displacements are equal to zero. The deflected shape is caused by the end 
moments of the member, and they can be determined by using the slope-deflection equations. 
Substituting MAB = k21; MBA = k61; θA = θB = 0; ψ = -1/L; and FEMAB = FEMBA = 0 into 
equations (2.8) we will have: 

𝑘21 = 𝑘61 =
6𝐸𝐼

𝐿2
 

 

And by applying the equilibrium equations the end forces in the y direction can be obtained: 

 

+↶ Σ𝑀𝑒 = 0;       2 (
12𝐸𝐼

𝐿2 ) − 𝑘11(𝐿) = 0  

𝑘11 =
12𝐸𝐼

𝐿3
 

 

+↑ Σ𝐹𝑦 = 0;           
12𝐸𝐼

𝐿2 − 𝑘31 = 0 

𝑘31 = −
12𝐸𝐼

𝐿3
 

 

The member end forces required to cause a displacement u3 = 1 (figure 2.7(d)) can be 
determined in a similar manner: 

 

𝑘13 = −
12𝐸𝐼

𝐿3
 ;      𝑘23 = 𝑘43 = −

6𝐸𝐼

𝐿2
 ;      𝑘33 =

12𝐸𝐼

𝐿3
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Figure 2.7(c) shows the deformed shape of the member caused by the rotation u2 = 1, with u1, 
u3, u4 = 0. The member end moments can be obtained by substituting MAB = k22, MBA = k42, θA 
= 1, and θB = ψ = FEMAB = FEMBA = 0 into the slope-deflection equations: 

 

𝑘22 =
4𝐸𝐼

𝐿
 ;           𝑘42 =

2𝐸𝐼

𝐿
 

 

And with the equations of equilibrium, we determine: 

 

𝑘12 =
6𝐸𝐼

𝐿2
          𝑘32 = −

6𝐸𝐼

𝐿2
 

 

Similarly, the stiffness coefficients corresponding to the unit displacement u4 =1 (figure (e)), 
will be:  

𝑘14 = −𝑘34 =
6𝐸𝐼

𝐿2
          𝑘24 =

2𝐸𝐼

𝐿
          𝑘44 =

4𝐸𝐼

𝐿
 

 

Substituting the values previously obtained into equation (2.38), will deliver the stiffness 
matrix for the members of continuous beams in local coordinates [5]: 

 

𝑘 =
𝐸𝐼

𝐿3 [

12 6𝐿 −12 6𝐿
6𝐿

−12
6𝐿

4𝐿2 −6𝐿 2𝐿2

−6𝐿 12 −6𝐿
2𝐿2 −6𝐿 4𝐿2

]                                         (2.40) 

 

 

2.4 Member Stiffness Relations in Global Coordinates 

 

2.4.1 Continuous Beam Members 

In continuous beams, the local coordinates of the member are oriented in a way that the positive 
directions of x and y local axes, are in the same direction of the positive X and Y global axes. 
For this reason, there is no need to make a transformation of coordinates of the member, being 
the stiffness relations in the local and global coordinates the same [5]. 
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2.5 Clapeyron’s Theorem of Three Moments 

A continuous beam with concentrated forces and under a partial uniform distributed load is 
shown in figure 2.8. Instead of the beam’s reactions, the bending moments of the continuous 

beam are considered to be the unknowns. Next, the deformation equations are written in terms 
of these bending moments, that will finally deliver the three-moment theorem: 

 

𝑀𝐴𝐿1 + 2𝑀𝐵(𝐿1 + 𝐿2) + 𝑀𝐶𝐿2 = −
6𝐴1𝑥1

𝐿1
−

6𝐴2𝑥2

𝐿2
                         (2.41) 

 

Where MA, MB, and MC are bending moments, at the supports A, B and C respectively, the span 
lengths are represented as L1 and L2, the areas of the moment diagrams are defined as A1 and 
A2 with the temporary assumption that each of the spans of the beam is simply supported, and 
the distances of the centroids of each of these moment diagrams from A and C will be x1 and 
y1 respectively. Whenever a continuous beam has the supports at the same level, the three-
moment theorem is suitable [6]. 

 

 

Figure 2.8. Continuous Beam Under Differen Load Conditions 

 

For a roofing system acting as a continuous beam like shown in figure 2.9, the Clapeyron’s 
equation applied to a support n would look like: 

 

Figure 2.9. Roofing System-Continuous Beam Representation 

 

𝑀𝑖−1
𝐿𝑖−1

6𝐸𝐼𝑖−1
+ 2𝑀𝑖  (

𝐿𝑖−1

6𝐸𝐼𝑖−1
+ 

𝐿𝑖

6𝐸𝐼𝑖
) + 𝑀𝑖+1

𝐿𝑖

6𝐸𝐼𝑖
  =  −(𝛼𝑖 + 𝛽𝑖)                  (2.42) 
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For a continuous beam with more than two supports, the equations can be written as a matrix 
[A]∙[Ms]=[H]: 

 

Stiffness matrix [A] is built up with terms that depend on the beam stiffness and spans for each 
bay. Also, the design of beam joints affects the stiffness. 

Support moment matrix [Ms] is the solution vector for the system of equations. Any cantilever 
bending moment at end support, M0 and Mn+1. Note that if there are cantilever bending moment, 
it will affect the beam constants for adjacent support. 

Matrix [H] is built up with so called beam constants that is the inclination angle at the support 
regardless of the beam continuity. The beam constants are dependent on the type of load that 
is acting on the beam. 
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3 Experimental Test 
For the experimental test, since we are studying the behavior of the connection in the mid-
support, testing procedures in accordance with the Annex A of EN 1993-1-3 are used. The 
company produces four thicknesses of the LHP200 profile: 0.85mm, 1.00mm, 1.25mm, and 
1.50mm. In this experiment the lowest and the highest thicknesses are tested to cover the whole 
range of the product, and three tests are made for each one. The length of the real span 
considered is of 8m, with a single overlap of 720mm starting 80mm from the mid-support. 

 EN1993-1-3 A.2.1 (3): in this section EN1993-1-3 says that to prevent the spreading 
of corrugations, transverse ties or appropriate test accessories such can be applied to 
the test specimen (figure 3.1). In this case “L” shape sections are used as ties and special 

supports are delivered from the company to place them at its ends (figure 3.2). 

 

Figure 3.1 Appropriate test accessories 

 

  

 

Figure 3.2 Accessories used in the Test 

 



 

37 
 

 EN 1993-1-3 A.3.2 Double span test: this point gives the appropriate set-up to make 
a continuous beam over two or more spans. But since modelling the real span lengths 
of the test is a lot of time consuming and occupies a lot of space in the test, an alternative 
also from EN-1993-1-3 was used to measure test the internal support. 

 

 A.3.4 Internal support test: EN1993-1-3 gives the alternative test set-up for an 
internal support test of a continuous beam with two or more spans. This set-up consists 
in using the distance of the points of contra-flexure of the bending moment diagram for 
a continuous beam at the support that is going to be studied. The load applied will 
simulate the up-lifting force acting in the support generated by the bending moment. 
 
The advantages of this procedure are that it is a lot simpler to analyze, it occupies much 
less space in the laboratory and it is easier to assembly, resulting in a good and efficient 
way analysis. Figure 3.3 shows this procedure. 
 

 

Figure 3.3 

 

3.1 Experimental Test Configuration 

As mentioned before, since we are looking the behavior of the single overlap joint over the 
mid-support, the negative bending moment in that area is the critical action of the system. In 
this sense, the segments where the bending moment is equal to zero are considered as simply 
supported boundary conditions in the experiment, and instead of a mid-support, a displacement 
is applied to study the deformation. Figures 3.4 and 3.5 show the distributed load and the 
bending moment diagram over the real spans. 

 

 

 

Figure 3.4 
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Figure 3.5 

 

In the real structure, both profiles have the same length, but it is because of the overlap 
connection that the spans of this system are different. In this case the first span (the one on the 
left), has 7.20m in and the second span is 8m (figure 3.6). 

 

Figure 3.6 

The distances from the mid-support to where the bending moment is equal to zero are 2m and 
1.82m for span 1 and span 2 respectively as shown in figure 3.7. The profile is also set upside 
down to avoid any complications and simulate the behavior of the system under a distributed 
load. 

By applying the testing procedures from EN1993-1-3 to the lengths used for the test, will lead 
to the following configuration: 

 

 

Figure 3.7 
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As shown in figure 3.8, the profile is turned upside-down to simulate a lifting load that a 
negative bending moment will produce in a mid-support. In this figure, we can also see de 
connection details of the overlap. It is important to mention that for the thicker profile, three 
screws are used in the web of the profile to give more resistance (figure 3.9). 

 

Figure 3.8 Overlap Connection Details 

 

 

Figure 3.9 LHP200 profile, t=1.50mm 

 

Note in figure 3.8 that one half of the LHP200 profile on each side is also set in the 
configuration, the idea of this is to simulate the continuity of that the roof system will have in 
the real situation.  

The displacement will be applied with a hydraulic actuator to the steel beam at a rate of 
2mm/min, and 12 points of interest will be chosen to measure the force-displacement relation. 
With this relations, stiffness and rotations of the new modified joint, and to find the residual 
bending moment in the support after failure will be found.  

The points of interest were chosen with the purpose of being able to measure the displacement 
of the beam, the displacement of the top flanges and the gap between the profiles in the overlap 
(figure 3.10). 
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Figure 3.10 

 

Figure 3.11 LVDT’s placed in position 

 

It is important to mention that the behavior of some points should have big similarities to 
follow the continuity of the system. For example, point 5 should be really similar to point 7, 
and point 10 to point 12, and so on. 

The sing convention of the LVDT’s is shown in figure 3.12: 

 

 

Figure 3.12 LVDT’s Sing Convention 
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This means that when the LVDT closes it will register a positive displacement, and a negative 
displacement when it opens. 

3.2 Experimental Test Results 

In this section, we will check the similarities between the points that were mentioned before. 
There will be shown only some points of some tests, but all the graphs will be included in the 
Annex. 

 

Graph 3.1 Force-Displacement of the Three Tests at Point 1 

 

 

Graph 3.2 Force-Displacement of the Three Tests at Point 2 

 

 

Table 3.1 Displacements of Points 1 and 2 at the Max. Load 
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As shown in the previous graphs, all the points have almost the same behavior, which means 
that the tests were consistent. We can also appreciate this in table 3.1 which shows the 
displacements at the maximum load. 

The same case is for points 5 and 7, which correspond to the top gap measurement: 

 

 

Graph 3.3 Force-Displacement of the Three Tests at Point 5 for a Thickness of 0.85mm 

 

 

Graph 3.4 Force-Displacement of the Three Tests at Point 7 for a Thickness of 0.85mm 

 

 

Table 3.2 Table 3.3 Displacements of Points 5 and 7 at the Max. Load for a Thickness of 0.85mm 
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Next, the comparison between points 1 and 2 are seen in graph 3.5, and between points 5 and 
7 in graph 3.6: 

 

Graph 3.5 Force-Displacement Point 1 vs Point 2; Test 2 for a Thickness of 0.85mm 

 

 

Graph 3.6 Force-Displacement Point 5 vs Point 7; Test 2 for a Thickness of 0.85mm 

 

To be able to calculate the stiffness by a theoretical analysis, an average was calculated for the 
points that correspond to displacements that will influence the stiffness of the overlap. For 
example, the average of points 1 and 2 will correspond to the displacement of the whole system, 
the average of points 5 to 8 will be the displacement of the top gap and the average from points 
9 to 12 is the bottom gap. The following graphs show the displacement and average 
displacement of some of the points. 

Since we are mainly interested in the behavior of the overlap connection before the failure of 
the system, we limit to work with the values that are in the elastic range at around 95% of the 
maximum load. 
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Graph 3.7 Displacement of Point 1 and 2 in Test 3 for a Thickness of 1.50mm 

 

 

Graph 3.8 Average Displacement of Point 1 and 2 in Test 3 for a Thickness of 1.50mm 

 

 

Graph 3.9 Displacement of Point 5 to 8 in Test 3 for a Thickness of 1.50mm 
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Graph 3.10 Average Displacement of Point 5 to 8 in Test 3 for a Thickness of 1.50mm 

 

 

Graph 3.11 Displacement of Point 9 to 12 in Test 3 for a Thickness of 1.50mm 

 

 

Graph 3.12 Average Displacement of Point 9 to 12 in Test 3 for a Thickness of 1.50mm 
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Graphs 3.8, 3.10 and 3.12 represent the total displacement of the system, the top gap and the 
bottom gap respectively at 95% of the maximum load. Remembering the sign convention of 
the LVDT’s mentioned before, we can wee that the top gap tends to close and the bottom gap 

to open in relation with the systems deflection. 

Before continuing with the theoretical analysis for obtaining the spring stiffness in the overlap, 
it is important to understand what happens to the profiles during the tests, and to see the points 
of failure and local buckling and deformations. 

 

3.2.1 Buckling and deformations 

The following figures are the most significant deformed shapes and buckling, or any significant 
behavior that can help to understand what happens in this type of connection. 

 t=0.85mm 

 

 

Figure 3.13 Local Web Buckling of LHP200, t=0.85mm 

We can see in figure 3.13 that there are compression forces acting in the web of the profiles 
which produce local buckling. First, the buckling starts in the bottom profile and then it 
propagates to the top profile until the whole system fails. In this part of the connection, the 
upper profile wants to lift the lower one, but the connection screws have reaction forces that 
want to keep them apart, therefore we have this behavior. 
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Figure 3.14 Pull-Out of the Side-Overlap Connection Screws 

After the failure of the system, the load was still applied, and we can see here that the overlap 
connection has a pull-out failure, but it is important to be clear that this is not the reason of 
the system failure. 

 

 t=1.50mm 

 

 

Figure 3.15 Local Web Buckling of LHP200, t=1.50mm 
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For this thickness, we can see that we have the same buckling behavior in the bottom profile, 
however in this case, the buckling does not propagate to the top profile and instead the side 
overlap connection screws have a tensile failure which make the whole system fail (figure 
3.16). 

 

 

Figure 3.16 Tensile Failure of the Side-Overlap Connection Screws, LHP200, t=1.50mm 

 

It is important to point out that all the tests have exactly the same type of failure in the same 
position, and that failure always occurs in the side where the half side profile is on the top 
using the test configuration as reference. 
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4 Computation of the overlap stiffness 

4.1 Contribution of the overlap to the structure’s deflection 

Graph 4.1 show the experimental force-displacement of the system and the theoretically 
calculated displacement without considering the overlap. 

We can notice that there is a difference in the displacement that is due to the contribution of 
the overlap, so to be able to calculate this contribution, first we need to understand what 
happens in this part of the profiles. 

 

Graph 4.1 Experimental vs Theoretical Force-Displacement 

 

As we mentioned in the previous chapter, the top gap tens to close and the bottom gap tends to 
open when the whole structure has a deflection. To understand the behavior of the overlap 
under these conditions, we can separate the profiles and evaluate the forces acting in the overlap 
due to a global load “P” (figure 4.1). 

 

Figure 4.1 Internal Forces in the Overlap 

 



 

50 
 

“Fs” is the force that depend on the overlap connection screws that keep the profiles from 
separating, and “Fu” is the force that depend on the profiles that prevent the sheets from closing, 

while a global force “P” is acting in the system. 

The following figure represents the behavior of the overlap, and it’s a simplification of figure 

4.1. In here we can see the same forces “Fs” and “Fu” represented as a moment “M” divided 

by the overlap length “e”. We can also see that there is a spring stiffness acting in the 

connection. 

To get these value of the M/e, we would have to compute for the value of the bending moment 
acting where the force “Fs” is located, and divide it by the overlap length. Instead, since we 

already have the values of the forces of the load “P” applied, and because they are very close 

to each other, we compute for the bending moment at the load point by using a formula for a 
simply supported beam shown in figure 4.3, and which will leave us in the safe side. 

 

Figure 4.2 Overlap Connection Diagram 

 

 

 

Figure 4.3 Simply Supported Beam Bending Moment 

 

 

Once we have the bending moment at that point we can have the force acting in the overlap. 
Similarly, we could compute for the force “Fs” with the difference that we would need the 
bending moment acting where the “Fu” load is. 

After this we need to compute for a factor “f” that will depend on the spans and overlap lengths, 
and it will be the relation between the total gap between the profiles and the overlap 
displacement. 
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Figure 4.4 Gaps in the Overlap Connection 

 

Figure 4.4 show the two gaps acting on the profile, which with the experimental test results, 
saw that one opens and one closes. These two gaps can be added together and take it into 
account as a single total gap to find the relation with the overlap deflection. 

 

 

Figure 4.5 Relation of Triangles of the Overlap Deflections 

 

Once we have the total gap, we can make the relation between the triangles. In figure 4.5, we 
can see that the big triangles represent the overlap displacement, and the small ones the gap 
between the profiles. We can also observe that the red triangles are similar and the same for 
the blue triangles. 

If we want to know how much the overlap displacement will be when the gap has a value of 
1mm, we can have the following expressions: 

 

Figure 4.6 Computation of Factor “f” 
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And by substituting the values of our Test we have: 

 

o=1.32mm 

which means that each millimeter in the gap will produce 1.32mm in the overlap, hence: 

f=1.32 

By using the values from the test and the theoretical value at a certain load, we can check if 
the factor is correct: 

δ = deflection of the whole system (experimental test) = -41.42mm 

δt = deflection without considering the overlap (theoretical) = -20.44mm 

δo = deflection of the overlap (δ – δt)  = -20.98mm 

δg = total gap between the profiles (experimental test) = 6.55mm 

 

Should satisfy: 

δg ∙ f = δo 

6.66 (1.32) = 8.646 

 

As we can see, by multiplying the gap with the factor, we don’t have the deflection of the 

overlap. The possible reasons for this is that as the system bends, local buckling occurs in the 
web where the overlap connection in located (figure 4.7). This deformation could be missing 
from the deflection measured in the gap. 

A better way to measure the gap between the profiles could be by somehow placing the LVDT’s 

in a way to measure the gap between the webs instead of the flanges. 

Another possibility is that as the system bends, the LVDT’s on the top start to rotate, resulting 
in possible changes in measurements (figure 4.8). It will be interesting to place the LVDT’s in 

a way that the deformation of the profiles does not affect in any way its position, and see if 
there are any significant differences. 

 

Figure 4.7 Web Gap Between the Profiles 
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Figure 4.8 Rotation of LVDT 

 

As we mentioned, the overlap has an influence in the deflection of the system, and the 
contribution of the overlap to this deflection must be represented: 

 

                                                           (4.1) 

 

And by solving for a thickness of 0.85mm k: 

 

 

 

 

Graph 4.2 Experimental vs Theoretical vs Theoretical W/Overlap; t=0.85mm 
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And for the profile with t=1.50mm: 

 

 

 

 

 

Graph 4.3 Experimental vs Theoretical vs Theoretical W/Overlap; t=150mm 

 

 

We can see that for both profiles that when we add the overlap deflection to the theoretical 
deflection we have similar results for the Force-Displacement in the experimental test and the 
theoretical considering the overlap. 
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5 Finite Element Model 
The finite element analysis was made using Abaqus/CAE 6.14 software. It is divided into 
modules, where each module defines a logical aspect of the modeling process. As you move 
from module to module, you build the model from which the software generates an input file 
that you submit to analysis. After the analysis is completed, you can visualize a deformed shape 
of the of the elements and read the output of the results [7]. 
 
 

5.1 Description 

The aim of the Finite Element Model is to do an exact simulation of the experimental test so 
that a parametric study can be made later. Thus, the model is made as close as possible to the 
test, by using the same thicknesses, span lengths, boundary conditions, material properties and 
load application. As mentioned in the previous chapter, the experimental test will be made with 
the lowest and highest thicknesses of the LHP200 profiles, that being the case, there will be 
two different FE models as well, simulating these two tests. 

Since Abaqus software is unitless, a unit configuration must be adopted since the beginning, 
and one must be careful to keep track of it to avoid further errors on the analysis. The following 
table shows the units used: 

 

Length Force Stress Time 
mm N MPa s 

 

Table 5.1. Units Used in the FE Model 

5.1.1 Part 

Since the geometry of the LHP200 profile is a bit complex to create in Abaqus, the different 
parts used were first made in Autodesk AutoCAD software, and then imported to the model as 
“.sat” files. By doing this, we facilitate the creation of the whole model, and it will give us a 
first view of how are model will look. 

Two different lengths of LHP200 profiles were used one of 1740mm (figure 4.1(a)) and another 
of 2800mm (figure 4.1(b)) which correspond to the spans of 1820mm and 2000mm 
respectively.  

  (a) 
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 (b) 

Figure 5.1 LHP200 Profiles 

 

And used in the test, side profiles cut in half in the longitudinal direction for both 1740mm 
and 2800mm are created as shown in figure 4.2(a) and (b) respectively. 

 

 (a) 

 

 (b) 

Figure 5.2 
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The support cleats are of 150mm (figure 4.3) and they are placed along the displacement 
application area, which is the overlap support. Note that the support cleat does not have the 
“ribs” that the real profile has. In order to simulate the rigidity of the real support cleat, a bigger 

thickness is used providing a bigger stiffnes. 

 

 

Figure 5.3 Support Cleat 

 

And finally, a hollow section of 200x200mm (figure 4.4) which is used to transfer the 
displacement in all the support cleats. 

 

 

Figure 5.4 Hollow Section 200x200mm 
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5.1.2 Property 

In this module, the properties of the parts made are defined. First, we start by creating the 
material that will be used in our sections. In this case, all the sections are made of steel with a 
yield strength of 420MPa, with the exception of the LHP200 profiles and support cleats with a 
thickness of 1.5mm, which have a yield strength of 350MPa. Table 4.2 shows the properties of 
the parts used. 

 

 

Table 5.2. Part Properties 

 

The values of stress-strain relationship are obtained from a tensile test with a specimen with 
the same material yield strength properties, and it shown in the next graph. 

 

  

Graph 5.1. Stress-Strain Relationship 

 

 

Hollow 
Section

3500 6.30 420 0.3

Support 
Cleat

150 3.00 420 0.3

1/2 
LHP200

2800 0.85 350 0.3

1/2 
LHP200

1740 0.85 350 0.3

LHP200 2800 0.85 420 0.3

LHP200 1740 0.85 420 0.3

Part
Length 
(mm)

Thickness 
(mm)

Modulus of 
Elasticity (MPa)

Poisson's 
Ratio
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5.1.3 Assembly 

The assembly module is where the part instances are created and arranged according to our 
specifications, which in this case is the experimental test. This instances come from the parts 
created before, and they include all the properties as well. 

As mentioned in Chapter 3, only the segment between the points of contra-flexure on each is 
arranged, thus the model is assembled the same way (figure 5.5). 

 

 

Figure 5.5. FE Model Assembly 

 

5.1.4 Step 

The step will define the type of analysis that the software will use. In this master thesis, a 
“Static, Riks” procedure was selected, which is a load-displacement analysis, that uses the “arc 

length” along the static equilibrium path in load-displacement space. This method provides 
solutions whether the response of the structure is stable or unstable. 

In this model the following parameters for time incrementation and arc length are used: 

 

Maximum 
Number of 
Increments 

200 

Initial Arc 
Length 

Increment 
0.01 

Minimum Arc 
Length 

Increment 
1E-008 
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Maximum Arc 
Length 

Increment 
0.1 

Estimated Total 
Arc Length 

1 

 

Table 5.3. Parameters for Static, Riks Analysis. 

 

Thin shell profiles, like the ones used in this model suffer large deformations when a load or a 
displacement is applied, and geometric non-linearity is recommended. In order to include a 
non-linear geometry in the “Static, Riks” analysis, the NLGEOM option is activated in the step 
definition. This means that the load-displacement curve will no longer be proportional, and that 
there is geometric non-linearity due to the changes in geometry during the analysis. 

 

5.1.5 Interaction 

Surface to Surface Interaction 

In this module, the interaction properties of the different instances created previously are 
defined. Considering that an overlap joint between the shell profiles is studied, surface 
interactions between the elements are very important to take into consideration in the analysis. 

In this case, we have different type of material surfaces, that means that the interaction between 
some elements will behave differently. The LHP200 profiles are galvanized shell elements, 
hence a Zinc coat is considered in the steel. In the case of the Support Cleats and the Hollow 
Section, no coating is present in the surface and only the steel is considered. 

Due to the different surface materials, three different Interaction Properties are defined, Zinc-
Zinc and Zinc-Steel, for the surface contact of the different materials. Each Interaction Property 
has a Normal Behavior, and a Tangential Behavior. The next diagram shows the properties of 
the different surface interactions. 

 

Zinc − Zinc {
Normal {Pressure Overclosure → Hard Contact

Tangential {
 Friction Formulation → Penalty

Friction Coefficient → 0.6

 

 

 

Zinc − Steel {
Normal {Pressure Overclosure → Hard Contact

Tangential {
 Friction Formulation → Penalty

Friction Coefficient → 0.5

 

 

 



 

61 
 

After creating the interaction properties, the surface interactions are defined, this is when the 
surfaces that will be in contact are selected in the model. In this case, four interactions are 
made, one for the overlap between the LHP200 over the joint, another for the side overlap 
between the LHP200 profiles, one for the contact between the support cleats and the LHP200 
profiles and one between the hollow section and the support cleats. 

Each interaction has its own master and slave surfaces, and the properties vary depending on 
the surface material of the instances. 

 

Interaction 
Interaction 
Property 

Sliding 
Formulation 

Discretization 
Method 

LHP200 - 
LHP200 Joint 

Overlap 
Zinc - Zinc 

Finite 
Sliding 

Surface to 
Surface 

LHP200 - 
LHP200 Side 

Overlap 
Zinc - Zinc 

Finite 
Sliding 

Surface to 
Surface 

LHP200 - 
Suppor Cleats 

Zinc - Steel 
Finite 

Sliding 
Surface to 

Surface 

Support Cleats - 
Hollow Section 

Steel - Steel 
Finite 

Sliding 
Surface to 

Surface 

 

Table 5.4. Interaction Properties According to Each Interaction 

Connector Sections and Fasteners 

Besides the surface interaction between the instances, in this module, the connector sections 
and the fasteners to attach all the instances are defined. According to Lindab’s specifications, 

the LHP200 profiles use 6.3D32F Self Drilling Screws to make the connection between the 
profiles and between the profile to the support cleats, and fire shot nails to attach the support 
cleats to the support. 

The connector sections define the design values of the resistance of the screws, which are 
derived from EN-1993-1-3: Bearing, Pull Out, Pull Through, Shear and Tensile resistance. In 
this case, since the only relevant failure observed in the experimental test was the tensile failure, 
only this is used. These design values were taken from the specifications tables of the fastener 
supplier of the company which are shown next. 

 

 

Table 5.5. Tensile Design Values 
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For a screw with 6.3mm diameter we have a tensile design value of 9.41kN 

Fasteners 

The fasteners used in both models are point based fasteners, which were implemented with 
attachment points. There are fasteners for each connection between all the elements of the 
structure (LHP200 to LHP200, LHP200 to support cleat, etc.), and each fastener has its 
corresponding connector section. 

The approach used for the fasteners is “fasten specified surfaces by proximity” which mean 

that one specify the surfaces to connect to each other. The they all have a physical radius of 
3.15mm which correspond to the 6.3D32F Self Drilling Screws, and they all have UR1, UR2, 
and UR3 constrained degrees of freedom. 

 

Constraints 

In order to truly model a simple supported element, a kinematic constraint is defined for each 
LHP200 profile in both ends. First the centroid of the profiles was found using Autodesk 
AutoCAD (figures 4.6 (a) and (b)), and 6 reference points were created in the centroid of each 
profile at both ends. This reference points are the kinematic constraints master nodes, while the 
edges of the profiles are the slave surfaces (figure 4.7). 

 

 

 (a) 
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 (b) 

Figure 5.6. LHP200 Centroid 

 

 (a) 
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(b) 

Figure 5.7. Kinematic Constraint on LHP200 Profiles 

 

All the degrees of freedom of the kinematic constraints applied to the LHP200 profiles are fully 
constrained (U1 = U2 = U3 = UR1= UR2 = UR3 = 0). This is because the reference points that 
are used as master nodes, will have the corresponding boundary conditions to simulate a simply 
supported element. 

 

5.1.6 Load 

In the load module, the boundary conditions for the reference points used for the kinematic 
constraints, as well as the displacement used to analyze the LHP200 profiles are defined. As 
mentioned in the previous point, the kinematic constraints degrees of freedom are fully fixed, 
so no rotations or translations are allowed. In order to make the profiles simply supported, 
boundary conditions are applied to the reference points, constraining the translational degrees 
(U1 = U2= U3= 0) of freedom, allowing only the rotations in the X, Y and Z axes. Also, 
boundary condition along the side edges are used to simulate the L sections used in the 
experimental test which prevent lateral displacements in the X axis (U1=0) (figure 4.8). 

 

Figure 5.8. Boundary Conditions on Reference Points and Side Edges 
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As mentioned in Chapter 3, a displacement will be applied to the overlap joint to simulate the 
displacement caused by the negative bending moment in the mid-support. In order to have a 
similar approach as in the experimental test, instead of a load, a displacement is applied in the 
overlap joint by assigning a boundary condition in the Y axis of -1 (U2 = -1). This boundary 
condition is applied to the hollow section that will transfer uniformly the displacement to the 
support cleats and hence to the LHP200 profiles. Figure 5.9 shows this arrangement. 

 

 

Figure 5.9. Displacement Applied 

 

 

Figure 5.10. Boundary Conditions and Displacement Applied 
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5.1.7 Mesh 

In the model, the mesh size used in the LHP200 profiles and the hollow section is the same, 
which is 40mm. For the support cleats, a smaller mesh of 4mm is used due to the difference on 
size between the other instances. The following figure shows the mesh used in the model. 

 

Figure 5.11. Mesh Used in the Model 

 

5.1.8 Job 

After completed all the previous modules, we can now run the analysis in the job module. In 
here, several jobs can be made with different definitions of (boundary conditions, step, 
interaction, etc.) and later compare the different results. 

As mentioned in point 4.1.4, a “Static, Riks” method will be analyzed, but it is important to 

take into consideration the possible buckling that the profiles could have when the displacement 
is applied. So, in order to include the buckling shape in the analysis, a linear perturbation step 
was created for buckle, resulting in negative eigenvalues for this type of analysis. This means 
that in order to get the buckled shape of the analysis, the displacement should be applied in the 
opposite direction, hence buckling is not taken into account in the “Static, Riks” analysis. 

 

5.1.9 Visualization 

After the job is completed, it is possible to visualize the deformed shape of the structure, as 
well as the distribution of stresses, displacements, rotations, etc. The following figures show 
the output of the analysis. 
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Figure 5.12 Deformed Shape FE Modelling 

 

Figure 5.13 Deformed Shape Side View FEM 

5.1.10 Results 

The Force-Displacement graphs of the FEM are shown next and they are compared with the 
experimental test to see differences and similarities. 

 

Graph 5.2 Force-Displacement FEM P1 vs P2 
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Graph 5.3 Experimental Test P1 vs P2 

 

 

Graph 5.4 Force-Displacement FEM P5 to P8 

 

 

Graph 5.5 Experimental Test P5 to P8 
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Graph 5.6 Force-Displacement FEM P9 to P12 

 

 

Graph 5.7 Force-Displacement P9 to P12 

 

As we can see in the figures, the FEM results are different from the experimental test values. 
We can easily see that to properly simulate the experimental test, there is a lot of surface 
interaction occurring in the overlap between the profiles. This interaction is most certain to be 
the reason of the difficulties with the simulation. 
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6 Conclusions 
Even though we found the stiffness in the overlap connection, it will be good to measure the 
bottom gap in another point, preferably in the web, and compare the results, to search for any 
significant differences. 

As it were showed in the pictures, the LVDT’s start to rotate at a certain deflection, resulting 
in possibly inaccurate results of the gap measurement, this could explain why the factor “f” 

does not match with the example made in the chapter 4. 

Also, both profiles have the same buckling in the web where the overlap connections is located. 
In the thinner profile, the buckling starts in the bottom profile and then it propagates to the top 
profile causing deformations there leading to the failure of the system.  

In the case of the 1.50mm profile the buckling that starts in the bottom profile, does not 
propagate to the top, instead, the system fails due to the tensile failure of the side overlap 
connection screws. 

Certainly the behavior is similar between the two thicknesses, but it is because of the screws 
capacity in the thicker profile that this don’t reach that point. 

Regarding the stiffness calculated, it seems its relation with thickness of the profiles is 
somehow linear. The thicker profile is almost two times more stiff, and almost two times 
thicker: 

 

It would be interesting to find out maybe by testing the remaining thicknesses and see if the 
behavior of the relationship thickness-stiffness. 

We saw that it is really complex to do a proper simulation of the experimental test, as we have 
seen, the tendency of the deflections seems similar, but the displacements are inaccurate. This 
could be mainly because of the surface interaction between the profiles. 

It can be good to model the LHP200 profiles without an overlap connection and make a test 
like this as well. By this we could start analyzing a much simpler model, to later build a 
complex one with the overlap. 

Finally, we can see that there is a lot of room for further research and study in this subject, and 
there are some things that can be improved, especially in the FEM. 
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Annex 

 
Experimental test comparison of similarities graphs on all points of t=0.85mm: 
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Note: values of test 1 were neglected because LVDT’s fell off in at point 9 and 11 
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Note: values of test 1 were neglected because LVDT’s fell off at point 12 

 

Experimental test comparison of similarities graphs on all points of t=1.50mm: 
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Experimental test average force-displacement graphs on all points and tests of LHP200, 
t=0.85mm: 
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Note: values of test 1 were neglected because LVDT’s fell off at point 9 and 12 
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Experimental test average force-displacement graphs on all points and tests of LHP200, 
t=1.50mm: 
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