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Abstract
The domain of Multi-Object Tracking en-
compasses various interesting problems in-
cluding animal surveillance in biology ex-
periments. Automated or semi-automated
evaluation of experiments has a tremen-
dous impact in biology. In this thesis,
we are introducing a method for tracking
of multiple interacting objects in labora-
tory conditions. The difficulties of iden-
tity maintenance arising from object in-
teractions and occlusions are solved by
identity re-detection. We have enhanced
current state-of-the-art classifier for ob-
jects hardly distinguishable by a naked
eye, and we have shown that it improves
the performance for per region classifica-
tion by 4.5%–18% on video sequences with
ants, zebrafish, and bugs. The method
implementation is accompanied with a
graphical user interface. It includes tools
for manual annotation of difficult object
interactions that hint the tracker and also
means for final correction of tracking out-
put.
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Abstrakt
Sledování většího počtu objektů ve video
sekvencích v sobě zahrnuje mnoho nej-
různějších podproblémů, včetně sledování
zvířat během biologických experimentů.
Jejich automatické, či poloautomatické
vyhodnocení, má pro biology obrovský
význam. V této tezi představujeme me-
todu pro sledování většího počtu objektů
v laboratorních podmínkách. Obtíže způ-
sobené možnou ztrátou identity během
interakcí, kdy dochází k nepřehledným si-
tuacím, jsou řešeny pomocí rozpoznávání
identity jedince. Rozšířili jsme aktuálně
nejlepší metodu pro klasifikaci okem těžko
rozeznatelných objektů a na sekvencích za-
chycujících mravence, ryby a svinky jsme
ukázali, že tímto způsobem lze dosáhnout
zlepšení o 4,5-18%. Metodu jsme imple-
mentovali a doplnili o uživatelské rozhraní
pro zobrazení a editaci výsledků, umožňu-
jící interakci a doplnění informací vprů-
běhu výpočtů.

Klíčová slova: Počítačové vidění,
sledování několika objektů, zvířata, hmyz,
učení se, detekce, udržování identity, Les
randomizovaných rozhodovacích stromů

Překlad názvu: Sledování, učení se a
rozpoznávání objektů ve videosekvencích
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Nomenclature

Terminology
pixel Pair of coordinates (i, j) in an image.
region Set of image pixels forming a connected component.
ID Object identity, a unique number denoting a specific

individual throughout the video sequence.
Full-ID-Set Set of all IDs present in a video sequence.
ID-Set Subset of Full-ID-Set (empty set included).
tracklet A sequence of regions with the same ID-Set.
ICR ID-Consistency Rules, the set of rules which must

hold for ID-Sets of tracklets.
CToIS Complete Transfer of ID-Set.
expert annotation Input provided by the user in reaction to a run-time

prompt.
HCI Human-Computer Interface.
object interaction Event in which two or more objects occlude each

other, resulting in loss of identity due to segmenta-
tion failure.

RFC Random Forest Classifier - a machine learning tech-
nique.

k-NN k Nearest Neigbors - a machine learning technique.
NN Denotes 1-NN.
GT Ground Truth, a notion of data which is known to

be correct and thus used for experiment evaluation.

Region Related
A(r) Area of region r in pixels.
C(r) Centroid of region r.
λ1(r) Length of the major axis of the ellipsis having the

same central moments µ20 and µ02 as region r.
λ2(r) Length of the minor axis of the ellipsis having the

same central moments µ20 and µ02 as region r.
Imin(r) Minimum grayscale intensity of a pixel in region r.
Imax(r) Maximum grayscale intensity of a pixel in region r.

1



Nomenclature......................................
Functions
fT (r1, r2) Decision function determining whether CToIS from

r1 to r2 should take place, based on motion and
region alikeness likelihood.

fm(r1, r2) Likelihood of full ID-Set transfer from r1 to r2 based
on motion.

fa(r1, r2) Likelihood of full ID-Set transfer from r1 to r2 based
on region alikeness.
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Chapter 1
Introduction

General Multi-Object Tracking (MOT) is a difficult task due to the diverse
domain of objects (e.g. cars, animals, humans, cells, insects) moving in
various environments (indoor, outdoor, streets, wilderness, sea), and due to
the wide range of problems encountered (e.g. occlusion, object interactions,
object disappearance, camouflage, appearance metamorphosis). Unsurpris-
ingly, MOT is in practice divided into subdomains specializing on smaller
problems, using domain constraints to their advantage. Having considered
the availability of relevant data, challenging problems (e.g. see Figure 1.1),
and a high demand for animal tracking tools, we have chosen a specific MOT
subdomain - animal surveillance in biology experiments.

The increased demand for computer vision methods for animal surveillance
in biology experiments is evident due to the following facts:

A There are numerous frequently-cited publications about tools for analysis
of animal behavior. Some of them will be mentioned here, for a detailed
description of current approaches and methods see chapter 2. A program
called Ctrax[1] published by Branson et. al. in 2009 in the paper
"High-throughput ethomics in large groups of Drosophila"[2] with more
than 300 citations, "JAABA: interactive machine learning for automatic
annotation of animal behavior."[3] published in 2013 in Nature methods
by Kabra et al. with more than 80 citations, or "idTracker: tracking
individuals in a group by automatic identification of unmarked animals"[4]
also published in Nature methods in 2014 by Escudero et. al. with more
than 70 citations so far.

B There is a high number of research publications where such methods
were used to process and examine experimental data.

C On July 2014, Dell et al. included in their review "Automated image-
based tracking and its application in ecology" a "Call to developers"[5]
summarizing the key features of the ideal system for the task of animal
monitoring in the field of ecology.

D There is much activity in the form of questions, bug reports, and enhance-
ment suggestions on discussion forums dedicated to the above-mentioned
tools.

3



1. Introduction .....................................
Most of the applications mentioned in the point B share the following

common characteristics:. there are multiple objects in the scene. the objects are of the same or similar species (e.g. ants, mice, fish, flies). the objects are moving in an artificial, controlled environment (e.g. petri
dish with an almost uniform background; empty, shallow aquarium;
simple maze). there are constant lighting conditions. there is a single static camera, placed above the scene

In a situation that warrants all of the above, the objects are. distinguishable from background,. almost scale-invariant,. possibly mutually indistinguishable with the naked eye.

Additionally, the number of objects stays the same throughout a video
sequence (except for special cases like cell divisions or very long-term exper-
iments during which new objects are born). All these facts are important
to keep in mind because they are what makes the task different from other
Multi-Object Tracking (MOT) disciplines (e.g. crowd surveillance, vehicles
surveillance, sports tracking).

While the existing software satisfies some of the fields requirements (in
table Call for developers, Dell 2014), there is still none that satisfies them
all. Furthermore, the projects of the Cremer Group at IST Austria and, in
particular, our collaboration partner Barbara Casillas, entail most of these
requirements and some additional ones. The projects study the behaviors of
single ants and groups of ants in the presence of disease carrying individuals; it
is crucial to preserve the identity of individuals, especially during interactions.
Long term observation of complete ant colonies requires software flexibility to
support changing background and differently sized individuals. It is to address
both the general requirements of the field and those of our collaborators that
we have developed FERDA.

In this thesis, we introduce a novel approach combining multiple object
tracking with semi-automatic identity classifier learning used for re-detection
once the tracking fails.

1.1 FERDA, a Semi-Automatic Labeling System

FERDA is a system for semi-automatic video sequence annotation. It focuses
mainly on multiple, nearly indistinguishable objects (e.g. ants, fish, flies,
mice). Objects are moving in nearly 2D (planar) space (e.g. Petri dish,
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....................... 1.1. FERDA, a Semi-Automatic Labeling System

shallow aquarium, terrarium) which guarantees approximately constant scale.
The input is a video sequence, number of objects K and user provided expert
annotations. Every image from a sequence is reduced into a set of regions. A
region is labeled with a subset of K identities. The problem is designed as a
search of K-(almost)-disjoint paths in a graph where the vertices are regions
in consecutive frames and the eges represent the probability of assignmnt
between them.

The word almost means that paths can overlap during object’s interactions
and once the interaction ends object’s identities are reassigned using identity
classifier (to get a feel of ID assignment difficulty, see Figure 1.1 and try ID
assignment on your own). The ID assignment are assessed with certainty.
When the certainty drops below a certain threshold, the user is asked to
provide an annotation (e.g. "this region represents an object A" or, if the
ID assignments are not possible, due to bad visibility of identifying features,
"this object in frame f is the same as the object in f + d", where d is typicaly
small number of frames representing e.g. 10 seconds of video). The goal is
to return k-disjoint paths with a minimum cost while the path starts on the
first and ends on the last frame. The cost is expressed as a sum of costs for
expert’s annotations and the costs for mistakes.

5



1. Introduction .....................................
ID assignment challenge. Try to pair animals in the first row

with those in the second. Correct answer is shown in the caption.

Figure 1.1: (The correct answer is the same for all: 1E, 2D, 3C, 4B, 5A)

6



Chapter 2
Related work

There are several approaches to animal tracking, which can be categorized
according to various criteria. One is whether tagging of individuals is possible
(e. g. is object large enough for a tag attachment, does a tag affect the
behavior of observed animals). The method of marking is addressed by many
researchers. We will mention those related to tracking of smaller objects (e.g.
insects, rodents, fish). Tagging using RFID is described by Henry et al. [6]or
by Schneider et al. [7]. O’Neal et al. [8] and Psychoudakis et al.[9] delineated
methods using radio receivers and radars.

We are trying to show the diversity of possible tasks and where our method
is situated rather than defining the whole categorisation. Dell et al. [5] have
already done very good job in categorization. They have summarized the
needs of animal behavior analysts and they have reviewed the current state
of the art in animal tracking.

When RFID tagging is not possible or desirable, then computer vision
based methods should be employed. This category is the one we will discuss
next. There are several ways of method categorisation. Based on:..1. the dimensionality of space where we do the tracking (i.e. 3D or 2D)...2. the habitat (i.e. in the laboratory or in the natural environment)...3. the number of tracked objects (e.g. one, a few (2-10) or many (10+))...4. the information it provides (e. g. the position, identity, behavior labels)...5. the object variety (e.g. objects of the same class like ant workers, or

multiple (e.g. predator and prey, workers and the queen).

From now on we will only focus on methods for multiple nearly indistin-
guishable objects tracking in 2D (planar) space with single camera setting,
providing the position and maintaining object identity.

The behavior labeling could be done using specialised software like JAABA
- an interactive machine learning tool for automatic annotation of animal
behavior published in 2012 by Kabra et al. [3]. It is an interactive system,
working on top of the provided trajectories, which lets the user to encode
their intuition about behavior by annotating a small set of video frames.
These manual labels are converted into classifiers that can automatically
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2. Related work.....................................
annotate behaviors in screen-scale data sets. This system can create a variety
of individual and social behavior classifiers for different organisms, including
mice and adult and larval Drosophila.

The last classification we do is based on the method’s ability to reassign
an ID after it has been lost (e.g. segmentation failed; it is occluded by the
environment or most commonly - lost during multiple animal interactions).
Peréz et al. have shown in their paper [4] that when a tracker is not equipped
with a method for ID re-detection once the object is lost, there is a high
risk of identity swap which will propagate through the whole video sequence.
This usually leads to the unusability of identity information and the tracker
can be used only for global statistics (e.g. movement speed, occurrence heat
maps, the number of interactions).

Ctrax method published in 2009 in Nature Methods by Branson et al. [2] is
freely available [1] widely used for Drosophila tracking. The object region is
detected by thresholding a gray scale image. Centroids of identified individuals
are connected through all video frames to yield trajectories. When two animals
cross or overlap and oversegmentation occurs, there is a cross solver which fits
ellipses and divides such region. Even if the primary focus is on Drosophila,
it is possible to use it for objects with a shape close to the ellipses. It requires
a constant and uncluttered background. Individuals must have similar size.

Figure 2.1: An example of rapid movement from Ants-1
dataset. This dataset has been acquired and kindly made
available by Barbara Casillas-Perez, Cremer Group, Insti-
tute of Science and Technology Austria. The framerate
is 15fps.

In 2013 Kimura
et al. published
a paper [10] on
multiple honey bees
tracking. It is
available in the ap-
plication called K-
Track [11]. It works
similarly as Ctrax.
Authors claim bet-
ter performance on
honey bees data se-
quences. Just to
mention other spe-

cialized tools, the Multi-Worm Tracker published by Swierczek et al. [12] is a
real-time system which simultaneously quantifies the behavior of dozens of
Caenorhabditis Elegans in a Petri dish.

The above mentioned methods don’t have ID reassignment capability thus
we do not suggest their usage for tasks where an ID maintenance is crucial. An
enormous progress in handling the issue of ID maintenance brought a paper
called idTracker tracking individuals in a group by automatic identification
of unmarked animals", published in June 2014 by Peréz et al. [4] in Nature
Methods. They have proposed a method capable of individual distinction
even in cases where a human fails.

The objects are detected by thresholding of grayscale images (the uniform
and uncluttered background is assumed). Then the regions in consecutive
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..................................... 2. Related work

frames are grouped into fragments (tracklets). Two regions belong to the
same fragment if they overlap with each other and do not overlap with any
other blob of the two frames. This might raise errors when a framerate is low,
or the object speed is high or a troublesome combination of both occurs (This
approach will fail in a sequence with ant jump shown in Figure 2.1). Once the
fragments are constructed, complete sets of fragments are sought. Fragments
from the same complete set must have at least one frame in common. The
complete set must have exactly K fragments, where K is a number of observed
objects provided during initialization.

A region is described with intensity and contrast co-occurrence matrices. A
set of ID examples is established by finding permutations within complete sets
of fragments. The regions are classified using nearest neighbor classifier. The
metric are two numbers - the mean of per element difference of co-occurrence
matrices (one for intensity and one for contrast). The fragment id is assigned
based on region classification. If the probability of assignment is too low, it
is left unassigned. The method was implemented and is freely available [13].

The author of this thesis has published a bachelor thesis on animal tracking,
"Detection, Description and Tracking of Ants in Video Sequences"[14]. The
software described therein belongs to the same category as Ctrax as it is
only a tracker with a heuristics-based interaction solver, but, inherently, once
two IDs are swapped, the error propagates through the rest of the video.
The problem was modelled as a bipartite graph, where nodes were regions
and edges were described by a cost based on change in rotation and the
distance from a location generated by movement prediction. A frame to frame
assignment problem was solved by maximum weighted matching. The work
in this thesis is substantially different from that in bachelor thesis.
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Chapter 3
Problem formulation

The input of our method is a video sequence which is an ordered set of
images (S = {I0, I1, . . . , IF}), the number of objects K and the set of expert
annotations T . Before the annotation process starts, the entire video sequence
and the number of objects K must be available. The expert annotation is not
a standard input in the way of being provided in the beginning rather then it
is an interaction with software during a runtime. For now, we get along with
an expert modeled as a function E : Q → A, where Q is a set of questions
and A is a set of answers. The detailed description of questions and answers
set is described in section 4.6.

The output is K-paths, one path for each identity from identity set Γ
(|Γ| = K). A path is a sequence of regions. A region is a set of image pixels
forming a connected component. The minimum region description is a pair
(x, y) - the position coordinates. Regions might be supplemented with more
detailed descriptions (e.g. "in interaction", "missing", an orientation, area, set
of all region points, etc.).

We simplify the problem of locating k objects in the images by reducing
the search space into a set of regions assuming that objects are either inside
a region or not detected. For all images I ∈ S a segmentation is performed.
This way sets of regions Lf = {L0

f ,L1
f , . . . } in all frames f are constructed.

The temporal and spatial relationship of regions is captured in an oriented,
complete, bipartite graph G = (V,E).

V =
F−1⋃
f=0

|Lf |−1⋃
i=0
Lif ,

where F is the total number of frames.
An oriented edge is created for all frame consecutive pairs.

E =
{
∀ri ∈ Lf , ∀rj ∈ Lf+1 : (ri, rj)

}F

f=0

From now on we use the region and graph node terms interchangeably as
they are linked together and sometimes it simplifies the notation.

Aiming at having K-(almost)-disjoint paths in G we define following
functions. The function f : V×V→ <0,1> assigns a likelihood that all paths
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3. Problem formulation .................................
that are incident on Vi will continue to Vj . Next we define a decision function
fT (e,G) which for given edge e = (Vi,Vj), spatio-temporal conditions in
graph G and based on likelihood f (e) either generates a graph G′ by removing
some edges (thus G′ ⊂ G) or leaves it unmodified.

Details on functions f and fT are described in section 4.2.
Using the fT function, graphs G0,G1, . . . ,Gn are generated such that

G ⊃ G0 ⊃ G1 ⊃ . . . ⊃ Gn. We do this starting from edges with highest
likelihood and iteratively continue until no G modification can be produced
due to the low certainty.

Previously described process leads to a sparser graph, mainly in terms of
the number of edges. In this Gn graph, we can observe specific subgraphs
which we call tracklets. Tracklet is a sequence of nodes (regions) - a path in
G with following properties.

Before we describe properties, let us define two sets E−Vi
, E+

Vi
and two

functions δ−(Vi) and δ+(Vi) and a symbol P. A set of outgoing edges
E−Vi

= {∀j : (Vi,Vj)} and set of ingoing edges E+
Vi

= {∀j : (Vj ,Vi)}.
Vertex out-degree δ−(Vi) = |E−Vi

| and in-degree δ+(Vi) = |E+
Vi
|. P is an

ordered set of regions - a path in G and by denoting Pi we are referencing
i-th region in this path and |P| is a path length.

A path P is a tracklet only if it has following fundamental properties:

|P| > 0 (3.1)

∀i, i = 1..|P| : δ+(Pi) = 1 (3.2)

∀i, i = 1..|P| − 1 : δ−(Pi) = 1 (3.3)

δ+(P1) 6= 1 (3.4)

δ−(P|P|) 6= 1 (3.5)

Note that even a single node satisfies the tracklet definition.

The Equation 3.4 and Equation 3.5 implies that a tracklet has a maximum
number of nodes and cannot be a subgraph/subpath of any other possible
tracklet.

Let us consider that the segmentation works perfectly, and we get for each
frame exactly K regions. If also the rules are faultless, then we get exactly
K tracklets - K-disjoint paths - the desired result. Unfortunately, this is not
true except for simple cases. Usually, the graph Gn contains a high number
of tracklets.

Let us remind that Γ is a set of K-IDs. To overcome an issue with a high
number of tracklets, a subset γ ⊆ Γ is assigned to all tracklets. This process is
called ID assignment. γ might be also equal to an empty set. ID assignment

12



.................................. 3. Problem formulation

starts with obtaining the set of tracklets examples T (at least one tracklet per
ID). The examples might be provided by the user or extracted automatically.
Then an ID classifier is built based on the provided examples. ID-Sets for the
rest of tracklets are derived based on ID consistency constraints (see section
4.4) combined with classification. The classification is done in a greedy way,
starting from the most likely. After each assignment, the constraints are
updated and likelihood is reevaluated.

In the end, the tracklets with the same ID in their ID-Sets are grouped
into a structure called a track. When the tracklets in each track are ordered
by frame number, K-(almost)-disjoint paths are reconstructed. Paths are not
disjoint in frames, where the region is shared during object interactions by
multiple IDs.
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Chapter 4
Approach

4.1 Segmentation Step

In this step, we reduce the search space from the whole image into a set
of regions. A perfect segmentation algorithm will return for each frame K
segmentations, where K is the number of tracked objects. Unfortunately, this
is not always the case.

Let us consider simple two thresholds (θ1, θ2) segmentation, where we label
each pixel (y, x) with intensity I(y, x) as a foreground if θ1 <= I(y, x) <= θ2,
otherwise as background. This naive algorithm is a quite common way how
the segmentation is treated in others systems[4, 2]. Using this simple method,
we will describe and analyze five possible segmentation scenarios which also
occur in more sophisticated algorithms...1. A single object is segmented. We will call this single-id region. This is

the ideal case and also the most common one...2. Oversegmentation is a case when multiple objects are inside one region.
We will call this multi-id region...3. Undersegmentation is a case when one object is divided into multiple
regions. We will call this id-part region...4. A region we are not interested in is segmented (e.g. a pit, border of an
arena, food, eggs) and we are not able to eliminate it with segmentation
settings. We will call this no-id region...5. Miss - this is not a result of segmentation as in cases 1-4. It is also
relatively rare, but it is possible that the object is not detected (e.g. due
to the blur caused by fast movement), and we need to consider this case
in the next steps.

An example of segmentation results can be found in Figure 4.3.
We provide two options for segmentation but due to the system modularity

it is possible to add more methods in the future.
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4. Approach ......................................
4.1.1 Maximally Stable Extremal Regions (MSER)

Maximally Stable Extremal Regions (MSER) [15] is a feature detector. The
MSER algorithm extracts from an image I a number of co-variant regions,
called MSERs. We use this as a default option as it performs well on all
video sequences where an object is separable from the background based only
on grayscale intensity. Compared to naive one or two thresholds method it
provides intensity invariance.

4.1.2 Random Forest Pixel Classifier

Figure 4.1: An example of a sequence
where multiple size objects are present.
In this sequence, the segmentation is very
challenging. This image has been acquired
and kindly made available by Barbara
Casillas-Perez, Cremer Group, Institute
of Science and Technology Austria.

For more complex scenarios,
where objects cannot be seg-
mented using MSER segmenta-
tion we provide a tool for training
a background/foreground, per
pixel classifier. It works in
the following way. A random
frame is provided, where the
user labels sets of pixels as fore-
ground and background. The
Random Forest[16] pixel classi-
fier is trained in feature space F,
and the provided image is clas-
sified. In an iterative way, the
user can label more pixels and
also choose different frames until
they are satisfied with the result.

Using this classifier, a proba-
bility of being a foreground is es-
timated for each pixel. On top of
this classification either MSER
method or even simple threshold-
ing is applied to obtain segmen-

tations. For more details see section 8.4

4.2 Graph Modifications

In this section, we describe the modifications of the graph formulated in chap-
ter 3. The graph is modified with the goal of minimizing the number of
tracklets by merging them together. We start by introducing anomaly detec-
tion using Isolation Forest in subsection 4.2.1. Then we explain the process
of model training data acquisition in subsection 4.2.2 and in sections 4.2.3
and 4.2.4 we describe how to estimate motion and region alikeness. Lastly,
in subsection 4.2.5 we describe how to combine motion and region alikeness
to assign the likelihood of each ID set being transferred from one region to
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................................. 4.2. Graph Modifications

another along a given edge - f (Vi, Vj).
Before we start, let us rewaken sets E−Vi

and E+
Vi
. A set of outgoing edges

E−Vi
is defined as E−Vi

= {∀j : (Vi, Vj)} and set of ingoing edges E+
Vi

= {∀j :
(Vj , Vi)}.

4.2.1 Isolation Forest

The IsolationForest [17] separates observations by randomly selecting a feature
and then randomly selecting a split value between the maximum and the
minimum value of the selected feature. Since recursive partitioning can be
represented by a tree structure, the number of splittings required to isolate a
sample is equivalent to the path length from the root node to the terminating
node. This path length, averaged over a forest of such random trees, is
a measure of normality and the decision function. Random partitioning
produces noticeably shorter paths for anomalies. Hence, when a forest of
random trees collectively produce shorter path lengths for particular samples,
they are highly likely to be anomalies. (The majority of this paragraph was
adapted from Scikit-learn documentation. [18])

The anomaly score of an observation sample is computed as 0.5− 2−m/l,
where m is the average path length of given sample and l is an average path
length of all samples from training set. The lower the score, the higher the
chance that the sample is an anomaly.

4.2.2 Training Data Acquisition

Figure 4.2: Euclidean distance
of centroids vs perpendicular
distance of region circumscribed
rectangles.

At first, we remove all edges (u, v) where
an ID-Set transfer from region u to v is
not possible because regions are too dis-
tant. The object maximum speed and
video frame rate are included in one pa-
rameter δ - the maximum distance that an
object can cover in one frame. For a given
δ, all edges (u, v) from graph G are tested.
If the distance between locations u and v
is greater than δ, the edge is removed.

The region distance is measured as a perpendicular distance of region
circumscribed rectangles. The reason for not using simpler Euclidean distance
of centroids is as follows. Imagine a region composed of multiple objects in a
row and a single object region approaching one end of this row. Then the
centroid distance might be enormous even if the objects will be close to each
other (see Figure 4.2).

After the pruning steps, the graph is usually sparser. Now create a set
E′ = {(u, v)}, where E−u = E+

v = 1. These pairs are examples of a full ID-Set
transfer from u to v and they will serve us as a training dataset for motion
and region alikeness model.
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4. Approach ......................................
4.2.3 Motion Model

Now we represent an edge (u, v) from set E′ defined in the previous subsec-
tion 4.2.2 with three numbers - the centroid distance; change in major axis
orientation θ and a result of function φ(u, v).

θ = 1
2 arctan

( 2µ′11
µ′20 − µ′02

)
,

where µ are region central moments.

φ(r1, r2) =

arccos
( u · v
‖u‖‖v‖

)
, if ‖u‖ > ε and ‖v‖ > ε

0, otherwise
,

where u = C(r1)−C(r2) (a vector going from centroid of region r2 to the
centroid of region r1). v is a unit vector going from the centroid of r1 in the
direction of region major axis. ε = average object length

10 The function φ is an
heuristic saying that an object is usually moving in the way of major axis,
not sidewise. The parameter ε triggers the heuristic φ only when the object
is moving.

In this feature space, an isolation forest is built using training data set E′
specified in the previous subsection 4.2.2. Then the edge set E is taken and
the anomaly score is computed for each edge. The score is sorted. Highest ten
percent of samples are taken as "not an anomaly" examples and ten percent
of samples with the lowest score are taken as "anomaly" examples. The score
mapping into zero one range is trained using logistic regression [19].

The purpose of this model is to estimate a likelihood of the ID-Set transfer
given the movement changes. We mark the likelihood estimator function as
fm(r1, r2).

4.2.4 Region Alikeness Model

The approach here is the same as in the previous section except for the feature
space. The feature space is six-dimensional...1. |A(r1)−A(r2)|, the area difference..2. A(r1)/A(r2), the area ratio..3. λ1(r1)− λ1(r2), a difference of region major axes..4. λ1(r1)/λ1(r2), a ratio of major axes..5. (λ1(r1)./λ2(r1))/(λ1(r2)/λ2(r2)), ratio of major and minor axes ratios..6. |Imin(r1)− Imin(r2)|, minimum intensity difference.

The purpose of this model is to estimate a likelihood of the ID-Set transfer
given the change in region appearance. We mark the likelihood estimator
function as fa(r1, r2).
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................................. 4.3. Region Classification

4.2.5 Full ID-Set Transfer Decision Function

We design a decision function fT (e) which for given edge e = (r1, r2) decides
whether it should be connected into a tracklet or left undecided.

Let us assess a value for all (r1, r2) ∈ E−r1 . The s(e) = fa(e) · fm(e). We
arrange edge and score pairs p = (e, s) in descending order of score values into
a sequence p1, p2, ...pn. Notation si denotes the score of pair pi, ei denotes
the edge from pair pi.

fT (e) = s1
s1 + s2 + ζ

,

where ζ is a decision threshold (set to ζ = 0.3). The decision threshold
parameter tuning is discused in section 5.1.

When fT (e) > 0.5, all edges from E−r1 are removed from G except for e1.
The same is applied to all edges from E+

r2 which merges tracklets of r1 and r2.

4.3 Region Classification

As we have described in section 4.1, there are five possible results of segmen-
tation. Here we show a way how a region could be classified. Once region
classification is done, the tracklets are classified using their most common
region class. A tracklet class may help with the ID assignment process: no-id
tracklets could be ignored, id-part could be treated in a particular way, etc.
However, mainly the probability distribution of ID presence is estimated in
single-id tracklets. Based on the probability distribution, ID assignment is
performed.

The goal is to sort out the regions into four categories. We have tried
to design a general classifier but without success. We suggest the following
approach.

We do a nearest neighbor (NN) classification [20]. The feature space is
seven-dimensional - a region area; major axis; minor axis; minimum intensity;
maximum intensity; region margin; and the length of the region contour.
Feature space is normalized by subtracting the mean and scaling to unit
variance. The metric is Euclidean distance. Next, we ask the user for k-
decisions. As the number of k is limited and we want to build the best
classifier possible, we will choose k as K-Means++ [21] algorithm does.

The algorithm is as follows:..1. Randomly choose a data point as the first center, using a uniform
probability distribution. For each data point x, compute D(x), the
distance between x and the nearest center that has already been chosen...2. Randomly choose a data point as a new center, using a weighted proba-
bility distribution where a point x is chosen with probability proportional
to D(x)2...3. Repeat Steps 2 and 3 until k distinct centers have been chosen.
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4. Approach ........................................4. Now that the initial centers have been chosen, display regions and let
the user assign one of four labels (single-ID, multi-ID, ID-part, no-ID).
See examples in Figure 4.3..5. Classify each region using 1-NN search.

(Steps 1–3. taken from Wikipedia [22].)

Figure 4.3: Segmentation class examples from Cam1 dataset.

Parameter k tuning and the feature selection is described in section 5.2

4.4 ID assignment Constraints

From the nature of ID-Set emerges that when the identity A is assigned to
a tracklet, the A identity cannot be inside any ID-Set of all tracklets with
a timespan overlap. In this section, we will define a set of rules called ID
consistency rules (ICR). The compliance of ICR for all tracklets is a necessary
but not sufficient condition for correct ID assignment. Let us define a set Tf
as a set of all tracklets passing frame f . The set F is set of all frames. A
tracklet has a set P and N . By denoting Pt we are referring to P set for
tracklet t, likewise for Nt. The P set is called ID-Definitely-Present and N
is ID-Definitely-Not-Present. Recalling only that Γ stands for full ID set.

Following equations must hold:

∀f ∈ F :
⋂

t∈Tf

Pt = ∅ (4.1)

∀f ∈ F :
⋃

t∈Tf

Pt = Γ (4.2)
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............................... 4.5. ID assignment Detection

∀t : Pt ∩Nt = ∅ (4.3)

We say that ID-Set for tracklet t is solved when

Pt ∪Nt = Γ (4.4)

4.5 ID assignment Detection

Given training set T0 = {(ti, ID)}, the Random Forest Classifier (RFC)
is trained (used feature space and classifier parameter tuning is described
in section 5.1). We compute ID probability distribution for each tracklet
classified as Single-ID. Then we iterate until each tracklet is labeled:..1. order tracklets by decision probability and pick best pair d = (tj , ID)..2. if the certainty < certainty threshold ask expert and follow step E1),

else continue to step 3..3. assign ID to (tj)..4. check ID set consistency rules. If inconsistency is found raise question
and follow step E2)..5. update classifier with a new example, update decisions probability and
go to step 1)

E1) A question is raised, training set Ti+1 = Ti ∪ answer. Go to step 5.
E2) Raise a question as in E1 and update training set. Then remove all
training examples not created by the expert and also roll back all automatic
decisions. Then go to step 5.

Step E2 guarantees the convergence of this algorithm because after each
iteration the training set T is increased until all tracklets are labeled without
causing ID sets inconsistency. It means that in the worst case, the expert has
to label each tracklet by hand.

The ID probability distribution is estimated using a random forest classifier[16].
The random forest classifier is a forest of decision trees. A decision tree is a
tree where a feature and a threshold are defined in each node. The sample
classification is based on training samples distribution in leaves where all
decisions have been made. The trees are trained on a random sample of the
training set, and split decisions are done on a random subset of a feature
set. The forest classification is computed as an average of all trees classifica-
tions. The random training set and random feature subset contribute against
overfitting.

The ID probability distribution is estimated for all regions of a given
tracklet. The IDs denied by ID-Consistency rules are omitted in this process.
The tracklet ID distribution is then a mean of all region distributions. Let us
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4. Approach ......................................
denote by Pγ(t) the probability of γ on a given tracklet t. P1(t) stands for the
greatest probability from probability distribution over identities for a given
tracklet and P2 is the second greatest. The certainty c of an γ-Assignment is
modeled as

c = (1− α) · 0.5 + α · Pγ(t)
P1 + P2

.

α = min
(

( |t|
κ

)2, 0.99
)
,

where |t| is the tracklet length and κ is a tuning parameter, for our experiments
we set κ to 50. User can configure a threshold C, and once the best possible
assignment certainty ĉ < C the user is prompted to provide an annotation.
When C = 0, the system will not raise any questions and returns the best
possible results. When C = 1, the system asks about all tracklets except for
those automatically resolved by ICR.

4.6 Expert Annotation

An expert annotation is an input provided by the user as a reaction to a
raised question (e. g. is the identity in the tracklet one same as in the
tracklet two; which identity is in this tracklet). This led us to the domain
of supervised learning, visualization and Human-Computer Interface (HCI).
Several questions emerge. What is a good annotation? How to lay and
choose questions and what is an impact of obtained information? What is
a complexity and time consumption of an annotation? How to support the
user when dealing with decisions during annotation process?

In our opinion, a good annotation is a user provided information which is
correct and in the given situation has the highest information gain (e. g. an ID-
Decision for the longest tracklet with ambiguous ID-Set was provided; a pair
of timespan overlapping tracklets, with similar ID distribution is differentiated;
the correction when inconsistency of ID-Set-Constraints occurs). From the
user’s point of view, a good annotation is such an annotation which is not
time-consuming. The annotation process differs based on whether the user is
capable of ID re-detection when a random frame is shown. If the re-detection
is not possible, then the space of possible questions shrinks to questions about
ID-Set equality of tracklet pairs in almost consecutive frames. For example,
two objects, let us call them A nad B, gathers and the interaction starts and
the identity is lost. Once the interaction ends and they are separated again,
the expert matches current tracklets to A and B before interaction.
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Chapter 5
Parameters Tuning

5.1 Decision Threshold - ζ

The parameter ζ is used in Full ID-Set Transfer Decision Function, described
in subsection 4.2.5. It’s domain range is <0,1>. The higher the parameter is
the more conservative the system is in decisions about the CToIS (Complete
Transfer of ID-Set) thus the tracklet number will raise while the length of
tracklets will drop. If the number is too low, then a false tracklet might be
created, which produces errors during ID-Assignment as the ID-Consistency
Rules are violated. Keeping this in mind the ζ was set by hand to 0.3.

5.2 Number of labeled samples for Region
Classification training

We have measured an impact of the number of provided labeled samples -
k, on region classification described in section 4.3. Firstly we have created
a ground truth from thousand most distant regions for each dataset. The
reason for poorer performance on Cam1 and Camera3 is that segmentation
sometimes includes ant’s antennas and legs. This decreases data separability
(e. g. Single-id region segmented with legs will not differ much in area and
contour length to Multi-id region segmented without legs).

Based on our measurements we suggest using k = 50 and full feature set
(a region area; major axis; minor axis; min intensity; max intensity; region
margin; and the length of the region contour) as it shows the highest stability
while having good performance. (see Figure 5.1 and Figure 5.2, the full set
is labeled as f4). In our experience, labelling 50 samples takes less than one
minute.
We are aware of the incompleteness of this approach. It is a temporary

solution which should be replaced with more robust and appropriate semi-
supervised learning techniques.
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Figure 5.1: An impact of a number of k-diversely labeled samples and a
feature sets on 1-NN region classifier accuracy. Feature set f1 = {region area,
major/minor axes length, contour length}, f2={f1, region min. intensity}, f3 =
{f2, region max. intensity}, f4 = {f3, region margin}
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................5.2. Number of labeled samples for Region Classification training

Figure 5.2: An impact of a number of k-diversely labeled samples and a
feature sets on 1-NN region classifier accuracy. Feature set f1 = {region area,
major/minor axes length, contour length}, f2={f1, region min. intensity}, f3 =
{f2, region max. intensity}, f4 = {f3, region margin}
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5. Parameters Tuning ..................................
5.3 Random Forest Classifier (RFC) - Parameter
Tuning

In this section, we describe different Random Forest Classifier parameters
and their effect on classifier accuracy. We tune one parameter at the time
comparing to default values. The performance is evaluated on various features
(described in section see subsection 5.3.1) and different datasets (see chapter 6).
The results are shown in a table of performance differences.

The evaluation has been done ten times for each configuration, dataset,
and feature descriptor. The mean accuracy was computed and is displayed in
succeeding tables. The classifier was trained on 5% randomly picked single-id
regions and evaluated on the rest. Thus there were 10 training sets and 10
test sets.

We have tried the evaluation for different sizes of a training dataset (1%,
2%, 5%, 10%, 15% and 20%) but the relations between results were more or
less the same, shifting up and down by a constant. Thus we are showing only
results for 5% as it is close to the size of a training set in practice.

The parameters we were tuning are - a node split criterion; max-f -
maximum number of features used to find a split; min-leaf - minimum of
samples in a leaf; n-trees - number of estimators; max-d - the maximum
depth of a decision tree.

The default values were a node split criterion = entropy; max-f= 50%;
min-leaf = 1; n-trees= 10; max-d = unlimited.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments 74.52% 64.64% 58.21% 81.59%

Colornames 74.13% 55.09% 60.51% 75.17%
C-co-occurence 84.50% 79.05% 75.78% 70.47%
I-co-occurence 87.27% 82.42% 73.61% 74.46%

LBP 43.51% 35.29% 31.96% 62.22%
HoG 43.76% 35.25% 31.97% 61.45%

Table 5.1: Random Forest Classifier performance default values set to: cri-
terion = entropy; max-f = 50%; min-leaf = 1; n-trees = 10; max-d =
unlimited. . Dataset names are in columns, feature spaces are in rows. Last row
shows an average of changes.. All following results are compared with this table.
Better performance is highlighted in green.

5.3.1 Features

We have tried six different feature descriptors for ID detection. In this section,
we briefly introduce them and show their performance.

Moments

We have designed a simple, fast region descriptor with dimensionality 19. It
is composed of:
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. (2) region area, contour length. (3) major axis, minor axis, major/minor axis ratio. (7) Hu moments[23] of a region (binary image). (7) Hu moments[23] of a grayscale image masked by region

(Major and minor axis are axes of an ellipse interpolating the region.)
We suggest usage of this descriptor when the computational cost of others

is a problem or if the object shape and size differs dramatically.

Colornames

Weijer et al. introduced a pixel classifier [24] trained on Google image dataset.
Pixels are classified into eleven color classes using a RGB look-up table. Using
this classifier, all pixels from the region are labeled. Then a frequency of all
classes is computed. The frequencies are computed on different scale levels.
First on the whole region, then on a 2x2 grid and then on 4x4 grid. All these
eleven bins histograms are vectorized into a description vector of length 231.

We suggest usage of this descriptor for sequences where a lot of color
information is present.

Intensity-co-occurrence matrix (I-co-occurrence)

Perez et al. showed a usage of contrast and intensity co-occurrence matrix
for animal identity description [4]. An intensity level co-occurrence matrix is
a histogram of a co-occurring sum of grayscale values at a given offset over
an image. For an 8bit image, it is 512 times max offset matrix. They have
classified their objects using nearest neighbor search. The distance metric
was simple mean of matrix per element difference. We are using the same
matrices for description. The max offset is set to an average object length (2
times major axis of an ellipse interpolating an object). The classification is
done using random forest classifier on vectorized co-occurrence matrices.

Figure 5.3: An examples of I-co-occurrence matrices for 2 different object
identities
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Contrast-co-occurrence matrix (C-co-occurrence)

The same as Intensity-co-occurrence matrix in previous section 5.3.1 except
for the shape. The co-occurrence matrix here is an absolute value of grayscale
values difference at a given offset over an image. Thus the matrix shape is
256 times max offset.

Figure 5.4: An examples of I-co-occurrence matrices for 2 different object
identities

Local Binary Pattern (LBP)

The LBP [25] descriptor is commonly used in a pattern recognition problems
introduced in 2007 by Zhang et al. We have designed our descriptor in
following way. An image is rotated with a rotation center in the region
centroid with a purpose of aligning all regions main axes. Then an image
is cropped around a region. The LBP descriptor is computed in this crop.
Then the 32 bins histogram is counted on the whole image and in 3x1 grid.
This is done twice with different LBP parametrization. First with P=24 and
R=3 and the second P=8, R=1. Where P is a quantization of the angular
space. R is the radius of a circle (spatial resolution). These histograms are
concatenated into a vector of length 256.

HoG

The HoG is an another commonly used pattern recognition method introduced
in 2005 by Dalal et al. [26]. The image is prepared the same way as for LBP
descriptor described in preceding subsubsection 5.3.1. There are several
histograms computed. First one on a whole image and then on a grid of size
4x1. The number of orientations was set to eight. Thus the result vector’s
size is 40.

5.3.2 Split Criterion Function

We were deciding between two split quality functions. The Gini impurity and
the information gain - the entropy. Gini impurity is a measure of how often a
randomly chosen element from the set would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the subset. The
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information gain (also known as Mutual Information) is a ratio of information
gain to the inrinsic information.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.24% -0.03% +0.17% -0.41%

Colornames +1.08% -0.25% +0.11% -0.92%
C-co-occurence -0.20% -1.08% -1.05% -0.70%
I-co-occurence -0.03% -2.52% -1.05% -0.30%

LBP +0.52% -0.11% +0.16% -0.55%
HoG +0.57% +0.12% +0.31% +0.24%

An average +0.28% -0.65% -0.23% -0.44%

Table 5.2: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: criterion = gini. . Dataset
names are in columns, feature spaces are in rows. Last row shows an average of
changes.

Based on the comparison shown in Table 5.2, we have decided to use the
information gain as a split criterion function.

5.3.3 Max Depth of a Decision Tree

The max-d influences overfitting as it restricts the maximum depth of all
decisions trees in a forest. We have evaluated the parameter in the range <5,
50>. One must be careful with setting it too low as it then tends to underfit.
Setting max-d ≥ 20 produced zero change to default setting. Here we show
only the result of max-d set to 10 as this is the value that was picked due to
the best results. Full results can be found in Appendix A.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.20% +0.52% +0.09% +0.18%

Colornames -0.17% +0.08% +0.45% -0.03%
C-co-occurence 0.00% +0.01% 0.00% +0.12%
I-co-occurence 0.00% -0.03% 0.00% +0.12%

LBP +0.26% +0.29% -0.23% +0.06%
HoG +0.18% +0.41% +0.08% -0.17%

An average +0.01% +0.21% +0.07% +0.05%

Table 5.3: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-d = 10. . Dataset names
are in columns, feature spaces are in rows. Last row shows an average of
changes.

5.3.4 Min Samples In a Leaf

The min-leaf defines minimum samples in a leaf. We have evaluated this
parameter in the range <1, 5>. Usually, the default value is set to one but
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we have found that a slightly better results can be obtained when using a
higher value. We have decided to set min-leaf = 3. All results are placed
in Appendix A.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.48% +0.84% -0.30% -0.75%

Colornames -0.87% +0.41% +0.46% -0.32%
C-co-occurence -0.26% +0.58% +0.05% +0.18%
I-co-occurence -0.08% -0.13% -0.14% +0.06%

LBP +1.06% +0.98% +0.77% +0.86%
HoG +1.29% +0.77% +0.57% +0.23%

An average +0.11% +0.58% +0.24% +0.04%

Table 5.4: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: min-leaf = 3. . Dataset
names are in columns, feature spaces are in rows. Last row shows an average of
changes.

5.3.5 Max Features

The max-f defines the number of randomly selected features to compute the
split. We have evaluated the parameter in the range of <0, 100>% and for
the
√
f , where f is the number of features. If the number is too low and the

number of weak features is high, the RFC tends to have poorer performance.
If it is too high, the RFC tends to overfit. Usually, the default value is set
to
√
f . Based on measured performance, we have decided to set a max-f =

50% as the average performance of others was lower. We are not displaying
the table, because 50% was the default value, thus the difference is 0. We are
showing 40% and 60%. All results are presented in Appendix A.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.36% +0.15% +0.13% -0.07%

Colornames -0.13% -0.10% +0.34% +0.10%
C-co-occurence +0.04% -0.01% +0.07% +0.26%
I-co-occurence -0.16% -0.04% -0.10% +0.27%

LBP +0.43% -0.15% -0.78% -0.43%
HoG +0.02% +0.05% -0.21% -0.33%

An average -0.03% -0.02% -0.09% -0.03%

Table 5.5: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-f = 40. . Dataset names
are in columns, feature spaces are in rows. Last row shows an average of
changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +0.07% +0.11% +0.41% -0.40%

Colornames -0.26% -0.29% +0.14% -0.04%
C-co-occurence +0.06% -0.00% -0.09% -0.05%
I-co-occurence -0.14% -0.18% -0.24% -0.07%

LBP +0.23% +0.28% -0.05% -0.09%
HoG +0.41% +0.30% +0.39% +0.01%

An average +0.06% +0.04% +0.09% -0.11%

Table 5.6: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-f = 60. . Dataset names
are in columns, feature spaces are in rows. Last row shows an average of
changes.

5.3.6 Number of Decision Trees

Here was confirmed what usually holds for RFC that higher the number of
estimators the better results are obtained. We are using 100 decision trees
due to the computational cost during RFC training, but when a performance
is not an issue, we suggest going to 200 even higher. All results are placed
in Appendix A.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +2.63% +2.85% +3.47% +2.37%

Colornames +3.81% +2.95% +8.44% +3.47%
C-co-occurence +1.91% +4.86% +5.68% +4.76%
I-co-occurence +1.69% +4.96% +6.34% +4.37%

LBP +10.91% +6.71% +12.67% +11.04%
HoG +10.54% +6.55% +10.05% +7.39%

An average +5.25% +4.81% +7.77% +5.57%

Table 5.7: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 100. . Dataset
names are in columns, feature spaces are in rows. Last row shows an average of
changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3

Moments +2.80% +2.98% +3.57% +2.44%
Colornames +4.17% +3.11% +9.05% +3.60%

C-co-occurence +1.94% +5.10% +6.04% +5.35%
I-co-occurence +1.77% +5.25% +6.73% +4.64%

LBP +11.88% +7.16% +14.36% +12.06%
HoG +11.84% +7.26% +11.09% +7.82%

An average +5.73% +5.14% +8.47% +5.98%

Table 5.8: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 200. . Dataset
names are in columns, feature spaces are in rows. Last row shows an average of
changes.

5.4 RFC Overall Setting

Based on the previous experiments we have decided to use RFC with the
following parameters: a node split criterion = entropy; max-f = 50%;
min-leaf = 3; n-trees 100; max-d = 10. Next we show the overall boost
of a classifier for single features (in Table 5.9) and a performance of single
feature set compared to mixture of all in Table 5.10.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +3.50% +2.48% +3.67% +2.64%

Colornames +3.64% +2.27% +7.84% +4.30%
C-co-occurence +4.51% +4.39% +4.81% +4.13%
I-co-occurence +3.78% +4.17% +5.54% +4.73%

LBP +12.20% +5.47% +9.67% +8.71%
HoG +11.91% +5.37% +8.60% +6.98%

An average +6.59% +4.02% +6.69% +5.25%

Table 5.9: Tuned RFC performance difference compared to default settings.

RFC tuned Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments 78.02% 67.11% 61.89% 84.22%

Colornames 77.77% 57.35% 68.36% 79.47%
C-co-occurence 89.01% 83.44% 80.59% 74.60%
I-co-occurence 91.05% 86.58% 79.15% 79.19%

LBP 55.71% 40.76% 41.63% 70.94%
HoG 55.67% 40.61% 40.58% 68.43%
All 89.53% 88.76% 84.20% 84.98%

Table 5.10: The overall comparison of tuned RFC on different feature
sets. The last row shows tuned RFC performance, when the combination of all
features was used.
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Chapter 6
Dataset

In the following text, we introduce four video sequences. We have created
a ground truth for all presented datasets. Ground truth is a set of (x, y)
coordinates for an identity in every frame. The creation process was based on
results of FERDA system - so the (x, y) coordinates are centroids of MSERs.
When identities were swapped, we have fixed it. During interaction, we have
combined the hand corrections with interpolation between provided positions.
At the end of the creation process, the ground truth was visually checked.

name #frames GT #objects #px FPS
Sowbug-3 4500 1-4500 5 407 29.93
Ants-1 4500 1-4500 6 775 15
Ants-3 156 504 1-4500 10 817 15
Zebrafish-1 15 000 1-5000 5 781 32.22

Table 6.1: Dataset overview. In column GT is the frame interval covered by
ground truth. In column #px is the average object pixel resolution.

6.1 Camera3

There are ten ants in a petri dish. This video has been acquired and kindly
made available by Barbara Casillas-Perez, Cremer Group, Institute of Science
and Technology Austria. This dataset has best pixel resolution per animal
amongst all our datasets (see Table 6.1. Difficulties may occur during seg-
mentation where an abdomen might be disconnected from the body due to
the thickness of waist.

Frame samples from this dataset are shown in Figure 6.1
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Figure 6.1: Camera3 dataset frame samples.

Figure 6.2: An interaction example sequence in dataset Ants-3.
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Figure 6.3: Cam1 dataset frame samples.

6.2 Cam1

This video has been acquired and kindly made available by Barbara Casillas-
Perez, Cremer Group, Institute of Science and Technology Austria. This
dataset is peculiar in that the ants have a color dots on their abdomens. This
color aid is quite frequent in biology applications mainly when biologists
need to measure some properties (e.g. amount of fungal spores, immune gene
expression) after an experiment.

Frame samples from this dataset are shown in Figure 6.3

6.3 Zebrafish

This is a public dataset available on idTracker [27] websites. There are five
zebrafish in a shallow aquarium.

One of the benefits of this video is that it tests the system’s adaptability
to morphological changes which are bigger compared to ants or bugs.

Frame samples from this dataset are shown in Figure 6.4
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Figure 6.4: Zebrafish dataset frame samples.

6.4 Sowbug3

Figure 6.5: Sowbug3 dataset frame samples.

There are five woodlouse (sowbugs) in a petri dish. This sequence is
interesting for three reasons. Firstly, it was recorded in an uncontrolled
environment. Thus the light conditions are not homogeneous. Secondly,
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FERDA was originally developed mainly for ant tracking purposes and thus,
we put to test the performance on an animal with distinct morphology and
motion behaviour than ants. Lastly, the object size is smaller than in other
datasets. This yields challenges for both the segmentation and ID assignment
steps and it serves as a validation process.

Due to the hand oclussion, petri dish movements and object absence in
the beginning and the end of a video, we are using only video crop. (Crop
starts around 27s and lasts for 150 seconds). The dataset was obtained from
YouTube [28]. Unfortunately, we were not successful in contacting the author
thus we are not publishing this sequence.

To allow others to replicate the same settings, we provide exact parameters
we used to cut the video:
ffmpeg -ss 26.9295021717 -t 150.3508185767 -i Sowbug3.mp4 -an
-vcodec rawvideo -async 1 Sowbug3-crop.avi

Frame samples from this dataset can be seen in Figure 6.5
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Chapter 7
Experiments

In this chapter, we show FERDA performance on different species: ants, fish
and bugs in comparison with idTracker, the current state of the art animal
tracking software.

7.1 ID-Classifier Comparison

In this experiment, the RFC tuned in section 5.3 on single feature sets was
tested on all features and compared with default RFC parameters and Nearest
Neighbor classifier used in idTracker. The NN was searched twice: for I-
co-occurrence matrix and for C-co-occurrence matrix. The metric for NN
was the mean of absolute values of per-pixel differences. If the NN ID for
Intensity and Contrast co-occurrence matrix disagreed, the decision was not
made. (This is how it is described in idTracker paper’s Supplementary Note
2.) The training and tests sets were obtained the same way as described
in section 5.3. The evaluation of each classifier was done ten times on each
dataset, and the accuracy was averaged. The results of this experiment are
shown in Table 7.1.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
NN 84.82% 70.18% 70.71% 77.47%

RFC default 88.03% 85.63% 78.75% 80.58%
RFC tuned 89.53% 88.76% 84.20% 84.98%

Table 7.1: Overall comparison of different classifier’s performance in ID-
Assignment task.

7.2 FERDA’s Overall Performance

In this experiment, the object trajectories provided by our system and id-
Tracker were compared with a Ground Truth (GT). The (x, y, ID) triplets
in each frame were matched to the nearest GT (x’, y’, ID’) triplet within
a radius of one-third of an average object body length. A permutation of
identities provided by GT onto those provided by the systems was sought
such that the number of correctly assigned IDs is maximized. The system

39



7. Experiments .....................................
accuracy is computed as the sum of correctly assigned IDs divided by the
number of all GT entries. The error is computed analogically. GT triplets
with no object body in the radius are considered unassigned.

IdTracker provides two possible kinds of output, either detected (x, y, ID)
triplets with raw position or, alternately, an augmented position interpolated
between two nearest tracklets (in idTracker terminology fragments) with the
same ID. We found that these interpolated results are imprecise mainly when
the tracklets frame distance is high. In our comparison, we are showing both
the basic and the interpolated results (in tables denoted as I).

7.2.1 With No Expert Annotations

These experiments were run with Expert Annotation turned off. The training
set for ID-Assignment is found using the following algorithm. All sets of
tracklets having at least one frame in common are found. If any of the
tracklets in such a set is classified other than Single-ID, then the set is
omitted; otherwise the set is characterized by the length of its shortest
tracklet. The set with maximum shortest tracklet length is picked as the
training set T . This training set is not augmented with new examples as
described in section 4.5, because when an inconsistency is detected, there is
no mechanism implemented to learn from own mistakes (but we think that
learning from mistakes is possible and it will be one of the topics for future
work).

Without ID-Consistency Rules

FERDA idTracker idTracker I

Ants-1
correct 59.66% 71.68% 95.95%
wrong 6.74% 0.32% 1.61%

unassigned 33.60% 28.01% 2.44%

Zebrafish-1
correct 96.92% 88.00% 94.02%
wrong 0.27% 0.63% 3.58%

unassigned 2.81% 11.36% 2.40%

Ants-3
correct 61.24% 82.38% 90.43%
wrong 25.60% 5.25% 5.80%

unassigned 13.17% 12.37% 3.77%

Sowbug-3
correct 56.22% 70.60% 76.06%
wrong 30.72% 15.28% 17.31%

unassigned 13.06% 14.12% 6.62%

Table 7.2: Results of tracking system performance on four datasets described in
chapter 6. The idTracker column is a regular idTracker output, idTracker I is
an output with provided interpolation.
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With ID-Consistency Rules

FERDA idTracker idTracker I

Ants-1
correct 59.50% 71.68% 95.95%
wrong 6.81% 0.32% 1.61%

unassigned 33.69% 28.01% 2.44%

Zebrafish-1
correct 96.92% 88.00% 94.02%
wrong 0.27% 0.63% 3.58%

unassigned 2.81% 11.36% 2.40%

Ants-3
correct 68.80% 82.38% 90.43%
wrong 19.04% 5.25% 5.80%

unassigned 12.17% 12.37% 3.77%

Sowbug-3
correct 70.30% 70.60% 76.06%
wrong 14.20% 15.28% 17.31%

unassigned 15.50% 14.12% 6.62%

Table 7.3: Results of tracking system performance on four datasets described in
chapter 6. The idTracker column is a regular idTracker output, idTracker I is
an output with provided interpolation.

7.2.2 With Expert Annotations

Here, we show what happens when an Expert is asked to add more data
to the training set. The training set T is obtained the same way as it was
described in the previous section. This usually means that the number of
region examples per ID differs as the provided tracklets vary in size. We
prompt the user for input until each tracklet consists of more than N regions.
Training set refilling is done in an iterative way...1. Choose the ID with the lowest number of examples n..2. If n > N exit, else go to 3..3. Order all tracklets in T that contain the chosen ID by time. Choose the

latest one...4. Play a video starting ten frames before the end of the chosen tracklet
(usually, the end is caused by an interaction)...5. Let the user control the player (e. g. framerate) to let them investigate
and find a tracklet that contains the same object, extending the original
tracklet...6. Update set T and go to 1.

The whole user interaction usually takes less than 5 seconds per tracklet.
In this experiment, we set N to one thousand regions per tracklet. As segmen-
tation difficulty and the layout of interactions varies in different sequences,
the number of needed annotations differs significantly. It was 1 for Sowbug-3
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7. Experiments .....................................
sequence, 48 for Ants-1, 30 for Ants-3 and 6 for Zebrafish. The results are
shown in Table 7.4 and in Figure 7.1, 7.2.

Figure 7.1: ID detection results on Sowbug-3, Ants-1, Ants-3, Zebrafish-1
datasets. Y axis labels identities, X axis labels frames. Top row - idTracker
(without interpolation), middle (thinner) row - ground truth, bottom row -
FERDA (with expert help during initialisation). Gray - ID unassigned.
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Figure 7.2: ID detection results on Sowbug-3, Ants-1, Ants-3, Zebrafish-1
datasets. Y axis labels identities, X axis labels frames. Top row - idTracker
(with interpolation), middle (thinner) row - ground truth, bottom row - FERDA
(with expert help during initialisation). Gray - ID unassigned.

FERDA idTracker idTracker I

Ants-1
correct 67.23% 71.68% 95.95%
wrong 1.57% 0.32% 1.61%

unassigned 31.20% 28.01% 2.44%

Zebrafish-1
correct 97.27% 88.00% 94.02%
wrong 0.00% 0.63% 3.58%

unassigned 2.73% 11.36% 2.40%

Ants-3
correct 87.80% 82.38% 90.43%
wrong 0.78% 5.25% 5.80%

unassigned 11.42% 12.37% 3.77%

Sowbug-3
correct 71.58% 70.60% 76.06%
wrong 13.67% 15.28% 17.31%

unassigned 14.74% 14.12% 6.62%

Table 7.4: Results of tracking system performance on four datasets described
in chapter 6. The idTracker column is a regular idTracker output, idTracker I
is an output with provided interpolation. FERDA was provided with expert
annotations. There were 1 for Sowbug-3 sequence, 48 for Ants-1, 30 for Ants-3
and 6 for Zebrafish.
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7.3 Results Discussion

To understand the results, we need to explain the differences between the
observed systems. IdTracker is equipped with an approach which tries to
solve interactions by applying morphological operations (erosion and dilation)
on over-segmented regions. this leads to longer tracklets which in turn leads
to higher accuracy due to the higher number of ID-Assigned regions.
IdTracker obtains the training set in a smart way using the idea of ID-

Consistency rules. It finds all the places where animals are separated. This
provides it with several sets of tracklets, where all IDs are present. Then it
fixes one such set as the training set and tries to find an ID permutation for
all others, and estimates the probability of such permutation. Then, it takes
all sets matched with the training set with high probability and adds these
tracklets to the training set.

The last significant difference is that idTracker is not using all regions
for training and classification but it has a metric for picking good ones.
That might be the reason for FERDA’s poor performance on Cam1 dataset,
where the ants are climbing on the walls of Petri dish quite often, completely
changing their appearance.

The presented results show that when FERDA is provided with a larger
training set, it can outperform idTracker.
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Chapter 8
Implementation Details

Although the system works on various species, the primary focus on ants also
affected the name pick. Ferda is a main ant character in Ondřej Sekora’s fairy
tales from the world of insect. These fairy tales were quite popular during an
author’s childhood in the Czech Republic. Apart from that, it is an acronym
for Fast Extremal Region Detector of Ants.

During the FERDA system development, we have been cooperating and
discussing a lot with Barbara Casillas-Perez (Cremer Group) from Institute
of Science and Technology Austria. Their main focus is on individual and
colony-level antipathogen defenses in ants. This fruitful partnership gave us
an opportunity to see the problem from the side of a target user. This led us
to develop many tools to allow easier algorithm analysis, debugging and even
data storing.

Along with our collaboration partners we have developed utilities to par-
allelize the most computationally demanding FERDA tasks in a cluster
running gridEngine, as well integration with matlab post-processing pipeline,
compatible with Ctrax output (which allow for further JAABA analysis).

Language files blank comment code
Python 312 13503 9083 106557
C++ 3 194 447 2711
XML 7 0 0 1691
TEX 28 4 3 668

Cython 2 37 13 86
Markdown 3 14 0 72

Bourne Shell 1 7 4 34
C/C++ Header 1 5 2 21

SUM 357 13764 9552 111840

Table 8.1: A statistics of FERDA project showing the comprehensiveness of this
work. It descirbes the number of lines except for the files column, describing
number of files in given languge.

The method implementation and most of the supporting codes and exper-
iments were implemented in Python 2.7. Several great libraries were used:
OpenCV [29] and Scikit-Image [30] for image processing; scikit-learn [30] for
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8. Implementation Details ................................
machine learning algorithms; PuLP [31] for Linear Programming optimisa-
tion; NumPy [32] as an linear algebra toolkit; Matplotlib [33] for plotting and
visualisations; graph-tool [34] for efficient graph representation and manipula-
tions and PyQt [35] the python wrapper for Qt [36] library for graphical user
interface implementation.

The software is compatible with all desktop platforms (Linux, Mac OS X,
Windows).

The method and the implementation were designed with an emphasis on
modularity and generality which makes it easier to tune particular parts or
to replace them with more specialized ones based on the problem domain it
is used for.

8.1 Video Compression

One of the problems we have faced was the space consumption of many hours
of video sequences capturing the experiments. There is a compromise between
space consumption and the video quality. We have designed a solution which
processes the video and creates two video files. First one is highly compressed
and serves as a backup. The quality of an original video is preserved in the
second file. The size reduction is achieved by replacing non-interesting parts
of the frame with constant color (e.g. white or black, depending on the color
of objects). When a sequence is modified in this way, current video codecs
do the rest of the work. Our system can handle single video input or a pair
of videos. In the second case, the frame is reconstructed by replacing the
constant background with pixels from the low-quality video. In practice,
this approach achieves size reduction by a factor of 10-15 while maintaining
the same video quality. This method is applicable even for real-time video
compression during an experiment recording.

8.2 Graph Viewer

Graph Viewer is one of the key tools for viewing a current state of a graph.
It is useful not only for a programmer, but also for a user. A sophisticated
algorithm for positioning of nodes (regions) provides neat and concise overview
of the situation in the whole sequence and fast rendering libraries make it
possible to change the visualisation in negligible time.
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This tool was implemented and tested by Šimon Mandlík.

Figure 8.1: A screenshot from FERDA-graph-viewer tool implemented by Šimon
Mandlík depicting a progress of tracklet creation. The edge color visualizes the
likelihood of full ID-Set transfer starting with red (not likely) continues through
yellow to green (very likely).)

8.3 Results Viewer

A results viewer is a complex tool allowing a user to go through the video
sequence, visualize and even correct tracking results. It is used for expert
annotations. It has a capability for position Ground Truth creation from
scratch or on top of the results. It provides tools for comparison and visual-
ization of other tracking systems. Search based on region or tracklet ids is
possible. Thus it is very useful during the debugging process.
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Figure 8.2: A screenshot from FERDA-results-viewer tool. In the middle part,
there is a video player with results showed. P and N ID-Sets are visualized by
stripes with squares. Where color describes an ID. When it is crossed, it is in N
set, when enhanced it is in P set. When segmentation color is dotted it does not
represent object ID but tracklet id. Belov is the video player and visualization
control panel. In the left part, controls for GT creation, other system’s results
from visualisation and comparison and debugging tool are situated.

8.4 RFC Segmentation Tool

When preprocessing the images, we use random forest classifier (RFC) which
requires following features to classify each pixel:. Features 1 to 4 include basic color channels (RGB) and grayscale data. Feature 5 detects edges using canny edge detector. Features 6-8 attempt to highlight and eliminate delicate but undesirable

shapes, such as antennas and legs, by subtracting neighboring pixels of
a grayscale image.. Feature 9 aims at the same goal, computing average grayscale value
expected on each pixel based on neighboring pixel values.. Features 10-12 compute differences of each pair of color channels. Features 13-14 find the greatest/smallest neigbor value for each pixel in
a grayscale image

Segmentation tool improves it’s results by computing features on different
scales using multiscale image pyramid. All of the features are computed on
D images, where D is the depth of multiscale pyramid (number of downscales
for the image). This helps when working with animals of various sizes and
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h

Figure 8.3: Example of RFC, per pixel classification outputs. Squares show user
input marks, green represents foreground and purple represents background - legs
and antennas are to be ignored in this case. Light green is the output probability
map computed by RFC. Orange color shows resulting MSER contours, computed
on probability map.

provides us with Dx14 features. The RFC classifier is then trained. Since
computing large amount of features for each video frame would be time
consuming, insignificant features (with RFC importance lower than certain
threshold) are removed from the training set, the RFC is re-trained and
reduced feature subset is used in subsequent computations. On Ants-1 and
Ants-3 datasets, only 6-8 features on different scales proved useful to RFC,
however, providing more features and scales can help when working with
various datasets. The feature set is not final and might be further extended
and modified to respond to new challenges. Visualisation of RFC segmentation
output can be seen in Figure 8.3

This tool was implemented and tested by Dita Hollmannová.
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Chapter 9
Conclusion

In this thesis, we have described a Multi-Object Tracking method for animal
surveillance in biological experiments where the subjects are nearly indistin-
guishable by human eye. The method processes a video sequence and returns
positions of subjects in each frame. On top of such output, a behavior analysis
using specialized tools like JAABA can be performed. Using segmentation,
the input is transformed into a set of regions represented by a graph with
vertices representing regions and edges connecting regions in consecutive
frames. Then the K-(almost)-disjoint path search is designed as a labelling
problem.

The identity confusion during object interactions where occlusion occurs
was addressed by ID assignment once the interaction ends. We have enhanced
current state-of-the-art classifier for ID assignment and we have shown that it
improves the performance for per region classification by 4.5%–18% (Table 7.1).
Furthermore, we have supported the ID assignment with a set of consistency
rules, which in most cases reduces the possible search space and improves
the ID assignment reliability. We have also added an option for the user to
provide an annotation when an ID assignment violates the ID consistency
rules (ICR) or when the ID assignment certainty drops bellow given threshold.

The overall system performance was evaluated in three different settings
on four different datasets (ants with a small color mark on the abdomen, ants
without any tagging, sowbugs and zebrafish) and compared with the current
state-of-the-art method idTracker.

The system development was discussed with Barbara Casillas-Perez, Cremer
Group, Institute of Science and Technology Austria. Who is currently using
our tool (without ID detection) for gathering global statistics from experiments
on colony-level antipathogen defenses in ants and in these days, the testing
phase of ID assignment on their experiments is running. For these purposes,
a Graphical User Interface was implemented.

9.1 Future Work

The drawbacks of the current approach with ICR are in the hard decisions
made. Its strength is a double-edged sword and once a wrong decision is
made, it affects other tracklets. In future work we want to relax this by
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9. Conclusion......................................
expressing ICR with probabilities based on the tracklet lengths as the short
tracklet classification are more prone to an error in ID assignment. The next
thing we want to do is a deeper examination of ID inconsistency detections
and automatic deduction of constraints.
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Appendix A
RFC Tuning Results

The results of Random Forest Classifier tuning as described insection 5.3

A.0.1 Max Depth of a Decision Tree

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -4.15% -1.61% -3.03% -2.73%

Colornames -2.02% +0.02% -6.74% -3.44%
C-co-occurence -0.17% -0.93% -1.21% -1.67%
I-co-occurence -0.26% -5.57% -3.52% -4.57%

LBP -2.56% -0.22% -0.81% -2.05%
HoG -2.02% -0.22% -2.16% -2.60%

An average -1.86% -1.42% -2.91% -2.84%

Table A.1: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-d = 5. . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.20% +0.52% +0.09% +0.18%

Colornames -0.17% +0.08% +0.45% -0.03%
C-co-occurence 0.00% +0.01% 0.00% +0.12%
I-co-occurence 0.00% -0.03% 0.00% +0.12%

LBP +0.26% +0.29% -0.23% +0.06%
HoG +0.18% +0.41% +0.08% -0.17%

An average +0.01% +0.21% +0.07% +0.05%

Table A.2: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change:max-d = 10. . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3

Moments 0.00% +0.15% 0.00% -0.01%
Colornames 0.00% +0.03% +0.12% -0.07%

C-co-occurence 0.00% 0.00% 0.00% 0.00%
I-co-occurence 0.00% 0.00% 0.00% 0.00%

LBP 0.00% -0.03% +0.01% 0.00%
HoG 0.00% +0.03% 0.00% +0.01%

An average 0.00% +0.03% +0.02% -0.01%

Table A.3: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change:max-d = 15. . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

A.1 Min Samples In a Leaf

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.13% +0.45% -0.15% -0.51%

Colornames -0.08% +0.16% +0.61% -0.43%
C-co-occurence -0.13% +0.31% +0.28% +0.55%
I-co-occurence -0.09% -0.14% -0.15% +0.06%

LBP +1.13% +0.58% +0.65% +0.27%
HoG +0.95% +0.47% +0.60% -0.04%

An average +0.28% +0.30% +0.31% -0.01%

Table A.4: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: min-leaf = 2 . Dataset names
are in columns, feature spaces are in rows. Last row shows an average of
changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.48% +0.84% -0.30% -0.75%

Colornames -0.87% +0.41% +0.46% -0.32%
C-co-occurence -0.26% +0.58% +0.05% +0.18%
I-co-occurence -0.08% -0.13% -0.14% +0.06%

LBP +1.06% +0.98% +0.77% +0.86%
HoG +1.29% +0.77% +0.57% +0.23%

An average +0.11% +0.58% +0.24% +0.04%

Table A.5: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: min-leaf = 3. . Dataset
names are in columns, feature spaces are in rows. Last row shows an average of
changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -2.42% +1.09% -1.16% -2.07%

Colornames -1.24% +0.54% -0.50% -1.40%
C-co-occurence -0.59% +0.61% -0.13% +0.25%
I-co-occurence -0.46% -0.02% -1.02% -0.21%

LBP -0.36% +1.03% +1.26% +0.59%
HoG -0.07% +0.99% -0.13% -0.35%

An average -0.86% +0.71% -0.28% -0.53%

Table A.6: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: min-leaf = 5 . Dataset names
are in columns, feature spaces are in rows. Last row shows an average of
changes.

A.1.1 Max Features

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -3.62% -2.27% -6.73% -2.49%

Colornames -3.83% -0.93% -1.75% -0.34%
C-co-occurence +0.76% -0.10% +0.04% +1.46%
I-co-occurence +0.80% +0.42% +0.61% +0.84%

LBP -1.90% -1.02% -2.50% -1.58%
HoG -1.73% -1.17% -1.49% -1.46%

An average -1.59% -0.84% -1.97% -0.59%

Table A.7: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-f = 10 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -1.38% -0.77% -0.61% -0.53%

Colornames -1.88% -0.32% -0.01% -0.29%
C-co-occurence +0.44% -0.07% +0.33% +0.52%
I-co-occurence +0.48% -0.15% +0.44% +0.54%

LBP -0.37% -0.51% -1.29% -0.69%
HoG -0.66% -0.36% -0.88% -0.40%

An average -0.56% -0.36% -0.34% -0.14%

Table A.8: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-f = 20 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3

Moments -0.60% -0.25% -0.14% -0.37%
Colornames +0.10% -0.20% +0.35% +0.10%

C-co-occurence +0.50% +0.18% -0.04% +0.26%
I-co-occurence +0.29% +0.17% +0.30% +0.22%

LBP -0.25% +0.05% -1.17% -0.53%
HoG -0.32% -0.06% +0.13% -0.22%

An average -0.05% -0.02% -0.09% -0.09%

Table A.9: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-f = 30 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.36% +0.15% +0.13% -0.07%

Colornames -0.13% -0.10% +0.34% +0.10%
C-co-occurence +0.04% -0.01% +0.07% +0.26%
I-co-occurence -0.16% -0.04% -0.10% +0.27%

LBP +0.43% -0.15% -0.78% -0.43%
HoG +0.02% +0.05% -0.21% -0.33%

An average -0.03% -0.02% -0.09% -0.03%

Table A.10: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change:max-f = 40. . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +0.07% +0.11% +0.41% -0.40%

Colornames -0.26% -0.29% +0.14% -0.04%
C-co-occurence +0.06% -0.00% -0.09% -0.05%
I-co-occurence -0.14% -0.18% -0.24% -0.07%

LBP +0.23% +0.28% -0.05% -0.09%
HoG +0.41% +0.30% +0.39% +0.01%

An average +0.06% +0.04% +0.09% -0.11%

Table A.11: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change:max-f = 60. . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +0.01% +0.21% +0.25% -0.65%

Colornames -0.05% -0.12% -0.01% -0.65%
C-co-occurence -0.10% -0.07% -0.44% -0.11%
I-co-occurence -0.38% -0.65% -0.32% +0.15%

LBP +0.36% +0.17% -0.26% -0.01%
HoG +0.37% +0.02% +0.33% -0.50%

An average +0.04% -0.07% -0.07% -0.30%

Table A.12: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-f = 70 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +0.07% +0.24% +0.07% -0.50%

Colornames +0.28% -0.29% -0.31% -0.56%
C-co-occurence -0.27% -0.13% -0.86% -0.73%
I-co-occurence -0.41% -0.46% -0.72% -0.48%

LBP +1.03% +0.09% -0.44% -0.17%
HoG +0.31% +0.24% +0.23% +0.03%

An average +0.17% -0.05% -0.34% -0.40%

Table A.13: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-f = 80 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments -0.61% +0.34% +0.00% -0.69%

Colornames -0.06% -0.52% -0.98% -1.03%
C-co-occurence -0.40% -0.23% -0.58% -0.88%
I-co-occurence -0.55% -0.55% -0.77% -0.17%

LBP +1.10% +0.25% -0.02% +0.19%
HoG +0.52% +0.29% -0.02% -0.61%

An average +0.00% -0.07% -0.39% -0.53%

Table A.14: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change:max-f = 100 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3

Moments -1.38% -0.77% -0.33% -0.51%
Colornames -4.24% -1.39% -3.25% -0.95%

C-co-occurence +0.54% -2.77% -1.09% +1.22%
I-co-occurence +1.09% -1.05% +0.44% +0.55%

LBP -1.06% -0.54% -3.74% -2.45%
HoG -1.36% -0.53% -0.65% -0.77%

An average -1.07% -1.17% -1.44% -0.49%

Table A.15: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: max-f =

√
f , where f is the

numbef of features . Dataset names are in columns, feature spaces are in rows.
Last row shows an average of changes.

A.1.2 Number of Decision Trees

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +1.61% +1.46% +2.00% +1.26%

Colornames +2.49% +1.51% +4.52% +1.61%
C-co-occurence +0.96% +2.61% +3.01% +2.66%
I-co-occurence +1.16% +2.47% +3.04% +1.96%

LBP +5.69% +2.57% +3.91% +5.08%
HoG +4.44% +2.85% +4.34% +3.11%

An average +2.72% +2.24% +3.47% +2.61%

Table A.16: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 20 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +1.87% +1.98% +2.40% +1.39%

Colornames +2.84% +2.09% +5.89% +2.70%
C-co-occurence +1.17% +3.73% +3.75% +3.48%
I-co-occurence +1.38% +3.49% +4.56% +2.90%

LBP +6.98% +4.00% +6.59% +7.30%
HoG +6.49% +3.96% +6.26% +5.33%

An average +3.45% +3.21% +4.91% +3.85%

Table A.17: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 30 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +1.91% +2.35% +2.67% +1.78%

Colornames +2.87% +2.24% +6.62% +2.71%
C-co-occurence +1.67% +3.91% +4.68% +3.77%
I-co-occurence +1.52% +3.91% +5.15% +3.38%

LBP +8.94% +4.82% +8.28% +8.94%
HoG +8.05% +4.83% +7.34% +5.89%

An average +4.16% +3.68% +5.79% +4.41%

Table A.18: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 40 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +2.31% +2.48% +3.05% +2.14%

Colornames +3.53% +2.55% +7.36% +3.05%
C-co-occurence +1.62% +4.23% +5.11% +4.06%
I-co-occurence +1.65% +3.99% +5.35% +3.29%

LBP +8.97% +5.18% +9.49% +9.44%
HoG +9.09% +5.41% +8.23% +6.20%

An average +4.53% +3.97% +6.43% +4.70%

Table A.19: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 50 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +2.20% +2.64% +3.14% +2.04%

Colornames +3.77% +2.77% +7.90% +3.47%
C-co-occurence +1.75% +4.59% +5.37% +4.60%
I-co-occurence +1.74% +4.74% +6.08% +3.93%

LBP +10.34% +6.12% +11.00% +10.53%
HoG +10.07% +6.03% +9.04% +6.90%

An average +4.98% +4.48% +7.09% +5.24%

Table A.20: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 75 . Dataset names are
in columns, feature spaces are in rows. Last row shows an average of changes.
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Ants-1 Zebrafish-1 Ants-3 Sowbug-3

Moments +2.63% +2.85% +3.47% +2.37%
Colornames +3.81% +2.95% +8.44% +3.47%

C-co-occurence +1.91% +4.86% +5.68% +4.76%
I-co-occurence +1.69% +4.96% +6.34% +4.37%

LBP +10.91% +6.71% +12.67% +11.04%
HoG +10.54% +6.55% +10.05% +7.39%

An average +5.25% +4.81% +7.77% +5.57%

Table A.21: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 100. . Dataset
names are in columns, feature spaces are in rows. Last row shows an average of
changes.

Ants-1 Zebrafish-1 Ants-3 Sowbug-3
Moments +2.80% +2.98% +3.57% +2.44%

Colornames +4.17% +3.11% +9.05% +3.60%
C-co-occurence +1.94% +5.10% +6.04% +5.35%
I-co-occurence +1.77% +5.25% +6.73% +4.64%

LBP +11.88% +7.16% +14.36% +12.06%
HoG +11.84% +7.26% +11.09% +7.82%

An average +5.73% +5.14% +8.47% +5.98%

Table A.22: The change in Random Forest Classifier performance w.r.t. the
default setting in Table 5.1. Parameter change: n-trees = 200. . Dataset
names are in columns, feature spaces are in rows. Last row shows an average of
changes.
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Appendix B
Tracker Comparison Diagrams

Figure B.1: ID detection results on Sowbug-3, Ants-1, Ants-3, Zebrafish-1
datasets. Y axis labels identities, X axis labels frames. Top row - idTracker
(with interpolation), middle (thinner) row - ground truth, bottom row - FERDA
(without ID-Consistency Rules and without expert annotations). Gray
- ID unassigned.
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Figure B.2: ID detection results on Sowbug-3, Ants-1, Ants-3, Zebrafish-1
datasets. Y axis labels identities, X axis labels frames. Top row - idTracker
(without interpolation), middle (thinner) row - ground truth, bottom row -
FERDA (without ID-Consistency Rules and without expert annota-
tions). Gray - ID unassigned.
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..............................B. Tracker Comparison Diagrams

Figure B.3: ID detection results on Sowbug-3, Ants-1, Ants-3, Zebrafish-1
datasets. Y axis labels identities, X axis labels frames. Top row - idTracker
(with interpolation), middle (thinner) row - ground truth, bottom row - FERDA
(without expert annotations). Gray - ID unassigned.
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Figure B.4: ID detection results on Sowbug-3, Ants-1, Ants-3, Zebrafish-1
datasets. Y axis labels identities, X axis labels frames. Top row - idTracker
(without interpolation), middle (thinner) row - ground truth, bottom row -
FERDA (without expert annotations). Gray - ID unassigned.
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