Ceské vysoké uéeni technické v Praze
Fakulta elektrotechnicka

Katedra pocitacl

ZADANI DIPLOMOVE PRACE

Student: Vojtéch Novak

Studijni program: Oteviena informatika
Obor: Softwarové inzenyrstvi

Nazev tématu: Multiplatformni mobilni aplikace pro pfekladatelskou platformu Memsource

Pokyny pro vypracovani:

1) Analyzujte postupy a procesy pfi praci s prekladatelskou platformou Memsource
Cloud pomoci jeho souc¢asnych webovych nastroju.

2) Identifikujte ¢asti platformy a procesy, které je vhodné prevést do mobilni
aplikace a provedte pruzkum moznych vyvojovych platforem.

3) Na zakladé analyzy provedte iterativni navrh a implementaci multiplatformni mobilni
aplikace s vyuzitim prototypl a uZivatelského testovani v
ramci cyklu User Centered Design (UCD).

4) Priimplementaci se soustfedte jak na dodrzovani pravidel vzhledu uZivatelského
rozhrani (design guidelines), tak i na maximalni miru sdileni kodu mezi platformami.

5) Aplikace otestujte také z hlediska funk&nosti.

Seznam odborné literatury:

[1] Jones M.,Marsden G. Mobile Interaction Design, Wiley, 2006

[2] Ware C., Visual Thinking for Design, Morgan Kaufmann, 2008

[3] Buxton B., Sketching User Experiences: Getting the Design Right and the Right
Design, Morgan Kaufmann, 2007

Vedouci: Ing. lvo Maly, Ph.D.

Platnost zadani do konce letniho semestru 2017/2018

LS.
prof. Dr. Michal Péchouéek, MSc. prof. Ing. Pavel Ripka, CSc.

vedouci katedry dékan

V Praze dne 13.10.2016

Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Mobile Application for Memsource Cloud
Translation Platform

Vojtéch Novak

Supervisor: ing. lvo Maly, Ph.D.
Field of study: Software Engineering
January 2017

ii

Acknowledgements

I would like to thank my parents for
their continuous support throughout my
studies. I would also like to express my
thanks to Memsource, s.r.o. for the the-
sis topic and the opportunity to work
with cutting-edge technologies. Last but
not least, I thank my supervisor ing. Ivo
Maly, Ph.D. for his guidance.

iii

Declaration

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o do-
drzovani etickych principd pti pripravé
vysokoskolskych zavérecnych praci.

V Praze, 9. ledna 2017

Abstract

Memsource Cloud is an online transla-
tion platform that helps individuals as
well as large translation agencies to man-
age their translation projects. Mem-
source Cloud offers tools for the entire
translation workflow from document im-
port to final review.

This document describes development
of a mobile application which will en-
able the users of Memsource Cloud to
access its features through public APIs
while—compared to the current web-
based solution—allowing greater integra-
tion with the mobile platform and offer-
ing a user experience specifically tailored
for mobile devices.

Keywords: mobile application
development, React Native, Android,
iOS, Memsource Cloud, Memsource

Supervisor: ing. Ivo Maly, Ph.D.

iv

Abstrakt

Memsource Cloud je online platforma
pro preklady, kterd jak jednotlivetim, tak
i velkym prekladatelskym agenturam po-
méha spravovat jejich prekladatelské pro-
jekty. Memsource Cloud nabizi sadu na-
stroji pokryvajicich kompletni prubéh
prace od importu dokumentu, az po za-
vérecnou revizi.

Tato prace popisuje vyvoj mobilni apli-
kace, ktera uzivatelim Memsource Cloud
umozni pristupovat k funkcionalitdm pla-
formy skrze jeji vefejnd API. Oproti sta-
vajicimu webovému Tfeseni, mobilni apli-
kace bude mit vyhody vyssi integrace s
mobilni platformou a zvyseného uziva-
telského komfortu diky tomu, ze bude
navrzena pirimo pro mobilni zafizeni.

Kli¢ova slova: vyvoj mobilnich
aplikaci, React Native, Android, iOS,
Memsource Cloud, Memsource

Pteklad nazvu: Mobilni aplikace pro
prekladatelskou platformu Memsource

Contents
Project Specification 1]
1 Introduction il
1.1 Motivation
2 Analysis 5|

2.1 Working with Memsource Cloud

2.2 Requirements (i

2.3 Analysis of Platforms and

Development Tools.............
2.4 Xamarin.................... 11l
2.4.1 Shared Project
2.4.2 Portable Class Library
2.5 React Native 13
2.5.1 Native Modules
26Tonic ..o
2.7 Conclusions
3 Design 19

3.1 Application Structure

3.2 Prototyping

3.2.1 Testing with users.........
3.2.2 Test results 24]
3.3 Application Architecture.
331Redux 25
3.32MobX ... 26l

3.4 Client-server Communication . .

3.5 Domain Objects and Stores . ..
3.5.1 Representing Users........

3.5.2 Platform-specific Look and

4 Implementation

4.1 Ul with React Components . ..

4.2 StOTeS . oo 371

4.2.1 Connecting Stores with Views

4.3 Upload Module
4.3.1 Android 40
432108 ... 42|

4.4 State Persistence

4.4.1 Storing User Credentials . . .

4.5 Data Fetching

4.5.1 Handling Internet Connection
Outage ...,

4.6 Multi-stage Deployment and

Testing ...t
4.7 Code Quality Tools

4.7.1 Flow - Static Type Checker

4.72ESLint
4.8 Navigation
49TSSUES o oo 51

4.10 Open Source Software
Contributions 52

5 Testing and Crash Reporting 53

5.1 Unit Testing
5.2 Testing With Users

5.2.1 Test Conclusions 571
5.3 Crash Reporting

vi

6 Conclusions and Future Work

A Tasks for Testing with Users

B Installation Instructions

C Attachment Contents

D Index

E Bibliography

65

Figures

2.1 A translation project in
Memsource Cloud. [7l

3.1 Structure of the app’s screens. .

3.2 Mockups showing the project list
screens. Second screen shows the
chevron active, where user can filter

displayed projects.

3.3 Job list (left) and a screen where
“Job 17 is selected and different
actions are available for it (right).

3.4 Adding a new job to a project.

3.5 Different way of listing jobs
within a project on iOS. The second
screen displays the state of the first

after clicking on the ’edit’ button.

3.6 Listing projects (left) and jobs in
a project (right)................

3.7 ApiCaller class
3.8 Project class
3.9 ProjectStore class............

4.1 Simplified folder structure of the
project........

vii

4.2 Platform-customized behavior of

list and date picker components .
4.3 Platform-customized behavior of

selecting jobs and providing actions

over the selection............... 37
4.4 Search screen along with

displayed search history entry. . . .
4.5 Project info screen.

Tables

2.1 Comparison of the considered
multiplatform development tools .

viii

Chapter 1

Introduction

Memsource is a Prague-based company that develops an online platform for translation,
translation management and analytics called Memsource Cloud |!. The platform is
provided as software as a service (SaaS) and uses a freemium business model. It
is used by translation agencies as well as freelancers to administer their projects,
the documents they need to translate and provides an editor tailored specifically for
translation needs. It enables its customers to keep all important information in one
place and increase translation quality and productivity. In the document, I will use
the names Memsource and Memsource Cloud interchangeably and will make a note in
case we need to distinguish between them.

To start using Memsource, user has to sign up and choose one of the offered plans.
After completing the registration process, they can start using the project management
and translation tools. The management part consists of a web-based interface where the
user can administer their translation projects, jobs (translated documents), translation
memories and term bases (these terms will be explained later on), users and other
features. Closely related is the Memsource editor which is available both for major web
browsers and as a standalone application. The editor serves as a specialized tool for
performing the translation and includes features for improving the speed and quality
of translation. One of the newer features is the analytics bundle which allows the user
to see translation progress and performance and thus get a deeper insight into their
business.

Memsource is designed to support three kinds of customer groups: individual trans-
lators, translation agencies and translation buyers and offers corresponding versions,
sub-editions and services to each of those. The translator edition is meant for individual

"https://www.memsource.com/en/features

1. Introduction

translators or freelancers and has only a basic set of features offered free of charge.
The edition for translation agencies adds more features on top of the freelancer version,
notably the possibility to work with users, set up user roles and workflows. This allows
project managers within the agency to distribute translation jobs among translators
and specify the workflow through which multiple versions of a translated document
can be kept in a project. A typical workflow may consist of translation, editing and
proofreading.

The ultimate editions also support advanced features and, more importantly, access
to Memsource Cloud API. Lastly, the version for translation buyers is intended for
corporate customers who need to have various texts translated for their business and
through Memsource, they’re connected to the translation agencies or freelancers who
will do the job for them.

. 1.1 Motivation

Memsource operates on the market of CAT (computer-aided translation) tools since
2010 and it is its best effort to provide modern and innovative solutions for translators
based on its SaaS model. This effort is fulfilled by a set of described web and desktop-
based applications. The current tools developed by Memsource are designed for use on
computers mostly with a large screen, i.e. laptops, desktops, or large tablets through a
web browser (with the exception of desktop editor which can be installed on Windows,
OS X and Ubuntu).

The sector of mobile devices, however, remains largely uncovered by Memsource. In
today’s world, mobile devices play an ever important role, allowing people to access
online resources from virtually anywhere and at any time. There are a number of
studies that show the increasing presence of mobile devices on the internet and in
both our professional and personal lives. Statista offers an overview of Smartphone
share of visits to websites in the United States in 2014 and 2015, by industry [19].
This statistics shows that the shares vary greatly between industry, with technology
websites having 11.7% share of visits from mobile, while for media and entertainment,
mobile accounts for 36.6%. Comscore goes even further and in its study from 2014
[14], it claims that more than a half of time spent with digital media (social networks,
videos, magazines, etc.) in the U.S. is spent on mobile devices. An interesting blogpost
by Google AdWords Vice President from 2015 reads that “more Google searches take
place on mobile devices than on computers in 10 countries including the US and Japan.”
18]. It clearly follows we have to design our software products to play well with mobile
devices and the limitations that are inherent to them.

1.1. Motivation

While Memsource can be accessed from a mobile device through its internet browser,
the browser cannot take full advantage of the features of the platform it runs on. More
specifically, with just the web browser, it is not possible to upload files for translation
directly from email inbox, which is one of the main channels through which translation
inquires are made. Making the project and job creation from a phone’s e-mail inbox (or
other resources) as smooth as possible is an important functionality that Memsource
does not have covered and that is overly complicated or impossible with a standard
web browser. A mobile application, on the other hand, offers much more flexibility.

Apart from that, features of Memsource Cloud often need to provide a number
of options and settings available to the user (some of which are not used frequently
because they support advanced functionality) and in some cases, this makes the Ul
quite complex. Rendering such Ul in a mobile device’s browser results in inconsistencies
as well as limited usability even though it is programmed responsively.

Memsource, as a leading translation platform provider wants to be able to provide
its core features accessible to customers who are on the go, do not have a computer at
their disposal or simply do not want to be tied to one — especially at times such as
Friday evening. For the aforementioned reasons, the existing solution is not sufficient
and therefore, the goal of this thesis is to develop an client application for mobile
devices. This app should contain a subset of the features that are currently available
and make them simple to use, keeping in mind the specifics of development for mobile
devices.

Chapter 2

Analysis

In this chapter, I shortly introduce the reader to Memsource Cloud and its features,
and move onto the requirements for the mobile application. Next, I cover the market
shares of Android, i0OS and Windows Phone, followed by an analysis of today’s major
cross-platform mobile app development tools. I discuss their features and conclude by
picking React Native as the library of choice.

B 21 Working with Memsource Cloud

Each of the target groups has a partially different way of working with the Memsource
platform. Here, I will cover a usual workflow of a translation agency. Such agency
typically has two main types of employees—project managers and translators (linguists).
Project managers communicate with customers and receive documents that need to be
translated into one or more target languages from them. For the purpose of managing
several documents relating to one customer and/or topic, the manager can set up a
project. Following project creation, the manager uploads the documents to Memsource
Cloud (which currently supports translation of about 50 file formats). In Memsource,
such documents are referred to as translation jobs. Jobs have a plethora of properties
bound to them, such as due date, linguist who is assigned the job and other settings.

Typically, it is then the translator’s job to actually translate the document, using
the Memsource web or desktop editor. The editor helps to accomplish this task by
allowing preprocessing using machine translation algorithms, through term bases and
translation memories and quality assurance features.

2. Analysis

An important concept here is segment, which usually consists of a single sentence of
the translated document. Translation is done one segment after another. Translation
memory is essentially a database of previously translated segments. When translating
files that are similar in their content, for example contracts, official documents or
different version of the same document, it often happens that there are partial or full
matches in the translated text. Translation memory can spot these similarities and
offer the translator a previously confirmed translation. It can also smartly replace small
differences. Term base, similarly, is a database of specific terms and their translations
into multiple languages. It can include additional information such as a definition,
subject area or industry and etc. Its job is to assure that a term is used consistently
throughout the translated document. The quality assurance tools can be used to check
if the document meets criteria such as no trailing spaces, no repeated words in close
proximity, correct spelling and more.

While the document is being translated, it can optionally go through multiple stages
of processing. This feature is called workflow and it allows to keep multiple versions of
the same translation job in a project. Workflow may, for example, consist of translation,
editing and proofreading. Therefore, once a segment is confirmed in translation, it
is propagated to the next workflow level where other agency employer can continue
working on it. Once the document is translated, it is delivered to the customer. Figure
2.1/ shows a translation project in Memsource Cloud.

B 22 Requirements

The requirements for what the application has to support were determined gradually
by a discussion with the Memsource developer team and CEOQO, followed by discussions
with members of the support and product team who understand the customer use
scenarios. The outcome of conducted discussions is described in this section.

First I present a summary of requirements, a more detailed description is also
included.

Summary of requirements

Non-functional requirements

1. app has to run on iOS and Android and be stable

2. app should be written using technologies already used in Memsource

6

MEMSOURCE

CLOUD

CREATE NEW

RECENT ITEMS

< no notifications.

< Yet another project
| Software TM
< analyse testv2
<) Demo 1
<2 Clock Industry
<> 7209 test 1
< 7879_india_languages
<> pahovor
<5 Vojty test 3.8

USEFULLINKS

(=) Job Board (beta) "=*
(3) Try Memsource Editor
(%) Getting Started

() User Manual

() Support

(%) System Status

[Recycle Bin

Last login: 05-01-2017 22:14 Details

(nr HOME

< PROJECTS

no notifications

2.2. Requirements

LATION MEMORIES == TERM BASES setup % users [=: sign out VNovak

807 Source Language | €s
Name no notifications Target Languages DE EN
Created by VNovak Machine Translation Google
Created 23 Dec 02:59 Owner VNovak
Status New Domain Chemistry
Note notel Subdomain nutrition
Client Britisth
Dashboard
Jobs [tew] ®
td # Confirmed FEile Status Target Linguist Due hd
. Important
5 0% W Docymentdoc New oE
. Imporiant
= 05 W Document.doc New =
Analyses @
Name Linguist Type Created Created by Languages
1 Analysis#l Default 02 Jan 15:53 Novak Vojtech cs - DE
e = ®
Name Total price Status Created Created by
1 Quote #1 usbDo New 02 Jan 15:54 Vhovak
Tton e @
Temgases ®
References [New | ®

Figure 2.1: A translation project in Memsource Cloud

3. UI components should have a platform-native look

4. UI transitions have to feel smooth

5. UI follows the design guidelines of both platforms

6. app has to be intuitive to Memsource users

7. app should keep number of API request minimal, to save resources

8. the software has to be maintainable and testable

9. use external software packages only if their license is suited for commercial use

Functional requirements—the app has to:

1. use Memsource API to acquire the content

2. support Memsource project manager and linguist roles

7

2. Analysis

3. support multiple users logged in at the same time and allow to switch between
accounts

list projects and allow to filter them
list jobs and allow to filter them
support adding jobs and projects
allow to edit projects and jobs

store user credentials in a secure manner

© X N ok

support error reporting

10. present its Ul in English only

In some cases, the tools developed by Memsource are complex so that they support
different user needs (for example lots of import options for translation jobs). We do
not want to bring all this complexity to the mobile application and thus needed to
find only the features we wish the mobile app to include at the start.

Follows a detailed description of requirements:

1. User requirements

1.1. The app will target smartphone devices and a narrow group of users—
professional users of Memsource Cloud who understand its features.

1.2. The app has to support the project manager and linguist user roles

1.2.1. App has to support multiple users being logged into the app

1.2.2. App will display content for only one user at a time and there will be a
simple way to switch between users (i.e. set the active user).

1.2.3. The number of added accounts will be limited to a maximum of four.

The situation when a single Memsource user has several accounts is not common,
but it is not unheard of (This does happen to users who work for several translation
agencies.). This will make working with several user accounts easier, without the
need to log in and out or use several browser windows as is the case when using
a computer. Currently, the API uses a token for authentication and this token
is sent together with all requests. It is thus possible to make such requests for
multiple users from the same device. Note that the API is available to only some
of the Memsource editions.

2. Content requirements

2.1. The app will load all its content through an API which is provided by
Memsource. In cases where a new API is needed, it will be developed.

8

2.2. Requirements

2.2. The app has to keep the number of API requests as low as possible so that
the phone’s and the servers’ resources are not overused.

2.3. The first screen should render within 4 seconds after starting the app.

It follows that we assume the user will have internet connection available on their
device at all times when the app is used to create new content and fetch the
up-to-date data.

Compared to the web-based service, the app will only support selected features, to
keep its Ul simple and easy to work with. At the same time, it should follow the
patterns users know from the web version to avoid confusion. More specifically:

. Functionality requirements

3.1. Functionality for PM users

3.1.1. The app has to support logging in for Memsource users whose role is
project manager (PM).
3.1.2. Project-related requirements

3.1.2.1. App has to support listing projects based on their status (my projects,
all, overdue, in progress). The list of projects should contain relevant
information (name, customer, due date) for each project.

3.1.2.2. App has to offer project search using the project name, when the
project was created (last 24 hours, last 3 days, last 7 days, last 30
days), the client, the project owner and due date.

3.1.2.3. PM has to be able to create a new project where they have to able
to enter a predefined template from which project can be created,
project name, client, domain and subdomain, business unit, source
and target languages, due date and note.

3.1.2.4. App will support deleting projects.

3.1.2.5. App will support editing projects. The same project properties
which are supported by the app when creating a new project will be
supported for editing, with the addition of project owner.

3.1.2.6. The app will allow the PM see project details (name, user who
created the project, date when created, status, due date, source and
target languages and project owner).

3.1.2.7. App will support adding existing Translation memory and existing
Term base to a project.

3.1.3. Job-related requirements

3.1.3.1. App will provide means to show a list of jobs contained in the project,
showing relevant information for each job—job name, linguist name,
due date, target languages and status.

3.1.3.2. PM has to be able to create (upload) new translation jobs from
document providers available on the platform.

3.1.3.3. Adding jobs to project from an email attachment also has to be
supported.

2. Analysis

3.1.3.4.

3.1.3.5.

3.1.3.6.

3.1.3.7.

3.1.3.8.

When adding a new job, user will be able to enter the target languages,
select due date, enter linguists for the job and have the option to
notify them of the new job.

After a job is uploaded, user has to be informed about it. Similarly,
user has to be informed about unsuccessful file uploads.

App should only support creating jobs from the most common file
types (MS Word, Excel, Powerpoint and HTML).

User needs to have the ability to select individual job, as well as
several jobs, to download, edit and delete them. Editing consists of
changing the linguist, status and due date.

Similarly to searching and filtering of projects, the app will allow to
filter jobs by name, status, target language, linguist and due date.

Note: The advanced project creation options for machine translation, analysis
and other which are visible in Memsource Cloud, will not be included.

3.2. Functionality for Linguist users

3.2.1. The app will support listing projects that are visible to the linguist,
filtered based on status (new, accepted, completed). The list will contain
relevant information—name, date created, owner, and source and target
languages.

3.2.2. Linguist will be able to open a project, download or preview selected
jobs and change their status (accepting or rejecting and marking them
as completed).

3.2.3. Same as with a PM, linguist will have the ability to search based on job
filename, status, target languages and due date.

4. Other requirements

4.1. It is important the app be developed for at least the two major mobile phone
platforms, that is Android and iOS.

4.2. The app must be developed using programming languages that Memsource
developers are already familiar with, that is one or more of: Java, Groovy,
C++, JavaScript or any other technology if it brings substantial benefits.

4.3. For the user, the app should look and feel as close to a native app as possible.

4.4. The application has to support error reporting to allow Memsource continually
improve the user experience, app stability and addition of new features.

10

2.3. Analysis of Platforms and Development Tools

B 23 Analysis of Platforms and Development Tools

Today’s market of mobile devices is largely divided between two platforms—iOS and
Android. With 80.7% for Android and 17.7% for iOS, these two alone made up more
than 98% of worldwide sales in 4Q15, according to Gartner [16]. Windows Phone comes
third with 1.1% of sales. Interestingly, in its March 2016 report, Kantar Worldpanel
shows the sales vary greatly among different states [18]. For example, while iOS has
a sales share of 56% in Japan, it only has 17.8% in Germany. In 1Q2016, Android
was growing in Europe, at the expense of iOS and Windows Phone, whose sales had
been dropping in the UK and France where Windows Phone was historically relatively
successful. The data from 3Q2016 shows growing Android sales: 86.8%, 12.5% and
0.3% for Android, iOS and Windows Phone, respectively, according to IDC [17] and a
report from Gartner [15] shows very similar numbers.

Since we are looking for a solution for creating apps for more than just one platform,
I continue with describing the state of the art of multiplatform development tools.

. 2.4 Xamarin

Xamarin is a framework for developing native apps for iOS, Android and Windows
Phone. The company was founded in 2011 and was acquired by Microsoft in 2016. All
of Xamarin is now open-sourced on GitHub [!l Xamarin divides into four main parts:
Xamarin.iOS, Xamarin.Android, Xamarin.Windows and Xamarin.Forms. The first
three offer access to native APIs for the particular platforms, where Xamarin stresses
that “Anything you can do in Objective-C, Swift, or Java you can do in C# with
Xamarin” |30] When using these, the developed solution consists of one project per
supported platform (which contains the platform-specific code — mainly the UI) plus
single project whose code is shared and contains the business logic. Reportedly, this
approach can result into about 75% code reuse |32]. Xamarin.Forms is an attempt to
bring code reuse event higher, usually more than 90% [32] by sharing also the UI code.

As explained, Ul in Xamarin can be either defined specifically for each platform
within the platform’s application project or cross-platform using Xamarin.Forms [31].

Taking the first way is recommended for apps with interactions that require native
behavior, apps which use many platform-specific APIs or cases when custom-tailored
UI has higher priority than code sharing. With this approach, each app has its own

"https://github.com /xamarin

11

2. Analysis

UI defined in C# code or XAML (an XML-like sytax for UI description) which can be
done in a graphical UI designer.

Using Xamarin.Forms is best for apps that require little platform-specific functionality
and apps where code sharing is more important than custom Ul. Xamarin.Forms Ul
can be done either in C# or in XAML but without the support of UI designer.

Development with Xamarin is done under Windows or OSX and the language of the
framework is C#. The code must be built and sent onto a device or emulator, which
can take a considerable amount of time. Development and debugging is best done in
Visual Studio on Windows. Xamarin allows to write the code shared by all platforms
in the form of a Shared Project or a Portable Class Library [27] which are described in
the following sections.

B 2.4.1 Shared Project

Shared Project is the simplest way to share source code between platforms. This way,
a cross-platform app that supports Android, iOS and Windows Phone would require
an application project for each platform and additionally, there would be a Shared
Project for the code common to all projects.

The code within a Shared Project can be branched into platform-specific parts using
compiler directives (e.g. using #if __ ANDROID___). The application projects can
also include platform-specific references that the shared code can utilize. The downside
to this approach is that a Shared Project has no output assembly. During compilation,
the files are treated as part of the referencing project and compiled into that project’s
DLL. This does not allow to distribute the code from Shared Project as an independent
library.

B 2.4.2 Portable Class Library

Portable Class Library addresses the fact that Shared Project cannot be distributed
as a standalone library. Portable Class Library offers the possibility to distribute it
independently of the mobile app.

The disadvantages are that it is not possible to use compiler directives to reference
platform-specific features and the fact that different platforms often use a different

12

2.5. React Native

subset of the .NET Base Class Library (BCL) and therefore only such subset is
available to use. This, to some extent, can be circumvented by the Provider pattern or
Dependency Injection. That way, the actual implementation is coded in the platform
projects against an interface defined within the Portable Class Library.

. 2.5 React Native

React Native (RN) ? is a counterpart of the popular web development library React
and is also developed by Facebook which uses in several production apps and “will
continue to invest in it” [26]. It was first released in 2015, which makes it the youngest
among the covered solutions. React is popularized under the slogan “Learn once,
write anywhere.” [26], as opposed to e.g. Java whose goal is that one codebase runs
anywhere, this means that once a developer learns React, she can use her skills to
write apps for multiple platforms (web, Android, iOS, etc.) using just React, but not
necessarily with a single codebase.

React originally started as a tool for describing user interfaces for the web, and
rapidly became popular within the web development community. However, it was
recognized that React’s usage was not limited only to web.

React describes the user interface through reusable components which tell what
the Ul is supposed to look like. It is then the matter of transforming the description
into a user-facing UIL. On the web, this is the task of React-DOM [9] which uses the
Virtual DOM tree as a layer of abstraction between the developer’s code and what is
rendered in the browser. When programming mobile apps, this abstraction is handled
by React Native [9]. At this point, it is important to state that the UI rendered with
React Native is not running in a WebView but is built from the native Ul elements of
the platform in question (i.e. View on Android and UIView on iOS), which makes it
different from the longer-established hybrid development environments which also use
JavaScript as their programming language.

RN application code is written in JavaScript which runs in JavaScriptCore engine
on the device [23]. RN features what is called the bridge [33]. The bridge is in turn
responsible for bridging the calls onto the native platform APIs and back. This way,
user can access any native functionality and get information back in a callback or
promise payload.

When developing with RN, the developer creates or makes use of ready-made

https:/ /facebook.github.io/react-native

13

2. Analysis

UI components and uses them to compose the application UI. The components are
written in a combination of JavaScript and XML tags, called JSX. Optionally, Flow
3| a static type checker for JavaScript can be used. Also supported although not so
frequently used are languages that transpile to JavaScript, such as TypeScript [*. From
developer’s point of view, important features of RN are its live and hot reloading [21].
Live reloading enables the developer to apply code changes to the app running on
a device or in an emulator quickly. Live reload in fact takes about five seconds on
my development machine. This is a tremendous improvement over traditional native
development, which until recently—with the introduction of Instant Run to Android
Studio—suffered from the slow process of building an app and loading it into a device
or emulator.

The other feature called Hot Reloading offers essentially the same functionality
as Live Reloading with the advantage of being faster and preserving the application
state—the screen displayed before and after the Hot Reload is the same—thanks to
which the developer does not need to navigate through the app to the screen where the
change is being done. This is especially helpful for making changes to the Ul layout and
styles because Hot Reload needs only about one second to take effect. These features
can significantly accelerate app development and improve the developer experience.
The downside of Hot Reloading is that it mostly works for simple changes in the Ul
but fails when modifications are more in-depth.

Debugging RN is accomplished through running the code in Chrome browser or
external debugging tools (such as those included with Visual Studio Code or Webstorm)
where user can set breakpoints and work with code similarly to working in web
development. In this case, all the JavaScript code runs within Chrome’s V8 engine
itself and communicates with the phone or emulator via WebSockets [7].

B 2.5.1 Native Modules

When a developer needs native functionality which is not already provided by RN, they
may find such functionality already implemented by the community which surrounds
RN. In such case, the component is available through the Node package manager

(npm).

In case the functionality is not yet implemented, the developer can create a native
module [25] for it. Native module consists of code written in Java (for Android) and
Objective-C (or Swift) for iOS which implements the desired functionality and of
JavaScript code that will expose the native functionality to the app’s JavaScript code.

Shttp://flowtype.org/
“https://www.typescriptlang.org/

14

2.6. lonic

The native code is invoked from JavaScript through the RN bridge and results (if
any) can be passed back by a Promise or callback. Native modules give developer
the freedom to implement any functionality desired, as long as it is available on the
underlying platform, but have the downside of needing to code both for iOS and
Android in the language of the platform.

. 2.6 lonic

In version 2.RC4 as of 1/2017, Ionic [’|is another successful framework for developing
cross-platform mobile apps which was initially released in 2013. Ionic is a hybrid
framework, meaning an app created with it runs in a WebView, same as a website
would—with the important difference that it can also use the native device APIs. Ionic
supports i0S, Android and Windows Phone.

Just like the aforementioned frameworks, Ionic is open source and offers a set of
mobile-optimized components written in HTML, CSS and JavaScript. Ionic 2 integrates
with Angular 2, a framework for web development from Google. Ionic has put a lot
of work into providing components that are styled (more or less) according to each
supported platform, thus saving the developer’s time by not having to spend valuable
time by styling everything in the UIl. Compared to React Native and Xamarin, Ionic
gives less flexibility in customizing the app per platform. With Xamarin and RN,
developer can make the app look and behave quite different (at the expense of writing
more code) while this is limited on Ionic. Depending on the particular app context,
this can be both a downside or a benefit.

Tonic 2 developer can optionally choose to develop in TypeScript, which is a language
that compiles to plain JavaScript. As its name reveals, the most important feature of
TypeScript is the addition of types to JavaScript. This can reveal errors before they
happen, and gives extra information to both the developer and IDE (Integrated Devel-
opment Environment) which therefore can offer better code completion. TypeScript is
basically a competitor of Flow.

Ionic runs inside Apache Cordova [22], a mobile application development framework
which provides access to native platform features 5] such as camera, sensors, filesystem
or contacts. Access to arbitrary features can be allowed through plugins, which are
composed of a single JavaScript interface used on all platforms, and platform-specific
code code which is called from JavaScript. In this respect, Cordova Plugins are similar
to native modules in RN.

®http://ionicframework.com

15

2. Analysis

Tonic involves more than just mobile app development. It offers features like ionic
lab, which allows to run iOS, Android and Windows Phone version of an app one next
to the other in the browser. There is also the Ionic Market, which contains lots of
starter templates and themes. Ionic’s View app allows developer to easily share apps
with customers and testers. Ionic Creator is a prototyping tool where developer can
drag and drop components to create a simple app and even export it as an Ionic app.

Also, with live reloading, the iteration process is a lot faster than traditional
procedures that involve compilation.

. 2.7 Conclusions

There is currently a very strong competition in the area of multiplatform mobile app
frameworks and choosing one is no easy task. All of the researched solutions are very
capable.

After developing simple proof-of-concept apps using the three described frameworks
I first ruled out Xamarin. Although C# can be considered a very mature and powerful
language, the reasons for ruling Xamarin out were the need to write Ul twice - which
would involve learning the specifics of Android as well as i0S. We did not want to use
Xamarin.Forms because we were uncertain about whether it would not limit us and
the available demonstrations apps written using Xamarin.Forms did not make a very
good impression on me (the official Xamarin Evolve conference app took long to start
and repeatedly froze on my Nexus 5 phone). Moreover, Xamarin’s slow development
iteration cycle, for me, felt like a big drawback.

Tonic 2 is a popular framework. After creating simple application in it, I could not
help but notice very slow startup times: between 7 and 10 seconds for a very simple
app. This issue was confirmed by posts in the community forum ° and according to
an Ionic representative, the startup time will be improved in future releases. After
installing several apps developed in Ionic we noticed not all of them work on all devices
(probably due to cpu family), which left me with mixed feelings. The advantage of
Ionic 2 surely lays in its maturity, strong community and lots of readymade UI widgets
styled differently for each platform.

React Native was chosen after difficult comparisons. Its advantages are that it
is backed and used by Facebook, it is being developed at a quick pace and has a
growing community with lots of components available or in development. It also

Shttps://forum.ionicframework.com/t /ionic-2-speed-up-boot-time/46372/111

16

2.7. Conclusions

provides greater Ul flexibility than Ionic, better performance, and the ability to easily
communicate with native code is a need for our use case since the app will have to
deal a lot with files (background file uploads, downloads, importing them into the app).
Most importantly, RN does a very good job at transforming the React code to the
native views. Obvious disadvantage is its immaturity and probably the need to work
harder to get eye-appealing designs because unlike Ionic, RN does not offer styled Ul
components ready to be used but only the essential components with no multiplatform
interface.

Table 2.1 provides a quick comparison of the described libraries or frameworks
against selected criteria. Plus sign (+) denotes positive rating, while zero (0) and
minus (-) denote neutral and negative rating.

Platform Xamarin Xamarin Ionic 2 React
Forms Native

development - - o +

speed

performance + + - 0

maturity + 0 + -

platform- + - - +

specific behav-

ior

Table 2.1: Comparison of the considered multiplatform development tools

17

18

Chapter 3

Design

After analyzing the task and collecting the requirements, this chapter will go through
the design of initial paper prototypes as well as higher fidelity software prototypes.
I will also describe the architecture of the mobile application which is crucial for
successful development, future extensions and maintenance. I will talk about different
components that the application is composed of and how they cooperate to achieve
desired functionality. This chapter contains several diagrams, all of which are simplified.

B 31 Application Structure

The application requirements give a thorough description of the features the app will
offer. Upon the requirements I have designed the application navigation structure that
I'd like to follow. Figure [3.1 shows the hierarchy of the app’s screens with somewhat
simplified screen transitions. The root of the navigation is the Project List screen
which will show lists of projects. For each project, the hierarchy then goes deeper
to allow user to view further project information and to work with jobs, translation
memories and term bases. Another application entry point is the screen for adding a
job from an external application (e.g. from Mail or from the filesystem).

19

3. Design

[Project List]

]

v)\ !

Create Project Project Info Screen Users Screen Search Screen
| | | | | || |

| | | | |
Y

Job List Screen | TB List Screen | TM List Screen |

New Job Screen | New TB Screen | New TM Screen |

Figure 3.1: Structure of the app’s screens.

N 32 Prototyping

Based on the collected requirements, a set of mockups was constructed. Some of these
were later used to construct a prototype for an Android device that was used for tests
with users. Both the mockups and the prototype consider the project manager role
because its feature set is a superset of the one of the linguist role.

The mockups were discussed with employees of Memsource support team. Different
ideas of presenting information to the user were brought up and consulted. Memsource
support members provided feedback and deeper insight on how different features are
used, which was important in designing the mockups.

In the end, the prototype largely follows the structure of Memsource cloud, but it is
simpler in terms of the number of supported options and gives off Android platform
feel. The following pages contain several figures that present selected mockup screens.

Figure 3.2 shows design of the project listing. There are controls for creating a
project, searching, filtering (using the chevron) and getting the important information
about user’s projects. In figure |3.6| you can see how filtering the projects changed in
the final prototype.

20

3.2. Prototyping

Pv—ojeci-s-' Qo Fﬂ—vjcckv Q

Pralebl w . Poaic it fue
© e H {4

% ‘“: _e':fkl -y (5] C‘*‘%’e‘i:;“mm, _-J
Preject 2 Pue F Preicet L >

IZ\ (us ~2 &‘ c.\:ﬁﬁ.it- “1

Ltzr Prejret 3 ™
mslomer— 2

et ijc‘c-!fc filte~ pw&'e(LS

Figure 3.2: Mockups showing the project list screens. Second screen shows the chevron
active, where user can filter displayed projects.

Figure shows a mockup of an opened project with translation jobs listed (first
screen). The second screen shows a job being selected and the consequent changes in
the navbar: the user can choose to edit, select all or download job.

Figure |3.4] contains the screens for adding a new job to a project from within the
application. The figure shows two states of the same screen, first screen is waiting for
user to enter needed information, the second displays the state when the information
is entered, along with two files chosen for upload. In the prototype, the layout of these
screens was preserved, except for division into two tabs: one for uploaded files and
second for import settings.

For iOS, which has different interaction patters compared to Android, I created
separate mockups of what the UI could look like. The figure (3.5) shows the mockup
of job listing and handling.

B 3.2.1 Testing with users

From the mockups I created a software prototype for Android. The prototype was
created using Axure RP 8.0 E| which is a software for creating different kinds of UI
prototypes. There are widget libraries available, which contain ready-to-use Android
and iOS UI elements. Figure [3.6| shows selected prototype screenshots.

"http://www.axure.com/

21

3. Design

\leP“'Sﬂfl' TW‘ 4 "93 4 4’7
D %obzl“_““_‘i*;} bue E (\35 1 A Bue
tnqnich XTSIV
1 e g R I S UGS S LR E AR X
ol lob 2 Due
E’ ‘l‘fu:;i's'@ T kz‘ \‘h-bu:$+— e
et jobe selected job

Figure 3.3: Job list (left) and a screen where “Job 1” is selected and different actions are
available for it (right).

dol
xfdid © » x4 Mﬂ&"i\ @p
E' '\"\VJ&&'\' \u\,\,w"‘ €5 D Q"’ (QMQW.;
VITI?Q\%\- \iwxvu’-i\; T E’ “w‘[:,l:i' \']\kﬂms:f
Gelect bBue date g 1 4, bre—b»l
B L o] tasms | .
Lile 1 >x
-ﬁ“le_ 3 S

‘ (A TLT YL [

Figure 3.4: Adding a new job to a project.

To verify the created prototype, I conducted two informal tests with users. Axure
provides Axure Share service to share projects, with and Android app E| available on
the Google Play Store, but this app proved not to be suitable for testing because it did
not scale the Ul well. Instead, I took advantage of Axure’s ability to export created
project as HIT'ML which can be viewed directly on the device, for which I used the
KiOSk Browser |§| app which allows to display content full-screen.

To help keep the users relaxed, I explained the purpose of the application we were
about to test and that we were testing only an initial prototype to catch its flaws, and
not testing their abilities of working with Android.

Zhttps:/ /play.google.com/store/apps/details?id=com.axure.axshare
3https:/ /play.google.com/store/apps/details?id=it.automated.android.browser.kiOSk

22

3.2. Prototyping

< ?\—oleol’s =2 . ﬁ-pd*ec.b tawce]
_)OL 1 Pwe .fo'o 1 Pue

| Uwaish 1 N L Ninenih
lob 2 Due > dob?2 Pue
f\wlw‘e“’// (Tnguist

(’- - — e e e - . = T e —

|asta @ te | move Nk a\\[eTh'L[o\ml«A)

Figure 3.5: Different way of listing jobs within a project on iOS. The second screen displays
the state of the first after clicking on the ’edit’ button.

The users were given a list of tasks corresponding to a possible walkthrough of the
app. The text is following:

You are a Memsource Cloud user and your role is project manager. Log in using
the username “user” and password “pass”. View translation jobs in Project 1 and
download job whose name is “Job name” onto your device. Then create a new job from
the “document.docx” which is available on Google drive. For the job, select English
and German as target languages, due date as 2nd January 2016, 11:00 am and enter
linguist name. You need the file be imported with comments and hidden text. Then,
create a new project as new project name, enter “test project”, select “client 3” as the
client and select arbitrary parameters for the other options.

The informal testing was conducted in the company offices with two members of
Memsource support team who both were owners of a mobile phone running Android.
Test was conducted using LG Nexus 5 with the prototype running in the aforementioned
KiOSk Browser. The downside of this setup was that the back button of the prototype
was not available and in one instance (before adding a new project), this required
intervention into the test process. Also, the generated html prototype seemed to have
issues with entering text into textfields—they were accessible only after a long press
instead of a simple tap. I have not found the root cause of this and needed to inform
users of this issue before starting the test.

23

3. Design

2 Projects Q & Project 1
ALL MY OVERDUE IN PROGRESS Job name due May 4
Linguist name completed

ProjeCt 1 due May 4 Job 2 due June 1
Translation Customer Linguist name 2 accepted
.] (I
Project 2 due June 1 Web translation due July 8
Customer ltd. Linguist name 3 cancelled
.= [)
Web translation due July 8

Website ltd.

G)

Court Projects
County Court

C)

Expanding Customer
Evernote

Figure 3.6: Listing projects (left) and jobs in a project (right).

B 3.2.2 Test results

The test was completed by both users. However, during the test, two mistakes present
in the Ul were reported (problem with import options and adding new project). Both
users complained about unintuitive icons, which was especially true of the white cloud
icons in the upper right corner of the screen. After filling in all information for a new
project, one user asked if that was the icon they were supposed to tap.

For the second iteration of testing, I used an improved prototype which fixed the flaws
we found in the first iteration. Also, I stopped using the KiOSk app and opted for the
Axure Share Android app after fixing the scaling issue. The second test was successful
and users reported they were satisfied. One tended to play with the prototype beyond
the extend of what it was made for and complained some buttons were not functional.
I do not consider that a problem, since this was mainly a horizontal prototype with
only a particular interaction path implemented.

24

3.3. Application Architecture

B 33 Application Architecture

In this section I describe the process of designing the inner workings of the application
with respect to the fact that React Native was chosen as the library for implementing
the application. This first involves finding a solution for app’s state management which
may fundamentally influence the architecture.

React Native allows to create user interfaces from the fundamental building blocks
of the platform it runs on (View on Android and UIView on iOS) and it also provides
means for communicating between the JavaScript and native layers. What remains to
be chosen is a library that will be used for storing the application state - i.e. all of
the data fetched from the Memsource API and displayed in the app such as project
data, app user information and other. There are several libraries that help solve the
problem. The most popular at the time of writing is called Redux [4].

B 3.3.1 Redux

Redux is built around several core principles: The entire app state is stored in a
single object called the store [2]. The state can be modified by actions which are plain
JavaScript objects describing the name and payload of the action [2]. Actions are
dispatched to reducers. Reducer is a pure function that takes two arguments: previous
state and action, and returns the new state.

Pure function is a function that always returns the same result given the same
parameters and produces no side effects. It is important that the reducer calculates
the next state and returns it, without modifying the previous one. As the application
grows, the root reducer function is split into more reducer functions responsible for
reducing different subparts of the state. Designing the shape of the state object is
therefore key part of using Redux in any application.

Redux requires that the state is not modified in the reducer, which works well
with the use of persistent immutable data structures |3] (PIDS). The most popular
implementation of PIDS in JavaScript is Immutable.js. Immutable.js offers data
structures that present an mutable interface (such as add() method for an array) but
instead of mutating the original object, a new object is returned, so using the reference
equality operator to compare the old and new object will return false.

When changing an object in PIDS, the new object is essentially a copy of the previous

25

3. Design

one but as much content as possible is recycled from the previous object. Other objects
that pointed on the old object need to be copied as well, but objects that do not need
to be copied stay unchanged. Implementations of PIDs use Trie data structure (a tree)
to represent common data structures such as arrays. The discussion of benefits of
using PIDS is beyond the scope of this document but for React, immutable data has
the notable advantage that when a React component receives new state (or props), it
can compare it with the previous one using just reference check (which is very simple
and efficient to do) and do not re-render if the two states are equal.

Lastly, Redux provides the redux-react package which allows the React components
to "connect" themselves to relevant parts of the state tree and receive the data from
them through props.

B 3.3.2 MobX

MobX is another state management library with growing popularity that has React
bindings. MobX uses observable data structures that, as opposed to Redux, are
mutable. Its key philosophy is that "Anything that can be derived from the application
state, should be derived." [29]. Compared to Redux, MobX requires writing less code
and while its internals are much more complex because of the change tracking, it offers
synchronized state and views out of the box and its API surface is small.

With MobX, the first step is to declare the state and make the relevant parts of it
observable. This is usually done in ES6 (ECMAScript is the standard that JavaScript
conforms to) classes. The next part is observing the changes in observable data. This
is done through tracked functions. MobX tracks the observable data used during the
execution of tracked functions and invokes them upon change in that data.

One of the most important tracked function is autorun. If an observable data
used during its execution changes, the autorun is re-run. This is the function that
is responsible for keeping the React views in sync with the observable state. MobX
provides the mobx-react package which includes the @observer decorator which can
be used for React component to make them react to changes in observable data, and
the decorator makes use of autorun internally [28]. MobX also provides many other
reactive utility functions for more fine-grained reactions. An example of how MobX
can be used with React is shown in figure 3.1 where a simple React component shows
the number of seconds since the code was executed.

26

3.4. Client-server Communication

Listing 3.1 Using MobX with React

1 let appState = observable ({

2 timer: O

3 1)

4

5 setInterval (() => {

6 appState.timer += 1

7}, 1000)

8

9 let TimerView = observer ((props)=>

10 return Seconds passed: {props.appState.timer}
11)

12

13 React.render (<TimerView appState={appState} />, document.body)

After developing a small part of the application with Redux and also MobX, I
chose to use MobX for storing the app state. The reasons for choosing MobX were its
simplicity and proximity to object-oriented software design which I'm more experienced
with. Using Redux requires writing boilerplate code to describe the actions and writing
the reducers. Also, it is not always possible to dispatch actions that are plain objects -
communication with Memsource API, for example, would require dispatching functions
that would change the state after receiving data from the API. Working with hierarchies
of objects also requires normalizing the application state [1], similar to how it is done
in databases, with ids used as keys for retrieving a referenced object from other parts
of the state tree. Apart from Redux itself, this then involves understanding several
other libraries such as normalizr, redux-thunk (or similar), reselect (optional) and
Immutable.js (optional but much recommended).

With MobX, the app will consist of the views which are handled by React, domain
objects, which are JavaScript objects and some of their properties will be marked as
observable or computed (i.e. derived from other observables). The domain objects will
be stored in domain stores. Stores are objects that instantiate new domain objects,
delete the existing ones and provide other necessary functions with regard to domain
objects. The last piece of the puzzle is handling communication with the Memsource
APIL

. 3.4 Client-server Communication

Communication with the Memsource API will be facilitated through the ApiCaller
object whose simplified class diagram is shown in figure 3.7, The documentation of
Memsource APIs is publicly available at the [Memsource wikil

27

http://wiki.memsource.com/wiki/Memsource_API#API_Reference

3. Design

ApiCaller

+ user: User

+ listProjectDetailsForProperty(project, property, pageNr, config)
+ listNewProjectData(property, pageNr, nameLike)

+ listUsers(usernamelike, pageMr)

+ deleteProject(projectld)

+ editProject({projectHelper)

+ createProject(projectHelper)

+ editlob(jobPart, params)

- _constructUrllendpoint, params, removeEmptyValues)

- _fetchJson(url, method)

- _checklLoginAsync()

Figure 3.7: ApiCaller class

ApiCaller will expose methods that offer CRUD operations over various resources
such as project or jobs. All of its methods will return a Promise object which returns
the fetched data upon resolving. ApiCaller will be used mostly from the stores and
other functions needing API access. The advantage of having an object that hides the
fetching logic inside is easy testability and maintenance - if fetching is done in one
place, it is easy to mock and change the implementation if needed. ApiCaller also
contains a reference the currently active user, so that it fetches data for the right user.

B 35 Domain Objects and Stores

There are several core domain objects the application needs to work with. These
represent the corresponding entities in Memsource Cloud. These objects are mostly
simple data holders, with little logic included in them.

Domain objects will be stored in stores. Every type of object will have its own store
that takes care of saving, editing and deleting the objects and may contain further
logic needed to fulfill these tasks. Figure shows the Project class and figure |3.9
shows the ProjectStore.

28

3.5. Domain Objects and Stores

Project

+id : number

+ uid : string

+ status : Status

+ name : string

+ dateDue : moment

+ dueDateAsUTCString : string

+ sourcelang : string

+ note : string

+ targetlangs : Array<string>

+ owner: BasicUser

+ createdBy @ BasicUser

+ client : Client

+ locallobs: Array<Job>

+ remotelobs: Array<Job>

+ businessUnit : BusinessUnit

+ domain : Domain

+ subDomain : SubDomain

+ transMemWrappers : Array<transMemWrapper=>
+ workflowSteps : Array<WorkflowStep>

+ Project (projectStore, project)son)
+ cloneFromProjectinstance (project) @ void
+ initFromTemplate { templatel)son) : void

Figure 3.8: Project class

ProjectStore

+ canAskForMoreltems : Array<boolean=>

+ userStore : UserStore

+ otherDomainsStore : OtherDomainsStore

+ apiCaller : ApiCaller

- _absolutelyAllProjects : Map<number, Project=
+ displayedProjects : Array<Array<Project>>

+ ProjectStore (userStore, otherDomainsStore, apiCaller)
+ cloneProject{fromProject): Project

+ createNewProject{projectHelper): void

- _updateProjectsFromServer(project)son): void

+ loadMoreProjects (tablndex: number): void

+ updateOrSaveProjectFromJson({project)son): Project

- _reconcileProjects(tablndex, nextPageNr): void

+ deleteProjectFromServer(project): void

Figure 3.9: ProjectStore class

For tasks such as creating projects or jobs, dedicated objects will be created, with
their life span being limited by the sole task they need to fulfill.

29

3. Design

B 3.5.1 Representing Users

Since the application has to support multiple users being logged in (with only one user
being active at a time), we need objects for representing individual users as well as the
collection of users who are logged in.

The User and UserStore classes will serve this purpose. User instance contains data
such as user name and id, and also user password, token, role and other. It is also the
place where the user’s search history is kept.

UserStore contains an array of all users who are currently logged into the app, and
a reference to the user which is currently active. Furthermore, it contains methods for
creating new user instances and persisting the user information so that it is available
upon application startup.

B 3.5.2 Platform-specific Look and Feel

React Native does not aim to provide developers with a way to run the same code on
both platforms, instead it promotes the “learn once, write anywhere” paradigm and
allows to create apps for both platforms while writing code using the same syntax.

Due to the nature of how both platforms are interacted with, we need to have the
ability to make the user experience different per platform. As an example, take the
Datepicker on Android versus the iOS Datepicker, or the Android navigation bar which
often offers several actions (some with icons) versus iOS navigation bar which usually
contains the title and no more than two or three actions. Actions that, on Android,
would be included in the navbar, are often presented in a toolbar at the bottom of the
screen on 108, or hidden in an action sheet. Also note how Android works with presses
for item selection (for example in the Gmail app or the Downloads app), while this
is usually done by an edit button in iOS navbar. If we want to follow these customs,
this requires us to write separate code that would make the UI look and react to user
actions differently on each platform.

React Native offers two ways how to go about platform-specific behavior. First
is through the Platform module which gives information about the platform and its
version. Another method is to use different file extensions (i.e. android.js or
ios. js) for components. The appropriate file will then be packed for the JavaScript
bundle of each platform. Specifying what component to render by using different file
extension is a powerful concept: typically a developer would use this approach for

30

3.5. Domain Objects and Stores

components that will serve the same purpose but need to look differently on each
platform. Both files then have the same interface which abstracts away the inner
differences. Such approach can be used in a number of components such as buttons,
pickers or even a non-component code. I will take advantage of these features to
improve user experience and to follow the design guidelines.

31

32

Chapter 4

Implementation

This chapter describes the implementation of the features that were identified in the
analysis. I will focus on the interesting parts of the implementation.

From a higher-level perspective, there are several subparts of the project that need
to cooperate for the client app to work well. Firstly, there are the domain objects
and stores implemented with the help of MobX. Secondly, there is the view layer
created with React Native. The third piece is handling API communication and
lastly, there are the native modules for handling job upload (i.e. uploading files to
Memsource and creating jobs from them). Native code is also needed for the case
when the Memsource application is opened from e.g. the Mail application for job
import. This chapter explains the solutions to these tasks and some issues encountered
along the way. The documentation to Memsource APIs is publicly available at
http://wiki.memsource.com/wiki/Memsource API#API Referencel

In the following text, I will be using the terms JavaScript (JS) layer, native layer
and asynchronous bridge. When talking about the JavaScript layer, I refer to the
JavaScript code which runs in JavaScriptCore engine. By native layer I mean the code
that is being executed in the Android or iOS runtime environments. To explain the
importance of these terms, let us quickly take a look at an example of how these affects
us.

When React Native (RN) communicates between the JavaScript and native layers,
it uses batched messages that it sends through the asynchronous bridge. This means
that if you want (or are forced to, in some cases) to access some value synchronously
from one layer or another, it has to be available in that particular layer. In some cases
this means a value has to be duplicated on both sides of the bridge and has to be

33

http://wiki.memsource.com/wiki/Memsource_API#API_Reference.

4. Implementation

synchronized using a call through the bridge. However, when a value exists on both
sides of the bridge, we need some mechanism that will be able to determine which of
the two values is the most-up-to-date one.

As an example, let us consider the TextInput component (a text field) on iOS.
Because of the design of the platform, the value entered in the text field has to live in
UIKit. We would, however, like to be able to control and read the text input’s value
from JavaScript synchronously. Imagine a text field into which we start typing “ABC”
as input.

At time 1, the native Ul thread sends the first letter “A” to the JS thread. The JS
thread, however, does not pick up the value until it is picked up from the event loop
queue. At time 2, user enters “B” and the UI thread sends the value “AB” to the JS
queue. At the same time, the text field value is set to “A” in response to the update
sent from the JS thread. At time 3, user enters "C" and so the UI thread sends “AC”
to the JS queue. At the same time the value “AB” that JS just received is sent through
the bridge to the native layer. In the end, the JS thread receives “AC” and sends it
again through the bridge. Both the native and JavaScript layers now contain the same
value - “AC” but the character “B” has been dropped! The solution implemented in
RN involves a counter of input events of the text field which is sent through the bridge
and the value of the text field is not changed unless the counter number received from
JS is higher than the one stored in the native layer.

This gives us understanding of the JavaScript layer, native layer and the asynchronous
bridge. This also explains some unexpected effects that a developer may meet when
working with native UI controls.

Figure 4.1 shows simplified schema of the project structure. Since React Native makes
no assumptions about the rest of the development stack, developer has the freedom
to structure the project as they find fit. In my case, I first created dedicated folders
for domain objects (models) and stores. All components live in the components
directory which is further divided based on where in the application the components
are used or what purpose they serve. The api folder contains the objects related
to connectivity and communication with Memsource API and the remaining folders
provide supporting utilities such as global styles. Native code and modules are placed
higher in the directory structure so they are not visible in the figure.

34

4.1. Ul with React Components
js
—app.Js
Hlapi

] components

] formComponents

H] jobs

Hlprojects

{ltranslationMemories
il flow

Hlglobal

Hlmodels

H]stores

Ulutils

Figure 4.1: Simplified folder structure of the project.

B 4.1 Ul with React Components

User interfaces made with React consist of components, which are independent and
reusable pieces of code. The complete application Ul consists of a tree of components.
A React component renders itself according to what it receives as props (props are
immutable), and according to its internal state which may change. In the case of this
project, the root component is defined in app. js in the js directory as can be seen
in figure [4.1]

The main way of modifying component behavior is composition - by wrapping a
component and adding some functionality, we create a new one. Since the app needs
to support lots of CRUD operations we need components for choosing date, choosing
one or more items from a small as well as large lists and more. One of the first issues I
have encountered is that finding form components which would look according to what
is customary on both platforms is hard. While there are UI toolkits for React Native
such as Shoutem UI Toolkit or NativeBase and community-developed components,
none of them offered quite the functionality that I needed at the time when I evaluated
them.

35

4. Implementation

I therefore created wrappers around the basic form components provided by React
Native and some chosen community-developed components and gave them default
styling which is overridable (for example a label or an icon can be added) and mode
(for example modal or inline pickers on iOS). All of these options are available under a
unified interface of the component, which allows it to be easily used throughout the
app on both platforms. The figure [4.2 shows an example of different look of ListPicker
and DatePicker components for both platforms. Note that the pickers on iOS can be
displayed both inline and in a modal at the bottom of the screen. Android ListPicker
on the other hand, can be displayed in a dialog or as a dropdown.

L N RUER carrier = 2:09 PM -
Filter Done K€ Create Project &5

T T analysetestv 2016

> Owner VNovak Tue, Dec 6
’
S Createdin any 2 Client

an © Duein ay @1 Domain < December 2016

4 hours s Subdomain soMoTow

1]

8 hours Business unit

any @ Sourcelanguage

24 hours English

Target languages
3 days YIA Czech

Clear Done

overdue

® Status any

CANCEL

Today 2 12 PM

Figure 4.2: Platform-customized behavior of list and date picker components

When using such components in code, one only has to provide them with the
information about the icon, the values they need to show, the mode and how they
should respond to user action. The logic of how the component should be displayed
and styled is hidden inside of it, with the styling being overridable. This way we can
construct reusable components with platform-specific behavior. This, in my opinion
is a very powerful concept, since as the community evolves it will create components
that serve the same purpose and have the same programming interface, but may look
even completely different per platform. The code responsible for the different behavior,
however, will be hidden inside those libraries and we will just plug the components
into our projects. This will allow to focus more on the business logic of the app while
enabling to develop it so that looks as is customary for the platform it runs on.

The job list screen shown in figure is a good example of where Android and iOS
usage patterns deviate and how I captured this difference in code to provide different
user experience for each platform. The figure displays the job list screen in selection
mode. To get into this mode on Android, user would have to tap a file icon on the
left, or long-press an item. On iOS, the selection mode is enabled by tapping the
"Edit” button in the right of the navbar. To get out of the mode on Android, user can

36

Ei

© Vv 4 @ o003

Important Document.xls
status: assigned

target language: cs
assigned to VNovak2
no due date

Random.pptx

status: declined_by_linguist
target language: cs
assigned to VNovak2

no due date

body.txt

status: assigned

target language: cs
assigned to VNovak2
due Thu Dec 1,12:00 AM

Important Document.x|s
status: assigned

target language: cs
assigned to VNovak2
no due date

Random.pptx
status: declined_by_linguist

(") target language: cs

assigned to VNovak?2
no due date

body.txt
status: assigned

() targetlanguage: cs

assigned to VNovak2
due Thu Dec 1, 12:00 AM

4.2. Stores

Figure 4.3: Platform-customized behavior of selecting jobs and providing actions over the
selection.

tap the arrow in the navbar or press the back button (the second tap / back button
press navigates to the previous screen). On iOS this is done by tapping the "Done’
button. User can perform different actions over the selection, such as editing the jobs,
or downloading the completed file (Android) or previewing it (i0S). On Android these
actions are shown in the navbar while on iOS they are available from the bar at the
bottom of the screen. I have implemented a solution which works according to what
is customary on both platforms using just React — the downside to this approach is
that it involves writing more code to customize the behavior. Figures |4.4 and 4.5/ show
other selected screenshots with only small platform-specific differences.

)

. 4.2 Stores

As explained in section [3.5, the information about projects, jobs, and other entities is
stored in domain objects, which in turn are kept in stores. It is important that there
is always only one instance of a particular domain object in memory, and only one
instance of a store.

37

4. Implementation

© v .4 80005
X

£9 yet another

QWERTYU I OFP
A SDFGHUJKL

+4 ZXCVBNMS

123) space Search

Figure 4.4: Search screen along with displayed search history entry.

As an example of how a store is implemented, let’s consider the project store whose
class diagram is in figure 3.9/ on page [29. In its constructor it accepts (among other)
the user store - that way we can reactively clean and refresh the project list in case
the active user changes. This is done through the aforementioned autorun function
from MobX. It also receives ApiCaller instance which is used for communication with
Memsource API. Projects are stored in a Map data structure, which is typically backed
by a hash table that offers constant access time, or by other mechanism that provides
sublinear access time [20]. The keys of the Map are projects ids and the values are
instances of Project class. That way we can access the stored project instances quickly,
which is especially convenient because the projects are displayed in multiple tabs that
correspond to filters in Memsource Cloud (all, in progress, overdue, my). One project
may be displayed in any number of tabs and even when a project is displayed in all
four of them, internally this refers to project instance. When the app receives a JSON
(JavaScript Object Notation - lightweight, human-readable data-interchange format)
containing projects, it can quickly see whether or not a project is already stored and
update the existing one or create a new one.

38

4.2. Stores

O Wdm4a32

analyse test v2

Project Details

Project Details

Source language

Source

language
Target languages 9uag

&8 Target languages
cs

VNovak
Edit Copy ULR

Figure 4.5: Project info screen.

B 4.2.1 Connecting Stores with Views

Clearly, stores need to be made available to React, so that components can visualize
the content of the domain objects. For this purpose, the mobx-react package offers
the Provider component and @inject decorator, thanks to which arbitrary objects
can be passed to React components as props.

As I explained earlier, React app is composed of a tree of components where props
are passed from top to bottom. You can either pass the stores as props explicitly
through the entire tree which can get tedious, or use Provider, and grant store
access for them by using @inject. This makes it simple and transparent to connect
components with the relevant parts of the state. Listing shows a simple example
of how color prop can be injected. We can still pass the prop explicitly from the
parent component, in which case the explicit prop takes precedence. This can be taken
advantage of in testing.

Listing 4.1 Using MobX Provider and inject

1 class Main extends React.Component {
2 render () {

39

4. Implementation

3 return <Provider color="red">

4 <App/>

5 </Provider>;

6 }

7}

8 ...

9 @inject ("color")

10 class Paper extends React.Component {

11 render () {

12 return

13 <div style={{backgroundColor: this.props.color}}>
14 the selected color is ${this.props.color}
15 </div>

I have used the Provider component extensively, but almost exclusively for the
application’s screens (e.g. job list screen) to get access to the stores, and for any
components used within the screens, I pass the stores explicitly as a prop.

B 4.3 Upload Module

Upload module is a native module made to allow users upload documents to Memsource
Cloud and create jobs from them. It offers different ways to select the files and upload
them. After the upload is triggered, a new item (let me call it the temporary job)
representing the ongoing upload is added to the job list. This, along with a notification
and the network activity indicator on Android and on iOS, respectively, informs the
user of the ongoing upload.

There are important differences in the iOS and Android implementations, but both
expose the same interfaces to the JavaScript layer. When talking about file handling
in the native module, I will use the singular (file) for simplicity, but note the upload
module has capabilities for uploading multiple files.

B 4.3.1 Android

To upload a file as a job, user has to either start the app and navigate to the “add job”
screen and select the files for upload from a file picker, or start the app “externally”
by opening a file using the Memsource app, for example from the Gmail app or a file

40

4.3. Upload Module

browser. In both cases, the app receives a uri which points to the file. Note that the
file doesn’t necessarily need to be on the device, it may as well come from a cloud
storage such as OneDrive or Google Drive. The user then sets up various options
for the import and taps the “send” button. Upon pressing the button, the necessary
information is passed to the upload module and upload is started. The information
includes the following fields.

B token

® upload url

® upload id

B project id

B user id

8 whether the job should be pre-translated

® file information: uri, file name, id of the temporary job

The module runs a background service whose responsibilities are issuing a notification
when the upload starts, when the job is imported or if there was an error. The
notification also shows different stages of the job creation - uploading of the file, file
import and pre-translation, if selected.

To upload a file, we first need to check whether it is present on the device. If not,
file is downloaded. For working with the uri object, the service uses the Storage Access
Framework API introduced in Android 4.4. The next step is uploading the file to
Memsource and creating a job from it. This is done through the asynchronous|Create
New Job| API call which handles the upload and puts the file into a queue where it
waits for import. A server backend service dequeues the file and creates a job from it.
Because dequeuing and job creation can potentially be long-running operations, the
API call returns an ID of the enqueued object immediately after the upload is finished.
The Android service then repeatedly polls the [Get Asynchronous Request|API
to check if the job was already imported.

Once done, it issues a final notification or, if the user checked the pre-translation
checkbox at job upload screen, continues with pre-translation based on project settings.
This is another long-running operation and the native module keeps polling the
Asynchronous APT to check the pre-translation until it is confirmed. At that point
it issues the final notification.

The service repeats its download and upload requests if there was an error and is
also made to run in the background so that its actions are not disrupted in case the

41

http://wiki.memsource.com/wiki/Job_Asynchronous_API_v2#Create_New_Job
http://wiki.memsource.com/wiki/Job_Asynchronous_API_v2#Create_New_Job
http://wiki.memsource.com/wiki/Asynchronous_API_v2#Get_Asynchronous_Request

4. Implementation

user switches to a different app or even “kills” the app by swiping it away from the
screen. The upload service also stores the results of uploads in SharedPreferences so
that if the application is killed and the job creation finishes in background, it can be
updated the next time it starts. The token is not persisted. If the app is still running
in the foreground at the time when the job creation is confirmed, an event is sent to
JavaScript layer and the views are updated. If that is not the case, the response of job
creation is processed the next time the app is started or switched from background to
foreground. If creation was successful the item (temporary job) which was previously
added to the top of the job list is removed and the job list is re-fetched. In case of an
error, the item is not removed but instead gives user an option to repeat the upload or
remove the item manually. The native module is written in Java.

B 432 i0S

On iOS, the module provides the same functionality but behaves very differently
internally. iOS is much stricter about how background tasks are handled. There are
fewer things that need to be taken care of by the developer and more that are taken
care of by iOS. This gives the developer a lot less flexibility (which also resulted in a
problem with the API) but also results in less coding. The job creation on iOS works
in the following way: similarly to Android, files can be selected within the app or
sent to the app from another application such as Mail. If a file is selected using the
Document Picker, iOS automatically downloads (if needed) and saves it to the app’s
sandbox temporary folder from where it is available until the application exits [12]. In
the case of importing the file from other application, the file is copied to app’s sandbox
and the application receives the url of the file. In the latter case, removing the file is
the developer’s responsibility.

Originally, T wanted to use the same approach for creating job as on Android, but
it turned out not to be suitable because it is not possible to create a job from a file
using the current Create New Job API if the app goes to the background or is
terminated.

Let me expand on this claim: to upload a file in the background I need to use the
NSURLSession’s BackgroundSession which uses a separate process [13] independent
of the application to handle the background upload or download tasks. Its upload
task only supports uploading from a file [13], i.e. the request body only contains the
file’s content. The Create New Job API, however uses multipart/form-data
message which contains a series of parts describing the content (the file, in our case) of
the request, embedded in the request body [24].

Therefore, a file uploaded by iOS’s background upload task is sent directly in the

42

4.3. Upload Module

body of the request and having a custom request body is impossible unless we write it
directly into the file (which cannot be considered a good practice). Possible workaround
here is to use another Memsource API, the File API which allows to upload a file in
the request body and returns a file ID which can be used in other API calls. The
problem with this approach is that we need to make two API calls to make the job
import happen: first call to upload the file and second to the Create Job API. This
poses an issue since iOS may decide to not perform our second background request.

iOS uses several pieces of information to decide whether or not a background request
will be carried out. The decision involves e.g. how of often the app is used by the
phone’s owner or what the battery level is. The exact algorithm is not publicly available.
It may therefore happen that the first request for file upload is honored (this will be the
case because it starts while the app is still in the foreground) but the second request
for actually creating the job is ignored. Also, if the user terminates (swipes away) the
application during file upload, the upload will finish but the call to the Create Job
APT will not be carried out since the system cancels any pending tasks [11]. Lastly,
there is another situation when the call may not happen - if the application is awaken
too often in response to its background requests, the interval in which it is be awaken
will prolong, and it may thus happen that the request for job import is carried out
long after the job was uploaded.

The best possible solution to this is implementing another API which would accept
the file in the request body and the numerous parameters sent to the the Create Job
API would be sent as a JSON string in a special request header. For the time being, 1
have implemented the described workaround and a better solution on the server side
will be implemented later. Because of the described problems, I have decided to not
implement pre-translation after the job import, as it is implemented on Android.

Similarly to Android, as the upload starts, all of its information except the token
is serialized and stored to UserPreferences entry and is updated whenever the status
of the upload or import changes. This way the information is not lost when the app
is killed during or after the upload or import and the information about whether an
upload was successful can be processed the next time the app starts or resumes: if the
file was uploaded and import was requested on the server, the job import is considered
successful an the temporary job item is removed from the job list. If the upload did
not finish or if the import wasn’t requested, the item is kept in the list and flagged as
a failed import. The iOS native module is written in Swift 3, with a small amount of
Objective C also involved.

43

4. Implementation

. 4.4 State Persistence

One of the implemented features is having parts of the app’s data stored on the
device so that it is available right after the startup. This involves all project-related
information (projects, clients, domains, subdomains, business units and other details,
but not jobs), so that when the app starts, the user sees their projects immediately,
along with a loading indicator which denotes that the projects are being refreshed.
MobX itself doesn’t come with a mechanism for state persistence, and therefore another
library, Serializr was used. Serializr provides a variety of functions for serializing data
stored in different data structures and also custom objects. The data that needs to be
serialized and the data structure used are described using decorators placed on the
member variables of selected classes. The application also stores search history for all
of its users.

While the implemented (de)serialization works well, it poses extra layer of complexity;
implementing it was a task more lengthy than expected, partly due to some hard-to-find
unexpected behaviors and unhelpful error messages. The (de)serialization, however, is
implemented in such way that when an error happens (which is more likely to happen
during deserialization), the app falls back to to not deserializing any data and instead
loads the data only from the API.

State is serialized upon switching the app into the background. The number of
items that are serialized is limited so that the set of (de)serialized data doesn’t grow
indefinitely. Serializr outputs a JSON object which is persisted using React Native’s
AsyncStorage as a string. Note that storage of user credentials is handled differently
and is described in the next section. Upon app start, the objects that hold state are
created empty, the JSON string is deserialized and all of the information is inserted
back into the state objects.

B 4.4.1 Storing User Credentials

Communication with the Memsource API requires the user to enter their username
and password. The app then asks for a token which is used for the requests to follow.
The token validity is limited to 24 hours and the app therefore needs to request a new
one once the current token’s validity is approaching its expiration date. To be able to
ask for a new token, the app needs to have the user credentials at its disposal, and
persist them so that it doesn’t need to repeatedly ask the user to enter them. Such
storage, obviously, needs to be safe and the AsyncStorage used for state persistence
does not meet the safety criteria. To store the user credentials, I used a package
which internally uses Keychain on iOS and an encrypted SharedPreferences entry

44

4.5. Data Fetching

on Android. I authored the Android part of the package which is now available as
react-native-keychain on npm.

. 4.5 Data Fetching

Application fetches all data through the Memsource API. The data is provided in
JSON which makes it easy to work with, given that the app is written in JavaScript.
The API uses standard HTTP response codes to denote operation result and provides
error description when a request is incorrect.

There are some common patterns related to data fetching arising throughout the
app. In many places we need to display some data, be able to reload it (using the well
known pull down gesture), and be able to load more of the content and append it to
the existing data (informally known as infinite loading).

Many of the used APIs use paging, i.e. they deliver results in batches of 50 items per
request (or less if more aren’t available). The number of the next page to be fetched
therefore can be calculated as next = number of received items/50. If a response
contains less than 50 items we know there are no more items to be fetched. However,
we need to keep in mind that items can be both added and removed to the lists, for
example when projects are added or deleted. That would give us a page number which
is not an integer. In that case we perform a request for a page whose number is the
closest lower integer. This may give us items that are already stored in the list, in
which case we remove items at indices from next - 50 to the end. That way we display
the correct data and do not need to make any additional requests.

Also, in some cases we want to limit the number of pages that we fetch so that we
prevent the app from keeping too many objects in memory which could cause undesired
behavior.

In some places where data is fetched we want to give the user a possibility to refresh
the loaded list (such as in project or job lists) while in other we only offer listing
without refreshing. This means we need to control up to two loading indicators that
will denote refreshing (that would be the pull down indicator) or loading more content
(loading indicator at the bottom of a list). We also need a means for blocking a request
if it is already in progress or if it is forbidden (because of reaching the limit of how
many items can be fetched or because no more items are available).

Blocking a request if it already in progress is needed for cases when we e.g. scroll

45

http://wiki.memsource.com/wiki/Memsource_API#API_Reference

4. Implementation

down a ListView which has the infinite loading implemented. Infinite loading is
implemented using ListView’s onEndReached function. This function is invoked when
a user scrolls down the ListView and arrives at some pre-defined distance from the
end of its content. Invocation of this function triggers fetching more items. In case of
a poor network connection, fetching might take several seconds during which the user
may scroll through the already rendered items and trigger another fetch. We need
to prevent this second fetch from happening, otherwise when the returned promise
resolves, it would append the results to the end of the list two or more times, causing
duplicate entries.

If we want to have some universal fetching mechanism, it needs to account for
all of these requirements. For this purpose I implemented the ProjectDetailsFetcher
module. The most important function it exposes is the fetchProjectDetail function
which accepts a project for which it fetches the detail (jobs, translation memories and
term bases or other items potentially added in future). The other parameters include
the field name (e.g. jobs), a boolean denoting whether the request is a full reload
request (one triggered by the pull down gesture), configuration object (e.g. to specify a
filter) and page limit that will not allow fetching more than specified number of pages.
ProjectDetailsFetcher internally handles the number of the next page that should be
requested for a particular project and property as well as tracking which requests are
allowed or not. The fetchProjectDetail function returns a Promise which contains the
response data. This data is usually requested from stores. ProjectDetailsFetcher does
not handle displaying or hiding the loading indicators, as I have found it to be better
to control this from the places where fetching is being requested because it offers more
flexibility.

B 4.5.1 Handling Internet Connection Outage

The application’s functionality is dependent on internet connection since acquiring
all of its data and possible user actions need access to the internet. However, once
the application fetches its data, it of course stays in the memory and is available for
reading. Moreover, as described in section 4.4, the app serializes all project-related
information. That way the data is available for reading even if the user starts the app
without internet connection.

When the app is offline, there is a bar displayed at the top of the screen, which
informs the user that there is no internet access. Also, when a user’s request times
out, they are informed about it via a toast. This behavior however, may change if it is
found to be too intrusive.

46

4.6. Multi-stage Deployment and Testing

. 4.6 Multi-stage Deployment and Testing

One of the advantages of using React Native or hybrid application frameworks is the
ability to use services such as Code Push |!| that enable the developer to update the
application without going through Apple AppStore or Google Play Store submission
process. This is achieved through being able to switch the JavaScript bundle which
contains the app’s logic for another one. When a developer wants to publish a new
version of the app they create a new JavaScript bundle and upload it to a Code Push
server. When a user starts the app, it downloads the new bundle (if available) and
stores it. In a typical scenario, the bundle would be applied upon the next app start
but this is configurable. This way the user receives updates without any interruption
on their side. This does not only give us the ability to publish updates at an arbitrary
frequency but also offers greater control over the updates, since the user does not
influence them.

In the app, I have used the Code Push service which is being developed by Microsoft
and currently offered free of charge.

Other possibility this offers and that I have implemented is multi-stage deployment
and testing. For the purposes of our app, three build configurations were set up:
debug configuration where Code Push is not being used; this configuration is used for
everyday development and runs in React Native’s Dev mode. In Dev mode, React
Native reports warnings and errors to the developer directly on the screen and its
performance is decreased due to some optimizations being off.

The second configuration is Staging, which is set up to request the staging version
of the JavaScript bundle from Code Push and uses Memsource’s pre-release server
at cloud9.memsource.com to serve its requests. This version is made for testing
the application’s new features and also its compatibility with the Memsource Cloud
version which is the next to be deployed to production. The development mode is not
enabled in this configuration and thus the app behaves like a production application.

Finally, the third setup is for release. This configuration uses the corresponding
JavaScript bundle from Code Push to get its updates. This is the version that will run
on the phones of the Memsource’s customers. When suitable, the updates made in
the staging version can be easily promoted to the release build of the application by a
single Code Push CLI (Command Line Interface) command.

All of these applications can be installed together on one device and distinguished
by its name or the icon. The state serialization described in section 4.4 happens

"https://microsoft.github.io/code-push/

47

4. Implementation

independently for each build configuration so that they don’t interfere. The user
credentials, whose persistence is described in section |4.4.1, are shared for convenience.

B 4.7 Code Quality Tools

Due to JavaScript’s dynamic nature and the absence of any transformation that would
try to verify code correctness before it is run, it is relatively easy to introduce bugs
that only come to light during runtime. There are, however, tools for code quality
assurance that help developers find potential bugs before the code is executed. In this
project, I have used two such tools which this section shortly describes.

B 4.7.1 Flow - Static Type Checker

Flow ?|is a static type checker for JavaScript developed by Facebook. It works by using
type inference on JavaScript code even without any additional information provided by
the developer. It tracks the type of variables as they are used throughout a program
and allows to catch bugs before it is executed, without changing the existing code.

Flow attempts to infer the types whenever possible, but JavaScript code can be very
dynamic and hard to analyze statically. Flow therefore offers ways to specify types
explicitly.

Flow supports standard primitive types such as number or string, as well as custom
types e.g. for application-specific objects. It guards common bugs such as null
dereferencing, silent type conversions and many more potential sources of bugs. An
example of how flow-typed code can look like, see listing 4.2l In this example, Flow
would report that the annotated return type of string is incompatible with the
return type of the length function, which is a number. The listing also shows how
to enable Flow checking for a JavaScript module — this is done by putting @flow in
a comment at the top of the file.

Listing 4.2 Flow-annotated JavaScript code

1 // Qflow

2 function foo(s): string {
3 return s.length;

4}

5 foo(’Hello, world!’);

Zhttps:/ /flowtype.org/

48

4.8. Navigation

I have used Flow extensively throughout the project and annotated the code regularly,
because apart from the type checking, the annotations work very well as documentation
for the developer and also for an IDE which can offer a better autocomplete. One of the
features of Flow I found very useful are maybe types which are denoted by a question
mark (e.g. ?string). When directly accessing a function or property on an object
which is of maybe type, Flow will issue a warning that ”Property cannot be accessed
on possibly null or undefined value”. This greatly helps avoiding the "Undefined is
not an object / function” error which is one of the most common ones in JavaScript
development. Other handy features I have used include interfaces or guarding against
a function receiving too few or too many parameters. My estimate, based on running
git grep for several of the most common types, is that there are more than 700
Flow annotations placed in the app’s files.

B 4.7.2 ESLint

ESLint % is a linter — a tool that flags potential problems in source code. ESLint takes
the form of a set of rules that the developer specifies and ESLint warns her when the
code violates a particular rule. Rules may describe a potential bug in source code
(such as calling a function that is not defined) or a desired coding style (such as using
semicolons at the end of a line).

ESLint itself does not force any rules onto the developer. Instead, different rule
sets can be obtained online and plugged into the project. Choosing such rule set is
often a matter of personal preference or the technology that the project uses. For
example, there are React Native-specific rules that e.g. warn about having unused
style definitions in the component code.

During development, I have used ESLint rules assembled by the React community,
available on npm under eslint-plugin-react, eslint-plugin-react-native and eslint-plugin-
flowtype, with just minor modifications.

B as Navigation

In the context of React Native, by navigation I mean transitioning between different
screens of the app. Navigation integrates with the components and also stores very
closely, because many parts of the code will want to trigger navigation to a different

3http://eslint.org/

49

4. Implementation

component as a response to user input or network event, so the navigation solution is
of great importance.

React Native started off with two solutions for navigation - the Navigator and
NavigatorIOS. Navigator is implemented entirely in JavaScript, runs on both platforms
and tries to mimic the appearance of native navigation, while NavigatorlOS leverages
the native navigation of iOS. They originally started as two competing implementations
solving the same problem [6] with the goal of assessing which of the two solutions
should be supported further on. Ultimately, the Navigator solution was found to be
better for reasons described later on, and Facebook used it in the F8 and Facebook
ads applications.

There is one drawback to Navigator - it is only trying to mimic the native navigation.
This includes navigation bar with its animations, as well as transitions to and from
different scenes of the app and implementation of the swipe back gesture. This, to a
certain extent, can negatively affect the user experience. Having navigation controlled
by JavaScript has its benefits - most importantly it allows for complete control of
the navbar, the animations and gestures, and the ability to run the same code on
multiple platforms [6]. These were the main reasons why Facebook decided to favor
the Navigator [6].

Some would say that not using the native navigation breaks the promise of React
Native - that is to be able to create apps that are indistinguishable from the native
ones. This is why Wix (an Israeli mobile and web development company) is working
on a native navigation for react native. At the time of writing, there is not a stable
release of this package available which is why I didn’t use it.

Over the course of time new issues with using Navigator emerged and there was
a need to come up with a better way of managing the navigation state. Among
other issues, the original Navigator becomes hard to work with in case we use several
instances of it. For example, the application I have developed uses three different
navigation components. One StackNavigation is used as the root navigator. The
root navigator contains another StackNavigation where the vast majority of the app’s
content is pushed. In some places, however, I wanted to display modal windows.
The modals are pushed onto the master navigator so that they are displayed in the
foreground. The modal window contains another StackNavigation of its own, which
yields a total of three navigators, but for applications that use a tab-based navigation
or drawer navigation, that number is likely to be higher.

At the time when I started working on the project, the new solution to navigation
was already present in the React Native core and was named NavigationExperimental.
However, since NavigationExperimental is only a set of low-level components, people
started writing libraries around them to provide a more feature-rich experience for

50

4.9. Issues

the developers. In the end, I have settled with a library called ex-navigation. It offers
some needed functionality out of the box and allows to customize the behavior for iOS
and Android such as handling the navigation bar, animations and back gesture on iOS
as well as the back button handling on Android. Most importantly it works well with
several navigators which can be managed independently and offers better animation
performance.

Since navigation is one of the longer-term major problems present in React Native,
the React Native team also addressed the issue and a new navigation library is scheduled
for beta release in January 2017 [10]. A migration path from ex-navigation will be
provided so there should not be problems migrating to it once it becomes stable.

. 4.9 |Issues

There were a number of issues encountered throughout the development, caused by
different factors such as React Native’s immaturity and frequent releases where new
version is shipped every other week and updating is not always straightforward due to
breaking changes (although this is changing to one release per month as of January
2017), lack of quality documentation, or my effort to create partially different Uls on
each platform so that the user experience is on par with what the user would get in an
application designed specifically for iOS or Android. This sometimes led to dead ends
such as when I had to replace the entire navigation solution for a new one. Navigation
as a whole is an interesting topic, which is why I devoted an entire section to it.

Another issue is minor differences in behavior on each platform — component ap-
pearance on iOS may not always be the same as the one on Android. This involves
borders, border radius or animations. However, given React Native’s complexity —
the library uses JavaScript, Java, Objective-C, C++ and also C — it does a very good
job in abstracting the platform away.

Other very painful issue are animations which are controlled from the JavaScript
thread. This means that the JavaScript thread has to periodically send commands to
the native layer for the animation to run. If the JavaScript thread has too much work
on it, issuing the command is delayed and the result is a laggy animation. This issue,
however, is already partially solved and offloading the animations from the JavaScript
thready will probably be fully functional in the first months of 2017.

Other difficulties were met in working with files (uploading and downloading jobs),
since this needed to be done once for each platform and involved coding in Java as well
as Objective C and Swift. Working with files has its hidden culprits given by different

o1

4. Implementation

behavior on older Android versions, file permission issues and problems resulting from
different file sources - i.e. files imported from other applications versus files from
UIDocumentPicker on iOS.

B 210 Open Source Software Contributions

Throughout the development of the application, I have contributed to different projects
by bug fixes or code and documentation improvements. The projects, all open source
and hosted on GitHub, include:

B react-native-keychain

® mobx-utils

® react-native-scrollable-tab-view
B ex-navigation

® react-native-router-flux

® serializr

® mobx

B react-native

® react-native-android-kit

B react-native-radio-button-android

® react-native-android-checkbox

92

Chapter 5

Testing and Crash Reporting

The Android and iOS versions of the application were implemented in parallel, mostly
on my personal machine with Ubuntu 16.04 and my Nexus 5 phone with Android 6.0.1,
following a verification and fine-tuning for iOS. The development phone for iOS was
iPhone 5C running the latest version of iOS which was available at the time.

I have also used the iPhone and Android emulators for development and to see how
the application looks with different screen resolutions and OS versions (the latter is
especially relevant for Android). However, having access to real devices was crucial,
since only a real device can give a feeling of how well touchable elements respond
to touches, how the software keyboard influences the displayed content and how the
application functions in terms of performance. A real iPhone device was also needed
for testing the native module for creating jobs, since the background capabilities of
NSURLSession of an iPhone emulator do not fully correspond to the behavior of a real
device on some versions of iOS.

All throughout the development, the application was receiving its data from Mem-
source servers, i.e. I have not used any server implementation specifically for the
development.

93

5. Testing and Crash Reporting

B 51 Unit Testing

I have chosen Jest || for implementing unit tests. Jest, like several other tools I have
used, is a library actively developed by Facebook and is open source.

Jest offers essential functionality similar to other (JavaScript) test runners, such
as making assertions upon the results of tested code, creating mocks and also offers
snapshot testing, which is functionality that can be used for testing the structure of
React trees (or any serializable values) without directly rendering them. Snapshot
testing is a very useful feature especially in React Native as it allows to test component
appearance without the need for rendering the Ul on a device or emulator.

Jest creates a snapshot that captures the necessary information for component
rendering. When the component changes, the snapshot changes as well, and we’re
notified of this fact during testing. If the change is intentional, we can simply overwrite
the previous snapshot with a new one, or fix the problem if the change is a bug. We
also see the change in version control when it is being merged since the snapshot files
live alongside the code.

Snapshot testing currently has the drawback of not being able to trigger and capture
possible changes in the inner state of the component (if there is any state), i.e. snapshot
testing only considers the component’s props. This, however, is a subject to change in
one of the future releases of Jest.

I have implemented test suites for the major application components (stores and
domain objects). The tests use simple assertions as well as snapshots. The number of
tests is currently at 30 plus but this is an area I'd like to improve on.

Since a React Native app is a native application, I expected I could use the same
frameworks (e.g. Appium, Calabash) that would be used for acceptance testing of any
other native app on iOS or Android. It turns out there is a hurdle in using these tools
on Android, which is addressed by a pull request | which was eventually not merged
due to conflicts with how Facebook uses React Native internally. Although there is a
workaround for this, I have not had time resources to implement this kind of tests.

Thttp://facebook.github.io/jest/
Zhttps://github.com/facebook /react-native,/pull /9942

54

5.2. Testing With Users

B 52 Testing With Users

I performed informal testing of the Android application with three users all of whom
are Android users. One was a user knowledgeable of Memsource in general but not its
advanced features, second was a Memsource power user and third was a novice. They
were given a sheet with tasks (available in Appendix A) they were asked to perform
using the mobile application.

During the test I was, for the most part, just silently observing the user actions but
also communicated with user when they wanted to tell me something. This section
contains the outputs of the tests with my comments included. I also made a summary
of the encountered problems.

B First Test (knowledgeable user)

In the first test, user completed all tasks. The test revealed some inconsistencies in
how project metadata is presented in the project info screen. User also reported that
the control for selecting linguist (in the screen for creating new jobs) doesn’t seem to
be a control that would react to touch (button), plus the heading which reads ”select
linguists” is not intuitive.

Next, I observed that the user expected something (item selection) to happen when
they tapped an item in the job list. The user got around it by long-pressing the item,
which is the intended way of selecting it. The selection logic was implemented at a
time when there was another action expected to happen upon short tap (a preview of
the imported job). This functionality was decided not to be needed in the end. I have
later implemented a fix for this - the short as well as long taps are now used for item
selection.

When selecting Term Bases (TBs) and Translation Memories (TMs), the user was
slightly confused by the term ”Selected”. I agree a better term would be ” Attached TMs”
as was suggested, but chose the term ”Selected” to keep consistency with Memsource
Cloud. The user also found the screen for adding TMs and TBs generally confusing.
This is due to too many controls being displayed on one screen (a control for filtering the
results, control for selecting the target language and workflow step for the assignment,
along with checkboxes and dialogs for selecting different parameters). This problem
was later addressed by splitting the adding of TMs and TBs into two screens, so it
now involves an extra step, but is much clearer.

95

5. Testing and Crash Reporting

B Second Test (power user)

In the second test, user completed all tasks as well. The second user performed the
project and job tasks successfully. They also found an unexpected text reading ”owner
from different organization” on some project items displayed in the project list. This is
an older issue caused by the API not returning the project owner. It remained in the
application since I forgot to investigate the root cause. At any rate, the message looks
confusing, will be removed and I will look more into the cause and possible solutions.
The user also requested one feature and noticed one bug, both relating to content
displayed in the project info screen.

Similar to the first test, I observed the user was confused when adding TMs because
of they expected that the TMs in the screen that lists them to react to touches, while
the listing is intended as a read-only preview. I later addressed this problem by adding
an "edit" button in the navigation bar but it still remains to be assessed whether this
is a sufficient improvement.

The user also reported confusion over the fact that when TBs are added for a
language, the ”Selected” section shows TBs selected also for other languages. This is
something I need to think through and the solution to this perhaps lays at the server
side which provides this data.

B Third Test (novice)

The third test was also completed successfully. The app already included the afore-
mentioned fixes to how jobs are selected and how TM and TB selection is split into
two steps which both made completing the tasks easier for the user.

User had the following remarks to the application: when only one job is selected for
editing, the edited fields read ”leave unchanged” while they could read the actual data
of the edited job, and ”leave unchanged” should only be used when multiple jobs are
being edited. This is certainly true and may be implemented.

User also didn’t like that the very general "no results" text is shown when an empty
list of jobs, TMs or TBs is displayed. User would appreciate more specific messages.
This is a simple to do improvement and will be implemented.

Another thing the user was confused about were the icons for searching (magnifying

o6

5.2. Testing With Users

glass) and filtering (funnel). This is something not very easy to address, since searching
and filtering are very similar, yet different tasks.

Same as in previous tests, user had complaints about how TM and TB selection works
— the user didn’t like that some items are being selected and de-selected automatically.

My last observation from this test is that the user wasn’t sure how to trigger the
search after entering the search phrase in the text box. This is done through a key
located in the lower right corner of the screen, which shows a magnifying glass. The
icon, however, is rather small and therefore not always easy to notice. User found
the button after a few seconds and managed to trigger the search but said they
expected the search to happen as they type. This is something we will consider for
later implementation.

B 5.2.1 Test Conclusions

The tests of the application for Android were completed by all users. Unfortunately I
didn’t manage to run user tests with the iOS version of the application. The tasks
related to projects and jobs were completed by all users without problems but issues
emerged when attaching Translation Memories and Term Bases to the project. This
is due to the way items are presented for selection. I have already addressed some of
these issues and will continue working on them.

The way TMs and TBs are selected can be further improved. Now, while the mobile
app is consistent with Memsource Cloud, I find it somewhat confusing (and the tests
confirmed it): when the user selects e.g. a TM in read more, write mode is automatically
selected too and user is not always in complete control. Not all checkboxes that seem
to be possible to select can be selected due to selection constraints.

I believe a better solution to the problem is a single button reading something like
“select TM (TB) mode”, which would open a list with all possible modes for the TM
(TB) and only one mode could be selected. The list would show all modes: “Read &
Write”, “Read only” in case of TMs and in case of TBs “Read & Write”, “Read & write
& QA”, “Read only”, “Read & QA”. If applicable, the modes would be displayed along
with an explanation of why a particular mode cannot be selected, or that selecting the
mode will overwrite the mode of some other TM (TB). This would give user complete
control and no unexpected automatic selecting or de-selecting happening as it is now.

o7

5. Testing and Crash Reporting

B 5.3 Crash Reporting

One of the requirements is the ability to collect crash reports from users running the
application so that we can observe how it functions on their devices and react to
potential issues.

There are several services which provide crash reporting as well as means for collecting
information about how the app is used, similar to analytics as it is on the web. One of
such solutions which is widely used and also has community-developed bindings for
React Native is called Fabric | and is provided by Twitter free of charge for both iOS
and Android. Fabric’s crash reporting service is called Crashlytics, and the analytics
is marketed under the name Answers. I have chosen Fabric because of its popularity,
the ability to use Crashlytics as well as Answers and the fact it is available for both
platforms. I have incorporated Fabric into both Android and iOS versions of the app.

While Fabric with the community-developed module for React Native does report
the application crashes, I am not completely happy with how the reported issues are
presented in the Crashlytics dashboard. In particular, when a crash happens in the
JavaScript layer of the application, the information is merely passed to the native
module which backs the JavaScript module. In the native module, an exception is
thrown and its information is collected and recorded by Crashlytics. The problem with
this approach is that all exceptions are thrown from exactly the same line in code and
Crashlytics considers all of them to relate to a single bug. Then, in the Crashlytics
dashboard (which is best accessible though web browser) all of the exceptions are
grouped together which makes working with Crashlytics uncomfortable.

I have investigated other possible crash reporting solutions and found Bugsnag *
which directly supports React Native. It, however, does not provide any analytics
service and is not offered free of charge. I will evaluate the situation around bug
reporting after we gain more experience with Crashlytics and might make a switch.

Shttps://get.fabric.io/
“https://bugsnag.com/

o8

Chapter 6

Conclusions and Future Work

Mobile devices are ubiquitous and people use them extensively in their everyday lives.
As a consequence, many online services are accessible not only through the web, but
also via applications made specifically for mobile devices. Indeed, the presence of
mobile devices is so strong that many products are even built solely for mobile and do
not exist on the desktop.

Memsource Cloud is an online service that had no mobile application and the goal
of this thesis was to change it. In its scope I have introduced Memsource to the
reader and explained the motivation. Since it was clear from the beginning that the
application must be multiplatform, I have performed an analysis and comparison of
tools for multiplatform development. Prior to starting the development I have collected
requirements for the application and created mockups at different fidelity levels. The
application was implemented mostly in JavaScript and React, with Swift, Objective C
and Java being used in the functionality implemented natively.

I have laid the foundations for an application that will allow Memsource users
access the most important features of Memsource Cloud. The current functionality
includes CRUD operations on projects and jobs, as well as working with term bases
and translation memories and other features.

What I have not managed to implement, are features for linguists because it turned
out an API was not available for what I thought was a very simple matter. The API
is to be developed and adding the features for linguists should be simple, as they are
already implemented for the project manager role.

99

6. Conclusions and Future Work

React Native, despite its young age proved to be a valuable and functional library
for multiplatform mobile app development, albeit sometimes it required a little more
work than I would prefer to make things work exactly the way I wanted. Its easy
integration with the underlying platform was important for implementing the native
modules. Also MobX is a library that works very well with React and I have enjoyed
working with.

The future work will involve further development of the application within Memsource.
I will continue adding more features to the application, and improve the styling of some
components. Another important future step is to introduce a continuous integration
tool.

60

Appendix A

Tasks for Testing with Users

Log in with the following credentials: username “VNovak” and password (removed).
You will be presented with the list of all your projects which are shown in different
tabs.

B Projects

Take a look around and familiarize yourself with the screen. When you're ready, create
a new translation project with the following parameters:

B project name: “yet another project”

Client: Slavia

Domain: Machinery

Source language: English

Target languages: Czech, German

Due date: 19th of January at 7 pm

Workflow steps: select translation and revision

Verify the created project and try to list jobs of the project. The list should be
empty at this time.

61

A. Tasks for Testing with Users

Bl Jobs

Now let’s create a new job in the project. The job should be created from a file named
“important document.doc” which is present in the device’s Google Drive found under
“mobile app/testfiles”. Keep the job’s target languages se to “cs” and “de”. Set the job’s
due date to 11th of January, 10 am and select the “VNovak23“ user as the linguist for
both languages. Make sure that comments and hidden text from the word document
are imported and then create the job.

Wait for the job to be imported and then list the jobs and switch to the “Revision”
workflow step. Select the job part whose target language is German and change its
due date to 17.1.2017 11 am and save. Verify the due date is updated.

B Translation Memories

The next task is to add existing translation memories to the project. If you list the
translation memories, you will see that none are assigned yet. Attach the “Software
TM* translation memory to the German target language and all workflow steps. Attach
it with read and write modes enabled, a penalty of 10%. You may use the filter if
you're having trouble finding it. For Czech, attach “HackerX TM” in both read and
write mode and “interview” TM only in read mode, also for all workflow steps. Verify
the translation memories are attached after saving.

Il Term Bases

The next step is to add term bases to all languages. Attach the “Clock Industry” term
base with read, write and QA enabled. Also add the “jim” term base in read mode.

After the term bases are attached, go back to the project list screen and try to use
the search feature to find the project you just created. Verify it shows up in the search
results and that you can open it.

That’s it for today, thank you for your participation!

62

Appendix B

Installation Instructions

The simplest way to install the application is using the attached apk file (Android) or
ipa (10S).

Alternatively, you can build the application from source which requires to set up
react native according to the guide found at React Native docs E In that case, copy the
memsourceApp folder to your computer and make sure to fetch all git submodules.
The next step is to run npm i to install the dependencies from npm. Then run
react-native run-android to have the android app installed on your device or
emulator. Alternatively, use react—-native run-i0S to install the app on iOS
device or emulator. This will install the app in debug mode. Before running it, you
will need to run the command npm start to start the React Native packager.

"https://facebook.github.io/react-native/docs/getting-started.html

63

64

Appendix C

Attachment Contents

The attached data contains the text of this thesis both in pdf and in its KTEX sources.
Furthermore, it contains the project source files and the apk and ipa files for installation.

The structure of data is following;:

/
MEMSOUT CEAPD «eeeeeennnnaeeeeanneaaeeesansanaeeeannnns application sources
T o 1= = apk and ipa files
Lo D¢ A AP the thesis text directory
[P the IXTEX sources

65

66

Appendix D

Index

CAT, translation memory, 0]
ESLint,

Flowtype,

hot reloading,

JSON,

live reloading,

native module,

pure function,

term base, 6]

67

68

1]

2]
3]

Appendix E

Bibliography

Dan Abramov. Redux - Normalizing State Shape. 2017. URL: http://redux|

|9s . org/docs/recipes/reducers/NormalizingStateShape . html|
(visited on 01/04/2017).

Dan Abramov. Redux - Three Principles. 2017. URL: http://redux.js.org/
|docs/introduction/ThreePrinciples.html|(visited on 01/04/2017).

Lee Byron. React Conf 2015 - Immutable Data and React. 2015. URL:
|/ /www.youtube.com/watch?v=I171IdS—PbEqgIl

Tom Coleman. The State of JavaScript 2016 - State Management. 2016. URL:
http://stateofjs.com/2016/statemanagement/|(visited on 01/04/2017).

Cordova. Ouverview. 2017. URL: https://cordova.apache.org/docs/en/
|latest/guide/overview/| (visited on 01/08/2017).

Nader Dabit. React Native Radio, episode 40: Navigation in React Native with
Eric Vicenti of Facebook. 2016. URL: https://devchat.tv/react-native+
lradio /40 -navigation—in—-react —native—-with—-eric—-vicenti|
(visited on 01/05/2017).

Debugging React Native. 2016. URL: |https : // facebook . github . io /|
react-native/docs/debugging.html| (visited on 10/13/2016).

Jerry Dischler. Building for the next moment. 2015. URL: http://adwords |
blogspot.com/2015/05/building—-for—next—-moment.htmll

Bonnie Eisenman. Learning React Native. Edition 1. O’Reilly, Dec. 2015, p. 8.
ISBN: 978-1-491-92900-1.

ExponentJS. EzNavigation. 2017. URL: |https://github.com/exponent /|
lex-navigation#an-important-note-about-the-future|(visited on

01/07/2017).

69

http://redux.js.org/docs/recipes/reducers/NormalizingStateShape.html
http://redux.js.org/docs/recipes/reducers/NormalizingStateShape.html
http://redux.js.org/docs/introduction/ThreePrinciples.html
http://redux.js.org/docs/introduction/ThreePrinciples.html
https://www.youtube.com/watch?v=I7IdS-PbEgI
https://www.youtube.com/watch?v=I7IdS-PbEgI
http://stateofjs.com/2016/statemanagement/
https://cordova.apache.org/docs/en/latest/guide/overview/
https://cordova.apache.org/docs/en/latest/guide/overview/
https://devchat.tv/react-native-radio/40-navigation-in-react-native-with-eric-vicenti
https://devchat.tv/react-native-radio/40-navigation-in-react-native-with-eric-vicenti
https://facebook.github.io/react-native/docs/debugging.html
https://facebook.github.io/react-native/docs/debugging.html
http://adwords.blogspot.com/2015/05/building-for-next-moment.html
http://adwords.blogspot.com/2015/05/building-for-next-moment.html
https://github.com/exponent/ex-navigation#an-important-note-about-the-future
https://github.com/exponent/ex-navigation#an-important-note-about-the-future

E. Bibliography

[11] Apple Inc. App Programming Guide for iOS - Background Ezecution. 2016. URL:
lhttps://developer.apple.com/library/content/documentation/
[iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/
[BackgroundExecution.html#//apple_ ref/doc/uid/TP40007072+

(visited on 01/06,/2017).

[12] Apple Inc. Document Picker Programming Guide - Accessing Documents. 2016.
URL:https://developer.apple.com/library/content/documentatiion/
[FileManagement /Conceptual /DocumentPickerProgrammingGuide /|
AccessingDocuments/AccessingDocuments . html|(visited on 11/06/2016).

[13] Apple Inc. URL Session Programming Guide - Using NSURLSession. 2016. URL:
lhttps://developer.apple.com/library/content/documentation/
|Cocoa/Conceptual /URLLoadingSystem/Articles/UsingNSURLSession.
html#//apple_ref/doc/uid/TP40013509-Sw44|(visited on 11/06/2016).

[14] Comscore Inc. Major Mobile Milestones in May: Apps Now Drive Half of All
Time Spent on Digital. May 2014. URL: https://www . comscore . com/
[Insights/Blog/Major—-Mobile-Milestones—in-May - Apps - Now
Drive-Half-of-Al11-Time-Spent-on-Digitall

[15] Gartner Inc. Gartner Says Chinese Smartphone Vendors Were Only Vendors in

the Global Top Five to Increase Sales in the Third Quarter of 2016. URL:
///www.gartner.com/newsroom/id/3516317| (visited on 01/04/2017).

[16] Gartner Inc. Gartner Says Worldwide Smartphone Sales Grew 9.7 Percent in
Fourth Quarter of 2015. 2016. URL: http://www.gartner.com/newsroom/|

(visited on 05/18/2016).
[17] IDC Inc. Smartphone OS Market Share, 2016 Q3. URL: http://www.idcl
lcom/promo/smartphone-market-share/os| (visited on 01/04/2017).

[18] Kantar Inc. Smartphone OS sales market share. 2016. URL: |http: // www |
lkantarworldpanel . com/global /smartphone — os-—market — share/|

(visited on 06/01/2016).

[19] Statista Inc. Smartphone share of visits to websites in the United States in
2014 and 2015, by industry. 2015. URL: http://www . statista . com/
[statistics/412971/us—mobile-website—-industry-visits—share/l

[20] Ecma International. Map Objects. 2015. URL: |http://www.ecma-internatignal.
lorg/ecma-262/6.0/#sec-map-objects| (visited on 01/05/2017).

[21] Introducing Hot Reloading. 2016. URL: https://facebook.github.io/
[react —native/blog/2016/03/24/introducing-—hot-reloadingl
html| (visited on 03/24/2016).

[22] Tonic. Installing Ionic and its Dependencies. 2017. URL: http://ionicframewark.
lcom/docs/guide/installation.html|(visited on 01/08/2017).

[23] JavaScript Environment. 2016. URL: https : // facebook . github . io/
react - native /docs / javascript — environment . html| (visited on
10/13/2016).

[24] L. Masinter. Returning Values from Forms: multipart/form-data. 1998. URL:
http://www.ietf.org/rfc/rfc2388.txt|(visited on 11/06/2016).

70

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html#//apple_ref/doc/uid/TP40007072-CH4-SW5
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html#//apple_ref/doc/uid/TP40007072-CH4-SW5
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html#//apple_ref/doc/uid/TP40007072-CH4-SW5
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html#//apple_ref/doc/uid/TP40007072-CH4-SW5
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/DocumentPickerProgrammingGuide/AccessingDocuments/AccessingDocuments.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/DocumentPickerProgrammingGuide/AccessingDocuments/AccessingDocuments.html
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/DocumentPickerProgrammingGuide/AccessingDocuments/AccessingDocuments.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/Articles/UsingNSURLSession.html#//apple_ref/doc/uid/TP40013509-SW44
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/Articles/UsingNSURLSession.html#//apple_ref/doc/uid/TP40013509-SW44
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/Articles/UsingNSURLSession.html#//apple_ref/doc/uid/TP40013509-SW44
https://www.comscore.com/Insights/Blog/Major-Mobile-Milestones-in-May-Apps-Now-Drive-Half-of-All-Time-Spent-on-Digital
https://www.comscore.com/Insights/Blog/Major-Mobile-Milestones-in-May-Apps-Now-Drive-Half-of-All-Time-Spent-on-Digital
https://www.comscore.com/Insights/Blog/Major-Mobile-Milestones-in-May-Apps-Now-Drive-Half-of-All-Time-Spent-on-Digital
http://www.gartner.com/newsroom/id/3516317
http://www.gartner.com/newsroom/id/3516317
http://www.gartner.com/newsroom/id/3215217
http://www.gartner.com/newsroom/id/3215217
http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os
http://www.kantarworldpanel.com/global/smartphone-os-market-share/
http://www.kantarworldpanel.com/global/smartphone-os-market-share/
http://www.statista.com/statistics/412971/us-mobile-website-industry-visits-share/
http://www.statista.com/statistics/412971/us-mobile-website-industry-visits-share/
http://www.ecma-international.org/ecma-262/6.0/#sec-map-objects
http://www.ecma-international.org/ecma-262/6.0/#sec-map-objects
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
https://facebook.github.io/react-native/blog/2016/03/24/introducing-hot-reloading.html
http://ionicframework.com/docs/guide/installation.html
http://ionicframework.com/docs/guide/installation.html
https://facebook.github.io/react-native/docs/javascript-environment.html
https://facebook.github.io/react-native/docs/javascript-environment.html
http://www.ietf.org/rfc/rfc2388.txt

[25]

E. Bibliography

Native Modules. 2016. URL: |https : // facebook . github . io/ react -
native/docs/native-modules—ios.html|(visited on 11/03/2016).

React Native. React Native: Build Mobile Apps with React. 2016. URL:
|/ /facebook.github.io/react-native/| (visited on 05/05/2016).

Sharing Code Options in Xamarin. 2016. URL: |https://docs.xamarin.com/|
lguides/cross—platform/application_fundamentals/building_|
cross_platform _applications/sharing_code_options/|(visited on
04/13/2016).

Michel Weststrate. MobX - @observer docs. 2016. URL: https://mobx. js |
lorg/refguide/observer—component .html| (visited on 11/05/2016).

Michel Weststrate. MobX - Simple, scalable state management. 2016. URL:
[//mobxjs.github.io/mobx/|

Xamarin. 2016. URL: https://www.xamarin.com (visited on 06/02/2016).

Xamarin Forms. 2016. URL: https://www.xamarin.com/forms/| (visited
on 04/13/2016).

Xamarin Platform. 2016. URL: https://www.xamarin.com/platformn|
(visited on 04/13/2016).

Tadeu Zagallo. Bridging in React Native. 2015. URL: https://tadeuzagallol
lcom/blog/react—native-bridge/| (visited on 01/03/2017).

71

https://facebook.github.io/react-native/docs/native-modules-ios.html
https://facebook.github.io/react-native/docs/native-modules-ios.html
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://docs.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
https://docs.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
https://docs.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
https://mobx.js.org/refguide/observer-component.html
https://mobx.js.org/refguide/observer-component.html
http://mobxjs.github.io/mobx/
http://mobxjs.github.io/mobx/
https://www.xamarin.com
https://www.xamarin.com/forms/
https://www.xamarin.com/platform
https://tadeuzagallo.com/blog/react-native-bridge/
https://tadeuzagallo.com/blog/react-native-bridge/

	Project Specification
	Introduction
	Motivation

	Analysis
	Working with Memsource Cloud
	Requirements
	Analysis of Platforms and Development Tools
	Xamarin
	Shared Project
	Portable Class Library

	React Native
	Native Modules

	Ionic
	Conclusions

	Design
	Application Structure
	Prototyping
	Testing with users
	Test results

	Application Architecture
	Redux
	MobX

	Client-server Communication
	Domain Objects and Stores
	Representing Users
	Platform-specific Look and Feel

	Implementation
	UI with React Components
	Stores
	Connecting Stores with Views

	Upload Module
	Android
	iOS

	State Persistence
	Storing User Credentials

	Data Fetching
	Handling Internet Connection Outage

	Multi-stage Deployment and Testing
	Code Quality Tools
	Flow - Static Type Checker
	ESLint

	Navigation
	Issues
	Open Source Software Contributions

	Testing and Crash Reporting
	Unit Testing
	Testing With Users
	Test Conclusions

	Crash Reporting

	Conclusions and Future Work
	Tasks for Testing with Users
	Installation Instructions
	Attachment Contents
	Index
	Bibliography

