
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF CIVIL ENGINEERING

DEPARTMENT OF CONCRETE AND MASONRY STRUCTURES

DIPLOMA THESIS

Design of Concrete Structures Using Genetic Algorithm

Supervisor of the diploma thesis: doc. Ing. Petr Štemberk, Ph.D.
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Abstract

This diploma thesis deals with optimization of shapes of concrete structures. The shapes

obtained from the developed algorithm can be used as inspiration for the designers

of structures. Genetic Algorithm (GA) is used for the optimization process, when in

each iteration, several structures are calculated and evaluated. The developed algorithm

is inspired by Evolutionary Structural Optimization (ESO) that is based on removing

inefficient material from the structure. The feature of adding material around the highly

stressed places is also included in the algorithm. The structures are evaluated based

on the distribution of the principal stresses. The displacements and the stresses are de-

termined using the Finite Element Method (FEM). The whole optimization algorithm

is implemented in MATLAB Environment. Examples of the structures obtained using

the implemented algorithm are provided in this thesis.

Key words

Optimization, genetic algorithm (GA), evolutionary structural optimization (ESO), finite

element method (FEM), architecture

Abstrakt

Tato diplomová práce se zabývá optimalizaćı tvaru betonových konstrukćı. Tvary, které

jsou źıskány pomoćı vytvořeného algoritmu, mohou být dále využity jako inspirace pro

návrh konstrukćı. Optimalizačńı proces je vytvořený za použit́ı Genetického Algoritmu

(GA), v každé iteraci je vypočteno a vyhodnoceno několik konstrukćı. Vytvořený pro-

ces je inspirován metodou Optimalizace evolučńıch struktur (ESO), která je založená na

odeb́ıráńı nejméně využitého materiálu z konstrukce. V procesu je také zahrnuta funkce

přidáváńı materiálu do velmi namáhaných mı́st. Konstrukce jsou ohodnoceny na základě

hlavńıch napět́ı v konstrukci. Posuny a napět́ı jsou vypočteny metodou konečných prvk̊u

(MKP). Celý optimalizačńı proces je zpracován v prostřed́ı MATLAB. Př́ıklady kon-

strukćı źıskaných pomoćı vytvořeného algoritmu jsou součást́ı práce.

Kĺıčová slova

Optimalizace, genetický algoritmus (GA), optimalizace evolučńıch struktur (ESO), metoda

konečných prvk̊u (MKP), architektura
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Chapter 1

Introduction

In these days, ecological and environmental protection issues are often discussed. One

of the related topics is material consumption which is closely connected to construction.

The impact of construction on the environment is supposed to be reduced as much as

possible. Therefore, an economical design is an important factor in the construction

industry. From the perspective of material consumption, the total amount of materials

in the structure should be utilized as much as possible.

It is well known, that the most beautiful structures carry its load efficiently. As

a great example of these structures the Aqueduct of Segovia located in Spain was chosen.

The Roman aqueduct, which was constructed probably during the 1st and the 2nd century

AD, is shown in Fig. 1.1.

Figure 1.1: The Aqueduct of Segovia, Spain

Nowadays, the structures which have an origin in nature and its principles are found

as the most remarkable and are often admired. The shapes of the structures can be also

a result of some optimizing algorithm. Very suitable algorithm for optimizing the struc-

tures was found Evolutionary Structural Optimization (ESO), which is based on gradual

removing inefficient material from a structure, [19]. The weight of the structure is being

minimized, while the structure becoming more utilized. This method was already used

for designing several structures such as office building in Takatsuki, Japan designed by

Ohmori, shown in Fig. 1.2. The structure completed in April 2004 has two its walls

optimized using Extended ESO. As follows from figures, the structure optimized using

1



CHAPTER 1. INTRODUCTION 2

this algorithm has also quite a remarkable shape. Results of ESO can be a great basis

for architects designing new structures.

Figure 1.2: Office Building, Takatsuki, Japan, [18]

The aim of this diploma thesis is to develop the optimizing tool for engineers and

architects. It was decided to combine the idea of ESO and Genetic Algorithm (GA),

which is used especially for finding solutions to complex search problems. The goal is to

obtain much more interesting shapes and let the user choose which solution or the part

of the solution fits the best for his design.

The algorithms optimizing structures are closely connected to the Finite Element

Method (FEM). The optimizing methods are removing the material from the structure

based on the stress level, strain energy, or any other criterion specified for each finite

element. Therefore, the FEM has to be implemented first, then deformations and stresses

in the structure can be determined. The FEM solver, same as the whole optimization

algorithm, is developed in MATLAB Environment.

The developed algorithm can be very useful for architects and engineers seeking in-

spiration for their future designing. The structures optimized by this tool should be

moreover modified by an architect to get the shape that can be built. The construction

of the structures with such an interesting shape is also quite challenging. In the end

of this thesis, examples from the construction of unusually shaped structures are shown.



Chapter 2

Two-Dimensional Stress and Strain

The two-dimensional stress and strain which is important for the next calculations

will be described in this chapter.

Two-dimensional state of stress is illustrated in Fig. 2.1. The element has sides dx

and dy. Normal stresses σx and σy are acting in the x and y directions, while the shear

stress τxy acts on the x edge in the y direction and the shear stress τyx acts on the y edge

in the x direction.

Figure 2.1: Two-dimensional State of Stress, Principal Stresses

The shear stress τxy is equal to τyx, [12]. Therefore it is possible to write down three

independent stresses as

σ =















σx

σy

τxy















. (2.1)

Maximum and minimum normal stresses called principal stresses can be written for two-

dimensional plane as

σ1 =
σx + σy

2
+

√

(

σx − σy

2

)2

+ τ 2xy = σmax, (2.2)

σ2 =
σx + σy

2
−

√

(

σx − σy

2

)2

+ τ 2xy = σmin. (2.3)

3



CHAPTER 2. TWO-DIMENSIONAL STRESS AND STRAIN 4

The principal angle is explained in Fig. 2.1 and is defined by

tan2θp =
2τxy

σx − σy

. (2.4)

Displacement and rotations of two-dimensional element are illustrated in Fig.2.2.

Figure 2.2: Displacement and Rotations of Two-Dimensional Element

Equations describing the relationships between strains and displacements are given as

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+

∂v

∂x
, (2.5)

where εx, εy are normal strains and γxy is shear strain. The vector representing strains

could be written as

{ε} =















εx

εy

γxy















. (2.6)

There are two important concepts known as plane stress and plane strain. For both

concepts, the stress-strain relationship for isotropic materials will be described.

Plane Stress

For the plane stress are following stresses equal to zero,

σz = τxz = τyz = 0. (2.7)

The shear strains γxz, γyz are equal to zero, but εz differ from zero. The constitutive

matrix for plane stress is given as

[D] =
E

1 − ν2









1 ν 0

ν 1 0

0 0 1−ν
2









, (2.8)

where E is the modulus of elasticity, and ν is Poisson’s ratio.
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Plane Strain

For the plane strain are following strains equal to zero,

εx = γxz = γyz = 0. (2.9)

The shear stresses τxz, τyz are equal to zero, but σz differ from zero. The constitutive

matrix for plane strain is given as

[D] =
E

(1 + ν)(1 − 2ν)









1 − ν ν 0

ν 1 − ν 0

0 0 1−2ν
2









, (2.10)

where E is the modulus of elasticity, and ν is Poisson’s ratio.

The general linear relation between stress and strain vector well-known as generalized

Hook’s law has the following form

{σ} = [D]{ε}, (2.11)

where {σ} is the stress vector, [D] is the constitutive matrix and {ε} is the strain vector.



Chapter 3

Finite Element Method

The Finite Element Method (FEM) is applied to solve problems in many various

fields of science. This thesis is focused on the stress analysis and its solving using FEM.

But also the thermal analysis, fluid flow analysis, piezoelectric analysis, and many others

are daily solved by this unique method. The FEM gives us a prediction of the behavior

of systems, which is used by engineers and scientists for design and performance analyses.

In these days, a wide selection of commercial finite element analysis programs, which

are able to calculate stress analysis, is provided. In this thesis, the solver of the stress

analysis is implemented as a part of the developed algorithm in MATLAB Environment.

The FEM is a numerical method which seeks an approximate solution of the distribu-

tion of field variables in the problem domain. The field variables can be the displacement

in stress analysis, the temperature or heat flux in thermal analysis, the electrical charge

in electrical analysis, etc. The problem domain is divided into several elements with

the physical laws applied to each element. Finite element approximation for a one-

dimensional case is shown in Fig 3.1.

Figure 3.1: Finite Element Approximation for a One-Dimensional Case

3.1 Four-node Quadrilateral Elements

The stress analysis is solved using two-dimensional isoparametric finite elements with

linear shape functions in the x and y directions. These elements are suitable for plane

stress and plane strain problems. Four-node Quadrilateral Element has defined modulus

6



CHAPTER 3. FINITE ELEMENT METHOD 7

of elasticity E, Poisson’s ratio ν, and thickness t. From its name is clear, that element

has four nodes with two degrees of freedom at each node. The element is shown in Fig.

3.2. The basic feature of an isoparametric element is mapping the physical coordinates

by the same shape functions which are used for approximation. The shape functions have

the following form

N1 =
1

4
(1 − ξ)(1 − η),

N2 =
1

4
(1 + ξ)(1 − η),

N3 =
1

4
(1 + ξ)(1 + η),

N4 =
1

4
(1 − ξ)(1 + η), (3.1)

where ξ a η are nodal coordinates. Element with natural coordinates is shown in Fig.

3.2. This figure displays mapping from the Natural to the physical Cartesian coordinate

system.

Figure 3.2: Four-node Quadrilateral Element

The formulation of the element stiffness matrix for the four-node quadrilateral element

is given as

[Ke] =

∫

Ω

[B]T [D][B]dΩ = t

∫ 1

−1

∫ 1

−1

[B]T [D][B][J ]dξdη, (3.2)

where t is a thickness of the element, [D] is the constitutive matrix for the plane stress/strain

and [J ] is Jacobian matrix and [B] are the derivatives of shape functions. Jacobian matrix

has the following formulation

[J ] =

[

∂N1

∂ξ
∂N2

∂ξ
∂N3

∂ξ
∂N4

∂ξ

∂N1

∂η
∂N2

∂η
∂N3

∂η
∂N4

∂η

]













x1 y1

x2 y2

x3 y3

x4 y4,













, (3.3)
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and [B] matrix can be written as

[B] =









∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0 ∂N4

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y
0 ∂N4

∂y

∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x
∂N4

∂y
∂N4

∂x









. (3.4)

The element external force vector is given as

{f e} = {f e
Ω} + {f e

Γ} , (3.5)

where {f e
Ω} and {f e

Γ} are the body and the boundary force vectors, which could be written

in the following form

{f e
Ω} =

∫

Ω

[N ]T X̄dΩ, (3.6)

{f e
Γ} =

∫

Γe
p

[N ]T p̄ dΓ. (3.7)

[N ] is the vector of shape functions, X̄ is the vector of body forces and p̄ is the vector

of distributed surface forces. Γe
p is the portion of the element boundary where the dis-

tributed surface load is applied.

When the global matrix [K] and the global nodal force vector {f} are obtained,

the Eq. 3.8 for the structure is solved. As a result, the global nodal displacement vector

{u} is obtained,

[K]{u} = {f}. (3.8)

When the displacements are calculated, the stress vector for each element is found as

{σe} = [D][B]{ue}, (3.9)

where {ue} is the element displacement vector.

3.2 Numerical Integration

The formulation of the element stiffness matrix given in Eq. 3.2 still needs to be

integrated. Due to the complexity of the expression, the integration is usually done

numerically. There are several methods which can be used for the numerical evaluation

of definite integrals, [12]. In this thesis, Gauss quadrature method which was found

the most useful in finite element applications is described, [14].
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Figure 3.3: Two-point Gaussian Quadrature in 1D

Gauss quadrature method is illustrated graphically for the one-dimensional case in

Fig. 3.3. In order to evaluate the integral, the function is evaluated at several sampling

points. Each value fi is multiplied by an appropriate weight wi, and added. The quadra-

ture formula for the one-dimensional case is given in Eq. 3.10. The sampling points are

chosen in order to achieve the best possible accuracy. The location of sampling points is

symmetrical about the center of the interval. The weight value is the same for symmet-

rically located points.

I =

∫ 1

−1

f(ξ)dξ ≃

n
∑

i=1

wifi =
n

∑

i=1

wifi(ξi) (3.10)

The quadrature formula for the two-dimensional case can be written as

I =

∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη =

∫ 1

−1

[

n
∑

i=1

wif(ξi, η)

]

dη

=
n

∑

j=1

wj

[

n
∑

i=1

wif(ξi, ηj)

]

=
n

∑

i=1

n
∑

j=1

wiwjf(ξi, ηj), (3.11)

where wi is the weight associated with the i-th point, and n is the number of sampling

points. Table 3.1 gives the locations and weights of Gauss points up to four points.

Figure 3.4: Four-point Gaussian Quadrature in 2D
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Table 3.1: Locations and Weights in Gaussian Integration

Number of Points, n Location, ξi Weight, wi

1 ξ1 = 0.00000 00000 00000 2.00000 00000 00000

2 ξ1, ξ2 = ±0.57735 02691 89626 1.00000 00000 00000

3 ξ1, ξ3 = ±0.77459 66692 41483 0.55555 55555 55555

ξ2 = 0.00000 00000 00000 0.88888 88888 88888

4 ξ1, ξ4 = ±0.86113 63115 94053 0.34785 48451 47454

ξ2, ξ3 = ±0.33998 10435 84856 0.65214 51548 62546



Chapter 4

Genetic Algorithm

Genetic Algorithm (GA) is inspired by natural evolution and uses genetics as a model

to find solutions to complex problems. The history of GA dates back to 1975, when it was

introduced by John Holland in his book ”Adaptation in natural and artificial systems”. It

is a heuristic method which is used as a tool for optimization problems which are difficult

to solve using analytical methods. In these days, Genetic Algorithms found numerous

applications in many fields. The process of GA is illustrated in the Fig. 4.1.

Figure 4.1: Flowchart of GA

11



CHAPTER 4. GENETIC ALGORITHM 12

GA is an iteration process which works with a set of individuals called population,

where every individual is a unique solution to the given problem. The initial population

can be generated randomly. It is appropriate that the initial population is large enough

and it consists of a wide diversity of individuals. For the functioning of the whole algo-

rithm, the proper fitness function has to be defined. In each iteration, individuals are

selected for reproduction according to the fitness function. The better-rated individuals

have a greater chance for reproduction than individuals with bad evaluation. In the next

step, offspring are reproduced from the selected individuals using the crossover (recombi-

nation) and mutation. After that, the new individuals are evaluated by fitness function

and replace the previous population. When the population converges to the optimal

solution or the maximum iteration is reached, the process is stopped.

4.1 Terminologies and Operators of GA

4.1.1 Population

Individuals can be expressed in terms of the model as phenotype or in terms of GA like

genotype. The mapping between phenotype and genotype is a very important step that

provides functioning of the whole process. The solutions from the model are converted

into chromosomes that the GA can work with, or, conversely. Generally, the genotype

is characterized by only one chromosome. Each chromosome is subdivided into several

genes which correspond to each factor in the solution. In case of binary representation,

each gene consists of a bit string initialized to zero or one. The example of the population

consisting of four chromosomes is shown in the Tab. 4.1 below.

Table 4.1: Population

Individual Chromosome

no.

1 1 1 1 0 0 0 1 1

2 0 1 1 1 1 0 1 1

3 0 0 0 1 0 0 0 1

4 1 1 0 0 1 1 0 0

The chromosome no. 1 from the Tab. 4.1 can be divided into genes as is shown in

the following Fig. 4.2.
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Figure 4.2: Representation of a Gene

4.1.2 Fitness Function

Each decoded chromosome is evaluated according to the fitness function. The fitness

of individual indicates how good or conversely bad the solution is. The higher fitness,

the better solution. It can be hard to define the fitness function for problem consisting

more criteria. Choice of right fitness function affects the whole process. The selection

could be also processed using cost function based on the principle the lower, the better.

4.1.3 Selection and Reproduction

In the next step, the evaluated chromosomes need to be selected into pairs for crossing.

It is important to find good individuals from the population that will create offspring for

the next generation. Another task is how many offspring each individual create. The indi-

viduals with better evaluation have more chance to be selected. The percentage of chance

that individuals will create offspring is given by the selection pressure. High selection

pressure indicates that very small number of individuals is selected for reproduction. In

some cases, the very high selection rate can cause diversity loss of the population and

the population could converge to a local minimum of a search space. On the other hand,

the very low selection rate implies very long time to find an optimal solution. There-

fore, it is recommended to keep a good balance between selection rate and other factors

influencing the diversity of the population, such as crossover and mutation.

Selection schemes can be divided into proportionate-based selection and ordinary-

based selection.

In the case of proportionate-based selection, the individuals are selected according

to their fitness values relatively to the fitness of the other individuals in the population.

The probability pi that an individual i makes copy of its genome is given as

pi =
fi

∑N

j=1 fj
i ∈ {1, ..., N} , (4.1)

where fi is the fitness value of i-th individual and N is the size of the population. It is

assuming, that fitness function is non-negative.
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Ordinary-based selection means that individuals are selected based on their rank

within the population. It means that in this case the selection pressure is not based

on fitness distribution within the population.

Roulette Wheel Selection

Figure 4.3: Roulette Selection

Roulette Selection is one of the GA proportionate-based selection techniques. It is il-

lustrated in the Fig. 4.3, where the roulette is divided into several slots which correspond

to individuals. The size of slots is proportional to the reproduction probabilities pi of in-

dividuals. The selection is based on spinning the wheel until the number of individuals

in population N is reached. After each spin, the individual corresponding to the slot,

where the ball remained, is selected to be a parent for the next generation.

In Tab. 4.2 are shown the individuals corresponding to the roulette wheel in Fig. 4.3.

Table 4.2: Selection

Individual Chromosome Fitness Probability Cumulative

no. fi pi Probability

1 1 1 1 0 0 0 1 1 4 20 % 0.2

2 0 1 1 1 1 0 1 1 8 40 % 0.6

3 0 0 0 1 0 0 0 1 2 10 % 0.7

4 1 1 0 0 1 1 0 0 6 30 % 1.0

It is clear, that individual no. 2 has better chance to reproduce than individual no. 3. But

the chance of reproduction is random, so it is possible that the badly ranked individual

will reproduce. During each selection, a random number r between 0 and 1 is chosen and

the i-th individual is selected according to the followed expression

i−1
∑

j=1

pj < r ≤
i

∑

j=1

pj i ∈ {1, ..., N} , (4.2)
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where N is the size of the population and p is the reproduction probability.

Rank Selection

Rank Selection is ordinary-based selection technique. When the fitness of individ-

uals differs very much, the Rank Selection is more suitable than the previous selection

method. As the name implies, the selection is based on the rank of the individuals. Every

chromosome receives fitness based on its rank, then for the population with N chromo-

somes the best chromosome has fitness N and the worst has fitness 1. The Fig. 4.4

shows the difference between selection based on fitness and based on rank for the same

population.

Figure 4.4: Selection based on a) fitness, b) rank

There are also different types of selection such as Random Selection and Tournament

Selection which are clearly explained in [16].

Elitism

In the case of improving the GA’s performance, the best n individuals are copied to

the new population. The rest of the process is done in its casual way.

4.1.4 Genetic Operators

Genetic operators bring diversity to the population and help GA converges to the op-

timal solution.

Crossover

Crossover is an important source of evolution which contain a process of producing

new offspring. When the selection process is finished and the suitable individuals are

prepared, crossover operator can be used for mating. The right choice of the operator

brings better offspring which means better solutions for the problem. Crossover operators

are divided into various types, some of them are displayed in Fig. 4.5.
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Figure 4.5: Crossover operators. a) one-point, b) two-point, c) uniform,

d) arithmetic

One-point crossover

One-point crossover is suitable for discrete or real value representations. The crossover

point is selected randomly for both mated individuals and their content is exchanged

around the point.

Two-point crossover

The principle is the same as for One-point crossover, except that the two crossover

points are randomly selected.

Multi-point crossover

The number of crossover points is random and content between these points is ex-

changed.

Uniform crossover

Uniform crossover fits for real value representations. The content is randomly changed

at n random positions.

Arithmetic crossover

Arithmetic crossover fits also for real value representations. It performs some kind

of arithmetic operation to create new offspring.
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Mutation

The mutation prevents the algorithm to end up in a local minimum and also helps

maintain diversity in the population. One or more positions of the chromosome are

changed according to the set mutation probability pm. The appropriate value of mutation

probability is chosen due to the problem solved. The mutation has also various types,

such as bit inversion or adding a random value to a position in real value representations,

shown in Fig. 4.6.

Figure 4.6: Mutation. a) bit inversion, b) adding a random value



Chapter 5

Evolutionary Structural Optimization

In this thesis, the concept of evolutionary structural optimization (ESO) is used. This

concept helps to create the first population which is an input for the next optimization

with GA, Chapter 6. The output from ESO is satisfying for the simple structures, but

for the purposes of more complex problems, more evolution algorithms are combined

together.

The concept of ESO is based on slowing removing inefficient material from a structure

when the shape of the structure develops towards an optimum residual shape. At first,

the structure is divided into small finite elements which are representing the material

of the structure. The finite elements are gradually removed from the finite element

model based on the stress level of each element.

It is possible to measure the stress level using some sort of average of all the stress

components. One of the most used criteria for isotropic materials is the von Misses stress

σv. Its formulation for the plane stress problems can be written as

σv =
√

σx
2 + σy

2 − σxσy + 3τxy2, (5.1)

where σx and σy are normal stresses in x and y directions and τxy is the shear stress.

More information about plane stress is written in Chapter 2. The comparison of the von

Mises stress of the element σv to the maximum von Mises stress of the whole structure

σv,max gives as formulation for the stress level

σv,e

σv,max

< RRi, (5.2)

where RRi is the current rejection ratio. All the finite elements which satisfy this crite-

rion are removed from the finite element model. The removal is repeated for the whole

cycle of finite element analysis. The value RRi is held until no more elements being

removed at the present iteration. This is called steady-state. After reaching steady-state

an evolutionary rate ER is added to rejection ratio. It can be defined as

RRi+1 = RRi + ER i = 0, 1, 2, 3..., (5.3)

The increased rejection ratio is held until reaching new steady-state. The evolutionary

process takes place until the ending criterion is reached. For example, the ending criterion

18
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occurs, when stress levels for all finite elements are higher than 25 % of the maximum,

[19]. Typical values of initial rejection RR0 and evolutionary rate ER are 1 %, but for

some cases a much lower values could be needed.

Figure 5.1: Process of ESO

5.1 Structures Optimized Using ESO

The described method of ESO was implemented by author of this thesis in MATLAB

Environment. The Flowchart of the process is shown in Fig. 5.1. In this subsection are

shown structures which were optimized by this algorithm. All structures are divided into

rectangular elements with eight degrees of freedom.
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Example 1

Figure 5.2: Example 1 - Design Domain

The first example of the optimized structure is a domain of the size 2 x 4 m (H x L)

and thickness 0.1 m with two fixed supports. The vertical load F equal to 10 kN is acting

in the middle of the span on the bottom side according to Fig. 5.2. Young’s modulus

E = 33 GPa and Poisson’s ratio ν = 0.2 are given. The problem is solved as symmetric.

The half of the structure is divided into 900 elements. The initial rejection ratio RR0

and evolutionary rate ER are both set to 1 %. The following Fig. 5.3 shows the shapes

of the structure during iterations of ESO.

Figure 5.3: Example 1 - ESO Solutions
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Example 2

Figure 5.4: Example 2 - Design Domain

The structure of the size 2 x 6 m (H x L) and thickness 0.1 m with two roller supports

was solved. The problem was calculated symmetric, same as the previous example.

The horizontal move is restricted due to vertical symmetry in the middle of the span.

The vertical load F equal to 10 kN is acting in the middle of the span on the top side

according to Fig. 5.4. Young’s modulus E = 33 GPa and Poisson’s ratio ν = 0.2 are

given. The half of the structure is divided into 600 elements. RR0 and ER are both set

to 1 %. The shapes of the structure in iteration 1, 25, 50 and 75 are shown in Fig. 5.5.

Figure 5.5: Example 2 - ESO Solutions
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Example 3

Figure 5.6: Example 3 - Design Domain

The third example shows the structure of size 2 x 10 m (H x L) and thickness 0.1 m

with two roller supports. The problem was calculated symmetric, same as the previous ex-

amples. The distributed load f equal to 10 kN/m is acting on the top side of the structure.

This example has two different cases according to the location of supports. The supports

are placed in the bottom corners or in the top corners of the structure. Both cases are

illustrated in Fig. 5.6. Young’s modulus E = 33 GPa and Poisson’s ratio ν = 0.2 are

given. The half of the structure is divided into 1000 elements. For both cases, RR0 is set

to 1 % and ER is set to 0.1 %.

The shapes of the structures with supports in the bottom corners in iteration 1, 50,

150 and 200 are shown in the Fig. 5.7.

Figure 5.7: Example 3 - ESO Solutions

The shapes of the structures with supports in the top corners in iteration 1, 50, 150

and 250 are shown in the Fig. 5.8.
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Figure 5.8: Example 3 - ESO Solutions

5.2 Modified ESO Method

The ESO is used for finding the optimal shape of the structure where the material is

utilized as much as possible. Originally, the von Mises stress is used for the measuring

the stress in the structure. But this criterion is not suitable for the concrete structures,

because it does not distinguish between tension and compression areas in the structure.

The criterion can be modified and the stress level for the compression dominant structures

is then written as

σe = −σ1 − σ2, (5.4)

where σ1 and σ2 are the maximum and the minimum principal stresses. At first, the el-

ements where the tension dominates are removed. The tensile dominant structure is

obtained using the modified criterion,

σe = σ1 + σ2. (5.5)

In this case, the compression dominant elements are removed at first place, [17].

5.3 Strut-and-Tie Models

It is worth mentioning that the ESO can be also used as an efficient tool to determine

the optimal strut-and-tie models (STM) for reinforced concrete structures, [1] and [10].

In this method, the reinforced concrete structure is transferred to compression struts

and tension ties, while struts represent concrete and ties represent steel. The STM are

mainly used for the design of distributed regions in concrete structures such as corbels,

deep beams, beams with opening and piers. The inefficient material is removed based

on the von Mises stress criterion.
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The structure from the Example 2 shown in Fig. 5.5 is a great example of this

technique. The structure obtained from iteration 75 can be also displayed as follows.

Figure 5.9: Example 2 - STM

In Fig. 5.9, the regions in red and blue respectively indicate the compressed and tensioned

regions.



Chapter 6

Optimization Using GA

In this chapter, the algorithm implemented in MATLAB Environment is described.

The results of ESO obtained in Chapter 5 are satisfying. The method works fine for

the simple structures with appropriate input of rejection ratio RR and evolutionary rate

ER. Appropriate rates for simple structures with a smaller number of elements are

found easily. Finding appropriate rates become difficult with the increasing complexity

of the structure and a growing number of elements. The structure loses its effectivity

when a large number of elements are removed in one step. Therefore, methods that

also enable adding material to the highly stressed regions in the structure were invented.

These methods are based on ESO, such as Extended ESO and Bi-directional ESO, [3] and

[13]. The feature of adding material is also included in implemented algorithm. The ele-

ments are added to regions where the stresses exceed the maximum capacity. The process

of reducing elements according to stresses is implemented as a part of GA. The popula-

tion is composed of chromosomes representing calculated structures. The structures are

combined during the process with hope to go through the whole search space and find

also the solution which would be probably skipped in ESO. The flowchart of proposed

algorithm is shown in Fig. 6.1.

6.1 Proposed Algorithm

Each step of proposed algorithm in Fig. 6.1 will be described more detailed using

following illustrative example. The example is a structure with two fixed supports loaded

in the middle of the span.

Input Parameters

At first, the input parameters such as material parameters, initial geometry of the struc-

ture, loads, supports, mesh size and the parameters of GA are inserted. The GA param-

eters are number of chromosomes, number of iterations, elitism rate and probability

of mutations. When the applied load and the supports are placed symmetric, it is possi-

ble to apply the symmetry boundary conditions as is shown in Fig. 6.2. The calculation

with half number of elements is obviously shorter.

25
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Figure 6.1: Proposed Algorithm
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Figure 6.2: Initial Model

Solve Finite Element Analysis

During the next step, the mesh is generated and the initial structure is solved using

Finite Element Analysis (FEA). Deformations and stresses in the structure are obtained.

Generate Initial Population

Then the initial population is generated. As it was mentioned in Chapter 4, the initial

population can be set randomly. In proposed algorithm, the initial population is obtained

using ESO algorithm. The individuals belonging to the initial population are found as

the steps from the ESO algorithm, where the elements are gradually reduced according

to the stress level. The example of the initial population consisting of four individuals is

shown in Fig. 6.3.

Figure 6.3: Initial Population

The elements with nodes in which the load is applied or the supports placed are kept

during the whole process. The example can be found in Fig. 6.4.

Figure 6.4: Elements Kept
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Mapping the Structure

In case of genetic algorithm, each structure has to be written in binary code. The el-

ements which are in the structure are represented by number 1, while the elements which

do not belong to the structure are written as 0. The example of a structure placed in

the domain of size 4 x 3 consisting of 8 elements is shown in Fig. 6.5. The figure also

displays the numbering of rectangular elements and the process of obtaining the binary

code for the structure (individual).

The size of the chromosome is n x 1, where n is the number of rectangular elements

in the initial domain. In case of the structure in Fig. 6.5, the length of the chromosome

is 1 x 12. In certain steps of the algorithm, it is necessary to work with matrix of size

4 x 3 which represents the exact location of the elements. These matrices are required for

calculation of Euclidean distance, which is calculated using the function bwdist provided

by MATLAB.

Figure 6.5: Mapping the Structure

Find Cost for Chromosomes

FEA is solved in each GA iteration. The stresses in the structure are necessary for

determination of rate of individual. Chromosomes are evaluated according to the cost

function (the lower, the better). To find appropriate cost function was a difficult task.

Concrete has different properties in tension and compression. It was decided to find

compression dominant structures. It means that the elements in tension have to be

eliminated. The stress level in the structure is measured using criterion σe which is

written for compression dominant structures in Eq. 5.4. The criterion σe is calculated
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for each element in the structure. The cost function should reflect the behavior of whole

structure, and therefore the cost for each individual is calculated as

Cost =
n

∑

e=1

(σmax − σe), (6.1)

where σmax is the maximal criterion σe in the structure and σe is the criterion for the el-

ement and n is the number of elements in the structure. The lower Cost occurs for little

difference between σmax and σe. Cost is also dependent on the number of elements in

the structure. The less elements n the smaller Cost.

Arithmetic Crossover

The selection of the individuals is done using the Rank Selection described in Chap-

ter 4. The selected individuals are mated using arithmetic crossover.

First, the elements of selected individuals are reduced according to the stress level.

The elements that satisfy the following condition are removed from the structure. Con-

dition is defined as
σe

σmax

≤
P · i

N
, (6.2)

where σe is the criterion used for the compression dominant structures given in Eq. 5.4,

σmax is maximal criterion σe in the structure, i is the iteration, N is the number of it-

erations and P is the random number that varies within the interval <0,0.05>, where

the value 0.05 was found as the most suitable for the functionality of the proposed algo-

rithm.

Then, the arithmetic crossover is used. The offspring arises from the parent chromo-

somes using conjunction and disjunction operators as is obvious from Fig. 6.6.

Figure 6.6: Crossover
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Mutation

When the offspring are created, the process of mutation takes its part. It was decided

to use three different kinds of mutation. The first kind of mutations is a binary mutation

(bit inversion) which was explained in Chapter 4. The second and third mutation are

based on calculation of Euclidean distance, and the elements with some specified distance

are added or reduced. All mutations are ongoing with some probability. The example

of binary mutation and the structure extension is illustrated in Fig. 6.7. The offspring

remains the same after binary mutation, because the elements selected for the binary mu-

tations consists of the load, and therefore the elements can not be removed. The elements

with Euclidean distance equal to 1 are added to the structure.

Figure 6.7: Mutation - Structure Extension

The second example of the binary mutation and the structure reduction is shown in Fig.

6.8. From the figure, it is obvious that the binary mutation took its place. The elements

with Euclidean distance equal to 1 are removed.

Figure 6.8: Mutation - Structure Reduction

Removal of Detached Structural Parts

If some element is not connected to the rest of the structure it is deleted from

the model. The example of removing unconnected element is illustrated in Fig. 6.9.

These cases sometimes occur as a result of binary mutation.
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Figure 6.9: Unconnected Elements

Different problem occurs when the structure is disconnected, that means the sup-

ports and the loads are not connected through elements. These kinds of inappropriate

structures can come from the arithmetic crossover when the large part of the structure

is removed due to the stress level. The developed algorithm provides the possibility to

extend the disconnected parts in order to connect them together, the process is shown

in Fig. 6.10. If the structure is still disconnected after this step, then it is rejected from

the calculation. It means that these structures have no chance to go successfully through

the selection process.

Figure 6.10: Disconnected Structure

Adding Material

The elements are added to the places with the high stresses. High stress levels are

determined according to the yield surface in the principal plane stress space shown in

Fig. 6.11. The elements are added around the area where the stress does not meet

the condition. According to the CEB-FIP Model Code 90, the strength of concrete under

biaxial states of stress is expressed using the conditions shown in Tab. 6.1.

Table 6.1: CEB-FIB Conditions

Function Range

σ2 = −1+3.8α
(1+α)2

fuc σ2 < −0.96fuc

σ1 =
(

1 + 0.8 σ2

fuc

)

fut −0.96fuc ≤ σ2 < 0

σ1 = fut σ2 ≥ 0
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The input parameters for the strength of concrete under biaxial states of stress deter-

mining are the strengths in uniaxial compression fuc and in uniaxial tension fut, [5].

The parameter α is calculated as ration σ1/σ2, while σ1 ≥ σ2 is assumed. The biaxial

compressive strength f2uc is assumed 1.2fuc. The example of biaxial strength of concrete

is shown in Fig. 6.11.

Figure 6.11: Biaxial Strength of Concrete

The principle of adding material is shown in Fig. 6.12, where the material is added to

the places with euclidean distance less than two. In the proposed algorithm, the material

is added to the places with euclidean distance set according to the size of finite elements.

For elements of the size 0.1 x 0.1 m is the distance less than or equal to two.

Figure 6.12: Adding Material
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Examples of Optimized Structures

The structures optimized using the program introduced in Chapter 6 are shown in

this chapter. Three examples were chosen to illustrate the process of the optimization

using GA.

7.1 Structure 1

As a first example, the structure of size 6 x 9 m (B x H) and the thickness 0.2 m was

chosen. The distributed load f equal to 30 kN/m is acting on the top of the structure

and in 3 and 6 m. The structure has fixed supports on the bottom edge as is shown

in Fig. 7.1, each support is 0.2 m wide. The structure is solved as symmetric, whole

structure is divided into 5400 elements of size 0.1 x 0.1 m. The initial population is made

using the ESO algorithm, RR0 and ER are set to 0.1 %. All the input parameters are

shown in Table 7.1.

Figure 7.1: Structure 1 - Design Domain

The structure was optimized using program described in previous chapter. The whole

calculation took 152 minutes. In each generation, 20 different structures were solved,

which were each time evaluated using formula in Eq. 6.1. The evolution of cost is shown

in Fig. 7.2, where the left graph shows evolution of best cost during generations, while

33
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the right graph shows the evolution of average cost during generation. It is obvious that

the curve is decreasing which means the structures are improving.

Table 7.1: Structure 1 - Input Parameters

Structure

Size B x H 6 x 9 m

Thickness 0.2 m

Initial number of elements 5400

Mesh size 0.1 x 0.1 m

Material Parameters

Modulus of elasticity E 33 GPa

Poisson’s ratio ν 0.2

Concrete density ρc 2500 kg/m3

Strength in compression fcu 20 MPa

Strength in tension ftu 2 MPa

Load

Distributed load f 30 kN/m

Gravity constant g 10 m/s2

GA Parameters

Number of chromosomes 20

Number of generations 50

Mutation probability 1 %

Elitism 10 %

Figure 7.2: Structure 1 - The Evolution of Cost
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Figure 7.3: Structure 1 - Distribution of Principal Stress σ1

During the process, the structure with the lowest cost was saved in each generation.

As a result, 50 various structures are obtained. Structures can be used as an inspiration

for the design. For the illustration, 12 structures were chosen and the principal stresses

σ1 and σ2 are compared. These structures are shown in Fig. 7.3 and 7.4. The structure

from generation 47 has the lowest cost, this structure is considered as a resulting structure

of GA. It is compared with the initial structure of GA in Table 7.2. The maximal principal

stress σ1,max of a resulting structure is a bit higher than the concrete strength in tension.

It is assumed that the reinforcement would be in final design included.

Table 7.2: Structure 1 - Results

Initial structure Best rated structure

(Generation 1) (Generation 47)

σ1,max [MPa] 0.3 2.5

σ2,min [MPa] -10.1 -7.4

Cost [MPa] 27205 4493

Number of elements n 5112 1616



CHAPTER 7. EXAMPLES OF OPTIMIZED STRUCTURES 36

Figure 7.4: Structure 1 - Distribution of Principal Stress σ2

The principal stresses and the deformed shape of the best rated structure are shown

in the Fig. 7.5. The global deformation u is calculated as
√

u2
x + u2

y. In the figure,

the factor of deformations equal to 1000 is used.

Figure 7.5: Structure 1 - The Best Rated Structure
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Comparison of Results

It must be always kept in mind that the results are influenced by the random op-

erations of GA. It is recommended to run the calculation at least twice to make sure

the results are appropriate.

Figure 7.6: Structure 1 - The Evolution of Cost, 2nd Calculation

Figure 7.7: Structure 1 - Distribution of Principal Stress σ1, 2nd Calculation



CHAPTER 7. EXAMPLES OF OPTIMIZED STRUCTURES 38

Therefore the first example was calculated twice and the result of the second calculation

are shown here. The evolution of cost for the second calculation of GA is shown in

Fig. 7.6. The Fig. 7.7 shows the structures and the principal stress distribution during

the steps of GA. Comparison of the first and the second calculation is shown in Table

7.3.

Table 7.3: Structure 1 - Comparison of Calculations

1st Calculation 2nd Calculation

Elapsed Time [min] 152 150

Best Rated Structure Generation 47 Generation 48

σ1,max [MPa] 2.5 5.4

σ2,min [MPa] -7.4 -7.7

Cost [MPa] 4493 4700

Number of elements n 1616 1646
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7.2 Structure 2

As a second example, the structure of size 6 x 6 m (B x H) and the thickness 0.2 m

was chosen. The distributed load f equal to 30 kN/m is acting on the top of the structure

and in 3 m. The structure has fixed supports on the bottom edge as is shown in Fig. 7.8,

each support is 0.2 m wide. The structure is solved as symmetric, whole structure is

divided into 3600 elements of size 0.1 x 0.1 m. The initial population is made using

the ESO algorithm, RR0 and ER are set to 0.1 %. All the input parameters are shown

in Table 7.4.

Figure 7.8: Structure 2 - Design Domain

The structure was optimized using program described in previous chapter. The whole

calculation took 111 minutes. In each generation, 20 different structures were solved.

The structures were evaluated using formula in Eq. 6.1.

Figure 7.9: Structure 2 - The Evolution of Cost

The evolution of cost shows Fig. 7.9, where the left graph shows evolution of best
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cost during generations, while the right graph shows the evolution of average cost during

generation. It is obvious that the curve is decreasing which means the structures are

improving.

Table 7.4: Structure 2 - Input Parameters

Structure

Size B x H 6 x 6 m

Thickness 0.2 m

Initial number of elements 3600

Mesh size 0.1 x 0.1 m

Material Parameters

Modulus of elasticity E 33 GPa

Poisson’s ratio ν 0.2

Concrete density ρc 2500 kg/m3

Strength in compression fcu 20 MPa

Strength in tension ftu 2 MPa

Load

Distributed load f 30 kN/m

Node load F 20 kN

Gravity constant g 10 m/s2

GA Parameters

Number of chromosomes 20

Number of generations 100

Mutation probability 1 %

Elitism 10 %
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Figure 7.10: Structure 2 - Distribution of Principal Stress σ1

During the process, the structure with the lowest cost was saved in each generation.

As a result, 100 various structures are obtained. Structures can be used as an inspiration

for the design. For the illustration, 12 structures were chosen and the principal stresses

σ1 and σ2 are compared. These structures are shown in Fig. 7.10 and 7.11. The structure

from generation 97 has the lowest cost, this structure is considered as a resulting structure

of the GA. It is compared with the initial structure of GA in Table 7.5. The maximal

principal stress σ1,max of a resulting structure is a bit higher than the concrete strength

in tension. It is assumed that the reinforcement would be in final design included.

Table 7.5: Structure 2 - Results

Initial structure Best rated structure

(Generation 1) (Generation 98)

σ1,max [MPa] 0.3 2.9

σ2,min [MPa] -7.7 -6.9

Cost [MPa] 2615 13226

Number of elements n 3292 1160
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Figure 7.11: Structure 2 - Distribution of Principal Stress σ2

The principal stresses and the deformed shape of the best rated structure are shown

in the Fig. 7.12. The global deformation u is calculated as
√

u2
x + u2

y. In the figure,

the factor of deformations equal to 1000 is used.

Figure 7.12: Structure 2 - The Best Rated Structure
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Comparison to ESO

The results were compared to the structures optimized using ESO described in Chap-

ter 5. The material is removed based on the stress level that is measured using criterion σe

defined in Eq. 5.4. The parameters of ESO RR0 and ER are set to 0.5 %. The 200 itera-

tions were calculated in elapsed time 12 minutes. The twelve structures obtained during

the ESO algorithm are shown in Fig. 7.13. The figure can be compared to the Fig. 7.11.

Figure 7.13: Structure 2 - Distribution of Principal Stress σ2, ESO
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7.3 Structure 3

As a third example, the structure of size 12 x 6 m (B x H) and the thickness 0.2 m

was chosen. The distributed load f equal to 30 kN/m is acting on the top of the structure

and in 3 m. The structure has fixed supports on the bottom edge as is shown in Fig.

7.14, each support is 0.2 m wide. The structure is solved as symmetric, whole structure

is divided into 7200 elements of size 0.1 x 0.1 m. The initial population is made using

the ESO algorithm, RR0 and ER are set to 0.1 %. All the input parameters are shown

in Table 7.6.

Figure 7.14: Structure 3 - Design Domain

The structure was optimized using the algorithm described in previous chapter. The whole

calculation took 630 minutes. In each generation, 20 different structures were solved.

The structures were each time evaluated using formula in Eq. 6.1.

Figure 7.15: Structure 3 - The Evolution of Cost
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The evolution of cost is shown in Fig. 7.2, where the left graph shows evolution of best

cost during generations, while the right graph shows the evolution of average cost during

generation. It is obvious that the curve is decreasing which means the structures are

improving.

Table 7.6: Structure 3 - Input Parameters

Structure

Size B x H 12 x 6 m

Thickness 0.2 m

Initial number of elements 7200

Mesh size 0.1 x 0.1 m

Material Parameters

Modulus of elasticity E 33 GPa

Poisson’s ratio ν 0.2

Concrete density ρc 2500 kg/m3

Strength in compression fcu 30 MPa

Strength in tension ftu 3 MPa

Load

Distributed load f 30 kN/m

Node load F 50 kN

Gravity constant g 10 m/s2

GA Parameters

Number of chromosomes 20

Number of generations 100

Mutation probability 1 %

Elitism 10 %

Table 7.7: Structure 3 - Results

Initial structure Best rated structure

(Generation 1) (Generation 76)

σ1,max [MPa] 0.6 2.6

σ2,min [MPa] -7.4 -6.1

Cost [MPa] 25804 6151

Number of elements n 6642 2514
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Figure 7.16: Structure 3 - Distribution of Principal Stress σ1

Figure 7.17: Structure 3 - Distribution of Principal Stress σ2

During the process, the structure with the lowest cost was saved in each generation.

As a result, 100 various structures are obtained. Structures can be used as inspiration for

the design. For the illustration, 12 structures were chosen and the principal stresses σ1

and σ2 are compared. These structures are shown in Fig. 7.16 and 7.17. The structure

from generation 76 has the lowest cost, this structure is considered as a resulting structure

of GA. It is compared with the initial structure of GA in Table 7.7.
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The principal stresses and the deformed shape of the best rated structure are shown

in the Fig. 7.18. The global deformation u is calculated as
√

u2
x + u2

y. In the figure,

the factor of deformations equal to 1000 is used.

Figure 7.18: Structure 3 - The Best Rated Structure
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Architectural Aspects

The previous structures can be used as an inspiration for the next design. However,

it is necessary to modify the resulting structure to be able to use it for the design.

The example of modified structure is shown in the following Fig. 7.19.

Figure 7.19: Structure 3 - Resulting Structure

The structure differs in shape, that is why the stress analysis has to be calculated again. It

was decided to use FEA program RFEM for determining the deformations and stresses.

This calculation is also a little verification of the results obtained from the developed

program in MATLAB. The distribution of the principal stresses and the deformations are

shown in Appendix. The structure from Fig. 7.19 is used in the following visualization.

Figure 7.20: Structure 3 - Visualization
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Construction Aspects

The resulting structures obtained in the previous chapter are remarkably shaped.

The proposed algorithm can find applications in architecture, that the structures obtained

in the previous chapter demonstrate. The structures that came from the optimizing

process needs to be modified to obtain the shape which is possible to construct. However,

the construction of such as complicated structures could be still quite difficult challenge.

This fact is proved by the two examples of extraordinary organic shaped structures that

are shown in this chapter.

Both structures were designed by architecture studio Kury lowicz & Associates. The first

great example of extraordinary construction is the structure of Prosta Tower situated

in Warsaw, Poland. Prosta Tower was constructed between the years 2007 and 2011,

while the structural work took only 11 months. The 19 stories building’s façade is made

of diamond-shaped reinforced concrete sections with perfect architectural concrete finish.

The structure is shown in Fig. 8.1.

Figure 8.1: Prosta Tower, [4]

The second example of great work of this studio is definitely Warmińska Shopping Gallery

situated in Olsztyn, Poland. The Fig. 8.2 shows the building also during the construction.

49



CHAPTER 8. CONSTRUCTION ASPECTS 50

Figure 8.2: Warmińska Shopping Gallery, [2], [15]

These examples show that the construction of the unusually shaped structures is

possible, but it brings a great challenge during the construction process. It is obvious, that

the structures require special formwork and the perfect control of the whole construction

process, but the result is worth it.
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Conclusions

In this diploma thesis, a developed algorithm which seeks the optimal shape of con-

crete structures was introduced.

The algorithm is inspired by Evolutionary Structural Optimization method (ESO)

which is based on removing inefficient material from the structure. At first, it was decided

to implement the ESO and find out the advantages and disadvantages of this method.

This knowledge was used for the implementing the optimizing process. To find out

the optimal shape is a great problem, due to this fact, it was decided to use the Genetic

Algorithm (GA), which is generally used for finding solutions to complex search problems.

The ESO works fine for the simple structures such as those which were solved in

Section 5.1. But for the more complex structures, the algorithm does not fit well. In

some step of ESO, a lot of material can be removed and the structure is no longer suitable.

This problem can be solved by adding the material to the highly stressed places. It was

decided to introduce this feature to the developed algorithm. Therefore in each step,

the inefficient material is moved to the surroundings of highly stressed places. The highly

stressed places are decided as those, where the biaxial concrete strength is exceeded.

The biaxial concrete strength is determined according to the CEB-FIP Model Code 90.

In each step of genetic algorithm, n different structures are calculated. This is the main

difference to the ESO. The searching space of GA is larger. It is expected, that the struc-

tures which would be probably skipped in the ESO are found and calculated in the de-

veloped algorithm. During the process, all the structures are modified, evaluated and

combined with hope to find out the remarkably shaped compression dominant structure.

The introduced algorithm was implemented in MATLAB Environment. The Finite

Element Method is used for determining the deformations and the stresses distributions in

the structure. The rectangular elements with eight degrees of freedom are used. The prin-

cipal stresses are used for the determination of the utilization of the material in the struc-

ture.
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Range of Application

It is always important to keep in mind that the results are influenced by randomness

which is introduced during genetic algorithm operations. Therefore, the results could

differ for the very same input parameters. This behavior of the developed algorithm

is proven in Section 7.1, where two runs of the algorithm with same input parameter are

compared. It is recommended to run the calculation at least twice to achieve the appro-

priate results.

The structures are evaluated at each generation of GA. The best evaluated structure

does not have to be optimal for the design. Sometimes only the lack of the small number

of elements decides the resulting structure. It is recommended to check all the best

structures.

The resulting structures can be used as an inspiration for the future design.
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Appendix

RFEM Results

The structure from the Fig. 7.19 was also calculated in the finite element analysis

program RFEM. The results are presented in this appendix.

Figure A.1: Loads

Figure A.2: FE Mesh

I
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Figure A.3: Global Deformation u

Figure A.4: Principal Stress Trajectories
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Figure A.5: Principal Stress σ1

Figure A.6: Principal Stress σ2




