
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

An Optical Flow Odometry Sensor Based
on the Raspberry Pi Computer

Adam Heinrich

Supervisor: Dr. Gaël Écorchard
Field of study: Open Informatics
Subfield: Computer Vision and Image Processing
January 2017

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DIPLOMA THESIS ASSIGNMENT

Student: Bc. Adam H e i n r i c h

Study programme: Open Informatics

Specialisation: Computer Vision and Image Processing

Title of Diploma Thesis: An Optical Flow Odometry Sensor Based on the Raspberry Pi
 Computer

Guidelines:
The Raspberry Pi single-board computer embeds a graphics processing unit that includes a
motion estimation block normally used to evaluate frame changes during hardware video
encoding. The vectors from this motion estimation block can be obtained directly from the
GPU and provide a hardware estimation of the image displacement. By combining this
information with a distance and orientation sensor one can estimate the robot's velocity, thus
its position. The aim of the work is to implement an odometry sensor based on this solution,
in the way of a PX4Flow sensor.

Student's tasks:
1. Bibliographic research about optical flow, presentation of existing solutions.
2. Implementation of a mixed GPU/CPU solution for pose estimation.
3. Study of the possibility of an implementation of a pure CPU solution for pose estimation.
4. Experimental verification.

Bibliography/Sources:
[1] Dominik Honegger, Lorenz Meier, Petri Tanskanen and Marc Pollefeys. An Open Source
 and Open Hardware Embedded Metric Optical Flow CMOS Camera for Indoor and
 Outdoor Applications, ICRA2013
[2] Itseez. The OpenCV Reference Manual (3.1), December 2015
[3] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision
 (Second Edition), Cambridge University Press, March 2014
[4] Iain E. G. Richardson. H.264 and MPEG-4 Video Compression: Video Coding for Next-
 Generation Multimedia, John Willey & Sons, 2003

Diploma Thesis Supervisor: Dr. Gaël Pierre Marie Ecorchard

Valid until: the end of the winter semester of academic year 2017/2018

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, May 26, 2016

iv

Acknowledgements
I would like to thank Dr. Gaël Écorchard
for his guidance and assistance with my
thesis. I also thank Ing. Jan Chudoba for
his assistence with outdoor experiments.

Finally, I would like to thank my par-
ents for support and my girlfriend for pa-
tience.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 9 January 2017

v

Abstract
The thesis describes the design and imple-
mentation of an odometry sensor suitable
for micro aerial vehicles.

The sensor is based on a ground-facing
camera and a single-board Linux-based
embedded computer with a multimedia
SoC. The SoC features a hardware video
encoder which is used to estimate optical
flow in a real-time. The optical flow is
then used in combination with a distance
sensor to estimate vehicle’s velocity.

The proposed sensor is compared to
a similar existing solution and evalu-
ated in both indoor and outdoor envi-
ronments. Moreover, alternative software
approaches, independent of the selected
board’s specific hardware and firmware
implementation, are also proposed.

Keywords: visual odometry, optical
flow, ego-motion

Supervisor: Dr. Gaël Écorchard

Abstrakt
Diplomová práce popisuje návrh a imple-
mentaci odometrického senzoru vhodného
pro malé bezpilotní létající prostředky.

Senzor je založen na jednoteskovém po-
čítači s operačním systémem Linux a ka-
meře směřující k zemi. Počítač obsahuje
hardwarový grafický čip, který během kó-
dování videa počítá optický tok. Optický
tok je spolu s informací se senzoru vzdále-
nosti použit pro odhad aktuální rychlosti
pohybu.

Senzor byl porovnán s existujícím ře-
šením a otestován v místnosti i ve ven-
kovním prostředí. Práce také navrhuje al-
ternativní softwarová řešení, která nejsou
pevně svázána se specifickou hardwarovou
implementací počítače.

Klíčová slova: vizuální odometrie,
optický tok, ego-motion

Překlad názvu: Odometrický senzor na
principu optical flow založený na počítači
Raspberry Pi

vi

Contents
1 Introduction 1
2 Related work 3
2.1 PX4Flow . 3
2.2 Solutions based on an optical
mouse sensor . 4

2.3 Other solutions 4
3 Theory 7
3.1 Optical flow 7
3.1.1 Constraint equations 8
3.1.2 Optical flow algorithms 8

3.2 Ground-facing camera 10
3.2.1 Angular correction 11

3.3 H.264 video format 12
4 Design 13
4.1 Mixed CPU and GPU solution . 14
4.1.1 Hardware H.264 encoder 14
4.1.2 Motion estimation using the
RANSAC algorithm. 16

4.2 Pure CPU solution 19
4.2.1 Block matching algorithm . . . 19
4.2.2 Lucas-Kanade algorithm 19
4.2.3 Partial bitstream decoding . . 20

5 Experimental setup 21
5.1 Hardware . 21
5.1.1 Camera 21
5.1.2 Distance sensor 24
5.1.3 Gyroscope 24

5.2 Software . 25
5.2.1 Raspbian 25
5.2.2 OpenCV 25
5.2.3 Image acquisition 25

6 Implementation 27
6.1 RaspiVid modification 27
6.2 Camera calibration 28
6.3 RANSAC . 28
6.4 Pure CPU solution 29
6.5 Integration 29
6.6 Data loggers 30
6.7 Hardware and mechanical
construction. 31

7 Evaluation 33
7.1 Indoor testing 33
7.1.1 Mixed CPU and GPU solution 34
7.1.2 Processing time 36

7.2 Outdoor testing 37
7.2.1 Comparison with PX4Flow . . 37
7.2.2 Comparison with GPS 39

8 Conclusion 41
A Bibliography 43
B Attached CD 47

vii

Chapter 1
Introduction

The ability to estimate velocity is the fundamental task for the control of
micro aerial vehicles (MAVs).

The aim of this work is to design and implement an odometry sensor similar
to an existing solution. The existing sensor uses a ground-facing camera,
ultrasonic distance sensor and a microcontroller to compute an optical flow
and estimate the vehicle’s velocity. Although the sensor’s software is open-
sourced, the microcontroller does not supposedly have enough resources for
additional computer vision tasks. Also, the skills required to develop software
for a highly constrained embedded system make the entrance barrier higher
for potential developers.

The proposed solution is based on a widely available single-board computer
which features a SoC designed for multimedia applications. The optical
flow is computed by a hardware block rather than by the processor which
leaves resources for additional tasks. The solution does not only measure
the translational velocity but also measures the orientation, which is an
improvement when compared to the existing sensor. Furthermore, purely
software approaches which are not so closely coupled to the actual hardware
are proposed.

The document is structured as follows: Chapter 2 provides an overview
of the currently existing solutions. Chapter 3 summarizes the theoretical
background. The design of the proposed solution is described in chapter 4.
Chapters 5 and 6 focus on the experimental setup and an actual implementa-
tion. The implementation is then evaluated in chapter 7 and compared to the
existing solution as well as to ground truth measurements. Finally, chapter 8
concludes the work and summarizes results.

1

2

Chapter 2
Related work

This chapter describes related work mainly in the field of embedded camera-
based sensors for ego-motion estimation using optical flow.

2.1 PX4Flow

The PX4Flow [HMTP13] is an optical flow sensor based on a microcontroller
with an ARM Cortex-M4 CPU. It has gained a significant popularity in hobby
community. The software and schematic are open sourced.

Unlike other solutions, the PX4Flow uses an image sensor MT9V034
designed for machine vision with an electronic global shutter. The global
shutter contributes to more reliable results as all pixels are exposed at the
same time. The image acquisition system uses 4 × 4 pixel binning which
improves its sensitivity in poor lighting conditions.

The flow is computed between two consecutive frames using a block-
matching algorithm. The ARM Cortex-M4 CPU provides a set of special
SIMD instructions which makes the block-matching process more efficient.
The optical flow is then used for velocity calculation: in both horizontal and
vertical directions a histogram of optical flow values is computed and the
most frequent value is taken as the resulting velocity. The resulting velocity
is then compensated for the effects caused by pitch and roll measurements
from onboard MEMS gyroscope and converted to real-world units using the
ultrasonic distance sensor.

The bare-metal architecture (without any operating system nor task pre-
emption) allows fast processing: The flow is computed at 400 Hz. This high
rate allows the CPU to search matching blocks in a small range of ±4 pixels.
The sensor uses a MavLink protocol to communicate with the host controller.
It reports the current velocity in meters per second and the distance to the
ground. Changes in MAV heading (yaw) are not measured and must be
supplied by an external sensor (e.g. a digital compass) in order to integrate
the measured velocity into position.

3

2. Related work.....................................
2.2 Solutions based on an optical mouse sensor

Optical flow sensors based on chips used in optical computer mice used
to be quite popular especially in hobby community, probably due to good
availability of these sensors and their low cost.

The most popular is the ADNS family by Avago Technologies, e.g.
the ADNS-3080 [Ava08] chip with a SPI serial interface. Although it is
possible to capture raw images, most applications use the internal digital
signal processor to compute relative displacement between consecutive frames
(this functionality is fundamental for the optical mouse operation).

It is usually possible to load a custom program to an internal ROM, the
architecture of the DSP is however not disclosed. The chip provides resolution
of 30× 30 pixels and a frame rate from 2000 to 6469 FPS.

One of the available solutions is a part of the ArduPilot system [Ard16].
It is basically a breakout PCB for the ADNS-3080 sensor and a lens. The
software uses the relative displacement values computed by the DSP. Integra-
tion of the sensor into a MAV relies on external sensors for ground distance
and angular motion (to compensate for pitch and roll). Rotation around the
center of the sensor (yaw) can not be recovered and is said to confuse the
sensor.

Application described in [BZF13] uses inertial sensors and five ADNS-9500
optical mouse sensors aiming at different directions to implement visual
odometry for MAV hovering. The authors introduce a translational optic-flow
direction constraint (TOFDC) which only depends on optical flow direction
and ignores its scale. This is important because it removes the dependency
on an additional sensor (as the scale depends on a distance from the sensed
environment) and it relaxes assumptions about environment’s geometry (e.g.
its flatness). The TOFDC constraint is then used to correct drifts of inertial
sensors.

The dual-sensor approach described in [KB17] uses two ADNS-2051 optical
mouse sensors and an inertial measurement unit for angular correction. The
difference in two computed optical flows can be used to estimate the depth
(and thus the velocity in real-world units), which removes the need for a
separate distance sensor.

2.3 Other solutions

ArduEye is an embedded vision sensor based on the Stonyman ASIC by
Centeye. The chip’s low resolution allows image processing on a highly
constrained embedded platforms such as the 8-bit Atmel AVR. The software
is open-sourced and features multiple algorithms for optical flow computation,
described in [SCN13]. The sensor seems to be already discontinued at the
time of writing.

A visual odometry method described in [KG11] is also based on the ground-
facing camera but does not use the optical flow for the motion estimation.

4

....................................2.3. Other solutions
Instead the approach is based on a Fourier-Mellin transform which recovers
both rotation and translation between two consecutive images.

A common approach which enables the usage of otherwise CPU-intensive
algorithms in real-time systems is their implementation in FPGA, such as
in the case of [KNP+12]. The application uses a side-looking camera and
a FPGA implementation of the SURF feature detector. The displacement
of features between consecutive frames is then used to estimate the MAV’s
altitude and yaw.

5

6

Chapter 3
Theory

This chapter describes the theoretical background of the proposed solution.

3.1 Optical flow

Optical flow is a displacement of pixel values in the image sequence induced by
a movement of a camera or a scene observed by it. Let I(u, v, t) be an image
function of the pixel position (u, v) and time t. The optical flow between
two frames captured at times t and t+ ∆t can then be represented by the
displacement (∆u,∆v) and time difference ∆t.

An example optical flow visualized using vector field is depicted on figure 3.1.

Figure 3.1: Optical flow induced by a object moving downwards

7

3. Theory
3.1.1 Constraint equations

Most approaches to optical flow estimation are based on a brightness con-
stancy constraint (equation 3.1). This constraint assumes that moving
pixels keep the same brightness between consecutive frames:

I(u, v, t) = I(u+ ∆u, v + ∆v, t+ ∆t) (3.1)

The brightness constancy can be linearized [WC11] using the Taylor ap-
proximation, which yields in

0 = IuVu + IvVv + It, (3.2)

where Iu, Iv and It are partial derivates of the image function with respect to
u, v and t, respectively and Vu and Vv are the velocities of the optical flow,

V =
[
Vu Vv

]
=

[
∆u
∆t

∆v
∆t

]
. (3.3)

As the equation 3.2 has two variables, it has an infinite number of solutions
(which is known as the aperture problem). This ambiguity means that another
constraints have to be enforced, such as the spatial smoothness constraint.
The spatial smoothness constraint assumes that neighboring pixels belong to
the same objects and therefore represent the same motion.

3.1.2 Optical flow algorithms

Lucas-Lanade algorithm

The Lucas-Kanade algorithm [LK+81] assumes a constant optical flow in small
neighborhood of every pixel (u, v). The optical flow constraint (equation 3.2)
is then applied to all pixels within the given window W , which results in a
over-determined sets of equations. The flow is then estimated by minimizing
sum of deviations using the least squares method:

min
∆u,∆v

∑
p∈W (u,v)

[Iu(p)∆u+ Iv(p)∆v + It(p)]2 (3.4)

The Lucas-Kanade algorithm estimates flow for a given set of pixels (ideally
corners and textured patches detected by a feature tracker), its result is there-
fore a sparse optical flow. The method is valid only for small displacements.

Horn-Schmuck algorithm

The Horn-Schmuck algorithm [HS81] assumes global smoothness of the optical
flow field to solve the aperture problem. The algorithm therefore minimizes
derivatives of the optical flow field:

min
Vu,Vv

∫∫
[(IuVu + IvVv + It)2 + λ(‖∇Vu‖2 + ‖∇Vv‖2)]dudv, (3.5)

8

..................................... 3.1. Optical flow

where V = [Vu(u, v), Vv(u, v)]T is a displacement vector (optical flow) for an
image pixel (u, v) and λ is a parameter to balance effects of both constraints.
As the algorithm estimates flow for every pixel in an image, its result is a
dense optical flow.

Block matching algorithm

The block matching algorithm is one of the simplest methods to compute the
optical flow. For every pixel (u, v) in the original image, the closest match
(u+ ∆u, v + ∆v) in the subsequent image is found by minimizing the Sum
of Absolute Differences (SAD). The SAD value is computed by comparing a
small (usually square) window (M ×N) around the pixel (equation 3.6).

SAD =
M
2∑

i=−M
2

N
2∑

j=−N
2

|I(u+ ∆u+ i, v + ∆v + j, t+ ∆t)− I(u+ i, v + j, t)|

(3.6)
This method can be made faster by computing the flow only for a subset of

image pixels instead of the full image matrix, producing only a sparse optical
flow. It can be well parallelized as the flow can be computed independently
for each pixel.

9

3. Theory
3.2 Ground-facing camera

A point in space P = [X,Y, Z]T is projected by a pinhole camera (figure 3.2).
The corresponding point on image plane p = [x, y, f]T can be computed as

p = − f
Z
P , (3.7)

where f , the distance between the image plane and projection origin O, is
the camera’s focal length. Since the camera is mounted perpendicularly to a
vehicle body, the coordinate Z is equal to the distance between ground and
camera’s projection origin.

Figure 3.2: Pinhole camera model

The ground distance Z must be obtained from an external sensor, such as
an ultrasonic or laser distance sensor or a barometric pressure sensor. Given
the ground distance Z is approximately constant between two consecutive
frames, a displacement in the image plane (∆x,∆y) can be converted to a
real word displacement (∆X,∆Y):

∆X = − 1
f

∆x · Z, ∆Y = − 1
f

∆y · Z. (3.8)

The displacement in the image plane can be obtained using one of the Op-
tical flow algorithms described in section 3.1. As the computed displacement
(∆u,∆v) is usually in pixels, it is required to convert it into real-world units
(e.g. meters). Equation 3.8 then changes to

∆X = − s
f

∆u · Z, ∆Y = − s
f

∆v · Z, (3.9)

where s is the pixel size.

10

.................................3.2. Ground-facing camera

3.2.1 Angular correction

While the UAV is usually regulated to fly in a pose parallel to the ground, it
is necessary to compensate small rotations between consecutive frames which
manifest as an optical flow in the image plane.

Δy

ωx∆t

P

Figure 3.3: The effect of rotating the pinhole camera around the x-axis

Assume the camera has been rotated around its x-axis between two consec-
utive frames (figure 3.3). The displacement in the image plane induced by
the rotation is

∆y = f tan(ωx∆t), (3.10)

where ωx is the angular velocity (which can be obtained from a gyroscope)
and ∆t is the time between two consecutive frames. Similarly, a rotation
around the y-axis induces a displacement in the x-axis:

∆x = f tan(ωy∆t). (3.11)

Displacements ∆x and ∆y have to be subtracted from the resulting optical
flow in order to compensate the angular motion. Rotation around the optical
axis (z-axis) does not have to be corrected as the induced optical flow is useful
for the estimation of the vehicle’s heading. Equation 3.9 becomes then

∆X = −[s
f
u− f tan(ωy∆t)] · Z, (3.12)

∆Y = −[s
f
v − f tan(ωx∆t)] · Z. (3.13)

11

3. Theory
3.3 H.264 video format

The H.264 Advanced Video Coding standard [Ric10] defines a syntax for
encoded video and a method for its decoding.

Frames are divided into one or more slices which contain sets of macroblocks.
Each macroblock represents a 16×16 pixel partition of a frame. The standard
uses a prediction mechanism to reduce redundancy in the encoded information
by utilizing similarities between different image parts (within the same frame
or between different frames). Three types of macroblocks are defined:. I-type macroblock uses a prediction from neighboring samples in the

same frame (intra prediction). P-type macroblock uses a prediction from samples in a previously encoded
frame (inter prediction). This might be the “past” or the “future” frame
depending on encoding order. B-type macroblock use a prediction from up to two previously encoded
frames (inter prediction)

Each macroblock is formed by a residual image and parameters of the used
prediction method. For the inter prediction mode, the macroblock contains
a residual image (the difference between the reference macroblock and the
actually encoded image), source information (i.e. to which frame the reference
macroblock belongs) and a motion vector describing the displacement of the
reference macroblock with respect to the actually encoded image. Macroblocks
can be further divided into smaller rectangular partitions with different
prediction sources and therefore with different motion vectors.

Motion vectors encoded in P-type macroblocks could be used as an estima-
tion of the optical flow required for the ego-motion estimation. This, however,
depends on the actual configuration of the encoder as the standard specifies
multiple profiles which include different methods. The encoder might process
frames in an arbitrary order. Furthermore, the ordering of encoded frames
might differ from the frame display ordering.

12

Chapter 4
Design

This chapter describes the proposed method of the ego-motion estimation
using a ground-facing camera. An efficient mixed CPU and GPU solution
related to the actual hardware and a fully software solutions are proposed.
As depicted on figure 4.1, the solution can be broken into separate steps.

First, an optical flow is obtained either by utilizing the motion vectors
provided by the hardware CME block or by using alternative software methods.
The optical flow is then corrected for the effects induced by roll and pitch
rotations of the camera. The ego-motion is then estimated using a robust
RANSAC scheme and scaled to real-world units.

As the angular correction and scaling have been already described in
section 3.2, this section focuses on methods for obtaining the optical flow and
estimating motion.

Camera

Lucas-Kanade

Angular
correction

Encoder CME

 FFmpeg RANSAC
Scaling (Δx,Δy)

θ

H.264 stream

Image Gyroscope Sonar

(ω
x
, ω

y
, ω

z
) Ground distance

(Δu,Δv)

Alternative: Pure CPU solutions

Figure 4.1: A pipeline of the designed solution

13

4. Design..
4.1 Mixed CPU and GPU solution

The Raspberry Pi computer includes a VideoCore IV multimedia proces-
sor which is able to encode and decode video efficiently as it contains an array
of GPU units and an instruction set suitable for digital signal processing. The
mixed solution is based on the possibility to obtain motion vectors estimated
by a hardware H.264 encoder implemented in the VideoCore and use them
as the optical flow required to estimate the ego-motion.

4.1.1 Hardware H.264 encoder

The encoder implemented in the VideoCore DSP uses a “Low-delay predic-
tion structure” (figure 4.2) which is suitable for an embedded system with
constrained resources as it minimizes memory requirements and delay. The
first encoded frame is always encoded as an I slice as there are no previously
encoded frames suitable for inter prediction. Subsequent frames are encoded
as P-slices with a prediction source fixed to the “past” frame [bfn14a]. The
encoder does not support B-slices [bfn14b]. The encoder inserts additional
I-frames to the stream to minimize transmission errors. This also enables the
peer device to decode stream which has already started in the past.

Figure 4.2: Ordering of encoded frames when using the Low-delay prediction
(from [Ric10])

I have performed an experiment which involved the decoding of a 30-second
480× 480 px video sequence recorded by the RaspiVid application at 30 FPS
with the default encoding options to verify the assumptions. As expected,
the sequence did only include P-frames with an I-frame inserted after every
60 P-frames. The distribution of I-frames in time is depicted on figure 4.3
(note that the recording application did not record a full 30-second sequence
as its timeout functionality is not related to the number of frames actually
captured). While the first frame will always be an I-frame, the insertion
of additional I-frames can be suppressed by setting the –intra option of
the RaspiVid application to zero. This is important as the I macroblocks
do not use intra-frame prediction and are therefore useless for the intended
application.

The experiment has also shown that all motion vectors represent motion
prediction with respect to the “past” frame.

14

............................. 4.1. Mixed CPU and GPU solution

Frame [-]
1 61 121 181 241 301 361 421 481 541 601 661 721 781 841

I-Frame

Figure 4.3: Distribution of I-type frames in the bitstream

Motion vectors from coarse motion estimation block

The VideoCore uses two hardware motion estimation blocks for video
encoding. A coarse motion estimation (CME) block estimates displacement
in pixel resolution and a subsequent fine motion estimation (FME) block is
able to estimate the displacement in a sub-pixel resolution [bfn14a].

The motion estimation block uses a block matching method (described in
section 3.1.2) to estimate the displacement (∆u,∆v). For each macroblock
in the current frame, the closest match is found in the previous frame within
a given range (figure 4.4). Vectors from the CME block can be obtained
directly from the encoder while vectors from the FME block are encoded in
the final H.264 bitstream [bfn15].

For each P-frame, the encoder provides a buffer which contains a single 32-
bit value for each 16×16 px macroblock [Upt14, Hol14]. The most significant
16 bits represent a Sum of Absolute Differences (SAD) value. The SAD value
is a measure of the estimated motion’s quality: the lower the SAD, the better
match has been found. The other 16 bits represent motion in horizontal and
vertical directions (8-bit signed integer per direction).

The number of macroblocks provided by the CME is constant for each
frame. This is different from macroblocks encoded in the H.264 bitstream
which are often divided to sub-macroblocks (as described in section 3.3).
The buffer provided by the encoder for each I-frame is internally set to zero
[bfn14a] as I-type macroblocks do only provide the inter-frame prediction.

Although the displacement can theoretically be in range ±127 pixels, a
closer analysis shows it is in fact in range ±64 pixels from macroblock’s center.
Figure 4.5 shows the histogram of vector displacement in an experimental
video sequence. The video sequence involved rapid movements of the scene
to yield large macroblock displacements.

Moreover, the analysis shows that the CME, in fact, estimates motion in
two-pixel resolution (i.e. only even values are present).

15

4. Design..

Figure 4.4: Illustration of the motion vector estimated for a selected macroblock

Horizontal displacement [px]
-64 -32 0 32 64

M
V

 c
o

u
n

t
[-

]

×10
4

0

2

4

6

8

10

12

Vertical displacement [px]
-64 -32 0 32 64

Figure 4.5: Displacement of non-zero motion vectors from the CME block

4.1.2 Motion estimation using the RANSAC algorithm

RANSAC (Random Sample Consensus) [FB81] is a popular algorithm for
estimating model parameters from data with a large portion of outliers. Unlike
traditional approaches such as the least squares method which use a large
number of data samples to estimate parameters (leading to errors caused by
a likely presence of outliers in the selected sample), the RANSAC uses the
minimum number of data samples required for the estimation.

In each iteration, the algorithm 1 estimates model parameters using a
small number of data samples. The estimated model is then applied to
all data samples in order to identify inliers (i.e. samples which fit the
model with a predefined tolerance). If the proportion of inliers exceeds
given threshold, the model is re-estimated using all identified inliers and the

16

............................. 4.1. Mixed CPU and GPU solution

algorithm terminates. Otherwise, the algorithm iterates up to N times and
finally estimates parameters for the largest set of inliers found.

Algorithm 1 RANSAC

Inputs: Maximal number of iterations N , set of data samples S, number
of samples required to estimate model parameters s, desired
proportion of inliers Ω

Output: The best set of parameters θ∗

. k := 0, S∗i := ∅. Repeat until k = N :. k := k + 1. Select random sample Sk ⊂ S, |Sk| = s. Estimate parameters θ := f(Sk). Determine the set of inliers Si, ω := |Si|
|S|. If ω ≥ Ω: Re-estimate parameters using all inliers and terminate,

i.e. θ∗ := f(Si). If |Si| > |S∗i |: S∗i := Si. Estimate parameters using the largest set of inliers and terminate,
i.e. θ∗ := f(S∗i)

Model for the RANSAC algorithm

The estimated optical flow (∆u,∆v) represents a displacement and rotation
between two subsequent image frames. This transformation can be seen
as an affine transformation with rotation, uniform scaling, and translation
components

R =
[

cosφ − sinφ
sinφ cosφ

]
, S =

[
s 0
0 s

]
, t =

[
tu
tv

]
. (4.1)

The relation between macroblock’s center (u, v) in the current image and
a matching macroblock’s center (u + ∆u, v + ∆v) in the previous image
(figure 4.4) is then

[
u
v

]
= RS

[
u+ ∆u
v + ∆v

]
+ t =

[
s cosφ −s sinφ
s sinφ s cosφ

] [
u+ ∆u
v + ∆v

]
+

[
tu
tv

]
.

(4.2)
The model is therefore represented by four parameters

17

4. Design..
θ =

[
s sinφ s cosφ tu tv

]T
, (4.3)

which can be estimated from two samples (∆u1,∆v1) and (∆u2,∆v2) using
the least squares method:

u1
v1
u2
v2

 =


−v1 −∆v1 u1 + ∆u2 0 1
u1 + ∆u1 v1 + ∆v1 0 1
−v2 −∆v2 u2 + ∆u2 1 0
u2 + ∆u2 v2 + ∆v2 0 1

θ (4.4)

Note the rotation φ does not depend on the scaling factor s:

φ = tan−1 s sinφ
s cosφ = tan−1 θ1

θ2
. (4.5)

Required number of iterations

As described in [HZ03], for a given proportion of inliers ω the required number
of iterations N can be calculated in advance so that the probability P that a
sample of size s is an uncontaminated set (i.e. free of outliers) is reasonably
high (equation 4.6).

N = log(1− P)
log(1− ωs) (4.6)

As seen from figure 4.6, the number of samples required to estimate the
proposed model is relatively low even if the assumed proportion of inliers is
just 10%.

Proportion of inliers [%]
10 20 30 40 50 60 70 80

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s
 [

-]

0

50

100

150

200

250

300

350

400

450

500

P = 0.99
P = 0.95
P = 0.90

Figure 4.6: Number of RANSAC iterations required for model estimation

18

.................................. 4.2. Pure CPU solution

4.2 Pure CPU solution

The pure CPU solution is an alternative to the the Mixed GPU and CPU
solution described in section 4.1. As the mixed solution is highly dependent
on the actual hardware and firmware of the Raspberry Pi computer, it is
beneficial to propose an alternative solution for similar embedded platforms
where the encoder is not present or where the firmware does not provide any
output from the motion estimation block.

This section focuses on alternative methods to obtain the optical flow,
either using optical flow algorithms or by a partial bitstream decoding. While
there are other methods to estimate motion between two consecutive image
frames such as phase correlation, these are usually too complex for a typical
embedded application.

4.2.1 Block matching algorithm

The block-matching algorithm described in section 3.1.2 is a natural candi-
date for the pure software implementation because it closely resembles the
process being performed by the CME block and because it can be parallelized.
Moreover, SIMD instructions provided by the ARM NEON extension would
enable efficient processing. The resulting flow could be also refined to a
sub-pixel resolution in a way similar to the PX4Flow sensor.

I have however decided to let this option unimplemented because the main
aim of this work is the development of the Mixed GPU and CPU solution
and because the software implementation of the block-matching algorithm
does not represent any improvement over the existing sensor.

4.2.2 Lucas-Kanade algorithm

The Lucas-Kanade algorithm seems to be ideal for an embedded system as it
only computes the optical flow for a set of pixels instead of the full image.
Also, the process can be well parallelized.

However, as mentioned in section 3.1.2, the algorithm only works for small
displacements in the image. This problem is usually addressed by the usage
of so-called image pyramids. Each level of the pyramid is formed by a down-
sampled version of the original image. The algorithm then begins its search
on the lowest resolution level and refines its search on higher-resolution levels.

This approach is described in [Bou01]. The author also proposes a method
for tracking features between samples and a method for declaring a feature
lost, so that it is not necessary to run the feature detector for each frame.
Furthermore, the pyramids can be reused between consecutive frames which
decreases the overall computation time.

The algorithm can also be used to enhance the mixed GPU and CPU
solution. As discussed in section 4.1.1, the motion vectors only provide
two-pixel resolution. Instead of detecting image features, the motion vectors
could be used as an initial guess for the Lucas-Kanade tracker, which would

19

4. Design..
refine them to sub-pixel resolution. This would also eliminate the need for
pyramids as only small differences are expected between original and refined
motion vectors.

4.2.3 Partial bitstream decoding

The optical flow can also be obtained by decoding the encoded bitstream.
As this solution does not rely on any hardware-specific features (such as the
access to the CME block), it can be considered a CPU solution. In order to
obtain the motion vectors associated with each macroblock, it is necessary to
use a software decoder. However, the decoding usually presents a significant
load to the CPU.

As described in [YSK09], the computational time can be significantly
reduced by decoding the H.264 bitstream only partially. The authors propose
a method for identifying macroblocks to be encoded in order to detect moving
objects on a static background. This approach is usable for systems processing
data from a large number of surveillance cameras in a real-time.

A similar approach might be also used for the intended application. In this
case, all P-type macroblocks are useful (as they include the motion vectors)
but the image information is not required. This allows the decoder to skip
some operations such as the image reconstruction using the inverse DCT.

20

Chapter 5
Experimental setup

This chapter describes the hardware and software components used for and
implementation of the proposed solution.

5.1 Hardware

The hardware selection is heavily affected by the assignment. Raspberry Pi
is a single-board computer which has gained massive popularity in recent
years. Its main advantages are good availability, low cost and an embedded
video acquisition and compression pipeline. It comes in multiple form factors
ranging from the smallest model Zero to the largest model 3B.

I have selected the most recent Raspberry Pi 3 which features a 1.2 GHz
quad-core ARM Cortex-A53 CPU with 1 GB RAM. The CPU supports
an SIMD instruction set called NEON which is useful for intended computer
vision tasks.

While the Zero or Compute Module boards are smaller and therefore
more suitable for the intended application, they are based on an older gen-
eration of Broadcom’s SoC with pre-Cortex ARM11 CPU which does not
support the NEON instruction set.

5.1.1 Camera

The Raspberry Pi computer is equipped with a CSI port for interfacing
camera chips. The image acquisition process involves steps (camera configu-
ration, lens shading correction, bayer filter, image distortion, etc.) which are
processed by the the VideoCore DSP to reduce CPU load.

Because the relevant firmware is a closed source binary blob, the camera
selection is effectively limited to two image sensors. This also means that the
image acquisition pipeline can not be modified in any way (e.g. altering the
lens shading pattern for a different lens or using a custom camera calibration).

Currently, there are two available camera modules produced for the Rasp-
berry Pi, an OmniVision OV5647-based “v1” board and a Sony IMX219-
based “v2” board introduced in 2016. I have selected the latter as the OV5647
sensor used by the “v1” module has already reached its end-of-life date at
the end of 2014.

21

5. Experimental setup
The IMX219 sensor is a back-illuminated rolling shutter CMOS sensor

aimed at consumer electronics. Parameters of the selected camera module
are listed in table 5.1.

Resolution: 3280× 2464 pixels
Focal length: 3.04 mm
Sensor size: 3.674× 2.760 mm
Pixel size: 1.2× 1.2µm
FOV: 62.2°× 48.8°

Table 5.1: Parameters of the Raspberry Pi Camera Module v2 [eLi16]

The image captured by the sensor has to be resampled to the desired
resolution. According to [Jon16], the image acquisition pipeline uses a few
discrete video modes. The Modes which employ binning are listed in table 5.2.
The binning is performed directly by the image sensor and reduces noise
in the final image, which is useful especially in low light conditions. If the
desired resolution differs from a resolution provided by the selected video
mode, an additional scaling is performed by the VideoCore DSP. I have
selected mode 4 because is uses the full field of view and works at lower frame
rates.

Mode Cropped area Resolution Frame rate
4 3280× 2464 pixels (full) 1640× 1232 pixels 0.1 to 40 FPS
5 3280× 1844 pixels 1640× 922 pixels 0.1 to 40 FPS
6 2560× 1440 pixels 1280× 720 pixels 40 to 90 FPS
7 1280× 960 pixels 640× 480 pixels 40 to 90 FPS

Table 5.2: Available video modes with the highest frame rate

The comparison shows that the machine vision sensor used by the PX4Flow
is better as it features larger pixels and up to 4×4 binning. While it is possible
to choose a USB-connected camera with different parameters, the necessity
to involve CPU in the image acquisition process would reduce possible frame
rate and increase CPU load. It would also make the overall mechanical design
bulkier which is not practical with respect to the intended application.

Calibration and theoretical limits

The theoretical maximum velocity can be obtained using modified equation 3.9.
The maximum velocity ẋmax [m · s−1] depends on the height above ground
(the higher the altitude, the higher the speed) and the frame rate nF P S :

ẋmax = b · s
f
· umax · nF P S · Z (5.1)

The term umax is the maximum displacement detectable by the block
matching algorithm which is 64 pixels according to section 4.1.1. The pixel
size s must be multiplied by the scaling factor b. However, the scaling

22

...................................... 5.1. Hardware

factor is unknown as the only given information is that the original image is
binned to half by the sensor before being resized by the DSP to the desired
resolution. The resizing process is unknown and might possibly include any
combination of scaling, line skipping, and cropping. The factor b must be
therefore estimated using a camera calibration process.

The camera parameter matrixK obtained for the 480×480 px resolution is

K [px] =


f

pw
0 u0

0 f
ph

v0
0 0 1

 ≈
 531.97 0 239.50

0 531.90 239.50
0 0 1

 ,
where pw and ph are the resulting image’s pixel width and height and (u0, v0)
is the projection centre. Because the image sensor has square pixels of size
s, the factor b can be estimated from averaged pw and ph and known focal
length f as

b = pw + ph

2s =
f

k1,1
+ f

k2,2

2s ≈ 4.7625.

The theoretical minimum velocity can be calculated using equation 5.1 for
umax = 2. The theoretical minimum and maximum velocity detectable by the
sensor is depicted in figure 5.1 and table 5.3. The sensor will only provide valid
measurements for velocities within the given range. The figure also contains
the theoretical maximum velocity detectable by the PX4Flow sensor for
comparison (its theoretical minimum detectable velocity is unknown).

The factor b is different for frame rates above 40 FPS as a different video
mode must be used. For a video mode 7 the factor can be easily estimated as
b ≈ 2·960

480 = 4.

Ground distance [m]
0.5 1 1.5 2 2.5 3

M
in

im
u
m

 v
e
lo

c
it
y
 [
m

/s
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RPi @ 30 FPS
RPi @ 60 FPS
RPi @ 90 FPS

Ground distance [m]
0.5 1 1.5 2 2.5 3

M
a
x
im

u
m

 v
e
lo

c
it
y
 [
m

/s
]

0

5

10

15

20

25

30

PX4 @ 400 FPS
RPi @ 30 FPS
RPi @ 60 FPS
RPi @ 90 FPS

Figure 5.1: Theoretical velocity limits with respect to the ground distance

23

5. Experimental setup
Ground distance [m] 0.5 1 3

Minimum velocity [cm · s−1] 5.6 17.9 33.8
Maximum velocity [m · s−1] 1.8 3.6 10.8

Table 5.3: Theoretical velocity limits for the frame rate of 30 FPS

5.1.2 Distance sensor

The distance sensor is required to measure the distance to the ground so that
it is possible to convert the optical flow in pixels into real-world units (eq. 3.9).
I have selected the MaxBotix HRLV-EZ4 [Max14] ultrasonic sensor which
has a very narrow beam when compared to other available ultrasonic sensors.
The PX4Flow module uses the same sensor.

The sensor measures the distance periodically and returns the measured
value in millimeters over a serial interface. As it is possible to power the
sensor by 3.3V supplied by the Raspberry Pi, it is not necessary to convert
UART voltage levels.

The maximum range detectable by the sensor is 5 meters, which is sufficient
for the intended usage. For applications where a higher range is required
a laser sensor such as the Garmin LIDAR-Lite v31 might be an option.
It would be also possible to use a barometric pressure sensor which would
require calibration at the ground level.

5.1.3 Gyroscope

The gyroscope is required to measure the angular velocity between consecutive
frames so that it is possible to subtract angular corrections from the resulting
optical flow (eq. 3.12).

I have selected the L3GD20H [STM13] MEMS 3-axis digital gyroscope by
STMicroelectronics, which is the successor of the older L3GD20 chip
used by the PX4Flow sensor. The sensor is connected to the Raspberry
Pi using an I2Cinterface. The chip provides a number of features, such as an
integrated temperature sensor, a FIFO buffer for the sampled data samples,
selectable gain or low-pass and high-pass digital filters.

1https://buy.garmin.com/en-US/US/p/557294

24

...................................... 5.2. Software

5.2 Software

The software selection (especially the operating system) is also strongly
coupled to the Raspberry Pi computer and the features of the ARM
Cortex-A processor.

5.2.1 Raspbian

Being a popular project, the Raspberry Pi is supported by a wide range
of operating systems, including Linux-based distributions, BSD, Android,
Windows or Plan9. I have selected a Raspbian Linux-based distribution
which is officially supported by the Raspberry Pi Foundation.

The Raspbian [TG12] is an unofficial port of the Debian Wheezy
distribution for a hard-float ARM architecture. Although it had originated
as an unofficial and independent project, the Foundation adopted it and
periodically releases2 own system images (which include custom code such as
the interface for the VideoCore DSP). New releases include a “Lite” variant
which does not contain any unnecessary packages such as an integrated
development environment or a desktop environment.

5.2.2 OpenCV

OpenCV [Bra00, Its15] is a free multi-platform library for common tasks
related to computer vision. It is written in C and C++ and provides bindings
to other languages such as Python. I have selected it because it provides
optimizations for the ARM Cortex-A architecture, which include the
usage of intrinsics for NEON SIMD instructions and usage of the TBB
parallelization framework by Intel.

The OpenCV provides both low-level functionality (such as linear algebra)
useful for the proposed mixed CPU and GPU solution described in section 4.1
and more complex algorithm implementations (such as feature detection or
Lucas-Kanade) useful for the pure CPU solution described in section 4.2.

The codebase receives lots of contributions with varying quality, which
results in difficulties for maintainers and relatively low periodicity of releases.
I have used version 3.1 from December 2015, which was the latest stable
release available at the time of development.

5.2.3 Image acquisition

As described in chapter 4, the proposed solution requires both encoded video
data (which contain inline motion vectors) and raw image data for image
processing.

The Raspbian distribution provides a standard Video4Linux driver which
enables the camera to be used with various third-party applications, such as

2https://www.raspberrypi.org/downloads/raspbian/

25

5. Experimental setup
the OpenCV framework. However, the driver does not provide any motion
vectors.

Another way is to use the vendor’s application interface to access the
camera and encoder. Broadcom uses a Multimedia Abstraction Layer
(MMAL) to enable interaction between the CPU and so-called components
in the VideoCore DSP. However, this interface lacks proper documentation
(only header files and example code is available), which makes the development
complicated.

Libraries

The most advanced available MMAL wrapper is the Picamera module for
Python [Jon13]. It is actively maintained and well documented, works directly
with the MMAL interface and has the richest set of options. However, the
usage of Python would be a bottleneck in an embedded application.

Another available solution is the Raspicam C++ library [Sal13] which
features a camera class for the OpenCV. It uses the MMAL API to provide
a raw image from the camera and allows a limited set of configurations. The
code is, however, not actively maintained and lacks newer features. It also
lacks the ability to provide the encoded image and motion vectors.

RaspiVid

The Raspbian distribution contains a set of programs for image acquisition
which are open-sourced. The RaspiVid [Hug13] program allows the user to
record encoded video and provides a rich set of camera parameters. It also
optionally provides inline motion vectors from the coarse motion estimation
block. The encoded video is insufficient for intended computer vision tasks
as its decoding would introduce a significant CPU load.

The RaspiVidYUV is a copy of the RaspiVid which produces raw video
in YUV format. It lacks the ability to store motion vectors as the encoder
stage is omitted. Both programs are being actively developed both by the
community and employees.

As there was no available solution to fulfill the requirements at the time
of writing, I have decided to modify the RaspiVid program to provide both
raw video and motion vectors (described in section 6.1).

26

Chapter 6
Implementation

This chapter describes implementation details of the proposed solution de-
scribed in chapter 4. The software is written in C and C++.

6.1 RaspiVid modification

As discussed in section 5.2.3, I have decided to modify the existing RaspiVid
application to obtain both image data and motion vectors from the CME
block. The application is based on Broadcom’s proprietary MMAL API.
The API is used to set up components and their interconnections and to access
them from the CPU. These components run completely in the VideoCore
DSP and the CPU only handles callbacks which provide access to the input
our output buffers. The original configuration of the components is depicted
in figure 6.1.

Figure 6.1: Diagram of the original RaspiVid MMAL architecture

This configuration allows processing of inline motion vectors but does
not allow image processing. As both camera’s video outputs are routed to
components, it is not possible to assign a callback to allow the CPU to access
image data. I have therefore added a video_splitter component which has
the ability to split video streams to multiple outputs. The video_splitter
performs format conversion to grayscale so it is not necessary to configure the
format at the camera’s output (the camera’s output format is optimized for
the most efficient encoding). The new configuration is depicted in figure 6.2.

I have added two options to the RaspiVid application. Option –raw allows
the user to save the raw video into a file. The raw video output format (RGB,
YUV or grayscale) can be configured using a –raw-format option. These mod-

27

6. Implementation....................................

Figure 6.2: Diagram of the modified RaspiVid MMAL architecture

ifications have been contributed into the project’s repository and integrated1.
This extra effort simplifies patching of future RaspiVid updates so that they
can be used in the proposed application: both encoder_buffer_callback()
and splitter_buffer_callback() contain a single line code which passes
buffers to the main application for further processing.

6.2 Camera calibration

I have used an automated camera calibration code which is a part of the
OpenCV library [Gá11] to calibrate the camera. The application allows the
user to calibrate the camera either by providing a sequence of images of the
calibration pattern (e.g. checkerboard) or by providing a live stream from the
camera. While it might be possible to use the existing Video4Linux driver
to obtain the stream, it is not clear what video mode (table 5.2) it uses.

The calibration makes only sense for the same configuration of scaling and
cropping which is used by the final application. I have therefore modified the
code to grab images from the Raspberry Pi camera in the way described in
section 6.1. As the code might also be useful for other users, I have released
it as a separate project2.

The radial distortion estimated by the calibration process is also used to
undistort motion vectors before being compensated for the effects of camera
rotation.

6.3 RANSAC

The OpenCV library provides a function estimateRigidTransform() which
is a part of its “video” module. The function accepts two sets of 2D point
correspondences or two images and finds an affine transformation between
them (either a full affine transform without any restriction or the [RS|t]
transform restricted to uniform scale, rotation, and translation as described

1https://github.com/raspberrypi/userland/pull/342
2https://github.com/adamheinrich/RaspiCalib

28

.................................. 6.4. Pure CPU solution

in section 4.1.2). In case two images are provided as the input, the function
first finds the corresponding points and computes optical flow using the
Lucas-Kanade algorithm.

The affine transform is estimated using the RANSAC scheme described
in algorithm 1. Parameters of the algorithm (e.g. the maximum number of
iterations N = 500 or the required proportion of inliers Ω = 0.5) are however
hard-coded3 and can’t be changed. Moreover, the function seems to always
draw three samples required by the estimation of the full affine transform
even if the model is restricted to [RS|t].

This clearly increases the theoretical maximum run time: The number
of iterations (equation 4.6) required to draw at least one uncontaminated
sample with the probability P = 0.99 is 35 for sample size s = 3 but just 17
for the sample size s = 2.

I have therefore implemented a custom function which uses the transform
matrix estimation from the original estimateRigidTransform(). The func-
tion is parallelized using a OpenCV wrapper for the TBB library, and the
number of iterations is set to a fixed value required to draw at least one
uncontaminated sample for a data set with 15% of inliers.

6.4 Pure CPU solution

I have used functions4 provided by the OpenCV library to evaluate the
Lucas-Kanade method proposed in section 4.2.2.

I have used the FFmpeg [dev16] library to implement the partial bitstream
decoding method proposed in section 4.2.3. The library provides access to
motion vectors recovered during the decoding process (+export_mvs option).
The decoding process is made faster by configuring the decoder to skip some
image reconstruction steps such as the IDCT transform.

The decoded motion vectors represent the displacement of motion blocks
between two consecutive frames as described in section 4.1.1, they are however
represented as integers and therefore do not provide sub-pixel accuracy (which
would be an improvement over vectors recovered from the CME block). Also,
the SAD value or a similar quality measure is not present.

Because the decoding is being processed by the CPU, this method is slower
than the mixed solution. It is, however, useful for platforms which include
hardware encoder but do not have access to the CME block.

6.5 Integration

To be able to send measured data to a host controller, a communication
protocol must be implemented.

The PX4Flow sensor uses a MavLink protocol. MavLink is an open
protocol which provides a set of message types designed specifically for

3https://github.com/opencv/opencv/blob/3.1.0/modules/video/src/lkpyramid.cpp#L1354
4goodFeaturesToTrack(), buildOpticalFlowPyramid() and calcOpticalFlowPyrLK()

29

6. Implementation....................................
the communication with micro aerial vehicles as well as for the internal
communication between controllers, sensors and other peripherals used by
MAVs. It is used in a wide range of systems and application, such as the
ArduPilot5 or QGroundControl6. An open-source C implementation
[Mei09] for the serialization and deserialization of messages is available.

I have selected the MavLink protocol to maintain the highest possible
compatibility with the PX4Flow sensor. I have however decided to use a
UDP socket instead of UART as a transport layer. As the Raspberry Pi’s
only UART interface is used for the ultrasonic sensor, it is not possible to
use the serial interface for MavLink communication without any additional
hardware (such as the external USB converter or a I2Cor SPI to UART
bridge chip). Moreover, the UDP can also be used to communicate with other
programs running on the Raspberry Pi computer.

The system therefore periodically sends the same message types as the
PX4Flow sensor:.OPTICAL_FLOW_RAD (translational velocity, change in orientation,

angular velocity from the gyroscope, and ground distance).OPTICAL_FLOW (translational velocity in pixels and meters per
second, ground distance) – this is an “older” message type maintained
for backward compatibility with previous PX4Flow versions.HEARTBEAT

I have tested the implemented MavLink integration with the QGroundCon-
trol application. The measured data can also be logged into a semicolon-
separated CSV file.

6.6 Data loggers

I have implemented two data loggers to be able to log data from reference
sensors during evaluation.

The GPS logger receives standard NMEA sentences from a GPS receiver
connected to the Raspberry Pi via a USB to UART converter. The received
data are logged into a text file for later processing. The text file is then
converted to a comma-separated list of geographic coordinates using the
online tool GPS Visualizer [Sch02].

The PX4Flow logger receives MavLink messages sent over the USB
interface. The received messages are parsed and logged into a semicolon-
separated CSV file together with a timestamp. As the USB option is in fact
UART over USB, this program can be easily modified to log data from a
sensor connected over UART as well. As the logger might also be useful
for different use cases, I have released it under an open-source license as a
separate project7.

5http://ardupilot.org/
6http://qgroundcontrol.org/
7https://github.com/adamheinrich/mavlog

30

......................... 6.7. Hardware and mechanical construction

6.7 Hardware and mechanical construction

The mechanical construction went through multiple iterations. Early proto-
types were based around a clear acrylic case with mounting holes designed
for the camera module. Sensors were connected using a wire-wrapping tech-
nique and glued directly to the acrylic case. The construction is depicted in
figure 6.3 (note that it uses a larger ultrasonic distance sensor).

The early prototype was however not suitable for outdoor experiments. I
have therefore designed a more firm construction based around a prototyping
PCB for the Raspberry Pi. The PCB features mounting holes for the
camera and sensors which increase mechanical robustness of the construction.
The placement of components and lengths of distance screws have been
designed to fit the original Raspberry Pi plastic case. The final construction
is depicted in figure 6.4.

All required components are listed in table 6.1.

Figure 6.3: Photo of the early prototype

Figure 6.4: Photo of the final construction

31

6. Implementation....................................
Component name Component usage

Raspberry Pi 3 Model B8 Single-board computer
Raspberry Pi Camera Module v29 Camera

Raspberry Pi Case10 Plastic box
8GB micro SD Memory card

MaxBotix HRLV-EZ4 (MB1043)11 Ultrasonic sensor
Pololu L3GD20H Carrier (#2129)12 Gyroscope with a breakout PCB

Twin Industries 3.14-113 Prorotyping PCB

Table 6.1: Bill of materials

8https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
9https://www.raspberrypi.org/products/camera-module-v2/

10https://www.raspberrypi.org/products/raspberry-pi-case/
11http://www.maxbotix.com/Ultrasonic_Sensors/MB1043.htm
12https://www.pololu.com/product/2129
13http://twinind.com/index.php/products/314/314-1/

32

Chapter 7
Evaluation

This chapter describes evaluation of the proposed solution in both indoor
and outdoor environment. Because the tests have been performed before the
finalization of the software, some steps (such as the translational velocity
scaling into real-world units) have been performed in post-processing.

7.1 Indoor testing

Indoor tests have been performed in a small arena equipped with a camera-
based localization system WhyCon [Piv16] which was used as a ground truth
for comparisons. The system is able to record the position of the measured
object (detected using special circular markers) with up to six degrees of
freedom. I have however decided to use a 2D mode which is faster and
therefore provides more data samples.

The evaluated sensor was placed on a manually moved wheeled table
(depicted on figure 7.1) to maintain a constant altitude of 46 cm. The table
was moved manually.

Figure 7.1: The table with attached circular markers as seen by the WhyCon

33

7. Evaluation
7.1.1 Mixed CPU and GPU solution

I have used two trajectories to evaluate the velocity measurement. The
“Squares” trajectory is depicted on figure 7.2. The second trajectory, “Circles”,
is similarly formed by overlapping circles. Figure 7.3 shows velocities measured
by the Raspberry Pi compared to derived and filtered positions measured
by WhyCon. Average errors and standard deviations are shown in table 7.1.

To evaluate orientation estimation, I have used the WhyCon system in
6DOF mode. Figure 7.4 shows the computed trajectory and the resulting
orientation compared to reference measurements. The large time delays
between WhyCon samples are probably caused by a partial occlusion during
the experiment. The average error is 1.4◦. The low density of measurements
makes the comparison of angular velocities impossible.

Figure 7.5 demonstrates the angular correction. An optical flow induced
by the camera rotating around its x-axis is compensated using the angular
velocity measured by the gyroscope.

Trajectory µ [m · s−1] σ [m · s−1]
“Squares” 0.050 0.044
“Circles” 0.042 0.036

Table 7.1: Measured velocity errors

X [m]
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

X
 [

m
]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
WhyCon
Raspberry Pi
Start (0 m)
End (9.48 m)
End (9.17 m)

Figure 7.2: The “Squares” trajectory compared to WhyCon

34

.................................... 7.1. Indoor testing

Time [s]
0 5 10 15 20

V
e

lo
c
it
y
 (

X
 a

x
is

)
[m

/s
]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time [s]
0 5 10 15 20

V
e

lo
c
it
y
 (

Y
 a

x
is

)
[m

/s
]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

WhyCon Raspberry Pi

Time [s]
0 10 20 30 40 50

V
e

lo
c
it
y
 (

X
 a

x
is

)
[m

/s
]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time [s]
0 10 20 30 40 50

V
e

lo
c
it
y
 (

Y
 a

x
is

)
[m

/s
]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

WhyCon Raspberry Pi

Figure 7.3: Measured velocity for trajectories “Squares” (top) and “Circles”
(bottom) compared to WhyCon

X [m]
-0.5 0 0.5

X
 [

m
]

-1.5

-1

-0.5

0

Time [s]
0 5 10 15

O
ri
e

n
ta

ti
o

n
 [

°]

0

100

200

300

400

Raspberry Pi
WhyCon

Figure 7.4: Computed rotation compared to WhyCon

Time [s]
0 1 2 3 4 5

V
e
lo

c
it
y
 [
m

/s
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Original vel. Corrected vel.

Time [s]
0 1 2 3 4 5

A
n
g
u
la

r
v
e
lo

c
it
y
 [
°
/s

]

-200

-150

-100

-50

0

50

100

150

200

Angular velocity (gyro)

Figure 7.5: Demonstration of the angular correction

35

7. Evaluation
7.1.2 Processing time

Figure 7.6 shows the frame processing time required by the implemented
solutions. Average processing times are listed in table 7.2. The mixed CPU
and GPU solution is clearly the fastest one and can be even used with higher
frame rates.

The approximately constant processing is caused by the fixed number of
RANSAC iterations. This could be further lowered by using an adaptive
method described in [HZ03].

Mixed CPU/GPU

Frame [-]
0 100 200 300

P
ro

c
.

ti
m

e
 [

m
s
]

0

20

40

60

SW: Partial decoding

Frame [-]
0 100 200 300

P
ro

c
.

ti
m

e
 [

m
s
]

0

20

40

60

SW: Lucas-Kanade

Frame [-]
0 100 200 300

P
ro

c
.

ti
m

e
 [

m
s
]

0

20

40

60

Figure 7.6: Comparison of processing times: Mixed CPU and GPU solution
(top), Partial bitstream decoding (middle) and Lucas-Kanade (bottom)

Algorithm Mixed CPU/GPU Partial decoding Lucas-Kanade
Processing time 5.36 ms 6.30 ms 46.43 ms

Table 7.2: Average frame processing times

36

................................... 7.2. Outdoor testing

7.2 Outdoor testing

Outdoor tests have been performed in a park environment using commercially
available hexacopter DJI F550 (depicted on figure 7.7) equipped with a GPS
unit and PX4Flow sensor for comparison. The hexacopter was remotely
controlled by an operator to follow a given trajectory. Only the mixed CPU
and GPU solution has been evaluated.

Figure 7.7: Hexacopter used for outdoor testing

7.2.1 Comparison with PX4Flow

As the PX4Flow sensor provides output in meters per second, the recorded
velocity can be compared directly. It was however necessary to remove
the ultrasonic sensor because it would cause interferences with PX4Flow’s
internal ultrasonic sensor. The altitude data from PX4Flow have been
resampled and used as an altitude reference for the Raspberry Pi sensor.
The orientation was ignored during this experiment in order to compare
measurements with the PX4Flow sensor which does not recover orientation
from the optical flow.

Figure 7.8 shows the trajectory integrated from Raspberry Pi measure-
ments compared to the PX4Flow and figure 7.9 shows velocity comparison.
The average difference is 7.56 cm · s−1.

Figure 7.10 shows a different trajectory recorded during a flight above
pavement to demonstrate the ability to recover changes in orientation.

37

7. Evaluation

Y [m]
0 10 20 30 40 50

X
 [
m

]

-10

-5

0

5

PX4Flow Raspberry Pi Start End (61.84 m) End (60.35 m)

Figure 7.8: Computed trajectory compared to PX4Flow

Time [s]
0 20 40 60 80 100 120 140

V
e

lo
c
it
y
 (

X
 a

x
is

)
[m

/s
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

PX4Flow Raspberry Pi

Time [s]
0 20 40 60 80 100 120 140

V
e

lo
c
it
y
 (

Y
 a

x
is

)
[m

/s
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 7.9: Computed velocity compared to PX4Flow

Figure 7.10: Integrated trajectory compared to map (map from [PC16])

38

................................... 7.2. Outdoor testing

7.2.2 Comparison with GPS

Figure 7.11 shows the position integrated by the Raspberry Pi compared
to the position recorded from the GPS receiver. Geographic coordinates
have been approximately converted to meters using the WGS 84 spheroid
[Int03] and both trajectories have been aligned to have the same origin.
The difference at the end of the 93-meter-long trajectory is approximately
0.7 meters.

Moreover, figure 7.12 shows the proportion of inliers identified by the
RANSAC algorithm. The currently fixed number of iterations could be even
lower as the average proportion of inliers is approximately 82%.

X [m]
-5 0 5 10 15 20 25 30

Y
 [

m
]

-4

-2

0

2

4

6

8

10

12

14

16
GPS Raspberry Pi Start End (93.13 m) End (97.07 m)

Figure 7.11: Integrated trajectory compared to GPS

Proportion of inliers [%]
0 20 40 60 80 100

F
ra

m
e

s
 c

o
u

n
t

[-
]

0

500

1000

1500

2000

2500

Time [s]
0 50 100 150

P
ro

p
o

rt
io

n
 o

f
in

lie
rs

 [
%

]

0

20

40

60

80

100

Figure 7.12: Proportion of inliers in time (for trajectory 7.11)

39

40

Chapter 8
Conclusion

I have designed and implemented a visual odometry sensor based on the
hardware coarse motion estimation block featured by the Raspberry Pi
single-board computer. I have also proposed alternative hardware-independent
software solutions. The sensor is able to estimate the vehicle’s velocity in both
indoor and outdoor environments with a reasonable accuracy and provides
an additional functionality when compared to the PX4Flow sensor. The
focus on a popular and widely available single-board computer provides a
wide range of options for potential future improvements. Moreover, I have
contributed a few patches to the official RaspiVid application1 and added a
new functionality to it, so that a part of my work can be re-used in different
scenarios.

The implemented solution runs in real-time. As the average processing
time is under 6 milliseconds per frame, the frame rate can be increased from
the current 30 frames per second to a higher rate of up to 90 FPS, which is
the maximum supported by the Raspberry Pi.

While the proposed solution adds an additional functionality (orientation
estimation) when compared to the PX4Flow sensor, it does not provide any
configuration options. It has also not been tested as a feedback sensor for an
actual flight controller. Potential future improvements may include a more
efficient implementation of the gyro reading (featuring the internal FIFO
and interrupt signals), filtering of the measured data or compensation for
the effects of the camera’s rolling shutter, as described in [KJBL11]. Future
improvements might also include a custom PCB design which would replace
the current prototyping board.

1https://github.com/raspberrypi/userland/commits/master?author=adamheinrich

41

42

Appendix A
Bibliography

[Ard16] ArduPilot. Mouse-based optical flow sensor (adns3080).
Copter documentation, 2016. [Online; accessed 28 De-
cember 2016]. URL: http://ardupilot.org/copter/docs/
common-mouse-based-optical-flow-sensor-adns3080.html.

[Ava08] Avago Technologies. ADNS-3080. High-Performance Optical
Mouse Sensor, October 2008. [Datasheet].

[bfn14a] 6by9 (forum nickname). Re: Cme -x postponed? Raspberry Pi, 05
2014. [Online; accessed 23 December 2016]. URL: https://www.
raspberrypi.org/forums/viewtopic.php?f=43&t=76845.

[bfn14b] 6by9 (forum nickname). Re: h264 encoding options? i want
tune=zerolatency. Raspberry Pi, 04 2014. [Online; accessed 23 De-
cember 2016]. URL: https://www.raspberrypi.org/forums/
viewtopic.php?p=540152#p540152.

[bfn15] 6by9 (forum nickname). Re: Fine motion estimation with pi-
camera? Raspberry Pi, 01 2015. [Online; accessed 23 De-
cember 2016]. URL: https://www.raspberrypi.org/forums/
viewtopic.php?p=681715#p681715.

[Bou01] Jean-Yves Bouguet. Pyramidal implementation of the affine
lucas kanade feature tracker description of the algorithm. Intel
Corporation, 5(1-10):4, 2001.

[Bra00] G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools, 2000.

[BZF13] Adrien Briod, Jean-Christophe Zufferey, and Dario Flo-
reano. Optic-flow based control of a 46g quadro-
tor. In Workshop on Vision-based Closed-Loop Control
and Navigation of Micro Helicopters in GPS-denied Envi-
ronments, IROS 2013, number EPFL-CONF-189879, 2013.
URL: https://infoscience.epfl.ch/record/189879/files/
Optic-Flow_based_control_of_a_46g_quadrotor.pdf.

43

http://ardupilot.org/copter/docs/common-mouse-based-optical-flow-sensor-adns3080.html
http://ardupilot.org/copter/docs/common-mouse-based-optical-flow-sensor-adns3080.html
https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=76845
https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=76845
https://www.raspberrypi.org/forums/viewtopic.php?p=540152#p540152
https://www.raspberrypi.org/forums/viewtopic.php?p=540152#p540152
https://www.raspberrypi.org/forums/viewtopic.php?p=681715#p681715
https://www.raspberrypi.org/forums/viewtopic.php?p=681715#p681715
https://infoscience.epfl.ch/record/189879/files/Optic-Flow_based_control_of_a_46g_quadrotor.pdf
https://infoscience.epfl.ch/record/189879/files/Optic-Flow_based_control_of_a_46g_quadrotor.pdf

A. Bibliography.....................................
[dev16] FFmpeg developers. Ffmpeg: A complete, cross-platform solution

to record, convert and stream audio and video. https://ffmpeg.
org/, 2016. [Software library].

[eLi16] eLinux.org. Rpi camera module, June 2016. [Online; accessed
28 December 2016]. URL: http://elinux.org/Rpi_Camera_
Module#Technical_Parameters_.28v.2_board.29.

[FB81] Martin A Fischler and Robert C Bolles. Random sample con-
sensus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981.

[Gá11] Bernát Gábor. Camera calibration with opencv, August 2011.
[Online; accessed 7 January 2017]. URL: http://docs.opencv.
org/master/d4/d94/tutorial_camera_calibration.html.

[HMTP13] Dominik Honegger, Lorenz Meier, Petri Tanskanen, and Marc
Pollefeys. An open source and open hardware embedded metric
optical flow CMOS camera for indoor and outdoor applications. In
2013 IEEE International Conference on Robotics and Automation.
Institute of Electrical and Electronics Engineers (IEEE), may
2013. URL: http://dx.doi.org/10.1109/ICRA.2013.6630805,
doi:10.1109/icra.2013.6630805.

[Hol14] Gordon Hollingworth. Re: Cme -x postponed? Raspberry
Pi, 05 2014. [Online; accessed 23 December 2016]. URL:
https://www.raspberrypi.org/forums/viewtopic.php?p=
548816#p548816.

[HS81] Berthold KP Horn and Brian G Schunck. Determining optical
flow. Artificial intelligence, 17(1-3):185–203, 1981.

[Hug13] James Hughes. Raspivid. https://github.com/raspberrypi/
userland/tree/master/host_applications/linux/apps/
raspicam, 2013. [Computer software].

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University Pr., 2003.
URL: http://www.ebook.de/de/product/3267382/richard_
hartley_andrew_zisserman_multiple_view_geometry_in_
computer_vision.html.

[Int03] International Hydrographic Bureau. User’s Handbook on Datum
Transformations Involving WGS 84, 3rd edition, July 2003.

[Its15] Itseez. Open source computer vision library. https://github.
com/itseez/opencv, 2015. [Software library].

44

https://ffmpeg.org/
https://ffmpeg.org/
http://elinux.org/Rpi_Camera_Module#Technical_Parameters_.28v.2_board.29
http://elinux.org/Rpi_Camera_Module#Technical_Parameters_.28v.2_board.29
http://docs.opencv.org/master/d4/d94/tutorial_camera_calibration.html
http://docs.opencv.org/master/d4/d94/tutorial_camera_calibration.html
http://dx.doi.org/10.1109/ICRA.2013.6630805
http://dx.doi.org/10.1109/icra.2013.6630805
https://www.raspberrypi.org/forums/viewtopic.php?p=548816#p548816
https://www.raspberrypi.org/forums/viewtopic.php?p=548816#p548816
https://github.com/raspberrypi/userland/tree/master/host_applications/linux/apps/raspicam
https://github.com/raspberrypi/userland/tree/master/host_applications/linux/apps/raspicam
https://github.com/raspberrypi/userland/tree/master/host_applications/linux/apps/raspicam
http://www.ebook.de/de/product/3267382/richard_hartley_andrew_zisserman_multiple_view_geometry_in_computer_vision.html
http://www.ebook.de/de/product/3267382/richard_hartley_andrew_zisserman_multiple_view_geometry_in_computer_vision.html
http://www.ebook.de/de/product/3267382/richard_hartley_andrew_zisserman_multiple_view_geometry_in_computer_vision.html
https://github.com/itseez/opencv
https://github.com/itseez/opencv

..................................... A. Bibliography

[Jon13] Dave Jones. Picamera. a pure python interface to the raspberry pi
camera module. https://github.com/waveform80/picamera,
2013. [Software library].

[Jon16] Dave Jones. Camera hardware - picamera 1.12 documentation,
June 2016. [Online; accessed 7 January 2017]. URL: http:
//picamera.readthedocs.io/en/release-1.12/fov.html.

[KB17] Jonghyuk Kim and Galen Brambley. Dual optic-flow integrated
inertial navigation for small-scale flying robots. In Australasian
Conference on Robotics and Automation, 2017. URL: http://www.
araa.asn.au/acra/acra2007/papers/paper181final.pdf.

[KG11] Tim Kazik and Ali Haydar Goktogan. Visual odometry based
on the fourier-mellin transform for a rover using a monocular
ground-facing camera. In 2011 IEEE International Conference
on Mechatronics. Institute of Electrical and Electronics Engineers
(IEEE), apr 2011. URL: http://dx.doi.org/10.1109/ICMECH.
2011.5971331, doi:10.1109/icmech.2011.5971331.

[KJBL11] Alexandre Karpenko, David Jacobs, Jongmin Baek, and Marc
Levoy. Digital video stabilization and rolling shutter correction
using gyroscopes. CSTR, 1:2, 2011.

[KNP+12] Tomas Krajnik, Matias Nitsche, Sol Pedre, Libor Preucil, and
Marta E. Mejail. A simple visual navigation system for an UAV.
In International Multi-Conference on Systems, Sygnals & Devices.
Institute of Electrical and Electronics Engineers (IEEE), mar
2012. URL: http://dx.doi.org/10.1109/SSD.2012.6198031,
doi:10.1109/ssd.2012.6198031.

[LK+81] Bruce D Lucas, Takeo Kanade, et al. An iterative image regis-
tration technique with an application to stereo vision. In IJCAI,
volume 81, pages 674–679, 1981.

[Max14] MaxBotix. HRLV-MaxSonar-EZ Series. High Resolution, Preci-
sion, Low Voltage Ultrasonic Range Finder, 2014. [Datasheet].

[Mei09] Lorenz Meier. Mavlink protocol c/c++ implementation. https:
//github.com/mavlink/c_library_v1, 2009. [Software library].

[PC16] IPR PRaha and CUZK. Praha. http://www.geoportalpraha.
cz/mapy-online, 2016. [Online map; accessed 20 December
2016].

[Piv16] Tomáš Pivoňka. Vizuální lokalizace pro experimentaci v mobilní
robotice (motion capture system for experimentation in mobile
robotics). Master’s thesis, Czech technical university in Prague,
2016.

45

https://github.com/waveform80/picamera
http://picamera.readthedocs.io/en/release-1.12/fov.html
http://picamera.readthedocs.io/en/release-1.12/fov.html
http://www.araa.asn.au/acra/acra2007/papers/paper181final.pdf
http://www.araa.asn.au/acra/acra2007/papers/paper181final.pdf
http://dx.doi.org/10.1109/ICMECH.2011.5971331
http://dx.doi.org/10.1109/ICMECH.2011.5971331
http://dx.doi.org/10.1109/icmech.2011.5971331
http://dx.doi.org/10.1109/SSD.2012.6198031
http://dx.doi.org/10.1109/ssd.2012.6198031
https://github.com/mavlink/c_library_v1
https://github.com/mavlink/c_library_v1
http://www.geoportalpraha.cz/mapy-online
http://www.geoportalpraha.cz/mapy-online

A. Bibliography.....................................
[Ric10] Iain Richardson. H.264 Advanced Video Compres-

sion Standard. Wiley-Blackwell, 2010. URL: http:
//www.ebook.de/de/product/8759262/iain_richardson_
h_264_advanced_video_compression_standard.html.

[Sal13] Rafael Muñoz Salinas. Raspicam: C++ api for using raspberry
camera with/without opencv. http://www.uco.es/investiga/
grupos/ava/node/40, 2013. [Software library].

[Sch02] Adam Schneider. Gps visualizer. http://www.gpsvisualizer.
com/, 2002. [Online tool; accessed 5 December 2016].

[SCN13] Kathryn Schneider, Joseph Conroy, and William Nothwang. Com-
puting optic flow with ardueye vision sensor. Technical Report
ARL-TR-6292, Army Research Laboratory, January 2013. URL:
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA572633.

[STM13] STMicroelectronics. L3GD20H. MEMS motion sensor: three-axis
digital output gyroscope, March 2013. [Datasheet].

[TG12] Mike Thompson and Peter Green. Raspbian, 2012. [Computer
software].

[Upt14] Liz Upton. Vectors from coarse motion estimation.
Raspberry Pi, 04 2014. [Online; accessed 23 Decem-
ber 2016]. URL: https://www.raspberrypi.org/blog/
vectors-from-coarse-motion-estimation/.

[WC11] Andreas Wedel and Daniel Cremers. Stereo Scene Flow
for 3D Motion Analysis. Springer-Verlag GmbH, 2011.
URL: http://www.ebook.de/de/product/15361410/andreas_
wedel_daniel_cremers_stereo_scene_flow_for_3d_motion_
analysis.html.

[YSK09] Wonsang You, M. S. Houari Sabirin, and Munchurl Kim. Real-
time detection and tracking of multiple objects with partial de-
coding in h.264/AVC bitstream domain. In Nasser Kehtarnavaz
and Matthias F. Carlsohn, editors, Real-Time Image and Video
Processing 2009. SPIE-Intl Soc Optical Eng, feb 2009. URL: http:
//dx.doi.org/10.1117/12.805596, doi:10.1117/12.805596.

46

http://www.ebook.de/de/product/8759262/iain_richardson_h_264_advanced_video_compression_standard.html
http://www.ebook.de/de/product/8759262/iain_richardson_h_264_advanced_video_compression_standard.html
http://www.ebook.de/de/product/8759262/iain_richardson_h_264_advanced_video_compression_standard.html
http://www.uco.es/investiga/grupos/ava/node/40
http://www.uco.es/investiga/grupos/ava/node/40
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA572633
https://www.raspberrypi.org/blog/vectors-from-coarse-motion-estimation/
https://www.raspberrypi.org/blog/vectors-from-coarse-motion-estimation/
http://www.ebook.de/de/product/15361410/andreas_wedel_daniel_cremers_stereo_scene_flow_for_3d_motion_analysis.html
http://www.ebook.de/de/product/15361410/andreas_wedel_daniel_cremers_stereo_scene_flow_for_3d_motion_analysis.html
http://www.ebook.de/de/product/15361410/andreas_wedel_daniel_cremers_stereo_scene_flow_for_3d_motion_analysis.html
http://dx.doi.org/10.1117/12.805596
http://dx.doi.org/10.1117/12.805596
http://dx.doi.org/10.1117/12.805596

Appendix B
Attached CD

The attached CD contains all developed programs and the text of this thesis.

47

	Introduction
	Related work
	PX4Flow
	Solutions based on an optical mouse sensor
	Other solutions

	Theory
	Optical flow
	Constraint equations
	Optical flow algorithms

	Ground-facing camera
	Angular correction

	H.264 video format

	Design
	Mixed CPU and GPU solution
	Hardware H.264 encoder
	Motion estimation using the RANSAC algorithm

	Pure CPU solution
	Block matching algorithm
	Lucas-Kanade algorithm
	Partial bitstream decoding

	Experimental setup
	Hardware
	Camera
	Distance sensor
	Gyroscope

	Software
	Raspbian
	OpenCV
	Image acquisition

	Implementation
	RaspiVid modification
	Camera calibration
	RANSAC
	Pure CPU solution
	Integration
	Data loggers
	Hardware and mechanical construction

	Evaluation
	Indoor testing
	Mixed CPU and GPU solution
	Processing time

	Outdoor testing
	Comparison with PX4Flow
	Comparison with GPS

	Conclusion
	Bibliography
	Attached CD

