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Abstract

Conditional probability models in transportation are essential part of modeling real world
multiagent systems. These models take part in simulation of a wide range of tra�c infras-
tructure problems. This work discusses a comparison of several approaches to searching of
these models by investigation of their achieved accuracy and computational requirements.
Real world datasets and the particular form of conditional probability models were given.

Optimization task in this work is considered as an instance of a supervised machine
learning task with the speci�c error function and given datasets with training and validation
data. The problem was solved with Arti�cial Neural Networks (ANN) by the method called
mixture density networks. Another class of approaches was based on the principles of Ge-
netic Programming (GP) � especially the symbolic regression. The methods for conditional
probability distribution modeling are well known for ANN approach unlike for the GP ap-
proach. Therefore the work is primarily focused on the GP and its advanced techniques that
will try to surpass the ANN in its performance.

Abstrakt

Modely podmín¥né pravd¥podobnosti v doprav¥ jsou základní sou£ástí popisu multia-
gentních systém· s aplikací v reálném sv¥t¥. Tyto modely se uplat¬ují p°i simulacích ²irokého
spektra záleºitostí v dopravní infrastruktu°e. Práce porovnává n¥kolik p°ístup· pro hledání
t¥chto model·, prost°ednictvím vy²et°ování jejich p°esnosti a výpo£etní náro£nosti. Reálná
data a konkrétní typ modelu podmín¥né pravd¥podobnosti byly zadány.

Optimaliza£ní úloha, která je °e²ena v této práci se dá povaºovat za úlohu strojového
u£ení s konkrétní chybovou funkcí a danou mnoºinou trénovacích a valida£ních dat. Prob-
lém byl °e²en um¥lými neuronovými sít¥mi (ANN) ve form¥ sítí pro popis hustoty sm¥si
pravd¥podobnostních rozd¥lení (mixture density networks). Dal²í t°ída metod pro °e²ení
byla zaloºena na principech genetického programování (GP) � p°edev²ím symbolické regrese.
Metody pro modelování podmín¥ného rozd¥lení pravd¥podobnosti jsou pro p°ístup pomocí
ANN dob°e známé na rozdíl od p°ístupu pomocí GP. Tudíº se práce zam¥°uje p°edev²ím na
GP a jeho pokro£ilé techniky, prost°ednictvím kterých bude snaha p°ed£it ve výkonu p°ístup
pomocí ANN.
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Chapter 1

Problem introduction

Examined problem was part of project Agentpolis [9] which is being solved on the Depart-
ment of Computer Science of Czech Technical University in Prague. This project deals with
modeling the city infrastructure, especially public transportation networks. This is useful
in order to prototype and execute data-driven simulations of wide range of transportation
matters, e.g. investigation of tra�c density at any given time and location, commuting times
between two areas at given time of the day, usage of given public transportation bus service,
pollutant emissions by the transport system in some area and similar things. Useful simula-
tions and their analysis can save a lot money and time, when designing new, or optimizing
existing tra�c infrastructure.

Data driven simulations in this project require synthesis of simulated population � agents.
Agents could be perceived as virtual people described by a set of parameters. To ensure
that these agents are described in accordance with the reality (or at least being its close
approximation), there has to be a collection of real world data samples, which are used
as a template for generating these agents. Mentioned real world data examples (called
training examples) used in this work were collected from census data. Training examples were
associated to training set T . The number of agents needed to be generated (approximately
106) was much greater than the number of training examples (approximately 102), therefore
it had to be found a way, how to properly generate random samples from a training set in
a way, that newly generated samples will come from the same probabilistic distribution, as
training set samples.

The core of this work is creation of generative model � a model that speci�es a probability
distribution over an input data. Generative model has speci�ed its underlying mathemati-
cal form (e.g. Gaussian distribution), which is parametrically adjusted (optimized) to have
possibly the lowest error on training and validation data. There were several techniques
developed for this optimization, e.g. maximum likelihood estimation, expectation maxi-
mization algorithm and �nally mixture density networks and GP, that are described here in
detail.

1



CHAPTER 1. PROBLEM INTRODUCTION

1.1 Formulation & Interpretation

We are interested in conditional probabilistic distribution D of several types of models,
used in transportation networks modeling. The easiest way to explain what the distribution
D might describe, is by following example:

We model exact time instances of when an employee returns from work to home. An
employee has some characteristics described by sociodemographical data; this can be simply
a vector or a single value, which means e.g. the number of employee's children. From census
or another statistic exploration we obtained a training subset T of a whole population.
This means, we have a representative list of pairs [number of children; time when employee
arrives from work to home]. From training set T we construct a conditional probabilistic
distribution D, which we use for generation of new examples. Supposing we want to have
more data about when employees with 3 children arrive from work to home, we simply
randomly choose multiple times from D and obtain generated (arti�cial) data of employees
with 3 children. If the most number of employees from set T with 3 children had home
arrival times at 5 p.m., then it is likely to obtain results from distribution D, that have
home arrival time close to 5 p.m. as well.

Figure 1.1: Sociodemography is a set of vectors where each vector represents a single human
with his characteristic properties and characteristic target values. Target values depend on
the type of the model (overview 1.1). The purpose is to be able to generate statistically
credible samples of a particular type of human, because collecting real world examples is
very expensive.

Distribution D is called conditional, because it changes its form depending on the input
parameter (number of children � as in the previous example). Conditional distribution D
is in its complexity a level above normal probabilistic distribution, because D is a function,
that returns a probabilistic distribution. In other words, D can represent in�nitely many
distributions depending on input parameter. Input parameter is in practice a vector, which
describes a single human ([-1, 1] means real number interval from -1 to 1).

2



1.1. FORMULATION & INTERPRETATION

Name Range
age [-1, 1]
owner of car {-1, 1}
sex {-1, 1}
education level {-1, 0, 1}
driver's license {-1, 1}
public transportation card owner {-1, 1}
is in household [-1, 1]
is a student {-1, 1}

Table 1.1: Format and meaning of data vector representing a particular human. Note, that
values are normalized in order to secure proper run of machine learning algorithms. Data
normalization part was already realized and will not be described here.

Easier histogram sampling approach was not examined in this work, but it supposedly
would not achieve as good results as approaches in this work. Very important thing to realize
is that conditional distribution D takes into account more statistical details and brings more
credibility then we would be obtaining by intuitive random sample generating from histogram
of training data. That is the reason, why this work introduces such a complicated method
of creating distribution D.

Here will be brie�y described investigated probabilistic models. Each one of these models
was aimed to 3 groups of people: students, employees, people at home (people, that are not
employed, neither regularly visiting any educational institution). Every model had the same
format of input data (table 1.1). People's daily activities are divided into �xed (sleep, work,
school) and �exible activities (leisure, daily shopping, longer shopping)

• time model : Model input is vector 1.1. This model searches for probabilistic distribu-
tion of 4 time instants, when given human does these activities:

I. leaves home (after sleep)

II. arrives at school/work [not for people at home]

III. leaves school/work [not for people at home]

IV. arrives home (and does not go anywhere else)

• �exible duration model : Model input is vector 1.1. This model searches for probabilistic
distribution of time duration of following activities per day:

I. leisure activity

II. daily shopping

III. longer shopping (e.g. weekends shopping)

• �exible count separated model : Model input is vector 1.1, plus time duration of �exible
activities and start times of �exible activities. This model searches for probabilistic
distribution of the number of �exible activities. For example employee may have in
average lower number of �exible activities than people at home.

3



CHAPTER 1. PROBLEM INTRODUCTION

Following example shows more closely student's time model :

Figure 1.2: Horizontal axis shows day time hours. Time instants I., II., III., IV. represent,
when one activity ends, or another starts. For example, time instant III. shows that main
part of students, which are described by characteristic given by vector x, ends school at 4.30
p.m.

1.2 Objective speci�cation

Computational model is represented by either ANN or GP, as a tool for calculation pa-
rameterized activity probability distribution. This distribution D was selected as a mixture
of multivariate normal (Gaussian) distributions in form:

D = p(t|x) =
K∑
k=1

πk(x)N(t|µk(x), σ2k(x)) (1.1)

where N(x|µ,Σ) denotes:

1√
(2π)m|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.2)
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1.2. OBJECTIVE SPECIFICATION

Due to quadratic increase of unknown parameters in general covariance matrix Σ with
increasing target dimension, Σ was substituted by a scalar product of identity matrix and
only one unknown parameter σk, i.e. Σ = σkI. This covariance simpli�cation has not
signi�cant in�uence of resultant accuracy. It manages to change expression 1.2 to much
more convenient form, where it does not have to be dealt with computing a determinant of
Σ.

N(x|µ,Σ) = N(x|µ, σ) =
1

(2π)m/2σm
exp(−||x− µ||

2
2

2σ2
) (1.3)

Mixture of Gaussian can be understood as a convex combination of its components,
weighted by coe�cients πk(x). K is a number of mixture components.

Let us have a training set T :
T = {(xi, ti)}, for i = 1..M

where M = |T |, xi ∈ Rn, ti ∈ Rm
Letter n denotes input vector dimension (e.g. n = 8 see table 1.1). Letter m denotes
dimension of output probability distribution (e.g. m = 4 see picture 1.2). The objective is
to minimize something called error (or objective, or �tness) function. The error function has
form:

E(π, µ, σ, T ) = −
M∑
i=1

ln
K∑
k=1

πk(xi)N(ti|µk(xi), σ2k(xi)) (1.4)

Step by step derivation of 1.4 can be seen in [1] or [2]. It states, that:

argmin
π,µ,σ

E(π, µ, σ, T ) = argmax
π,µ,σ

M∏
i=1

p(ti|xi) (1.5)

and thus this optimization problem can be seen as maximum likelihood estimation problem,
where unknown parameters π, µ, σ are not variables, but functions. By solving 1.5 we obtain
optimal arguments π, µ, σ. These arguments can be considered not only as constants, but
also as more complex mathematical expressions. Total number of these parameters is L =
(m+ 2)K. In general, every desired parameter is a function f : Rn → R, where Rn denotes
an input vector space (e.g. space of parameters describing every student). Since all desired
parameters (means, variances, apriori probabilities) are functions, that have di�erent values
for di�erent input arguments, these parameters construct a distribution, that changes its
properties dependent on its input. That is why the probabilistic distribution represented by
equation 1.1 is called conditional.

The quality measure � the �tness of some probabilistic distribution on training set tells,
how well the distribution models data in training set. In this work it is stated, that the lower
�tness ensures better performance (sometimes the bigger �tness the better performance � it
is only a question of convention).
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Chapter 2

Solution methods description

Introduced problem can be solved by ANN in a form of mixture density networks ([1] or
[2]), which will be brie�y explained. Though the work is primarily focused on investigating
GP methods, which are described in greater detail. This choice makes contribution of this
work more useful, as e�ects of ANN in mixture density networks are known much better
than GP.

2.1 ANN vs GP as solution tool

Minimization of expression 1.4 is not a traditional parameter optimization task, because
parameters πk, µki, σk, for i = 1..m, k = 1..K, (µk is m-dimensional mean vector with
elements µki) are not constants. The target probabilistic distribution D is conditional and
therefore these parameters have to be dependent on input x. Input x a�ects what form
will distribution D have through in�uencing its properties on apriori probabilities π, mean
values µ and dispersions σ, as they were functions. The total number L of these parame-
ters is dependent on the number of Gaussian components K in a way, that L = (m + 2)K
(m-dimensional mean, 1-dimensional dispersion, 1-dimensional apriori probability per com-
ponent).

2.1.1 ANN solution

In mixture density networks the functions πk, µki, σk are interpreted as outputs of ANN.
For this task a feedforward ANN was selected with input layer of dimension n + 1 (one
neuron is bias unit) and output layer with dimension L. Speci�cation of the hidden layers,
that achieve the best results on given task is a subject of hyperparameter optimization.

Particular form of functions πk, µki, σk is following:

αk =
exp(zαk )
K∑
i=1

exp(zαi )

(2.1)

σk = exp(zσk ) (2.2)

7



CHAPTER 2. SOLUTION METHODS DESCRIPTION

µki = zµki (2.3)

zαk , z
σ
k , z

µ
ki are labels of ANN outputs. Therefore these functions have speci�c form,

thus it is clear, how these functions look like only by the type of selected ANN. The only
necessary thing, is to numerically optimize ANN weights to minimize the objective function
1.4 by backpropagation gradient descent algorithm.

Figure 2.1: Example of ANN used to compute probabilistic distribution of students time
models as a mixture of K = 3 Gaussian components. Input layer is consisted of 8 input
neurons, corresponding to 8 input parameters (table 1.1), plus 1 bias neuron. Hidden layer
consists of only 2 neurons, plus 1 bias neuron. Output layer consists of L = 18 neurons, cor-
responding to expressions zαk , z

σ
k , z

µ
ki, used for desired functions computation. This network

has 72 weights (denoted by connecting lines).

2.1.2 GP short description

Genetic programming ([3], [4], [6]) can be seen as an optimization tool, which creates
some sample of possible solutions of given problem, which is called population and then tests
this population on how well it deals with target expression optimization task (this is called,
that population is evaluated). One sample in generation is called an individual. After
evaluation of population, each individual has its performance. Population is then sorted
according to the individuals' performance. After that, some of the best individuals are
copied for the next generation (next iteration of algorithm), and part of the best individuals
is selected to mutation or crossover. Mutation creates new individual from old individual,
by applying some change to old individual structure. Crossover takes two individuals and
returns a new individual, that has part of structure from the �rst individual and the rest
of the second individual. These new individuals are inserted into new generation and the

8



2.1. ANN VS GP AS SOLUTION TOOL

process is repeated, until some target level of performance is reached, or the maximum
allowed number of generations is exceeded.

Individual I is forest of tree expressions treeIi . By applying mutation on individual is
meant two kinds of mutation, which are applied on its every treeIi :

• Point mutation: random node n is selected from treeIi and:

1. If n is a function symbol, then n is substituted by another random function symbol
from the primitive set (set of allowed functions).

2. If n is a variable symbol, then n is substituted by another random variable symbol
from the variable set.

3. If n is a constant symbol, then the value of n is multiplied by a random value
from the standard Cauchy distribution [4].

• New branch mutation: random node n is selected from tree the treeIi , new random
expression (new random tree) n′ with the depth d is generated and then the node n
in treeIi is replaced by n′. The node depth is the lowest number of edges, that lead
to the top node. There is naturally a limitation of maximal tree depth, which cannot
be exceeded. This value strongly in�uences the GP potential of solving complex tasks.
Originally was the new random tree depth d in this project randomly selected from the
set {1, 2, 3}. Later it was changed to deterministic d = 1 in order to reduce possible
undesired e�ect of inappropriate new branch on the whole �tness. This option had
the improving e�ect, which was experimentally veri�ed for the problem of conditional
distribution in studied models).

Crossover creates new individual by randomly selecting two individuals A and B from
population. Then it is for every pair of the trees: treeAi , tree

B
i for i = 1..L realized (L is the

number of trees in the individual):

1. create copy new_treeAi of treeAi

2. select random node nA from new_treeAi and create copy nB of randomly selected
subtree from treeBi

3. replace subtree beginning from nA by nB and return new_treeAi

GP is inspired by the natural selection mechanism, where only the most able group of
individuals is allowed to reproduce. This is implemented by sorting individual according to
their �tness. Reproduction_ratio is a part of population, which will be allowed to take part
in creating new generation. Elitelist_proportion_size is another ratio, which controls the
size of population, which will be copied to next generation without any change.

2.1.3 GP solution

GP realizes optimization by symbolic regression. Function in this problem can be seen
as mathematical expression, which can be represented in its tree structure. For example

9



CHAPTER 2. SOLUTION METHODS DESCRIPTION

∗

ln

x

3.14 y

Figure 2.2: Example of a tree representing the expression (∗ (ln x) 3.14 y).

function f(x, y) = ln(x)3.14y, or equivalently f(x, y) = (∗ (ln x) 3.14 y) (in somewhat
comfortable preorder notation), can be represented as tree in �gure 2.2.

Example of an expression forest [treeµki, tree
σ
k , tree

α
k ] with the primitive set {+, -, /,

power, ln, exp}, the variable set {x, y} and the real valued constants c1...cn is in the following
picture:

pow

+

/

x c1

c2 y

c3

sigmoid

−

pow

x y

c4

...

−

cn−1 ln

exp

cn

In symbolic regression we are searching for an optimal form of expression (optimal tree
structure), which solves a given problem. E�ectivity of the current solution on a given
problem measured as a value of error function. Let the function f(x, y) = (∗ (ln x) 3.14 y)
give performance A. If we for example change upper node from multiplication (*) to addition
(+), we obtain performance B, which might be better than A. If B > A, we accept new
form of optimized function and continue in improving, or terminate optimization in case
we are satis�ed with the performance. Otherwise we continue by applying new structure
and investigating, whether it helped. Applying new structure in expression involves several
techniques, which are described in 2.1.2.

Objective remains the same: �nd L functions πk, µki, σk, which minimizes 1.4. Each of
these L functions have their own tree expression, which is tuned to appropriate form. This
is equivalent to ANNs values zαk , z

σ
k , z

µ
ki.

For better distinction in ANN and symbolic regression notation let be these values de-
noted as: treeαk , tree

σ
k , tree

µ
ki.

Following mapping is employed for obtaining desired functions: πk, µki, σk:

αk =
sigmoid(treeαk )
K∑
i=1

sigmoid(treeαi )

(2.4)

σk = sigmoid(treeσk) (2.5)

µki = sigmoid(treeµki) (2.6)

10



2.2. ADVANCED GP METHODS

where sigmoid(x) = 1
1+exp(−x) .

Note that every value σk and µki is projected by sigmoid function to the interval [0, 1].
This is not a problem, because target vector attributes in training set were normalized to
the interval [0, 1] as well. For example if mean value of some time instance corresponds to 5
p.m., then it is represented by µki = 17

24 = 0.708.
As an example of possible look of treeijk expressions, see the example 3.5 of an individual.

2.2 Advanced GP methods

These methods improve performance either directly by in�uencing the selection mecha-
nisms, or indirectly by increasing e�ectivity of mutational operations, or by combination of
both.

2.2.1 Genetic Programming with Explicit Fitness Sharing (GPEFS)

GP, ANN and other optimization methods for minimizing very complex nonconvex func-
tions have problem with stucking in local extrema. This can be partially solved by running
the optimization algorithm repeatedly, with di�erent initial values of parameters, or appli-
cation of stochastic gradient descent (or combination of both). GPEFS facilitates search for
better local minimum, by analyzing broader search space. It is done by splitting population
to several species, which compete only amongst its members. In classic GP individuals com-
pete with the whole population � not only its parts, therefore they are more likely to end up
in worse local extrema. Thus the GPEFS can be roughly seen as n simultaneously running
GP algorithms, which have assured, that every instance of these n GP runs, searches in
di�erent direction.

Target number of species positive integer
Elitelist proportion size [0, 1]
Initial speciation threshold [0, in�nity)
Species reproduction ratio [0, 1]
C [0, in�nity)
K [0, in�nity)
Not matching node exit {True, False}
Descent null trees {True, False}

Table 2.1: Parameters introduced by GPEFS

GPEFS work�ow is described by niching algorithm in very understandable form in [4].
Introduced parameters (table 2.1) are used primarily to sustain number of species throughout
evolution process. Parameters C, K, Not_matching_node_exit, Descent_null_trees are
used in determining to which species an individual will be assign. This is done by measuring
a similarity of two given individuals. Similarity of two individuals is measured by sum of
distances of their corresponding trees. Thus a proper metrics have to be de�ned for measuring
structural di�erence of two tree expressions. Properties of this metrics is controlled by C,
K, Not_matching_node_exit, Descent_null_trees. Further details about these metrics
and reasons of choosing given con�guration 3.2.2 is in [4].

11



CHAPTER 2. SOLUTION METHODS DESCRIPTION

2.2.2 Tree optimization via error backpropagation (BPG)

It is the way, how to numerically optimize values of constants in expression forest. This
ensures faster convergence to local optimum and whole system has therefore bigger potential
for achieving better performance. Base algorithm for backpropagation gradient descent is
a simple gradient descent, which is the way of �nding local minimum of di�erentiable real
function, by iteratively altering value of its arg min point by a value of function derivative
at that point, multiplied by learning rate (in vectorized form):

xt+1 := xt − α∆xt (2.7)

Starting point x0 and learning rate α are given. Therefore it is only necessary to compute
gradient ∆.

Every di�erentiable real function has explicit rules for calculation its derivation. Some-
times it could be very di�cult to come up with analytical form of gradient. This is typical
problem in the process of learning ANN, and for the same reason it is a problem at symbolic
regression as well. The problem is that ANN or symbolic forest is in fact composition of
many functions. It is known, that derivation of function composition can be realized by the
chain rule. This way of computing derivation of function composition is, however, very ine�-
cient (from computing or programmer point of view). Thus it was developed new method to
computing derivation � the backpropagation algorithm. It computes derivation by recursive
rules:

δ
|L|
i = 1 (2.8)

δLi =
∑
j

δL+1
j

∂zL+1
j

∂zLi
(2.9)

These rules can be applied on every analytical function. It is only necessary to represent
them in the following form:

z|L|(z|L|−1(...(z2(z1))...)) (2.10)

(very useful is to imagine this representation as a tree expression � see pictures in chapter
2.1.3). Formally the term zi is a vector functions zij : Rn → R. Number |L| is the depth
of the function tree expression. Term δij means backward error message (derivation) from
function zi by input zi−1. There is a dependency of the derivative in lower layer l on the
derivative of the upper layer l + 1; this can be expressed as:

δ1(δ2(...(δ|L|−1(δ|L|))...)) (2.11)

We are interested in δ1. The backpropagation work�ow is following: we start with evaluation
of the expression (2.10). Then we use rules (2.8) and (2.9) in order to evaluate expression
(2.11) (it is also said, that the error is backpropagated), and we take δ1 as result.

Desired gradient ∆ in 2.7 is the result δ1. Important thing to realize is, that it is
necessary only to o�er rules, for computing derivatives of functions in primitive set and be
able to evaluate them. Derivative computation is much faster than using chain rule due to
clever backpropagation evaluation.

Full comprehension of this algorithm may be achieved from practical experience with
exemplary toy expressions. Very useful explanation of equations (2.8) and (2.9) is in [11] �
that source was su�cient for custom simple implementation used in this work.
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2.2.3 Automatically De�ned Functions (ADF)

This extension of GP algorithms enables more e�ective problem solving, by repetitive
utilization of whole blocks of structure (e.g. tree expressions). In other words, it automat-
ically introduces reusable subroutines � functions. This may have positive e�ect on some
problems, which are decomposable into subproblems, or on problems, where some task is
repeated multiple times. Very extensive explanation of this problematics is in [6].

Figure 2.3: ADF can be considered as terminals, that are reusable on multiple places.

There are many ways, how to implement basic idea of ADF. One particular approach
was implemented, which introduces these parameters:

Population shared ADF {True, False}
Recursive ADF {True, False}
Number of ADF positive integer
ADF mutation frequency per epoch [0, 1]
Generate terminal as ADF [0, 1]
Maximal ADF tree depth positive integer

In case of symbolic regression ADF are symbolic trees, that in case of Population shared
ADF = True can by used throughout the whole population, i.e. that the same expressions are
used multiple times and in multiple individuals as well. Population_shared_ADF = False
ensures, that ADF set will not exist for whole population, but every individual will have its
own ADF set. Total number of ADF is limited by Number_of_ADF and this number
remains the same. Maximal_ADF_tree_depth controls complexity of these functions. If
Recursive_ADF = True, than one function can be part of another. There is a necessity
of avoiding self reference (it would cause in�nite loops during evaluation) and thus it has
to be ensured, that one function from ADF set has not reference on itself. This illustrates
following picture:
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CHAPTER 2. SOLUTION METHODS DESCRIPTION

Figure 2.4: Recursive ADF composition ensures bigger potential for solving more com-
plex tasks. Every ADF A has its number i = adf_order(A) ∈ {1..Number_of_ADF}.
When ADF B participates on the structure of ADF A, then it has to be ensured, that
adf_order(A) < adf_order(B). This leads to avoiding of an inadmissible self-reference,
which would cause an in�nite loop during evaluation.

Another parameters relate to mechanisms of ADF usage. ADF can be considered as
terminal. Parameter Generate_terminal_as_ADF controls the probability of terminal
selection to be one of the ADF. Complementary probability is probability of applying con-
stant or variable as terminal. ADF have also a chance of evolving, this is done by their
mutation in epoch, which is realized by probability ADF mutation frequency per epoch.

ADF are not universal tool for every problem and there are no explicit rules, how to
�nd out, whether they will be useful. ADF were succesful, for example, in problems from
molecular biology, biochemistry and some robotics tasks.
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Chapter 3

Experiments and Results

First part of the experiments was about searching the best con�guration of ANN for
every studied model. This included hidden layers and number of Gaussian components K
for optimization of expression 1.4. GP had problems with increasing K in the sense, that
higher values of K caused linear, still very huge increase of computing demands. While the
ANN was able to deal with K = 20, the GP in general was unable to compute applicable
results even for K = 5. Good compromise in the choice of the value K was to set K = 3.
This value made computation much faster and moreover it achieved very similar results as
K = 4 or K = 5 on training and validation error.

This limitation of the number of Gaussian components brings noticeable dimension re-
duction as the number of unknown components is naturally lower. It can be said, that the
choice of K = 3 causes remarkable reduction of the whole potential for model performance.
This is because the best ANN performance tends to be higher with increasing K. This
turned out to be true when K was 10, 15, 20.

One important target of this work is to compare the e�ectivity of GP against the e�ectiv-
ity of ANN. Therefore the conditions for their comparison have to be as similar as possible.
With regard to the number of investigated models, it was chosen one referential model,
where the comparison will be analyzed. Student's time model which describes probabilistic
distribution of 4 time instants in a student's day (see 1.2) was chosen as a referential model.
Since the number of these time instants is m = 4, it is the most complicated investigated
model. Flexible duration and �exible count separated models had target dimension m < 4.
Moreover it states, that when one method will be better in dealing with some complicated
model, then is very likely to do better in simpler models.

Resultant model (GP model with the best performance at minimizing error function) is
composition of previously described advanced methods GP/GPEFS, BPG optimization and
ADF. In order to obtain better idea of improving e�ect of single introduced methods, they
were gradually composed together, so the increase of performance could be observed (�gure
3.3).
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3.1 Hyperparameter optimization

Finding optimal parameter con�guration is an instance of hyperparameter optimization
problem and was solved with simple grid search algorithm on every value of Cartesian product
of allowable and reasonable elected values for every controlling parameter.

There is a natural necessity of being able to compare two parameter con�guration based
on their performance. Performance of GP (resultant �tness) is random variable, therefore
it is necessary to employ statistical methods for comparing hypothesis about one is greater
than another. For this task was chosen an analysis of boxplot graphs 3.1. Following example
shows a typical situation, which occurred on every better/worse comparison between two
con�gurations, which di�ered in the value of exactly one parameter.

Figure 3.1: Example of boxplot diagram for e�ect analysis of di�erent values of point muta-
tion probability and initialization method (other parameters are the same for each column).
Lower value is better. Based on a shape of these boxplot columns notches, it could e.g. not
be said, that con�guration D has a signi�cant di�erence of median against con�guration B,
because their notches overlap (width of the notches is proportional to the interquartile range
of the sample, for details see [7]). On the other hand preference of con�guration D against
con�guration F is justi�ed by lower achieved �tness and by non-overlapping boxplot notches
and thus this preference is statistically signi�cant.

3.1.1 ANN optimization

For every investigated model optimal ANN was identi�ed by grid search algorithm on
the set K = [2, 3, 5, 10, 15, 20] of possible number of components K. Next set was L, which
elements were lists of numbers, that represent number of neurons in layer; e.g. (4, 4)
means, that number of hidden layer is 2, and every hidden layer has 4 neurons. Set L
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3.1. HYPERPARAMETER OPTIMIZATION

was speci�ed intuitively as: L = [(2), (3), (4), (5, ), (7, ), (7, 7), (10, 10), (6, ), (5, 5), (14, 14),
(5, 5, 5), (10, ), (8, 9), (12, 12), (8, 10, 8), (14, ), (6, 6), (8, 8), (12, 12, 12), (12, ), (9, 10),
(11, 11), (10, 12, 10), (6, 3, 6), (12, 10, 12), (10, 6, 9), (6, 3, 3, 6), (4, 2, 2, 4)]

Every randomly initialized optimization run was repeated 10 times, every repetition was
cross-validated on 10 folds of validation set. |L| = 28, |K| = 6. Maximum number of
training epochs was 1000 (in case that the validation error decreased before 1000 iteration,
the optimization was terminated). Therefore the search for one particular optimal model
took exactly 28 ·6 ·10 ·10 = 16800 ANN optimization procedures, which was computationally
time-consuming.

3.1.2 GP vs GPEFS

Comparing these two approaches by measuring the performance upon the same paramet-
ric con�guration has not much sense. It has showed, that in the case, when GP and GPEFS
have the same population size, and target number of species in GPEFS was greater than 1,
then GP was signi�cantly better. That is naturally because GPEFS splits whole given pop-
ulation into species, which minimizes error function in di�erent directions. Splitting popula-
tion to species causes reduction of competitive potential per species, compared with compet-
itive potential in GP population. Therefore it had to be increased the population size, while
running GPEFS. Idea of considering GPEFS as GP with Target_number_of_species = 1
is not correct, because real number of species �uctuates during evolution process. Target
number of species is only number of species, which system tries to achieve.

There has been also seen, that GPEFS slightly changes details of mutation process, more
precisely � some optimal con�gurations for GP does not have to be necessarily optimal for
GPEFS. This has been observed between 3.2.1 and 3.2.2. Similar observation was made on
picture 3.2

Figure 3.2: Boxplot of best reached �tnesses (lower value is better) made on 10 trials of
GP and GPEFS. Both models had the same population size and other parameters same.
Target_number_of_species = 1, therefore was GPEFS closer to simple GP. As showed,
GPEFS did slightly better, but not signi�cantly.
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3.2 Optimal models

Every parameter search trial was repeated 10 times. Number of evolution epochs per
trial was set to 500; above this number of epochs the system was not likely to change its
best �tness. Population size for model search was set to 200 individuals for GPEFS with
3 target number of species and 100 individuals for GP. There can be some objection about
choosing these values of population size. One empiric recommendation stated, that number
of individuals per species should be circa 20. Thus at 200 population size this number should
be 10, but this con�guration had very poor results. On the other hand setting number of
species to 1 would not bring much di�erence from standard GP run. As good compromise
with very good �nal results, was to set number of species 3 (which was considerably di�erent
from empirical rule). Due to extensive computational requirements, was even this choice of
population size and epochs quite high. Cross validation was omitted for this reason as well.
Still the single model evaluation took even multiple days.

Hyperparameter sets for (GP/GPEFS) optimization [1200 runs in total (1·5·4·3 = 60,
60·10 (per 10 repeats), 600·2 (per GP/GPEFS))]:

i n i t i a l depth = [ 2 ]
maximal depth = [ 2 , 3 , 4 , 5 , 6 ]
po int mutation p r obab i l i t y = [ 0 . 3 , 0 . 5 , 0 . 6 , 0 . 7 ]
generate te rmina l as v a r i a b l e = [ 0 . 3 , 0 . 5 , 0 . 7 ]

Hyperparameter sets for (BPG GP/GPEFS) optimization [1080 runs in total]:

i n i t i a l depth = [ 2 ]
maximal depth = [ 5 ]
po int mutation p r obab i l i t y = [ 0 . 3 , 0 . 5 , 0 . 7 ]
generate te rmina l as v a r i a b l e = [ 0 . 3 , 0 . 5 , 0 . 7 ]
p r obab i l i t y o f BPG opt imiza t i on per epoch = [ 0 . 3 , 0 . 5 , 0 . 7 ]
batch s i z e = [10 , 20 ]

Hyperparameter sets for (ADF BPG GP/GPEFS) optimization [960 runs in total]:

i n i t i a l depth = [ 2 ]
maximal depth = [ 5 ]
po int mutation p r obab i l i t y = [ 0 . 5 ]
generate te rmina l as v a r i a b l e = [ 0 . 2 , 0 . 3 5 ]
generate te rmina l as constant = [ 0 . 2 , 0 . 3 5 ]
p r obab i l i t y o f BPG opt imiza t i on per epoch = [ 0 . 5 ]
batch s i z e = [ 1 0 ]
populat ion shared adf = [ True , Fa l se ]
adf mutation f requency per epoch = [ 0 . 2 , 0 . 5 , 0 . 8 ]
number o f adf = [ 3 , 5 ]

One evaluation of ANN parameter con�guration took 50 seconds on average per trial
(it was made 16800 evaluations). One evaluation of GP parameter run took 90 minutes in
average per trial (it was made 3240 evaluations). Total CPU time on record in Metacen-
trum was at the end of experimenting 354 CPU days. On home computers was calculated
approximately 40 CPU days.
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Primitive set was chosen based on positive reference of [4] as:

Function Expression
Addition

∑n
i=1 xi

Multiplication
∏n
i=1 xi

Arctangent of sum arctan(
∑n

i=1 xi)

Gaussian kernel of sum e−(
∑n

i=1 xi)
2

Sine of sum sin(
∑n

i=1 xi)

Table 3.1: Primitive set used in every GP model.

Arity Probability
2 0.9
3 0.08
4 0.02

Table 3.2: Functions arities and their probabilities.

Initialization of forest was realized with grow method [3] with maximum depth equal
to 2. Another initialization alternative for symbolic regression was to set all trees to zero
expression � e.g. (+ 0 0); this method very quickly found relatively good minimum, however
then it almost stopped to improve at all. The point mutation of node means, how will be
some expression in node changed. It depends on type of expression the node contains:

• For function node it randomly selects function from primitive set 3.1 and substitutes
existing type of function. Used primitive set was useful as well because there was not
necessary to check arity of function.

• Value of constant was altered by multiplying a random value from standard Cauchy
distribution.

• Variable was swapped with another variable.

Branch mutation was limited to random selection of node from tree expression and replace
it by randomly generated function with terminals as its arguments. It means, that newly
provided structure had depth at most 1.
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3.2.1 GP model

As a best con�guration was evaluated these settings:

Forest initial method grow method with maximal depth = 2
Point mutation probability 0.7
Generate terminal as constant 0.5
Generate terminal as variable 0.5
Maximal tree depth 5
Population size 100

Elitelist proportion size 0.2
Individuals reproduction ratio 0.4

Table 3.3: Table shows population diversi�cation control parameters. Elitelist proportion
size = 0.2 means, that 20% of best individuals will be inserted to new generation without
change. The remaining 80% of population will be generated from best 40% of individuals in
previous generation (Individuals reproduction ratio = 0.4).

3.2.2 GPEFS model

As a best con�guration was evaluated these settings:

Forest initial method grow method with maximal depth = 2
Point mutation probability 0.6
Generate terminal as constant 0.5
Generate terminal as variable 0.5
Maximal tree depth 5
Population size 200

Recommended settings for tree distance algorithm 2.2.1 was set to:

Target number of species 3
Elitelist proportion size 0.2
Initial speciation threshold 1.0
Species reproduction ratio 0.4
C 0
K 1
Not matching node exit True
Descent null trees True
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3.2.3 BPG GPEFS model

Con�guration of gradient descent during optimization procedure 2.2.2 was following:

Maximal iteration per epoch 20
Batch size 10
Stochastic True
Initial learning rate 0.05
Probability of BPG optimization per epoch 0.5

Parameters of niching algorithm were set equally as in previous models 3.2.2. Other
parameters providing best performance were:

Forest initial method grow method with maximal depth = 2
Point mutation probability 0.5
Generate terminal as constant 0.7
Generate terminal as variable 0.3
Maximal tree depth 5

Note that probability of generation terminal as constant was found to be 0.7. It quite
corresponds to intuitive notion, that more constants in expression, which are optimized
by constant tuning method, the better �tness will be reached. On the other hand, if the
expression was consisted only of variables, the BPG optimization algorithm would have zero
e�ect.

3.2.4 BPG GP model

Gradient descent con�guration was the same as in GPEFS version.

Other parameters providing best performance were:

Forest initial method grow method with maximal depth = 2
Point mutation probability 0.5
Generate terminal as constant 0.7
Generate terminal as variable 0.3
Maximal tree depth 5
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3.2.5 ADF BPG GPEFS model

This model introduced additional parameters, whose values had to be optimized during
hyperparameter optimization process. Their values are here:

Population shared ADF True
Recursive ADF True
Number of ADF 5
Maximal ADF tree depth 4
ADF mutation frequency per epoch 0.5
Generate terminal as ADF 0.3
Generate terminal as constant 0.35
Generate terminal as variable 0.35
Maximal tree depth 5

Table 3.4: Population shared ADF = True means, that the same ADF were used over
the whole population (they were not de�ned for each individual separately). Model was
mentioned to be as simple as possible, thus the number of ADF was static, equal to 5. One
ADF could be part of another, but only in case it would not cause an in�nite loop during
evaluation. ADF mutation frequency per epoch controlled the probability of ADF mutation
per one epoch. Using ADF in expression could be considered as it was simple terminal, thus
its using has to be determined by some probability; Generate terminal as ADF = 0.3.

Examined option of using individual speci�c ADF (Population shared ADF = False),
caused frequent �uctuations of best �tness during evolution. System could not stabilize
itself and therefore it could not evolve any persistent structure, which would survive for
multiple epochs and allow to reach suitable local minimum. On the other hand setting
several ADF, that can be accessed by every individual in population, brought surprisingly
high stability of best achieved �tness � even in comparison with the GP variant, that did
not use ADF in any form (see lower variance at ADF best results in �gure 3.3).

3.2.6 ADF BPG GP model

This GP variant of previous ADF BPG model had the same best con�guration, for
mutation control, backpropagation algorithm and GP algorithm.
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3.3 Optimal models comparison

To have a better idea about the performance of evolutionary methods based on the num-
ber of involved constants (i.e. the dimensionality of optimization problem), the referential
ANN was trained with approximately the same number of constants, that were involved in
evolutionary models. For the number of components K = 3 and the input dimension n = 8
the investigated ANN had following layers:

• input layer: 8 neurons + 1 bias

• hidden layer: 2 neurons + 1 bias

• output layer: 18 neurons

These settings (picture 2.1) contains exactly 72 constants to tune � the number which was
close to the number of constants involved in evolutionary expression forests. The network
was feedforward with arctangent activation function and was trained by standard backprop-
agation algorithm.

3.3.1 Achieved �tness

ANN GP BPG GP ADF BPG GP
training error -1973.98 -1514.65 -1626.79 -1424.12
validation error -477.61 -360.82 -396.12 -332.39
number of constants 72 46 32 157

GPEFS BPG GPEFS ADF BPG GPEFS
training error -1546.63 -1740.84 -1725.44
validation error -363.09 -423.55 -420.00
number of constants 66 42 87

Table 3.5: Best achieved �tness for best found models on the same training and validation
dataset. Validation dataset had 168 samples. Training dataset had 301 samples.

Inspection of value of error function is one way of deciding how well did the system.
There are several indirect methods how to examine the quality of discovered system. They
are based on checking, whether some random sample belongs to some reference probability
distribution. Reference probability distribution is given as empirical distribution by training
data. Random sample can be generated by found models.
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Figure 3.3: Boxplot diagram shows the best achieved �tness on training set, after 10 trials
for each examined model (lower is better). GPEFS proves to be signi�cantly better in
combination with backpropagation optimization. ADF BPG best results have lower variance
in comparison to BPG, but not achieving better performance. ANN was undoubtedly the
best (even in validation error).

3.3.2 Kolmogorov-Smirnov (KS) test

The Kolmogorov-Smirnov deviation statistic is used to test, whether some sample comes
from given probability distribution. It quanti�es a distance between the empirical distri-
bution function of the sample (validation or training data) and the cumulative distribution
function of the reference distribution (that is desired distribution 1.1). With regard to very
small p-values during the test, it was investigated rather the KS-statistic of the test. In fact,
the KS-statistic can be detected from p-value and vice versa.

Useful details about this test with other methods for activity-based models validation
are in [10].
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training data ANN GP BPG GP ADF BPG GP
dimension I 0.255 0.267 0.333 0.458
dimension II 0.178 0.297 0.214 0.315
dimension III 0.107 0.172 0.196 0.375
dimension IV 0.101 0.309 0.303 0.261

validation data
dimension I 0.189 0.302 0.388 0.558
dimension II 0.205 0.461 0.342 0.325
dimension III 0.069 0.146 0.186 0.375
dimension IV 0.053 0.222 0.169 0.149

training data GPEFS BPG GPEFS ADF BPG GPEFS
dimension I 0.130 0.208 0.250
dimension II 0.178 0.488 0.285
dimension III 0.380 0.291 0.214
dimension IV 0.398 0.380 0.375
validation data GPEFS BPG GPEFS ADF BPG GPEFS
dimension I 0.192 0.335 0.305
dimension II 0.295 0.594 0.395
dimension III 0.292 0.169 0.275
dimension IV 0.255 0.325 0.292

Table 3.6: Statistics of KS-test for every model on training and validation data (lower is
better). Bold values are the best results (ANN is treated separately). It can be seen, that if
one component has the lowest training error, then it has the lowest validation error as well.

3.3.3 χ2 test

This is another alternative for measuring quality of how well we can simulate some
unknown probabilistic distribution. Mathematical principles of this test are similar to the
KS test, in a sense, that this test uses only a di�erent form of expression for calculation
value of statistics. Necessary part of being able to run this test is to discretize data into
histogram bins. Empirical rule recommends to ensure that the number of elements in the
bin with the lowest number of samples, must not be less than 5. This was actually the way,
how was discretization of data samples for χ2 test in this project realized.

Important thing to notice is, that KS and χ2 tests in this implementation do not neces-
sarily preserve partial ordering of their results. This means, that most of the time, KS test
states: A � B and also χ2 test states that: A � B, but there were seen examples, when KS
test stated: A � B, but χ2 test stated: A ≺ B. Therefore it should be considered personally,
whether to choose KS or χ2 test, for emphasizing its results.
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training data ANN GP BPG GP ADF BPG GP
dimension I 52.78 24.05 21.43 273.48
dimension II 7.78 6.56 9.72 43.28
dimension III 1.34 20.66 20.39 81.10
dimension IV 17.47 92.57 74.05 88.72
validation data
dimension I 22.31 177.73 52.93 826.30
dimension II 76.97 552.41 295.23 271.87

dimension III 5.70 40.33 76.46 482.66
dimension IV 17.59 168.67 80.62 87.68

training data GPEFS BPG GPEFS ADF BPG GPEFS
dimension I 12.85 10.78 12.62
dimension II 19.66 6.25 19.66
dimension III 115.70 49.41 36.66
dimension IV 136.55 165.15 187.01
validation data GPEFS BPG GPEFS ADF BPG GPEFS
dimension I 19.44 20.97 68.60
dimension II 269.77 954.07 502.45
dimension III 102.76 55.11 94.21
dimension IV 277.71 395.10 304.70

Table 3.7: Statistics of χ2-test for every model on training and validation data (lower is
better). Bold values are the best results (ANN is treated separately). Note that best results
according to the χ2-test do not necessarily correspond to the KS best results. χ2-test was
used additionally in order to be sure about validity of the output conditional distribution.
As it can be seen, χ2-test is not very useful here. It is probably because of a lack of data
and the reason, that this test is primarily used for investigation of two discrete distributions
� not a conditional continuous distribution (even if is discretized) and discrete sample. In
this situation it should be taken into account more the results of the KS test.

3.4 Visual �tness comparison

Following histograms show the output of found conditional probabilistic distribution D
for student time model together with empirical distribution of corresponding samples from
validation dataset. Histogram bins for generated samples are in transparent colors (or lighter
shades of colors). Histogram bins for validation samples are in opaque colors.

The showed model is exactly the model showed in picture 1.2. Horizontal axis shows
day time hours. Time instants I., II., III., IV. represent, when one activity ends, or another
starts (see explanation in section 1.1).

The more accurately the distribution D models the empirical distribution of validation
samples, the more will their histograms overlap.
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Figure 3.4: There are m = 4 histograms of (m-dimensional) conditional probability distri-
bution D modeled by network with 1 hidden layer with 2 + 1 neurons (see network in �gure
2.1). The generated histograms are in transparent colors. Histograms of validation samples
are in opaque colors. The meaning of time instants I., II., III., IV. is following: I. time when
a student leaves home, II. time when a student arrives at school, III. time when a student
leaves school, IV. time when a student arrives home. For example most of the real world
students leave their homes at 7:30 a.m. � see the peak in the red histogram of real time
instances I.

Figure 3.5: Analogous �gure of conditional distribution D modeled by expression searched
by GPEFS algorithm (with con�guration in table 3.2.2). Note that the histograms do not
overlap as good as the previous ANN histograms.
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3.5 Illustration example of individual

This is exactly the best individual for BPG GPEFS model, which was included in the
�nal comparison. Note, that resultant expressions were not simpli�ed during evolution.

Number of components K = 3, maximal tree detph = 5.

treeα1 = arctan(−0.449004122843+exp(−(0.294651386734+arctan(student+education))2))

treeα2 = exp(−(0.44969788205 + pt_card+ car + sex)2)

treeα3 = sin(exp(−(student+ 0.533099626115)2) + (exp(−(student+ sex)2) ∗ pt_card))

treeσ1 = (arctan(sin(−0.405960165464+exp(−(age+arctan(household+pt_card))2))+
license) + sin(age+−0.551156432354) + (education+−0.912860317665))

treeσ2 = (−2.02386803718 + arctan(age+ license))

treeσ3 = ((student+ education) + sin((((car ∗ student) + age) ∗ student) + household+
(age+ sex)) + pt_card)

treeµ11 = sin(sin(education+arctan(sin(license+household)+education))+sin(exp(−((license∗
education) + education)2) + sin(car + license + sex) + arctan((age + 0.22776210121) +
household)))

treeµ12 = arctan((−0.147147298186 ∗ arctan(exp(−(household + (−0.0122084221538 ∗
student))2) + sex)) +−0.946644834493)

treeµ13 = (sin(exp(−(car + exp(−(pt_card + −0.171649043482 + license + car)2))2) +
sin((car∗car)+age))∗sin(license+education+0.621579954787+−0.722262517369)∗age)

treeµ14 = exp(−((arctan(age+household)+(arctan(education+arctan(−0.18966721874+
0.870534234414)) ∗ education)) + education)2)

treeµ24 = arctan(arctan(arctan(−0.367706154523 + exp(−(license + sex)2)) + (age ∗
pt_card)) + arctan(−0.226583914203 + (age ∗ education ∗ sex)) +−0.680878322007)

treeµ22 = sin((−0.13550907753 + license) + exp(−(−0.055725986992 + arctan(license+
−0.938595921979))2))

treeµ23 = (arctan((−2.10885823058∗exp(−(−0.285331905219+education)2)∗student)+
pt_card) ∗ (exp(−(−0.528141878851 + 0.528133866054)2) ∗ age))

treeµ24 = (exp(−(education+arctan(student+(−0.16822491128+student))+exp(−(pt_card+
−0.345196518147)2))2) ∗ exp(−(−0.992731009344 + student)2))

treeµ31 = sin((arctan(arctan(−0.0114736181175+−0.577176201548)+−0.375443649847)+
education+ (arctan(sin(age+−0.662071180284) +−0.765168490762) ∗ (0.964524381167 +
sex))) + arctan(license+ pt_card))

treeµ32 = exp(−(exp(−(1.06277040388+(pt_card+household))2)+(age∗household))2)

treeµ33 = ((exp(−(household + arctan(household + household))2) + (0.187414758931 +
sex)) +arctan(((student+education) +−0.184415877206) +exp(−(car+arctan(student+
license))2)))

treeµ34 = ((age∗−0.456067798165) + (sin(education+ 1.6691551176) + exp(−(student+
(household ∗ license) + 0.832856713804 + student)2)))
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3.6 Conclusions from the experiments

Interesting observation is, that GP models do not over�t data, or in other words � the GP
system, that has better training error, has better validation error too. This fact de�nitely
does not apply to ANN, where one can have excellent training error, but poor validation
error, caused by over�tting. But none of the GP models did achieve as good training and
validation error as chosen intentionally simple ANN.

Best GP models were models with backpropagation optimization with combination of
GPEFS evaluation logic. I cannot say whether to use ADF or not, because their median
best result was approximately the same. I would personally use simpler BPG GPEFS model
ADF BPG GPEFS, because of the greater simplicity and faster evaluation time. Another
interesting observation is, that using backpropagation optimization without GPEFS gave
very poor results � worse than if it would not be used at all.

Due to apparent results, there are not many doubts in opinion, that ANNs are distinctly
more e�ective at this type of regression task. At the same time ANNs are easier imple-
mentable and can be accelerated on graphical processing unit, which causes up to 1000
times more training speed as in case of GP. There also exists many high quality, very fast
and scalable systems for neural networks, such as Google's TensorFlow or Theano library.
And there is not such a quality counterpart to these libraries for genetic programming.

The fact is, that every task, which can be solved with ANN, is solvable by GP, only after
modi�cation of the range of some controlling parameters, or simply after addition another
function to primitive set. However there are many problems, where the GP gives poor
results, or it takes large amount of time to even achieve the result, which gives simple ANN
after several seconds of training. Unfortunately, this problem was one of them and therefore
this work cannot be considered as something, that revealed a usable alternative to ANN for
probabilistic distribution modeling.
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Chapter 4

Development & Problems

As usual on the Faculty of Electrical Engineering on CTU, bachelor works are developed
from 5th semester started with Software or Research Project course. In its �rst phase I was
given a functional implementation of ANN (programmed by Jan Drchal) for searching of
activity models in transportation. This phase involved mainly the basic skills for solving
machine learning tasks: learning Python programming language, studying ANNs and ma-
chine learning techniques and studying solved problem principles and logic of given ANN
implementation.

After the introductory part, it was clear, that I will not be able to process experiments on
a single computer, therefore I registered to Czech National Grid Organization (Metacentrum)
for an access to grid computing environment. I chose appropriate hyperparameter values
(numbers of neurons in layers) for ANN optimization and ran those tasks in Metacentrum (for
models 1.1). There was naturally several implementation issues, which had to be debugged
(process overusing, memory leaks).

In the second phase I was assigned to study and implement solution through symbolic
regression using evolutionary algorithms. This involved studying of the GP principles and
implementation of a basic solution, which was veri�ed and debugged on a simple regression
task.

During implementation of the Gaussian mixture model for probabilistic distribution mod-
eling, I encountered an unpleasant issue with numerical instability during tree evaluation.
First, there was possibility of reaching zero as an argument of the logarithm; this was solved
by adding small constant 10−20 and thus the value of logarithm could not go to −infinity.
Another numeric issue was the math range error caused by too big exponent in the out-
put sigmoid function. This was solved by reducing input argument of the sigmoid function
proportionally into the interval [−15, 15].

I tried an adaptive power of mutation, which was based on decreasing of a probability of
the new branch introduction, when the best �tness did not improve for many epochs. With
lower new branch mutation probability the system will use more point mutation, which do
not in�uence performance as much and therefore serves for better focusing to local optimum.
Adaptive power of mutation turned out to have zero e�ect on performance.

During the hyperparameter optimization of the �rst GP method I encountered the prob-
lem with a very low e�ect on computational speed up by using a multithread parallelism in
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Python, thus I used parallelism on the multiprocess level. In order to reduce computational
requirements I tried to omit apriori probabilities in 1.1; more precisely to set πi(x) = 1

K for
i = 1..K. But this approach showed noticeably worse results than the full-featured form of
distribution 1.1 without this limitation.

Next phase was focused on the introduction of advanced techniques to increase the prob-
ability of reaching the global optimum. This involved studying of GPEFS conception in [4]
and implementation of the tree distance metrics and niching algorithm (based on provided
java implementation). After GPEFS implementation very similar hyperparameter optimiza-
tion methods was run as in the case of GP. In this phase I also examinated the p-values of
the Kolmogorovov-Smirnov test and the discretized χ2 test for all previous models (ANN,
GP, GPEFS).

Due to apparent worst performances of the GP approach in comparison to ANN approach,
I was recommended to consider using optimization method based on the gradient descent.
This included the basic backpropagation algorithm studying and its modi�cation to its more
general form for tree expression and arbitrary function (I made this implementation on my
own from the course lecture [11]). I debugged my implementation on simple regression tasks
and performed the hyperparameter optimization as in previous cases.

In the GPEFS niching algorithm there is the coe�cient δ for adaptive tree distance
metrics modi�cation, that tries to set real number of species to the target number of species.
In [4] was originally proposed to alter δ by multiplying by 2 or by 1

2 based on current
feedback. This is not very useful in order to achieve more accurate value of δ, because this
oscillates only on two's multiples of initial δ value and thus the system is not likely to do
well in focusing on more suitable value of δ. Therefore I changed multiplication constant 2
to 1.2 and 1

2 to 0.7.

After analyzing a contribution of backpropagation optimization, I spent some time trying
to simulate synthesis of ANN in the form of tree expression, because ANNs still showed
signi�cantly better performance against GP methods. Modeling neuron as a tree expression
is straightforward at �rst sight, as an output of one single neuron in the network can be
modeled as an output of function Rn → R:

output = activation_function(
n∑
i=1

(weighti ∗ input_neuroni))

Which can be perceived as tree expression (lisp notation).

output = ( ac t i va t i on_func t i on
(+ (∗ weight_1 input_neuron_1 )

. . .
(∗ weight_n input_neuron_n ) ) )

But neurons in network are in principle functions Rn → Rm, where m is generally greater
than 1. That causes big implementation issue because the neuron has to have references
on its succesors and thus the whole neural network must be represented as oriented graph.
Over this graph can be naturally applied evolutionary operators which alter its structure [5].
I did not implement this algorithm, because this thing was already deeply studied and I was
redirected by Jan Drchal to Automatically De�ned Functions.
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One of the contribution of ADF is, that they partially allow to employ functions Rn → Rm
(as in neural network) � it is because functions are shared � they have in principle more
than one outputs. The idea of ADF leaves a lot space in their speci�c implementation;
details in 3.2.5. Work�ow activities were similar to previous: studying the idea behind
ADF, implementation plus debug, and �nally hyperparameter optimization.

After �nishing work on ADF, I moved on �nal comparison part. I tried to compare dif-
ferent methods in the way, which would be able to demonstrate, that implemented advanced
techniques really do have the improving e�ect on the performance. Therefore I tried to
emulate the same settings; e.g. the population size during evaluation, the number of repeat
trials, number of epochs was the same.

I encountered a problem with much slower convergence of GPEFS compared to GP. More
precisely GP was achieving signi�cantly better results than GPEFS with multiple target
species, the same total number of individuals and training epochs. Therefore I compared
performance of GP and GPEFS with only 1 target number of species and the same population
size (picture 3.2). The di�erence in performance was quite surprising, which led to retraining
all previously investigated model con�gurations (GP/GPEFS, BPG GP/GPEFS and ADF
BPG GP/GPEFS) with ensuring, that GPEFS will have larger population in order to better
utilize its bene�ts.
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Chapter 5

Conclusion

This work discussed a modeling of the conditional probability distributions of the trans-
portation models. These probaillistic distributions are designed to model real world behavior
and in practice they serve as a tool for real world simulation � especially simulation of the
tra�c infrastructure at given space and time. The more e�ective method for modeling of
these distributions, the bigger amount of time and money it can save from demanding real
world data samples collection.

The goal of this work was to specify optimal conditional probability distributions that
belong to agent based transportation models. This task led to usage of two approaches:
mixture density networks and genetic programming. I examined properties of these two
paradigms, computed optimal probability models for every given instance of transportation
model and compared properties of those two approaches. As the genetic programming o�ered
more space for experimenting with combination of its advanced techniques, I spent most of
the time by their examination and implementation. For this purpose I implemented a GP
optimization toolbox, where I run all my experiments. The total CPU time that took my
experiments was 400 CPU days.

It turned out that mixture density networks are more e�ective approach for solved prob-
lems. It was also more comfortable to work with in terms of lower control parameters and
faster training process.

Mentioned GP toolbox is also useful for symbolic regression task. It supports every
described feature in this report and thus one can use it for own experiment, besides that the
code analysis can o�er a deeper comprehension of used methods.

Whether to continue in investigation of this problem, I am convinced, that in the problem
scale which I was experimenting in, there can not be achieved much better results than I
showed.
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Appendix A

CD contents

The most useful item, which is provided on CD, is prepared GP/GPEFS optimization
toolbox. It manages to solve regression tasks of training data points, given by list of vectors
x and list of target values t. Regression can be made with respect to error function 1.4, or
to much simpler mean square error function, which is due to its simplicity and universality
very frequently used error function in machine learning regression.

Toolbox source code is written in the popular Python language and does not require any
commercial libraries. Program utilization is very easy; it only requires to de�ne training
data and control parameters. This is demonstrated in demo.py module.

CD also contains LaTeX source �le of this text report.

There are also provided serialized python objects of optimized �nal models for GP,
GPEFS, BPG GP, BPG GPEFS, ADF BPG GP, ADF BPG GPEFS. Purpose of these
�les is, that one may run a python debugger upon these serialized objects and study their
structure, in order to better comprehend its inner logic. Then it would be easier to modify
it with details of personal use.
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