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Abstract. Arterial bifurcations loaded by internal pressure are significant stress concentrators.
Increased mechanical stress inside the arterial wall probably accelerates pathogenic processes at these
places. The stress concentration factor (SCF) depends mainly on geometry, loading and material. This
paper presents a map of SCFs calculated by FEM aortic bifurcation in the aortic bifurcation region
(AB), loaded by static internal pressure. The influence of geometry (aortic diameter, wall thickness,
bifurcation angle, "non-planarity" angle and radius of apex), material properties and internal pressure
were evaluated statistically by regression of FEM results. Two material variants were used (linear
Hooke and hyper elastic Ogden). Viscoelastic behaviour, anisotropy and prestrain were neglected. The
results indicate that the highest Mises stress appears in the inner side of the AB apex, and that the
SCF is negatively correlated with the bifurcation angle and with the internal pressure. The SCF varies
from 4.5 to 7.5 (Hooke) and from 7 to 21 (Ogden).
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1. Introduction
Atherosclerosis is a major cause of death in the west-
ern world [1, 2]. For a successful fight against this
disease of civilisation, it is crucial to understand
the processes that lead to or accelerate atheroscle-
rosis. Many biomechanical works [3–13] have dealt
with the interaction between blood flow and the in-
timal surface of the arteries in the region of arterial
bifurcation or branching. It has been shown that
very low wall shear stress (less than 1Pa) acceler-
ates the formation of atherosclerotic lesions in these
regions [8, 14]. Other works [15, 16] have indicated
that a high level of transmural pressure, which causes
tensile stress inside the arterial wall, may also cause
degenerative atherosclerotic changes. Arterial bifurca-
tions are significant geometrical stress concentrators,
which increase the mechanical stress many times in
comparison with the level in non-branched regions.
The stress concentration factor (SCF) is the ratio
of the maximum stress and the nominal stress in
a non-branched artery. According to [17], the SCF
within carotid bifurcation may reach values more than
30. Other analyses of SCF have been published in
[18–20]. SCF depends on many factors. Firstly, the
geometry of the bifurcation. The loading and the
material properties also have an impact. The aim
of our work is to find simple correlations for peak
stresses and SCF using only a small number of pa-
rameters (geometry, material, internal pressure). The
aortal bifurcation was chosen as suitable representa-
tive of arterial bifurcations.

2. Methods
It is hard to measure stress directly within the arte-
rial wall, so we used finite element (FE) modelling of
aortic bifurcations. A description of the AB geometry
using a minimum number of parameters was the most
important aspect of the design of the FE models. For
this purpose, we carried out a literature review, and
supplemented it by our own measurements on cadav-
ers. We attempted to select independent geometrical
parameters and/or to find a statistically relevant re-
lation between two or more geometrical parameters,
e.g. the relation between the diameter of the abdom-
inal aorta (AA) and the diameters of common iliac
arteries (CIA)

2.1. Geometry of AB
AB is the terminal part of AA, which divides the blood
flow between the left CIA and the right CIA. The ge-
ometry of AB generally corresponds to a slightly non-
planar Y-shaped bifurcation (non-planarity is charac-
terised by angle β). The bifurcation angles of the left
CIA (αL) and the right CIA (αR) may be identical,
but this is not necessarily. The transition between
AA and CIA is gradual, and may be characterised by
the radius of an osculating circle (rL, rR), see Fig. 1.
Both AA and CIA generally have an elliptical (oval)
cross-section. Another non-uniformity may be caused
by the fact that the wall thickness is not constant. An
offset of the left and right CIAs may also be observed
in some patients.

393

http://dx.doi.org/10.14311/AP.2015.55.0393
http://ojs.cvut.cz/ojs/index.php/ap


Jakub Kronek, Rudolf Žitný Acta Polytechnica

Figure 1. Schematic illustration of AB geometry
with geometrical parameters marked.

Some papers have presented measured values of
angles α and β [21–25], diameters of AA and CIA [21,
22, 25, 26], wall thicknesses [27–29], eccentricity [25,
27] and radii of curvature [21, 22] (Figure 1, Table 1).

2.2. Experimental measurements of
geometries

Measurements of 12 human ABs resected from ca-
davers (age from 17 to 71 years) were made during
autopsies in the Department of Forensic Medicine of
the Kralovske Vinohrady University Hospital. The
relevant ethical committee approved the use of human
tissue in this study. Each sample was photographed,
together with a length scale for evaluating the scale
factor and the real dimensions (software ImageJ was
used for processing the pictures). The axis of AA and
the branches were identified more or less manually.
The evaluated geometrical parameters, together with
results published by other authors, are presented in
Tab. 1 (angles β could not be evaluated from the
photographs). Non-dimensional eccentricity eAA is
defined as the maximum diameter (usually in lateral
direction) divided by the minimum diameter (usually
in antero-posterior direction).

On the basis of our own measurements on 12 cadav-
ers, estimates were made of the mean values of diame-
ters DAA = 13.8mm and DCIA = 8.7mm, with stan-
dard deviations sDAA = 4.5mm and sDCIA = 3.8mm.
The inner diameters could not, of course, be evalu-
ated from in situ photographs. It was necessary to
use a different technique, based on extracted bABs,
in the form of excised circular rings. The mean
diameters were evaluated from the lengths of the
rings. The rings were also used for evaluating the
wall thickness profiles (circular rings were cut and
then stretched into strips, the thickness of which was
measured using a laser scanner (Microepsilon). A sig-
nificant correlation tCIA = 0.89 tAA was observed (α-
value < 0.01). A statistically evaluated reduction of
diameters DCIA = 0.64DAA seems to be a reasonable
approximation of the Murray law [30] (the principle of
minimised dissipated energy and metabolic consump-
tion) and the EGM principle (Entropy Generation
Minimisation).
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Table 1. Geometrical parameters of AB evaluated
from published works, together with and our own
measurements on cadavers.
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Figure 2. A fixed sample during the uniaxial tensile
test.

2.3. Experimental measurements of
material properties

The mechanical properties of the arterial wall strips
excised from the AB samples (the same samples as
those used for evaluating the geometrical parameters)
were identified in experiments carried out on a tensile
testing machine for soft tissues (Messphysik Materials
Testing GmbH, Fürstenfeld, Austria) equipped with
a 100N load cell. The ends of the strips were fixed by
two clamps with pins (Figure 2). The samples were
preconditioned by 4 loading cycles up to deformation
of approximately 15% before ultimate failure loading.
The deformations of the stretched strips were ob-

tained via an image analysis of video records per-
formed by a Matlab script that was developed in-house.
The mechanical properties (described by an isotropic
linear Hookean model and alternatively by a hyper
elastic Ogden constitutive equation) were identified
using a regression analysis of the stress strain data.
The two-parametric Ogden model [31] was defined by
the following strain energy function

W = 2µ
α2 (λ́α1 + λ́α2 + λ́α3 + 1

D
(Jel − 1)2,

where λ́αi are deviatoric principal stretches, Jel is
elastic volume deformation. The model parameters for
individual samples were identified by a Mathcad script
and were averaged, giving mean values µ = 0.119MPa,
α = 21.99, D = 0.338 for the Ogden model and the
Young modulus of elasticity E = 1.6MPa and the
Poisson constant ν = 0.49 for the linear Hooke model.
More details are presented in [32].

2.4. FE models
Thirty-two different geometries of FE models were
created in Autodesk Inventor 2012 3D modelling soft-
ware, using standard modelling tools (2D sketching,
extrude, sweep along a line, chamfer of edges) and
were exported to the Abaqus FE program. The
32 geometries have different combinations of the
five most important geometrical variables DAA ≈
(10–18)mm, tAA ≈ (0.8–2.4)mm, rAB ≈ (0–2.8)mm,
α ≈ (18–82)°, β ≈ (0–32)°; these parameters were dis-
tributed according to the principles of RSM (Response

Surface Methodology). Other geometrical parameters
were either correlated with the varying parameters
tCIA = 0.89tAA, DCIA = 0.64DAA , or were fixed
eAA = eCIA = 0.9, rR = rL = 45mm.
The values and correlations were selected on the

basis of a previous geometrical study. These 32 ge-
ometries did not correspond directly to any measured
AB. The geometrical parameters of the models are
chosen only to be within the ranges evaluated in a
previous morphometric study.
For each geometry, Abaqus calculated the stress

distributions (and therefore the SCFs) at a constant
systolic pressure load of 120mmHg, using alternately
the Hooke model and the Ogden model , and using
the material parameters presented in the previous
paragraph (thus the same material parameters and
the same load were applied for all 32 geometries).

The reference load of 120mmHg is so high that the
geometrical nonlinearities and also the material non-
linearities are significant (typical tangential stretches
corresponding to this pressure are up to 1.2). In order
to assess the effects of large deformations and the
limit of the linear range, five typical geometries were
selected and calculated, with internal pressures rising
from 100mmHg up to 190mmHg.

The effect of the variability of the material param-
eters was tested only for the linear Hooke model:
in addition to the reference values (E = 1.6MPa,
ν = 0.49) the Young elastic modulus was varied from
E = 0.6MPa to 26MPa for four typical geometries
and for a reference load of 120mmHg for constant
ν = 0.49, because the aortic wall is practically in-
compressible, and lower Poisson constant values are
of no practical significance. Numerical experiments
indicate that SCFs calculated at the highest stiffness
(E = 26MPa) are close to but not exactly within the
linear region.
3D quadratic brick elements C3D20R were used

to create a mesh. The mesh was mapped in each
case to ensure the same mesh density (5 elements
to the wall thickness and 0.1mm width of the first
element from the plane of symmetry in the region
of the apex). In addition, a mesh convergence test
was carried out with one selected geometry. Five
meshes were created (from very thin to very dense)
and two mesh density parameters were defined. The
first parameter is the total number of elements, and
the second parameter is the reciprocal of the width
of the first element (which is normally 0.1mm). The
solution (Mises stress) converged with the two mesh
density parameters (Figure 3).

The calculated Mises stress was tracked on two 1D
paths. Path 1 leads from the highest stress peak in the
apex caudally on the inner surface of CIA (Figure 4).
Path 2 leads from the second stress peak in the outer
rear side of AB cranially on AA (Figure 4).

Three variables were evaluated from each path: the
maximum Mises stress in the stress concentrations at
the beginnings of the path (σmax1, σmax2), the nomi-
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Figure 3. Test of mesh convergence. The solution (the highest Mises stress value in the apex of bifurcation) as a
function of the first and second parameter of mesh density.

Figure 4. The stress was tracked on two paths. The
figure shows the starting points and the direction of
the paths.

nal (stable) Mises stress (σnomin1, σnomin2), and the
distances from the beginning of the paths (lK1, lK2),
where the stress drops almost to its nominal value
(σ < 1.1σnomin). Stress concentration factors K1 and
K2 were evaluated simply as K1 = σmax1/σnomin1
and K2 = σmax2/σnomin2.

2.5. Analytical approximation of SCF,
maximum stresses and range

It is assumed that the following factorisation of pres-
sure, material parameters and geometry can be used
for a quick estimate of SCF:

K1 = f1(p,E)g1(α, β, dAA, tAA, rAB),
K2 = f2(p,E)g2(α, β, dAA, tAA),

where the pressure correction factor fi is a linear func-
tion fi = 1 + fi0

p
E . The pressure correction factor is

defined for the Ogden model as fi = 1 + fi0
p
µ even

if the FE calculations were performed with only one
set of Ogden model parameters, therefore only for
µ = 0.119MPa.
The geometric factor was suggested in linear form

(linear with respect to the selected base functions).
The use of dimensionless base functions reduces the
number of parameters to five (K1) or four (K2):

g1 = a10 + a11
DAA

tAA
+ a12 cos2 α

2 + a13
√

1− cosβ

+ a14
rAB
DAA

,

g2 = a20 + a21
DAA

tAA
+ a22 cos2 α

2 + a23
√

1− cosβ.

The basis function
√

1− cosβ was suggested by anal-
ogy with a pressurised bent pipe, and the basis func-
tion cos2 α

2 was motivated by the method which es-
timates the stresses in the apex using membrane be-
haviour [33]. The resulting analytical model has 6
dimensionless parameters (fi0, ai0, ai1, ai2, ai3, ai4),
which were identified by regression analysis (modified
Newton method) of approximately 120 SCF values cal-
culated by Abaqus for the Hooke model (32 different
geometries at a reference pressure of 120mmHg and
for reference material parameters + different pressures
and different modulus of elasticity for three geome-
tries) and about 90 SCF values calculated for the
Ogden model (only 16 geometries, 6 of them with
varying pressure and only one set of material parame-
ters).

The two identified sets of parameters make it easy
to estimate the four SCF values (separately for the
Hooke model and for the Ogden model, and separately
for the inner surface of CIA and for the outer surface
of AA). These values also enable quick estimates of
the maximum Mises stresses based on the nominal
membrane stresses

σ1,max = K1
pDCIA

2tCIA
φ1, σ2,max = K2

pDAA

2tAA
φ2

The value ϕi = 1 corresponds to thin circular tubes. A
more accurate estimate can be based on an analytical
solution of a pressurized elastic (and incompressible)
elliptical pipe [34] with the correction factor ϕ corre-
sponding to known eccentricity e, relative thickness
and relative pressure:

ϕ1 = 1 + 3
2
DCIA

tCIA

1− eCIA
1 + eCIA

1
1 + 3

8
p
E

(
DCIA

tCIA

)3 ,

ϕ1 = 1 + 3
2
DAA

tAA

1− eAA
1 + eAA

1
1 + 3

8
p
E

(
DAA

tAA

)3 .

The dependences of lK1 and lK2 on the geometry
were estimated in the form lK1 = C1

√
DCIAtCIA and

lK2 = C2
√
DAAtAA, where C1 and C2 are constants,

which were found by comparison with the FE results.
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Figure 6. A comparison of the K1 values evaluated from FEM and the K1 values calculated by the regression model.
The graph on the left represents the set of linearly elastic models, while the graph on the right graph represents the
set of hyper elastic models.

Figure 5. Mises stress tracked on path 1. Only the
beginnings of the path are displayed. The curves corre-
spond to linearly elastic FE models (y01, y02,. . . y05),
where only one parameter (DAA) has been varied. The
rest of the geometrical parameters remain constant.
The graph shows exact values of the Mises stress under
the same loading (pressure 120mmHg).

3. Results and discussion
Examples of the Mises stress along path 1 are dis-
played in Figure 5. The graph contains results from
linearly elastic variants of five models (y01 to y05), in
which only DAA varies. The rest of the parameters
remain constant.

Tables 2 and 3 summarise the outcomes of a regres-
sion analysis.
The prediction ability of regression models of K1

(for both linearly elastic and hyper elastic materials)
are demonstrated by the graphs in Figure 6.
Some results can be interpreted on the basis of an

examination of the regression coefficients: when the
bifurcation angle decreases by 10°, K1 increases on
an average by 10%. However, increasing the non-
planarity angle also by 10°causes an increase of K1

on an average by 5%. Changes of the relative wall
thickness have only a slight impact on K1. It is clear
that some factors that have been neglected would
affect the stress distribution. For example, a published
FE model of AB [35] showed a 15% increase in SCF
when an orthotropic model was used. A 7% increase in
SCF was reported when an orthotropic model was used
[16]. According to an FE model of carotid bifurcation
[19], the increase in stress within the apex, using an
anisotropic model, was about 18%. However, the
prestrain of the arterial wall should reduce the SCF
in the apex [20]. Both anisotropy and prestrain have
been neglected in our study. A 50% Increase in the
Young modulus of elasticity should increase the SCF
in the apex by 7%, according to [35]. A positive
correlation between the Young modulus and K1 has
also been evidenced in our study.

3.1. Sizes of the affected regions
Only relatively small regions of the arterial wall are
affected by stress concentrators (K1 and K2). Lengths
lK1 and lK2 were evaluated to be proportional to
constant 1.66 and constant 2.81, respectively:

lK1 = 1.66
√
DCIAtCIA,

lK2 = 2.81
√
DAAtAA.

3.2. Qualification of the stress in stress
concentrations

Six components of the stress both in the apex and in
the rear side of AB are shown in Figure 7. We can
say that the dominant stress component which the
loads the arterial wall within the apex is a normal
stress in antero-posterior direction. This stress com-
ponent is almost equal to the evaluated Mises stress.
The dominant stress components in the second stress
concentrator are the tangential stress (= 1.12σmax2)
and the axial stress (= 0.68σmax2). This stress state
does not differ dramatically from the state in AA or
in CIA far away from AB.
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a0 a1 a2 a3 a4 f0

K1 −0.95 −0.051 8.18 2.34 1.33 −0.00079
K2 2.27 −0.022 1.45 2. — −0.000057

Table 2. Regression coefficient evaluated from results of (Hooke) linearly elastic FE models.

a0 a1 a2 a3 a4 f0

K1 19.7 −0.031 5.17 3.28 −138 −0.00025
K2 4.7 −0.02 0.082 6.13 — −0.000023

Table 3. Regression coefficient evaluated from the results of (Odgen) hyper elastic FE models.

Figure 7. Stress components in the apex (the six pictures on the left) and in the outer rear side (the six pictures on
the right). The z axis corresponds to the axis of the aorta; the x axis corresponds to antero-posterior direction; the y
axis corresponds to lateral direction; r is the radial coordinate of AA, and Θ means circumferential coordinate. The
stress components are expressed as ratios to the Mises stresses (σ1,max or σ2,max).

4. Conclusion
Simple regression models predicting SCF and the size
of the affected region in two regions of interest have
been proposed. They take into account the geometry,
the internal pressure and the material parameters.
Simple regression models may be used by physicians
for a quick estimate of whether or not the aortic
bifurcation of a specific patient poses a high risk due
to the high level of mechanical stress. According to
the data, the risk is mainly due to a small bifurcation
angle and/or a high non-planarity angle. A sharp apex
radius also should raise K1, but this was observed
only in a hyper elastic set of models. Both K1 and K2
decrease with increasing relative pressure, both in the
case of linearly elastic models and in the case of hyper
elastic models (but the maximum stress increases with
pressure, of course). A positive correlation between

the Young modulus and K1 has also been evidenced
in our study.
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