Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

katedra pocitacu

ZADANI DIPLOMOVE PRACE

Student: Be. Jan Helbich

Studijni program: Oteviena informatika
Obor: Softwarové inZzenyrstvi

Nazev tématu: Energeticky dopad technologie zobrazeni webového uzivatelského
rozhrani na mobilnim zarfizeni

Pokyny pro vypracovani:

Cilem prace je vyhodnoceni dopadu pouZiti riiznorodych technologii pro zobrazeni uZivatelského rozhrani
webovych aplikaci na spotiebu zdrojd mobilniho zafizeni, vCetné energetické naroénosti na spotiebu baterie. Pro
dosazeni dostateéné kvalitnich vysledki navrhnéte metodiku pro jednoznagné méfeni spotieby zdroju zafizeni.
Méfeni budou probihat na zafizenich s operacnimi systemy zalozenymi na Linuxovém jadre, pro které vytvoite
prototyp méficiho softwarového nastroje.

Pro testovani spotfeby vytvoite ukazkovou webovou aplikaci, jejiz uzivatelské rozhrani bude zaloZzeno na
technologiich Java Server Faces 2, Google Web Toolkit, AngularJS 2, ReactJS a AspectFaces. Z dosazenych
vysledk(i vyhodnotte jak ekonomické dopady, tak i dopady na mozné fizeni spotfeby baterie mobilnich zafizeni
pomoci technologii pro tvorbu adaptivniho uzivatelského rozhrani.

Seznam odborné literatury:

[1] Cerny, T.; Macik, M.; Donahoo, M.J.; Janousek, J., "Efficient description and cache performance in Aspect-
Oriented user interface design," in Computer Science and Information Systems (FedCSIS), 2014 Federated
Conference on , vol.,, no., pp.1667-1676, 7-10 Sept. 2014

doi: 10.15439/2014F 244

[2] Liu, X.; Ma, Y.; Liu, Y; Xie, T.; Huang, G., "Demystifying the Imperfect Client-Side Cache Performance of
Mobile Web Browsing," in Mobile Computing, IEEE Transactions on, vol.PP, no.99, pp.1-1

doi: 10.1109/TMC.2015.2489202

[3] Singh, V.K., Dutta, K VanderMeer, D., "Estimating the Energy Consumption of Executing Software
Processes,” in Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and |IEEE Cyber, Physical and Social Computing , vol., no.,
pp.94-101, 20-23 Aug. 2013 _—

doi: 10.1109/GreenCom-iThings-CPSCom.2013.40

Vedouci: Ing. Tomas Cerny

Platnost zadani: do konce letniho semestru 2016/2017

o7

prof. Ing. Filip Zelezny, Ph.D. prof. Ing. Pavel Ripka, CSc.
vedouci katedry /7 dékan

\ Praze dne 26. 11. 2015



Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science and Engineering

Master’s Thesis

Energy impact of web user interface rendering technology on
mobile devices

Jan Helbich

Supervisor: Ing. Tomas éerny, MSec.

Study Programme: Oteviend informatika, Magistersky
Field of Study: Softwarové inzenyrstvi

January 9, 2017



iv

Podékovani

R4d bych podékoval Ing. Tomasi Cernému, MSc. za jeho cenné rady béhem tvorby této
prace. Také dékuji své rodiné a pratelim za jejich nekone¢nou podporu mého studia.



Declaration

I declare that T elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Prague on January 9, 2017



Abstract

Prezentaéni technologie webu se pribézné vyviji a pfizplisobuji pozadavkim modernich
webovych aplikaci. Dnes jsou webové aplikace Skalovatelnymi systémy s vysokym vykoném,
které zaroven dobfe pracuji v distribuovanych prostiedich, a grafické rozhrani musi s timto
vyvojem pfirozené drzet krok. Ale nejsou to jen technologie, ktery prochézeji proménou. Uzi-
vatelé jiz také asto davaji pfednost mobilnim, baterif napajénym zafizen{m oproti klasickym
stolnim poéitaéim. Je ale mozné, Ze mé soucasny prudky vyvoj technologii i jiné dopady, nez
hezky vzhled webovy stranek ¢i rensponzivnost? Nové technologie ¢asto pfinaSeni zvysené
niroky na vykon hardware a kapacita baterie je stale omezujicim faktorem p¥i pouzivani
smartphonti ¢i laptopi.

Tato prace predstavuje tvod do tématu meéfeni spotieby vykonu podcitaci a zabyvé se
aplikaci ziskanych znalosti pro potfeby webovych aplikaci. Vyzkum je primarné zaméfen
na vyhodnoceni pouziti rtiznorodych prezenta¢nich technologii na klienta - baterii napajené
zafizeni. Déle price popisuje postup navrhu a validaci vlastniho softwarového nastroje pro
méfen{ vykonu, vhodného pro dané Gcely, a prozkoumavé oblast adaptvniho uzivatelského
rozhrani.

Abstract

Web persentation technologies are continuously evolving, adapting to the requirements of
modern applications. Today, web applications are scalable, high-performance systems de-
ployed in distributed environments, therefore even the view layer has to keep up the pace.
Also users evolve, moving from desktop computers towards mobile, battery powered devices,
such as smartphones. But is there more to the obvious side of contemporary technologies,
such as pretty design or responsiveness? Increasing system resources demands negatively in-
fluence power consumption of any computer devices, and battery capacity is still a limiting
factor for current smartphones or laptops.

This thesis provides an introduction into the field of computer power consumption mea-
surements and applies gained knowledge to web applications. The focus is primarily set on
the client - a battery powered device. Futhermore this thesis presents an approach to design-
ing own performance measurement tool and explores the topic of adaptive user interfaces.

vi



Contents

1 Introduction
1.1 Motivation . . . . . . . . . e
1.2 Brief background on web applications . . . . . . .. ... L0000
1.2.1 Application state . . . . . . . . ... ..
1.2.2 Stateful server and thin client . . . . . . . .. . .. ... . ... ....
1.2.3 Thick client and stateless server . . . . . . . . ... ...
1.3 Requirements catalog . . . . . . .. ..o oL
1.4 Related work . . . . . . L
1.4.1 Energy efficiency in datacenters . . . . . . . .. .. ...
1.4.2  Energy efficiency of mobile devices . . . . . . ... ... 0.
1.4.3 Alternative approaches to power evaluation . . . . .. ... ... ...
1.44 Comparing web technologies . . . . . . . .. ... ..o
1.4.5 Research summary . . . . . . . . ... L
2  Analysis
2.1 Approach to measurement . . . . . . .. . ...
2.1.1 Battery consumption measurement method . . . .. ... ... .. ..
2.1.2  The system resources usage evaluation method . . . ... .. ... ..
2.2 Requirements for performance analysis tool . . . . . .. ... ... ..
2.2.1 Performance analysis tools . . . . . . . .. ...
2.2.2 The /procfile system . . . .. ...
223 The /sysfilesystem . . . ... ... ...
2.3 Evaluating and comparing frontend technologies . . . . . . . .. ... ... ..
2.3.1 Testing approach . . . . . . . . . ... L
3 Design
3.1 Measurement method . . . . . . . ... Lo
3.2 The sample application . . . . . . . ..o Lo
3.2.1 Tested usecases . . . . . . . . e
322 Backend design . . . . ... oL
3.2.3 Testing adaptive UL . . . . . . . . ... o Lo
3.3 System resources utilization tracking tools . . . . . . .. ...
3.3.1 The performance analysis tool . . . . . . . .. .. ... L.
3.4 Infrastructure . . . . . . . ...
3.5 Deployment environment . . . . . . . ... oo

vii



CONTENTS viii

3.6 Tested frontend frameworks . . . . . . . . .. ... o 24
3.6.1 JavaServer Faces 2 . . . . . . . . ... ... 24

3.6.1.1 JSF lifecycle . . . . .. .. .. 25

3.6.2 Google Web Toolkit . . . . ... .. ... ... 26

3.6.3 AngularJS . . . ... 28

3.6.4 Angular 2 . . ... 29

3.6.5 ReactJS . . . . . 30

3.6.6 AspecFaces . . . . . .. 31

4 Validation of our measurement tool 34
4.1 Validation method . . . . . . . . . . .. 34
4.1.1 Laboratory setup . . . . . . . . . .. 35

4.2 Results evaluation . . . . . . . . . L 35
4.2.1 Evaluation and summary . . . . .. .. ... ..o 35

5 Case study: Eventier 37
5.1 Deployment and testing environment . . . . . . ... .. ..o 37
5.2 Network traffic comparison . . . . . .. ... Lo 37
5.3 Single client performance. . . . . .. ... oL o Lo o 38
5.4  Multiple clients performance . . . . . . . .. ..o Lo 39
B Summary ... ..o e 40

6 Case study: Grafana and adaptive Ul 42
6.1 Testsetup . . . . . . . . e e 42
6.2 Experimental results - graph plotting . . . . . . ... .. ... L. 42
6.3 SUININATY . . . . . v ot e e e e e e e e e e e 44

7 Conclusion 45
7.1 Future work . . . . . . ... 45
7.2 SUMMAry . . . . .. 46

8 Eventier - installation guide 51

9 Attached CD 52



List of Figures

3.1
3.2
3.3
3.4
3.5

6.1
6.2

9.1

Design of the domain model for our sample application. . . . . .. ... ... 19
Class diagram featuring the core design blocks of our measurement tool. . . . 22
Deployment diagram featuring used components in our experimental setup. . 23
Hardware and network model of experimental setup. . . . . .. .. ... ... 24
The JavaServer Faces application lifecycle . . . . . . ... ... ... ... 25
CPU and memory usage for browser rendering. . . . . .. ... .. ... ... 43
CPU and memory usage when rendering on server. . . . . . . . .. ... ... 43
Directory tree on attached CD . . . . . . . . ... o oL 52

ix



List of Tables

4.1

5.1
5.2

5.3

5.4

5.5

6.1

Energy impact of excessive system resource usage during 3 hours stress tests .

network traffic comparison for Ul technologies. . . . ... ... ... .. ...
Performance utilization consumption comparison for Ul technologies. Single
client accesses the application. All values are in MB if not stated otherwise.
Power consumption comparison and performed tasks statistics for UI tech-
nologies. Single client accesses the application. . . . ... ... ... ... ..
Performance utilization consumption comparison for Ul technologies. Multi-

ple clients access the application. All values are in MB if not stated otherwise.

Power consumption comparison and performed tasks statistics for UI tech-
nologies. Multiple clients access the application. . . . . . . ... ... ... ..

Performance utilization while rendering Grafana plots. Values are in units of
MB if not stated otherwise. . . . . . .. ... ... L.

35

38

39

39

40

40



Chapter 1

Introduction

Throughout the time of its existence, the design of web pages has come a long way from
simple textual representation of information to highly interactive presentations in sophisti-
cated graphical form. However the demands on user interface (UI) seem to be ever increasing
and today face yet another challenge, that is to adapt to various kinds of client devices and
browsers while preserving desired functionality and user experience. The personal computer
market has evolved and expanded and desktop computers have become far less common then
before and are steadily being replaced by mobile, battery powered devices, such as laptops,
tablets or smartphones [1]. Of course this progress has made its mark on web technologies
and techniques of development for both front and back-end parts of applications.

There are many obvious manifestations of the evolution that the presentation part of
the web has undergone. Be it advanced Human-Computer Interaction (HCI), focusing on
usability, adaptive and individual approach to match user’s needs. The engineering aspect
is focusing on responsiveness and performance just as much as on scalability of applications.
Together with well-worked graphical design all these are valuable aspects for overall user
experience (UX), aiming to create positive attitudes and perceptions of the person using the
system. But there are many other aspects, which seems to be rather of secondary interest
to Ul technologies since these are not demonstrated as clearly, for example the amount of
resources consumed by the device while rendering interacting with web pages.

In this work we focus on further exploring the field of performance and energy con-
sumption of web application’s client device. For this purpose we propose an approach to
measurement of both and present a comparison of the impact that various different, yet
modern and up to date frontend web frameworks have on consuming resource of the client
device.

1.1 Motivation

While creating web enterprise systems, the crucial goal is to enable users perform specific
business tasks. Here the Ul plays a major role, guiding the user through the use case. That
is a field of interest to both HCI and UX - the efficiency and comfort while interacting with
the application. Battery powered devices may become an obstacle in various cases, though.



1.2. BRIEF BACKGROUND ON WEB APPLICATIONS

Imagine a long reservation process, where suddenly the battery runs out and users are
absolutely unaware if the reservation has been placed or not. If the reservation system was
aware of the client’s devices battery status, it could possibly postpone or take a shortcut in
the long process or advice the user to use an alternate way of booking.

Other example may be an application targeting a number of successfully done business
cases, where its users have to perform as many tasks as possible. If such application was
written in a way that excessively drains client’s device battery power, it would greatly dis-
advantage users accessing it through a battery powered device.

Web applications use web browser as a medium to display content to end users. The
content is made out of two factors - the data and the user interface fragments. If we were
to just display raw data, there would not be any difference in performance or energy impact
on the client device, if we consider using only one type and version of a browser. But it
would be confusing and not intuitive for its users, therefore we have to wrap the data into
some kind of graphical form that is understandable and successfully guides user through his
task. That is the point where application developers can influence the final impact on the
client. Choosing various presentation technologies introduces architectural differences that
may possibly result in varying impact on performance and consecutively consumed power.

We do not have any ambition to compare Ul technologies based on their architecture
and believe every approach possesses its qualities and imperfections. It is a matter of fact
that whatever technology is chosen, frontend development efforts are not negligible and are
on par with the rest of the application. According to [14] 48% of application and code 50%
of development time is spend on Ul implementation.

There are countless libraries and frameworks making Ul development easier and we can
choose whatever fits us the best based on a rich set of criteria. Final UX shall never be de-
prived of its features, though, because of technology limits or hard to achieve functionalities.

We strive to find out whether there is any impact on the application’s user in case we
were to choose various web application technologies but still preserve both the desired look
and feel and application functionality.

1.2 Brief background on web applications

Web applications realize basic kind of client-server communication. A client initiates
the communication, requesting some information from the server. Server then replies to the
request. This behaviour is not limited only to browsing web pages, but can of course be
applied to interserver communication or web mashups[4], but we are mainly interested in
web browser to server communication through HTTP(S)[5] based on the TCP/IP handshake,
since it involves graphical presentation.

Since client and server are the only actors in the communication, web application’s archi-
tecture has to cover both sides. Here we can distinguish between system’s so called backend
and frontend. Backend layer comprises of application logic and data access. The important
thing is that backend part of the system should be independent of system’s client. Whether
the application’s client is a CLI tool or a web browser, the backend core system still stays the
same. But users are not supposed to interact directly with the backend. The user-computer
interaction is handled by frontend, the presentation layer of the system.



1.2. BRIEF BACKGROUND ON WEB APPLICATIONS

1.2.1 Application state

Most web applications have to manage some kind of stateful information. Whether it is
only simple authentication data, finding out what form fields did the user fill or a walking
through a complex work flow, the actual application state has to be stored somewhere. For
webapps, there are two logical places where to keep such data - either the client or the server,
since there are no other participants in the communication.

The decision where to put the application’s state greatly influences final architecture of
web systems. Whatever approach we choose, there is a need for complex set of tools, so called
frameworks, that will help us develop the application without reinventing the wheel and
minimize the development costs. But such tools also define boundaries which the developer
has to stick to. There are two major architectural styles: rich clients with thin stateless
server and thin clients with thick stateful server.

1.2.2 Stateful server and thin client

The choice of server-side Ul framework inevitably leads to the thick stateful server and
thin client model. This way the server produces both the data and the Ul fragments, which
reduces the client (web browser) into a simple rendering tool (we do not consider additional
features such as AJAX support, which may bring certain benefits of the client-side approach).

While developing webapps based on server-side Ul framework, one of the great assets is
that the whole application context is available in one place. This is beneficial mainly for code
reduction and security, because it disregards additional parts of the system that contain any
logic.

Further benefits lay in the maintenance phase of system’s lifetime. All application frag-
ments that execute any part’s of application logic stay on the server. From the developer’s
point of view this drastically reduces the needed effort to maintain the system. There is
simply no need to distribute system updates to all clients, everything needed to deploy a
new feature or fix a bug in the code is on the application server and will instantly affect all
application’s clients.

The final UI the server-side frameworks create is a combination of HTML, JavaScript
and CSS tangled together with data in specific application context (i.e. security). The data
become hard to separate from the view, which reduces the possibility of distributing data
to other applications or Ul customizations. Also the network traffic suffers compared to
client-side approach, which generates the view fragments and the content of communication
with server is solely the data.

Another possibly negative point the server-side Ul frameworks bring is higher server
load. Server has to reconstruct the Ul after user interaction and process the changes. This
presents additional computations that have to be done and therefore may become an issue
during peak hours. Since application state is on the server, horizontal scalability requires
more sophisticated techniques, such as sticky sessions|18], to work properly.

1.2.3 Thick client and stateless server

The objective of thick client architecture is to keep both the logic and generation of view
in the browser, leaving server as a simple data endpoint. Since the logic is extracted out of



1.3. REQUIREMENTS CATALOG

server’s scope, it has no access to the application state in any point of time and therefore
becomes fully stateless.

A strict separation of concerns is a great asset of this design, because the application data
can be eagily reused and eventually there can be multiple types of Ul created without any
change on the server. Client is also able handle some use cases without communication with
the server, reducing network traffic and sparing server resources. Statelessness is also highly
appreciated factor for horizontal scaling because there is no need for keeping a connection
between a client and one certain server. Clients may freely communicate with any server
instance without loss of session.

The separation of the application into two partly independent entities has its negative
impacts, of course. First the loss of context results in inevitable need of implementing various
parts of the application on both client and server level. As an example may serve data
validation. The server cannot accept invalid data, therefore it has to contain the validation
logic. The client also has to ensure it has valid data for both enhanced user experience
and predicable communication with server. Such restatements lead to higher maintenance
complexity and eventually higher costs. This may become a tedious and error-prone task
and requires high test coverage and solid integration tests.

1.3 Requirements catalog

As was said earlier, our main goal is to evaluate the impact of web Ul rendering technology
on the client. But how can we achieve that? And what does it bring with a closer look at
the topic? In this section we present a brief list of areas we are interested in, and which
comprises the necessary requirements and areas of interested of this work.

First we have to introduce a generic methodology for measuring power and energy con-
sumption of computer devices. The overview of web applications shows that Ul technologies
are not based on a single architectural type, therefore the final methodology has to be
portable. But this alone is a big problem domain, consisting of multiple subareas we have
to focus on.

We have to analyze and evaluate contemporary application deployment model and en-
vironment to run them. Today virtualization and cloud rule the world of web application,
therefore we have to project this fact into our approach. This must result into laboratory
conditions equal to standard production deployment model, otherwise our measurements will
lose objectivity.

Next there are measurement criteria to consider, be it the way of performance or power
consumption evaluation method, or what in the end are we really supposed to measure? Is
there any performance factor that can prove one Ul technology to be better than the others?

After we design the methodology, we need to create a prototype of an evaluation tool,
which is able to track and provide insight on the client device utilization from both system
resources usage and power consumption. Our work is primarily focusing on Linux-based
system, thus our criteria here are well constraint. Are there any existing programs fulfilling
our demands? Or is it possible to assemble such tool from existing and time-proven tools?
We will also explore the origins of tracking system and power to understand what information
Linux kernel provides and how it works.



1.4. RELATED WORK

Having the whole apparatus ready we will present a case study comparing various Ul
technologies in terms of client device utilization and energy impact. We also strive to reveal
possible benefits of adaptive Ul techniques on battery life of mobile computers.

Last but not least we need to consider economical side of the problem, primarily from
client’s point of view.

1.4 Related work

Our main objective lies in power and resource utilization and UI technologies, while
focusing on the connection between the two. We need an insight into both, therefore we will
focus on researching each topic independently.

1.4.1 Energy efficiency in datacenters

Many articles regarding power consumption of computers focus on analyzing power uti-
lization in large datacenters and total cost of ownership(TOC). Capra and Merlo proposed
a research roadmap to identify a set of software complexity and quality metrics that may
be used to assess the energy efficiency of a specific application[17]. The work presents var-
ious goals to achieve that lead to the path of energy efficient software and criteria on a
tool enabling users to perform energy consumption analysis of the system based on code in-
spection and hardware utilizations. The measurment method however considers not only the
involvement of a physical wattmeter, but even other hardware modifications (using processor
clamps). Also only the CPU usage is considered in the computations.

According to Intel[19], the main consumers of server power are processors, draining 45W
when idle and up to 200W when fully saturated on average. Following is the memory, ranging
from 2W to 12W per module when idle and active respectively. Another considerable amount
of energy is lost in computer’s power supply, which ranges from 20% to 40% of total power
consumed. The paper also suggests a calculation to estimate power consumption based on
processors utilization if maximal and idle power demands are known:

Pn - (Pma;r - Pidle) X - Pidle

n
100
where P, is the maximal power consumed by the processor, P is power drain while idle,
n is the utilization factor and P, the final estimated power for given utilization. They support
this equation with additional measurements of actual power drain, where the statistical error
ranged around 5%.

1.4.2 Energy efficiency of mobile devices

Of course the boom of mobile market has also brought attention to research of power
consumption of devices like smartphones or tablets. In addition to server or most desktop
computers, theC devices have additional hardware integrated, such as GSM module. Carrol
and Heiser [20] perform present an extensive study on the topic.

Performing benchmarks for common tasks, such as browsing emails or watching videos,
the energy drawn from individual hardware components is observed. GSM module clearly has



1.4. RELATED WORK

the most negative influence on battery discharging, with total demands of 824mW (aggregate
power exluding backlight) during phone call and 610mW while emailing. Another heavy
consumer of power is the backlight, ranging between 8mW and 414mW. There are two
interesting facts in regard to the backlight. First the power characteristics is not clearly
linear, but rather exponential, consuming 150mW for 67% intensity. Second discovery is
that displayed color also impacts required power, being 38.1mW for white and 74.2mW for
black color displayed at same backlight intensity.

Experiments were run primarily on Openmoko Neo Freerunner, while using external
hardware measurement tool for individual components. The results were validated on HTC
dream and Google Nexus One tracking overall power consumption and the relative results
show clear correlation to data collected for Openmoko.

The energy demands widespread mobile networking technologies is further addressed
in[21], comparing 3G, GSM and WiFi. The work focuses on tail energy, an energy overhead
inflicted by transition between active and idle state after data transfer. Exprimenting on
Nokia N95 and HTC Fuze, the results cleary show that 3G consumes most resources during
data transfers with 60% of power wasted on tail energy. 3G is followed by GSM with 30%
waste with the period of time lingering in the high-energy post-transfer states reduced to half
of 3G. The work shows that WiFi is most efficient at least during high network traffic and
states that the tail energy is comparable to 3G, but the transfer is much more effective. The
actual amount of wasted power is not mentioned, but for small transfer sizes is compared to

GSM.

1.4.3 Alternative approaches to power evaluation

All mentioned works rely on external hardware while measuring power utilization by the
device. A software alternative for Linux-based OS is addressed by[22]. Authors present
various approaches to energy evaluation and their design of a tool, that requires additional
hardware tools only during initial calibration phase. Afterwards the consumed power by a
process p is computed as

Energy, = F(cpuy, disk,, network,, memory,)

where F'is a function of CPU usage cpu, , disk usage disk,, network usage network, and
mMemory usage memoryp|22].

The final computations are done using information from procfs, the Linux interface to
internal kernel structures, which we further explore in the following part of our work. The
tool samples chosen resources both on complete system and single process level, computing
intermediate utilization from current and previous samples. Through successive empirical
measurements the researchers were able to deliver estimates with approximately 95% preci-
sion.

1.4.4 Comparing web technologies

Cerny and Donahoo|23]|2] consider contemporary UI design and delivery approaches
from the perspective of resource utilization and energy impact on both the client and the
server. The work discusses server and client-side Ul technologies and possible improvements



1.4. RELATED WORK

by applying Distributed Concern Delivery (DCD) and browser caching. According to the
results, there is a significant positive impact to both server and client by implementing DCD
in server-side technologies (specifically JSF).

[24] provides a detailed analysis on how using a different web server influences web appli-
cation’s energy usage. The work targets Ruby on Rails|[25] applications and conventionally
used servers. Researchers clearly point out that server architecture and the way it han-
dles requests plays major role in application’s power consumption. The study notes that the
choice of the server due to high throughput and responsiveness may be in conflict with energy
efficiency[24]. Another valuable information are the metrics and experimental criteria used
throughout empirical measurements, which are primarily in introducing a constant element
into the experiments. In case of this particular work it is the application implementation,
which is compatible with all presented servers.

In our initial work|[16] we focused on performance and power evaluation of the client
device while accessing web application with both client and server-side based UI. The paper
considers completed business use case as a unit of user performance as well as system resource
utilization, and puts additional constraints onto the inter-framework comparison of web UL
The work disregards bottlenecks in network communication by deploying the application
and client into LAN with high bandwidth and based on data collected through empirical
measurements compares AngularJS to JSF.

Another type of performance comparisons of Ul frameworks are often done by mem-
bers of the frontend development community. An extended benchmark ! for JavaScript UL
frameworks and libraries is being done, evaluating more than 30 trendning presentation tech-
nologies. The tests disregard application server involvement and compare technologies based
on reimplementing sample application and time tracking of defined tasks.

1.4.5 Research summary

Both UI framework comparison and evaluation of performance and energy consumption
of computers are complex fields of study and require generic yet robust approach and deep
knowledge of physics, systems and web applications technologies. We have evaluated related
works in our area of interest that provide approach and solutions to similar challenges we
face in this work and will further analyze these in the next chapter.

Thttps://github.com /krausest /js-framework-benchmark



Chapter 2

Analysis

In this chapter we analyze the requirements needed to fulfill our main goals, which are
the evaluation of the energy and performance impact of using various presentation tech-
nologies in web applications on the client device. We strive to analyze and present possible
methodologies for such measurements, the key criteria to focus on while benchmarking com-
puter performance and energy consumption. Next we present requirements for tools used to
evaluate the results a possible optimizations. We also explore the economic side of the topic
from both the client and application provider’s point of view.

2.1 Approach to measurement

We can divide our areas of interest in measurement into two categories: performance and
energy. The performance evaluation of the client device targets the use of system resources,
such as CPU or network traffic. Thus this part comprises of the observation of multiple
(partly) independent elements of the system. Energy impact on the client however has a
single criterion - the absolute consumption of battery of the device while performing certain
tasks.

2.1.1 Battery consumption measurement method

There are multiple ways of intercepting the natural process of battery discharging for
both hardware and software solutions. Apart from precision, our only requirement is that
the used tool is easily applicable to various types of devices, so that there are no additional
constraints placed opto the observed device.

The obvious hardware method is connecting a wattmeter to the observed device, collec-
tion actual statistics of power usage in units of Watts. Using this method would have the
most precise result, since the output data covers the absolute required power consumption
while measuring. The employment of the wattmeter can be quite troublesome, though, since
it is required to connect it between the power source (in our case the battery) and the load
(the device). Practically it would mean to disassemble tested device, i.e. a laptop or a
smartphone, remove its battery and replace it with kind of pluggable adapter, which would
serve as connector between the battery, wattmeter and the device. For such reason we have



2.1. APPROACH TO MEASUREMENT

rejected this approach since it requires hardware modifications (even though temporary)
and could be quite difficult to set up if we had to measure power consumption of multiple
different devices.

Another approach is to collect data from hardware sensors of the battery through the
interface with operation system. The Linux kernel does and excellent job here, providing
access to actual (values from monitoring hardware) voltage, current, energy and many more
information. This is since we can acquire the necessary data without an employment of an
external device. Of course a possible problem may arise when a certain power supply does
not provide monitoring or there are no kernel drivers available for it. But it is a common
practice to display charge status on mobile devices based on Linux, therefore for the purposes
of our work we make a simple assumption that all devices have these values available. It
would be suitable to express the energy consumption in watt-hours, which actual value can
be computed as Pxh, where P is actual electrical power and h is time in hours. The electrical
power is defined as P = U * I, where U is voltage and [ is current.

As a result, we only have to track the value of current, voltage and time of measurement
to derive the value of consumed energy. This is an approach taken by popular Linux tool
PowerTOP|26], used for analyzing and optimizing power usage for laptops.

Both earlier mentioned methods depend on continuous data collection and time tracking
during measurements to acquire exact energy values. The last presented method differs
here and rather takes a statistical way of evaluating the influence of running applications
on energy consumption. The idea is to rate every single system resource with based on
its power efficiency and create detailed battery discharging statistics for specific hardware
configuration. Subsequently it would be possible to statistically accurately predict battery
consumption of a process based on its usage of system resources. This is expected to be the
case of Apples’s OS X Energy Impact[40], a part of the Activity Monitor. It is not clear how
Energy Impact really works since it is a closed-source project, but we base our assumptions
on educated guess and analysis provided in [40].

2.1.2 The system resources usage evaluation method

We not ounly aim to understand the characteristics of various Ul technologies in energy
consumption, but we also want to investigate the origin of these differences. For this purpose
we need to track the usage of system resources, such as CPU or I/O operations.

There are multiple works presenting the impact of system resources utilization on power
demands for mobile devices, but our main interest is presented in|20]. Following is the
list of picked system resources we evaluated as crucial to power management of the web
application’s client. We will need to observe these throughout our experiments.

e CPU
e RAM

Disk 1/0

Network traffic

Backlight



2.2. REQUIREMENTS FOR PERFORMANCE ANALYSIS TOOL

The key element in all of our measures is time, though. If the CPU runs at 100%
during the initialization of the application and then its utilization is rather insignificant, it
is definitely not the same as if it would run at 20% of utilization for an hour. Therefore we
have to evaluate collected data in context of time. A database would present a suitable tool
for that matter, both for its data persistence and further evaluation by providing a unified
access method, such as SQL.

Next we need to know the scope of measurements, that is if we are supposed to track
the behaviour of the whole system or focus on single or multiple processes. A web browser
is a medium through which user interacts with web applications. Of course various browsers
differ in its architecture, but here we are mostly interested the process model.

Google Chrome is an example of multi-process architecture[28]. There are three types
of processes running: browser, renderers and plugins. Browser is always only one, handles
interaction with user, network communication, disk I/O, but does not parse any HTML
nor interprets JavaScript of web pages. Renderers are reponsible for handling all the logic
for processing HTML, JavaScript or CSS, leveraging the open-source WebKit[56] rendering
engine. For security reasons are renderers sandboxed, preventing it from direct system
interaction. If a suspicious activity is detected, i.e. an exploit, the main browser process
may kill the renderer or stop its execution. Chrome spawns a renderer process for each
opened tab on a distinct domain. Plugins are all external features run by the browser, for
example a PDF reader or Flash player.

Mozilla Firefox introduced multi-process architecture called Electrolysis[55] as a preview
testing feature in its version 48, released on 7th March 2016. As of version 52 (19th September
2016) it should be enabled by default. The architecture of Electrolysis is similar to that of
Chrome, therefore having a main parent processes and sandboxed children ones for security
enhancement.

According to survey[7] Chrome and Firefox are the most commonly used browsers com-
patible with Linux, having 57.1% and 11.1% of internet users respectively. The outcome is
unambiguous - we need to focus on multiple processes while measuring the performance and
system resources utilization of the device.

2.2 Requirements for performance analysis tool

We need an instrument to acquire and evaluate performance data. There are numerous
tools for performance analysis provided for Linux systems and as was mentioned earlier, we
are interested only in a small subset of system resources. We dare say that these are the
basics for performance evaluation, thus we should not be limited only to advanced tools.

Other requirement for the tools is a possibility to export data to a reasonable format,
so that we store and evaluate results later. A database would be suitable here, so the
exported data format should be easily transformable to other formats for the simple purpose
of swapping database engine.

Next we need the tool to be as economical as possible in the meaning of system load. For
example if we are to evaluate disk I/O, the tool can not excessively write to disk, because
as a result our data would be corrupted. The same goes for all other resources, of course.

10



2.2. REQUIREMENTS FOR PERFORMANCE ANALYSIS TOOL

Even though relative error between measurements would probably not be significant, since
all data would be affected the same, it is still preferred to evade such state.

As an optional feature we would welcome a support for registration of input events,
realized for example as a HT'TP based web service. Using this mechanism we could integrate
the client-side code of loaded web page with our tool and pass information between the two,
such as start and end of page load, track user’s activities on the page or, for testing purposes,
remotely control the measurement tool itself.

In the following subsections we provide a short description of common Linux tools for
performance analysis and information about kernel interface, the procfs and sysfs virtual file
systems.

2.2.1 Performance analysis tools

Top is a Unix utility that provides a rolling display of top CPU using processes|32|. The
program is a customizable tool providing real-time view on the operating system status.
Customizations are based on selection of tracked and displayed system statistics. It is a
standard tool to be found in most Linux distributions or Mac OS. According to documenta-
tion the program is able to sample performance values in tenths seconds. Backlight intensity
is not an information provided by top. The output of the program is based on columns and
units of given values are configurable (e.g. bytes/kilobytes etc.), thus capturing the standard
output of top, parsing the text and saving these values would be a way to store collected
data.

PowerTOP is a power management, diagnosis and consumption tracking tool. One of
the main benefits of PowerTOP is that it tracks processor’s idle wakeups, which are harmful
to battery usage. It also provides view onto CPU and GPU usage. The program can export
measured values into multiple data formats, such as HTML and CSV. Export to CSV would
be beneficial for us, because it contains unambiguous pure data. To obtain measurements
throughout test sessions, we would have to continuously collect the data the same way as with
top. PowerTOP does not provide memory or 1/O statistics, therefore it must complement
other measurement tools if used.

Sar is a Linux utility for collecting and monitoring performance data throughout time.
It can be run as a service, thus provides a simple, yet comprehensive and powerful tool for
system monitoring. The program support the tracking of all resources we need, except for the
backlight intensity. Data are sampled in the interval of seconds based on the configuration.
The output of sar command is a binary file, which can be easily processed by sadf program,
providing output to standard text formats like CSV, XML or JSON. The sar does not
support tracking of single processes, rather provides a view of the system as a whole.

Pidstat is a program similar to top, but is much simplified and serves as a process monitor,
providing all required resources statistics except of backlight intensity, which does not make
sense in context of a process. It is also possible to track groups of processes by name, which is
would be a handy way to collect data from multi-process browsers like Chrome. Pidstat does
not support any form of exporting collected data to other formats and its results sampling
interval is in units of seconds.

The upower is designed to evaluate and control power management. It offers a simple yet
fullfeatured way to access the status of a power supply of the client based device, including

11



2.2. REQUIREMENTS FOR PERFORMANCE ANALYSIS TOOL

displaying all information provided by the ACPI. Upower writes to the standard output and
does not offer any mechanism for exporting results to other data formats.

To summarize, none of the presented tools provides all desired functionality, which leaves
us with either connecting those programs together or introduce our own tool, which fulfills
all of our requirements.

2.2.2 The /proc file system

In this section we examine the topic of system resources usage measurement on operating
systems based on Linux kernel for the need of implementing our own tool. If not explicitly
mentioned, we take into account only kernels of versions 2.6 and newer.

The commonly used interface to the Linux kernel is the 'proc’ filesystem (also known as
procfs), which is in typically (and in most standard distributions) mounted as ’/proc’. For
our use case - resources usage measurement - we only need a small subset of all it offers,
though. The procfs is called a pseudo or virtual file system, since it is not a real filesystem
accessing physical harddrive, but is implemented in the Linux kernel itself in is whole entirety.
There are no physical files present, rather it offers a real-time view and control for many
system properties from user space. For example if we run a simple command ls/proc, the
kernel will generate the file and directory listings based on the current set of processes and
system state. If we were to open any file, i.e. the ’/proc/meminfo’, the kernel collects current
memory statistics at the moment of our file request and then reflects the values as the file we
tried to open[33]. This is a certain benefit of the 'Everything is a file’[34] feature of Unix-like
operation systems.

All files we need in the procfs have their structure defined in the kernel documentation
and the man pages. For example listings 2.1 shows a piece of content of the ’/proc/stat’ file
regarding CPU usage. This is system-wide information represented as ’time’ spent in various
states. Time is expressed as units of 1/USER_HZ, where USER_HZ is a system variable
defaulting to 100 for most Linux distributions. We are most interested in the following values
(followed by column number in the example file):

e user - time spend in user space (outside the kernel) within all processes (#2)
e nice - time spend in user mode with low priority (#3)

e system - time spend in kernel space (privileged mode) within all processes (#4)

e idle - CPU idle time (#5)

Subsequently we can acquire total CPU usage in percents per system since its startup as
follows:

process_time = user + nice + system
CPU _usage = process_time/(process_time + idle) * 100

Counsidering that all time constraints are in USER_H Z means that even if we are able to
acquire real-time system statistics about CPU usage, we are bound to count with a maximum

12



2.2. REQUIREMENTS FOR PERFORMANCE ANALYSIS TOOL

of 1/USER_HZ time error (due to time units rounding). One possibility to minimize the
error is to make the variable as big as possible. Linux kernel supports values to be 100,

250, 300 and 1000 (see man 7 time), however changing this system variable requires kernel
recompilation.

Listing 2.1: CPU related content of /proc/stat.

cpu 303098 1956 68564 3018386 11969 0 412 0 0 O
cpu0 76676 484 18545 900668 6067 O 149 0 0 O
cpul 77521 372 17508 703152 2433 0 160 0 0 O
cpu2 74790 584 16061 706484 2028 0 84 0 0 O

cpud 74110 514 16448 708081 1441 0 19 0 0 O

The procfs structure exposes single process information in the ’/proc/[pid]/’ directory,
where 'pid’ is the system ID of given process. There are numerous files, each containing pieces
of process details, but we are primarily interested in the ’/proc/[pid]/stat’ file. Listing 2.2
shows an example of such file. All times in the 1/USER__HZ units of seconds.

If we follow the previous example of tracking solely CPU usage, there is only a subset of
provided values we need. These are:

e utime - time the process spent in user space (#14)

e stime - time the process spent in kernel space (#15)

e cutime - time the children processes spent in user space (#16)
e cstime - time the children processes spent in kernel space (#17)

e starttime - the time the process was started at (#22)

Calculating total CPU usage for a single process is a bit harder since we do not have pro-
cess idle time. Therefore we have to calculate this value as totalsystemuptime—processstarttime.

System uptime is accessible in the ’/proc/uptime’ file. Therefore the total CPU calcula-
tion goes as follows:

total _time(p) = utime(p) + stime(p) + cutime(p) + cstime(p)

seconds_since_start(p) = uptime — (starttime(p)/USER_HZ)
CPU _usage(p) = (total _time(p)/USER_HZ)/seconds _since _start

Listing 2.2: CPU related content of /proc/stat.

2876 (atom) S 2041 2250 2250 0 -1 4194304 52031 1623 328 0 9803 4162 7 2 20
0 22 0 4197 1338150912 28167 18446744073709551615 4194304 60888772
140721468545600 140721468544496 140690175699165 0 0 4096 134300907
18446744073709551615 0 0 17 0 0 0 33 0 O 62988688 65506724 99987456
140721468553327 140721468553348 140721468553348 140721468555235 0

The sole method of measurement usage of system resources is of course done by sam-
pling. By storing resources statistics in given moment, it is possible to evaluate the results
accurately both during and at the end of the session. The more results we have, the more
we minimize the total error.

13



2.2. REQUIREMENTS FOR PERFORMANCE ANALYSIS TOOL

However this does not affect the measurement error we get while computing actual usage
as difference between previous and current sample. This means we have to choose the
right sampling interval. For example if we were to set the sampling to 1 millisecond and
USER_ HZ would be set to 100, there is a great probability that we get only two different
values in 10 samples, since the values we read from i.e. ’/proc/stat’ file are in one hundredths
of second. Other 8 samples would be useless.

Memory management for single processes is more complicated, though. Linux memory
model works with virtual(VIRT), resident(RES) and shared(SHR) memory[35]. We are
mostly interested in RES, which is the physically consumed memory by a process. Note that
there shared libraries and memory are not reflected in RES, but in SHR. But SHR may be
distributed among multiple other processes, thus computing the total memory of used by
a process as pidmem = RES 4+ SHR is not precise and summing such values for multiple
processes may result in values exceeding the total memory of the device.

Disk I/0 operations and network statistics for each peripheral device are also accessible
through procfs, in ’/proc/diskstat’ and ’/proc/net/dev’ files respectively. The structure
of these files is similar to those presented earlier, therefore it is necessary to parse them
according to documentation.

To summarize, the procfs provides all information about resources we need, except for
backlight intensity battery charge status, which are not published by procfs previously men-
tioned tools for performance evaluation do not support it either. This makes for a great
foundation for building custom tools that analyze system performance.

2.2.3 The /sys file system

Throughout the time of Linux evolution the procfs became hard to maintain and devel-
opers missed that information and data it provides lack more common structure. For that
reasons another virtual file system, the sysfs was introduced. Usually mounted as ’/sys’, the
sysfs exports yet another interface layer between kernel and user space. All information are
exposed as files, following the Unix philosophy. The sysfs is a complement to procfs and is
a preferred way to expose various subsystems or devices interfaces now. All drivers should
have their directories automatically created while being registered, which is our main point
of interest - to access device’s power and backlight management. Registering a driver means
that the kernel module implements a few predefined functions|35].

The sysfs presents a concept of classes. A class is a higher-level view of a device that
abstracts out low-level implementation details. Drivers may see a SCSI disk or an ATA
disk, but, at the class level, they are all simply disks. Classes allow user space to work with
devices based on what they do, rather than how they are connected or how they work|[35].
For example power supplies are accessible under the ’/sys/class/power supply’ directory,
but naming the battery device present is out of sysfs scope. Thus there may be a battery
called '"BATO’ or one called ’smb347-battery’. The inside of the battery directory contains
multiple files regarding actual voltage, current, charge or other values. While the attributes
provided are believed to be universally applicable to any power supply, specific monitoring
hardware may not be able to provide them all, so any of them may be skipped.[35]. Presented
values are usually in micro units, for example voltage is in [pV]. Another interesting value is
‘charge’ - the battery’s capacity in [pWh]|. There is not only a current value provided, but

14



2.3. EVALUATING AND COMPARING FRONTEND TECHNOLOGIES

also a full charge capacity, which is a valuable information for our measurements. Tracking
the difference between full and current charge will enable us to evaluate absolute power
consumption during during our measurements.

Backlight control is also exposed by sysfs class under ’/sys/class/backlight’ directory.
We are mainly interested in maximal and current brightness. These are available in the
‘brightness’ and 'max_brightness’ files, containing a positive integer value representing the
light intensity.

2.3 Evaluating and comparing frontend technologies

There are multiple ways of testing and comparing various Ul technologies for web ap-
plications, mostly based on performance evaluation while working with DOM. These may
be based on unit or end-to-end tests, performing various use cases and tracking completion
time. For JavaScript there are even tools such as protractor-perf[36], an end-to-end test
runner checking performance regressions originally for AngularJS.

For testing use cases and their performance we may use even industry proven tool like
Selenium. The merit of using Selenium for our case is that we do not only strive to benchmark
JavaScript technologies, but also server-side frameworks, where using a test tool based on
frameworks like Node.js could become useless.

There have been many evaluations done on the performance of Ul technologies, but one
of the most extensive public tests are done by!, featuring over 30 contemporary JavaScript
frameworks. While the work does not present a clear winner, the results may be a handy
guide while picking a client-side Ul technology for new projects.

Such benchmarks are not quite what we aim to achieve, though. We want to evaluate
the behaviour of the browser and the whole system while using given technology. Some UI
frameworks may cache a lot, excessively allocating systems memory. Other may demand
too much CPU or contain so many resources that browser cache produces heavy disk I/0.
Ul frameworks or libraries also differ in their size, thus network bandwith may become a
limiting factor while accessing applications built with these. And the most important to us
is the final impact the technology has on power consumption of client’s device.

Another aspect that is mostly being left out is benchmarking in production-like envi-
ronments, meaning the Ul is tested against mocked remote services. But obtaining data
may be a crucial performance aspect when interacting with web applications. Generally we
can distinguish between server and client-side applications here, because server side needs to
load all data at once (without AJAX) to correctly render the Ul Client side frameworks can
benefit from the asynchronicity and separation of loading data from remote endpoints from
UI rendering. Furthermore if a page is combining data from various resources it is natural
that these can be loaded independently or lazily, which may be quite hard to achieve by
server-side tools.

Thttps://github.com /krausest /js-framework-benchmark

15



2.3. EVALUATING AND COMPARING FRONTEND TECHNOLOGIES

2.3.1 Testing approach

As we learned while studying UI technologies performance benchmarking, there is only
way to setup the comparison - to build a sample application providing few use cases to
accomplish. Then run end-to-end tests on all implementations, track and evaluate obtained
results. This approach is commonly measuring the speed of given operations, such as DOM
manipulation. We will broaden this to evaluate performance in the scope of successful
completion of a use case.

Next we will present an energy impact statistics based on system load testing. We want
to confirm previous works[20] done in the field and aim to find possible bottlenecks in web
applications Ul that have negative influence on power consumption. For this purpose we
will run a set of independent stress tests, focusing on putting high load on single resources
while tracking battery charge.

We would like to investigate the topic of possible connection between adaptive Ul and
energy consumption - can we somehow save battery charge due to progressive changes in Ul
rendering in real-time without rebuilding the application? Modern browsers already support
providing battery status information itself and exposes it to web pages through JS[29]. Our
main idea lies in moving client-side operations to the server in case of low battery charge,
perhaps automatically when battery life decreases below certain level. To explore this topic,
we will need a sample web application that employs both client and server side rendering.
We will conduct an empirical measurement and provide a summary of our findings and
recommendation for future works.

16



Chapter 3

Design

This chapter proposes the solutions for requirements and challenges described in analysis.
We present the methodology to for our measurements, the necessary tools and environment
setup needed to achieve objective results and overview the requirements for sample applica-
tion and design its features. We also provide a description of Ul rendering technologies we
will compare and in which our test application will be written.

3.1 Measurement method

From three presented approaches of measuring energy consumption in 2.1.1 we have dis-
carded using the wattmeter simply because it would make our experiments both hardware
dependent and hardly portable to different devices. Statistical approach by collecting hard-
ware information, acquiring performance data for short time period and then computing
long the presumed impact on battery bears a possibility of involving great statistical error.
Even though this approach is definitely a great choice for evaluating power consumption
for real-time analysis of the system, we are interested in undistorted experiments results.
Therefore we will use the method of continuous data collecting for a longer period of time,
which we will later evaluate as a whole. This approach is also beneficial for avoiding possi-
ble nonlinearites in battery discharge characteristics due to long measurement sessions and
diminishes the possibility of bringing statistical errors in results.

As the first step in our experiments we will perform load tests on individual system
resources. From the results we will create a power impact comparison, showing the differences
of consumed energe in relation with resource usage.

Next we will implement the sample application in all presented Ul frameworks and per-
form the measurements and all of them separately. We also have to take server load into
account, so we will divide the tests into two groups. In the first group we will perform the
measurement with only one client accessing the application. The other measurements will be
run with multiple clients performing the same tasks. We will still measure the performance
on one device, the same one we used for standalone testing. Finally we will evaluate the
data collected from client device in both low and high server load aspects and in context of
performance of all technologies.

17



3.2. THE SAMPLE APPLICATION

The economical optimization of using certain Ul rendering technologies is another task
we aim to accomplish. We will evaluate the collected data, focusing primarily on number of
completed tasks by the time of measurement, overall network traffic and lines of code needed
for successful implementation of the sample application.

3.2 The sample application

As a sample application for our experiments we will create a simple web management
system for creating and browsing public events. The system, we will call it Eventier, will
consist of two pages. The first is a list of events with and a search toolbar, containing input
fields for event name, date of the event and number of results displayed per page. Each row
of the events table will contain an action button, allowing users to view event details or edit
the event.

The second page will serve the purpose of viewing, editing or creating an event. All
data will be displayed in a form containing event name, description, entry fee, currency and
capacity. Next there will be the start and end date of the event (may be multiple dates) and
each of these date pairs will have an optionally rendered subform for the location details.
The location contains a total of 10 attribute fields and two control buttons for saving or
discarding modifications. Complete domain model of the application is depicted on figure
3.1.

18



3.2. THE SAMPLE APPLICATION

*

-participants

-event

-location

-locatiohype

-epentDetails >
event o mments

radigm Community Edition 0
Figure 3.1: Design of the domain model for our sample application.

As a result we will have a CRUD|30] application with a rather simple workflow, at least
on the client’s site. In our opinion most of today’s web applications are CRUD based from
the client’s point of view, thus even though the features of Eventier are limited, we present
it as an example of a real world web application.

19



3.3. SYSTEM RESOURCES UTILIZATION TRACKING TOOLS

3.2.1 Tested use cases

There are two use cases the users of the Eventier application can carry out. These are
searching for an event by name or date and editing or creating an event. We will employ both
situations in a single test scenario, that is to search for an event, open it for editing, open
and view the location details for a certain event date, close the location subform, edit event
name, save the event and then finally return to the event listing. We will implement this test
scenario using the Selenium framework. The Selenium tests have to deal with differences
of the result HTML page a certain Ul technology generates, but the main criterion is that
the only part of the script that is implementation specific is an XPath or ID of elements we
search for.

3.2.2 Backend design

Front end technologies influence the overall architecture of the application, therefore we
can not eliminate some differences in the backend while comparing Ul technologies. However
we need to ensure that the application core, the part of the system handling business logic
and data access, has to be the same across all implementations.

To solve this matter we will separate the backend of our sample application into multiple
modules with one common to all the others - the core module. The core must handle all
data access and logic without exception, otherwise our experiments would become faulty.

Other than core, there will be GWT, REST API, JSF and AspectFaces modules, providing
an interface for communication with the front end.

3.2.3 Testing adaptive Ul

While searching for a data interpretation tool we found Grafana|31], a data visualization
and monitoring tool. This tool has another great feature for our experiments, though, and
that is a configurable server or client-side rendering of output charts. Rendering interactive
charts on the client may heavily use system resources and therefore result in greater energy
impact. If rendered on the server, the client receives final chart as an image, thus there is
no additional computation needed in the browser. We will perform an energy stress test
with both server and client side rendering on data collected during our testings and evaluate
the difference in energy consumption of the client device. The results of the tests present
a valuable insight on possible employment of adaptive Ul technologies in energy critical
operations.

3.3 System resources utilization tracking tools

In the analysis chapter we came to the conclusion that we need a central synchronization
element in our measurements, and that is the time. Meaning we have to sample system’s
resource utilization in particular instant, we need a bus-like mechanism that will control the
measurement on a time basis. This does not concern the event based part of system, of
course.

20



3.3. SYSTEM RESOURCES UTILIZATION TRACKING TOOLS

Since we have not found a universal solution providing all neccessary data we need, we
have to build the tool ourselves. Earlier mentioned tools do not necessarily have the same
interface on all Linux distribution and combining them could result in portability issues.
Therefore we will build a simple program designed to collect system resources utilization
samples. Following sections provide an overview of the program’s design and its main fea-
tures.

3.3.1 The performance analysis tool

As we presented in the analysis, all information we need to acquire is accessible on the
procfs and sysfs virtual file systems. Therefore we need to build a program responsible for
correct reading and collecting values from these sources. Further in the work we will also
refer to the program as MWP. Fundamentally we have to focus on the time factor while
reading the system statistics - to objectively evaluate the results, all information within one
time iteration of the program has to be collected at a certain instant. A UML class diagram
providing an overall insight on the core design is shown on figure 3.2.

There are many system resources that may possible influence energy impact and we do
not focus on tracking all of them in our work, but MWP should be easily extensible in case
of future usage.

All the collected data have to be exportable to a specified data format. For this purpose
we will use a time series database (T'SDB)[38], a database engine optimized for handling time
data. We have chosen InfluxDBJ[37], an open source, high performance TSDB. A certain ad-
vantage of InfluxDB is that it is controled through RESTful API, therefore no additional
dependencies or drivers are needed to integrate our measurement tool with the database
except for an HTTP library, which is a core part of most commonly used languages. Fur-
thermore this creates a possibility to keep all the acquired data outside of the client devices,
being beneficial for distributing and collecting data from multiple clients at once without
need for physical access to the device.

21



3.4. INFRASTRUCTURE

TickTack<<Thread=>> Management
-is_running -history : dict
-interval -time_prewv
-time_managements : list +get_results()
+add_listener(} =
+set_listenersi )
+runi}
+stap()
TimerlUsage Management EventlUsageManagement
1 +measure( ) +handle_eventi}
A g Jiy 0.+ N
1
Sassion
-started : bool 1
-stopped : bool |-
+broadcast_event(} i

+collect_results()

+start()
+stop()
CpuManage ment 'OManagement EventManagement
+measurel } +measure( ) +handle_eventi}
| ;
i ¢
“ i ¥
1 i
Concrete resource
managements.
Powered By Visual Piradigm Community Edition &¥

Figure 3.2: Class diagram featuring the core design blocks of our measurement tool.

Since we intend to test web applications, we also want react to certain events, that occur
on the tested page. For this purpose we will create two different modes for running MWP:
a server and CLI mode. In CLI mode the measurement will start immediately when the
program is run, and listening to other events will not be possible. The server mode will run
as a minimalistic HT'TP server, awaiting either control or application events on predefined
port. Control events are to start and stop measurement session, application events may vary,
but generally are POST requests containing a predefined data structure as JSON payload.
An example of such event may be page load time, sent to the MWP server asynchronously
by the loaded page itself after it is rendered.

3.4 Infrastructure

For successful experiments we need at least two physical computer devices. The deploy-
ment diagram of used components is depicted on figure 3.3. First a mobile battery powered
device (the client) and a server, which on which our sample web application runs. The client
device has to be running a Linux based OS with kernel version newer than 2.6, Python3
interpreter and Google Chrome web browser (or its open source spin off Chromium).

We can further divide the server into additional components. These are:

e web server - serving static content, handling SSL etc.

e application server - running the application

22



3.5. DEPLOYMENT ENVIRONMENT

e database - application data storage

As a web server we will use the Nginx high performance HTTP server. Nginx will handle
static files serving, i.e. HTML, CSS and JavaScript files of client-side Ul technologies, and
will act as a reverse proxy for the application server. For our experiments we will not use
encrypted connection to the server, but if future work requires such features, Nginx would
handle the HT'TPS protocol. Nginx is an open source project distributed under the terms
of BSD-like license.

<<device>>
Server - Linux

<<component== E
Nginx web server

HTTP - <<companent>= g
==devices= LT Jboss Wildfly &
Client - Linux -
i <<=artifact>> O
Eventier.jar

<<components= E
Chromium

==component== E

han3 <<component>=
Pyt PostgrasqQL 9 g

| Faratigr oMty £t %

Figure 3.3: Deployment diagram featuring used components in our experimental setup.

The application server we chose for running tested application is Jboss Wildfly 8[53], a
Java EE 7 compatible EJB container. Wildfly is an open source project distributed under
the terms of LGPL 2.1 license.

We will use the PostgreSQL 9.5[39] as a database engine for our application, an open
source technology distributed under the terms of PostgreSQL license, similar to MIT[11].
Since our backend stack is build primarily on Java platform, the application and database are
connected through JDBC and Eventier does not leverage any PostgreSQL specific features,
we are no limited to single database engine.

We would like to note that the deployment diagram featured on figure 3.3 is rather
simplified, at least for the server. Each component on the server can run on a separate
machine, there is no need that all are present on one server. This is important if we run our
application in highly distributed environments or in a cloud using PaaS|54|. The description
of a specific server setup will be provided for all our measurements later in the work.

3.5 Deployment environment

In our preliminary work|[16] we have preformed the measurements on a rather resourceful
server deployed on-premises with client connecting through 100Mbit/s LAN. Having on-
premise server may become costly, at least from the initial costs point of view. Nowadays
there are multiple public cloud providers allowing us to use their infrastructure and pay
only the rental costs or even offer a free trial period before paying full subscription. For our

23



3.6. TESTED FRONTEND FRAMEWORKS

purposes we will use the deployment to the public cloud and connecting clients through the
internet. Figure 3.4 features a diagram of the hardware and network setup we will use in
our experiments.

@ Web server
b=i)) —@—(K\\)
Client device on WLAN Application server

Internet
gateway

Database

Figure 3.4: Hardware and network model of experimental setup.

3.6 Tested frontend frameworks

We chose from a variety of front end frameworks and libraries both cutting edge and
industry proven technologies. Therefore for testing purposes we use:

e JavaServer Faces 2

e Google Web Toolkit

e AngularJS

e Angular 2

e ReactJS

e JavaServer Faces 2 with AspectFaces

e Angular 2 with AspectFaces

Following content of this chapters provides a short description and introduction into each
technology used. For every technology we also provide a short description of development
experience we gained through the implementation part of our work.

3.6.1 JavaServer Faces 2

The JavaServer Faces 2[41] (also known by abbreviation JSF) is a standard view tech-
nology of the Java EE stack, currently in version 2.2, specified in JSR 344. Since JSF
is a standard, there are multiple implementations available, but for our purposes we use

24



3.6. TESTED FRONTEND FRAMEWORKS

the Mojarra, a open-source JSF implementation by Oracle. The JSF is an XML component
server-side framework, allowing advanced templating, component composition and extension
mechanism. It is a stateful technology by design, build on top of stateless HI'TP protocol.
The JSF supports multiple output formats, but our main interest is HTML.

3.6.1.1 JSF lifecycle

To grasp how JSF works internally, one has to understand the so-called JSF application
lifecycle first, shown on figure 3.5. The lifecycle is a set of actions initiated by client’s HT' TP
request for a resource (a web page), leading to rendering the final view as a response.

Faces Request Component tree restored or
R4 ¥
4\? & Submitted form values
4® / 2. APPLY REQUEST VALUE9 stored in component
* / » Component values
/ converted.
\ Process Events |
e
/ i 4
/ \'-‘“/«le?/ (3. PROCESS VALlDATIONS) Component values validated
/ Ve o ot
10! '
s e 1

to backing bean properties

_UPDATE MODEL VALUES) Component values bounded

y ® Application level events
handled

- <5. INVOKE APPLICATION ). Application methods

invoked

* Navigation outcome
6. RENDER RESPONSE ) Component values populated

calculated
from backing bean properties

Figure 3.5: The JavaServer Faces application lifecycle

The first phase is Restore View, responsible for creating or restoring original component
tree. The view can be restored only if it has been saved before our initial request, for example
if the request was a submitted form, JSF has saved the previous component tree when user
loaded the form page. If no view has been saved before, there is a new one created and all
other phases but the last one are immediatelly skipped.

The following Apply Request values phase handles the extraction of request parameters
and applying these to the component tree. If there are some value converters specified for
given component, the conversions are also applied to decoded values in this stage.

The third stage, Process Validations, is responsible for validating processed view. All
components with a JSF validator attached has their values checked. If there are some
validation erros, JSF adds error messages and proceeds with rendering final response to
client.

25



3.6. TESTED FRONTEND FRAMEWORKS

Next phase, Update Model Values, handles the updates made through view to the model
in the backing bean. Therefore the component tree is traversed and all input’s local values
are set in model values according to their respective binding defined in the Facelet. If any
error occures, JSF throws a conversion error and continues with rendering response.

The fifth phase, Invoke Application, handle internal application calls. For example if
there is a method for execution defined after form submit, this method is synchronously
executed in this phase. Also navigation outcome and is calculated, therefore it is possible to
navigace to other pages only once the lifecycle successfully finished without any unexpected
exceptions or errors.

The final phase is Render Response. This stage is responsible for filling the component
tree values from its model in the backing bean. As the view is completely created it is sent
back to the client as a HT'TP response. The important part here is that the state of the
response is saved so it is later accessible by following client requests and the view can be
restored in the first phase.

AJAX]10] is also a part of the JSF specification since version 2.0. This allows partial
view processing, thus the application lifecycle is also able to handle requests with just a
subset of the component tree. Addition of AJAX to JSF is a great asset providing better
user experience and a possible network traffic reduction if used properly, since there is no
need for whole page re-rendering.

A great asset to the developer’s experience is the statefulness of JSF, therefore application
state and whole context is accessible on the server in one place. It is easy to develop and
maintain JSF controllers (backing beans) and Facelets. Since the framework is server-side,
the codebase does not suffer code duplication in stages of data validation or restatement of
business logic on the client.

It is common practice to use some component library on top of plain JSF, for example
PrimeFaces or RichFaces. Such libraries provide a large set of components and rich features
out of the box. It is also possible to use scaffolding, such as Jboss Forge, a rapid application
development tool that can generate JSF Ul from application model.

The JSF HTTP communication relies heavily on POST and GET methods, thus it may
become confusing for a web developer that DELETE and PUT is not used. Another issue
to be concerned about is view fragment tangled together with page data. This means it is
impossible to get application’s data without its view counterpart, making system integration
a challenging task.

3.6.2 Google Web Toolkit

Google Web Toolkit[42] (also known as GWT) is a client-side framework for Java with a
distinctive approach to web development. Introduced in 2006 by Google, GW'T provides a
way to create applications fully backed by AJAX (single page applications) without actual
need to use the standard web technology stack, that is HTML, CSS and JavaScript. As of
today, the framework has reached version 2.8.

The main difference to other mentioned technologies is that the programming model of
GWTT is to write the application just as if it was a desktop rich client written in Java with a
view library like Swing. The GW'T library provides wrapper-like classes similar to standard

26



3.6. TESTED FRONTEND FRAMEWORKS

Swing components, such as buttons or input fields, which are then compiled to JavaScript
by the GWT compiler. Cross-browser compatibility is solved by a mechanism call deferred
binding. This feature generates multiple versions of result JavaScript code, each suitable for
different client browser, such as Google Chrome, Safari, etc. The correct version of the script
is then determined by client’s browser on request and loaded in runtime. This feature is also
enabled for language localization if the GWT Internalization module is used, for example
there may be result scripts like "Safari in English" or "Safari in German" as a result of such
build. As the documentation states[42], this should be beneficial maily to the client, since the
resource size to download is much smaller then if it was full cross-browser and internalized
batch of resources.

As was said earlier, GW'T library’s GUI components are similar to Java desktop frame-
works like Swing or JavaF'X. Once programmed and ready to build, the framework performs
inspection of used components, which have a binding to HTML elements or JavaScript inter-
nally defined. This may seem like a limitation for look and feel customization, which GWT
solves by the UiBinder feature[42]. The UlBinder is a XML-like templating mechanism to
combine plain HTML with GWT components. Each UiBinder XML file is tightly bounded
to a Java class, which wraps used GWT components as class fields decorated by mandatory
metadata. The result of such approach is a simple, yet comprehensive and powerful creation
of custom GW'T Ul widgets.

Listing 3.1: GWT’s UiBinder template example.

<g:HTMLPanel styleName="row col-xs-offset-1">
<div>
<label class="col-xs-1 control-label">Start date</label>
<div class="col-xs-2">
<g:TextBox ui:field="startDateField"
styleName="form-control"></g:TextBox>
</div>
</div>
</g:HTMLPanel >

Compared to JSF, GWT does not implicitly define a view-to-data binding. This matter
is conveniently solved by the GWT Editor framework[42]. To use the editor, it is necessary
to define auxiliary objects (Driver, Adapter and the Editor itself) handling data propaga-
tion. This object composition seems slightly difficult to grasp, but once used properly, this
approach becomes concise, dynamic and much cleaner than manual extraction of values
through components.

There are multiple protocols used for client-server communication. If used with a Java
backend technology, the most reasonable way is remote procedure call, known as GWT RPC.
GWT creates a standard Java servlet for all properly configured backend services, which
handle the communication with client based on standard HTTP calls. The frameworks is
responsible for managing both Java objects serialization and internal HTTP calls, leaving
out the need to write such boilerplate code by the developer.

Another way to communicate with the server is manual data retrieval through HTTP, a
convenient approach while using non-Java backend services. GWT provides handful tools to
access the protocol and process its data, mainly supporting JSON and XML data formats.

All calls from client to server are asynchronous. GW'T generates an asynchronous service
instance for every GWT RPC Java service. Also manual HTTP calls require mandatory

27




3.6. TESTED FRONTEND FRAMEWORKS

callbacks to process server response. Therefore client-server communication relies on AJAX
calls heavily, making GW'T pages responsible and improving user experience.

Since the GW'T compiler inspects code for translation to HTML or Javascript, the client
part of the GW'T module must not contain any Java objects without source code. This also
applies to all imports of such classes, therefore on the client-side it is practically possible
to use only imports from GWT project and basic POJOs. An example of such challenging
integration with backend Java EE module may be the use of JPA entities throughout the view
module. Even though an entity is a POJO with JPA specific annotations, GWT compiler
requires source code even for the JPA implementation. This is unfortunate since it enforces
either some kind of DTO[27] layer between backend and view module, or the necessity of
publishing some kind of language agnostic AP communicating through universal protocols,
for example a RESTful web services through HTTP. Also dividing project into multiple
modules requires each module to contain a GW'T descriptor file, thus making code reuse
through shared libraries difficult, since these would have to be polluted by GWT project
dependencies.

The support for client-side unit testing combined with the robust strong typing of Java
language gives GWT an upper hand when considered as a front end technology to use for
environments, where changes occur frequently and regression testing is therefore a must.

3.6.3 AngularJS

AngularJS[6], simply Angular or Angular 1.x, is a complete JavaScript framework for
building rich browser-based applications. Founded in 2009 by Google, it has been proven in
production over the years and can be considered an industry standard for web applications
front end development. Current version is 1.6. Angular emphasizes the decoration of HTML
view fragments with JavaScript without manual DOM manipulation and provides a robust
way to do so, comprehensible to JavaScript developers.

The preferred design pattern for Angular applications is Model-View-Controller. This
means that separation of concerns plays a great role, simplifying both development and
maintenance. Every part of the application is separately and easily testable. Controllers use
vanilla JavaScript, thus one does not need to get familiar with neither some custom language
obscurity nor with possibly complicated project setup. For HTML, Angular provides custom
directives, allowing constructs such as loops or conditional rendering in view definitions. Such
feature brings forth a powerful templating mechanism, significantly simplifying dynamic
DOM manipulation based on specific controller and its data. The view and controller are
bind together by the so-called "scope"[43]. Scope is available to the controller or template
at any time of its use, providing access to the view layer and vice versa and eliminating any
need for manual DOM manipulation.

Listing 3.2: For-each construct by a directive in AngularJS.

<tr ng-repeat="event in events">
<td>{{event.name}}</td>
</tr>

Angular provides a two-way data binding, a mechanism providing a link between view
data and controller data. In case either one of these changes, the other gets updated ac-
cordingly and automatically. This is mainly beneficial for applications with relatively simple

28




3.6. TESTED FRONTEND FRAMEWORKS

application state management, since all data manipulations are handled by the framework.
Though it may also become a problematic matter for complex systems, where cascading
model updates occur, resulting in possibly undesired view cascading updates.

Client side validation is included by default in the AngularJS distribution. Adding va-
lidation constraints to forms is performed in the HTML template by addition of element
attributes. Creating custom validators is also supported out of the box. Of course validation
is not required for Angular forms. Turning it off is done simply by appending the novalidate
directive to the <form> HTML element in the template.

While interacting with forms in Angular, the framework checks whether there were some
changes made, if fields are valid and so on. As a result, each form’s input element has a CSS
class assigned, corresponding to its state. For example if the input field has not been touched
and its model is valid, it will implicitly have the ng-pristine and ng-valid CSS classes. If
a modification on the field is made, the "ng-pristine" class is removed and "ng-dirty" class
takes its place.

For client-server communication is prepared the "ngResource" module built on top of
XHR. A simplified API and asynchronous execution guarantee comfortable access to HT'TP
based services while preserving user experience, since there is no need to wait for server
response.

One of the key concepts in AngularJS is dependency injection. Built into the core and
being a preferred way of decoupling the application code, the main benefit of using depen-
dency injection lays in an ease of testability on both unit and integration levels. Combining
Angular’s own ngMock for services mocking with universal JavaScript testing libraries, such
as Jasmine[44], Karmal|45] or Mocha|46], we can build a full-featured testing framework
assuring the application quality.

3.6.4 Angular 2

Angular 2 is a successor of the AngularJS framework, but completely rewritten and not
backwards compatible with 1.x version. The main objective of Angular 2 is to solve the
imperfections of previous version and fulfill the expectations of modern JavaScript toolset,
be it bringing static typing to the client-side with TypeScript (on which the whole framework
is based), featuring server-side rendering or performance optimizations. Announced in 2014
and reaching first release version in 2016, Angular 2 has emerged just recently, but seems to
be gradually building its community and whole ecosystem.

Following its predecessor, Angular 2 follows the "batteries included" philosophy, meaning
all necessary tools are included in standard distribution of the framework. As was said earlier,
the preferred language to use for writing Angular 2 applications is TypeScript, a superset
of ECMAScript6[47]| specification, offering static typing, modularization and decorators, a
feature similar to annotations in other languages, which Angular 2 uses heavily.

Angular 2 applications are clearly divided into modules based on language specification
rather than custom mechanism, which was one of the downsides of previous version. Modules
can be also optimized for loading, there is no need to load all resources at the time of
application startup. This improves both testability and logical separation of the application
into independent and possibly reusable pieces of code.

29



3.6. TESTED FRONTEND FRAMEWORKS

Listing 3.3: Example Angular 2 component.

import { Component } from ’Qangular/core’;
@Component ({

selector: ’my-component’,

template: ’<div>Hello {{name}}. <button

(click)="sayHello () ">Hello</button></div>’

b
export class MyComponent {

constructor () {

this.name = ’Max’
}
sayHello () {
console.log(’Hello’, this.name)
}
}

Templating mechanism was also revised, bringing forth the composition of smaller, in-
dividual components, which contain a portion of application logic and respective part of a
view. A component is a simple class with the @Component decorator added to its signature,
specifying at least a component’s unique name (called a selector) and full content of the
template or a link to a template HTML file. Custom, Angular 2 specific, directives have
been preserved, though there are syntactic diffrences to the previous versions. For example
the ng-iterate directive has been changed for *ngFor. The behaviour stays intuitive though,
thus there should be no issues for AngularJS developers to get familiar with new directives.

3.6.5 ReactJS

ReactJS[48] (or React) is a declarative, component-based view library for JavaScript.
Compared to other introduced client-side technologies, ReactJS is not a complete framework,
but really handles just the presentation layer. Developed by Facebook, the library was
introduced in 2013. ReactJS focuses on using plain JavaScript and JSX|[48], an extension
enabling the usage of HI'ML syntax for custom components and composition, which is
translatable to pure JavaScript. The philosophy of ReactJS is to manage the HTML part
of view by JavaScript, rather than decorating HTML with JS, mainly benefiting in keeping
the application state out of the DOM.

One of the key concepts behind React is Virtual DOM, a DOM manipulation engine.
The library keeps a pseudo copy of the DOM in memory, represented as pure JS objects.
When a state changes, of course we have to propagate it to the DOM. React solves this
by creating another copy of Virtual DOM and then computes differences between the old
and the new one. Finally only the differences are propagated into the real DOM by browser
optimized algorithm. This mechanism gets even powerful when used in combination with
immutable data structures, such as the ImmutableJS library provides. The trick here is that
immutable data cannot change, only the reference can, thus React does not need to perform
full diff of data object properties, it is enough to know, that the data changed. Such feature
also gives developers a simplified point of view for handling events, treating the view as if it
was completely re-rendered.

React components are JavaScript sources containing both the logic and the view part.
An example is shown in listings 3.4. Every component must inherit from React. Component

30




3.6. TESTED FRONTEND FRAMEWORKS

base class or be created by calling React.createClass() function. Final requirement final
requirement for component is to have a render() method, which returns a JSX with exactly
one root element - either plain HTML or another component. If a component is exported as
a module, it can be reused in other components by its name without restrictions.

State management is also part of the library, but it seems to be a preferred way to
handle application state with external tool, such as Redux[49] or MobX[50]. React’s own
state management is based on preserving only local state in components. Synchronizing
state can become difficult while handling multiple nested components, which have the need
to mutate this state. As a result, handling the local state may become a code heavily polluted
by callbacks or hacks.

Listing 3.4: Example ReactJS stateless component.

// renders an unordered list of items passed as component properties
class TodoList extends React.Component {
render () {
return (
<ul>
{this.props.items.map(item => (
<1li key={item.id}>{item.text}</1i>
)}
</ul>
)
1
X

ReactJS is an easily comprehensible technology to embrace by any web developer, because
apart from slightly customized syntax of JSX it is just vanilla JavaScript. It is fast, robust
and independent of any other technology in front end stack. But there also lies the possibly
negative side of using React - one has to build a custom front end technology stack, keep
it up to date and ensure that all technologies in the stack work together. Furthermore it
is a necessity to know all the technologies in the stack, not only React. Compared to a
full-fledged framework like AngularJS, this definitely provides great flexibility, but might be
time consuming to setup and maintain.

React’s production distribution itself has only about 130kB of size, which is approxi-

mately four times smaller then Angular 2 - this may be an advantage for mobile devices
accessing the network through slow connection.

3.6.6 AspecFaces

AspectFaces|13] is a Java-based context-aware tool for inspection, evaluation and trans-
formation of Java beans model into a single user specified output. Leveraging both static and
dynamic inspection, AspectFaces is a universal, comprehensive and extensible framework.
Our main objective is evaluating the performance of various front end technologies, thus we
will focus on the user interface generation. Currently there is support for dynamic (runtime)
UI generation for JSF 2 and Angular 2, which we will try to evaluate.

While developing UI, one has to consider many aspects, for example:

e data type of the presented information - i.e. string or number - and conversion handling

31




3.6. TESTED FRONTEND FRAMEWORKS

e data binding - addresses the information binding to data model

e security - can some user access or see the information, i.e. RBAC[51]
e input validation - prevent corrupt data from application|

e presentation - final look and feel of the information

e composition - presented information is related or composed of other Ul elements

While developing Ul with today’s standard technologies, we often run into a state where it is
necessary to combine all these into a single output. Without using powerful templating tools,
such requirements result into repetitive, tangled and verbose Ul code. AspectFaces try to
solve this issue in three main stages: inspection, transformation and finally code integration.

Inspection phase has an AspectFaces component as its input, performing Java Bean
inspection and construction of meta-model. Such model, containing all separated and ex-
tracted aspects for inspected instance, is context-aware, because the original model can define
additional security, presentation or other rules.

Transformation phase is the crucial part, since it processes the meta-model using the
aspect approach, reusing all of the concerns and producing final Ul code fragments. This
stage has three subphases: Presentation rules, Template composition and Layout integration.
The Presentation rules stage says how to bind data field from model to Ul field. For example
we may want to present string field in a form as a single input field or as a textarea based
on chosen criteria. For such purposes it is possible to map UI fragment files to both Java
types and even add conditional subselection of a fragment file based on variables derived
from model using Expression Language (EL) as evaluation tool.

Template composition takes the output of the Presentation rules, which is a Ul template
selection, and evaluates its content in the context of instance meta-model. And example
of such template can be seen in listings 3.5. The notable part of the listings is the code
encapsulated by the "$" character. These expressions are evaluated in by AspectFaces in
the context of instance meta-model. It is also possible to create template nesting - the
template attribute of the wui:decorate element references another JSF template, which can
also access the AspectFaces context and EL internal expressions.

Listing 3.5: Example AspectFaces form input template for JSF 2.

<ui:decorate xmlns="http://www.w3.org/1999/xhtml"
xmlns :h="http://xmlns. jcp.org/jsf/html"
xmlns:ui="http://xmlns. jcp.org/jsf/facelets"
xmlns:f="http://xmlns. jcp.org/jsf/core"
xmlns:c="http://xmlns. jcp.org/jsp/jstl/core"
template="#{empty template 7 ’/WEB-INF/af/profile/bootstrap/simple.xhtml’
templatel}">

<ui:param name="id" value="#{prefix}$field$" />

<ui:param name="value" value="#{$entityBean.shortClassName ()$.$field$}" />

<ui:param name="rendered" value="#{empty render$field.firstToUpper(D$ 7
’true’ : render$field.firstToUpper () $}t" />

<ui:param name="required" value="#{empty required$field.firstToUpper()$ 7
$required$ : required$field.firstToUpper (D$}" />

<ui:param name="maxlength" value="$maxLength$" />

32




3.6. TESTED FRONTEND FRAMEWORKS

<ui:param name="size" value="$size$" />
<ui:param name="readonly" value="#{empty edit 7 false : l!leditl}" />
<ui:param name="label" value="$label$" />

<ui:define name="input">
<h:inputText id="#{id}" type="text" required="#{requiredl}"
value="#{valuel}"
class="form-control"
readonly="#{readonlyl}">
</h:inputText >
<h:message for="#{id}" />
</ui:define>

Finally there is the Layout integration phase, an XSLT[52] inspired feature allowing to
further integrate transformed final Ul fragments into layouts by providing support for looping
and attribute extraction.

The main objective of AspectFaces is to reduce such restatements, improve system’s
maintainability and provide rapid development of Ul without compromises in terms of fea-
tures or limiting used front end technology. According to the authors of the framework, there
is negligible performance impact while using AspectFaces with JSF 2[13].

Just like JSF tag libraries or other Ul extensions in different languages, AspectFaces
components can be easily reused between multiple projects. This way one can rapidly build
application UI once the component library is built.

It is necessary to get familiar with the framework and its documentation before usage,
though. Building custom UI component templates for AspectFaces might be time consuming
at first, but it should still save up to 25% of UI development time[13].

33




Chapter 4

Validation of our measurement tool

This chapter presents a validation and accuracy of our measurement tool, MWP. Since
we created our own prototype, we need to prove it provides results of sufficient quality to
be used not only for our experiments, but also that it is generic enough to be used as a
foundation for future works on performance analysis for Linux-based systems.

Compared to other presented works on the topic [17] [19] [20] we have not used a
wattmeter to obtain actual power usage, but rather rely on kernels ACPI interface infor-
mation about power status of the device. Therefore our validation technique focuses on
statistical comparison to previously done research [19] [20] [22], which proved to have at
least 95% accuracy.

4.1 Validation method

Our validation method is similar to mentioned related works, targeting extended empir-
ical measurements and tracking system resources utilization and energy consumption. We
focus on measurements of individual resources and total power impact on the device.

We focus on tracking all resources MWP features:
e CPU

e RAM

e Disk I/O

e Network traffic (on WiFi)

e Backlight

As [20] suggests, backlight is a static element in the analysis, independent of all other
resources, therefore even if its intensity has influence on power consumption, it should always
be static. The difference in consumption while displaying different color scale [20] is discarded
here by running all tests in black terminal without additional interactions with the device.

We have designed a set of tests for each system resource, creating excessive load while
trying to spare usage of other system components. The only exception is for disk I/O test,
where the OS tries caches a lot and uses as much memory as possible.

34



4.2. RESULTS EVALUATION

System Resource Resource load | Charge taken[%] | Power[W]
CPU 99.99% 78.18% 13.59
memory 7631.5MB 37.52% 6.66
disk read 738756.37TMB 50.98% 9.04
disk write 67836.9MB 58.15% 10.01
network traffic (WiFi) 5648.05MB 38.41% 6.83
backlight 100% 47.71% 7.86

Table 4.1: Energy impact of excessive system resource usage during 3 hours stress tests

4.1.1 Laboratory setup

In our measurements we ran all tests on Dell Vostro 14 laptop as a client, having processor
Intel(R) Core(TM) i3-4005U running at 1.7GHz with 2 cores / 4 threads, 8GB DDR3 RAM
at 1600MHz in a single module, and Samsung SSD 850 hard drive. The laptop is running
Ubuntu Linux distribution v16.04 with stock kernel 4.4.0-45-generic.

We have performed 3 hours long session for each resource to diminish possible perfor-
mance peaks and statistical error during measurements. This also enables us to evaluate
possible nonlinearities in battery discharge characteristics, which we have to take into ac-
count.

Before every test we performed a hard reset of the device, stopped all unimportant system
services on the client and flushed system’s in-memory caches. The backlight level stays the
same for all tests except for its own, where we focus on energy drawn by full intensity.

4.2 Results evaluation

Table 4.1 presents the results the system resource utilization has on power consumption of
our tested device. The results clearly show that the CPU is the highest power consumer with
78.18% of the charge taken while operating fully active on all cores and threads. Another
major factor we have to consider are disk reads and writes, which respectively consumed
50.98% and 58.15% of the battery.

4.2.1 Evaluation and summary

Our findings are similar to [19] [20], except for the memory usage, which related works
suggest to be on equal power terms with disk operations. This state is given because of
the fact that there is only one memory installed module in our tested device. According
to installed memory datasheet!, the maximum operating power is 2.7W. Therefore if we
were to install additional module, the power consumed during the tests would have risen
approximately to the level of disk I/0.

Next we have to counsider potential benefits and threats to resource usage from web
application’s point of view. High CPU and memory can be easily generated by the browser,

!<https://www.kingston.com/dataSheets/KVR16LS11_8.pdf>

35



4.2. RESULTS EVALUATION

mostly at applications initialization stage or while using graphics client-side technologies
(i.e. graph plotting, drawing tools). Network traffic in units of gigabytes is also not a
standard feature or web systems and is rather an issue of big file transfers. Disk I/O power
consumption seems to be a problem, but if we consider relative per-hour rates of usage, that
is over 200GB read and 20GB written, we dare say that there is not a single existing web
application or browser that can generate such huge amount of data on the client’s device.
We will provide a further look on total disk I/O in our case studies from a real application
view.

To summarize, our tool, MWP, which is based on reading values provided from kernel
interface, provides sufficient precision and is comparable to tools other researchers [22]| have
used and proved their quality.

36



Chapter 5

Case study: Eventier

In this chapter we present a performance and power consumption case study on our sam-
ple application, Eventier, featuring functionality described in 3.2. We have reimplemented
the application’s UT in all presented technologies3.6 with focus on preserving the UX (UI
design, process flow) and achieving desired use cases. We compare the implementations in
two scenarios: a single and multiple clients accessing the server while repeating desired use
case by a Selenium drone.

5.1 Deployment and testing environment

The client device is Dell Vostro 14 laptop, the same as featured in 4. The client is running
Google Chrome 53. It is connected to the network through WiFi, connectivity bandwidth
is 10Mbit /s for download and 720kbit /s for upload. The server is deployed to Amazon EC2
t2.micro instance', having Intel Xeon CPU E5-2676 v3 processor (@2.40GHz), 1G RAM
(frequency not provided) and General Purpose SSD drive. The server is placed in West
Europe region (Frankfurt). The OS is Ubuntu Server v16.04. On the server we used the
Nginx as web and Jboss Wildfly 8 as application server as described in 3.4. Wildfly runs
on Java 8 with following parameters: -Xms256m -Xmz512m -XX:MaxMetaspaceSize=256 M
-Djava.net.preferIPvjStack=true. Nginx is running with default configuration.

PostgreSQL database runs on a separate machine, also in West Europe region (also
Frankfurt), running on Amazon RDS db.t2.micro? instance. The database runs with default
configuration, which should be optimized for machine’s resources.

5.2 Network traffic comparison

In this section we explore the differences in network traffic for every Ul technology.
Taking browser caching into consideration we focus on four basic scenarios: first page load,
searching for events with 15 items displayed per page, loading event edit page and submitting
event form. The results are shown in table 5.1.

! <https://aws.amazon.com/ec2/instance-types/>
2<http://docs.aws . amazon. com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html>

37



5.3. SINGLE CLIENT PERFORMANCE

Technology || Initial[kB] | Search[kB] | Edit[kB] | Sumbit[kB]
AngularJS 533 22.2 5.5 1.9
ng2 + AF 4200 24 74 1.9
ReactJS 918 222 9.5 1.9
GWT 580 1.7 1.2 1.1
JSF 381 9.5 4.2 9.7
JSF + AF 381 9.5 4.2 9.7

Table 5.1: network traffic comparison for Ul technologies.

As we can see, there are many similarities in the results. Client side JS based technologies,
separating view from data, transfer the same amount of data for test cases except for initial
load. Also Angular2 has 1.8kB per some requests for form data model - an additional feature
for UI generation provided by AspectFaces. GWT heavily relies on its own data transfer
protocol and g¢zip encoding, making it the winner of our tests. JSF in both cases performs
well on GET requests (reading data from server), but clearly has the highest payload when
submitting the form for server processing. In interesting observation is that JSF needs
more than twice smaller data to search events. That is because our sample events have a
description field containing a long Lorem ipsum text, which is shortened to 50 characters on
all implementations. And because JSF renders on the server, it is saves unnecessary traffic.

The initial network communication is another issue we need to address. The more data
is needed at startup, the slower does the page load. Clearly, Angular 2 needs the larges
amount of data (a compiled bundle consisting of all JS)3

5.3 Single client performance

As was mentioned earlier, we are interested in the speed of battery discharging and the
number of tasks the user is able to successfully perform. To test both JSF and AJS clients
we took 1 hour long measurement sessions, running the use-cases described in3.2.1. Tests
were executed by a Selenium drone. The system resource utilization results are shown in
table 5.2. Backlight is omitted as it was set to a constant value for all tests. Columns Read
and Write refer to disk I/O. Next, table 5.3 presents number of completed use cases in the
time of one hour and a relative battery charge loss.

The results clearly show the browser does aggressive caching|3|, saving file onto the file
system. Here GWT is greatly efficient, since its JavaScript compiler focuses on browser
optimization of by the deffered binding[42]. Also network communication greatly benefits
from the gunzip encoding, being nearly 4 times smaller compared to second more efficient
JSF.

3We have built Angular2 implementation according to original tutorials on <angular.io>, used precon-
figured project through angular-cli and minimized final build with uglifyjs. There is an advanced technique
we have not tried for size reduction, called tree shaking <https://angular.io/docs/ts/latest/cookbook/
aot-compiler.html>, which may have a positive impact on size optimizations.

38



5.4. MULTIPLE CLIENTS PERFORMANCE

Technology CPU[%] | Mem | Read | Write | Network
AngularJS 17.81 | 1834.60 | 73.86 | 183.79 59.31
Angular2 + AF 17.32 | 1733.91 | 109.77 | 212.42 70.48
ReactJS 17.64 | 1942.05 | 37.21 | 179.89 01.32
GWT 16.64 | 1956.77 2.04 | 41.32 11.49
JSF 19.78 | 1662.31 6.58 | 191.69 41.39
JSF + AF 17.98 | 1586.10 | 25.14 | 188.22 40.20

Table 5.2: Performance utilization consumption comparison for UI technologies. Single client
accesses the application. All values are in MB if not stated otherwise.

Technology Tasks done | Charge taken|%]
AngularJS 823 18.03
Angular2 + AF 844 18.08
ReactJS 799 19.10
GWT 810 17.21
JSF 697 18.72
JSF + AF 695 17.82

Table 5.3: Power consumption comparison and performed tasks statistics for Ul technologies.
Single client accesses the application.

Another interesting fact is that client side technologies showed higher network traffic
then server-side JSF. As was said earlier, this is partly due to data processing of the search
results on the server.

The battery drain in the 1 hour long testing session ranges around 2% difference between
the most efficient GWT and most consuming ReactJS.

From the task completion point of view, Angular2 was the most successful technology,
with 844 use cases done. We can generally say that client-side technologies prevail in the
number of use cases done. Server-side technologies have a clear disadvantage here because of
successive page rerendering. This is not an issue on high bandwidth networks|[16], though.

5.4 Multiple clients performance

Next we are interested in Ul performance during higher server load. In this test session
we have run the Selenium drone by another 6 clients on a separate machine in through GNU
parallel[15] and observed the power and performance on our client. The results are shown
in table 5.2.

For higher server load we a slight decrease in completed tasks compared to previous single
client tests, which was expected. During the this tests, however, the tested devices shows a
slight increase in energy demands of all used technologies.

39



5.5. SUMMARY

Technology CPU[%] | Mem | Read | Write | Network
AngularJS 18.29 | 1902.62 | 47.74 | 186.51 55.96
Angular2 + AF 17.46 | 1713.47 | 83.35 | 215.42 69.61
ReactJS 17.41 | 2019.73 | 52.03 | 191.88 52.30
GWT 16.66 | 1903.57 | 36.88 | 42.86 11.81
JSF 19.50 | 1639.58 | 44.29 | 187.76 40.61
JSF + AF 18.16 | 1705.84 | 55.47 | 232.01 38.20

Table 5.4: Performance utilization consumption comparison for Ul technologies. Multiple
clients access the application. All values are in MB if not stated otherwise.

Technology Tasks done | Charge taken|%]
AngularJS 806 18.85
Angular2 + AF 823 19.43
ReactJS 800 19.50
GWT 808 17.60
JSF 680 19.09
JSF + AF 666 19.08

Table 5.5: Power consumption comparison and performed tasks statistics for Ul technologies.
Multiple clients access the application.

Collected data for multiple clients test correlates with single client, there are no major
differences in either system resources utilization or power consumption.

5.5 Summary

In comparison to our initial work[16] we have deployed our test application to a highly
distributed and open environment and expanded tested set of Ul rendering technologies.
Our results show that there are clear benefits of Ul code optimizations for specific browser
technology (GWT) compared to the universal and portable one. Using gunzip encoding of
client-server communication also results into much lower network traffic, at least for certain
types of web applications. It may conflict with universal RESTful approach of providing
data, because not all possible clients may be able to decode server responses, even though
major web browsers support this feature.

Compared to our initial work[16], which focused on testing applications on high-throughput
intranet we have shown the importance of network connection quality (bandwidth) and
server-deployment to the cloud to the Ul rendering technology. Successive server dependend
page rerendering becomes an obstacle here for application performance, as the number of
completed user tasks is significantly lower for server-side technologies.

On the other hand, the energy impact does not vary much between client-side and server-
side technologies for applications not relying on intensive CPU usage. However there is a

40



5.5. SUMMARY

clear difference in memory consumed while client-side technology is used, which might be an
issue for devices with limited system resources.

41



Chapter 6

Case study: Grafana and adaptive Ul

In this chapter we present a short case study on adaptive web applications, supporting
optional Ul rendering on both client and server side. For our purposes we use Grafana3.2.3,
an open source web application for visualizing a collected data, mainly into graphs. Grafana
offers plot rendering in the browser and also rendering to PNG on the server using Phan-
tomJS, a headless scriptable browser. Both modes are configured by default and are easily
accessible through unique URLs.

6.1 Test setup

Grafana has integration with InfluxDB, the time-series database we used for collecting
performance and power management data in Eventier case study. Through its Ul it is
simple to create dashboards of tables, graphs and many more widgets, which query connected
database. We have designed a plot showing captured usage of CPU, memory and discharge
characteristics, consisting of 15021 nodes for each entity, therefore 45063 nodes to render in
the plot in total.

Grafana server is deployed to Amazon EC2 t2.micro instance with the same configuration
as presented inb. The client is also the same Dell Vostro 14 laptop.

The test objective is to render given plot 30 times in a row. Considering time factor,
our test case is much shorter than in the Eventier case study, but since we have already
verified energy consumption model, therefore we will focus solely on tracking system resources
utilization.

6.2 Experimental results - graph plotting

The results of our experiments of client and server rendering performance are provided
in table 6.1. Evaluating the data clearly proves that resources were drastically saved when
plotting was rendered on the server. Graphical demonstration of CPU and memory usage
by Grafana, which we collected during client and server rendering, in shown on figures 6.1
and 6.2.

42



6.2. EXPERIMENTAL RESULTS - GRAPH PLOTTING

Renderer | CPU[%] | Mem | Read | Write | Network
client 7.65 | 1759.14 | 37.93 12.98 3.50
server 30.93 | 1851.32 | 4291 31.23 16.75

Table 6.1: Performance utilization while rendering Grafana plots. Values are in units of MB
if not stated otherwise.

CPU and memory

|

n A
| | \

\

I\ \

| |
Uy

‘.I illl
Y UHHH Il‘hﬂn‘w I‘I"""‘-‘ |

\ AW W

CPU usage

total_mem.relative

Figure 6.1: CPU and memory usage for browser rendering.

CPU and memory

W""'V-J'Ill','“'JhL-a"‘I',»“-""J IV"J i\_) V}\MMM

total_mem.relative

Figure 6.2: CPU and memory usage when rendering on server.

43



6.3. SUMMARY

6.3 Summary

From the point of energy impact on a mobile device, adaptive Ul may be quite beneficial.
As we have shown, there are major savings in the usage of system resources, which posi-
tively influence battery life. Comparing collected data to our Eventier case study however
suggests, that moving browser functionality to server is probably efficient only for intensive
computations, otherwise there not such difference in energy consumption.

44



Chapter 7

Conclusion

The development of Ul technologies for contemporary web applications can be basically
divided into two worlds - a client and a server-side. Both approaches have their benefits and
shortages in certain environments and use cases. In this work we focused on the impact of Ul
rendering technologies for the web on power consumption of the device. We have presented
an approach for measurements of system resources utilization and energy consumption for
computer devices running Linux OS. We have implemented and validated a prototype of
such tool.

Featured case study on our sample application addresses the influence a used technology
has on client device. Analyzing the state of integral computer components, the experiments
have proven that for conventional web applications there is only a little difference in energy
impact when deployed to the open network. However it is clear that deployment environment
plays a major role in final application performance, considering number of completed use
cases in a certain time interval.

Another interesting fact we have found is the impact of browser-specific optimizations of
the application’s source on the client. In our study only GWT has such feature, which spared
a considerable amount of client’s system resources. Also encoding communication between
client and server is beneficial for network traffic, reducing transferred data approximately
4 times. Though we believe that this optimization is not generically useful for all web
applications and should be cautiously considered.

The second presented case study explores possible advantages of adaptive Ul on power
consumption. We have conducted tests on widely used monitoring tool Grafana. The results
prove that delegating certain part of Ul rendering to the server may lead to major difference
in consumed energy.

7.1 Future work

In our future work we would like to generalize and refine our measurement tool prototype
into a standard program compatible with all major Linux distributions and successfully
porting it to Android devices.

We believe that the subject of adaptive Ul technologies and its impact on energy con-
sumption deserves more attention from both the community and academical sphere, since it

45



7.2. SUMMARY

possesses great promises in expanding the users group of computation critical applications
of new mobile users.

7.2 Summary

The aim of the work was to explore the field of energy consumption of web applications,
focusing on the impact the view technologies presents. We have based our methodology on
acknowledged related works and applied the topic onto the area of web applications. We have
fulfilled desired requirements, pointing to the pros and cons of presented Ul technologies and
their architectural designs, created a measurement tool prototype and introduced the topic
of adaptive Ul in relation to energy consumption.

46



Bibliography

1]

2]

[4]

[5]

8]

[9]

Tomas Cerny, Michael J. Donahoo. Impact of Remote User Interface Design and Delivery
on Energy Demand. 2nd International Conference on Information Science and Security
(ICISS) 2015, pp. 1-4, doi:10.1109/ICISSEC.2015.7371005.

Cerny, T.; Macik, M.; Donahoo, M.J.; Janousek, J., "Efficient description and cache per-
formance in Aspect-Oriented user interface design," Computer Science and Information
Systems (FedCSIS), 2014 Federated Conference on , vol., no., pp.1667-1676, 7-10 Sept.
2014 doi: 10.15439/2014F244

Liu, X.; Ma, Y.; Liu, Y.; Xie, T.; Huang, G. Demystifying the Imperfect Client-Side
Cache Performance of Mobile Web Browsing Mobile Computing, IEEE Transactions on,
vol.PP, n0.99, pp.1-1, doi: 10.1109/TMC.2015.2489202

Mashup (web application hybrid), Wipedia, the free encyclopedia [online]|, from :
<https://en.wikipedia.org/wiki/Mashup_(web_application_hybrid) >

Hypertext Transfer Protocol, Wipedia, the free encyclopedia [online|, from : <https:
//en.wikipedia.org/wiki/Hypertext_Transfer_Protocol>

Brad Green and Shyam Seshadri. AngularJS. O’Reilly Media, Inc. 1 sedition, 2013.

W3C, browser statistics [online|, November 2016, from : <https://www.w3counter.
com/globalstats.php?year=2016&month=11>

Representational state transfer, Wipedia, the free encyclopedia [online|, from : <http:
//en.wikipedia.org/wiki/Representational_state_transfer>

Document Object Model, Wikipedia, the free encyclopedia [online], from : <http://en.
wikipedia.org/wiki/Document_Object_Model>

[10] Asynchronous JavaScript and XML, Wikipedia, the free encyclopedia [online|, from :

<http://en.wikipedia.org/wiki/AJAX>

[11] Permisive free software licence, Wikipedia, the free encyclopedia [online|, from : <http:

//en.wikipedia.org/wiki/MIT _License>

[12] JavaScript Object Notation, [online|, from : <http://json.org/>

[13] CodingCrayons, AspectFaces wiki page [online|, from : <http://wiki.codingcrayons.

com/display/af/AspectFaces>

47



BIBLIOGRAPHY

[14] Kennard, R., Edmonds, E., Leaney, J.: Separation anxiety: stresses of developing a
modern day separable user interface. In: Proceedings of the 2nd conference on Human

System Interactions, HSI'09, pp. 225-232. IEEE Press, Piscataway, NJ, USA (2009).
<http://portal.acm.org/citation.cfm?id=1689359.1689399>

[15] Tange, O. GNU Parallel - The Command-Line Power Tool The USENIX Magazine, pp.
42-47, Feb. 2011, vol. 36, <http://www.gnu.org/s/parallel>

[16] Jan Helbich; Tomas Cerny 2016 6th International Conference on IT Convergence and
Security (ICITCS), 2016, pp. 1 - 3, DOI: 10.1109/ICITCS.2016.7740329

[17] E. Capra; F. Merlo Green it: everything starts from the software, 2009

[18] Sticky  sessions,  [online] from <https://www.nginx.com/products/
session-persistence>

[19] Minas, L., Ellison, B.: The Problem of Power Consumption in Servers. Hillsboro;Intel
Press (2009)

[20] Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Confe-
rence, USENIXATC’10, pp. 21-21. USENIX Association, Berkeley, CA, USA (2010).
<http://dl.acm.org/citation.cfm?id=1855840.1855861>

[21] N. Balasubramanian; A. Balasubramanian; A. Balasubramanian: Energy Consumption
in Mobile Phones: A Measurement Study and Implications for Network Applications.
Published by ACM 2009 Article. doi: 10.1145/1644893.1644927

[22] Vivek Kumar Singh; Kaushik Dutta; Debra VanderMeer: Estimating the Energy Con-
sumption of Executing Software Processes. In: Green Computing and Communications
(GreenCom), 2013 IEEE DOI: 10.1109/GreenCom-iThings-CPSCom.2013.40

[23] CERNY, T. and M.J. DONAHOO. On Energy Impact of Web User Interface Ap-
proaches. Cluster Computing. 2016, 19(73), 1-11. ISSN 1386-7857. <https://link.
springer.com/article/10.1007/510586-016-0665-7>

[24] Irene Manotas; Cagri Sahin; James Clause; Lori Pollock; Kristina Winbladh Inves-

tigating the impacts of web servers on web application energy usage. In: Green and
Sustainable Software (GREENS), 2013, IEEE DOI: 10.1109/GREENS.2013.6606417

[25] Ruby on Rails, [online| from : <http://rubyonrails.org/>
[26] (2016, April) The PowerTOP website. [Online|. Available: https://01.org/powertop/

[27] Fowler, M.: Patterns of enterprise application architecture. Addison-Wesley Profes-
sional, 2003.

[28] Chromium multithread architecture, [online|, from : <https://blog.chromium.org/
2008/09/multi-process-architecture.html>

[29] Mozilla Developers Network, Battery Status API, [online| from : <https://developer.
mozilla.org/en-US/docs/Web/API/Battery_Status_API>

48



BIBLIOGRAPHY

[30] CRUD, Wikipedia, The free encyclopedia, [online] from : <https://en.wikipedia.
org/wiki/Create, _read, _update_and_delete>

[31] Grafana, Beatiful Metrics Dashboard, [online| from : <https://grafana.org/>
[32] Unix top, [online| from : <www.unixtop.org/>

[33] Linux meminfo, [online| from : <http://lxr.free-electrons.com/source/fs/proc/
meminfo.c>

[34] Everything is a file, Wikipedia, The free encyclopedia, [online| from : <https://en.
wikipedia.org/wiki/Everything_is_a_file>

[35] Linux kernel, [online| from : <https://www.kernel.org/>

[36] Protractor E2E test framework, [online| from : <https://github.com/angular/
protractor>

[37] InfluxDB, [online] from : <https://influxdata.com>

[38] Time-series database, Wikipedia, The free encyclopedia [online| from : <https://en.
wikipedia.org/wiki/Time_series_database>

[39] PostgreSQL database, |online| from : <https://www.postgresql.org/>

[40] Nicholas Nethercote;  Insight on Mac Activity Monitor Energy Impact,
[online]  from <https://blog.mozilla.org/nnethercote/2015/08/26/
what-does-the-os-x-activity-monitors-energy-impact-actually-measure/>

[41] Ed Burns and Neil Griffin. JavaServer Faces 2.0, The Complete Reference. McGraw-
Hill, Inc., New York, NY, USA, 1 edition, 2010.

[42] Robert Hanson and Adam Tacy. GWT in Action: FEasy Ajax with the Google Web
Toolkit. Manning Publications Co., Greenwich, CT, USA, 2007.

[43] Scope, AngularJS documentation [online| from : <https://docs.angularjs.org/
guide/scope>

[44] Jasmine JS, [online| from : <https://jasmine.github.io/>

[45] Karma JS test runner, [online| from : <https://karma-runner.github.io/>

[46] Mocha JS Test framework, [online| from : <https://mochajs.org/>

[47] ECMAScript 6 specification, [online] from : <es6-features.org/>

[48] React JS view library, [online| from : <https://facebook.github.io/react/>
[49] Redux JS, state management library, [online| from : <redux.js.org>

[50] MobX JS state management library, [online| from : <https://mobxjs.github.io>

[51] Role-based access control, Wikipedia, The free encyclopedia, [online] from : <https:
//en.wikipedia.org/wiki/Role-based_access_control>

49



BIBLIOGRAPHY

[52] Extensible Stylesheet Language Transformations, Wikipedia, The free encyclopedia,
[online| from : <https://en.wikipedia.org/wiki/XSLT>

[53] Jboss Wildfly Java EE 7 AS, [online| from : <https://wildfly.org>

[54] Platform as a Service, Wikipedia, The free encyclopedia, [online| from : <https://en.
wikipedia.org/wiki/Platform_as_a_service>

[55] Electrolysis for Firefox, [online| from : <https://wiki.mozilla.org/Electrolysis>

[56] WebKit, Open Source Browser Engine, [online| from : <https://webkit.org/>

50



Chapter 8

Eventier - installation guide

The Eventier sample application is based on the Java 8 platform, therefore as a first step
please install the latests Java, and is built by Apache Maven. JS based frontend technologies
rely on NodelJs.

For up to date Linux distributions, you can install OpenJDK and other dependencies
through your favourite package manager, for example for Debian based systems run:

#> sudo apt-get install openjdk-8-jre mvn node npm

Backend modules running Wildfly AS are eventier-jsf, eventier-af-jsf, eventier-rest, eventier-
af-rest, eventier-gwt. To install these modules do to their respective directories and run:

#> mvn clean install -DskipTests=true

To quickly run the application, it is convenient to skip the test configuration, for which
is the parameter -DskipTests.

Client-side modeles are eventier-react, eventier-web, eventier-af-ng2. The projects are
NodelJs based. To build and the project, we suggest you first inspect the "scripts" property
of "package.json" file in the root of each project.

Installing dependencies is done by running:

#> npm install

Running the application through independent Node server is usually done as:
#> npm run start

Eventier backend requires a running instance of PostgreSQL 9.3+ database on local-
host (by default), with preconfigured database ’eventier dev’ and user credentials 'post-
gres:postgres’.

51



Chapter 9

Attached CD

L makescript.sh................... Make script for server-side and GWT.
F— helbich dp.shal..................... SHAL Hash of the thesis PDF
F— helbich dp.pdf...................... Thesis in PDF.
I—nn-.rpr-ﬁlIP measurement tool.
|  F—pymwp...........................MWP source code.
| = README.md....................... Installation guide.
| F— scripts. .o it Helper scripts.
| L setup.py......c.iiiiiiii Setup and install script.
L thesis......ciiieiiiiinirinnnnnennn. Thesis LaTeX source.

F— buildtex.sh..................... Build script.

b— figures. ... ... ... ... ... ...... Used figures.

— helbich dp.tex.................. Thesis main body.

F— hyphen.tex

— k336 thesis macros.sty.......... Template.

i =2 4 - T Thesis content.

18 directories, 9 files

Figure 9.1: Directory tree on attached CD

52



