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Abstract

Given thesis deals with the problematic of time series analysis and forecasting. The aim

of thesis is to survey an existing time series forecasting methods, including necessary data

preprocessing steps. There are selected three promising forecasting methods, including

ARIMA method, artificial neural networks method and double exponential smoothing

method.

There are also selected three real life datasets from different areas. Individual fore-

casting models have been implemented for each dataset, in MATLAB programming

environment. In practical part of thesis, there are demonstrated results of performed

experiments, including dependency between forecasting accuracy and the size of training

set.

At the end of the thesis, there are results summary and further improvements are dis-

cussed.

Abstrakt

Diplomová práce se věnuje problematice analýzy a prognózováni časových řad. Ćılem

práce je prozkoumat existuj́ıćı metody prognózováni časových řad, včetně potřebných

krok̊u předzpracováńı dat. Jsou vybrané tři slibné metody prognózováni, včetně ARIMA,

metody prognózováni pomoci Neuronových śıti a metody dvojitého exponenciálńıho vy-

rovnáńı.

Dále jsou vybrané tři datové sady z praxe, pro které byli v programovém prostřed́ı

MATLAB implementované jednotlivé modely prognózováni. V praktické čast́ı práce jsou

demonstrované výsledky jednotlivých experiment̊u, včetně výkonu jednotlivých metod

v závislosti na rozměru tzv. ”trénovaćı sady” dat.

V závěru práce je provedené zhodnoceni výsledku a jsou uvedené perspektivy pro daľśı

vylepšeni kvality predikce.
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Chapter 1

Introduction

The word ”prediction” originates from a Latin statement ”praedicere”, which was orig-

inally denoted by meanings ”to say beforehand” or ”to mention in advance”. Today,

”prediction” is usually referred to some kind of message or opinion about an event that

is expected to happen in future. Inside the more formal science context, the process of

making predictions about future by using scientific methods is usually denoted by term

”forecasting”. Processes that are usually required to be forecasted, are the most often

stored in a so called time series format. [1]

Time series is a common mathematical expression that can be frequently observed in

various texts about statistics, signal processing or econometrics. Every day, newspapers

contain business sections, which report daily stock prices, foreign currency exchange

rates or monthly rates of unemployment. Meteorology records usually consists of hourly

wind speeds, daily maximum and minimum temperatures or annual rainfall. Geophysics

are continuously observing processes like shaking or trembling of the earth, in order to

predict possibly impending earthquakes. All these and certainly many other examples

could be mentioned to describe the role of time series in our society. [2]

1.1 Aims of the Thesis

Today, there is plenty of various forecasting methods and each of them requires the

corresponding conditions and proper data preprocessing. Performing a research in the

given problematic, it can be observed, that the autoregressive methods and exponential

smoothing belong to the most frequently used forecasting methods. Additionally, an

Artificial intelligence, especially artificial neural networks demonstrate a great success

with the assigned tasks, including the time series forecasting.

2



Introduction 3

Qualitative forecasting is not an easy task. In connection with this, usability and the

added value of the given thesis for the potentially interested reader is based on the

implementation of the following aims:

1. Presentation of extensive and important information in the area of time series

analysis and forecasting.

2. Introduction to time series forecasting methods and the corresponding data pre-

processing.

3. Implementation of exemplary forecasting models by using Artificial neural net-

works and traditional statistical forecasting methods.

4. Demonstration of appropriate data preprocessing and the effectiveness of each

forecasting model in the work over datasets from various potential sectors.

5. Comparison of results and recommendations about further improvements.



Chapter 2

Time Series Analysis

2.1 Introduction to Time Series

The term ”time series” itself, denotes a data storing format, which consists of the two

mandatory components - time units and the corresponding value assigned for the given

time unit. Values of the series need to denote the same meaning and correlate among

the nearby values. Restriction is, that at the same time there can be at most one value

for each time unit. For example, sequences, which just enumerate some values, they do

not fulfill the time series requirements. Figure 2.1 demonstrates oil prices progress over

last 30 years, a typical example of time series.

Figure 2.1: Oil prices

4
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In theory, there are two fundamental ways, how time series data are recorded. The first

way, values are measured just for the specific timestamps, what may occur periodically,

or occasionally according to concrete conditions, but anyway, result will be a discrete set

of values, formally called discrete time series. This is very common case and frequently

observed in practice. In economy sector, most of the indicators are measured periodi-

cally with the specific periods, therefore economic indicators represent an appropriate

example of discrete time series. Figure 2.2 demonstrates example of discrete time series,

GDP progress of Czech Republic, over the last 40 years.

Figure 2.2: GDP progress of Czech Republic

The second option, data are measured and recorded continuously along the time inter-

vals. Electrical signals from sensors, earth shakings, various indicators from medicine,

like ECG, or many other scientific sensors, they all represent a continuous measurement

of corresponding physical quantity. This kind of processes produces a continuous time

series. Figure 2.3 demonstrates a seismogram from station HAWA (Hanford, Washing-

ton, USA), example of continuous time series.
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Figure 2.3: Seismogram from HAWA station (Hanford, Washington, USA)

Despite the fact, that many scientific processes produce continuous time series data,

numerical approach of computer systems allows to store data only as the discrete values.

Thus all further forecasting methods performed on computer, assume test data in the

discrete values form.

2.2 Time Series Types Classification

There are many various time series classifications based on specific criteria. The most

significant dependencies are: length of the time step, memory and stationarity.

Depending on the distance between recorded values, time series data are classified into:

• equidistant time series

• non-equidistant time series

Equidistant time series are formed, when its values are recorded periodically with a

constant period length. A lot of physical or environmental processes are described by

this kind of time series. Non-equidistant time series are those time series, which do

not keep the constant distance between observations. Econometric indicators, like stock

prices are not necessary performed within regular time intervals, they are regulated by a

concrete supply and demand rates on the specific market. Therefore, this kind of series

suitably demonstrates a non-equidistant time series example.
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According to the rate of dependency between newly observed values and its predecessors,

time series are divided into:

• long memory time series

• short memory time series

Time series with long memory are those, for which the autocorrelation function decreases

slowly. [1] This kind of time series usually describes processes, which don’t have fast

turnovers. Traffic congestion, electric energy consumption, different physical or meteo-

rological indicators, like air temperature measurements, all these processes are usually

described by long memory time series. Short memory time series are those, for which

autocorrelation function is decreasing more rapidly. Typical examples contain processes

from the econometric sector.

Another classification of time series is based on their stationarity:

• stationary time series

• non-stationary time series

Stationary time series are time series, for which statistical properties like mean value

or variance, are constant over time. These time series stay in relative equilibrium in

relation to its corresponding mean values. Other time series belong to non-stationary

time series. In industry, trading or economy, time series more frequently belongs to the

non-stationary category. In order to deal with the forecasting task, non-stationary time

series are usually transformed to the stationary ones, by the appropriate preprocessing

methods.

2.3 Aims of Time Series Analysis

Time series analysis unites a group of methods for work with time series data, in order

to extract the potentially useful information. There are two main goals of time series

analysis:

1. Determination of the time series behavior - Identification of the important param-

eters and characteristics, which adequately describe the time series behavior.

2. Time series forecasting - Forecasting the future values of the time series, depending

on its actual and past values.



Time Series Analysis 8

Both of these goals require the time series model identification. As soon as the model

is indentified, it can be exploited to interpret the time series behavior, for example, to

understand the seasonal changes of the commodity prices. The model can also be used

to extrapolate the time series, i.e. to forecast its future values.

2.4 Time series components

Usually, the most of analysis methods assume, that time series data contains the sys-

tematic component (typically comprising several components) and random noise (er-

ror), which complicates detection of the regular components. Therefore, the majority

of methods, includes different noise filtration methods, in order to detect the regular

components, or it has to performed during data preprocessing.

The most of the regular components belongs to two main classes. They belong to either

a trend or seasonal component. The trend is a general systematic linear or non-linear

component, which may change over time. Seasonal component is periodically repeating

component. Both these types of regular components are usually presented in the time

series simultaneously. For example, sales may increase from year to year, but there is

a seasonal component, which reflects the significant growth of sales in December and a

drop in August.

This model can be demonstrated on the series representing the monthly international

airline passenger counts from 1949 to 1960. The graph of monthly passenger counts

clearly demonstrates almost linear trend, i.e. stable increase from year to year (the

number of transported passengers in 1960 is four times greater, than in 1949). In the

same time, the progress of monthly rates within one year is repeating, and is similar from

year to year (for example, the rate of passengers is higher in the periods of holidays).
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Figure 2.4: Monthly international airline passenger counts from 1949 to 1960

It has been already mentioned, that general model of time series usually contains several

components: trend component T (t), seasonal component S(t), random noise component

R(t), and sometimes there is additionally mentioned a cyclical component C(t). The

difference between cyclical and seasonal components is, that seasonal components repre-

sents a regular seasonal periodicity, while cyclical component has a longer lasting effect

and may vary from cycle to cycle. Very often, cyclical component is integrated into one

trend component T (t). Figure 2.5 demonstrate an example of time series decomposition.
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Figure 2.5: Time series components

Now, it is important to describe, how this components mathematically interact together,

in order to compose a time series. The concrete functional relationships between the

components may vary for different series. However, there are two main models, how

they interact to each other:

• Additive model

Z(t) = T (t) + C(t) + S(t) +R(t) (2.1)

• Multiplicative model

Z(t) = T (t)× C(t)× S(t)×R(t) (2.2)

Main difference between these two models may be observed in a growth rate. Previously

mentioned example of monthly airline passenger counts, demonstrates a typical multi-

plicative model, where the amplitude of seasonal changes increases with the trend. The

growths of the trend or seasonal components may be expressed in percentage (multi-

plicative model) or in absolute values (additive model). [2] [3]
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2.5 Autocorrelation and Partial Autocorrelation

Dependencies between the actual and historical values represent a fundamental principle

of time series forecasting. It can be easily observed, that each value of the series is very

similar to its neighboring values. Additionally, time series contain a seasonal component,

what means, that each value is also dependent on the values of identical time, but one

season ago. Formally, any statistical dependency between two entities is denoted as a

correlation, and is expressed by a corresponding coefficient.

2.5.1 Autocorrelation function

Autocorrelation function calculates the correlations between the time series and its

shifted copies at different points in time. The autocorrelations are usually calculated

for the specific range of lags (shifts) and are expressed in the form of graph, called

correlogram (Figure 2.6). Investigation of autocorrelations, enables to detect important

dependencies in time series data. [4]

2.5.2 Partial Autocorrelation function

Sometimes it can happen, that the first value is heavily dependent on the second value,

the second value is heavily dependent on the third value and therefore the first value is

also dependent on the third, and so on. This causes, that significant dependencies can

be not found on the graph of autocorrelation function. Partial autocorrelation function

is another important tool. It is a modification of autocorrelation function, which allows

to eliminate the described problem.

Figure 2.6 demonstrates results of autocorrelation function and partial autocorrelation

function for the time series data from the previous section (Monthly international airline

passenger counts from 1949 to 1960).



Time Series Analysis 12

0 2 4 6 8 10 12 14 16 18 20

Lag

-0.5

0

0.5

1

S
am

pl
e 

A
ut

oc
or

re
la

tio
n Sample Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

-1

-0.5

0

0.5

1

S
am

pl
e 

P
ar

tia
l A

ut
oc

or
re

la
tio

ns

Sample Partial Autocorrelation Function

Figure 2.6: ACF and PACF of monthly airline passenger counts

2.6 Time series forecasting

Time series forecasting belongs to most important analysis methods, performed over the

time series data. General idea is based on the fact, that information about the past

events can be effectively exploited to create predictions about the future events. From

the point of view of the time series data, this means, that forecasting models use already

measured values to predict future values before they are observed.

When talking about the time series forecasting, it is necessary to emphasize the impor-

tance of distinction between two terms, ”forecasting methods” and ”forecasting models”.

Despite the fact, that both these terms have precisely specified meaning, in practice, they

are often used mistakenly with the mixed meanings.

• Forecasting method – Denotes an algorithmic sequence of actions, that are neces-

sary to perform, in order to obtain the time series forecasting model. Additionally,

forecasting methods determines the way of quality assessment measurements.

• Forecasting model – Denotes a functional representation, that adequately describes

a time series. On the basis of this forecasting model, future values of the time series

are forecasted.
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There are two main ways, how the time series forecasting tasks are defined. The first

option is based on the computations, that use only the past values of the same time

series, in order to predict the values in future. The second option allows to use not only

the past values of the same time series, but also another external factors in addition, that

can be useful for forecasting. In these cases, external factors are very often presented as

another time series. Time series of the external factors are not obliged to have the same

time step intervals, as the original time series data. Therefore, additional steps must be

taken, in order to deal with this problem. It is also expected, that the external factors

should have some influence on the original time series progress. For example, an intuitive

external factors of energy consumption could be various meteorological indicators, like

air temperature or air humidity.

2.6.1 Forecasting without external factors

Time series forecasting without external factors. If the observations of some stochastic

process are available at discrete units of time t = {1, 2, . . . , T} , then the sequence of

values Z(t) = {Z(i) | i ∈ T} = {Z(1), Z(2), ..., Z(T )} is denoted as a time series.

Let’s assume that at the moment of time unit − T , it is necessary to make a forecast of

− l future values of the given process Z(t). In other words, it is needed to determine the

most probable future values for each of the time units {T + 1, . . . T + l}. Time unit − T

is a moment when the forecast is performed, it is usually named by term ”origin”. The

parameter − l is denoted as a ”leadtime”, it represents the number of future values

that are going to be predicted.

In order to calculate the time series values at future time units, it is necessary to de-

termine functional dependency that describes a relationship between past and future

values of the given time series. The forecast is based on − k past values, denoted as

an input vector ZT . As a result, the vector of − l future predictions will be obtained,

denoted as an output vector ẐT . All predicted values Ẑ(i) will be marked with sign ˆ

in order to label them as predictions, not the real values.

ZT =



Z(T )

Z(T − 1)

Z(T − 2)
...

Z(T − k)


ẐT =


Ẑ(T + 1)

Ẑ(T + 2)
...

Ẑ(T + l)

 (2.3)

f(ZT ) = ẐT (2.4)
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The functional dependency (2.2) is usually denoted as forecast function and it represents

the forecast model. The intuitive aim is to find the forecast function such that the

deviations between predicted values and actual values, that will be observed later in

future, are as small as possible.

εT =


Z(T + 1)

Z(T + 2)
...

Z(T + l)

−


Ẑ(T + 1)

Ẑ(T + 2)
...

Ẑ(T + l)

 (2.5)

Analysis of deviations vector (2.3) represents a basis of so called “loss function” or

“error function”. This function measures the quality of forecast, based on the measured

deviations. There are more options, how to calculate rate of quality from the deviations

vector, usually root mean square error or mean absolute deviation are calculated. More

details about error functions will be discussed in section 2.2. The formal objective of

time series forecasting is then formulated as a minimization of loss function.

In addition to calculations of future values, sometimes it is required to determine accu-

racy limits. The accuracy of the forecasts may be expressed by calculating probability

limits on either side of each forecast. These limits may be calculated for any convenient

set of probabilities. They are such that the realized value of the time series, when it

eventually occurs, will be included within these limits with the stated probability. [1]

400

500

600

700

800

900

1000

t

Z t
Lead time

OriginActual values

A
cc

ur
ac

y 
lim

its

Forecast

Figure 2.7: Time series forecasting without external factors
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2.6.2 Forecasting with external factors

Time series process Z(t) is specified at the discrete time units t = {1, 2, . . . , T}. It is as-

sumed, that this time series is affected by a set of external factors {X1(t1), X2(t2), . . . Xm(tm)}.
Each external factor is represented as an independent time series process. For ex-

ample, an external factor X1(t1) is specified at the corresponding discrete time units

t1 = {1, 2, . . . , T1}.

The original time series Z(t) and external factors Xi(ti) are not obliged to be specified

at same time units. If the time units t, t1, t2, . . . , tm are not equal, then it is necessary

to recalculate the values of external factor to a single scale t.

Let’s assume that at the moment of time unit T , it is necessary to make a forecast of

− l future values of the given process Z(t). In order to calculate the predictions, it

is necessary to determine functional dependency, that describes a relationship between

past and future values, also considering the impact of external factors.

ZT =



Z(T )

Z(T − 1)

Z(T − 2)
...

Z(T − k)


Xi, T =



Xi(T + l)
...

Xi(T + 1)

Xi(T )

Xi(T − 1)
...

Xi(T − k)


ẐT =


Ẑ(T + l)

...

Ẑ(T + 2)

Ẑ(T + 1)

 (2.6)

f(ZT , X1,T , X2,T , ..., Xm,T ) = ẐT (2.7)

The functional dependency (2.5) is a forecast function and it represents the forecast

model with external factors. The rest tasks are performed in the same way as they were

in the case of forecasting without external factors. The main objective is to find the

forecast function such that the deviations between predicted values and actual values,

that will be observed later in future, are as small as possible. This objective formulates

minimization task of so called ”loss function” or ”error function”. More details about

error functions will be discussed in section 2.2.

The accuracy limits may be calculated for any convenient set of probabilities. Accuracy

limits are such that the realized value of the time series, when it eventually occurs, will

be included within these limits with the stated probability. [1]
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Figure 2.8: Time series forecasting with external factors

2.7 Data preprocessing

Before the raw time series data can be applied to the forecasting methods, usually they

have to undergo several transformations. Proper data preprocessing significantly affects

the forecast quality. Some forecasting methods, for example neural networks methods,

have strict requirements for the format of input data. The absence of the proper data

preprocessing, leads to the inefficiency of the given forecasting method.

2.7.1 Outliers detection

An outlier is an observation, that significantly differs from the other observations in

the sample. In practice, very often can be observed situation, when data contain some

outliers. Identification of potential outliers is very important preprocessing task, because

of the following reasons:

1. Outlier may indicate mistakenly recorded data.

2. Sometimes the outlier may represent the correct data, but their presence decreases

the effectiveness of the forecasting model. Therefore, their presence is undesired.

Outliers detection is usually performed by application of some appropriate filtering meth-

ods, for example ”Hampel filter”. [5] As soon as the outlier is detected, it can be excluded

from the dataset, or replaced by the mean of its neighboring values.
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Figure 2.9: Outliers detection example

2.7.2 Denoising and Smoothing

Time series data almost always contain a random noise component. The purpose of de-

noising methods, is to filter and remove the unwanted noise. Smoothing of the processed

data belongs to the most common denoising methods. Smoothing performs some kind

of local averaging, which usually causes the elimination of unwanted noise signal. This

can be explained by the fact, that random noise is known to be a stationary process,

and stationary processes have a mean value equal to zero. Therefore, smoothing can be

suitably used to remove the noise. The most popular smoothing algorithms are:

• Moving average filter - Each value in the series is replaced by the simple or weighted

average of its neighboring values.

• Median filter - Similar to moving average, but values are replaced by median value.

• Local regression filter - Values are replaced by the smoothed curve with values

fitted by least squares approach.



Time Series Analysis 18

• Savitzky-Golay filter - ”A generalized moving average filter with coefficients deter-

mined by an unweighted linear least-squares regression and a polynomial model of

the specified degree.” [6]

2.7.3 Differencing

In practice, very often happens, that it is necessary to forecast a non-stationary time

series data. But the majority of forecasting methods can work only with the stationary

series. There are several options, how this problem can be solved.

The most common option is differencing of the time series, which usually reduces the

non-stationarity. Differencing can be performed multiple times, if there still remains

some evidences of non-stationarity. Similarly the rate of relative differences can be used.

• Simple differencing:

D(t) = Z(t)–Z(t− 1) (2.8)

• Relative differencing:

R(t) =
Z(t)–Z(t− 1)

Z(t− 1)
(2.9)

Another option is application of logarithmic return rate. This is very similar method, it

just use the logarithmic values instead of absolute values. Logarithmic return rate pro-

vides better scaling properties, which are useful if the original data contain an increasing

oscillation character or exponential trend.

LR(t) = log(Z(t))–log(Z(t− 1)) = log(
Z(t)

Z(t− 1)
) (2.10)

2.7.4 Scaling

Scaling is a transformation, that adjust scales of the values within some specific bound-

aries. The most common used scaling are transformations of values within 〈−1, 1〉 range

or 〈0, 1〉 range.

• Scaling range 〈−1, 1〉

Z
′
(t) =

2 · Z(t)− (max+min)

max−min
(2.11)
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• Scaling range 〈0, 1〉

Z
′
(t) =

Z(t)−min
max−min

(2.12)

Where min;max corresponds to minimum;maximum values of the time series Z(t).

2.7.5 Normalization

The general aim of normalization is an adjustment of the values by shifting and scaling,

in order to obtain a so called normal distribution of the values. This produces a time

series with mean property equal to 0 and standard deviation property equal to 1.

Z
′
(t) =

Z(t)− µ
σ

(2.13)

Where µ is the mean value and σ is the standard deviation of the given time series.

µ =
1

n

n∑
t=1

Z(t) σ =

√√√√ 1

n

n∑
t=1

(Z(t)− µ)2 (2.14)



Chapter 3

Forecasting Methods

3.1 Regression models

There is a lot of tasks, which require the investigation of relationships between two and

more variables. Regression analysis is a typical method, that is being used for this kind

of problems. The aim of regression analysis is to estimate the dependencies between

main variable and a set of external factors (regressors).

The linear regression model is the simplest and the most widely used regression model.

It assumes, that there is a set of external factors X1(t), X2(t), . . . , Xp(t), which have an

impact on the given process Z(t) and the relationship between them is linear. Forecasting

model based on the linear regression is determined by an equation (2.12).

Z(t) = α0 + α1X1(t) + α2X2(t) + . . . + αpXp(t) + εt (3.1)

Where αi, i = 0. . . p are regression coefficients (parameters), ε is the approximation

error. In order to obtain a forecasted values Z(t) at time units t, it is necessary to have

values Xi(t) at time moment t, sometimes in practice this can be impossible in some

kind of problems.

The nonlinear regression models are based on assumptions, that there is given a mathe-

matical function, that describes relationship between given process Z(t) and the external

factor X(t).

Z(t) = f(X(t), α) + εt (3.2)

20
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While constructing the forecast model, it is necessary to determine the function param-

eters α. For example, Z(t) dependency on sin(X(t))

Z(t) = α1sin(X(t)) + α0 + εt (3.3)

In order to construct this model it is sufficient only to determine the parameters α =

(α0, α1). However in practice it is not very common, that type of functional dependency

between process Z(t) and external factor X(t) is already known in advance. Therefore,

nonlinear regression models are used less frequently, than the linear ones.

3.2 Autoregressive and moving average models

Autoregressive models are based on the idea, that values of process Z(t) are linearly

dependent on some number of past values of the same process Z(t). In this model, the

actual value of the process is expressed as a sum of finite linear combination of previous

values and the impulses, called white noise.

Z(t) = c+ ϕ1.Z(t− 1) + ϕ2.Z(t− 2) + ...+ ϕp.Z(t− p) + εt (3.4)

where ϕi are parameters of the model; c is a constant; ε is white noise (error of the

model).

The formula describes the autoregressive model of order p. This model is often denoted

as AR(p). The paramters c and ϕi are usually estimated by mean least squares or

maximum likelihood methods.

The second model, moving average model. It plays very important role in time series

description and is frequently used in relation with the autoregressive models. Moving

average model of order q is described by formula:

Z(t) =
1

q
[Z(t− 1) + Z(t− 2) + ...+ Z(t− q)] + εt (3.5)

where q is order of moving average and εt is prediction error.

In the books, moving average model of order q is usually denoted as MA(q). Actually,

moving average model is a finite impulse response filter applied to white noise.

In order to achieve better prediction quality, two previous models are often merged

into one model, autoregressive and moving average model. Common model is denoted
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as ARMA(p, q) and it unites a moving average filter of order q and autoregression of

filtered values of order p.

If the time series data show evidence of non-stationarity, then the initial differencing

step can be applied to reduce the non-stationarity. This model is usually denoted as

ARIMA(p, d, q). The parameter d represents the degree of differencing, it corresponds

to the integrated part of the model.

Another option is an ARIMAX(p, d, q) model, that is an extension of ARIMA(p, d, q)

model. It is described by formula:

Z(t) = AR(p) + α1X1(t) + ...+ αSXS(t) (3.6)

This model is extended by the impact of external factors. In this model, the process

Z(t) is a result of model MA(q), that are filtered values of the original process. Subse-

quently autoregressive forecasting, with additional regression parameters, corresponding

to external factors, is performed.

3.3 Exponential smoothing models

Despite the fact, that Exponential smoothing methods were invented in the middle of

20th century, they are still frequently used, even today. Exponential smoothing models

are widely used for modeling finance and economical processes. The basis of exponential

smoothing, is an idea of repetitive revision of forecasting function, with each income of

newly observed value. Exponential smoothing model assigns exponentially decreasing

weights to past values, according to the age. Therefore, newly observed values have

higher impact on forecasted value, than the elder ones. Functional representation of

exponential smoothing model is expressed by the following equations:

Z(t) = S(t) + εt (3.7)

S(t) = α · Z(t− 1) + (1− α) · S(t− 1) (3.8)

S(1) = Z(0) (3.9)
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where Z(t) is an actual value of the time series observed at time unit t; S(t) is a smoothed

value at time t; εt is an error between actual and smoothed value; α is a smoothing

coefficient, 0 < α < 1. In this model, each subsequently smoothed value S(t) is a

weighted combination of previous time series value Z(t − 1) and previously smoothed

value S(t− 1).

3.3.1 Double exponential smoothing

Double exponential smoothing, sometimes referred as ”Holt-Winters double exponen-

tial smoothing” is an improved modification of simple exponential smoothing. This

model is usually used for processes, which contain a trend component. In comparison

to the simple exponential smoothing, in these cases, it is necessary to deal with addi-

tional smoothing coefficient related to trend component. The model is described by the

following equations.

S(t) = α · Z(t) + (1− α) · (S(t− 1) +B(t− 1)) (3.10)

B(t) = β · (S(t)− S(t− 1)) + (1− β) ·B(t− 1) (3.11)

S(1) = Z(1)B(1) = Z(1)− Z(0) (3.12)

where Z(t) is an actual value of the time series observed at time unit t; S(t) is a smoothed

value at time t; α is the data smoothing coefficient, 0 < α < 1; β is the trend smoothing

coefficient, 0 < β < 1.

Forecasting with double exponential smoothing

In order to obtain a forecasting model based on exponential smoothing, it is necessary

to have some specific amount of historical values of the given time series. The model is

being built, by solving an optimization task, which consists of finding the appropriate

values of α and β parameters, such that MSE of the smoothed curve is minimal. As

soon as the optimal values for parameters are estimated and the model is created, the

forecasting of future values can performed according to the following equations:

F (t+ 1) = S(t) +B(t) (3.13)
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F (t+m) = S(t) +m ·B(t) (3.14)

3.4 Artificial neural networks models

In the past few years, there can be observed a great interest in machine learning, es-

pecially in artificial neural networks sector. Artificial neural networks are tools, that

are being used today for solving huge amount of tasks from different areas. The most

frequent examples are time series forecasting, pattern recognition, data clustering and

classification. Such a great success is determined by several reasons.

1. Artificial neural networks represent exclusively powerful tool, that enables to repro-

duce very complex nonlinear dependencies. For many years linear models played

the leading role in the most areas, as there were a lot of well designed and opti-

mized tools, which satisfactorily coped with assigned tasks, but problem was with

tasks, for which the linear approximation is unsatisfactorily.

2. Artificial neural networks are learning from examples. Artificial neural networks

receives a set of representative examples and then a learning process starts, which

tries to find and extract the structure of data. Certainly, proper application of

artificial neural network demands specific requirements for a correct formulation of

representative data set and network’s architecture. However, proper construction

of a such artificial neural network allows to cope with tasks, which can be solved

by the traditional algorithms only with the great difficulties. For example, pattern

recognition task, practically used for face recognition, solving it in traditional way

would result in a very complex problem. However, the same problem can be

prospectively solved by the artificial neural networks. [7]

3.4.1 Biological inspiration

Artificial neural networks are results of researches in the field of Artificial intelligence.

Human brain is known to be able to deal with the problems much more complex, than

the computers solve. It consist of huge number of neurons connected with each other

by numerous connections. Neurons are specific nerve cells, belonging to the nervous

system, that are able to distribute electrical or chemical signals. Neuron cell has a

branched structure consisting of the three main parts: information inputs - dendrites,

information output - axon, and the nucleus. The axon branches of the cell are connected

to the dendrites of other cells with the connections called synapses. Dendrites of the
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neuron receive electrical signals from other neurons through the synapses. If the total

rate of the input signals, received by the dendrites of the neuron, exceeds the determined

threshold, then the given neuron is going to fire an action potential. It is short-lasting

process, during which the neuron sends signals to its neighbors, which also may fire.

The intensity of transferred signal strongly depends on the activity of synapse between

two neurons. The process of learning basically stands for an appropriate changes of the

activities of the synapses connections between neurons. [8]

Figure 3.1: Biological neuron

3.4.2 Artificial neuron model

Artificial neuron represents a simplified model of the natural nervous cell. The evolution

of artificial neurons contains several models, which have passed certain stages of devel-

opment. Today, the most common artificial neuron is usually referred to the following

model, determined by the three main components:

1. The set of synapses - Connecting links, each of which is characterized by its own

weight. These weights correspond to the activities of synapses in biological neuron.

The input signal xj , that passes through the synapse j, which belongs to the neuron

k, is multiplied by the weight wkj .
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2. The adder - Component, which calculates the weighted sum of signals, i.e. the

linear combination. Additionally, for each neuron there is defined a threshold

value bk, denoted as ”bias”, which is added (or subtracted) to the weighted sum of

signals. Obtained result is usually denotes as ”induced local field” or ”activation

potential”, depending on the value of bk.

3. Activation function - Output obtained from the adder component, is passed further

to the activation function. Activation function transforms the input and produces

the output yk, referred as output of neuron. [7]

Figure 3.2: Artificial neuron model

In mathematical terms, artificial neuron depicted by figure 3.2 may be described by the

following equations.

vk =

m∑
i=0

wkj · x(j) (3.15)

yk = ϕ(vk) (3.16)

where x0 = 1 and x1, x2, ..., xm are the input signals; wk1, wk2, ..., wkm are the respective

synaptic weights of neuron k; bk is the bias; vk is the ”induced local field” or ”activation

potential”; ... is the activation function; yk is the output signal of the neuron. [7]
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3.4.3 Types of Activation Function

The activation function ϕ(v), defines the output of a neuron. There is a lot of suitable

functions, that can be exploited as the activation function in artificial neurons. Ap-

propriate selection of activation function strictly depends on the format of input and

output values, and the task expected to be performed by a neural network. It is also

important to mention, that the activation functions of individual neurons are not obliged

to be identical, there can be easily used different activation functions inside one neural

network.

The most popular activation functions [9]:

1. Threshold function - Sometimes called binary step function. Today, in practice,

this activation function is used rarely. More often, it demonstrates original inspi-

ration by the biological neuron.

2. Sigmoid function - Frequently used function, when output values are scaled in ¡0;1¿

range.

3. Hyperbolic tangent function - Similar to sigmoid function. Output values are in

¡-1;1¿ range.

4. Identity function

5. ReLU - In recent years, ReLU is becoming very popular.

Figure 3.3: Activation functions
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3.4.4 Neural Network Architectures

In the previous sections, there were described just the actions inside one artificial neu-

ron. Now the main question is, how to connect the individual neurons to each other?

In theory, neurons may be connected into neural networks with the very diverse struc-

tures. However, in practice, artificial neurons are usually grouped into layers, that later

formulate a neural network.

Figure 3.4: Artificial neural network example

Figure 3.4 demonstrates an example of neural network with one input layer, three hidden

layers and one output layer. Actually, the input layer is not a real layer. It just represents

the number of input values passed to the neural network. However, in the books, it is

very often graphically demonstrated as the first layer of the network. All others are

real layers, in sense of previously described rules. Each node in the hidden or output

layer, represents a neuron. The arrows between neurons represent connections between

them, and indicate the direction of signal processing. Any signal inside the network

is eventually directed to the output layer, which represents an overall output of the

network. All layers between the input and output layers, are called hidden layers. The

name ”hidden” is related to the fact, that neural network acts like a black box, and

all communication with network is performed through the input and output layers, and

everything, that happens inside, remains invisible to the user.

Generally, there are two main types of artificial neural networks structures:

1. Feedforward neural networks - Unites a group of networks, where the signal is

passed strictly in one direction from the input layer to the output layers (Figure

3.4). Assumption is, that there is no cycles inside the network.



Forecasting Methods 29

2. Recurrent neural netwroks - Represents a group of networks, which contain at least

one cycle inside the network. The cycle inside the neural network means, that the

output signal of some neuron, passing through the certain sequence of connections,

may occur as the input to the neuron, that it has already reached. (Figure 3.5)

Figure 3.5: Artificial neural network example

Feedforward neural networks are used more frequently than recurrent networks, in part

because the learning algorithms for recurrent networks are less powerful. Nevertheless,

recurrent networks are still very popular. They are much closer to the biological neural

networks and the idea how human brain works. Recurrent networks may be used to

solve important problems, which can only be solved with great difficulty by feedforward

networks. [10]

Additionally, artificial neural networks are classified as ”deep” networks, if the number

of hidden layers is greater than one. (Figure 3.4) [10]

3.4.5 Appropriate architecture

Selecting an appropriate architecture of neural network is an important step. When

selecting an architecture, it is necessary to deal with following parameters:

• Number of neurons in input layer - Usually, number of neurons in input layer

directly depends on the format of the input data. For example, if the neural

network will be used for time series forecasting, the number of input neurons will

correspond to the number historical values used for forecasting. If the neural

network will be used for images classification, the number of input neurons will

correspond the number of pixels of the images.

• Number of neurons in output layer - Similarly as with the number of input neurons,

the number of output neurons directly depends on the performed task and the

amount of output information. For example, if the neural network is used time
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series forecasting, the number of output neurons will correspond to the number of

forecasted values. If the neural network is used for classification of images with

the handwritten number, the number of output neurons can be 10, each neuron

for one number (class of images).

• Number of hidden layers - In mathematical theory, neural network with at least

one hidden layer, is sufficient to approximate or learn dependencies of any non-

linear function. Despite this, for many tasks it is much more suitable to use a

neural network with more than one hidden layer. For more complex tasks, like

images classification, are usually used deep neural networks with much more than

one hidden layer. On the other hand, tasks, which do not contain so complex

dependencies, they also do not require so complicated structures, as it will just

lead to overfitting and decrease the performance. [10]

• Number of neurons in hidden layer - This parameter is also very sensitive to over-

fitting. Usually, there is no regular rule, how to choose the number neurons in

hidden layer. There exist some recommendations, but the most reliable solution

leads to the benchmarking. [7]

3.4.6 Networks training

Architecture selection is just the first step. After the neural network is constructed, it

is still not ready to be exploited. During the initialization, the weights of connections

between neurons are selected randomly. Before the neural network can be adequately

used for required task, proper weights have to be found. This process is usually referred

as a learning or training of the neural network.

There exist different learning algorithms, each of them is suitable for the specific network

architecture. Backpropagation algorithm is one of the most popular training algorithms.

It is very effective algorithm, but it can be used for training networks with at most one

hidden layer. The majority of tasks can be easily solved by neural networks with one

hidden layer, therefore backpropagation algorithm is suitable for these cases. In the case

of deep networks, backpropagation leads to the vanishing gradient problem, and makes

it impossible to use. [10]

3.4.7 Cross-validation

Before the learning process can be launched, it is necessary to perform data partitioning.

Data are divided into three sets: training set, validation set and testing set. Usually,

training set is the largest and it contain the data, which will be used for network training.
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Validation set is used to deal with the overfitting problem. Overfitting is a common

problem, which may occur when it is required to fit a model to the training data. After

some moment the model perfectly fits the training set, but it will have low performance

on the newly observed data.

Figure 3.6: Overfitting example

In order to deal with the overfitting problem, the validation set is used. Neural network

is trained on the training data, but the error is calculated for the validation set. Training

is performed up to the moment when the error for validation set starts to increase.

Figure 3.7: Cross-validation
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Testing set doesn’t participate in network training. It is just used to express the perfor-

mance of network on the independent data.

3.4.8 ANN forecasting model

Artificial neural networks allow to create very powerful forecasting models. Its ability to

deal with the non-linear dependencies gives a great advantage, in comparison to other

forecasting methods. Before the time series data can be applied to the neural network,

it is necessary to ”cut” the data on the samples of the specific length, which corresponds

to the number of neurons in the input layer. As well, it is required to prepare the target

samples, what corresponds to the forecasted values.

As soon as the neural network is constructed and successfully trained, it represents a

forecasting model and can be used for time series forecasting, as any other model.

Figure 3.8: ANN and time series forecasting

3.5 Markov chain models

Forecasting models based on the Markov chains assume, that future state of the process

is dependent only on its current state and is not dependent on its elder states. Markov

chain models are applicable on the short-memory time series. Example of Markov chain

for process with 3 states is illustrated on figure 1.3.
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Figure 3.9: Markov chain model

In this model, S1, S2, S3 - are states of process Z(t), αxy – probability of transition

from state x to state y. By building the Markov chain model, the set of states and

corresponding transitions’ probabilities are defined. If the current process state is de-

fined, the future state is selected as the state with maximal transition probability. If the

transition probabilities are properly stored in matrix, subsequent future values can be

determined by probability matrix’s multiplication and maximum probability selection.

3.6 Forecasting models comparison

Forecasting Model and

Method

Advantages Disadvantages

Regression models The main advantages of

the given models are:

simplicity, flexibility and

uniformity of calcula-

tions. Simplicity of model

construction (only linear

models). Transparency of

all intermediate calcula-

tions.

Inefficiency and low adapt-

ability of linear regression

models for non-linear pro-

cesses.Very complex non-

linear model construction

for the tasks with non-

linear functional depen-

dency.



Forecasting Methods 34

Autoregressive and Mov-

ing average models

Transparency and unifor-

mity of calculations and

model’s construction. Rel-

atively not complicated

model construction. The

most popular frequently

used forecasting method.

A lot of publications and

information about how to

apply this method for the

specific problems.

Large number of pa-

rameters required to be

determined. Linearity,

low adaptability and in-

efficiency with non-linear

processes.

Artificial Neural Networks

models

The main advantage of

these models is a non-

linearity. Neural net-

works can easily deal with

the non-linear dependen-

cies between future and

past values of the pro-

cesses. Great adaptability

and scalability. Ability of

parallel computations.

Large number of param-

eters and significant op-

tions necessary to be se-

lected. High hardware

performance requirements

during the network train-

ing process. Complexity of

architecture and absence

of transparency.

Exponential smoothing

models and methods

Transparency of interme-

diate calculations, simplic-

ity and relative effective-

ness. Easy model con-

struction.

The disadvantage of this

model is inflexibility.

Markov chains models Transparency of interme-

diate calculations.

Impossibility of long term

forecasting.
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Chapter 4

Implementation

4.1 Data science tools

Today, the amount of data science tools has significantly increased. When analyzing

different researches, there can be observed three main tools, that are being used the

most frequently. In this section there will be briefly introduced each of these tools and

described their abilities for time series analysis.

4.1.1 The R language

R is a free software environment for statistical computing and graphics. It compiles and

runs on a wide variety of UNIX platforms, Windows and MacOS. The trend shows a

significant increase in popularity of this tool. Initially, it wasn’t developed specifically for

time series analyzing and it didn’t contained all required tools for time series forecasting.

But its main advantage is based on the fact, that it is open source. Today (Jan 2017),

there is around 10000 different packages contributed to its package repository. There are

available all required tools for time series analysis, including filtering, decomposition,

preprocessing and also time series forecasting tools including autoregressive methods.

Another packages also enable to exploit neural networks computations. Generally, the

R language demonstrates promising future development, and therefore it is one of the

top rated data science tools.
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4.1.2 MATLAB

MATLAB is a numerical computing environment and programming language, main-

tained by the MathWorks. MATLAB provides powerful matrix calculations with per-

fectly optimized algorithms and great abilities of parallel computations. The base MAT-

LAB environment contains a lot of implemented functions, but for the more sophisticated

projects, there should be involved additional toolboxes, which contain special functions

for the given problematic. In the case of time series analysis, the base environment

provides sufficient abilities for work with data in time series format. However, there

can be found additional functionalities in the following toolboxes: Curve Fitting Tool-

box, Econometrics Toolbox, Signal Processing Toolbox, Financial Instruments Toolbox,

Financial Toolbox, Optimization Toolbox. There are also toolboxes for machine learn-

ing computations: Neural Network Toolbox, Statistics and Machine Learning Toolbox.

Generally, MATLAB is a great data science tool, but its main disadvantage is higher

price for licenses.

4.1.3 Python

Python is a widely used high-level programming language. Initially, Python was not

developed for mathematical computations. It just contained typical mathematical func-

tions, like any other programming language. Python is an open-source project and its

main advantage is based on its third-party modules, which provide wide opportunities

for different areas. In the case of neural networks, especially deep networks, Python

provides a top rated libraries. Libraries like Theano and its high level modifications like

Keras or Lasagne, enables well optimized work with deep neural networks, especially

optimized computations on GPUs. There also exist many other libraries, which provide

statistical and machine learning computations with the time series: scikit-learn, numpy,

pandas, matplotlib.

4.2 Experiments definition

The main task of the practical part of the work is the implementation of various fore-

casting models, as well as the estimation of their performance measures on different

datasets. To this purpose, there have been selected the following datasets.

• Forecasting of Internet traffic data - representing the information technology sector

• Household electricity load - representing energetic sector
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• IBM daily stock prices - representing econometric sector

All experiments were performed in the computing environment MATLAB. All source

code used in this work is available in the attachment of the thesis. For the purposes of

thesis, there have been selected three the most promising forecasting methods.

1. ARIMA - According to the various researches, today, it is the most frequently used

forecasting method.

2. Artificial Neural Networks method - Very promising machine learning approach.

3. Exponential smoothing - Despite the fact, that it is not so powerful as the previous

methods, it still belongs to the frequently used methods.

ARIMA function is already implemented in MATALB, so it is not required to implement

it from scratch. Separately, for the purposes of thesis, there were implemented tools for

finding the parameters of the model with the best performance, based on MSE measure.

In the case of neural networks, MATLAB provides a toolbox for their realization. For

the purposes of given task, it was decided to use feedforward neural networks, with

varying number of neurons in the individual layers.

At the moment of writing the thesis, there was no function for realization of exponential

smoothing in MATLAB. Therefore, for the purposes of thesis, there has been imple-

mented double exponential smoothing forecasting method, described in section (3.3.1).

Each of the experiments will be performed by fulfilling the following steps:

1. Data preprocessing - Each dataset will undergo required preprocessing steps in

order to prepare data for all three forecasting methods.

2. Data scaling - Additionally to the preprocessing, dataset values will be scaled into

the same range, in order to enable better comparison of experiments.

3. Data partitioning - Each dataset will be divided into the training set (70%) and

validation set (30%). Training set will be used for building the forecasting models,

and validation set will be used for performance measuring.

4. Forecasting - Each forecasting method will be used for building models with varying

number of input values as well as varying number of predicted values.
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According to the assignment, each experiment will be performed twice, in order to

demonstrate the dependency between forecasting accuracy and the size of training set.

First time, only 50% of the training set will be used for models creation, and second

time, an extended training set (100%) will be used.

4.3 Forecasting Accuracy

Forecasting accuracy is a measure, which expresses performance of forecasting model.

It is a reverse value to the measure of forecasting error. There are more options, how to

calculate the measure of forecasting error. Each of them expresses a little bit different

information. At the beginning, it is necessary to define the forecast error. It is expressed

as a deviation of predicted value and actual value:

ε(t) = Z(t)− Ẑ(t) (4.1)

• Mean absolute percentage error (MAPE)

MAPE =
1

N

N∑
t=1

| Z(t)− Ẑ(t) |
Z(t)

· 100% (4.2)

• Root Mean squared error (RMSE)

RMSE =

√√√√ 1

N

N∑
t=1

(Z(t)− Ẑ(t))2 (4.3)

• Mean squared error (MSE)

MSE =
1

N

N∑
t=1

(Z(t)− Ẑ(t))2 (4.4)

• Mean absolute error (MAE)

MAE =
1

N

N∑
t=1

| Z(t)− Ẑ(t) | (4.5)

• Sum of squared errors (SSE)

SSE =
N∑
t=1

(Z(t)− Ẑ(t))2 (4.6)
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The suitability of MSE,RMSE,MAE and SSE measures is quite similar. They differs

only a little bit, for example strong errors are penalized by RMSE less than by other

measures. MAE and RMSE represent a scale dependent measure, while others are not

scale dependent. All these measures are suitable for comparison of different forecasting

methods on the same test data.

MAPE is one of the most frequently used forecasting error measures. It expresses the

percentage error, what makes it easily understandable. It is suitable measure for com-

paring the performance of one forecasting method on different testing data. But it has

one significant shortcoming, it can be used only for time series with values much greater

than 1. Otherwise, if the actual value of the series is close to 0, then a denominator will

contain very small number, what will make MAPE measure close to infinity. This will

not express a correct performance.

To deal with this problem there can be used MSE with a little modification. MSE will

be divided by the variance of actual values and expressed in percents.

MSE [%] =
MSE

V ar(Z)
· 100% (4.7)
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Experiment 1

5.1 Data description

In Experiment 1 will be used Internet traffic data (in bits) from an ISP. Data represent

an aggregated traffic in the United Kingdom academic network backbone. Dataset was

collected between 19 November 2004, at 09:30 hours and 27 January 2005, at 11:11

hours. Values are collected at five minute intervals. Overall number of values in the

dataset is 19888, what represents relatively sufficient number of observations for creating

forecasting models.

Source: https://datamarket.com/data/set/232g/
Internet	traffic	data	(in	bits)	from	an	ISP.	Aggregated	traffic	in	the	United	Kingdom
academic	network	backbone.	It	was	collected	between	19	November	2004,	at	09:30	hours
and	27	January	2005,	at	11:11	hours.	Data	collected	at	five	minute	intervals.
Units:	Bits	

24 2 10 18 26 3 11 19 27
Nov	2004 Dec	2004 Jan	2005
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Source:	Time	Series	Data	Library

Figure 5.1: Internet traffic data (in bits)

From the visual overview of the plotted graph it can be easily observed, that given

time series data have clear evidence of non-stationarity. The oscillations with increasing
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amplitude, as well as slowly decreasing ACF function tells about confident evidence of

the non-stationarity. Therefore, specific data preprocessing will be required.
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Figure 5.2: ACF and PACF of Internet traffic data

5.2 Data preprocessing

The following steps of data preprocessing have been performed:

1. Data transformation by log(x) function.

2. Differentiation of the first order.

3. Outliers removal using Hampel filter.

4. Denoising by using local regression.

5. Scaling values into range < −1, 1 >.

6. Data partitioning.

5.3 Forecasting results Part 1.

In this section are demonstrated results of the first part of the experiment 1. In this case

only 50% of the training data have been used for construction of individual forecasting

models.

Double exponential smoothing models are defined as DEV [x, y], where x denotes the

number of input values (actual, already measured values), and y denotes number fore-

casted values.



Experiment 1 43

ARIMA models are defined as ARIMA(p, d, q)[x, y] , where p denotes autoregressive

parameter, d denotes differencing parameter, q denotes moving average parameter, x

denotes the number of input values, and y denotes number of forecasted values

Neural Networks models are defined as NN [x, h, y], where x denotes number of input

neurons, h denotes number of neurons in hidden layer, and y denotes number of output

neurons, as well as the number of forecasted values.

Model MSE RMSE MSE [%]

ARIMA(20,0,3)[20;5] 0.00146 0.03821 2.0036%

NN[20;30;5] 0.0011685 0.034183 1.6036%

DES[20;5] 0.014928 0.12218 23.0513%

ARIMA(30,0,3)[30;5] 0.0013957 0.037359 1.9153%

NN[30;40;5] 0.0011166 0.033415 1.5323%

DES[30;5] 0.013797 0.11746 21.305%

ARIMA(40,0,3)[40;5] 0.0013202 0.036335 1.8118%

NN[40;50;5] 0.0010569 0.03251 1.4504%

DES[40;5] 0.013571 0.11649 20.9558%

ARIMA(20,0,3)[20;10] 0.010306 0.10152 14.088%

NN[20;30;10] 0.0082477 0.090817 11.2746%

DES[20;10] 0.045237 0.21269 69.8525%

ARIMA(30,0,3)[30;10] 0.010446 0.1022 14.2793%

NN[30;40;10] 0.0083591 0.091428 11.427%

DES[30;10] 0.044332 0.21055 68.4555%

ARIMA(40,0,3)[40;10] 0.0098256 0.099124 13.4317%

NN[40;50;10] 0.007862 0.088668 10.7475%

DES[40;10] 0.040713 0.20177 62.8673%

ARIMA(20,0,3)[20;15] 0.022708 0.15069 30.9259%

NN[20;30;15] 0.018182 0.13484 24.7629%

DES[20;15] 0.090473 0.30079 139.7051%

ARIMA(30,0,3)[30;15] 0.02342 0.15304 31.8968%

NN[30;40;15] 0.018751 0.13693 25.5373%

DES[30;15] 0.084068 0.28995 129.8149%

ARIMA(40,0,3)[40;15] 0.021987 0.14828 29.9445%

NN[40;50;15] 0.017606 0.13269 23.9784%

DES[40;15] 0.079181 0.28139 122.2687%

Table 5.1: Results of Experiment 1 - part 1
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5.4 Forecasting results Part 2. - Extended Training set

In this section are demonstrated results of the second part of the experiment 1. Training

set has been extended (100%), in order to improve the forecasting performance and

demonstrate the dependency between forecasting accuracy and the size of the training

set.

Model MSE RMSE MSE [%]

ARIMA(20,0,3)[20;5] 0.0013272 0.036431 1.8214%

NN[20;30;5] 0.0010622 0.032591 1.4577%

DES[20;5] 0.013824 0.11757 21.346%

ARIMA(30,0,3)[30;5] 0.0012688 0.03562 1.7412%

NN[30;40;5] 0.0010156 0.031869 1.3938%

DES[30;5] 0.012767 0.11299 19.714%

ARIMA(40,0,3)[40;5] 0.0012002 0.034644 1.6471%

NN[40;50;5] 0.00096033 0.030989 1.3179%

DES[40;5] 0.01131 0.10635 17.464%

ARIMA(20,0,3)[20;10] 0.0093688 0.096793 12.8073%

NN[20;30;10] 0.0074952 0.086575 10.246%

DES[20;10] 0.044106 0.21001 68.107%

ARIMA(30,0,3)[30;10] 0.009496 0.097447 12.9811%

NN[30;40;10] 0.007601 0.087184 10.3906%

DES[30;10] 0.04312 0.20765 66.5849%

ARIMA(40,0,3)[40;10] 0.0089323 0.094511 12.2106%

NN[40;50;10] 0.0071472 0.084541 9.7703%

DES[40;10] 0.039668 0.19917 61.2543%

ARIMA(20,0,3)[20;15] 0.020643 0.14368 28.1145%

NN[20;30;15] 0.016527 0.12856 22.5079%

DES[20;15] 0.086105 0.29344 132.9594%

ARIMA(30,0,3)[30;15] 0.021291 0.14592 28.9971%

NN[30;40;15] 0.01704 0.13054 23.207%

DES[30;15] 0.081666 0.28577 126.1055%

ARIMA(40,0,3)[40;15] 0.019988 0.14138 27.2223%

NN[40;50;15] 0.016006 0.12652 21.7994%

DES[40;15] 0.075002 0.27387 115.8156%

Table 5.2: Results of Experiment 1 - part 2
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Experiment 2

6.1 Data description

In Experiment 2 will be used electricity load data (in kW for each 15 min interval).

Data are obtained from ”Center for Machine Learning and Intelligent Systems”. Data

represent electricity load of one anonymou household. Dataset was collected between

1 January 2012, and 31 December 2014. Values are collected at 15 minute intervals.

Overall number of values in the dataset is 70080, what represents sufficient number of

observations for creating forecasting models.

Source: https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Figure 6.1: Electricity Load (in kW for each 15 min interval)
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Figure 6.2: ACF and PACF of Electricity Load data

6.2 Data preprocessing

The following steps of data preprocessing have been performed:

1. Differentiation of the first order.

2. Outliers removal using Hampel filter.

3. Denoising by using local regression.

4. Scaling values into range < −1, 1 >.

5. Data partitioning.

6.3 Forecasting results Part 1.

In this section are demonstrated results of the first part of the experiment 2. In this case

only 50% of the training data have been used for construction of individual forecasting

models.

Double exponential smoothing models are defined as DEV [x, y], where x denotes the

number of input values (actual, already measured values), and y denotes number fore-

casted values.
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ARIMA models are defined as ARIMA(p, d, q)[x, y] , where p denotes autoregressive

parameter, d denotes differencing parameter, q denotes moving average parameter, x

denotes the number of input values, and y denotes number of forecasted values

Neural Networks models are defined as NN [x, h, y], where x denotes number of input

neurons, h denotes number of neurons in hidden layer, and y denotes number of output

neurons, as well as the number of forecasted values.

Model MSE RMSE MSE [%]

ARIMA(20,0,3)[20;5] 0.0011383 0.033738 1.927%

NN[20;30;5] 0.00091128 0.030187 1.5428%

DES[20;5] 0.014928 0.12218 23.0513%

ARIMA(30,0,3)[30;5] 0.0011314 0.033636 1.9154%

NN[30;40;5] 0.00090517 0.030086 1.5324%

DES[30;5] 0.014555 0.12064 22.4749%

ARIMA(40,0,3)[40;5] 0.0010319 0.032123 1.747%

NN[40;50;5] 0.00082654 0.02875 1.3993%

DES[40;5] 0.013356 0.11557 20.6232%

ARIMA(20,0,3)[20;10] 0.0070265 0.083824 12.1052%

NN[20;30;10] 0.0056273 0.075015 9.6946%

DES[20;10] 0.047831 0.2187 73.8594%

ARIMA(30,0,3)[30;10] 0.0075212 0.086725 12.9575%

NN[30;40;10] 0.00602 0.077589 10.3712%

DES[30;10] 0.044106 0.21001 68.107%

ARIMA(40,0,3)[40;10] 0.006681 0.081737 11.5099%

NN[40;50;10] 0.0053511 0.073151 9.2187%

DES[40;10] 0.038885 0.19719 60.045%

ARIMA(20,0,3)[20;15] 0.01444 0.12017 25.0393%

NN[20;30;15] 0.011556 0.1075 20.0387%

DES[20;15] 0.08516 0.29182 131.5014%

ARIMA(30,0,3)[30;15] 0.015982 0.12642 27.713%

NN[30;40;15] 0.012788 0.11308 22.1742%

DES[30;15] 0.082697 0.28757 127.6981%

ARIMA(40,0,3)[40;15] 0.01385 0.11769 24.0161%

NN[40;50;15] 0.011081 0.10526 19.2142%

DES[40;15] 0.077325 0.27807 119.4031%

Table 6.1: Results of Experiment 2 - part 1
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6.4 Forecasting results Part 2. - Extended Training set

In this section are demonstrated results of the second part of the experiment 2. Training

set has been extended (100%), in order to improve the forecasting performance and

demonstrate the dependency between forecasting accuracy and the size of the training

set.

Model MSE RMSE MSE [%]

ARIMA(20,0,3)[20;5] 0.0010877 0.03298 1.8414%

NN[20;30;5] 0.0008711 0.029514 1.4748%

DES[20;5] 0.014555 0.12064 22.4749%

ARIMA(30,0,3)[30;5] 0.0010811 0.03288 1.8303%

NN[30;40;5] 0.00086497 0.02941 1.4644%

DES[30;5] 0.013822 0.11757 21.3436%

ARIMA(40,0,3)[40;5] 0.00098604 0.031401 1.6693%

NN[40;50;5] 0.00078969 0.028101 1.3369%

DES[40;5] 0.012538 0.11197 19.3613%

ARIMA(20,0,3)[20;10] 0.0067142 0.08194 11.5672%

NN[20;30;10] 0.0053772 0.07333 9.2638%

DES[20;10] 0.046593 0.21586 71.9479%

ARIMA(30,0,3)[30;10] 0.007187 0.084776 12.3816%

NN[30;40;10] 0.0057544 0.075858 9.9136%

DES[30;10] 0.042269 0.20559 65.2704%

ARIMA(40,0,3)[40;10] 0.0063841 0.0799 10.9984%

NN[40;50;10] 0.0051099 0.071483 8.8032%

DES[40;5] 0.037508 0.19367 57.9178%

ARIMA(20,0,3)[20;15] 0.013798 0.11747 23.9264%

NN[20;30;15] 0.011048 0.10511 19.1581%

DES[20;15] 0.083977 0.28979 129.6736%

ARIMA(30,0,3)[30;15] 0.015272 0.12358 26.4813%

NN[30;40;15] 0.012229 0.11058 21.2052%

DES[30;15] 0.080446 0.28363 124.2224%

ARIMA(40,0,3)[40;15] 0.013234 0.11504 22.9487%

NN[40;50;15] 0.010601 0.10296 18.3816%

DES[40;15] 0.076165 0.27598 117.6114%

Table 6.2: Results of Experiment 2 - part 2
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Experiment 3

7.1 Data description

In Experiment 3 will be used daily IBM stock prices (in USD). Data are obtained from

Yahoo Finance API. Dataset was collected between 1 January 1990 and 31 December

2016. Values are collected at 1 day intervals. Overall number of values in the dataset is

6805, what represents relatively sufficient number of observations for creating forecasting

models.

Source: http://finance.yahoo.com/quote/IBM/history?p=IBM
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Figure 7.1: Daily IBM stock prices (in USD)

From the visual overview of the plotted graph as well as the results of ACF and PACF, it

can be easily observed, that given time series data have clear evidence of non-stationarity.
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Figure 7.2: ACF and PACF of IBM stock prices

7.2 Data preprocessing

The following steps of data preprocessing have been performed:

1. Data transformation by log(x) function.

2. Differentiation of the first order.

3. Outliers removal using Hampel filter.

4. Denoising by using local regression.

5. Scaling values into range < −1, 1 >.

6. Data partitioning.

7.3 Forecasting results Part 1.

In this section are demonstrated results of the first part of the experiment 3. In this case

only 50% of the training data have been used for construction of individual forecasting

models.

Double exponential smoothing models are defined as DEV [x, y], where x denotes the

number of input values (actual, already measured values), and y denotes number fore-

casted values.
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ARIMA models are defined as ARIMA(p, d, q)[x, y] , where p denotes autoregressive

parameter, d denotes differencing parameter, q denotes moving average parameter, x

denotes the number of input values, and y denotes number of forecasted values

Neural Networks models are defined as NN [x, h, y], where x denotes number of input

neurons, h denotes number of neurons in hidden layer, and y denotes number of output

neurons, as well as the number of forecasted values.

Model MSE RMSE MSE [%]

ARIMA(20,0,3)[20;5] 0.0022765 0.047713 3.8541%

NN[20;30;5] 0.0018226 0.042692 3.0857%

DES[20;5] 0.020961 0.14478 32.3678%

ARIMA(30,0,3)[30;5] 0.0022628 0.047569 3.8308%

NN[30;40;5] 0.0018124 0.042572 3.0684%

DES[30;5] 0.019988 0.14138 30.865%

ARIMA(40,0,3)[40;5] 0.0020638 0.045429 3.494%

NN[40;50;5] 0.001652 0.040645 2.7968%

DES[40;5] 0.018999 0.13784 29.338%

ARIMA(20,0,3)[20;10] 0.014053 0.11855 24.2103%

NN[20;30;10] 0.01125 0.10606 19.3809%

DES[20;10] 0.053763 0.23187 83.0187%

ARIMA(30,0,3)[30;10] 0.015042 0.12265 25.9149%

NN[30;40;10] 0.012047 0.10976 20.7545%

DES[30;10] 0.052852 0.2299 81.6125%

ARIMA(40,0,3)[40;10] 0.013362 0.11559 23.0199%

NN[40;50;10] 0.010695 0.10342 18.4257%

DES[40;10] 0.050896 0.2256 78.5912%

ARIMA(20,0,3)[20;15] 0.02888 0.16994 50.0785%

NN[20;30;15] 0.023119 0.15205 40.088%

DES[20;15] 0.09275 0.30455 143.2215%

ARIMA(30,0,3)[30;15] 0.031964 0.17878 55.426%

NN[30;40;15] 0.025578 0.15993 44.3533%

DES[30;15] 0.089538 0.29923 138.2619%

ARIMA(40,0,3)[40;15] 0.0277 0.16643 48.0322%

NN[40;50;15] 0.022173 0.14891 38.4487%

DES[40;15] 0.086332 0.29382 133.311%

Table 7.1: Results of Experiment 3 - part 1
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7.4 Forecasting results Part 2. - Extended Training set

In this section are demonstrated results of the second part of the experiment 3. Training

set has been extended (100%), in order to improve the forecasting performance and

demonstrate the dependency between forecasting accuracy and the size of the training

set.

Model MSE RMSE MSE [%]

ARIMA(20,0,3)[20;5] 0.00215 0.046369 3.64%

NN[20;30;5] 0.001722 0.041497 2.9154%

DES[20;5] 0.020566 0.14341 31.7566%

ARIMA(30,0,3)[30;5] 0.0021371 0.046229 3.618%

NN[30;40;5] 0.0017109 0.041363 2.8965%

DES[30;5] 0.018999 0.13784 29.338%

ARIMA(40,0,3)[40;5] 0.0019491 0.044149 3.2999%

NN[40;50;5] 0.0015604 0.039502 2.6417%

DES[40;5] 0.018288 0.13523 28.2402%

ARIMA(20,0,3)[20;10] 0.013272 0.11521 22.8653%

NN[20;30;10] 0.010625 0.10308 18.3051%

DES[20;10] 0.053567 0.23145 82.716%

ARIMA(30,0,3)[30;10] 0.014207 0.11919 24.4752%

NN[30;40;10] 0.011375 0.10665 19.5963%

DES[30;10] 0.052216 0.22851 80.6299%

ARIMA(40,0,3)[40;10] 0.01262 0.11234 21.741%

NN[40;50;10] 0.010103 0.10052 17.4059%

DES[40;10] 0.049295 0.22202 76.1196%

ARIMA(20,0,3)[20;15] 0.027276 0.16515 47.2964%

NN[20;30;15] 0.021828 0.14774 37.8502%

DES[20;15] 0.092553 0.30422 142.9163%

ARIMA(30,0,3)[30;15] 0.030188 0.17375 52.3468%

NN[30;40;15] 0.02416 0.15543 41.8937%

DES[30;15] 0.088837 0.29806 137.1793%

ARIMA(40,0,3)[40;15] 0.026161 0.16174 45.3637%

NN[40;50;15] 0.020931 0.14468 36.2956%

DES[40;15] 0.08579 0.2929 132.473%



Chapter 8

Results Summary

8.1 Results Summary

Experiments performed in the previous sections gave a large amount of information

about forecasting accuracy. In order to find out, which method had the best performance,

there was calculated average error for each of the methods.

ARIMA NN DES

Average error [%] 17.8319 % 14.2740 % 75.1143 %

Table 8.1: Forecasting methods - Average error

Table 8.1 demonstrates, that ANN forecasting methods have the lowest average error,

calculated from all experiments. On the second place, there are ARIMA forecasting

models, with a little bit worse result. The worst result was presented by the double

exponential smoothing models. With the average error five times higher than NN models,

exponential smoothing is out of competition.

The given results can be explained by the following facts. Exponential smoothing is

relatively simple algorithm and it is not able to deal with prediction of fast turnovers,

especially in the case of econometric time series. ARIMA models presented relatively

good results, but they still belong to the class of linear models. ANN models with their

ability to reproduce nonlinear dependencies, presented the best forecasting results.

Figure 8.1 demonstrates another interesting feature. All three forecasting methods

present almost linear dependency between the lead time (number of predicted values)

and forecasting accuracy.
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Figure 8.1: Dependency between number of predicted values and forecasting accuracy

Another very important investigation is related to the size of training set. According to

the assignment, all experiments had to be performed in two phases. First time, all fore-

casting methods have been trained by using only the half of all training set. The second

time, training sets have been extended and the same forecasting models have been built

again. The purpose of this, is to investigate, how the size of training set influence fore-

casting performance. Each experiment in the previous sections, contains two tables with

results corresponding to the specific training set. Table 8.2 demonstrates the average

improvement of forecasting accuracy by extending the training set. Improvements are

expressed as the average improvement of one forecasting method for specific experiment.

ARIMA NN DES

Experiment 1 improvement 1.42 % 1.14 % 3.21 %

Experiment 2 improvement 0.59 % 0.46 % 1.88 %

Experiment 3 improvement 12.33 % 9.86 % 10.80 %

Table 8.2: Forecasting improvement by extension of training dataset

The presented improvements are quite reasonable. Experiment 2 demonstrates the low-

est improvements for all forecasting methods. This can be explained by fact, that in

experiment 2 has been used ”electricity load” dataset, which represents relatively sta-

tionary time series, without any complex dependencies. Therefore, forecasting methods

were able to extract enough useful information even from the half of the training set.

Absolutely different situation can be observed with the experiment 3. In this case,

the dataset represents relatively complicated time series, the daily IBM stock prices.
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Generally, time series like this and also others from econometric area represent very

complex and non-stationary processes. In this cases, each section of the series may con-

tain relatively important and unique information. Therefore extension of the training

set in experiment 3 had the most significant impact on forecasting performance, for all

methods.



Chapter 9

Conclusion

In practical part of this thesis, the potential reader may familiarize with the most im-

portant aspects of time series analysis and forecasting. It has been also explained, how

important it is to perform a proper data preprocessing. Very often, proper data pre-

processing is considered as much harder and significant step, than construction of the

forecasting model itself. Further, there were introduced main time series forecasting

methods and compared their advantages and disadvantages.

The main aim of the thesis, was to select three promising methods and perform experi-

ments on datasets from typical real life examples.

Experiments have demonstrated good results for two of the three selected forecasting

methods. ANN models, as well as ARIMA models, both of them can be suitably used

for forecasting time series of various complexity. Double exponential smoothing is not

so powerful tool, therefore its exploitation for more complex series is not recommended.

There have been also presented interesting investigations related to size of training set

and its impact on forecasting performance.

9.0.1 Further improvements

Main directions for the further improvements of time series forecasting, is based mainly

on the machine learning approach. Approaching the task seriously, very often requires

deeper analysis of given problematic. Data clustering may be very useful in these cases.

[7] It allows to find out unknown groupings inside datasets. This technique is often used

for anomaly detection task. In combination with neural networks, there can be created

very sophisticated forecasting models.
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