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Abstract. We evaluate the performance of various selection methods for the Monte Carlo Tree Search
algorithm in two-player zero-sum extensive-form games with imperfect information. We compare the
standard Upper Confident Bounds applied to Trees (UCT) along with the less common Exponential
Weights for Exploration and Exploitation (Exp3) and novel Regret matching (RM) selection in two
distinct imperfect information games: Imperfect Information Goofspiel and Phantom Tic-Tac-Toe. We
show that UCT after initial fast convergence towards a Nash equilibrium computes increasingly worse
strategies after some point in time. This is not the case with Exp3 and RM, which also show superior
performance in head-to-head matches.
Keywords: Monte Carlo Tree Search, imperfect information game, selection function, Regret matching.

1. Introduction
Monte Carlo Tree Search (MCTS) is a family of
sample-based tree search algorithms that has recently
led to a significant improvement in the quality of state-
of-the-art solvers for perfect information problems,
such as the game of Go [1] or domain independent
planning [2]. The main idea of Monte Carlo Tree
Search is to run a large number of randomized simu-
lations of the problem and learn the best actions to
choose from the experience. The earlier simulations
are generally used to create statistics that help to
guide the later simulations to more important parts of
the search space and decide on the best action to take
in the current state of the game. The core component
of the algorithm determining which action to choose
next and what statistics to collect is called a selection
function.
Inspired by the success of MCTS in perfect infor-

mation games, the algorithm has recently also been
adapted for imperfect information games [3–5]. Games
with imperfect information are fundamentally more
complicated than perfect information games, for sev-
eral reasons. The most important complication is
that the optimal strategies in imperfect information
games may require the players to make randomized
decisions. For example, in the well-known game of
Rock-Paper-Scissors, none of the available actions can
be considered optimal. Playing any of the actions all
the time can always be exploited by the opponent, and
the optimal strategy against a rational opponent is to
play each action with the same probability. Another
important complication is the strong inter-dependency
between the strategies in different parts of the game.
A player often does not know the exact state of the
game during the match, and the probability of the
game being in the individual possible states depends
on the opponent’s strategy in previous decisions in
the game, which can depend on the optimal strategy
in any other decision in the game.

Game theory provides means to deal with all these
complications, but previous attempts to adapt MCTS
to imperfect information games generally did not eval-
uate the properties of the strategies from the perspec-
tive of game theory. The algorithms were developed
mainly on the basis of heuristics and analogies with
the perfect information case.
In this paper, we analyze various selection func-

tions in Information Set Monte Carlo Tree Search
(IS-MCTS) [3]. We show that the most commonly
used selection function – UCT ([6]) – does not allow
the algorithm to converge to good strategies, and even
causes the strategies to get worse with more compu-
tation time. We further evaluate two additional selec-
tion functions. Exp3 [7], which has previously been
used in MCTS mainly to handle simultaneous moves
[3, 8, 9], and Regret Matching [10], previously evalu-
ated in the context of simultaneous move games [9],
but never used for MCTS in generic imperfect infor-
mation games. In an imperfect information variant of
the game of Goofspiel and Phantom Tic-Tac-Toe, we
show that these alternative selection strategies allow
IS-MCTS to converge closer to the Nash equilibrium
strategy and perform better in mutual matches.
The following section introduces the basic game-

theoretic concepts necessary to describe the IS-MCTS
algorithm along with the existing and novel selection
functions in Section 3. Afterwards, we continue with
an experimental evaluation in Section 4, and then we
conclude the paper.

2. Definitions and Background
We focus on domains that can be modelled as two-
player zero-sum extensive-form imperfect-information
games.

2.1. Extensive form games
We adapt the definition of the Extensive-form game
(EFG) from [11].
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Figure 1. Example of a zero-sum imperfect-informa-
tion extensive-form game.

Definition 1 (Extensive-form game). An extensive
form game with imperfect information consists of:
• N is the set of players including the nature player
(c) that represents the dynamics of the game;

• for each i ∈ N , Ai is the set of actions available to
player i;

• H is the set of possible states of the game, each
corresponding to a history of actions performed by
all players;

• Z ⊆ H is the set of terminal game states or histories;
• P : H \ Z → N is a function assigning to each
non-terminal state a player that selects an action
in the state;

• A : H \ Z → 2Ai is a function assigning to each
non-terminal game state the actions applicable by
the acting player;

• T : H × Ai → H ∪ Z is the transition function
realizing one move of the game;

• ui : Z → R for each i ∈ N \ {c} are the utility
functions of the players defined only on the terminal
states of the game;

• Ii for player i represents the player’s imperfect
information about the game. It is a partition of
Hi = {h ∈ H : P(h) = i} termed information
sets. Each information set I ∈ Ii represents the
set of histories that are indistinguishable for player
i. Therefore, we naturally extend A(I) = A(h) for
some h ∈ I.

The game starts with the empty history ∅. In each
history h, player P (h) selects an action a ∈ A(h).
After the action is performed, the game proceeds to
history h′ = T (h, a), often also denoted ha. The game
ends when it reaches a terminal history h ∈ Z. Each
player i ∈ N receives the payoff ui(h). A zero-sum
game is a two player game (|N \ {c}| = 2), such that
for each terminal history h ∈ Z, the reward for one
player is a loss for the other player (ui(h) = −u−i(h)).

Extensive form games can be represented by a game
tree, such as the one in Figure 1. The set of histories
H are the nodes in the tree and Z are the leaves.
We denote the nodes where the first player selects
an action (H1) by 4, and the nodes of the second
player (minimizing the utility of the first player) by

5. In this example, the action sets of the players are
A1 = {a, b, . . . , h}, A2 = {A,B, . . . , J}. We denote
the information sets as the ellipses around the tree
nodes. After the history h = aA player 4 decides
about the next move from A(h) = {c, d}, but in the
game, he has exactly the same information as if h′ =
aB was the current state of the game. The numbers
in the leaves denote the utility of the first player.
A pure strategy in an extensive form game is a

function that assigns to each information set I ∈ Ii
of player i an action from A(I). Each pair of pure
strategies then naturally defines the utility function
as the expected value of playing this pair of strategies.
The expectation is taken over the actions in the chance
nodes, in which the action is selected based on a
commonly known probability distribution. The set of
mixed strategies of an extensive form game is defined
as the set of all probability distributions over the pure
strategies. In games where players do not forget the
actions they performed, a theorem proposed by Khun
[12] allows us to use the following equivalent, but much
more compact, representation of the mixed strategies.
A behavioral strategy assigns to each information set
a probability distribution over the available actions.
If it is not specified otherwise, we mean by a strategy
in an extensive form game the behavioral strategy.
We denote the set of all mixed strategies of player

i ∈ N by Σi. We term a vector of one strategy for each
player σ ∈ Πi∈NΣi a strategy profile and we denote
σi the strategy of player i and we denote σ−i the
strategy of the opponent of i. ∆(Ai) is the set of all
probability distributions over Ai. ui can be naturally
extended to mixed strategies as the expectation over
the pure strategies.

Definition 2 (Best response). For strategy profile σ,
we define a best response of player i to the opponent’s
strategy σ−i as the strategy

br(σ−i) ∈ arg max
σ′

i
∈∆(Ai)

ui(σ′i, σ−i).

One of the most fundamental solution concepts in
game theory is the Nash equilibrium [11].

Definition 3 (Nash equilibrium). A strategy profile
σ∗ ∈ Σ is a Nash Equilibrium if

ui(σi, σ∗−i) ≤ ui(σ∗) ∀i ∈ N , ∀σi ∈ Σi.

In words, in a Nash equilibrium, each player plays
the best response to the strategies of the other play-
ers. In zero-sum games, a Nash equilibrium is a very
appealing strategy to play. It prescribes a (generally
randomized) strategy that is optimal in several as-
pects. It is a strategy that gains the highest expected
reward against its worst-case opponent, even if the
opponent knows the strategy played by the player
in advance. Moreover, in the zero-sum setting, even
if the opponent does not play rationally, the strat-
egy still guarantees at least the reward it would have

334



vol. 54 no. 5/2014 Selection Functions for IS-MCTS

gained against the rational opponent. This guaranteed
reward is termed the value of the game.

The distance of a strategy from a Nash equilibrium
can be measured in terms of exploitability (e.g., [13]).

Definition 4 (Exploitability). The exploitability of
strategy σi is

expl(σi) = vi − ui(σi, br(σi))

where vi is the value of the game for player i. The
exploitability of strategy profile σ is

expl(σ) = ui(σi, br(σi))− ui(br(σ−i), σi).

In this paper, we compute the exploitability using
the best response function described in [14].

3. Information Set Monte Carlo
Tree Search

Information Set Monte Carlo Tree Search (IS-MCTS)
is a Monte Carlo tree search variant for imperfect infor-
mation games. Fundamentally very similar algorithms
have previously been formulated in two different ways.
The formulation that is easier to understand is pre-
sented in [4]. The MCTS iterations are performed on
the complete game tree of the extensive form games
(i.e., all possible states on the game). However, the
statistics for the selection algorithm, such as UCT,
are collected for the whole information set. If any of
the nodes in the information set is reached, the selec-
tion algorithm is used to select the next move and,
subsequently, the statistics stored by this algorithm
are updated by the result of the simulation. In the
tree expansion step, the authors in [4] suggest adding
a single node to the extensive form tree of the game.

A very similar algorithm is presented in [15], in [3]
as “Multiple-Observer Information Set Monte Carlo
tree search” and in [5] as “Multiple Monte Carlo Tree
Search”. The pseudo-code for a single iteration of the
algorithm is presented in Algorithm 1. It starts in the
root node of the game tree and descends the game tree
towards a terminal state. The tree nodes are stored in
the memory and common statistics are stored for all
nodes in each information set. If the function is called
with a terminal state, it just returns its utility for the
first player (line 1). If nature selects an action in the
current node (line 2), it is selected from the commonly
known nature distribution and the algorithm is called
recursively on the resulting state (line 4). Otherwise,
the node is added to memory if it is not already
present (line 5). The statistics for the information set
it belongs to are accessed (line 6) and used to make
the decision about the action to select (line 8). This
action is then executed on the game state, producing
the following game state, which is used in a recursive
call of the function (line 9). This process is continued
until a state belonging to a new information set is
reached (line 10). This is the end of the selection
stage, and the expansion consists of creating new

IS-MCTS(h)
1: if h is terminal (h ∈ Z) then return u1(h)
2: if h is a chance node (P (h) = c) then
3: a = random chance action from Ac(h)
4: return IS-MCTS(T (h, a))
5: if h not in memory then add h to memory
6: IS = information set for state h
7: if IS is not null then
8: a = select(IS)
9: v = IS-MCTS(T (h, a))

10: else
11: add new IS for h to memory
12: a = select(IS)
13: v = simulate(T (h, a))
14: update(IS, a, v)
15: return v

Algorithm 1. Information Set Monte Carlo Tree
Search

(empty) statistics for the information set (line 11).
The specific data structures depend on the selection
function. At this point, an action is selected by the
selection function and the simulation is executed to
estimate the quality of the following position (lines
12–13). The information sets accessed during the
iteration are updated by the result of the simulation
(line 14) when returning from the recursion, and the
next iteration can start. Iterations are repeated until
a given time budget is spent.

The functions select and update in the pseudo-code
can be implemented by a suitable selection function,
such as UCT (with the negative of the received value
for the opponent), and simulate can be either com-
pletely random, or a domain dependent simulation, as
in perfect information MCTS. In the following section,
we discuss a possible selection function to be used
with the algorithm.

During an actual match, the player using this algo-
rithm does not always start iterations from the root
state of the game, but it rather maintains the current
information set in the form of a collection of all states
that can be the current state of the game. After the
player using IS-MCTS selects an action, it applies the
action to all of these states to determine the possible
following states. When the opponent executes some
action in the game, it executes all of the opponent’s
applicable actions in the current information set and
keeps only the resulting states that generate the same
observations for the player.

In the search from an inner information set during
a match, the player chooses for each iteration the
initial state uniformly at random from all states in
the current information set [3].

3.1. Selection Functions
3.1.1. Upper Confidence Bounds
The selection function that was suggested for IS-

MCTS in both [4] and [3] is the same modification of
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Input: K – number of actions; C – exploration pa-
rameter

1: ∀ini = 0, x̄i = 0
2: for n = 1, 2, . . . do
3: i = arg maxi x̄i + C

√
2 lnn
ni

4: Use action i and receive reward r
5: x̄i = nix̄i+r

ni+1
6: ni = ni + 1

Algorithm 2. UCT: Upper Confidence Bounds algo-
rithm for selection in Monte Carlo Tree Search.

Input: K – number of actions; γ – exploration pa-
rameter

1: ∀ix̂i = 0
2: for t = 1, 2, . . . do
3: ∀ipi = exp( γK x̂i)∑K

j=1
exp( γK x̂j)

4: p′i = (1− γ)pi + γ
K

5: Use action It from distribution p′ and receive
reward r

6: x̂It
= x̂It

+ r
p′

It

Algorithm 3. Exp3: Exponential weights for Ex-
ploration and Exploitation algorithm for selection in
MCTS.

UCB1 [16] that was successful in perfect information
MCTS [6]. We present the algorithm in Algorithm 2
and further refer to it as UCT. The algorithm main-
tains the mean of the rewards received for each action
x̄i and the number of times each action has been used
ni. It first uses each of the actions once (the term with
zero in the denominator is defined as ∞) and then
decides what action to use based on the size of the
one-sided confidence interval on the reward computed
based on the Cheroff-Hoeffding bounds (line 3). We
follow the suggestion from [17] and break ties on line 3
randomly.

The strategy output as the solution for the informa-
tion set after all simulations are the action use times
ni normalized to sum to one.

3.2. Exponential Weights for
Exploration and Exploitation

UCT is a successful selection function for perfect in-
formation problems, but it has been shown to converge
to an exploitable strategy in a simultaneous move
game [18], which is a special case of imperfect infor-
mation games. Therefore [3, 8] and [5] propose the use
of an alternative selection function Exp3, which can
be modified to guarantee convergence to the optimal
solution in single-stage simultaneous move games.

Exp3 stores the estimates of the cumulative reward
of each action over all iterations, even in the case that
the action was not selected. In the pseudo-code in
Algorithm 3, we denote this value for action i by x̂i.
It is initially set to 0 on line 1. In each iteration, a
probability distribution p is created proportionally to

Input: K – number of actions; γt – non-increasing
sequence of real numbers

1: ∀i Ri = 0
2: for t = 1, 2, . . . do
3: ∀i R+

i = max{0, Ri}
4: if

∑K
j=1R

+
j = 0 then

5: ∀i pi = 1/K
6: else
7: ∀i pi = R+

i∑K

j=1
R+

j

8: p′i = (1− γ)pi + γ
K

9: Use action It from distribution p′ and receive
reward r

10: ∀i Ri = Ri − r
11: RIt

= RIt
+ r

p′
It

Algorithm 4. RM: Regret matching variant for se-
lection in MCTS.

the exponential of these estimates. The distribution is
combined with a uniform distribution with probability
γ to ensure sufficient exploration of all actions (line 4).
After an action is selected and the reward is received
from the recursive call of IS-MCTS, the estimate for
the performed action is updated using importance
sampling (line 6). The reward is weighted by one over
the probability of using the action, in order to reach
the correct value in expectation.
The strategy output as the solution for the infor-

mation set after all simulations are performed is the
mean of strategies p over all iterations. In the imple-
mentation of the algorithm, we use the numerically
more stable form of the equation in line 3 proposed
in [3].

3.3. Regret Matching
Regret matching is a general procedure originally de-
veloped for playing known general-sum matrix games
in [10]. The algorithm computes, for each action in
each step, the regret for not playing another fixed
action every time the action has been played in the
past. The action to be played in the next round is
selected randomly with probability proportional to
the positive portion of the regret for not playing the
action. The regret matching procedure in [10] requires
exact information about the utility values in the game
matrix as well as the action selected by the opponent
in each step. In [19], the authors relax these require-
ments. Instead of computing the exact values for the
regrets, the regrets are estimated in a similar way
as the cumulative rewards in Exp3. As a result, the
modified regret matching procedure can be used as
the selection function in IS-MCTS.
We present the algorithm in Algorithm 4. The

algorithm stores the estimates of the regrets for not
taking action i in all time steps in the past in variables
Ri. In lines 3-7, it computes the strategy for the
current time step proportionally to the positive part
of the regrets. The uniform strategy is added similarly
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to the case of Exp3 in line 8. This ensures exploration
and causes the addition in line 11 to be bounded.
Lines 10 and 11 update the cumulative regrets using
importance sampling.
The main computational advantage of this proce-

dure over Exp3 is that it requires only simple division
instead of computing the expensive exponential func-
tion for each action in each iteration. When used in an
MCTS algorithm, this allows substantially more iter-
ations to be performed in the same time budget. The
strategy output as the solution for the information
set after all simulations are performed is the mean of
strategies p over all iterations.

4. Experimental Evaluation
This section first presents two imperfect information
games that we use in an evaluation. Afterwards, we
analyze the dependence of the speed of convergence
of IS-MCTS and the eventual distance from a Nash
equilibrium on the used selection function. Finally, we
evaluate how these convergence properties translate
to the quality of actual game playing. In the whole
section, we use hand-tuned values of the exploration
parameters C = 2 for UCT, γ = 0.1 for Exp3 and RM.
All experiments were performed in a unified publicly
available codebase [20].

4.1. Experimental Domains
Goofspiel. Goofspiel is a simultaneous move card
game often used to evaluate AI algorithms. The game
is played with three identical decks of cards. Each deck
contains cards of values {0, . . . , (n− 1)} and belongs
to one of the players, including nature. The deck for
nature is shuffled at the beginning of the game. In each
round, nature reveals the top card from its deck. Each
player selects any of their remaining cards and places
it face down on the table so that the opponent does
not see the card. Afterwards, the cards are turned
face up and the player with the higher card wins
the card revealed by nature. The card is discarded
in case of a draw. At the end, the player with the
higher sum of nature cards wins the whole game. In
the results, we use utilities 1/0/−1 for win/draw/loss
and count a draw as half win half lose in the win
rates. We use the imperfect information variant of
this game introduced by Lanctot [21] for evaluation.
It introduces two modifications. First, in each round,
the players only learn who won or lost the round, but
not the bid played by the opponent. Second, both
players know that the cards in nature’s deck are sorted
in decreasing order.

Phantom Tic-Tac-Toe. Phantom Tic-Tac-Toe is
a blind variant of the well-known game of Tic-Tac-
Toe. The game is played on a 3× 3 board, where two
players (cross and circle) attempt to place 3 identical
marks in a horizontal, vertical, or diagonal row to
win the game. The player who achieves this goal first
wins the game. In the blind variant, the players are

unable to observe their opponent’s moves and each
player only knows that the opponent made a move
and it is her turn. If a player tries to place her mark
on a square that is already occupied by an opponent’s
mark, the player learns this information and can place
the mark in some other square. The uncertainty in
phantom Tic-Tac-Toe makes the game large (≈ 1010

nodes [22]). In addition, since one player can try
several squares before a move is successful, the players
do not necessarily alternate in making their moves.
This rule makes the structure of the information sets
rather complex, and since the player never learns how
many attempts the opponent actually performed, a
single information set can contain nodes at a different
depth in the game tree.

4.2. Convergence to Nash Equilibrium
First, we focus on the speed of convergence in a small
variant of Goofspiel with 6 cards (0, 1, . . . , 5). We
measure the ability of the algorithms to approximate
a Nash equilibrium strategies of the complete game by
the sum of exploitabilities of both players’ strategies
(see Section 2).

We compare the IS-MCTS algorithm with three
different selection functions: UCT, Exp3, and RM.
The results are the means of 20 runs of each algorithm.
Due to the different selection and update functions,
the algorithms differ in the number of iterations per
second. RM is the fastest, with more than 5.9× 104,
while UCT with computing the square roots and ran-
dom tie breaking has around 3.9× 104 iterations per
second, and Exp3 computing the exponential func-
tions has around 3.4×104 iterations. Figure 2 presents
the exploitability of the algorithms run from the root
state for 30 minutes. Note that the x-scale is loga-
rithmic. The exploitability of UCT starts decreasing
fairly quickly, but after approximately 20 seconds of
computation it starts increasing again. The lowest
error achieved by UCT is 0.39, reached after 25 sec-
onds of computation. The variants of the IS-MCTS
algorithm with Exp3 and RM converge slower at the
beginning, but eventually achieve smaller error than
UCT. After 500 seconds of computation, the error of
Exp3 is 0.41 and the error of RM is 0.27.
The game of Phantom Tic-Tac-Toe has approxi-

mately 1010 terminal states, which makes it difficult
to compute the exploitability of the strategies in the
whole game. Therefore, we initially focus on a simpler
version of the game with the first move enforced to
be to the square in the center of the board. The first
player has only this action available, and the second
player can also first play only this action, which re-
veals the position of the first player’s mark and allows
the second player to move again. The second move
of the second player and all the following moves can
then be any legal moves in Phantom Tic-Tac-Toe.
The number of iterations per second in this re-

stricted game is similar to the previous game. RM
makes the most iterations (9.5 × 104), because the
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0.1 s UCT EXP3 RM RAND

UCT 62.9 (2.6) 55.6 (2.1) 62.7 (2.5) 84.0 (2.1)
EXP3 74.5 (2.2) 62.8 (1.6) 74.8 (2.0) 88.0 (1.9)
RM 70.6 (1.7) 60.0 (1.6) 73.1 (2.1) 87.8 (1.4)
RAND 15.7 (2.2) 8.2 (1.6) 10.3 (1.8) 49.7 (3.0)

1 s UCT EXP3 RM RAND

UCT 61.5 (2.7) 54.0 (2.1) 64.5 (2.5) 84.2 (2.1)
EXP3 74.5 (2.2) 61.8 (1.5) 75.7 (2.0) 87.8 (1.9)
RM 72.8 (2.3) 59.2 (1.7) 75.2 (2.1) 88.8 (1.9)
RAND 14.9 (2.1) 8.7 (1.7) 10.6 (1.8) 48.7 (3.0)

Table 1. Win rates of the row player against different algorithms in Imperfect Information Goofspiel with 6 cards
with 0.1 (top) and 1 (bottom) second of computation per move. The number in brackets indicates the 95% confidence
interval.
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Figure 2. Convergence in the game root in Imperfect
Information Goofspiel with 6 cards.

game initially has a higher number of applicable ac-
tions and RM uses the simplest functions to compute
the probability of selecting each action. UCT per-
forms significantly fewer iterations (5.1× 104), which
is probably caused by the actions often having very
similar values. UCT needs to iterate through the ac-
tions multiple times to select an action. Exp3 is again
the slowest, with 3.4× 104 iterations per second.
The convergence of the algorithms that are run

from the root of the game is presented in Figure 3.
UCT first quickly reduces the exploitability of the
strategy and then gradually makes the strategy more
exploitable after 10 seconds of computation. The min-
imum exploitability achieved by UCT is 0.27. Shortly
after 10 seconds of computation, initially the worst
RM becomes the best algorithm and, after the full 30
minutes, it converges to exploitability of 0.13. Exp3
is clearly the worst algorithm between the first and
the hundredth second.

4.3. Head to Head Matches
After analyzing the convergence of the strategies com-
puted by the sampling algorithms, we evaluate how
this property translates to the actual performance
of the algorithms in head-to-head matches. All pre-
sented results are an average of 1000 matches. We
first evaluate the small game used for computation of
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Figure 3. Convergence and game playing comparison
of different algorithms on Phantom Tic-Tac-Toe, in
which the first move of each player is forced to be to
the middle square.

the exploitability from the previous section to see the
connection to the exploitabilities, and then we focus
on substantially larger games to evaluate practical
applicability.

Table 1 presents the win rates of the algorithms in
mutual matches in Imperfect Information Goofspiel
with 6 cards per deck. The table on the top presents
the results with 0.1 second per move and the table
on the bottom presents the results with 1 second per
move, but they are very similar. The first important
observation is that even though the game is symmetric
and the first player does not have any advantage, all
IS-MCTS variants perform much better as the first
player (rows). The reason is the asymmetry of the
game model in the form of EFG. Even though in
reality the players choose an action simultaneously,
the game models this fact as a sequential decision with
hidden information. As a result, the second player
has substantially larger information sets than the first
player. If the search is run from a larger information
set, it is generally more important to have a good
approximation of the probability of the individual
states being the actual state of the game. The second
player is at a large disadvantage here.
IS-MCTS with Exp3 wins the most from the first
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1 s UCT EXP3 RM RAND

UCT 70.0 (2.8) 67.7 (2.9) 61.0 (3.0) 90.6 (1.8)
EXP3 79.5 (2.5) 63.2 (2.8) 66.4 (2.9) 95.6 (1.2)
RM 73.8 (2.7) 68.2 (2.8) 67.5 (2.9) 92.8 (1.5)
RAND 6.2 (1.5) 4.0 (1.2) 4.9 (1.3) 49.0 (3.0)

Table 2. Win rate of different algorithms on Imperfect Information Goofspiel with 13 cards. The number in brackets
indicates the 95% confidence interval.

0.1 s UCT EXP3 RM RAND

UCT 85.9 (1.7) 84.8 (1.7) 82.3 (1.8) 95.6 (1.1)
EXP3 87.2 (1.6) 88.1 (1.5) 85.3 (1.6) 96.6 (1.0)
RM 87.7 (1.6) 88.1 (1.4) 85.2 (1.5) 96.0 (1.0)
RAND 50.5 (3.0) 46.1 (3.0) 48.0 (3.0) 71.4 (2.7)

1 s UCT EXP3 RM RAND

UCT 86.5 (1.8) 86.3 (1.7) 84.0 (1.8) 95.2 (1.1)
EXP3 88.5 (1.6) 88.5 (1.5) 87.0 (1.6) 96.2 (1.0)
RM 90.0 (1.4) 87.4 (1.5) 85.2 (1.5) 96.3 (1.0)
RAND 52.0 (3.0) 48.9 (3.0) 46.2 (2.9) 70.9 (2.7)

Table 3. Win rate of different algorithms on full Phantom Tic-Tac-Toe. The number in brackets indicates the 95%
confidence interval.

position and loses the least from the second position.
This is a surprising result, as Exp3 has the slowest
convergence. Apparently, it quickly reaches a strategy
that is exploitable, but performs well against the other
opponents in the tournament.
The game playing performance of the algorithms

in the large game of Imperfect Information Goofspiel
with 13 cards in each deck and one second of com-
putation per move is presented in Table 2. In the
large game, the performance of the IS-MCTS variants
is similar to the performance on the smaller version.
Exp3 wins significantly the most against UCT, but
RM loses less against UCT and itself from the second
position. This makes it hard to select the better se-
lection function between Exp3 and RM, but both of
them are clearly better than UCT in this game.

Since all the algorithms seem to perform very well
even in the complete game of Phantom Tic-Tac-Toe,
we do not present the evaluation on the smaller game
with the enforced first move here. We assume that
the differences between the algorithms would be even
smaller there. The results in Table 3 show an even
larger imbalance between the results achieved from
the first and the second position in the game. This
time, it is not caused only by the disadvantage of
larger information sets, but also by the fact that the
game is not balanced on its own. When both players
play the optimal strategy, the player who moves first
wins 83% of the games. We computed this values by
the double-oracle algorithm [14] implemented in our
framework.
With 0.1 second per move (top), the performance

of RM and Exp3 is practically identical from the first
position, but RM loses less on the second position,

which is consistent with its generally lower exploitabil-
ity over the experiments. UCT generally performs the
worst. With 1 second per move, the performance of
all algorithms is more similar to each other. RM still
wins most often and loses least often against UCT,
but the mutual matches with Exp3 are more balanced.
Either of the algorithms wins 87% of matches from
the first position against each other. However, when
the algorithms play against themselves, RM loses less
from the second position, which makes it the more
suitable algorithm for this setting.

5. Conclusions
We have studied the influence of selection functions
on the performance of Monte Carlo Tree Search in
imperfect information games. We have evaluated the
most standard UCT selection along with the less com-
mon Exp3 and novel Regret Matching selection in a
unified framework on two different games. To the best
of our knowledge, this is the first direct comparison
of the effect of selection functions on the performance
of MCTS in imperfect information games.
We show that none of the proposed selection func-

tions allows the algorithm to converge very close to
the Nash equilibrium, and even after 30 minutes of
computation (approximately 108 iterations), the dis-
tance from an equilibrium was still larger than 0.1.
Consistently in both evaluation domains, the quality
of the strategy produced with UCT first decreased
and then started to increase again, showing that IS-
MCTS with UCT does not have the desirable anytime
property that more computation time yields better
results. This is also the case with Exp3 at the very
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beginning, but the novel RM selection monotonously
converges towards an equilibrium in our experiments.

The superior performance of RM selection was also
confirmed in head-to-head matches among the algo-
rithms. In both domains used for evaluation, UCT
performed the worst from the evaluated selection func-
tions. RM was always among the best, but in some
cases was slightly outperformed by Exp3. The good
performance of Exp3 in the matches was not supported
by low exploitability in the convergence experiments,
which indicates that even though the algorithm per-
formed well against the tested opponents, there are
other opponents that are likely to perform much better
against this algorithm, but not against RM.
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