

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Bachelor’s Project

X3D / X3DOM export plug-in for Autodesk Maya

Daniya Unembayeva

Supervisor: Ing. David Sedláček, Ph.D.

Study Programme: Softwarové technologie a management, Bakalářský

Field of Study: Web a multimedia

January 10, 2017

iv

v

Aknowledgements
I take this opportunity to express gratitude to Ing. David Sedláček, my supervisor, for his
help and valuable guidance. I also thank my family for their support and attention.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on January 10, 2017 .

viii

Abstract

The purpose of this bachelor’s thesis is to create an X3D/X3DOM plug-in for Autodesk
Maya. Basic objects will be exported to X3D/X3DOM by using corresponding nodes, more
complex objects – by using a specific tags. Also there will be an opportunity to export
not only a single object, but the whole scene, including lights, cameras, animation and
information about the materials and textures. The plug-in will also allow to define the
needed precision of numeric values written in the nodes’ fields.

Key words
export plug-in, X3D, X3DOM

Abstrakt

Předmětem této bakalářské práce je vytvoření exportního modulu pro Autodesk Maya do for-
mátu X3D/X3DOM. Základní objekty budou exportovány do X3D/X3DOM pomocí odpoví-
dajících uzlů, složitější objekty - pomocí specifické značky. Také bude umožněno exportovat
nejen jeden objekt, ale i celou scénu, včetně světel, kamer, animace a informace o materiálů a
texturách. Exportní modul také umožní zadefinovat potřebnou numerickou přesnost hodnot
napsaných do polí uzlů.

Klíčová slova
exportní modul, X3D, X3DOM

ix

x

Contents

1 Introduction 1
1.1 Organization of the Thesis . 2

2 Theoretical Background 3
2.1 Autodesk Maya . 3

2.1.1 Maya system . 4
2.1.2 Dependency graph . 5
2.1.3 Directed acyclic graph . 5
2.1.4 Nodes . 6
2.1.5 Maya’s export plug-ins . 6

2.1.5.1 OBJ export plug-in . 8
2.1.5.2 VRML export plug-in . 8

2.2 X3D/X3DOM . 9
2.3 X3D . 15

2.3.1 X3D Node . 15
2.3.2 Grouping and a hierarchical scene . 15
2.3.3 Geometry components . 17
2.3.4 Appearance . 21
2.3.5 Viewpoint . 24
2.3.6 Light . 28
2.3.7 Animation . 28

2.4 Mapping Maya nodes to X3D nodes . 34

3 Design 37
3.1 Plug-in’s software architecture . 37
3.2 Graphical user interface . 37

4 Implementation 41
4.1 General information . 41

4.1.1 exporter2015Cmd.cpp . 41
4.1.1.1 x3dExporter class . 41

4.1.2 exportOptions.mel . 41
4.1.3 SceneStructureNode class . 42
4.1.4 SceneStructure class . 42
4.1.5 x3dUtil class . 42

xi

xii CONTENTS

4.2 Querying attributes . 42
4.3 Choosing between primitive geometry tag and IndexedFaceSet 42
4.4 Precision . 44
4.5 Animation . 44
4.6 Lights . 45

5 Testing 47
5.1 Stability tests . 47

5.1.1 Shapes . 47
5.1.2 Appearance . 47
5.1.3 Lights . 54
5.1.4 Cameras . 57
5.1.5 Hierarchical scene . 61
5.1.6 Animation . 61

5.2 Usability tests . 65

6 Conclusion 69
6.0.1 Future work . 69

Bibliography 71

A Attached files 73

B Installing the plug-in 75

C Tasks for the usability testing 77

D Other references 79

List of Figures

2.1 A 3D scene modelled in Maya [10]. 3
2.2 Maya system [9]. 4
2.3 An example of the DG network. 5
2.4 A data block. 6
2.5 The change of the node’s attribute’s flag [11]. 7
2.6 The Maya’s OBJ export plug-in’s GUI. 8
2.7 The Maya’s VRML export plug-in’s GUI. 9
2.8 The Maya’s VRML export plug-in’s GUI - Animation options. 10
2.9 The Maya’s VRML export plug-in’s GUI - Export Options. 11
2.10 The Maya’s VRML export plug-in’s GUI - Texture options. 12
2.11 The Maya’s VRML export plug-in’s GUI - vrml2 Options. 13
2.12 The scene hierarchy shown in Maya’s Hypergraph editor. 16
2.13 Maya’s Backface Culling illustration. 18
2.14 Values for the parallelepiped’s size. 19
2.15 The Sphere node [5]. 19
2.16 The Cone node [5]. 20
2.17 The Cylinder node [5]. 20
2.18 Material in Maya. 22
2.19 Material’s attributes 1. 23
2.20 Material’s attributes 2. 24
2.21 Texture file’s data . 25
2.22 Material’s attributes 2. 26
2.23 Camera information. 27
2.24 Directional light illustration [6]. 28
2.25 Directional light in Maya 1. 29
2.26 Directional light in Maya 2. 30
2.27 Point light illustration [6]. 31
2.28 The SpotLight node [5]. 32
2.29 The animation frames. 33
2.30 The values for the keyValue field shown in Maya. 34

3.1 Plug-in class diagram . 38
3.2 The GUI of the plug-in. 39

4.1 The polyCube generator in Maya. 43

xiii

xiv LIST OF FIGURES

5.1 The basic and complex shapes to be exported in Maya. 48
5.2 The basic and complex shapes’ export results in X3D and X3DOM. 49
5.3 The modified cone to be exported in Maya. 50
5.4 The modified basic shape’s export results in X3D and X3DOM. 51
5.5 A scene with textured objects and a transparent object for appearance testing. 52
5.6 The appearance test’s results in X3D and X3DOM. 53
5.7 A scene with directional light. 54
5.8 The directional light test’s result in X3D and X3DOM. 55
5.9 The scene with a point light in Maya. 56
5.10 The point light test’s result in X3D and X3DOM. 57
5.11 The scene with a spot light to be tested in Maya. 58
5.12 The spot light test’s result in X3D and X3DOM. 59
5.13 The spot light test’s result in X3D and X3DOM. 60
5.14 The scene which will be exported to X3DOM. 61
5.15 The scene with an added custom camera to be exported to X3D. 62
5.16 Switching viewpoints in Instant Player. 63
5.17 The exported objects from the custom camera’s viewpoint. 64
5.18 The hierarchical scene for the export to X3D/X3DOM. 65
5.19 The exported hierarchical scene in X3D and X3DOM. 66
5.20 The animated scene in Maya. 66

List of Tables

2.1 Mapping Maya nodes to X3D nodes . 35

6.1 X3D implemented components. 69

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Technological progress had a big effect on every human’s life all around the world. Nowadays
development in field of Computer Science reached such level that almost every day activity
is in a some way or another connected with using the gifts of Computer Science. Good
example of how Computer Science is integrating within human life is Computer Graphics.
Advancement in field of Computer Graphics had a big impact on quality of every industry
that is somehow connected with delivering visual experience. The most obvious demonstra-
tion of it will be the difference in quality of products in area of filming industry 20 years ago
and in present times.

With internet spreading across the world and connection speed increasement Computer
Graphics are becoming important part of multimedia web experience. Firstly as static 2D
images, gif and flash animations rapidly developed into full 3D experience on the web. Rise
of WebGL and HTML5 Canvas technologies led to better performance of 3D graphics for
the web. However, due to the differences between notations of common 3D graphics’ formats
and xHTML notation there isn’t much space for interactivity apart from simply embedding
3D graphics on the web page.

Fortunately there are 3D formats that are more native for the web. X3D 2.2 that is
successor to VRML is a perfect example of 3D format that is web oriented because of it
XML-like notation.

The goal of this bachelor’s thesis is to create a plug-in for a popular 3D modeling soft-
ware package Autodesk Maya 2.1 that will allow exporting graphical data created in this
modeling software to X3D format for the later use on the web. Also considering the fact
that modern browsers do not natively support X3D standard and the only implementation
of X3D standard for web at this moment is .js library X3DOM, this plug-in will be capable
of exporting graphical data directly to web file. This file will contain X3D data and plugged
X3DOM library which will allow to immediately observe the result.

The link to the web page that contains information about this project can be found in
Appendix D.

1

2 CHAPTER 1. INTRODUCTION

1.1 Organization of the Thesis

Chapter 2 contains the necessary theoretical background for a better understanding of Au-
todesk Maya software, X3D standard and X3DOM.

In Chapter 3 I describe design of plug-in software architecture as well as the design of
export window for Autodesk Maya.

Chapter 4 is related to specific software solutions that were created during implementa-
tion process.

Chapter 5 is a showcase of the main capabilities of the plug-in. This chapter is made in
form of functional and usability testing.

Finally Chapter 6 will conclude the achievements of the project and what the future work
can be.

Chapter 2

Theoretical Background

2.1 Autodesk Maya

Autodesk Maya (shortened to Maya) is among most used software packages for making 3D
graphics. Maya toolkit allows creating 3D models, texturing, animating objects, rendering
video sequences, building bone structures for animation purposes. Single instance of work
session in Maya’s virtual workspace called Scene. There are various formats in which Maya
Scene could be converted depending on the needs of every particular case. The Figure 2.1
illustrates a scene that was modelled in Autodesk Maya.

’’

Figure 2.1: A 3D scene modelled in Maya [10].

Customization is one of the most remarkable feature of this 3D modeling software pack-
age. You can modify Maya in 4 ways: using

• MEL (Maya Embedded Language)

• Python

3

4 CHAPTER 2. THEORETICAL BACKGROUND

• Maya Python API

• C++ API

MEL is used for creating, editing, deleting Maya’s GUI elements and for customizing
Maya’s changes per project. Python is good at providing an interface to the Maya commands.
The Maya Python API allows writing scripts using the Python language. The Maya C++
API provides internal access to Maya and is used for implementing plug-ins and console
applications to work with Maya. Plug-ins can be built in two ways: using Maya Python API
or using Maya C++ API. In the first case the plug-in will be loaded to Maya as a script. So
for my project I chose the Maya C++ API as I am going to do export a scene to an external
file.

2.1.1 Maya system

According to David A. D. Gould [9] the Maya system is divided into three main parts (see
Figure 2.2). While working in Maya user interacts with Maya GUI. But on the background
all the user-to-software interactions are being executed by MEL commands. Before being
executed these commands are sent to the Command Engine where they are interpreted and
only then can be executed. Most of the MEL commands operate on Dependency Graph
(DG). It defines data, data’s structure in the scene and the data processing method.

Figure 2.2: Maya system [9].

2.1. AUTODESK MAYA 5

2.1.2 Dependency graph

Maya’s core was implemented according to the data flow paradigm that represents applica-
tions as a directed graph with a set of nodes. The core is incarnated in the Dependency
graph which represents the collection of nodes. The data and the operations are trans-
ferred through the connected attributes. The connection between the nodes is represented
in Maya’s Hypergraph window. Every task is completed by connecting nodes. The data from
the first node is passed to the input of the next node then processed and sent to following.
So the data are passed from the first to the last node in the nodes‘ network. Every node is
meant to do specific operation. In case of the need to perform any complex modifications
Maya will create a network consisting of other simple nodes.

The DG in Maya describes the whole scene, which may include not only the models
themselves but the textures, lights and animation as well as a network of the connected
nodes (see Figure 2.3). This network may be cyclic.

Figure 2.3: An example of the DG network.

2.1.3 Directed acyclic graph

Whenever a user wants to give a logical structure to some nodes, he is faced with the
problem of defining a parent-child relationship between some objects. As the name implies,
the connections of the DAG’s elements, unlike the Dependency graph’s nodes, cannot be
cyclic and always represent the specific type of the relationship that is solving this issue.

Node in DAG cannot be both a parent and a child of itself. The DAG nodes extends
functionality of DG nodes.

6 CHAPTER 2. THEORETICAL BACKGROUND

Maya Hypergraph can show the nodes either in their DAG „top-down“ hierarchical form
(Scene Hierarchy) or as the Dependency graph nodes (Input and Output Connections).

DAG has a tree structure so that each DAG node is a leaf of the tree. [9] DAG paths
are usually used in order to reference another node. A DAG path is a precise description of
how to get to the node from the root by traversing down through the tree’s nodes.

2.1.4 Nodes

Every node is set of inputs and outputs that depends on the outputs from the previous node
in a chain and has attributes, plugs, data blocks, and data handlers.

An attribute of a node is a certain area containing specific information. Each attribute
has a name, a structure (simple, array, compound, compound array), properties and a type
of data being stored. It allows to define parent-child relationship as well.

A plug is pointer to an attribute on a specific node. The purpose of plugs is to allow a
user query or set a value, create, remove or query a connection. In Maya C++ API there is
a special class for this called MPlug.

A data block (see Figure 2.4) is a storage for the data for the attributes and plugs being
received or sent by the node. A data handler is a smart pointer into the data stored in the
datablock. The validity of a data block lasts only during the compute method.

’’

Figure 2.4: A data block.

Nodes also have the compute function which is not displayed on the screen. It takes one
or several attributes as inputs and computes one or several outputs.

In case of changing an attribute the DG will calculate the new data only when it needs
to do this. This is being done by marking with a dirty flag node’s inputs and outputs. If an
input value is changed, the dependent outputs and the connections to these outputs will be
marked dirty. This process recurs till the time when the end of the DG is reached. However
nothing is recalculated until Maya sends a request for it. Then Maya checks if a node’s
output is dirty. In this case Maya tells the node to get itself evaluated. After processing
this the node detects some of its outputs to be dirty and asks any connected input node to
re-evaluate. The loop will continue until the inputs and outputs are marked as „clean“ (see
Figure 2.5). [11] These statuses are stored in a node’s data block.

2.1.5 Maya’s export plug-ins

Before looking into process of implementing X3D export plug-in we should take a look at
some existing Maya’s export plug-ins. Here I will make a comparative analysis of OBJ and

2.1. AUTODESK MAYA 7

’’

Figure 2.5: The change of the node’s attribute’s flag [11].

8 CHAPTER 2. THEORETICAL BACKGROUND

VRML export plug-ins. They were chosen for a comparison because of their functionality
which is similar to X3D/X3DOM export plug-in implementation.

2.1.5.1 OBJ export plug-in

OBJ files are text-based and support polygonal geometry. In contrast with VRML and
X3D/X3DOM OBJ doesn’t use tree-hierarchy. Obj files contains information about vertices,
texture coordinates, vertex’s normals and polygonal faces.[2] All the vertices are specified
in lines starting with the letter v, texture coordinates - in lines starting with vt and the
lines starting with vn specify the normals. Lines starting with f contain information about
the each polygonal face. Figure 2.6 illustrates the GUI of the Maya’s OBJ export plug-in.
Export options can be chosen in the File Type Specific Options submenu. The default value
for each of the item is switched to On.

’’

Figure 2.6: The Maya’s OBJ export plug-in’s GUI.

2.1.5.2 VRML export plug-in

VRML (Virtual Reality Modeling Language) is a standard and file format that is used
for interactive representation of 3D vector graphics. [3] Apart from specifying 3D models,
materials, textures, sounds and lighting it is also possible to add user interactivity and
animations with the use of event handling semantics. The GUI of the Maya’s VRML export
plug-in is demonstrated on Figure 2.7 - it consists of fours submenus where a user can specify:

• animation options (see Figure 2.8) such as the start and end, the number of frames
per second, what do you want to animate, if you want the animation to be looped;

• export options (see Figure 2.9) - for example, define hierarchy, tessellation, if all the
objects should be exported or only picked or active ones, if the cameras and lights
should be exported as well;

2.2. X3D/X3DOM 9

• texture options (see Figure 2.10) - texture size and max size ;

• vrml2 options (see Figure 2.11) - the chosen kind of navigation, its speed, precision,
texture path, it also allows to define a path to the script which should be runned after
this.

’’

Figure 2.7: The Maya’s VRML export plug-in’s GUI.

2.2 X3D/X3DOM

X3D (Extensible 3D Graphics) is a royalty-free open standard XML-like file format and run-
time architecture for representation of 3D scenes and objects using XML. [5] It is the successor
to VRML (the Virtual-reality modeling language) which is the standard for transmitting 3D
content across a network environment. [8]

X3DOM is an open source JavaScript framework used for creating 3D scenes and objects
in Web pages. [7] It is based on browser technology so there is no need in external plug-ins to
display X3DOM scenes in contradistinction to pure X3D – displaying a X3D scene requires
a special browser or player such as BS Contact or Instant Reality.

10 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.8: The Maya’s VRML export plug-in’s GUI - Animation options.

2.2. X3D/X3DOM 11

’’

Figure 2.9: The Maya’s VRML export plug-in’s GUI - Export Options.

12 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.10: The Maya’s VRML export plug-in’s GUI - Texture options.

2.2. X3D/X3DOM 13

’’

Figure 2.11: The Maya’s VRML export plug-in’s GUI - vrml2 Options.

14 CHAPTER 2. THEORETICAL BACKGROUND

Listing 2.1: Example of an X3D scene consisting of a cube

<?xml version=" 1 .0 " encoding="UTF−8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD␣X3D␣ 3.0//EN" " ht tp : //www.

web3d . org / s p e c i f i c a t i o n s /x3d−3.0 . dtd">
<X3D version=’ 3 .0 ’ p r o f i l e=’ Interchange ’>
<Scene DEF=’ scene ’>
<Group>
<Viewpoint DEF=’ persp ’ d e s c r i p t i o n=’ persp ’ p o s i t i o n=’ 28 .0 ␣ 21 .0 ␣

28 .0 ’ f i e ldOfView=’ 54 .43 ’ />
<Viewpoint DEF=’ top ’ d e s c r i p t i o n=’ top ’ p o s i t i o n=’ 0 .0 ␣ 100 .1 ␣ 0 .0 ’

f i e ldOfView=’ 54 .43 ’ />
<Viewpoint DEF=’ f r on t ’ d e s c r i p t i o n=’ f r on t ’ p o s i t i o n=’ 0 .0 ␣ 0 .0 ␣

100 .1 ’ f i e ldOfView=’ 54 .43 ’ />
<Viewpoint DEF=’ s i d e ’ d e s c r i p t i o n=’ s i d e ’ p o s i t i o n=’ 100 .1 ␣ 0 .0 ␣

0 .0 ’ f i e ldOfView=’ 54 .43 ’ />
<Transform DEF=’pCube1 ’ t r a n s l a t i o n =’ 0 .0 ␣ 0 .0 ␣ 0 .0 ’ >
<Shape>
<Appearance>
<Mater ia l DEF=’ lambert1 ’ d i f f u s eCo l o r=’ 0 .5 ␣ 0 .5 ␣ 0 .5 ’

t ransparency=’ 0 .0 ’ ambient Intens i ty=’ 0 .0 ’ />
</Appearance>
<Box s i z e=’ 4 .5 ␣ 3 .9 ␣ 5 .0 ␣ ’ />

</Shape>
</Transform>

</Group>
</Scene>

</X3D>

Listing 2.2: Example of an X3DOM scene consisting of a cube

<html>
<head>
<t i t l e> A cube </ t i t l e>
<s c r i p t type=’ text / j a v a s c r i p t ’ s r c=’ h t tp : //www. x3dom . org /

download/x3dom . j s ’>
</ s c r i p t>

<l i n k r e l=’ s t y l e s h e e t ’ type=’ t ext / c s s ’ h r e f=’ h t tp : //www. x3dom .
org /download/x3dom . c s s ’>

</ l i n k>
</head>
<body>
<h1> A cube </h1>
<x3d width=’ 600px ’ he ight=’ 400px ’ >
<scene>
<shape>
<appearance>

2.3. X3D 15

<mate r i a l id=" co l o r " d i f f u s eCo l o r=’ 1␣0␣0 ’>
</mate r i a l>

</appearance>
<box></box>

</shape>
</ scene>

</x3d>
</body>

</html>

2.3 X3D

2.3.1 X3D Node

X3DNode is main building block of X3D scene and abstract structure that is extended by
every X3D component. Main X3D components are:

• Grouping components

• Geometry components

• Appearance component

• Viewpoint component

• Light components

• Sensors

• Routes

2.3.2 Grouping and a hierarchical scene

Grouping is widely used for easier manipulation over collection of nodes. In X3D there are
several grouping nodes:

• Anchor

• Billboard

• Collision

• Group

• LOD

• Switch

• Transform

16 CHAPTER 2. THEORETICAL BACKGROUND

The scene hierarchy is a hierarchy consisting of nodes that are laid out in the tree-like
structure representing parent-child connections between the nodes. X3D scene structure is
very similar to Maya scene structure. Figure 2.12 illustrates both of them: the pyramid and
the pipe are grouped while the pyramid is the parent of several objects.

’’

Figure 2.12: The scene hierarchy shown in Maya’s Hypergraph editor.

By making node a child of another node, user establishes the Parent-Child Hierarchy.
Then when a user, for example, moves the parent object, the child moves with its parent
so its position towards the parent object doesn’t change. In X3D this relationship can be
represented by putting the child node into the Transform node of the parent.

Grouping is used for creating a parent transformation node for collection of objects as
well as for graphically arranging nodes in scene. For instance: there is a scene consisting of
separate models that together represent a car. Each model is a part of the car: a carcass,
wheels, headlights, interior. Grouping in this particular example allows a user to apply
transformations (translation, scale, rotation) for collection of models as if it was a single
object.

2.3. X3D 17

2.3.3 Geometry components

In X3D all the 3D models are defined with Shape nodes. Shape node should be included
under Transform node which is used for translation, rotation and scale. Additionally all
shape nodes have to be placed under grouping node called Scene. (see Listing 2.3).

The Shape node always consists of a geometry node and can also include an Appearance
node.

Listing 2.3: A Shape node example
<Scene DEF=’ scene ’>
<Group>
<Transform>
<Shape>
<Appearance>
<Mater ia l DEF=’ lambert1 ’ d i f f u s eCo l o r=’ 0 .5 ␣ 0 .5 ␣ 0 .5 ’ />

</Appearance>
<Box/>

</Shape>
</Transform>

</Group>
</Scene>

The geometry node can be represented by a specific node corresponding to primitive
object geometry (Cube,Cylinder e.t.c) or by the <IndexedFaceSet> tag. All these shapes
have one common feature – SFBool [] solid field that returns FALSE if the object should
two-sided rendering. This field refers to Maya’s shape attribute Backface Culling (see Figure
2.13). Turning it ‘full’ or ‘off’ sets solid to TRUE or FALSE respectively.

For Box tag is used for displaying a cube (see Listing 2.4). This node belongs to the
self-closing nodes and includes the three-dimensional vector for the object’s width, height
and depth. Corresponding values for those fields can be found in Maya’s Attribute Editor
(see Figure 2.14).

Listing 2.4: A Box node example
<Shape>

<Box s i z e=’ 5␣2␣3 ’ />
</Shape>

Spherical shaped objects are represented by the Sphere tag. It is a self-closing tag too
and also contains the information about the radius of the sphere. The Figure 2.15 illustrates
the Sphere node.

The geometrical figures of the conical shape are displayed by the self-closing Cone tag
with the predetermined bottom radius of the cone’s base and the height from the base to
the apex. Their default values are set to 1.0 and 2.0 respectively. The Figure 2.16 illustrates
the Cone node.

The Cylinder node (see Figure 2.17) specifies a cylinder. The tag includes the radius and
the height fields. Besides the node has three SFBool fields that determine if the cylinder’s
side, top and bottom parts exist. In this case these fields’ values are set to TRUE.

18 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.13: Maya’s Backface Culling illustration.

2.3. X3D 19

’’

Figure 2.14: Values for the parallelepiped’s size.

’’

Figure 2.15: The Sphere node [5].

20 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.16: The Cone node [5].

’’

Figure 2.17: The Cylinder node [5].

2.3. X3D 21

There is another node describing the shape of an object - IndexedFaceSet. There are two
cases when it is being used. One of them is when a user is creating an object with a complex
shape that cannot be described by the basic shapes’ nodes. The second one is when the
basic shape was changed after the object had been created, e.g. one vertex was moved. The
purpose of this tag is to construct faces using the vertices from the Coordinate node in a
specific order defined in the coordIndex field. As can be seen in Listing 2.5, the coordIndex
field as well as the texCoordIndex field always consists of the indices and “-1”. This “-1” is
used to show the end of the face.

The TextureCoordinate node specifies the coordinates of the texture applied on the ob-
ject’s surface.

Listing 2.5: A IndexedFaceSet node example
<IndexedFaceSet DEF=’ pCubeShape1 ’ texCoordIndex=’ 0␣1␣3␣2␣−1␣2␣3␣5␣

4␣−1␣4␣5␣7␣6␣−1␣6␣7␣9␣8␣−1␣1␣10␣11␣3␣−1␣12␣0␣2␣13␣−1 ’
coordIndex=’ 0␣1␣3␣2␣0␣−1␣2␣3␣5␣4␣0␣−1␣4␣5␣7␣6␣0␣−1␣6␣7␣1␣0␣0␣−1␣1

␣7␣5␣3␣0␣−1␣6␣0␣2␣4␣0␣−1 ’>
<Coordinate DEF=’ pCubeShape1Points ’ po int=’ −2.500␣−2.500␣ 2 .500 ␣

2 .500 ␣−2.500␣ 2 .500 ␣−2.500␣ 2 .500 ␣ 2 .500 ␣ 2 .500 ␣ 2 .500 ␣ 2 .500 ␣−2.500
␣ 2 .500 ␣−2.500␣ 2 .500 ␣ 2 .500 ␣−2.500␣−2.500␣−2.500␣−2.500␣ 2 .500 ␣
−2.500␣−2.500 ’ />

<TextureCoordinate po int=’ 0 .375 ␣ 0 .0000 .625 ␣ 0 .0000 .375 ␣ 0 .2500 .625 ␣
0 .2500 .375 ␣ 0 .5000 .625 ␣ 0 .5000 .375 ␣ 0 .7500 .625 ␣ 0 .7500 .375 ␣
1 .0000 .625 ␣ 1 .0000 .875 ␣ 0 .0000 .875 ␣ 0 .2500 .125 ␣ 0 .0000 .125 ␣ 0 .250 ’ /
>

</ IndexedFaceSet>

2.3.4 Appearance

The visual properties of the object such as material (see Listing 2.6) or texture (see Listing
2.7) are described by the Appearance node located inside the Shape tag.

Listing 2.6: A Material node example
<Appearance>
<Mater ia l DEF=’ lambert1 ’ d i f f u s eCo l o r=’ 0 .5 ␣ 0 .5 ␣ 0 .5 ’ t ransparency=

’ 0 .7 ’ ambient Intens i ty=’ 0 .3 ’ />
</Appearance>

Listing 2.7: A Texture node example
<Appearance>
<ImageTexture DEF=’ f i l e 1 ’ u r l=’ "C:/sun .PNG" ’ />
<Mater ia l d i f f u s eCo l o r=’ 0 .5 ␣ 0 .5 ␣ 0 .5 ’ specu la rCo lo r=’ 0 .4 ␣ 0 .4 ␣ 0 .4 ’ /

>
</Appearance>

22 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.18: Material in Maya.

2.3. X3D 23

’’

Figure 2.19: Material’s attributes 1.

24 CHAPTER 2. THEORETICAL BACKGROUND

Name of the material is taken from the field Surface material. The field diffuseColor of
the Material node takes in the values from the Maya’s Color field inside the material (in
this example - lambert1) tab (see Figure 2.19).

In order to make the object’s appearance correspond to the reality as much as possible, the
Material node should contain the following attributes: ambientIntensity, transparency.The
values for these fields are taken from the Maya’s material (in this example - lambert1) tab
(see Figure 2.20).

’’

Figure 2.20: Material’s attributes 2.

In the second case when a texture is applied to the object’s surface the data needed for
specifying the ImageTexture node are taken from the Maya’s file (in this example – file1)
tab (see Figure 2.21). Figure 2.22 illustrates how this tab can be reached.

2.3.5 Viewpoint

Maya’s cameras corresponds to the Viewpoint nodes. These nodes used to define users view
on a scene. Important attributes of the node are the description, the fieldOfView, orientation
and the position. The orientation attribute describes viewpoint’s eye vector. The position
attribute describes viewpoint’s location. (see Figure 2.23). Listing 2.8 demonstrates the
default cameras and the specified camera1.

2.3. X3D 25

’’

Figure 2.21: Texture file’s data

26 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.22: Material’s attributes 2.

2.3. X3D 27

’’

Figure 2.23: Camera information.

28 CHAPTER 2. THEORETICAL BACKGROUND

Listing 2.8: A Viewpoint node example
<Viewpoint DEF=’ persp ’ d e s c r i p t i o n=’ persp ’ p o s i t i o n=’ 28 .000 ␣ 21 .000

␣ 28 .000 ’ f i e ldOfView=’ 54 .43 ’ />
<Viewpoint DEF=’ top ’ d e s c r i p t i o n=’ top ’ p o s i t i o n=’ 0 .000 ␣ 100.100 ␣

0 .000 ’ f i e ldOfView=’ 54 .43 ’ />
<Viewpoint DEF=’ f r on t ’ d e s c r i p t i o n=’ f r on t ’ p o s i t i o n=’ 0 .000 ␣ 0 .000 ␣

100.100 ’ f i e ldOfView=’ 54 .43 ’ />
<Viewpoint DEF=’ s i d e ’ d e s c r i p t i o n=’ s i d e ’ p o s i t i o n=’ 100.100 ␣ 0 .000 ␣

0 .000 ’ f i e ldOfView=’ 54 .43 ’ />
<Viewpoint DEF=’ camera1 ’ d e s c r i p t i o n=’ camera1 ’ p o s i t i o n=’ 0 .000 ␣

8 .847 ␣ 12 .133 ’ f i e ldOfView=’ 54 .43 ’ />

2.3.6 Light

X3D Light components represent light sources.
The DirectionalLight node represents the parallel rays of light going in the same direction

(see Figure 2.24).

’’

Figure 2.24: Directional light illustration [6].

The node’s important fields are color, direction and intensity. The values for the color
and intensity fields can be accessed from the light’s shape in Maya (see Figure 2.25). The
direction of the light corresponds to the rotation of the light in Maya’s light’s transform tab
(in this example – directionalLight1 tab). This is demonstrated on the Figure 2.26.

The PointLight node represents the light source of the point shape. As can be seen in
Figure 2.27, the rays go in all directions.

The color , the radius and the intensity fields take in data from the corresponding fields
of Maya’s light’s shape tab. The values for the location field can be found in the Maya’s
light’s transform tab.

The SpotLight node consists of several fields (see Figure 2.28) including the beamWidth,
color, cutOffAngle, direction, intensity, location and radius fields. The values for them can
be found either in Maya’s Attribute Editor or can be calculated with the help of the other
fields.

2.3.7 Animation

In X3D object’s changes in animation scope are described by three components :

2.3. X3D 29

’’

Figure 2.25: Directional light in Maya 1.

30 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.26: Directional light in Maya 2.

2.3. X3D 31

’’

Figure 2.27: Point light illustration [6].

32 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.28: The SpotLight node [5].

2.3. X3D 33

• Sensors

• Interpolators

• Routes

TimeSensor node is used as a timer for animation in X3D. It has such attributes as
cycleInterval and loop fields. CycleInterval defines length of animation in milliseconds.
Attribute loop indicates whenever animation should run infinitely or only once. TimeSensor
also generates events as time passes, those events then used for iteration over Interpolators’
values

OrientationInterpolator and PositionInterpolator nodes are holding values of object’s
changes according their position on a timeline. The first one is being used when a user wants
to show the rotation of the object. The second node represent scaling and translation.

The interpolator’s attributes are key, keyValue. The field key corresponds to the Maya’s
animation frames (see Figure 2.29) and the keyValue field takes in an array of rotation, scale
or translation values of the object in the current frame (see Figure 2.30).

’’

Figure 2.29: The animation frames.

ROUTE components (illustrated in Listing 2.9) provide connection between inputs and
outputs of the TimeSensor, Interpolator and Transform components.

Listing 2.9: Animation of scaling in X3D example
<Group>
<Transform DEF=’ BallTransform ’>
<Shape>
<Sphere />

</Shape>
</Transform>
<TimeSensor DEF=’CLOCK’ c y c l e I n t e r v a l=’ 2 . 0 ’ loop=’ t rue ’ />
<Po s i t i o n I n t e r p o l a t o r DEF=’BALLSIZE ’ key=’ 0 .0 ␣ 0 .2 ␣ 0 .65 ␣ 1 .0 ’

keyValue=’ 1 .0 ␣ 1 .0 ␣ 1 .0 ␣ 1 .5 ␣ 1 .5 ␣ 1 .5 ␣ 1 .1 ␣ 1 .1 ␣ 1 .1 ␣ 1 .0 ␣ 1 .0 ␣ 1 .0 ’ />

34 CHAPTER 2. THEORETICAL BACKGROUND

’’

Figure 2.30: The values for the keyValue field shown in Maya.

</Group>
<ROUTE fromFie ld=’ value_changed ’ fromNode=’BALLSIZE ’ t oF i e l d=’

s e t_sca l e ’ toNode=’ Bal lTransform ’ />
<ROUTE fromFie ld=’ fract ion_changed ’ fromNode=’CLOCK’ toF i e l d=’

s e t_ f r a c t i on ’ toNode=’BALLSIZE ’ />

2.4 Mapping Maya nodes to X3D nodes

Despite of the high variety of Maya nodes almost all of them can be described in X3D
notation. Most of the Maya and X3D nodes differ in attributes but semantically serve the
same purpose. The following table 2.1 demonstrates how an element represented in Maya
can be mapped to X3D, where the last column named "+/-" means whether the node or the
attribute can be accessed directly in Maya to be mapped to X3D or not.

2.4. MAPPING MAYA NODES TO X3D NODES 35

Category Element Maya X3D +/-+/-+/-
Shape [2.3.3] Cube polyCube Box +
Shape [2.3.3] Sphere polySphere Sphere +
Shape [2.3.3] Cone polyCone Cone +
Shape [2.3.3] Cylinder polyCylinder Cylinder +
Attribute Size height/width/depth size +
Attribute Radius Radius radius +
Attribute Height Height height +
Attribute Bottom radius Radius bottomRadius +

Shape [2.3.3] Other shapes Another shape node IndexedFaceSet +
Attribute Texture Coord indices UV index texCoordIndex +
Attribute Coordinate indices vertex index coordIndex +
Attribute Coordinates vertex position Coordinate point +
Attribute Texture coordinates UV coordinate TextureCoordinate +
Attribute Crease angle Crease angle creaseAngle -

Appearance [2.3.4] Material initialShadingGroup Material +
Attribute Definition Surface material DEF +
Attribute Color Color diffuseColor +
Attribute Transparency Transparency transparency +
Attribute Ambient color Ambient color ambientIntensity +

Camera [2.3.5] Camera Camera Viewpoint +
Attribute Definition tranform DEF +
Attribute Description tranform description +
Attribute Position Translate position +
Attribute Orientation Rotate orientation +
Attribute Field of view Angle of view fieldOfVie +

Lighting [2.3.6] Directional light Directional light DirectionalLight +
Attribute Difenition transform node DEF +
Attribute Color Color color +
Attribute Direction Rotate direction +
Attribute Intensity Intensity intensity +
Lighting Point light Point light PointLight +
Lighting Spot light Spot light SpotLight +
Attribute Cone Angle Cone angle beamWidth +
Attribute Location Translate location +
Attribute CutOff angle - cutOffAngle [4.6] +
Attribute radius Cone angle radius +

Animation [2.3.7] Animation Animation curve Interpolator +
Attribute Key Key frame key +
Attribute Value Translate/Rotate/Scale keyValue +

Table 2.1: Mapping Maya nodes to X3D nodes

36 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Design

This chapter is an output of analysis made on existing Maya plug-ins both their GUIs and
source code.

3.1 Plug-in’s software architecture

Main .cpp file will consist of four classes (see Figure 3.1)

• Main exporter class that will communicate with Maya inner classes. This class will be
run as soon as export option in Maya will be chosen.

• Utility class that will contain methods for working with Maya and X3D data.

• Wrapper class for whole X3D scene.

• Wrapper class for X3D node.

3.2 Graphical user interface

For the purpose of allowing a user to define the precision of the values that will be written
into X3D/X3DOM nodes’ fields as well as the definition of the output file’s format there
should be a GUI. This GUI (see Figure 3.2) will contain radio button allowing to choose
output file format and slider for defining a precision. (see 3.2).

37

38 CHAPTER 3. DESIGN

’’

Figure 3.1: Plug-in class diagram

3.2. GRAPHICAL USER INTERFACE 39

’’

Figure 3.2: The GUI of the plug-in.

40 CHAPTER 3. DESIGN

Chapter 4

Implementation

4.1 General information

The C++Maya API export project consists of the main executive file ("exporter2015Cmd.cpp"),
necessary .dll and .h files, a MEL script ("exportOptions.mel"). Output of this project is a
builded .mll file that is then used as an export plug-in in Maya.

4.1.1 exporter2015Cmd.cpp

This source file’s logic is implemented with four C++ classes:

• x3dExporter

• x3dUtil

• SceneStructure

• SceneStructureNode

4.1.1.1 x3dExporter class

This class derives Maya API’s standard MPxFileTranslator class which allows to implement
an export plug-in for Maya. The main job ofMPxFileTranslator is done in two of its methods:
writer and reader. Every time Maya is importing or exporting objects either reader or writer
is called respectively. We won’t mention reader features as this work describes building an
export plug-in. The writer method contains logics behind decision whenever exportSelected
or exportAll method is called. [1]

4.1.2 exportOptions.mel

The script handles two actions - post and query. The user interface is being created in the
first action, in the second the string of options builded and then passed to the writer method
of the x3dExporter class. [4]

41

42 CHAPTER 4. IMPLEMENTATION

4.1.3 SceneStructureNode class

As the Maya’s scene and X3D/X3DOM structures differ from each other we need to have
a wrapping class (SceneStructureNode class) which represents each object of the scene for
convenience of the exporter’s work. Every SceneStructureNode object has a pointer to a
MObject it represents, attributes parent, children and type corresponding X3D notation
standard and methods for working with MObject.

4.1.4 SceneStructure class

This class is a wrapper for the whole scene. It also keeps the pointer to the SceneStruc-
tureNode root element and helpful methods.

4.1.5 x3dUtil class

It is a class with utillity methods that are helping to obtain information from Maya and
correctly pass it to X3D format.

4.2 Querying attributes

The method findPlug of the MPlug class is being used for getting the information about a
Maya node’s attributes. Listing 4.1 illustrates an example of getting a light’s color.

Listing 4.1: Querying the color attribute using a plug
MPlug co lo rP lug = lightDependNode . f indPlug (" c o l o r " , true , &s t a t) ;
double r = co lo rP lug . c h i l d (0) . asDouble () ;
double g = co lo rP lug . c h i l d (1) . asDouble () ;
double b = co lo rP lug . c h i l d (2) . asDouble () ;

4.3 Choosing between primitive geometry tag and Indexed-
FaceSet

According bachelor’s thesis assignment cube-shaped, sphere-shaped, cylinder-shaped and
cone-shaped objects should be exported using the specific basic geometry node. We will
take a look at this on the example of exporting a cube. First of all, we are checking if there
is a node polyCube (see Figure 4.1) that generates this primitive (see Listing 4.2).

Listing 4.2: Determines if the node has the polyCube generator
boxShape . hasFn (MFn: : kPolyCube) ;

Secondly, if the object was changed and no longer corresponds to the original object
generated by the generator node, plug-in has to figure out if it is the original object or the
modified (decide if the geometry will be printed to the output file using the Box tag or the
IndexedFaceSet tag).

4.3. CHOOSING BETWEEN PRIMITIVE GEOMETRY TAG AND INDEXEDFACESET43

’’

Figure 4.1: The polyCube generator in Maya.

44 CHAPTER 4. IMPLEMENTATION

Thirdly, because of the fact that metadata about the modifications of the object might
not correspond to the reality there was used a radical method in which we take the data
of original object (vertices and UVs) and compare them with the same type of data of the
object reconstruct by the parameters of the polyCube (see Listing 4.3).

Listing 4.3: Reconstructing the object using the generator node’s parameters such as height,
width, depth
MGlobal : : executeCommand ("CreatePolygonCube ; setToolTo␣

CreatePolyCubeCtx ; polyCube␣␣−n␣_test_shape␣−h␣2␣−w␣2␣−d␣2") ;

The comparison is held in areMeshesEqual method of the x3dUtil class - the data of both
objects are being written in two separate strings and then compared.

In case the objects are equal we use the Box tag, otherwise - the IndexedFaceSet tag.

4.4 Precision

According to the bachelor’s thesis assignment the plug-in should allow to set global precision
of all numeric data that are being exported to X3D/X3DOM. In spite of this requirement
there are some cases in which choosing precision of zero digits after the decimal point will
lead to incorrect user experience and errors. A perfect example will be exporting animation.

Exported animation keys (see Listing 4.4 with zero digits after the decimal point will be
written in the output file as demonstrated in Listing 4.5, which will completely break the
animation.

Listing 4.4: Original keys
key=’ 0␣ 0 .25 ␣1 ’

Listing 4.5: Original keys
key=’ 0␣0␣1 ’

4.5 Animation

In order to obtain the necessary information about the animation in the scene we need to
get the animation curve node. Firstly, all the animated plugs on the active selection should
be found and then collected with the findAnimationPlugs method. Use of MEL command
is shown in the Listing 4.6, where xxxx is the name of the object, yyyy is the operation
(translation, rotation, scale) and A stands for the axis transform values (X, Y ,Z ,W), the
plug-in will obtain all neccesary information for defining the changes in the whole scope of
the animation curve.

Listing 4.6: Getting information for the keyValue field
keyframe −q −vc xxxx_yyyyA

To obtain appropriate key values the plug-in takes every keyFrame’s time and normalizes
it according to the maximal length of the time line (see Listing 4.7).

4.6. LIGHTS 45

Listing 4.7: Normalizing key value.
f loat currentKeyFrameTime = animCurve . time (

currentKeyFrameNumber − 1) . va lue () ; // g e t t i n g time o f
the curren t keyFrame

f loat normalizedKeyFrame = currentKeyFrameTime/
total_maximal_time ; // normal i z ing va lue

4.6 Lights

Below is described a process of getting Light atrributes from Maya and modifying them
for X3D. In case of directional and spot light there is a need of get the direction vector.
For this purpose I use rotation matrices. As the default order in Maya is xyz firstly I

multiply the RotationX matrix

1 0 1
0 cosα − sinα
0 sinα cosα

 by the default X3D SpotLight/Direc-

tionalLight direction vector

 0
0
−1

 and get a result vector

r1r2
r3

. The next RotationY

matrix

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 is being multiplied by the

r1r2
r3

 vector. The new result vector

is

r4r5
r6

. The last RotationZ matrix

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 is being multiplied by the

r4r5
r6

.

The final result vector is the needed direction vector. To get the angles used in the matrices
I use a special MEL command (see Listing 4.8), where name is the current item’s name (e.g.
pCone1), cosX is cosα, sinX is sinα, etc.

Listing 4.8: Getting the values for the angles
MDoubleArray r e s u l t ;
MString command = "xform␣−q␣−r ␣−ro ␣" ;
command+= name ;
MGlobal : : executeCommand (command , r e s u l t) ;
/∗we need to conver t degrees to rad ians and ge t t h e i r s ine , cos ine

va l u e s . ∗/
double cosX = cos (r e s u l t [0] ∗ PI /180) ;
double sinX = s in (r e s u l t [0] ∗ PI /180) ;
double cosY = cos (r e s u l t [1] ∗ PI /180) ;
double sinY = s in (r e s u l t [1] ∗ PI /180) ;
double cosZ = cos (r e s u l t [2] ∗ PI /180) ;
double s inZ = s in (r e s u l t [2] ∗ PI /180) ;

In case of a spot light there are two fields, values for which are not accessible using findPlug
method, - beamWidth and cutOffAngle. Listing 4.9 illustrates the values of beamWidth
cutOffAngle depending on the penumbra angle’s value. Penumbra is a softer and lighter part

46 CHAPTER 4. IMPLEMENTATION

of a cast shadow, which forms due to a fraction of light getting past the object which is
casting said shadow.

Listing 4.9: Getting values for the beamWidth and cutOffAngle fields
MPlug coneAnglePlug = f . f indPlug (" coneAngle " , true ,& s t a t) ;
MPlug penumbraAnglePlug = f . f indPlug ("penumbraAngle" , true ,& s t a t) ;
double coneAngle = coneAnglePlug . asDouble () ;
double penumbraAngle = penumbraAnglePlug . asDouble () ;
double beamWidth ;
double cutOffAngle ;
i f (penumbraAngle >= 0) {
beamWidth = coneAngle ;
cutOffAngle = coneAngle + penumbraAngle ;

} else {
double beamWidth = coneAngle − penumbraAngle ;
double cutOffAngle = coneAngle ;

}

Chapter 5

Testing

The first part of this chapter is a rough showcase of the plug-in’s capabilities that are delivered
in a form of stability tests. The second part is dedicated to the usability testing. For opening
X3D files we use InstantPlayer, X3DOM (locally) - Mozilla Firefox as Google Chrome and
Opera do not allow to view textures on the meshes due to their security policy that refuses
every image/file that is not server by the server.

5.1 Stability tests

5.1.1 Shapes

To test the export of the basic shapes we make several tests:

1. Basic and complex shapes to make sure all basic-shaped objects are being exported
using their corresponding nodes and the remaining are written to the file with the help
of the IndexedFaceSet node. For this test we create a cube, a sphere, a cylinder, a
cone, a pyramid, a torus and a pipe in Maya (see Figure 5.1) and export the whole
scene to X3D and then to X3DOM with precision set to "3". As a result (see Figure
5.2)) we get correctly exported shapes.

2. A modified basic shape with a translated vertex is expected to be printed into the
output file as an IndexedFaceSet node. For this we are modifying the cone’s top vertex
(illustrated on Figure 5.3), then export the selected object to X3D and after that to
X3DOM with precision set to "3". Figure 5.4 demonstrates that the exported modified
object was exported correctly.

The tests’ result is that the plug-in correctly exports basic shapes, modified basic shapes,
complex shapes to X3D and X3DOM both.

5.1.2 Appearance

To make sure the export of the appearance of an object works properly we will export a
complex-shaped textured object, a textured primitive and an object with the transparency

47

48 CHAPTER 5. TESTING

’’

Figure 5.1: The basic and complex shapes to be exported in Maya.

5.1. STABILITY TESTS 49

’’

Figure 5.2: The basic and complex shapes’ export results in X3D and X3DOM.

50 CHAPTER 5. TESTING

’’

Figure 5.3: The modified cone to be exported in Maya.

5.1. STABILITY TESTS 51

’’

Figure 5.4: The modified basic shape’s export results in X3D and X3DOM.

52 CHAPTER 5. TESTING

attribute set to the value close to "1" (see Figure 5.5) to X3D and X3DOM with precision
set on 4. For this test we use both basic mesh and complex because the texture mapping
in X3D for cubes, spheres, cones and cylinders differ from Maya. Figure 5.6 demonstrates
the result of the test. As we can see the texture is correctly mapped on the tower and the
second tower is quite transparent but on the other hand be cube doesn’t have the texture
mapped properly.

’’

Figure 5.5: A scene with textured objects and a transparent object for appearance testing.

5.1. STABILITY TESTS 53

’’

Figure 5.6: The appearance test’s results in X3D and X3DOM.

54 CHAPTER 5. TESTING

5.1.3 Lights

To make sure the export of the lights works properly we will make the tests below. When
comparing the export results we should be sure that the headlights are shut down.

1. Directional light test can be conducted on a scene consisting of shapes from the
Shape tests and the object of the test itself 5.7. Having exported the whole scene to
X3D and X3DOM we want to see the objects in the output files lit by the light as it
looks like in Maya. For these test precision is set to "5". The result of X3D export
demonstrated on Figure 5.8 is identical to the source scene in Maya but in X3DOM
the light’s color a little bit differs. However after taking a look at the source files we
are sure the export was correct as the color of the shapes’ material and the light’s color
are equal.

’’

Figure 5.7: A scene with directional light.

5.1. STABILITY TESTS 55

’’

Figure 5.8: The directional light test’s result in X3D and X3DOM.

56 CHAPTER 5. TESTING

2. Point light test. The prepared scene illustrated on Figure 5.9 will be exported to
X3D and X3DOM with precision set to "4". We expect that the light will reach the
objects from one certain place. The result meets our expectations (see Figure 5.10).
In this case the colors are displayed identically. This is caused by the fact that in this
test we export the light with white color.

’’

Figure 5.9: The scene with a point light in Maya.

5.1. STABILITY TESTS 57

’’

Figure 5.10: The point light test’s result in X3D and X3DOM.

3. Spot light test by exporting all the objects include the light (see Figure 5.11) to
X3D and X3DOM with precision set to "2" and "0" respectively. The light is rotated
to make sure the direction is being exported correctly. As we can see in Figure 5.12
comparing the results in X3DOM we are shown incorrect results. This is caused by
the precision set to "0" - the torus is quite small and with this precision the values
in IndexedFaceSet are rounded to almost the same small number, the values of the
light’s direction field are also incorrect so we shall not expect the scene to bit lit by
the spot light identically to the scene In Maya. If we make another X3DOM test with
the precision set to "2" we will get better result.

4. Spot light test X3DOM with precision set to "2" demonstrates us on Figure 5.13
that the problem of the incorrect representation of the exported torus is indeed caused
by the precision.

5.1.4 Cameras

To make sure the export of the cameras works properly we will make these test:

1. Export the whole scene with default cameras to X3DOM. We will set precision
to "4" for the export of the scene 5.14. Our expected export result is that we are able
to switch viewpoints which are correctly exported. The result is in Mozilla Firefox

58 CHAPTER 5. TESTING

’’

Figure 5.11: The scene with a spot light to be tested in Maya.

5.1. STABILITY TESTS 59

’’

Figure 5.12: The spot light test’s result in X3D and X3DOM.

60 CHAPTER 5. TESTING

’’

Figure 5.13: The spot light test’s result in X3D and X3DOM.

5.1. STABILITY TESTS 61

we can see the whole scene but we don’t gave any possibilities to switch between the
viewpoints. But if we take a look at the exported file we will find the Viewpoint nodes
with their attributes’ information.

’’

Figure 5.14: The scene which will be exported to X3DOM.

2. Export selected objects from the scene with default and custom cameras to
X3D. We have created a custom camera called test (see Figure 5.15) and are exporting
a sphere and a pyramid to X3D having set with precision to the maximum value. We
expect all the viewpoints to have been exported correctly. To check it we can switch the
viewpoints in Instant Player (demonstrated on Figure 5.16). Figure 5.17 demonstrates
us the result - we can indeed switch the viewpoints and the exported viewpoints are
being exported correctly.

5.1.5 Hierarchical scene

We are going to test exporting a hierarchical scene to X3D and X3DOM with precision set
to "6". The hierarchy of the scene is illustrated on Figure 5.18. The result output files (see
Figure 5.19) are correctly displayed and stick to the rules of grouping for hierarchical scenes.

5.1.6 Animation

The test Export the animation will help us sure we export animation information cor-
rectly. The scene 5.20 that we are exporting to X3D and X3DOM with precision set to "3"

62 CHAPTER 5. TESTING

’’

Figure 5.15: The scene with an added custom camera to be exported to X3D.

5.1. STABILITY TESTS 63

’’

Figure 5.16: Switching viewpoints in Instant Player.

64 CHAPTER 5. TESTING

’’

Figure 5.17: The exported objects from the custom camera’s viewpoint.

5.2. USABILITY TESTS 65

’’

Figure 5.18: The hierarchical scene for the export to X3D/X3DOM.

consists of 5 animated objects - a bouncing and rotating ball and four cylinders that change
their scales. We expect the animation works correctly. The result is correct in X3D and
X3DOM.

All the test files (Maya scenes and the results in X3D/X3DOM) are available in the
tests.zip.

5.2 Usability tests

There were chosen five participants between ages 17-43 for the purpose of usability testing.
Only one of them had experience with working in Maya.

The participants were given the tasks that can be found in C to test the graphical user
interface 3.2 of the plug-in.

Task 1. Export the whole scene to X3D with precision set on the maximum value.
Expectations: Participants will choose "Export All.." in the File menu. For setting precision
will be used the slider or it will be set by typing "6" to the precision field. Results: All the
participants selected all the objects in the scene, chose "Export All.." and used the slider to
set precision on "6".

Task 2. Export the cube to X3DOM with precision set on the minimum value without
using the slider. Expectations: Participants will choose "Export Selected.." in the File
menu and then use the X3DOM radio button. Results: The task was completed quickly
and correctly as it didn’t take time to switch to X3DOM export and the default value of
precision is "0".

66 CHAPTER 5. TESTING

’’

Figure 5.19: The exported hierarchical scene in X3D and X3DOM.

’’

Figure 5.20: The animated scene in Maya.

5.2. USABILITY TESTS 67

Task 3. Export the whole scene to X3DOM with precision set on 3 without using
the slider. Expectations: Participants will choose "Export All.." in the File menu, use
the X3DOM radio button and set precision by typing "3" to the precision field. Results:
Four of the participants selected all the objects in the scene, chose "Export All..", switched
to X3DOM and were expected to have some radio buttons for setting precision. After 2-4
minutes each of them tried to type into the precision field. It didn’t take time the participant
who had had experience with Maya to change precision using the precision field.

Task 4. Export a scene without selecting objects to X3D (using "Export All.."). Ex-
pectations: Participants will choose "Export All.." in the File menu, fill in the name of the
file, successfully export the whole scene to the output file. Results: One of the participants
expected the "Export All" button remain inactive even if the name of the file is typed in.
Four others expected to get an error but not a successful export of the whole scene with the
objects that were not even selected.

Task 5. Select nothing and try to export selected to X3DOM (using "Export Selected..").
Expectations: Participants will choose "Export Selected.." in the File menu, fill in the name
of the file, click on the "Export Selected" button, get the alert "Nothing is currently selected".
Results: The participants expected a successful export to the output file which will remain
empty.

Usability test conclusion is:

• The slider for setting the precision was the best idea,

• Radio buttons for X3D a X3DOM export were chosen as a solution for X3D/X3DOM
plug-in correctly,

68 CHAPTER 5. TESTING

Chapter 6

Conclusion

In this Bachelor’s project I have created an X3D/X3DOM plug-in for Autodesk Maya. The
plug-in is capable of exporting with defining values’ precision whole Maya scene to X3D
format and into HTML file with X3DOM support plugged, specifically all major X3D com-
ponents (see Table 6.1).

Grouping switch, group
Geometry basic and complex shapes
Appearance materials, textures
Camera perspective, front, side, top, custom
Lights point light, spot light, directional light

Animation position, orientation interpolators

Table 6.1: X3D implemented components.

The only thing that is not implemented yet in Geometry export is capability of plug-in
to divide single mesh in partitions given by user.

6.0.1 Future work

In order to improve user experience of this plug-in, amount of export options should be
increased. The best source of inspiration will probably be amount of options given in VRML
Export plug-in.

69

70 CHAPTER 6. CONCLUSION

Bibliography

[1] Mglobal class reference, 2015. http://help.autodesk.com.

[2] Wavefront .obj file, 2016. https://en.wikipedia.org/wiki/Wavefront_.obj_file.

[3] Vrml, 2017. https://en.wikipedia.org/wiki/VRML.

[4] R. Bateman. Writing a plugin exporter (file translator), 2004.
https://nccastaff.bournemouth.ac.uk.

[5] W. Consortium.

[6] D. J. Eck. Introduction to lighting, 2000. http://math.hws.edu/graphicsbook/c4/s1.html.

[7] Fraunhofer-Gesellschaft. - x3dom.org, 1999. http://www.x3dom.org/.

[8] I. W. P. H. F. L. GABRIEL TAUBIN, SENIOR MEMBER
and J. ROSSIGNAC. Geometry Coding and VRML, 2002.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=687837&tag=1.

[9] D. Goulda. Complete Maya Programming, 1st Edition An Extensive Guide to MEL and
C++ API, volume 1. Elsevier Science, 340 Pine Street, Sixth Floor, San Francisco, CA
94104-3205, 1st edition edition, 2003.

[10] N. Mead. Powerful 3d modeling, animation and rendering solution, 2014.
http://autodesk-maya.en.softonic.com/mac.

[11] C. Vernon. Maya API Programming. http://www.chadvernon.com/blog.

71

72 BIBLIOGRAPHY

Appendix A

Attached files

• exporter.zip - contains the source code and the .mll plug-in file (inside the Release
folder)

• MELscript.zip - contains a MEL script which should be located in a user’s
maya/scripts folder

• thesis - contains thesis pdf file

• tests.zip - contains the result test files and the files used for the testing purposes

• documentation - contains documentation

• imgs.zip - contains images for propagation of FEL CVUT

73

74 APPENDIX A. ATTACHED FILES

Appendix B

Installing the plug-in

The plug-in should be loaded into Maya’s Plug-in manager by following these steps:

• open Window menu

• go to Plug-in manager

• browse the .mll file from the plug-in’s Release folder

The MEL script must be located in the \maya\scripts folder. The needed Maya version is
2015.

75

76 APPENDIX B. INSTALLING THE PLUG-IN

Appendix C

Tasks for the usability testing

1. Export the whole scene to X3D with precision set on the maximum value.

2. Export the cube to X3DOM with precision set on the minimum value without using
the slider.

3. Export the whole scene to X3DOM with precision set on 3 without using the slider.

4. Export an empty scene (with no selected objects) to X3D.

5. Select nothing and try to export selected to X3DOM.

77

78 APPENDIX C. TASKS FOR THE USABILITY TESTING

Appendix D

Other references

The information about the plug-in and demonstrations of its work are available at: https:
//sites.google.com/site/x3dexportplugin/.

79

https://sites.google.com/site/x3dexportplugin/
https://sites.google.com/site/x3dexportplugin/

