
Developer Guide

SDK 2.0

2

Prepared Title

Stephane Piskorski
Nicolas Brulez AR.Drone Developer Guide
Pierre Eline
Frederic D’Haeyer
Approved Date Revision File

December 19, 2012 SDK 2.0

Notations used in this document :

$ This is a Linux shell command line (the dollar sign
represents the shell prompt and should not be typed)
This is a console output (do not type this)

Here is a file_name.
Here is a macro.

iPhone®and iPod Touch®are registered trademarks of Apple Inc.
Wi-Fi®is a trademark of the Wi-Fi Alliance.
Visuals and technical specifications subject to change without notice. All Rights reserved.
The Parrot Trademarks appearing on this document are the sole and exclusive property of Parrot S.A. All the others
Trademarks are the property of their respective owners.

Contents

A.R.Drone Developer Guide 1

Contents i

I SDK documentation 1

1 Introduction 3

2 AR.Drone 2.0 Overview 5
2.1 Introduction to quadrotor UAV . 5
2.2 Indoor and outdoor design configurations . 7
2.3 Engines . 7
2.4 LiPo batteries . 7
2.5 Motion sensors . 8
2.6 Assisted control of basic manoeuvres . 8
2.7 Advanced manoeuvres using host tilt sensors . 9
2.8 Video streaming, tags and roundel detection . 10
2.9 Wifi network and connection . 10
2.10 Communication services between the AR.Drone 2.0 and a client device 11
2.11 Differences between AR.Drone 2.0 and AR.Drone 1.0 11

3 AR.Drone 2.0 SDK Overview 13
3.1 Layered architecture . 13
3.2 The AR.Drone 2.0 Library . 14
3.3 The AR.Drone 2.0 Tool . 15
3.4 The AR.Drone Engine - only for Apple iOS devices 16

4 ARDroneLIB and ARDroneTool functions 19
4.1 Drone control functions . 19

ardrone_tool_set_ui_pad_start . 19
ardrone_tool_set_ui_pad_select . 19
ardrone_at_set_progress_cmd . 20
ardrone_at_set_progress_cmd_with_magneto . 21

5 Creating an application with ARDroneTool 23
5.1 Quick steps to create a custom AR.Drone 2.0 application 23
5.2 Customizing the client initialization . 24
5.3 Using navigation data . 25
5.4 Command line parsing for a particular application 27

i

ii

5.5 Thread management in the application . 27
5.6 Managing the video stream . 28

6 AT Commands 31
6.1 AT Commands syntax . 32
6.2 Commands sequencing . 32
6.3 Floating-point parameters . 33
6.4 AT Commands summary . 34
6.5 Commands description . 35

AT*REF . 35
AT*PCMD / AT*PCMD_MAG . 36
AT*FTRIM . 37
AT*CALIB . 37
AT*CONFIG . 38
AT*CONFIG_IDS . 38
AT*COMWDG . 38

7 Incoming data streams 39
7.1 Navigation data . 39

7.1.1 Navigation data stream . 39
7.1.2 Initiating the reception of Navigation data 40
7.1.3 Augmented reality data stream . 42

7.2 The AR.Drone 1.0 video stream . 43
7.2.1 Image structure . 43
7.2.2 UVLC codec overview . 45
7.2.3 P264 codec overview . 46
7.2.4 Specific block entropy-encoding . 49
7.2.5 Transport layer . 52
7.2.6 End of sequence (EOS) (22 bits) . 57
7.2.7 Intiating the video stream . 58

7.3 The AR.Drone 2.0 video stream . 59
7.3.1 Video codecs . 59
7.3.2 Video encapsulation on network . 59
7.3.3 Network transmission of video stream . 60
7.3.4 Latency reduction mecanism . 61
7.3.5 Video record stream . 61

8 Drone Configuration 63
8.1 Reading the drone configuration . 63

8.1.1 With ARDroneTool . 63
8.1.2 Without ARDroneTool . 63

8.2 Setting the drone configuration . 66
8.2.1 With ARDroneTool . 66
8.2.2 From the Control Engine for iPhone . 66
8.2.3 Without ARDroneTool . 68

8.3 Multiconfiguration . 69
8.3.1 With ARDroneTool . 69
8.3.2 Multiconfiguration with Control Engine (iPhone only) 70
8.3.3 Without ARDroneTool . 70
8.3.4 Common category (CAT_COMMON) . 70
8.3.5 Application category (CAT_APPLI) . 71
8.3.6 User category (CAT_USER) – also called "Profile" category 71

iii

8.3.7 Session category (CAT_SESSION) . 71
8.3.8 Technical details on id generation and descriptions 72

8.4 General configuration . 73
GENERAL:num_version_config . 73
GENERAL:num_version_mb . 73
GENERAL:num_version_soft . 73
GENERAL:drone_serial . 73
GENERAL:soft_build_date . 73
GENERAL:motor1_soft . 73
GENERAL:motor1_hard . 73
GENERAL:motor1_supplier . 73
GENERAL:ardrone_name . 73
GENERAL:flying_time . 74
GENERAL:navdata_demo . 74
GENERAL:navdata_options . 74
GENERAL:com_watchdog . 74
GENERAL:video_enable . 75
GENERAL:vision_enable . 75
GENERAL:vbat_min . 75

8.5 Control configuration . 76
CONTROL:accs_offset . 76
CONTROL:accs_gains . 76
CONTROL:gyros_offset . 76
CONTROL:gyros_gains . 76
CONTROL:gyros110_offset . 76
CONTROL:gyros110_gains . 76
CONTROL:magneto_offset . 76
CONTROL:magneto_radius . 76
CONTROL:gyro_offset_thr_x . 76
CONTROL:pwm_ref_gyros . 76
CONTROL:osctun_value . 77
CONTROL:osctun_test . 77
CONTROL:control_level . 77
CONTROL:euler_angle_max . 77
CONTROL:altitude_max . 78
CONTROL:altitude_min . 78
CONTROL:control_iphone_tilt . 78
CONTROL:control_vz_max . 78
CONTROL:control_yaw . 79
CONTROL:outdoor . 79
CONTROL:flight_without_shell . 79
CONTROL:autonomous_flight . 79
CONTROL:manual_trim . 80
CONTROL:indoor_euler_angle_max . 80
CONTROL:indoor_control_vz_max . 80
CONTROL:indoor_control_yaw . 80
CONTROL:outdoor_euler_angle_max . 80
CONTROL:outdoor_control_vz_max . 80
CONTROL:outdoor_control_yaw . 80
CONTROL:flying_mode . 80
CONTROL:hovering_range . 81

iv

CONTROL:flight_anim . 81
8.6 Network configuration . 82

NETWORK:ssid_single_player . 82
NETWORK:ssid_multi_player . 82
NETWORK:wifi_mode . 82
NETWORK:wifi_rate . 82
NETWORK:owner_mac . 82

8.7 Nav-board configuration . 83
PIC:ultrasound_freq . 83
PIC:ultrasound_watchdog . 83
PIC:pic_version . 83

8.8 Video configuration . 84
VIDEO:camif_fps . 84
VIDEO:codec_fps . 84
VIDEO:camif_buffers . 84
VIDEO:num_trackers . 84
VIDEO:video_codec . 84
VIDEO:video_slices . 85
VIDEO:video_live_socket . 85
VIDEO:video_storage_space . 85
VIDEO:bitrate . 85
VIDEO:max_bitrate . 85
VIDEO:bitrate_control_mode . 86
VIDEO:bitrate_storage . 86
VIDEO:videol_channel . 86
VIDEO:video_on_usb . 86
VIDEO:video_file_index . 87

8.9 Leds configuration . 88
LEDS:leds_anim . 88

8.10 Detection configuration . 89
DETECT:enemy_colors . 89
DETECT:groundstripe_colors . 89
DETECT:enemy_without_shell . 89
DETECT:detect_type . 89
DETECT:detections_select_h . 90
DETECT:detections_select_v_hsync . 90
DETECT:detections_select_v . 90

8.11 SYSLOG section . 92
8.12 USERBOX section . 92

USERBOX:userbox_cmd . 92
8.13 GPS section . 93

GPS:latitude . 93
GPS:longitude . 93
GPS:altitude . 93

8.14 CUSTOM section - Multiconfig support . 94
CUSTOM:application_id . 94
CUSTOM:application_desc . 94
CUSTOM:profile_id . 94
CUSTOM:profile_desc . 94
CUSTOM:session_id . 94
CUSTOM:session_desc . 94

v

II Tutorials 95

9 Building the iOS Example 97

10 Building the Linux Examples 99
10.1 Set up your development environment . 100
10.2 Compile linux examples . 100
10.3 Run the SDK Demo program . 101
10.4 Run the Video Demo program . 102
10.5 Run the Navigation program . 103

11 Android example 107
11.1 Set up your development environment . 107
11.2 Building and installing the Android example . 109
11.3 Modifying the Android example source code . 109

11.3.1 Modifying the ARDroneLib part . 109
11.3.2 Modifying the JNI part . 109
11.3.3 Modifying the UI part . 110

Part I

SDK documentation

1

1 Introduction

Welcome to the AR.Drone 2.0 Software Development Kit !

The AR.Drone 2.0 product and the provided host interface example have innovative and excit-
ing features such as:

• intuitive touch and tilt flight controls

• live video streaming

• video recording and photo shooting

• updated Euler angles of the AR Drone

• embedded tag detection for augmented reality games

The AR.Drone 2.0 SDK allows third party developers to develop and distribute new games
based on AR.Drone 2.0 product for Wifi, motion sensing mobile devices like the Apple iPhone,
iPad, iPod touch, personal computers or Android devices.

To download the AR.Drone 2.0 SDK, third party developers will have to register and accept the
AR.Drone 2.0 SDK License Agreement terms and conditions. Upon final approval from Parrot,
they will have access to the AR.Drone 2.0 SDK download web page.

3

4

This SDK includes :

• this document explaining how to use the SDK, and describes the drone communications
protocols;

• the AR.Drone 2.0 Library (ARDroneLIB), which provides the APIs needed to easily com-
municate and configure an AR.Drone 2.0 product;

• the AR.Drone 2.0 Tool (ARDroneTool) library, which provides a fully functionnal drone
client where developers only have to insert their custom application specific code;

• the AR.Drone 2.0 Control Engine library which provides an intuitive control interface de-
veloped by Parrot for remotely controlling the AR.Drone 2.0 product from an iOS Device;

• several code examples that show how to control the drone from a Linux personal com-
puter.

• source code for iOS and Android1 AR.FreeFlight 2.0 applications

Where should I start ?

Please first read chapter 2 to get an overview of the drone abilities and a bit of vocabulary.

You then have the choice between :

• using the provided library 5 and modifying the provided examples (9, 10) to suit your
needs

• trying to write your own software from scratch by following the specifications given in 6
and 7.

1May not be available as part of the first release of the AR.Drone 2.0 SDK

2 AR.Drone 2.0
Overview

2.1 Introduction to quadrotor UAV

AR.Drone 2.0 is a quadrotor. The mechanical structure comprises four rotors attached to the
four ends of a crossing to which the battery and the RF hardware are attached.

Each pair of opposite rotors is turning the same way. One pair is turning clockwise and the
other anti-clockwise.

5

6

(a) Throttle (b) Roll

(c) Pitch (d) Yaw

Figure 2.1: Drone movements

Manoeuvres are obtained by changing pitch, roll and yaw angles of the AR.Drone 2.0 .

Varying left and right rotors speeds the opposite way yields roll movement. This allows to go
forth and back.
Varying front and rear rotors speeds the opposite way yields pitch movement.
Varying each rotor pair speed the opposite way yields yaw movement. This allows turning left
and right.

7

(a) Indoor (b) Outdoor

Figure 2.2: Drone hulls

2.2 Indoor and outdoor design configurations

When flying outdoor the AR.Drone 2.0 can be set in a light and low wind drag configuration
(2.2b). Flying indoor requires the drone to be protected by external bumpers (2.2a).

When flying indoor, tags can be added on the external hull to allow several drones to easily
detect each others via their cameras.

2.3 Engines

The AR.Drone 2.0 is powered with brushless engines with three phases current controlled by a
micro-controller

The AR.Drone 2.0 automatically detects the type of engines that are plugged and automatically
adjusts engine controls. The AR.Drone 2.0 detects if all the engines are turning or are stopped.
In case a rotating propeller encounters any obstacle, the AR.Drone 2.0 detects if any of the
propeller is blocked and in such case stops all engines immediately. This protection system
prevents repeated shocks.

2.4 LiPo batteries

The AR.Drone 2.0 uses a charged 1000mAh, 11.1V LiPo batteries to fly. While flying the battery
voltage decreases from full charge (12.5 Volts) to low charge (9 Volts). The AR.Drone 2.0 mon-
itors battery voltage and converts this voltage into a battery life percentage (100% if battery is
full, 0% if battery is low). When the drone detects a low battery voltage, it first sends a warning
message to the user, then automatically lands. If the voltage reaches a critical level, the whole
system is shut down to prevent any unexpected behaviour.

8

(a) Ultrasound sensor (b) Camera

Figure 2.3: Drone Sensors

2.5 Motion sensors

The AR.Drone has many motions sensors. They are located below the central hull.

The AR.Drone 1.0 features a 6 DOF, MEMS-based, miniaturized inertial measurement unit. It
provides the software with pitch, roll and yaw measurements.

Inertial measurements are used for automatic pitch, roll and yaw stabilization and assisted
tilting control. They are needed for generating realistic augmented reality effects.

An ultrasound telemeter provides with altitude measures for automatic altitude stabilization
and assisted vertical speed control.

A camera aiming towards the ground provides with ground speed measures for automatic
hovering and trimming.

The AR.Drone 2.0 Add 3 DOF to the IMU with a 3 axis magnetometer (mandatory for Absolute
Control mode). It also adds a pressure sensor to allow altitude measurements at any height.

2.6 Assisted control of basic manoeuvres

Usually quadrotor remote controls feature levers and trims for controlling UAV pitch, roll, yaw
and throttle. Basic manoeuvres include take-off, trimming, hovering with constant altitude,
and landing. It generally takes hours to a beginner and many UAV crashes before executing
safely these basic manoeuvres.

Thanks to the AR.Drone 2.0 onboard sensors take-off, hovering, trimming and landing are now
completely automatic and all manoeuvres are completely assisted.

9

User interface for basics controls on host can now be greatly simplified :

• When landed push take-off button to automatically start engines, take-off and hover at a
pre-determined altitude.

• When flying push landing button to automatically land and stop engines.
• Press turn left button to turn the AR Drone automatically to the left at a predetermined

speed. Otherwise the AR Drone automatically keeps the same orientation.
• Press turn right button to turn the AR Drone automatically to the right. Otherwise the AR

Drone automatically keeps the same orientation.
• Push up button to go upward automatically at a predetermined speed. Otherwise the AR

Drone automatically stays at the same altitude.
• Push down to go downward automatically at a predetermined speed. Otherwise the AR

Drone automatically stays at the same altitude.

A number of flight control parameters can be tuned:

• altitude limit
• yaw speed limit
• vertical speed limit
• AR.Drone 2.0 tilt angle limit
• host tilt angle limit

2.7 Advanced manoeuvres using host tilt sensors

Many hosts now include tilt motion sensors. Their output values can be sent to the AR.Drone
2.0 as the AR.Drone 2.0 tilting commands.

One tilting button on the host activates the sending of tilt sensor values to the AR.Drone 2.0
. Otherwise hovering is a default command when the user does not input any manoeuvre
command. This dramatically simplifies the AR.Drone 2.0 control by the user.

The host tilt angle limit and trim parameters can be tuned.

10

2.8 Video streaming, tags and roundel detection

The frontal camera is a CMOS sensor with a 90 degrees angle lens.

The AR.Drone automatically encodes and streams the incoming images to the host device.
The AR.Drone 1.0 use QCIF (176x144, bottom facing camera) or QVGA (320x240, front facing
camera) image resolutions. The video stream frame rate is set to 15 FPS.
The AR.Drone 2.0 use 360p (640x360) or 720p (1280x720) image resolutions for both cameras
(with upscaling from bottom facing camera). The video stream frame rate can be adjusted
between 15 and 30 FPS.

The AR.Drone provides detection of three different tags types shown below.
After update of the AR.Drone 1.0 , cross detections with AR.Drone 2.0 is possible.

Users can download a printable version of the Oriented Roundel on Parrot website.

(a) 2D tags on outdoor
shell

(b) 2D tags on indoor shell (c) Oriented Roundel

Figure 2.4: Detection tags

2.9 Wifi network and connection

The AR.Drone 2.0 can be controlled from any client device supporting Wifi. The following
process is followed :

1. the AR.Drone creates a WIFI network with an ESSID usually called adrone2_xxx (ardrone_xxx
for AR.Drone 1.0) and self allocates a free, odd IP address (typically 192.168.1.1).

2. the user connects the client device to this ESSID network.

3. the client device requests an IP address from the drone DHCP server.

4. the AR.Drone DHCP server grants the client with an IP address which is :

• the drone own IP address plus 1 (for AR.Drone 1.0 prior to version 1.1.3)

http://ardrone.parrot.com/parrot-ar-drone/fr/ar.games/ar-rescue/special_target.pdf

11

• the drone own IP address plus a number between 1 and 4 (for AR.Drone 2.0 and
AR.Drone 1.0 after 1.1.3 version)

5. the client device can start sending requests the AR.Drone IP address and its services ports.

2.10 Communication services between the AR.Drone 2.0 and a
client device

Controlling the AR.Drone is done through 3 main communication services.

Controlling and configuring the drone is done by sending AT commands on UDP port 5556.
The transmission latency of the control commands is critical to the user experience. Those
commands are to be sent on a regular basis (usually 30 times per second). The list of available
commands and their syntax is discussed in chapter 6.

Information about the drone (like its status, its position, speed, engine rotation speed, etc.),
called navdata, are sent by the drone to its client on UDP port 5554. These navdata also include
tags detection information that can be used to create augmented reality games. They are sent
approximatively 15 times per second in demo mode, and 200 times per second in full (debug)
mode.

A video stream is sent by the AR.Drone to the client device on port 5555 (UDP for AR.Drone
1.0 , TCP for AR.Drone 2.0). Images from this video stream can be decoded using the codec
included in this SDK. Its encoding format is discussed in section 7.2.

A fourth communication channel, called control port, can be established on TCP port 5559 to
transfer critical data, by opposition to the other data that can be lost with no dangerous effect.
It is used to retrieve configuration data, and to acknowledge important information such as the
sending of configuration information.

2.11 Differences between AR.Drone 2.0 and AR.Drone 1.0

Please note that this list is not an exhaustive list, but rather a reminder for developpers that
want to support both generations of AR.Drone

Sensors

AR.Drone 2.0 includes new hardware sensors : a 3 axis magnetometer, and a pressure sensor.
Other sensors were also changed, as the navigation boards are not the same.
These magnetometer is mandatory for the Absolute Control feature. The pressure sensor allows
the AR.Drone 2.0 to know its height regardless of the ultrasound performance (after 6 meters,
the ultrasound can’t measure the height)

12

Cameras

AR.Drone 2.0 use a HD (720p-30fps) front facing camera. This camera can be configured to
stream both 360p (640*360) or 720p (1280*720) images.
AR.Drone 1.0 use a VGA (640*480) camera, which can only stream QVGA (320*240) pictures.
Full resolution pictures are only available to detection algorithms, and photo shooting.

AR.Drone 2.0 bottom facing camera is a QVGA (320*240) 60fps camera. This camera pictures
will be upscaled to 360p or 720p for video streaming.
AR.Drone 1.0 use a QCIF (176*144) 60fps camera, which is streamed at full resolution.

USB port

AR.Drone 2.0 has a master USB port, with a standard USB-A connector. This USB port is cur-
rently used for USB Key video recording.
Please note that the AR.Drone 2.0 only supports USB keys with a grounded USB connector
casing, and formatted in FAT32 file format.

3 AR.Drone 2.0 SDK
Overview

This SDK allows you to easily write your own applications to remotely control the drone :

• from any Linux personal computer with Wifi connectivity;
• from an Apple iOS device;
• from an Android device1.

It also allows you, with a bit more effort, to remotely control the drone from any programmable
device with a Wifi network card and a TCP/UDP/IP stack - for devices which are not sup-
ported by Parrot, a complete description of the communication protocol used by the drone is
given in this document;

However, this SDK does NOT support :

• rewriting your own embedded software - no direct access to the drone hardware (sensors,
engines) is allowed.

3.1 Layered architecture

Here is an overview of the layered architecture of a host application built upon the AR.Drone
2.0 SDK.

1May not be available as part of the first release of the AR.Drone 2.0 SDK

13

14

openGL Wifi Touchpad Accelerometer Host hw

ARDrone
Library

Host hw/sw API host sw

Application
threads

ARDrone Control
Engine (only for iPhone) Threads

level

Application
level

Host application

Data streams AT cmds

3.2 The AR.Drone 2.0 Library

The AR.Drone 2.0 Library is currently provided as an open-source library with high level APIs
to access the drone.

Let’s review its content :

• SOFT : the drone-specific code, including :

– COMMON : header (.h) files describing the communication structures used by the
drone (make sure you pack the C structures when compiling them)

– Lib/ardrone_tool : a set of tools to easily manage the drone, like an AT command
sending loop and thread, a navdata receiving thread, a ready to use video pipeline,
and a ready to use main function

– Lib/utils : a set of utilities for writing applications around the AR.Drone

• VLIB : the AR.Drone 1.0 video processing library. It contains the functions to receive and
decode the video stream

• FFMPEG : a complete snapshot of FFMPEG library, with associated build scripts for the
AR.Drone 2.0 applications

• ITTIAM : a prebuilt, highly optimized (ARMv7 + NEON), video decoding library for
iOS and Android applications

• VPSDK : a set of general purpose libraries, including

– VPSTAGES : video processing pieces, which you can assemble to build a video
processing pipeline

15

– VPOS : multiplatform (Linux/Windows/Parrot proprietary platforms) wrappers
for system-level functions (memory allocation, thread management, etc.)

– VPCOM : multiplatform wrappers for communication functions (over Wifi, Blue-
tooth, etc.)

– VPAPI : helpers to manage video pipelines and threads

Let’s now detail the ARDroneTool part :

• ardrone_tool.c : contains a ready-to-use ardrone_tool_main C function which initialises
the Wifi network and initiates all the communications with the drone

• UI : contains a ready-to-use gamepad management code

• AT : contains all the functions you can call to actually control the drone. Most of them
directly refer to an AT command which is then automatically built with the right syntax
and sequencing number, and forwarded to the AT management thread.

• NAVDATA : contains a ready-to-use Navdata receiving and decoding system

• ACADEMY : contains a ready-to-use downloading and uploading system for the upcom-
ing AR.Drone Academy . The downloading system also manage the AR.Drone photo
shooting.

• VIDEO : contains all the function related to video receiving, decoding and recording, for
both AR.Drone 1.0 and AR.Drone 2.0 .

• CONTROL : contains a ready-to-use AR.Drone configuration management tool

3.3 The AR.Drone 2.0 Tool

Part of the AR.Drone 2.0 Library is the ARDroneTool .

The ARDroneTool is a library which implements in an efficient way the four services described
in section 2.10.

In particular, it provides :

• an AT command management thread, which collects commands sent by all the other
threads, and send them in an ordered manner with correct sequence numbers

• a navdata management thread which automatically receives the navdata stream, decodes
it, and provides the client application with ready-to-use navigation data through a call-
back function

• a video management thread, which automatically receives the video stream and provides
the client application with ready-to-use video data through a callback function. This
thread also manages AR.Drone 1.0 recording

• a video recorder thread (only for AR.Drone 2.0), which manages the recording of the HD
Stream, and the .mp4/.mov encapsulation.

16

• a control thread which handles requests from other threads for sending reliable commands
from the drone, and automatically checks for the drone acknowledgements.

• a set of threads for AR.Drone Academy , which automatically receives the photo shoot-
ing (.jpg format) by ftp protocol. A thread manage userbox binary data receiving and
uploading to the AR.Drone Academy server2.

All those threads take care of connecting to the drone at their creation, and do so by using the
vp_com library which takes charge of reconnecting to the drone when necessary.

These threads, and the required initialization, are created and managed by a ardrone_tool_main
function, also provided by the ARDroneTool in the ardrone_tool.c file.

All a programmer has to do is then fill the desired callback functions with some application
specific code. Navdata can be processed as described in section 5.3. The video frames can be
retrieved as mentionned in 5.6.

3.4 The AR.Drone Engine - only for Apple iOS devices

The AR.Drone Engine (ControlEngine/ folder) provides all the AR.Drone 2.0 applications for
iOS Device with common methods for managing the drone, managing touch/tilt controls and
special events on the iOS Device , and provide decoded video datas for display.

It is meant to be a common base for all iOS applications, in order to provide a common drone
API and user interface (common controls, setting menus, etc.). The Control Engine API is the
only interface to the drone from the iOS application. It is the Control Engine task to acces the
ARDroneLIB .

The AR.Drone Engine automatically opens, receives and decodes video stream coming from
AR.Drone . The AR.Drone Engine does not render the decoded frames on screen. The applica-
tion is in charge of displaying frames.

The AR.Drone Engine also provide an HUD containing different input buttons and informa-
tions about the AR.Drone state:

The input buttons are :

• Back : return to the application home screen, and pause the ARDroneTool . (can be
disabled in HUD configuration)

• Settings : display the AR.Drone settings screen.
• Emergency : Stop the AR.Drone engines, regardless of its current state.
• Switch : Switch between the different cameras of the AR.Drone . (can be disabled in HUD

configuration)
• Record : Start/stop the video recording. (can be disabled in HUD configuration)
• Screenshot : Take a photo from the AR.Drone front facing camera. (can be disabled in

HUD configuration)
• Take-Off / Landing : Take off AR.Drone (if landed) or Land AR.Drone (if flying). Take-Off

button also reset emergency state if needed.
2The server won’t be available until the release of AR.FreeFlight 2.1

17

The AR.Drone state informations are:

• Battery level : Provide information about the AR.Drone battery level. (numeric percent-
age can be disabled in HUD configuration)

• Wifi indicator : Provide a quality estimation of the WiFi link with the AR.Drone
• USB indicator (only on AR.Drone 2.0) : If an USB key is plugged, display the remaining

record time on the USB drive.
• Warning message label : Display various warning/emergency messages described below.
• PopUp view : display various temporary messages to the user (can be closed).

Possible warning messages are :

• CONTROL LINK NOT AVAILABLE : WiFi connection lost.
• START NOT RECEIVED : AR.Drone didn’t receive the take off command.
• CUT OUT EMERGENCY : One or more motor(s) was stopped by environment.
• MOTORS EMERGENCY : One or more motor(s) is not responding.
• CAMERA EMERGENCY : One or more camera(s) is not responding.
• PIC WATCHDOG EMERGENCY : Navboard is not responding.
• PIC VERSION EMERGENCY : Navboard was not correctly updated.
• TOO MUCH ANGLE EMERGENCY : AR.Drone euler angles went too high. Motors shut-

down to prevent bad behaviors.
• BATTERY LOW EMERGENCY : Battery too low (automatic landing).
• USER EMERGENCY : User pressed the Emergency button.
• ULTRASOUND EMERGENCY : Ultrasound sensor is not responding.
• UNKNOWN EMERGENCY : The reason of the emergency state is not known by the ap-

plication (should not happen if the application is up-to-date)
• VIDEO CONNECTION ALERT : The video stream can’t be retrieved.
• BATTERY LOW ALERT : Battery is too low to take-off again. No changes if already flying.
• ULTRASOUND ALERT : Ultrasound sensor can’t determine AR.Drone altitude.
• VISION ALERT : No speed estimation from bottom facing camera.

4 ARDroneLIB and
ARDroneTool functions

Here are discussed the functions provided by the ARDroneLIB to manage and control the
drone.

Important
Those functions are meant to be used along with the whole ARDroneLIB and ARDroneTool
framework.

You can use them when building your own application as described in chapter 5 or when
modifying the examples.

They cannot be used when writing an application from scratch; you will then have to reim-
plement your own framework by following the specifications of the AT commands (chapter 6),
navigation data (section 7.1), and video stream (section 7.2).

Most of them are declared in file ardrone_api.h of the SDK.

4.1 Drone control functions

ardrone_tool_set_ui_pad_start

Summary : Take off - Land

Corresponding AT command : AT*REF

Args : (int value : take off flag)

Description :
Makes the drone take-off (if value=1) or land (if value=0).
When entering an emergency mode, the client program should call this function with a zero
argument to prevent the drone from taking-off once the emergency has finished.

19

20

ardrone_tool_set_ui_pad_select

Summary : Send emergency signal / recover from emergency

Corresponding AT command : AT*REF

Args : (int value : emergency flag)

Description :
When the drone is in a normal flying or ready-to-fly state, use this command with value=1 to
start sending an emergency signal to the drone, i.e. make it stop its engines and fall.

When the drone is in an emergency state, use this command with value=1 to make the drone
try to resume to a normal state.

Once you sent the emergency signal, you must check the drone state in the navdata and wait
until its state is actually changed. You can then call this command with value=0 to stop sending
the emergency signal.

ardrone_at_set_progress_cmd

Summary : Moves the drone

Corresponding AT command : AT*PCMD

Args : (

int flags : Flag enabling the use of progressive commands and the new Com-
bined Yaw control mode

float phi : Left/right angle ∈ [−1.0;+1.0]
float theta : Front/back angle ∈ [−1.0;+1.0]
float gaz : Vertical speed ∈ [−1.0;+1.0]
float yaw : Angular speed ∈ [−1.0;+1.0]

)

Description :
This function makes the drone move in the air. It has no effect when the drone lies on the
ground.

The drone is controlled by giving as a command a set of four parameters :

• a left/right bending angle, with 0 being the horizontal plane, and negative values bend-
ing leftward

• a front/back bending angle, with 0 being the horizontal plane, and negative values bend-
ing frontward

• a vertical speed
• an angular speed around the yaw-axis

In order to allow the user to choose between smooth or dynamic moves, the arguments of
this function are not directly the control parameters values, but a percentage of the maximum
corresponding values as set in the drone parameters. All parameters must thus be floating-
point values between −1.0 and 1.0.

21

The flags argument is a bitfiels containing the following informations :

• Bit 0 : when Bit0=0 the drone will enter the hovering mode, i.e. try to stay on top of a fixed
point on the ground, else it will follow the commands set as parameters.

• Bit 1 : when Bit1=1 AND CONTROL:control_level configuration Bit1=1, the new Com-
bined Yaw mode is activated. This mode includes a complex hybridation of the phi pa-
rameter to generate complete turns (phi+yaw).

ardrone_at_set_progress_cmd_with_magneto

Summary : Moves the drone (allow Absolute Control mode)

Corresponding AT command : AT*PCMD_MAG

Args : (

int flags : Flag enabling the use of progressive commands
and the new Combined Yaw control mode

float phi : Left/right angle ∈ [−1.0;+1.0]
float theta : Front/back angle ∈ [−1.0;+1.0]
float gaz : Vertical speed ∈ [−1.0;+1.0]
float yaw : Angular speed ∈ [−1.0;+1.0]
float magneto_psi : Angle of controlling device from north

∈ [−1.0;+1.0]
float magneto_psi_accuracy : Accuracy of the magneto_psi value ∈ [−1.0;+1.0]

)

Description :
This function makes the drone move in the air. It has no effect when the drone lies on the
ground.

The drone is controlled by giving as a command a set of four parameters :

• a left/right bending angle, with 0 being the horizontal plane, and negative values bend-
ing leftward

• a front/back bending angle, with 0 being the horizontal plane, and negative values bend-
ing frontward

• a vertical speed
• an angular speed around the yaw-axis

In order to allow the user to choose between smooth or dynamic moves, the arguments of
this function are not directly the control parameters values, but a percentage of the maximum
corresponding values as set in the drone parameters. All parameters must thus be floating-
point values between −1.0 and 1.0.

The flags argument is a bitfiels containing the following informations :

• Bit 0 : when Bit0=0 the drone will enter the hovering mode, i.e. try to stay on top of a fixed
point on the ground, else it will follow the commands set as parameters.

• Bit 1 : when Bit1=1 AND CONTROL:control_level configuration Bit1=1, the new Com-
bined Yaw mode is activated. This mode includes a complex hybridation of the phi pa-
rameter to generate complete turns (phi+yaw).

22

• Bit 2 : when Bit2=1, the Absolute Control mode is activated (only for AR.Drone 2.0).
All the commands will be considered in the controller frame instead of the AR.Drone
2.0 frame (e.g. front/back commands are relative to the user front/back, and not the
AR.Drone 2.0 front/back)

5 Creating an application
with ARDroneTool

The ARDroneTool library includes all the code needed to start your application. All you have
to do is writing your application specific code, and compile it along with the ARDroneLIB
library to get a fully functional drone client application which will connect to the drone and
start interacting with it.

This chapter shows you how to quickly get a customized application that suits your needs.

You can try to immediately start customizing your own application by reading section 5.1, but
it is recommended you read the whole chapter to understand what is going on inside.

5.1 Quick steps to create a custom AR.Drone 2.0 application

The fastest way to get an up and running application is to copy the SDK Demo application
folder and bring the following modifications to suit your needs :

• create a new thread and add it to the THREAD_TABLE structure to send commands in-
dependently from the above-mentioned events (more details in 5.5)

• call the ardrone_tool_main function from your application.

• create any needed navdata handler and add it to the ardrone_navdata_handler_table.

To compile your customized demo, please refer to the tutorials.

23

24

5.2 Customizing the client initialization

The ARDroneTool library includes a custom ardrone_tool_main function with all the code
needed to start your application. All you have to do is writing your application specific code,
and compile it along with the ARDroneLIB library and call this function to get a fully func-
tional drone client application.

Listing 5.1 shows the ardrone_tool_main function for the ARDrone application. It is located in
the file ardrone_tool.c and should not require any modification. Every application you create
will have a ardrone_tool_main function that is almost identical to this one.

This function performs the following tasks :

• Configures WIFI network.
• Initializes the communication ports (AT commands, Navdata, Video and Control).
• Calls the ardrone_tool_init_custom function. Its prototype is defined in ardrone_tool.h

file, and must be defined and customized by the developer (see example 5.2). In this
function we can find:

– the local initialization for your own application.

– the initialization of input devices, with the ardrone_tool_input_init function

– the starting off all threads except the navdata_update and ardrone_control that are
started by the ardrone_tool_main function.

• Starts the thread navdata_update that is located in ardrone_navdata_client.c file. To run
properly this routine, the user must declare a table ardrone_navdata_handler_table. List-
ing 3 shows how to declare an ardrone_navdata_handler table. The MACRO is located
in ardrone_navdata_client.h file.

• Starts the thread ardrone_control that is located in ardrone_control.c file.
• Acknowledge the Drone to indicate that we are ready to receive the Navdata.
• At last call ardrone_tool_update function in loop. The application does not return from

this function until it quits. This function retrieves the device information to send to the
Drone. The user can declare ardrone_tool_update_custom function, that will be called by
the ardrone_tool_update function.

25

Listing 5.1: Application initialization with ARDroneLIB

int ardrone_tool_main(int argc, char *argv[])
{

...
ardrone_tool__setup__com(NULL);
ardrone_tool_init(argc, argv);

while(SUCCEED(res) && ardrone_tool_exit() == FALSE)
{

res = ardrone_tool_update();
}

res = ardrone_tool_shutdown();
}

Listing 5.2: Custom application initialization example

C_RESULT ardrone_tool_init_custom(int argc, char **argv)
{
gtk_init(&argc, &argv);
/// Init specific code for application
ardrone_navdata_handler_table[NAVDATA_IHM_PROCESS_INDEX].data = &cfg;
// Add inputs
ardrone_tool_input_add(&gamepad);
// Sample run thread with ARDrone API.
START_THREAD(ihm, &cfg);
return C_OK;
}

5.3 Using navigation data

During the application lifetime, the ARDroneTool library automatically calls a set of user-
defined callback functions every time some navdata arrive from the drone.

Declaring such a callback function is done by adding it to the NAVDATA_HANDLER_TABLE
table. In code example 5.3, a navdata_ihm_process function, written by the user, is declared.

Note : the callback function prototype must be the one used in code example 5.3.

26

Listing 5.3: Declare a navdata management function

BEGIN_NAVDATA_HANDLER_TABLE //Mandatory
NAVDATA_HANDLER_TABLE_ENTRY(navdata_ihm_init, navdata_ihm_process,

navdata_ihm_release,
NULL)
END_NAVDATA_HANDLER_TABLE //Mandatory
//Definition for init, process and release functions.
C_RESULT navdata_ihm_init(mobile_config_t* cfg)
{ ... }

C_RESULT navdata_ihm_process(const navdata_unpacked_t* const pnd)
{ ... }

C_RESULT navdata_ihm_release(void)
{ ... }

Listing 5.4: Example of navdata management function

/* Receving navdata during the event loop */
inline C_RESULT demo_navdata_client_process(const navdata_unpacked_t* const

navdata)
{

const navdata_demo_t* const nd = &navdata->navdata_demo;

printf("Navdata for flight demonstrations\n");

printf("Control state : %s\n",ctrl_state_str(nd->ctrl_state));
printf("Battery level : %i/100\n",nd->vbat_flying_percentage);
printf("Orientation : [Theta] %f [Phi] %f [Psi] %f\n",nd->theta,nd->phi,nd->

psi);
printf("Altitude : %i\n",nd->altitude);
printf("Speed : [vX] %f [vY] %f\n",nd->vx,nd->vy);

printf("\033[6A"); // Ansi escape code to go up 6 lines

return C_OK;
}

27

5.4 Command line parsing for a particular application

The user can implement functions to add arguments to the default command line. Functions
are defined in <ardrone_tool/ardrone_tool.h> file :

• ardrone_tool_display_cmd_line_custom (Not mandatory): Displays help for particular
commands.

• ardrone_tool_check_argc_custom (Not mandatory) : Checks the number of arguments.
• ardrone_tool_parse_cmd_line_custom (Not mandatory): Checks a particular line com-

mand.

5.5 Thread management in the application

In the preceding section, we showed how the ARDrone application was initialized and how
it manages the Navdata and control events. In addition to those aspects of the application
creation, there are also smaller details that need to be considered before building a final appli-
cation.

It’s the responsibility of the user to manage the threads. To do so, we must declare a thread
table with MACRO defined in vp_api_thread_helper.h file. Listing 5.5 shows how to declare a
threads table.

The threads navdata_update and ardrone_control do not need to be launched and released;
this is done by the ARDroneMain for all other threads, you must use the MACRO named
START_THREAD and JOIN_THREAD.

In the preceding sections, we have seen that the user must declare functions and tables
(ardrone_tool_init_custom, ardrone_tool_update_custom, ardrone_navdata_handler_table and
threads table), other objects can be defined by the user but it is not mandatory :

• adrone_tool_exit function, which should return true to exit the main loop
• ardrone_tool_shutdown function where you can release the resources.

These functions are defined in ardrone_tool.h.

Listing 5.5: Declaration of a threads table

BEGIN_THREAD_TABLE //Mandatory
THREAD_TABLE_ENTRY(ihm, 20) // For your own application
THREAD_TABLE_ENTRY(navdata_update, 20) //Mandatory
THREAD_TABLE_ENTRY(ardrone_control, 20) //Mandatory
THREAD_TABLE_ENTRY(video_stage, 20) //Mandatory
THREAD_TABLE_ENTRY(video_recorder, 20) //Mandatory for AR.Drone 2.0
END_THREAD_TABLE //Mandatory

28

5.6 Managing the video stream

This SDK includes methods to manage the video stream. The whole process is managed by
a video pipeline, built as a sequence of stages which perform basic steps, such as receiving the
video data from a socket, decoding the frames, and displaying them.

It is strongly recommended to have a look at the video_stage.c file in the code examples to
see how this works, and to modify it to suit your needs. In the examples a fully functionnal
pipeline is already created, and you will probably just want to modify the displaying part.

A stage is embedded in a structure named vp_api_io_stage_t that is defined in the file
<VP_Api/vp_api.h>.

Listing 5.6 shows how to add custom stages to the default video pipeline. This must be done
by your application before calling the START_TRHEAD function for video_stage.

29

Listing 5.6: Adding custom stages to the live video pipeline

#define STREAM_WIDHT 320
#define STREAM_HEIGHT 240
#define NB_PRE_STAGES 0
#define NB_POST_STAGES 1

//Alloc structs
specific_parameters_t * params = (specific_parameters_t *)vp_os_calloc(1,

sizeof(specific_parameters_t));
specific_stages_t * pre_stages = (specific_stages_t*)vp_os_calloc(1,

sizeof(specific_stages_t));
specific_stages_t * post_stages = (specific_stages_t*)vp_os_calloc(1,

sizeof(specific_stages_t));
vp_api_picture_t * in_picture = (vp_api_picture_t*) vp_os_calloc(1,

sizeof(vp_api_picture_t));
vp_api_picture_t * out_picture = (vp_api_picture_t*) vp_os_calloc(1,

sizeof(vp_api_picture_t));

// Mandatory for both AR.Drone 1.0 and 2.0
out_picture->format = PIX_FMT_RGB565;

// Mandatory for AR.Drone 1.0
in_picture->width = STREAM_WIDTH;
in_picture->height = STREAM_HEIGHT;

out_picture->framerate = 20;
out_picture->width = in_picture->width;
out_picture->height = in_picture->height;

out_picture->y_buf = vp_os_malloc(out_picture->width * out_picture->
height * 2); // RGB565 needs 2 bytes per pixel

out_picture->cr_buf = NULL;
out_picture->cb_buf = NULL;

out_picture->y_line_size = out_picture->width * 2; // RGB565 needs 2 bytes per
pixel

out_picture->cb_line_size = 0;
out_picture->cr_line_size = 0;

//Define the list of stages size
pre_stages->length = NB_PRE_STAGES;
post_stages->length = NB_POST_STAGES;

//Alloc the lists
pre_stages->stages_list = NULL;
post_stages->stages_list = (vp_api_io_stage_t*)vp_os_calloc(post_stages->length,

sizeof(vp_api_io_stage_t));

//Fill the POST-stages--
int postStageNumber = 0;

custom_video_display_stage_config_t cvdsc;
vp_os_memset (&cvdsc, 0x0, sizeof (cvdsc));
/* Initialize your display stage config here */
post_stages->stages_list[postStageNumber].type = VP_API_OUTPUT_LCD;
post_stages->stages_list[postStageNumber].cfg = (void *)&cvdsc;
post_stages->stages_list[postStageNumber++].funcs =

custom_video_display_stage_funcs;

params->in_pic = in_picture;
params->out_pic = out_picture;
params->pre_processing_stages_list = pre_stages;
params->post_processing_stages_list = post_stages;
params->needSetPriority = 0;
params->priority = 0;

START_THREAD(video_stage, params);

6 AT Commands

AT commands are text strings sent to the drone to control its actions.

Those strings are generated by the ARDroneLIB and ARDroneTool libraries, provided in the
SDK. Most developers should not have to deal with them. Advanced developers who would
like to rewrite their own AR.Drone middle ware can nevertheless send directly those com-
mands to the drone inside UDP packets on port UDP-5556, from their local UDP-port 5556
(using the same port numbers on both sides of the UDP/IP link is a requirement in the current
SDK).

Note : According to tests, a satisfying control of the AR.Drone 2.0 is reached by sending the
AT-commands every 30 ms for smooth drone movements. To prevent the drone from consid-
ering the WIFI connection as lost, two consecutive commands must be sent within less than 2
seconds.

31

32

6.1 AT Commands syntax

Strings are encoded as 8-bit ASCII characters, with a Carriage Return character (byte value
0D(16)), noted <CR>hereafter, as a newline delimiter.

One command consists in the three characters AT* (i.e. three 8-bit words with values 41(16),54(16),2a(16))
followed by a command name, and equal sign, a sequence number, and optionally a list of
comma-separated arguments whose meaning depends on the command.

A single UDP packet can contain one or more commands, separated by newlines (byte value
0A(16)). An AT command must reside in a single UDP packet. Splitting an AT command in two
or more UDP packets is not possible.

Example :

AT*PCMD_MAG=21625,1,0,0,0,0,0,0<CR>AT*REF=21626,290717696<CR>

The maximum length of the total command cannot exceed 1024 characters; otherwise the entire
command line is rejected. This limit is hard coded in the drone software.

Note : Incorrect AT commands should be ignored by the drone. Nevertheless, the client should
always make sure it sends correctly formed UDP packets.

Most commands will accept arguments, which can be of three different type :

• A signed integer, stored in the command string with a decimal representation (ex: the
sequence number)

• A string value stored between double quotes (ex: the arguments of AT*CONFIG)

• A single-precision IEEE-754 floating-point value (aka. float). Those are never directly
stored in the command string. Instead, the 32-bit word containing the float will be con-
sidered as a 32-bit signed integer and printed in the AT command (an example is given
below).

6.2 Commands sequencing

In order to avoid the drone from processing old commands, a sequence number is associated
to each sent AT command, and is stored as the first number after the "equal" sign. The drone
will not execute any command whose sequence number is less than the last valid received AT-
Command sequence number. This sequence number is reset to 1 inside the drone every time
a client disconnects from the AT-Command UDP port (currently this disconnection is done by
not sending any command during more than 2 seconds), and when a command is received
with a sequence number set to 1.

A client MUST thus respect the following rule in order to successfully execute commands on
the drone :

33

• Always send 1 as the sequence number of the first sent command.

• Always send commands with an increasing sequence number. If several software threads
send commands to the drone, generating the sequence number and sending UDP packets
should be done by a single dedicated function protected by a mutual exclusion mecha-
nism.

6.3 Floating-point parameters

Let’s see an example of using a float argument and consider that a progressive command is to
be sent with an argument of −0.8 for the pitch. The number −0.8 is stored in memory as a 32-
bit word whose value is BF4CCCCD(16), according to the IEEE-754 format. This 32-bit word
can be considered as holding the 32-bit integer value −1085485875(10). So the command to send
will be AT*PCMD_MAG=xx,xx,−1085485875,xx,xx,xx,xx.

Listing 6.1: Example of AT command with floating-point arguments

assert(sizeof(int)==sizeof(float));
sprintf(my_buffer,"AT*PCMD_MAG,%d,%d,%d,%d,%d,%d,%d\r",
sequence_number,

(int)(&my_floating_point_variable_1),

(int)(&my_floating_point_variable_2),

(int)(&my_floating_point_variable_3),,

(int)(&my_floating_point_variable_4),

(int)(&my_floating_point_variable_5),

(int)(&my_floating_point_variable_6));

The ARDroneLIB provides a C union to ease this conversion. You can use the _float_or_int_t
to store a float or an int in the same memory space, and use it as any of the two types.

34

6.4 AT Commands summary

AT command Arguments1 Description
AT*REF input Takeoff/Landing/Emergency stop command
AT*PCMD flag, roll, pitch,

gaz, yaw
Move the drone

AT*PCMD_MAG flag, roll, pitch,
gaz, yaw, psi, psi
accuracy

Move the drone (with Absolute Control support)

AT*FTRIM - Sets the reference for the horizontal plane (must be
on ground)

AT*CONFIG key, value Configuration of the AR.Drone 2.0
AT*CONFIG_IDS session, user, ap-

plication ids
Identifiers for AT*CONFIG commands

AT*COMWDG - Reset the communication watchdog
AT*CALIB device number Ask the drone to calibrate the magnetometer

(must be flying)

1apart from the sequence number

35

6.5 Commands description

AT*REF
Summary : Controls the basic behaviour of the drone (take-off/landing, emergency

stop/reset)

Corresponding API function : ardrone_tool_set_ui_pad_start
Corresponding API function : ardrone_tool_set_ui_pad_select

Syntax : AT*REF=%d,%d<CR>

Argument 1 : the sequence number
Argument 2 : an integer value in [0..232 − 1], representing a 32 bit-wide bit-field

controlling the drone.

Description :
Send this command to control the basic behaviour of the drone. With SDK version 1.5, only
bits 8 and 9 are used in the control bit-field. Bits 18, 20, 22, 24 and 28 should be set to 1. Other
bits should be set to 0.

Bits 31 .. 10 9 8 7 .. 0
Usage Do not use Takeoff/Land Emergency Do not use

(aka. "start bit") (aka. "select bit")

Bit 9 usages :

Send a command with this bit set to 1 to make the drone take-off. This command
should be repeated until the drone state in the navdata shows that drone actually
took off. If no other command is supplied, the drone enters a hovering mode and
stays still at approximately 1 meter above ground.
Send a command with this bit set to 0 to make the drone land. This command should
be repeated until the drone state in the navdata shows that drone actually landed,
and should be sent as a safety whenever an abnormal situation is detected.
After the first start AT-Command, the drone is in the taking-Off state, but still accepts
other commands. It means that while the drone is rising in the air to the "1-meter-
high-hovering state", the user can send orders to move or rotate it.

Bit 8 usages :

When the drone is a "normal" state (flying or waiting on the ground), sending a com-
mand with this bit set to 1 (ie. sending an "emergency order") makes the drone enter
an emergency mode. Engines are cut-off no matter the drone state. (ie. the drone
crashes, potentially violently).
When the drone is in an emergency mode (following a previous emergency order
or a crash), sending a command with this bit set to 1 (ie. sending an "emergency
order") makes the drone resume to a normal state (allowing it to take-off again), at
the condition the cause of the emergency was solved.
Send an AT*REF command with this bit set to 0 to make the drone consider following
"emergency orders" commands (this prevents consecutive "emergency orders" from
flip-flopping the drone state between emergency and normal states).

36

Note :
The names "start" and "select" come from previous versions of the SDK when take-off and
landing were directly managed by pressing the select and start buttons of a game pad.

Example :
The following commands sent in a standalone UDP packet will send an emergency signal :

AT*REF=1,290717696<CR>AT*REF=2,290717952<CR>AT*REF=3,290717696<CR>

AT*PCMD / AT*PCMD_MAG

Summary : Send progressive commands - makes the drone move (translate/rotate).

Corresponding API function : ardrone_at_set_progress_cmd
Corresponding API function : ardrone_at_set_progress_cmd_with_magneto

Syntax : AT*PCMD=%d,%d,%d,%d,%d,%d<CR>
Syntax : AT*PCMD_MAG=%d,%d,%d,%d,%d,%d,%d,<CR>

Argument 1 : the sequence number
Argument 2 : flag enabling the use of progressive commands and/or the Com-

bined Yaw mode (bitfield)
Argument 3 : drone left-right tilt - floating-point value in range [−1..1]
Argument 4 : drone front-back tilt - floating-point value in range [−1..1]
Argument 5 : drone vertical speed - floating-point value in range [−1..1]
Argument 6 : drone angular speed - floating-point value in range [−1..1]
Argument 7 : magneto psi (only for AT*PCMD_MAG) - floating-point value in

range [−1..1]
Argument 8 : magneto psi accuracy (only for AT*PCMD_MAG) - floating-point

value in range [−1..1]

Description :
This command controls the drone flight motions.

Always set the flag (argument 2) bit zero to one to make the drone consider the other argu-
ments. Setting it to zero makes the drone enter hovering mode (staying on top of the same point
on the ground).

Bits 31 .. 3 2 1 0
Usage Do not use Absolute Control Combined yaw Progressive commands

enable enable enable

The left-right tilt (aka. "drone roll" or phi angle) argument is a percentage of the maximum
inclination as configured here. A negative value makes the drone tilt to its left, thus flying
leftward. A positive value makes the drone tilt to its right, thus flying rightward.

The front-back tilt (aka. "drone pitch" or theta angle) argument is a percentage of the maximum
inclination as configured here. A negative value makes the drone lower its nose, thus flying
frontward. A positive value makes the drone raise its nose, thus flying backward.

37

The drone translation speed in the horizontal plane depends on the environment and cannot
be determined. With roll or pitch values set to 0, the drone will stay horizontal but continue
sliding in the air because of its inertia. Only the air resistance will then make it stop.

The vertical speed (aka. "gaz") argument is a percentage of the maximum vertical speed as
defined here. A positive value makes the drone rise in the air. A negative value makes it go
down.

The angular speed argument is a percentage of the maximum angular speed as defined here.
A positive value makes the drone spin right; a negative value makes it spin left.

The psi argument is a normalized psi angle from north provided by magnetometer sensor as
defined here. An angle value of 0 means that the controller is facing north. A positive value
means that the controller is oriented to the east and a negative value is orienting to the west. 1
and -1 value are the same orientation. (only for AT*PCMD_MAG)

The psi accuracy argument is an accuracy of the magnetometer sensor. This value represents
the maximum deviation of where the magnetic heading may differ from the actual geomagnetic
heading in degrees. Negative values indicates the invalid heading. (only for AT*PCMD_MAG)

AT*FTRIM

Summary : Flat trims - Tells the drone it is lying horizontally

Corresponding API function : ardrone_at_set_flat_trim

Syntax : AT*FTRIM=%d,<CR>

Argument 1 : the sequence number

Description :
This command sets a reference of the horizontal plane for the drone internal control system.

It must be called after each drone start up, while making sure the drone actually sits on a
horizontal ground. Not doing so before taking-off will result in the drone not being able to
stabilize itself when flying, as it would not be able to know its actual tilt. This command MUST
NOT be sent when the AR.Drone is flying.

When receiving this command, the drone will automatically adjust the trim on pitch and roll
controls.

AT*CALIB

Summary : Magnetometer calibration - Tells the drone to calibrate its magnetometer

Corresponding API function : ardrone_at_set_calibration

Syntax : AT*CALIB=%d,%d,<CR>

Argument 1 : the sequence number
Argument 2 : Identifier of the device to calibrate - Choose this identifier from

ardrone_calibration_device_t.

http://en.wikipedia.org/wiki/Trim_tab

38

Description :
This command asks the drone to calibrate the drone magnetometer. This command MUST be
sent when the AR.Drone is flying.

When receiving this command, the drone will automatically calibrate its magnetometer by
spinning around itself for a few time.

AT*CONFIG
Summary : Sets an configurable option on the drone

Corresponding API function : ardrone_at_set_toy_configuration

Syntax : AT*CONFIG=%d,%s,%s<CR>

Argument 1 : the sequence number
Argument 2 : the name of the option to set, between double quotes (byte with

hex.value 22h)
Argument 3 : the option value, between double quotes

Description :
Most options that can be configured are set using this command. The list of configuration
options can be found in chapter 8.

AT*CONFIG_IDS

Summary : Identifiers for the next AT*CONFIG command

Corresponding API function : ardrone_at_set_toy_configuration

Syntax : AT*CONFIG_IDS=%d,%s,%s,%s<CR>

Argument 1 : the sequence number
Argument 2 : Current session id
Argument 3 : Current user id
Argument 4 : Current application id

Description :
While in multiconfiguration, you must send this command before every AT*CONFIG. The con-
fig will only be applied if the ids must match the current ids on the AR.Drone.
ARDroneTool does this automatically.

AT*COMWDG

Summary : reset communication watchdog

7 Incoming data streams

The drone provides its clients with two main data streams : the navigation data (aka. navdata)
stream, and the video stream.

This chapter explains their format. This is useful for developers writing their own middleware.
Developers using ARDroneTool can skip this part and directly access these data from the
callback function triggered by ARDroneTool when receiving incoming data from the drone
(see 5.3, 7.2 and 7.3).

7.1 Navigation data

The navigation data (or navdata) is are a mean given to a client application to receive periodi-
cally (< 5ms) information on the drone status (angles, altitude, camera, velocity, tag detection
results ...).

This section shows how to retrieve them and decode them. Do not hesitate to use network
traffic analysers like Wireshark to see how they look like.

7.1.1 Navigation data stream

The navdata are sent by the drone from and to the UDP port 5554. Information are stored is a
binary format and consist in several sections blocks of data called options.

Each option consists in a header (2 bytes) identifying the kind of information contained in it,
a 16-bit integer storing the size of the block, and several information stored as 32-bit integers,
32-bit single precision floating-point numbers, or arrays. All those data are stored with little-
endianess.

Header Drone Sequence Vision Option 1 . . . Checksum block
0x55667788 state number flag id size data . . . cks id size cks data
32-bit 32-bit 32-bit 32-bit 16-bit 16-bit 16-bit 16-bit 32-bit
int. int. int. int. int. int. int. int. int.

39

40

All the blocks share this common structure :

Listing 7.1: Navdata option structure

typedef struct _navdata_option_t {
uint16_t tag; /* Tag for a specific option */
uint16_t size; /* Length of the struct */
uint8_t data[]; /* Structure complete with the special tag */
} navdata_option_t;

The most important options are navdata_demo_t, navdata_cks_t, navdata_host_angles_t and
navdata_vision_detect_t. Their content can be found in the C structure, mainly in the navdata_common.h.

7.1.2 Initiating the reception of Navigation data

To receive Navdata, you must send a packet of some bytes on the port NAVDATA_PORT of host.

Two cases :

• the drone starts in bootstrap mode, only the status and the sequence counter are sent.

• the Drone is always started, Navdata demo are send.

To exit BOOTSTRAP mode, the client must send an AT command in order to modify configura-
tion on the Drone. Send AT command: "AT*CONFIG=\"general:navdata_demo\",\"TRUE\"\\r".
Ack control command, send AT command: "AT*CTRL=0. The drone is now initialized and
sends Navdata demo. This mechanism is summarized by figure 7.1.

How do the client and the drone synchronize ?

The client application can verify that the sequence counter contained in the header structure of
NavData is growing.

There are two cases when the local (client side) sequence counter should be reset :

• the drone does not receive any traffic for more that 50ms; it will then set its ARDRONE_COM_WATCHDOG_MASK
bit in the ardrone_state field (2nd field) of the navdata packet. To exit this mode, the client
must send the AT Command AT*COMWDG.

• The drone does not receive any traffic for more than 2000ms; it will then stop all com-
munication with the client, and internally set the ARDRONE_COM_LOST_MASK bit in its state
variable. The client must then reinitialize the network communication with the drone.

41

24 (54)

Prepared Title
Stéphane Piskorski A.R. Drone Developer Guide
Approved Date Revisio

n
File

M. Lefébure 26/07/2010 4.0 AR_Drone_Developer_Guide_Release_4.0_proposal.doc

Mechanism to receive NavData demo:

How does sync with the host ?
Verify that the sequence counter contained in the header structure of NavData is growing.
You must reset the local sequence counter for two reasons :

- - The host does not receive more traffic> 50ms in this case it falls into a state
AR_DRONE_COM_WATCHDOG_MASK. To exit this mode, the client must send the AT
Command AT*COMWDG .

- The host does not receive more traffic> 2000ms, in this case it falls into a state
AR_DRONE_COM_LOST_MASK. To exit this mode, the client will again initialize com with
the host.

How to check the integrity of NavData?
Compute a checksum of data and compare them with the value contained in the structure [navdata_cks_t] is
the last option in the packet.

HOST CLIENT

Send AT command ("AT*CONFIG=\"general:navdata_demo\",\"TRUE\"\r")

PROCESS
BOOTSTRAP

Send status to NAVDATA_PORT with
AR_DRONE_COMMAND_MASK = TRUE

PROCESS AT
command

Send AT command (ACK_CONTROL_MODE)

Exit BOOTSTRAP mode
and switch in Navdata
demo mode.

Sending continuous navdata demo

Ready to
process next
command

Send one packet to NAVDATA_PORT
Init navdata
with ip client

Send at least the status to NAVDATA_PORT
Check status bit
mask is activated:
AR_DRONE_NAVDATA
_BOOTSTRAP

Figure 7.1: Navdata stream initiation

How to check the integrity of NavData ?

Compute a checksum of data and compare them with the value contained in the structure
[navdata_cks_t]. The checksum is always the last option (data block) in the navdata packet.

Note : this checksum is already computed by ARDroneLIB .

42

7.1.3 Augmented reality data stream

In the previously described NavData, there are informations about vision-detected tags. The
goal is to permit to the host to add some functionalities, like augmented reality features. The
principle is that the AR.Drone sends informations on recognized pre-defined tags, like type
and position.

Listing 7.2: Navdata option for vision detection

typedef struct _navdata_vision_detect_t {
uint16_t tag;
uint16_t size;
uint32_t nb_detected;
uint32_t type[NB_NAVDATA_DETECTION_RESULTS];
uint32_t xc[NB_NAVDATA_DETECTION_RESULTS];
uint32_t yc[NB_NAVDATA_DETECTION_RESULTS];
uint32_t width[NB_NAVDATA_DETECTION_RESULTS];
uint32_t height[NB_NAVDATA_DETECTION_RESULTS];
uint32_t dist[NB_NAVDATA_DETECTION_RESULTS];
float32_t orientation_angle[NB_NAVDATA_DETECTION_RESULTS];
matrix33_t rotation[NB_NAVDATA_DETECTION_RESULTS];
vector31_t translation[NB_NAVDATA_DETECTION_RESULTS];
uint32_t camera_source[NB_NAVDATA_DETECTION_RESULTS];
} __attribute__ ((packed)) navdata_vision_detect_t;

The drone can detect up to four tags or oriented roundel. The kind of detected tag, and which
camera to use, can be set by using the configuration parameter detect_type.

Let’s detail the values in this block :

• nb_detected: number of detected tags or oriented roundel.
• type[i]: Type of the detected tag or oriented roundel #i ; see the CAD_TYPE enumeration.
• xc[i], yc[i]: X and Y coordinates of detected tag or oriented roundel #i inside the picture,

with (0, 0) being the top-left corner, and (1000, 1000) the right-bottom corner regardless
the picture resolution or the source camera.

• width[i], height[i]: Width and height of the detection bounding-box (tag or oriented
roundel #i), when applicable.

• dist[i]: Distance from camera to detected tag or oriented roundel #i in centimeters, when
applicable.

• orientation_angle[i] : Angle of the oriented roundel #i in degrees in the screen, when
applicable.

• rotation[i] : Reserved for future use.
• translation[i] : Reserved for future use.
• camera_source[i] : Camera Source which detected tag or oriented roundel #i.

43

7.2 The AR.Drone 1.0 video stream

Two codecs are available UVLC (MJPEG-like) and P264 (H.264-like).

UVLC features :

colorspace YUV 4:2:0
transform 8x8 dct

entropy coding RLE+UVLC

P264 vs H264 :

Feature P264 H264 baseline profile
pseudo dct 4x4 pseudo dct 4x4

transform 4x4 luma DC transform 4x4 luma DC transform
2x2 Chroma DC transform 2x2 Chroma DC transform

frame type I/P I/P
intra 4x4 prediction mode 0-8 mode 0-8

intra 16x16 prediction mode 0-3 mode 0-3
intra 8x8 chroma prediction mode 0-3 mode 0-3

macroblock partition 16x16 only 16x16,16x8,8x16,8x8,8x4,4x8,4x4
for motion compensation

motion compensation precision 1 pixel 1/4 pixel
entropy RLE+UVLC CAVLC

7.2.1 Image structure

An image is split in groups of blocks (GOB), which correspond to 16-lines-height parts of the
image, split as shown below :

GOB #0

GOB #1

GOB #2

GOB #3

GOB #4

GOB #5

GOB #6

GOB #7

Figure 7.2: Example image (source : http://en.wikipedia.org/wiki/YCbCr)

Each GOB is split in Macroblocks, which represents a 16x16 image.

http://en.wikipedia.org/wiki/YCbCr

44

 MBlock #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Each macroblock contains informations of a 16x16 image, in Y CBCR format, type 4:2:0.

(see http://en.wikipedia.org/wiki/YCbCr,
http://en.wikipedia.org/wiki/Chroma_subsampling,
http://www.ripp-it.com/glossaire/mot-420-146-lettre-tous-Categorie-toutes.
html)

RGB image Y image CB image CR image

The 16x16 image is finally stored in the memory as 6 blocks of 8x8 values:

• 4 blocks (Y0, Y1, Y2 and Y3) to form the 16x16 pixels Y image of the luma component
(corresponding to a greyscale version of the original 16x16 RGB image).

• 2 blocks of down-sampled chroma components (computed from the original 16x16 RGB
image):

– Cb: blue-difference component (8x8 values)
– Cr: red-difference component (8x8 values)

Y0 Y1
Y2 Y3 CB CR

16

16

8

8

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/Chroma_subsampling
http://www.ripp-it.com/glossaire/mot-420-146-lettre-tous-Categorie-toutes.html
http://www.ripp-it.com/glossaire/mot-420-146-lettre-tous-Categorie-toutes.html

45

7.2.2 UVLC codec overview

UVLC codec is very closed to JPEG please refer to http://en.wikipedia.org/wiki/JPEG
for more details.

Step 1: each 8x8 block of the current macroblock is transformed by DCT.
Step 2: each element of the transformed 8x8 block is divided by a quantization coefficient. The
quantization matrix used in UVLC codec is defined by:

QUANT_IJ(i, j, q) = (1 + (1 + (i) + (j)) ∗ (q))

where i,j are the index of current element in the 8x8 block, and q is a number between 1 and 30.
A low q, produces a better image but more bytes are used to encode it
Step 3: the block 8x8 is then zig zag reordered.
Step 4: the block 8x8 is then encoded using UVLC method (see entropy coding section)

8x8 image
block to
compute

Forward DCT 8x8 DCT
image block

QUANTIZATION

8x8
quantified

block

Zig-zag
ordering

-26; -3: 0; -3; -2;
-6; 2; -4; 1; -4; 1;
1; 5; 1; 2; -1; 1;
-1; 2; 0; 0; 0; 0;
0; -1; -1; EOB

ZZ-list of 16 bits
data, without the
last “0” values.

Entropy
encoding

Final stream
(compressed

data)

DC value
Proprietary

format

http://en.wikipedia.org/wiki/JPEG

46

7.2.3 P264 codec overview

Since the encoding concepts involved comes from the H264 specification, this part is only a
brief description of P264. Please refer to the Recommendation ITU-T H.264 for further details.

7.2.3.1 I Frame

An I frame is a complete frame. No reference to any previous frame is needed to decode it. Like
H264, P264 makes a spatial prediction for each macroblock based on the neighbouring pixels.

Several mode are available for I macroblock:

• intra 16x16 - a prediction is made over the all 16x16 macroblock.
• intra 4x4 - the macroblock is divided into 16 4x4 blocks. Each 4x4 block has its own intra

prediction

Once the intra prediction is done, it is subtracted from the current macroblock. The residual
data is then processed with classical steps : transform, quantization, entropy coding. (see resid-
ual data section)

7.2.3.1.1 Luma intra 16x16 prediction
4 modes are available:

• VERTICAL - extends the 16 upper neighbour pixels over the all 16x16 macroblock
• HORIZONTAL - extends the 16 left neighbour pixels over the all 16x16 macroblock
• DC - fills the 16x16 block with the mean of the 16 upper and the 16 left neighbour pixels
• PLANE - makes interpolation of the 16 upper and the 16 left neighbour pixels

47

7.2.3.1.2 Luma intra 4x4 prediction
9 modes are available :

• VERTICAL_4x4_MODE
• HORIZONTAL_4x4_MODE
• DC_4x4_MODE
• DIAGONAL_DL_4x4_MODE
• DIAGONAL_DR_4x4_MODE
• VERTICAL_RIGHT_4x4_MODE
• HORIZONTAL_DOWN_4x4_MODE
• VERTICAL_LEFT_4x4_MODE
• HORIZONTAL_UP_4x4_MODE

7.2.3.1.3 Chroma 8x8 prediction
For chroma prediction, 4 modes are available :

• DC
• HORIZONTAL
• VERTICAL
• PLANE

Those modes are equivalent to luma intra 16x16 except for DC which is slightly different. Please
refer to H.264 specification for more details.

7.2.3.2 P Frame

While I frame performs a spatial prediction, P frames make predictions based on the previous
encoded frames.
For each macroblock, a reference is found in the previous frame by looking around the current
position. The motion vector is the distance between the reference in the previous picture and
the current macroblock to be encoded. The best reference is subtracted from the current mac-
roblock to form the residual data. The motion vector will be transmitted in the data stream so
that decoder could rebuild the frame.

48

The motion vector has a pixelic precision for luma component and half pixel precision for
chroma component due to chroma subsampling. Therefore Chroma needs to be interpolated
to access sub pixels (refer to h.264 specification).
Today, P264 doesn’t allow macroblock fragmentation for motion estimation. Only one motion
vector is computed for the entire 16x16 macroblock. The reference frame is always the previous
encoded/decoded frame.

7.2.3.3 Residual data

Once intra/inter prediction is done, it is subtracted from the current macroblock. The residual
data is then processed with the next scheme :
step 1: split the residual macroblock into 16 4x4 luma blocks and 4 4x4 chroma block for each
chroma component
step 2: apply pseudo dct 4x4 on each 4x4 block
step 3: quantize all 4x4 blocks
step 4: if current macroblock is encoded using a luma 16x16 prediction, collect all DC coeffi-
cients of each 4x4 luma block and apply an hadamard transformation (see h.264 spec)
step 5: for each chroma component collect the 4 chroma DC values and performs an 2x2
hadamard transform (see h.264 spec)
step 6: zigzag all AC blocks
step 7: entropy encoding

Note: step 1-6 are exactly the same for P264 and H264.

In fact in intra 4x4 coding, for each 4x4 block, the intra prediction is determined first then the
residual 4x4 block is processed from step 1 to step 3. Then the 4x4 block is reconstructed in
order to have the correct neigbouring pixels for the next 4x4 block intra prediction.

The order for luma (Y) and chroma (C) 4x4 block encoding is resume here :
Y0 Y1 Y4 Y5
Y2 Y3 Y6 Y7
Y8 Y9 Y12 Y13
Y10 Y11 Y14 Y15

C0 C1
C2 C3

49

7.2.4 Specific block entropy-encoding

The proprietary format used to encode blocks is based on a mix of RLE and Huffman coding (cf.
http://en.wikipedia.org/wiki/Run-length_encoding and http://en.wikipedia.
org/wiki/Huffman_coding).

To resume, the RLE encoding is used to optimize the many zero values of the list, and the
Huffman encoding is used to optimize the non-zero values.

Below will be shown the pre-defined sets of codewords ("dictionaries"), for RLE and Huffman
coding. Then, the process description and an example.

Note: For UVLC codec, the first value of the list (the "DC value") is not compressed, but 16 to
10 bits encoded. That’s not the case in P264.

Coarse Additionnal Size Value of run Range Length of run
1 1 0 0 1

0 1 2 1 1 1
0 0 1 x 4 (x) + 2 2 : 3 2

0 0 0 1 x x 6 (x x) +4 4 : 7 3
0 0 0 0 1 x x x 8 (x x x) +8 8 : 15 4

0 0 0 0 0 1 x x x x 10 (x x x x) +16 16 : 31 5
0 0 0 0 0 0 1 x x x x x 12 (x x x x x) +32 32 : 63 6

Coarse Additionnal Size Value of run Range Length of run
1 s 2 1 1

0 1 2 0 or EOB
0 0 1 x s 5 (x) + 2 ±2 : 3 2

0 0 0 1 x x s 7 (x x) +4 ±4 : 7 3
0 0 0 0 1 x x x s 9 (x x x) +8 ±8 : 15 4

0 0 0 0 0 1 x x x x s 11 (x x x x) +16 ±16 : 31 5
0 0 0 0 0 0 1 x x x x x s 13 (x x x x x) +32 ±32 : 63 6
0 0 0 0 0 0 1 x x x x x s 15 (x x x x x x) +64 ±64 : 127 7

Note: s is the sign value (0 if datum is positive, 0 otherwise.)

7.2.4.1 Entropy-encoding process

Encoding principle :

The main principle to compress the values is to form a list of pairs of encoded-data. The first
datum indicates the number of successive zero values (from 0 to 63 times). The second one
corresponds to a non-zero Huffman-encoded value (from 1 to 127), with its sign.

Compression process :

The process to compress the "ZZ-list" (cf. Figure 13) in the output stream could be resumed in
few steps:

• Direct copy of the 10-significant bits of the first 16-bits datum ("DC value") (only for
UVLC codec)

http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Huffman_coding

50

• Initialize the counter of successive zero-values at zero.

• For each of the remaining 16-bits values of the list:

– If the current value is zero:

* Increment the zero-counter

– Else:

* Encode the zero-counter value as explained below :
· Use the RLE dictionary (cf. Figure 14) to find the corresponding range of the

value (ex: 6 is in the 4 : 7 range).
· Subtract the low value of the range (ex: 6− 4 = 2)
· Set this temporary value in binary format (ex: 2(10) = 10(2))
· Get the corresponding "coarse" binary value (ex: 6(10) → 0001(2))
· Merge it with the temporary previously computed value (ex: 0001(2)+10(2) →
000110(2))

* Add this value to the output stream

* Set the zero-counter to zero

* Encode the non-zero value as explain below :
· Separate the value in temporary absolute part a, and sign part s. (s = 0 if

datum is positive, 1 otherwise). Ex: for d = −13→ a = 13 and s = 1.
· Use the Huffman dictionary (cf.Figure 15) to find the corresponding range

of a (ex: 13 is in the 8 : 15 range).
· Subtract the lower bound (ex : 13− 8 = 5)
· Set this temporary value in binary format (ex : 5(10) = 101(2))
· Get the corresponding coarse binary value (ex : 5→ 00001(2))
· Merge it with the temporary previously computed value, and the sign (ex :
00001(2) + 101(2) + 1(2) → 000011011(2))

* Add this value to the output stream

– Get to the next value of the list

• (End of "For")

7.2.4.2 Entropy-decoding process

The process to retrieve the "ZZ-list" from the compressed binary data is detailed here :

• Direct copy of the first 10 bits in a 16-bits datum ("DC value"), and add it to the output
list. (only for UVLC codec)

• While there remains compressed data (till the "EOB" code):

– Reading of the zero-counter value as explain below:

* Read the coarseS pattern part (bit-per-bit, till there is 1 value).

* On the corresponding line (cf.Figure 14), get the number of complementary bits
to read. (Ex: 000001(2) → xxxx→ 4 more bits to read.)

* If there is no 0 before the 1 (first case in the RLE table): ⇒ Resulting value (zero-
counter) is equal to 0.

51

* Else: ⇒ Resulting value (zero-counter) is equal to the direct decimal conversion
of the merged read binary values. Ex: if xxxx = 1101(2) → 000001(2) + 1101(2) =
0000011101(2) = 29(10)

– Add "0" to the output list, as many times indicated by the zero-counter.

– Reading of the non-zero value as explain below:

* Read the coarse pattern part (bit-per-bit, till there is 1 value).

* On the corresponding line (cf.Figure 15), get the number of complementary bits
to read. Ex: 0001(2) → xxs→ 2 more bits to read (then the sign bit.)

* If there is no 0 before the 1 (coarse pattern part = 1, in the first case of the Huffman
table): ⇒ Temporary value is equal to 1.

* Else if the coarse pattern part = 01(2) (second case of the Huffman table) : ⇒
Temporary value is equal to End Of Bloc code (EOB).

* Else⇒ Temporary value is equal to the direct decimal conversion of the merged
read binary values. Ex: if xx = 11 → 00001(2) + 11(2) = 0000111(2) = 7(10) Read
the next bit, to get the sign (s).

* If s = 0: ⇒ Resulting non-zero value = temporary value

* Else (s = 1): ⇒
* Resulting non-zero value = temporary value x (-1)

– Add the resulting non-zero value to the output list.

• (End of "while")

7.2.4.3 Example

Encoding :

• Initial data list :
-26; -3; 0; 0; 0; 0; 7; -5; EOB

• Step 1 :
-26; 0x"0"; -3; 4x"0"; 7; 0x"0"; -5; 0x"0"; EOB

• Step 2 (binary form):
1111111111100110; 1; 001 11; 0001 00; 0001 110; 1; 0001 011; 1; 01

• Final stream :
1111100110100111000100000111010001011101

Decoding :

• Initial bit-data stream :
{11110001110111000110001010010100001010001101}

• Step 1 (first 10 bits split) :
{1111000111}; {0111000110001010010100001010001101}

• Step 2 (16-bits conversion of DC value) :
{1111111111000111}; {0111000110001010010100001010001101}

52

• Step 3, remaining data (DC value is done) :
{"-57"}; {011100011000101001010001100110101}

• Step 4, first couple of values:
{"-57"}; [{01.}; {1.1}]; {00011000101001010001100110101}
{"-57"}; ["0"; "-1"]; {00011000101001010001100110101}

• Step 5, second couple of values :
{"-57"; "0"; "-1"; [{0001.10}; {001.01}]; {001010001100110101}
{"-57"; "0"; "-1"; ["000000"; "-2"]; {001010001100110101}

• Step 6, third couple of values :
{"-57"; "0"; "-1"; "000000"; "-2"; [{001.0}; {1.0}]; {001100110101}
{"-57"; "0"; "-1"; "000000"; "-2"; [""; "+1"]; {001100110101}

• Step 7, fourth couple of values :
{"-57"; "0"; "-1"; "000000"; "-2"; "+1"; [{001.1}; {001.10}]; {101}
{"-57"; "0"; "-1"; "000000"; "-2"; "+1"; ["000"; "+3"]; {101}

• Step 8, last couple of values (no "0" and "EOB" value):
{"-57"; "0"; "-1"; "000000"; "-2"; "+1"; "000"; "+3"; [{1.}; {01}]
{"-57"; "0"; "-1"; "000000"; "-2"; "+1"; "000"; "+3"; [""; "EOB"]

• Final data list :
{"-57"; "0"; "-1"; "0"; "0"; "0"; "0"; "0"; "0"; "-2"; "+1"; "0"; "0"; "0"; "+3"; "EOB"}

7.2.5 Transport layer

This section describes how the final data stream is generated.

For each picture, data correspond to an image header followed by data blocks groups and an
ending code (EOS, end of sequence).

The composition of each block-layer is resumed here:

Picture Header
blockline = 0

PSC
(22 bits)

FORMAT
(2 bits)

RESOLUTION
(3 bits)

PICTURE TYPES
(3 bits)

QUANT
uvlc (5 bits)
p264 (6 bits)

FRAME NUMBER
(32 bits)

GOB
(XXX bits)

GOB Header
blockline = n

GOBSC
(22 bits)

QUANT
uvlc (5 bits)
p264 (6 bits)

GOB
(XXX bits)

 …

GOB Header
last blockline

GOBSC
(22 bits)

QUANT
uvlc (5 bits)
p264 (6 bits)

GOB
(XXX bits)

EOS
(22 bits)

picture layer

GOB
(XXX bits)

MB0
(XXX bits)

… MBN
(XXX bits)

gob layer

53

MBx
(XXX bits)

MBC
(1 bit)

MBDES
(8 bits)

MBDIFF
(2 bits)

(reserved)

Y0
(XXX bits)

Y1
(XXX bits)

Y2
(XXX bits)

Y3
(XXX bits)

U0
(XXX bits)

V0
(XXX bits)

uvlc macroblock layer

Intra MBx
(XXX bits)

INTRA
LUMA
TYPE
(1 bit)

INTRA CHROMA
TYPE
(2 bits)

INTRA
4x4

INTRA LUMA 4x4
MODE

(16*XXX bits)

Y0
(XXX bits)

... Y15
(XXX bits)

CHROMA DATA

INTRA
16x16

INTRA LUMA 16x16
MODE
(2 bits)

DC Y
(XXX bits)

AC Y0
(XXX bits)

... AC Y15
(XXX bits)

Inter MBx
(XXX bits)

PARTITION LIST
(3 bits)

MOTION VECTOR LIST
(XXX bits)

Y0
(XXX bits)

... Y15
(XXX bits)

CHROMA DATA

CHROMA DATA DC U
(XXX bits)

AC U0
(XXX bits)

… AC U3
(XXX bits)

DC V
(XXX bits)

AC V0
(XXX bits)

.. AC V3
(XXX bits)

p264 macroblock layer

7.2.5.1 Picture start code (PSC) (22 bits)

UVLC start with a PSC (Picture start code) which is 22 bits long:

0000 0000 0000 0000 1 00000

P264 PSC is:

0000 0000 0000 0001 0 00000

A PSC is always byte aligned.

7.2.5.2 Picture format (PFORMAT) (2 bits)

The second information is the picture format which can be one of the following : CIF or VGA

• 00 : forbidden
• 01 : CIF
• 10 : VGA

7.2.5.3 Picture resolution (PRESOLUTION) (3 bits)

Picture resolution which is used in combination with the picture format (3 bits)

• 000 : forbidden
• 001 : for CIF it means sub-QCIF
• 010 : for CIF it means QCIF
• 011 : for CIF it means CIF

54

• 100 : for CIF it means 4-CIF
• 101 : for CIF it means 16-CIF

7.2.5.4 Picture type (PTYPE) (3 bits)

Picture type:

• 000 : INTRA picture
• 001 : INTER picture

7.2.5.5 Picture quantizer (PQUANT) (5/6 bits)

UVLC codec: The PQUANT code is a 5-bits-long word. The quantizer’s reference for the pic-
ture that range from 1 to 30.

P264 codec: The PQUANT code is a 6-bits-long word and range from 0 to 63;

7.2.5.6 Picture frame (PFRAME) (32 bits)

The frame number (32 bits).

7.2.5.7 Group of block start code (GOBSC) (22 bits)

Each GOB starts with a GOBSC (Group of block start code) which is 22 bits long:

uvlc codec :

0000 0000 0000 0000 1xxx xx

p264 codec :

0000 0000 0000 0001 0xxx xx

A GOBSC is always a byte aligned. The least significant bytes represent the blockline’s number.
We can see that PSC means first GOB too. So for the first GOB, GOB’s header is always omitted.

7.2.5.8 Group of block quantizer (GOBQUANT) (5/6 bits)

Equivalent to PQUANT for the current GOB.

55

7.2.5.9 UVLC Macroblocks Layer

Data for each macroblock corresponding to an header of macroblock followed by data of mac-
roblock.

MBx
(XXX bits)

MBC
(1 bit)

MBDES
(8 bits)

MBDIFF
(2 bits)

(reserved)

Y0
(XXX bits)

Y1
(XXX bits)

Y2
(XXX bits)

Y3
(XXX bits)

U0
(XXX bits)

V0
(XXX bits)

uvlc macroblock layer

MBC - Coded macroblock bit:

• Bit 0 : ‘1’ means there’s a macroblock / ‘0’ means macroblock is all zero.
• If MBC is 0, the following fields are omitted.

MBDES - Macroblock description code:

• Bit 0 : ‘1’ means there’s non dc coefficients for block y0.
• Bit 1 : ‘1’ means there’s non dc coefficients for block y1.
• Bit 2 : ‘1’ means there’s non dc coefficients for block y2.
• Bit 3 : ‘1’ means there’s non dc coefficients for block y3.
• Bit 4 : ‘1’ means there’s non dc coefficients for block cb.
• Bit 5 : ‘1’ means there’s non dc coefficients for block cr.
• Bit 6 : ‘1’ means there’s a differential quantization (MBDIFF) value following this code.

Not implemented, always 0
• Bit 7 : Always ‘1’ to avoid a zero byte.

MBDIFF – differential quantization: Not implemented

Y0-Y3 U0 V0: Each block Yi, U and V are encoded using the method described in section 4.x.x
Block Entropy-encoding process.

7.2.5.10 P264 Macroblock Layer

Intra MBx
(XXX bits)

INTRA
LUMA
TYPE
(1 bit)

INTRA CHROMA
TYPE
(2 bits)

INTRA
4x4

INTRA LUMA 4x4
MODE

(16*XXX bits)

Y0
(XXX bits)

... Y15
(XXX bits)

CHROMA DATA

INTRA
16x16

INTRA LUMA 16x16
MODE
(2 bits)

DC Y
(XXX bits)

AC Y0
(XXX bits)

... AC Y15
(XXX bits)

Inter MBx
(XXX bits)

PARTITION LIST
(3 bits)

MOTION VECTOR LIST
(XXX bits)

Y0
(XXX bits)

... Y15
(XXX bits)

CHROMA DATA

CHROMA DATA DC U
(XXX bits)

AC U0
(XXX bits)

… AC U3
(XXX bits)

DC V
(XXX bits)

AC V0
(XXX bits)

.. AC V3
(XXX bits)

p264 macroblock layer

56

There are 3 types of Macroblock in the transport layer :

• I frame with intra 16x16 prediction for the current macroblock
• I frame with intra 4x4 prediction for the current macrobock
• P frame

Macroblock intra 16x16:

INTRA LUMA TYPE – fragmentation used for intra prediction:
Bit 0 : ’0’ means intra 4x4, ’1’ means intra 16x16. Thus INTRA LUMA TYPE is set to 1 for an
intra 16x16 Macroblock

INTRA CHROMA TYPE – intra mode for chroma component:
One of the four available intra chroma predictions coded over 2 (bits).

INTRA LUMA 16x16 MODE – 16x16 intra mode for luma component:
One of the four available intra chroma predictions coded over 2 (bits).

Y0 – Y15 – luma 4x4 blocks:
Each block (16 elements) is encoded using the method described in section Block Entropy-
encoding process.

CHROMA DATA – U and V blocks:
This segment is common to all types of macroblock. See description below.

Macroblock intra 4x4:

INTRA LUMA TYPE – fragmentation used for intra prediction:
Bit 0 : ’0’ means intra 4x4, ’1’ means intra 16x16. Thus INTRA LUMA TYPE is set to 0 for a intra
4x4 Macroblock

INTRA CHROMA TYPE – intra mode for chroma component:
One of the four available intra chroma prediction coded over 2 (bits).

INTRA LUMA 4x4 MODE - list of 16 intra 4x4 prediction:
Each intra 4x4 is one of the nine available intra 4x4 luma prediction (horizontal, vertical, vertical
up, . . .)
Each element of the list is coded using a prediction based on the neighbouring predictions. If
the prediction is correct, the element is coded using only 1 bit. If the prediction is false 4 bits
are used. Please refer to h264 specification for details about how the prediction is done on intra
4x4 mode.

DC Y – list of 16 DC value:
DC Y is a list of 16 elements which gather DC values from the 16 4x4 blocks of the current
macroblock. This list is written in the data stream using the block-encoding method.

AC Yx – block of AC coeff:
Each AC block (15 elements) is encoded with the block-encoding method.

CHROMA DATA – U and V blocks:
This segment is common to all type of macroblocks. See description below.

57

Inter Macroblock :

PARTITION LIST – list of mb subdivision for motion estimation:
Always read as ’000’ because P264 doesn’t support macroblock partition.

MOTION VECTOR LIST – list of motion vector associated to each partition:
There is only one motion vector per macroblock. The vector is not put in the stream directly. A
predicted motion vector for the current macroblock is determined with the already transmitted
neighboring motion vector. The difference between the prediction and the real motion vector
is written in the data stream.
The x component is transmitted before the y. Each component is written with the level-encoding
method (see block-encoding). For further details about the way prediction is determined please
refer to h.264 specification.

Y0 – Y15 – luma 4x4 blocks:
Each block (16 elements) is encoded using the method described in section Block Entropy-
encoding process.

CHROMA DATA – U and V blocks:
This segment is common to all type of macroblocks. See description below.

Chroma Data:

DC U – list of 4 DC value:
DC U is a list which contains the DC values from each chroma 4x4 block. This list is encoded
with the block-encoding method.

AC Ux - block of AC coeff:
Each AC block (15 elements) is encoded with the block-encoding method.

DC V:
Same as DC U

AC Vx:
Same as AC Ux

7.2.6 End of sequence (EOS) (22 bits)

The end of sequence (EOS) which is 22 bits long :

0000 0000 0000 0001 0111 11

58

7.2.7 Intiating the video stream

To start receiving the video stream, a client just needs to send a UDP packet on the drone video
port.

The drone will stop sending data if it cannot detect any network activity from its client.

HOST CLIENT

Socket
initialization

Send one packet to VideoPort

(to wake-up the Host)

Send picture by blockline
(UDP packets) Image blocks

decoding

59

7.3 The AR.Drone 2.0 video stream

The AR.Drone 2.0 use standard video codecs, with a custom encapsulation for managing the
network stream

7.3.1 Video codecs

AR.Drone 2.0 use H264 (MPEG4.10 AVC) baseline profile for high quality video streaming and
video recording.

The following parameters can be adjusted for the live H264 stream :

• FPS : Between 15 and 30
• Bitrate : Between 250kbps and 4Mbps
• Resolution : 360p (640x360) or 720p (1280*720)

Typical values for some Apple devices are :

• iPhone 4S : 360p, 30FPS, 4Mbps
• iPhone 4 : 360p, 25FPS, 1.5Mbps
• iPhone 3GS : 360p, 15FPS, 500kbps

These parameters are fixed to 720p, 30FPS, 4Mbps for the record stream, regardless of the de-
vice.

While recording, the hardware H264 encoder is noe available to the live stream, thus the
AR.Drone 2.0 use a software MPEG4.2 Visual encoder for the live stream.

The following parameters can be adjusted for the live MPEG4.2 stream :

• FPS : Between 15 and 30
• Bitrate : Between 250kbps and 1Mbps

For further details about the video codecs, see Wikipedia page about MPEG-4 standard.

7.3.2 Video encapsulation on network

For network transmission, video frames are send with custom headers, which contains many
informations about the frame.

The headers are called PaVE (Parrot Video Encapsulation), and are described in listing 7.3

http://en.wikipedia.org/wiki/MPEG-4

60

Listing 7.3: PaVE definition

typedef struct {
uint8_t signature[4]; /* "PaVE" - used to identify the start of

frame */
uint8_t version; /* Version code */
uint8_t video_codec; /* Codec of the following frame */
uint16_t header_size; /* Size of the parrot_video_encapsulation_t

*/
uint32_t payload_size; /* Amount of data following this PaVE */
uint16_t encoded_stream_width; /* ex: 640 */
uint16_t encoded_stream_height; /* ex: 368 */
uint16_t display_width; /* ex: 640 */
uint16_t display_height; /* ex: 360 */
uint32_t frame_number; /* Frame position inside the current stream

*/
uint32_t timestamp; /* In milliseconds */
uint8_t total_chuncks; /* Number of UDP packets containing the

current decodable payload - currently unused */
uint8_t chunck_index ; /* Position of the packet - first chunk is #0

- currenty unused*/
uint8_t frame_type; /* I-frame, P-frame -

parrot_video_encapsulation_frametypes_t */
uint8_t control; /* Special commands like end-of-stream or

advertised frames */
uint32_t stream_byte_position_lw; /* Byte position of the current payload in

the encoded stream - lower 32-bit word */
uint32_t stream_byte_position_uw; /* Byte position of the current payload in

the encoded stream - upper 32-bit word */
uint16_t stream_id; /* This ID indentifies packets that should be

recorded together */
uint8_t total_slices; /* number of slices composing the current

frame */
uint8_t slice_index ; /* position of the current slice in the frame

*/
uint8_t header1_size; /* H.264 only : size of SPS inside payload -

no SPS present if value is zero */
uint8_t header2_size; /* H.264 only : size of PPS inside payload -

no PPS present if value is zero */
uint8_t reserved2[2]; /* Padding to align on 48 bytes */
uint32_t advertised_size; /* Size of frames announced as advertised

frames */
uint8_t reserved3[12]; /* Padding to align on 64 bytes */

} __attribute__ ((packed)) parrot_video_encapsulation_t;

7.3.3 Network transmission of video stream

AR.Drone 2.0 video stream is transmitted on TCP socket 5555. AR.Drone 2.0 will start sending
frame immediatly when a client connects to the socket.

A frame can be sent in multiple TCP packets, and thus should be reassembled by the applica-
tion before feeding the video decoder. In ARDroneTool , this is done within the Video/video_stage_tcp.c
file.

61

7.3.4 Latency reduction mecanism

The TCP transmission allow the application to recieve all frames from the live stream, but this
can introduce latency.
A latency reduction mecanism is implemented inside the Video/video_stage_tcp.c file. This
mecanism will automatically select the most recent decodable frame to send to the decoder,
and discard any older frame.

The same algorithm is also implemented on AR.Drone 2.0 side, before transmitting data on the
network.

Listing 7.4 describes the system as a pseudo-code algorithm.

Listing 7.4: Latency reduction system

if (I-Frame available on buffer)
{

send most recent I-Frame
}
else
{

send next P-Frame
}

This mecanism is disabled on record stream, and the AR.Drone 2.0 buffer is larger, allowing
approx. 30 seconds of buffering. This avoid frame loss on record stream, where latency is not
an issue.

7.3.5 Video record stream

Video recording uses TCP socket 5553 to transmit H264-720p frames. This stream is disabled
when the application is not recording.

This stream uses the same transmission encapsulation (PaVE) as the live stream.

The conversion between the raw H264 stream and the .mov/.mp4 file is done by the
Video/video_stage_encoded_recorder.c file. With use of the utils/ardrone_video_atoms and
utils/ardrone_video_encapsuler utilities.

8 Drone Configuration

The drone behaviour depends on many parameters which can be modified by using the AT*CONFIG
AT command, or by using the appropriate ARDroneToolmacro ARDRONE_TOOL_CONFIGURATION_ADDEVENT.

This chapter shows how to read/write a configuration parameter, and gives the list of param-
eters you can use in your application.

8.1 Reading the drone configuration

8.1.1 With ARDroneTool

ARDroneTool implements a ’control’ thread which automatically retrieves the drone configu-
ration at startup.

Include the <ardrone_tool/ardrone_tool_configuration.h> file in your C code to access the
ardrone_control_config structure which contains the current drone configuration. Its most in-
teresting fields are described in the next section.

If your application is structured as recommended in chapter 5 or you are modifying one of the
examples, the configuration should be retrieved by ARDroneTool before the threads contain-
ing your code get started by ARDroneTool .

8.1.2 Without ARDroneTool

The drone configuration parameters can be retrieved by sending the AT*CTRL command with
a mode parameter equaling 4 (CFG_GET_CONTROL_MODE).

The drone then sends the content of its configuration file, containing all the available configu-
ration parameters, on the control communication port (TCP port 5559). Parameters are sent as
ASCII strings, with the format Parameter_name = Parameter_value.

Here is an example of the sent configuration :

63

64

Listing 8.1: Example of configuration file as sent on the control TCP port

general:num_version_config = 1
general:num_version_mb = 33
general:num_version_soft = 2.1.18
general:drone_serial = XXXXXXXXXX
general:soft_build_date = 2012-04-06 12:09
general:motor1_soft = 1.41
general:motor1_hard = 5.0
general:motor1_supplier = 1.1
general:motor2_soft = 1.41
general:motor2_hard = 5.0
general:motor2_supplier = 1.1
general:motor3_soft = 1.41
general:motor3_hard = 5.0
general:motor3_supplier = 1.1
general:motor4_soft = 1.41
general:motor4_hard = 5.0
general:motor4_supplier = 1.1
general:ardrone_name = My ARDrone
general:flying_time = 758
general:navdata_demo = TRUE
general:navdata_options = 105971713
general:com_watchdog = 2
general:video_enable = TRUE
general:vision_enable = TRUE
general:vbat_min = 9000
control:accs_offset = { -2.0952554e+03 2.0413781e+03 2.0569382e

+03 }
control:accs_gains = { 9.8449361e-01 6.2035387e-03 1.4683655e

-02 -2.0475569e-03 -9.9886459e-01 -9.5556228e-04 2.9887848e-03 -1.9088354e-02
-9.8093420

e-01 }
control:gyros_offset = { -3.8548752e+01 -1.0268125e+02 -4.3712502

e+00 }
control:gyros_gains = { 1.0711575e-03 -1.0726772e-03 -1.0692523e

-03 }
control:gyros110_offset = { 1.6625000e+03 1.6625000e+03 }
control:gyros110_gains = { 1.5271631e-03 -1.5271631e-03 }
control:magneto_offset = { 1.2796108e+01 -2.0355328e+02 -5.8370575e

+02 }
control:magneto_radius = 1.3417094e+02
control:gyro_offset_thr_x = 4.0000000e+00
control:gyro_offset_thr_y = 4.0000000e+00
control:gyro_offset_thr_z = 5.0000000e-01
control:pwm_ref_gyros = 500
control:osctun_value = 63
control:osctun_test = TRUE
control:altitude_max = 3000
control:altitude_min = 50
control:control_level = 0
control:euler_angle_max = 2.0943952e-01
control:control_iphone_tilt = 3.4906584e-01
control:control_vz_max = 7.0000000e+02
control:control_yaw = 1.7453293e+00
control:outdoor = FALSE
control:flight_without_shell = FALSE
control:autonomous_flight = FALSE
control:manual_trim = FALSE
control:indoor_euler_angle_max = 2.0943952e-01
control:indoor_control_vz_max = 7.0000000e+02
control:indoor_control_yaw = 1.7453293e+00
control:outdoor_euler_angle_max = 3.4906584e-01

65

control:outdoor_control_vz_max = 1.0000000e+03
control:outdoor_control_yaw = 3.4906585e+00
control:flying_mode = 0
control:hovering_range = 1000
control:flight_anim = 0,0
network:ssid_single_player = ardrone2_XXXX
network:ssid_multi_player = ardrone2_XXXX
network:wifi_mode = 0
network:wifi_rate = 0
network:owner_mac = 00:00:00:00:00:00
pic:ultrasound_freq = 8
pic:ultrasound_watchdog = 3
pic:pic_version = 184877088
video:camif_fps = 30
video:codec_fps = 30
video:camif_buffers = 2
video:num_trackers = 12
video:video_codec = 0
video:video_slices = 0
video:video_live_socket = 0
video:video_storage_space = 15360
video:bitrate = 1000
video:max_bitrate = 4000
video:bitrate_ctrl_mode = 0
video:bitrate_storage = 4000
video:video_channel = 0
video:video_on_usb = TRUE
video:video_file_index = 1
leds:leds_anim = 0,0,0
detect:enemy_colors = 1
detect:groundstripe_colors = 16
detect:enemy_without_shell = 0
detect:detect_type = 3
detect:detections_select_h = 0
detect:detections_select_v_hsync = 0
detect:detections_select_v = 0
syslog:output = 7
syslog:max_size = 102400
syslog:nb_files = 5
userbox:userbox_cmd = 0
gps:latitude = 5.0000000000000000e+02
gps:longitude = 5.0000000000000000e+02
gps:altitude = 0.0000000000000000e+00
custom:application_id = 00000000
custom:application_desc = Default application configuration
custom:profile_id = 00000000
custom:profile_desc = Default profile configuration
custom:session_id = 00000000
custom:session_desc = Default session configuration

66

8.2 Setting the drone configuration

8.2.1 With ARDroneTool

Use the ARDRONE_TOOL_CONFIGURATION_ADDEVENT macro to set any of the configuration pa-
rameters.

This macro makes ARDroneTool queue the new value in an internal buffer, send it to the
drone, and wait for an acknowledgment from the drone.

It takes as a first parameter the name of the parameter (see next sections to get a list or look at
the config_keys.h file in the SDK). The second parameter is a pointer to the new value to send
to the drone. The third parameter is a callback function that will be called upon completion.

The callback function type is void (*callBack)(unsigned int success). The configuration tool will
call the callback function after any attempt to set the configuration, with zero as the parameter
in case of failure, and one in case of success. In case of failure, the tool will automatically retry
after an amount of time.

Your program must not launch a new ARDRONE_TOOL_CONFIGURATION_ADDEVENT call at each
time the callback function is called with zero as its parameter.

The callback function pointer can be a NULL pointer if your application don’t need any ac-
knowledgment.

Listing 8.2: Example of setting a config. paramter

// Set SSID name of AR.Drone
char ssid_name[] = "My_ARDrone";
ARDRONE_TOOL_CONFIGURATION_ADDEVENT(ssid_single_player, \emph{ssid_name}, NULL); //

WARNING : Don’t put pointer of string, but just string.

// Set color of enemy hull.
int enemy_color;
enemy_color = ORANGE_GREEN;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT(enemy_colors, \emph{&enemy_color}, NULL);

8.2.2 From the Control Engine for iPhone

Using the Control Engine for iPhone, the ARDrone instance of your application can accept
messages to control some parts of the configuration.

The message is -(void) executeCommandIn:(ARDRONE_COMMAND_IN_WITH_PARAM)commandIn
fromSender:(id)sender refreshSettings:(BOOL)refresh.

The ARDRONE_COMMAND_IN_WITH_PARAM structure (declared in ARDroneTypes.h) is
composed of the following members :

• ARDRONE_COMMAND_IN command : This is the same parameter as the legacy "exe-

67

cuteCommandIn" message (see below for details).

• command_in_configuration_callback callback : This is a callback that will be called upon
configuration completion. If your application does not need the callback, you may put
this field to NULL.

• void *parameter : Parameter to the command (descrbed below).

ARDRONE_COMMAND_IN enum contains the following members (In parenthesis, the pointer
type of the parameter associated) :

• ARDRONE_COMMAND_ISCLIENT : For multiplayer games, set different ultrasound
frequencies for server and client (integer casted to (void *)).

• ARDRONE_COMMAND_DRONE_ANIM : Play a flight anim (ARDRONE_ANIMATION_-
PARAM pointer, see ARDroneTypes.h and config.h).

• ARDRONE_COMMAND_DRONE_LED_ANIM : Play a LED animation (ARDRONE_-
LED_ANIMATION_PARAM pointer, see ARDroneTypes.h and led_animations.h).

• ARDRONE_COMMAND_SET_CONFIG : Set any config key value (ARDRONE_CON-
FIG_PARAM pointer, see ARDroneTypes.h).

• ARDRONE_COMMAND_ENABLE_COMBINED_YAW : Enable (Disable) the combined
yaw mode. (boolean casted to (void *)).

The second parameter is currently unused (passing nil is ok).

The third parameter is a boolean tha tells the control engine to refresh the settings menu upon
configuration completion. This can take nearly a second (request of configuration file of the
AR.Drone), so you should not activate this when not needed.

Listing 8.3: Example of setting outdoor flight with Control Engine

ARDRONE_COMMAND_IN_WITH_PARAM command;
ARDRONE_CONFIG_PARAM param;
int value;

value = 1; // Will be treated as a boolean

param.config_key = ARDRONE_CONFIG_KEY_OUTDOOR;
param.value = (void *)&value;

command.command = ARDRONE_COMMAND_SET_CONFIG;
command.callback = NULL;
command.parameter = (void *)¶m;

[ardrone executeCommandIn:command fromSender:nil refreshSettings:NO];

Note : Using multiconfiguration, the AR.Drone will ignore any configuration request when not
setted to the correct appli/user/session profiles. To reflect that, we’ve added an isInit field to
the ARDroneNavigationData structure. Your application must ensure that the isInit flag is set
(value will be 1) before sending any configuration. (Note that this flag CAN go back to zero
during flight when a WiFi disconnection is detected).

68

Note : The legacy (1.6 SDK) executeCommandIn message is still supported in 2.0 SDK, but is
flagged as deprecated and may be removed in future versions.

8.2.3 Without ARDroneTool

Use the AT*CONFIG command to send a configuration value to the drone. The command must
be sent with a correct sequence number, the parameter note between double-quotes, and the
parameter value between double-quotes.

69

8.3 Multiconfiguration

Starting with firmware 1.6.4, the AR.Drone supports different configurations depending on the
application, user and session connected.
This allow different applications and users to share the same AR.Drone with different settings
without any user action nor any "send all configurations" at application startup.
Configuration keys are split into 4 categories :

• CAT_COMMON : This is the default category, common to all applications.

• CAT_APPLI : This setting will be saved for the current application (regardless of the
device it is running on).

• CAT_USER : This setting will be saved for the current user (regardless of the application).
For more information about users, see the user section of this documentation. (User cate-
gory is also called "profile" category).

• CAT_SESSION : This setting will be saved for the current flight session (regardless of
application/user).

The legacy /data/config.ini file contains the cofiguration for unidentified applications, and all
CAT_COMMON settings. All identified applications settings are stored into /data/custom.config/
folder, under subfolders applis, profiles and sessions, with the name config.<id>.ini.

Note : When the AR.Drone 1.0 detects a disconnection, it will automatically switch back to the
default configuration, and get back in bootstrap mode (no navdata are sent). This behaviour is
only on AR.Drone 1.0 .
Note : As the session holds the application and user identifiers (CAT_SESSION settings),
switching back to the session id will automatically put the drone back into the correct applica-
tion/user. (See the session documentation for further informations).

8.3.1 With ARDroneTool

The ardrone_tool_init function now takes two string pointers to the application name and the
user name that will be used as the application defaults.
The session name is a random generated number, and can not be specified from the application.

This function set an ardrone_config_t structure called ardrone_application_default_config which
will hold the default configuration needed by your application. These configuration will be
sent to the AR.Drone when the associate configuration are created. (Note : CAT_COMMON
configs are never sent).
This allow users to overwrite your default settings, because your application will only send
them once, and not at each startup.

Note : All description above refers to the NO_ARDRONE_MAINLOOP version of the ardrone_-
tool_init function. This is the reference mode, and the legacy ARDroneTool main loop should

70

not be used anymore. The legacy function only sets the application name according to argv[0]
and init the ardrone_application_default_config structure.

8.3.2 Multiconfiguration with Control Engine (iPhone only)

The Control Engine init function (ARDrone object init) calls the ardrone_tool_init_custom pass-
ing the bundle name as the application name (e.g. "com.parrot.freeflight" for AR.FreeFlight),
and the device type/UDID as the user.
(e.g. ".iPhone:0123456789ABCDEF", or ".iPod Touch:ABCDEF0123456789")
Note : The dot (’.’) at the beginning of the username is explained in the user section documen-
tation.

To set the default configuration, the ARDrone class supports a new message called -(void) set-
DefaultConfigurationForKey:(ARDRONE_CONFIG_KEYS)key withValue:(void *)value.

The first parameter is the name of the configuration key (found in ARDroneGeneratedTypes.h
file). The second parameter is a valid pointer to the value that you want to set as default.
Pointer types for each keys can be found in the config_keys.h file.

Note : The default configuration must be set AFTER creating the ARDrone instance (after con-
necting to the AR.Drone), but BEFORE changing its state to "inGame".

8.3.3 Without ARDroneTool

When running on the default configuration, the drone use the standard behaviour, and does
not require any aditionnal informations.
When running inside of any new configuration (application, user, session or any combinai-
son of theses), the AR.Drone expect to receive a new AT*CONFIG_IDS command before each
AT*CONFIG. The AR.Drone will only set the configuration if the AT*CONFIG_IDS identifiers
match the currently loaded configuration. In any case, the configuration will be acknowledged
to the application.

8.3.4 Common category (CAT_COMMON)

This category holds the config keys that are common to all applications and users. These keys
should not be initialized by your application, as they are shared between all.
This category holds, for exmple, all the version numbers, network configuration, and indoor/out-
door settings.

71

8.3.5 Application category (CAT_APPLI)

This category hold all the application specific configuration. Currently, this is limited to the
video encoding options and the navdata_options required by your application.

8.3.6 User category (CAT_USER) – also called "Profile" category

This is the most complex category as different applications may want to access the same user
profiles, so application must be able to swith their active user at runtime.
The ARDroneTool provides a few functions to do that. These functions are described in the
ardrone_api.h file.

By convention, we use the dot (’.’) as an "hidden user" identifier (like hidden files in UNIX
systems). These user are default users that should not be shown to the consumer (e.g. default
user for each iDevice, default user for a predefined flying mode ...), in regard to the "real"
users that people will create on their drone to share their settings between many applications
(including games). This convention is used inside the ardrone_get_user_list function to build a
"visible user list" rather than a complete list.

Note : Known issues : As 1.8 version of AR.FreeFlight, user switch is not implemented, and
thus partially untested. Changing the user (using ardrone_api.h functions) will cause an im-
mediate change of the application identifier, but the queuing of the associated AT*CONFIG.
In result, any queued config at this time may be refused by the AR.Drone before the effective
config switch (see here for details).

8.3.7 Session category (CAT_SESSION)

The session category holds the "current flight session" settings. These settings includes the ac-
tive video camera, the active video detection ...
This allow your application to get back to the exact same state after a drone reboot (battery
change), or WiFi disconnection. In either cases, the drone is put back to the default config-
uration, and in bootstrap mode (no navdatas). To reconnect, your application just need to
send back its session id (this will automatically put back the AR.Drone into the good applica-
tion/user profiles), then ask again for navdata_demo and navdata_options keys.
See ardrone_general_navdata.c for an example.

Note : All application are expected to clean all sessions file at startup (see ardrone_general_navdata.c),
so you may not rely on sessions when your application was shut down for any reason.

72

8.3.8 Technical details on id generation and descriptions

The ARDroneTool generates the different ids the following way :

The application id is generated as a CRC32 of a string composed of the application name and
the SDK current version (e.g. for AR.FreeFlight 1.8, the complete string is "com.parrot.freeflight:1.7").
The application description is set as the application name only (e.g. "com.parrot.freeflight" for
AR.FreeFlight 1.8)

The user id is generated as a CRC32 of the username provided to the ARDroneTool . The
description is set as the username.

The session id is randomly generated. The session description is set as "Session <number>"
with <number> the generated id.

Note : The CRC32 function used to generate the ids is NOT collision free. It’s impossible for
the AR.Drone to make the difference between two applications if their ids are the same.

73

8.4 General configuration

All the configurations are given accordingly to the config_keys.h file order.

In the API examples, the myCallback argument can be a valid pointer to a callback function, or
a NULL pointer if no callback is needed by the application.

GENERAL:num_version_config
CAT_COMMON | Read only

Description :
Version of the configuration subsystem (Currently 1).

GENERAL:num_version_mb CAT_COMMON | Read only
Description :
Hardware version of the drone motherboard.

GENERAL:num_version_soft CAT_COMMON | Read only
Description :
Firmware version of the drone.

GENERAL:drone_serial CAT_COMMON | Read only
Description :
Serial number of the drone.

GENERAL:soft_build_date CAT_COMMON | Read only
Description :
Date of drone firmware compilation.

GENERAL:motor1_soft CAT_COMMON | Read only
Description :
Software version of the motor 1 board. Also exists for motor2, motor3 and motor4.

GENERAL:motor1_hard CAT_COMMON | Read only
Description :
Harware version of the motor 1 board. Also exists for motor2, motor3 and motor4.

GENERAL:motor1_supplier
CAT_COMMON | Read only

Description :
Supplier version of the motor 1 board. Also exists for motor2, motor3 and motor4.

74

GENERAL:ardrone_name CAT_COMMON | Read/Write
Description :
Name of the AR.Drone. This name may be used by video games developper to assign a default
name to a player, and is not related to the Wi-Fi SSID name.

AT command example : AT*CONFIG=605,"general:ardrone_name","My ARDrone Name"
API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (ardrone_name, "My ARDrone Name", myCallback);

GENERAL:flying_time
CAT_COMMON | Read only

Description :
Numbers of seconds spent by the drone in a flying state in its whole lifetime.

GENERAL:navdata_demo CAT_COMMON | Read/Write
Description :
The drone can either send a reduced set of navigation data (navdata) to its clients, or send all the available informa-
tion which contain many debugging information that are useless for everyday flights.

If this parameter is set to TRUE, the reduced set is sent by the drone (this is the case in the AR.FreeFlight iPhone
application).

If this parameter is set to FALSE, all the available data are sent (this is the cae in the Linux example ardrone_-
navigation).

AT command example : AT*CONFIG=605,"general:navdata_demo","TRUE"

API use example :
bool_t value = TRUE;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (navdata_demo, &value, myCallback);

GENERAL:navdata_options
CAT_APPLI | Read/Write

Description :
When using navdata_demo, this configuration allow the application to ask for others navdata packets. Most com-
mon example is the default_navdata_options macro defined in the config_key.h file. The full list of the possible navdata
packets can be found in the navdata_common.h file.

AT command example : AT*CONFIG=605,"general:navdata_options","105971713"

API use example :
uint32_t ndOptions = (NAVDATA_OPTION_MASK (NAVDATA_DEMO_TAG) |
NAVDATA_OPTION_MASK (NAVDATA_VISION_DETECT_TAG) |
NAVDATA_OPTION_MASK (NAVDATA_GAMES_TAG) |
NAVDATA_OPTION_MASK (NAVDATA_MAGNETO_TAG) |
NAVDATA_OPTION_MASK (NAVDATA_HDVIDEO_STREAM_TAG) |
NAVDATA_OPTION_MASK (NAVDATA_WIFI_TAG));
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (navdata_options, &ndOptions, myCallback);

GENERAL:com_watchdog
CAT_COMMON | Read/Write

Description :
Time the drone can wait without receiving any command from a client program. Beyond this delay, the drone will
enter in a ’Com Watchdog triggered’ state and hover on top a fixed point.

75

Note : This setting is currently disabled. The drone uses a fixed delay of 250 ms.

GENERAL:video_enable CAT_COMMON | Read/Write
Description :
Reserved for future use. The default value is TRUE, setting it to FALSE can lead to unexpected behaviour.

GENERAL:vision_enable CAT_COMMON | Read/Write
Description :
Reserved for future use. The default value is TRUE, setting it to FALSE can lead to unexpected behaviour.

Note : This setting is not related to the tag detection algoritms

GENERAL:vbat_min CAT_COMMON | Read only
Description :
Minimum battery level before shutting down automatically the AR.Drone.

76

8.5 Control configuration

CONTROL:accs_offset CAT_COMMON | Read only
Description :
Parrot internal debug informations. AR.Drone accelerometers offsets.

CONTROL:accs_gains
CAT_COMMON | Read only

Description :
Parrot internal debug informations. AR.Drone accelerometers gains.

CONTROL:gyros_offset
CAT_COMMON | Read only

Description :
Parrot internal debug informations. AR.Drone gyrometers offsets.

CONTROL:gyros_gains
CAT_COMMON | Read only

Description :
Parrot internal debug informations. AR.Drone gyrometers gains.

CONTROL:gyros110_offset
CAT_COMMON | Read only

Description :
Parrot internal debug informations.

CONTROL:gyros110_gains
CAT_COMMON | Read only

Description :
Parrot internal debug informations.

CONTROL:magneto_offset
CAT_COMMON | Read only

Description :
Parrot internal debug informations.

CONTROL:magneto_radius
CAT_COMMON | Read only

Description :
Parrot internal debug informations.

CONTROL:gyro_offset_thr_x
CAT_COMMON | Read only

Description :
Parrot internal debug informations.

Note : Also exists for the y and z axis.

77

CONTROL:pwm_ref_gyros
CAT_COMMON | Read only

Description :
Parrot internal debug informations.

CONTROL:osctun_value CAT_COMMON | Read only
Description :
Parrot internal debug informations.

CONTROL:osctun_test CAT_COMMON | Read only
Description :
Parrot internal debug informations.

CONTROL:control_level CAT_APPLI | Read/Write
Description :
This configuration describes how the drone will interprete the progressive commands from the user.

Bit 0 is a global enable bit, and should be left active.
Bit 1 refers to a combined yaw mode, where the roll commands are used to generates roll+yaw based turns. This is
intended to be an easier control mode for racing games.

Note : This configuration and the flags parameter of the ardrone_at_set_progress_commands function will be compared
on the drone. To activate the combined yaw mode, you must set both the bit 1 of the control_level configuration,
and the bit 1 of the function parameters.
The ardrone_at_set_progress_commands function parameter reflects the current user commands, and must be set only
when the combined_yaw controls are activated (e.g. both buttons pressed)
This configuration should be left active on the AR.Drone if your application makes use of the combined_yaw func-
tionnality.

Note : This configuration does not need to be changed to use the new Absolute Control mode. This mode is only
enabled by the flag of the progressive command.

AT command example : AT*CONFIG=605,"control:control_level","3"

API use example :
ardrone_control_config.control_level |= (1 « CONTROL_LEVEL_COMBINED_YAW);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (control_level, &(ardrone_control_config.control_-
level), myCallback);

CONTROL:euler_angle_max
CAT_USER | Read/Write

Description :
Maximum bending angle for the drone in radians, for both pitch and roll angles.

The progressive command function and its associated AT command refer to a percentage of this value. Note : For
AR.Drone 2.0 , the new progressive command function is preferred (with the corresponding AT command).

This parameter is a positive floating-point value between 0 and 0.52 (ie. 30 deg). Higher values might be available
on a specific drone but are not reliable and might not allow the drone to stay at the same altitude.

This value will be saved to indoor/outdoor_euler_angle_max, according to the CONFIG:outdoor setting.

AT command example : AT*CONFIG=605,"control:euler_angle_max","0.25"

API use example :

78

float eulerMax = 0.25;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (euler_angle_max, &eulerMax, myCallback);

CONTROL:altitude_max CAT_COMMON | Read/Write
Description :
Maximum drone altitude in millimeters.

On AR.Drone 1.0 : Give an integer value between 500 and 5000 to prevent the drone from flying above this limit,
or set it to 10000 to let the drone fly as high as desired. On AR.Drone 2.0 : Any value will be set as a maximum
altitude, as the pressure sensor allow altitude measurement at any height. Typical value for "unlimited" altitude
will be 100000 (100 meters from the ground)

AT command example : AT*CONFIG=605,"control:altitude_max","3000"

API use example :
uint32_t altMax = 3000;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (altitude_max, &altMax, myCallback);

CONTROL:altitude_min CAT_COMMON | Read/Write
Description :
Minimum drone altitude in millimeters.

Should be left to default value, for control stabilities issues.

AT command example : AT*CONFIG=605,"control:altitude_min","50"

API use example :
uint32_t altMin = 50;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (altitude_min, &altMin, myCallback);

CONTROL:control_iphone_tilt
CAT_USER | Read/Write

Description :
The angle in radians for a full iPhone accelerometer command. This setting is stored and computed on the AR.Drone
so an iPhone application can send progressive commands without taking this in account.
On AR.FreeFlight, the progressive command sent is between 0 and 1 for angles going from 0 to 90. With a control_-
iphone_tilt of 0.5 (approx 30), the drone will saturate the command at 0.33

Note : This settings corresponds to the iPhone tilt max setting of AR.FreeFlight

AT command example : AT*CONFIG=605,"control:control_iphone_tilt","0.25"

API use example :
float iTiltMax = 0.25;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (control_iphone_tilt, &iTiltMax, myCallback);

CONTROL:control_vz_max CAT_USER | Read/Write
Description :
Maximum vertical speed of the AR.Drone, in milimeters per second.

Recommanded values goes from 200 to 2000. Others values may cause instability.

This value will be saved to indoor/outdoor_control_vz_max, according to the CONFIG:outdoor setting.

AT command example : AT*CONFIG=605,"control:control_vz_max","1000"

79

API use example :
uint32_t vzMax = 1000;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (control_vz_max, &vzMax, myCallback);

CONTROL:control_yaw
CAT_USER | Read/Write

Description :
Maximum yaw speed of the AR.Drone, in radians per second.

Recommanded values goes from 40/s to 350/s (approx 0.7rad/s to 6.11rad/s). Others values may cause instability.

This value will be saved to indoor/outdoor_control_yaw, according to the CONFIG:outdoor setting.

AT command example : AT*CONFIG=605,"control:control_yaw","3.0"

API use example :
float yawSpeed = 3.0;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (control_yaw, &yawSpeed, myCallback);

CONTROL:outdoor CAT_COMMON | Read/Write
Description :
This settings tells the control loop that the AR.Drone is flying outside.

Setting the indoor/outdoor flight will load the corresponding indoor/outdoor_control_yaw, indoor/outdoor_eu-
ler_angle_max and indoor/outdoor_control_vz_max.

Note : This settings enables the wind estimator of the AR.Drone 2.0 , and thus should always be enabled when
flying outside. Note : This settings corresponds to the Outdoor flight setting of AR.FreeFlight

AT command example : AT*CONFIG=605,"control:outdoor","TRUE"

API use example :
bool_t isOutdoor = TRUE;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (outdoor, &isOutdoor, myCallback);

CONTROL:flight_without_shell
CAT_COMMON | Read/Write

Description :
This settings tells the control loop that the AR.Drone is currently using the outdoor hull. Deactivate it when flying
with the indoor hull

Note : This settings corresponds to the outdoor hull setting of AR.FreeFlight.

Note : This setting is not linked with the CONTROL:outdoor setting. They have different effects on the control loop.

AT command example : AT*CONFIG=605,"control:flight_without_shell","TRUE"

API use example :
bool_t withoutShell = TRUE;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (flight_without_shell, &withoutShell, myCallback);

CONTROL:autonomous_flight
CAT_COMMON | Read/Write

Description :
Deprecated : This setting enables the autonomous flight mode on the AR.Drone . This mode was developped for
2010 CES and is no longer maintained.

80

Enabling this can cause unexpected behaviour on commercial AR.Drone .

CONTROL:manual_trim CAT_USER | Read only
Description :
This setting will be active if the drone is using manual trims. Manual trims should not be used on commercial
AR.Drone , and this field should always be FALSE.

CONTROL:indoor_euler_angle_max
CAT_USER | Read/Write

Description :
This setting is used when CONTROL:outdoor is false. See the CONTROL:euler_angle_max description for further
informations.

CONTROL:indoor_control_vz_max CAT_USER | Read/Write
Description :
This setting is used when CONTROL:outdoor is false. See the CONTROL:control_vz_max description for further
informations.

CONTROL:indoor_control_yaw
CAT_USER | Read/Write

Description :
This setting is used when CONTROL:outdoor is false. See the CONTROL:control_yaw description for further infor-
mations.

CONTROL:outdoor_euler_angle_max
CAT_USER | Read/Write

Description :
This setting is used when CONTROL:outdoor is true. See the CONTROL:euler_angle_max description for further
informations.

CONTROL:outdoor_control_vz_max CAT_USER | Read/Write
Description :
This setting is used when CONTROL:outdoor is true. See the CONTROL:control_vz_max description for further in-
formations.

CONTROL:outdoor_control_yaw
CAT_USER | Read/Write

Description :
This setting is used when CONTROL:outdoor is true. See the CONTROL:control_yaw description for further informa-
tions.

CONTROL:flying_mode
CAT_SESSION | Read/Write

Description :
Since 1.5.1 firmware, the AR.Drone has two different flight modes. The first is the legacy FreeFlight mode, where the
user controls the drone, an a new semi-autonomous mode, called "HOVER_ON_TOP_OF_ROUNDEL", where the
drones will hover on top of a ground tag. This new flying mode was developped for 2011 CES autonomous demon-
stration. Since 2.0 and 1.10 firmwares, a third mode, called "HOVER_ON_TOP_OF_ORIENTED_ROUDNEL", was
added. This mode is the same as the previous one, except that the AR.Drone will always face the same direction.

For all modes, progressive commands are possible.

81

Note : Oriented Black&White Roundel detection must be activated with the DETECT:detect_type setting if you want
to use the "HOVER_ON_TOP_OF_(ORIENTED_)ROUNDEL" mode.

Note : Enum with modes can be found in the ardrone_api.h file.

AT command example : AT*CONFIG=605,"control:flying_mode","0"

API use example :
FLYING_MODE fMode = FLYING_MODE_FREE_FLIGHT;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (flying_mode, &fMode, myCallback);

CONTROL:hovering_range
CAT_SESSION | Read/Write

Description :
This setting is used when CONTROL:flying_mode is set to "HOVER_ON_TOP_OF_(ORIENTED_)ROUNDEL". It
gives the AR.Drone the maximum distance (in millimeters) allowed between the AR.Drone and the oriented roundel.

CONTROL:flight_anim
CAT_COMMON | Read/Write

Description :
Use this setting to launch drone animations.

The parameter is a string containing the animation number and its duration, separated with a comma. Animation
numbers can be found in the config.h file.

Note : The MAYDAY_TIMEOUT array contains defaults durations for each flight animations. Note : The FLIP
animations are only available on AR.Drone 2.0

AT command example : AT*CONFIG=605,"control:flight_anim","3,2"

API use example :
char param[20];
snprintf (param, sizeof (param), "%d,%d", ARDRONE_ANIMATION_FLIP_LEFT, MAYDAY_TIMEOUT[ARDRONE_-
ANIMATION_FLIP_LEFT]);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (flight_anim, param, myCallback);

82

8.6 Network configuration

NETWORK:ssid_single_player
CAT_COMMON | Read/Write

Description :
The AR.Drone SSID. Changes are applied on reboot

AT command example : AT*CONFIG=605,"network:ssid_single_player","myArdroneNetwork"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (ssid_single_player, "myArdroneNetwork", myCallback);

NETWORK:ssid_multi_player
CAT_COMMON | Read/Write

Description :
Currently unused.

NETWORK:wifi_mode CAT_COMMON | Read/Write
Description :
Mode of the Wi-Fi network. Possible values are :

• 0 : The drone is the access point of the network
• 1 : The drone creates (or join) the network in Ad-Hoc mode
• 2 : The drone tries to join the network as a station

Note : This value should not be changed for users applications.

NETWORK:wifi_rate CAT_COMMON | Read/Write
Description :
Debug configuration that should not be modified.

NETWORK:owner_mac CAT_COMMON | Read/Write
Description :
Mac addres paired with the AR.Drone. Set to "00:00:00:00:00:00" to unpair the AR.Drone.

AT command example : AT*CONFIG=605,"network:owner_mac","01:23:45:67:89:ab"

API use example :
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (owner_mac, "cd:ef:01:23:45:67", myCallback);

83

8.7 Nav-board configuration

PIC:ultrasound_freq
CAT_COMMON | Read/Write

Description :
Frequency of the ultrasound measures for altitude. Using two different frequencies can reduce significantly the
ultrasound perturbations between two AR.Drones.

Only two frequencies are availaible : 22.22 and 25 Hz.

The enum containing the values are found in the ardrone_common_config.h file.

AT command example : AT*CONFIG=605,"pic:ultrasound_freq","7"

API use example :
ADC_COMMANDS uFreq = ADC_CMD_SELECT_ULTRASOUND_22Hz;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (ultrasound_freq, &uFreq, myCallback);

PIC:ultrasound_watchdog
CAT_COMMON | Read/Write

Description :
Debug configuration that should not be modified.

PIC:pic_version
CAT_COMMON | Read only

Description :
The software version of the Nav-board.

84

8.8 Video configuration

VIDEO:camif_fps
CAT_COMMON | Read only

Description :
Current FPS of the video interface. This may be different than the actual framerate.

VIDEO:codec_fps
CAT_SESSION | Read/Write

Description :
Current FPS of the live video codec. Maximum value is 30. Note : Only effective on AR.Drone 2.0 .

AT command example : AT*CONFIG=605,"video:codec_fps","30"

API use example :
uint32_t codecFps = 30;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (codec_fps, &codecFps, myCallback);

VIDEO:camif_buffers CAT_COMMON | Read only
Description :
Buffer depth for the video interface.

VIDEO:num_trackers CAT_COMMON | Read only
Description :
Number of tracking point for the speed estimation.

VIDEO:video_codec CAT_SESSION | Default : Read only | Multiconfig : Read/Write
Description :
Current video codec of the AR.Drone . Values differs for AR.Drone 1.0 and AR.Drone 2.0 .

Note : On AR.Drone 2.0 , this key controls the start/stop of the record stream.

Possible codec values for AR.Drone 2.0 are :

• MP4_360P_CODEC : Live stream with MPEG4.2 soft encoder. No record stream.
• H264_360P_CODEC : Live stream with H264 hardware encoder configured in 360p mode. No record stream.
• MP4_360P_H264_720P_CODEC : Live stream with MPEG4.2 soft encoder. Record stream with H264 hard-

ware encoder in 720p mode.
• H264_720P_CODEC : Live stream with H264 hardware encoder configured in 720p mode. No record stream.
• MP4_360P_H264_360P_CODEC : Live stream with MPEG4.2 soft encoder. Record stream with H264 hard-

ware encoder in 360p mode.

Possible codec values for AR.Drone 1.0 are :

• UVLC_CODEC : MJPEG-like codec.
• P264_CODEC : H264-like codec.

Note : Other codec values can lead to unexpected behaviour. Note : Enum with codec values can be found in the
VLIB/video_codec.h file of the ARDroneLIB .

AT command example : AT*CONFIG=605,"video:video_codec","129"

85

API use example :
codec_type_t newCodec = H264_360P_CODEC;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (video_codec, &newCodec, myCallback);

VIDEO:video_slices CAT_SESSION | Read/Write
Description :
Debug configuration that should not be modified.

VIDEO:video_live_socket CAT_SESSION | Read/Write
Description :
Debug configuration that should not be modified.

VIDEO:video_storage_space
CAT_COMMON | Read only

Description :
Size of the wifi video record buffer.

VIDEO:bitrate CAT_APPLI | Default : Read only | Multiconfig : Read/Write
Description :
For AR.Drone 1.0 : When using the bitrate control mode in "VBC_MANUAL", sets the bitrate of the video transmis-
sion (size, in octets, of each frame).
Recommanded values are 20000 for VLIB codec, and 15000 for P264 codec.

For AR.Drone 2.0 : When using the bitrate control mode in "VBC_MANUAL", sets the bitrate of the video transmis-
sion (kilobits per second).
Typical values range from 500 to 4000 kbps.

Note : This value is dynamically changed when bitrate_control_mode is set to VBC_MODE_DYNAMIC. Note : This
configuration can’t be changed on default configuration.

AT command example : AT*CONFIG=605,"video:bitrate","1000"

API use example :
uint32_t newBitrate = 4000;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (bitrate, &newBitrate, myCallback);

VIDEO:max_bitrate CAT_SESSION | Default : Read only | Multiconfig : Read/Write
Description :
AR.Drone 2.0 only.

Maximum bitrate that the device can decode. This is set as the upper bound for drone bitrate values.

Typical values for Apple iOS Device are :

• iPhone 4S : 4000 kbps
• iPhone 4 : 1500 kbps
• iPhone 3GS : 500 kbps

Note : When using the bitrate control mode in "VBC_MANUAL", this maximum bitrate is ignored. Note : When
using the bitrate control mode in "VBC_MODE_DISABLED", the bitrate is fixed to this maximum bitrate.

AT command example : AT*CONFIG=605,"video:max_bitrate","1000"

86

API use example :
uint32_t newMaxBitrate = 4000;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (max_bitrate, &newMaxBitrate, myCallback);

VIDEO:bitrate_control_mode CAT_APPLI | Default : Read only | Multiconfig : Read/Write
Description :
Enables the automatic bitrate control of the video stream. Enabling this configuration will reduce the bandwith
used by the video stream under bad Wi-Fi conditions, reducing the commands latency.

Possible values are (see ardrone_api.h) :

AR.Drone 1.0 AR.Drone 2.0
VBC_MODE_DISABLED Don’t use Bitrate set to video:max_bitrate
VBC_MODE_DYNAMIC Image sizes varies in [5000; 25000]

bytes per frame
Video bitrate varies in
[250;video:max_bitrate] kbps

VBC_MANUAL Image size is fixed by the
video:bitrate key

Video stream bitrate is fixed by the
video:bitrate key

Note : This configuration can’t be changed on default configuration.

AT command example : AT*CONFIG=605,"video:bitrate_control_mode","1"

API use example :
VIDEO_BITRATE_CONTROL_MODE vbcMode = VBC_MODE_DYNAMIC;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (bitrate_control_mode, &vbcMode, myCallback);

VIDEO:bitrate_storage
CAT_APPLI | Read/Write

Description :
Only for AR.Drone 2.0 Bitrate (kbps) of the recording stream, both for USB and WiFi record.

Note : This value should not be changed by the user.

VIDEO:videol_channel CAT_SESSION | Read/Write
Description :
The video channel that will be sent to the controller.

Current implementation supports 4 different channels :
- ZAP_CHANNEL_HORI
- ZAP_CHANNEL_VERT
- ZAP_CHANNEL_LARGE_HORI_SMALL_VERT (AR.Drone 1.0 only)
- ZAP_CHANNEL_LARGE_VERT_SMALL_HORI (AR.Drone 1.0 only)

AT command example : AT*CONFIG=605,"video:video_channel","2"

API use example :
ZAP_VIDEO_CHANNEL nextChannel = ZAP_CHANNEL_HORI;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (video_channel, &nextChannel, myCallback);

VIDEO:video_on_usb CAT_COMMON | Read/Write
Description :
Only for AR.Drone 2.0 If this key is set to "TRUE" and a USB key with >100Mb of freespace is connected, the record
video stream will be recorded on the USB key.

87

In all other cases (key set to "FALSE" or no USB key plugged), the record stream is sent to the controlling device,
which will be in charge of the actual recording.

AT command example : AT*CONFIG=605,"video:video_on_usb","TRUE"

API use example :
bool_t recordOnUsb = TRUE;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (video_on_usb, &recordOnUsb, myCallback);

VIDEO:video_file_index CAT_COMMON | Read/Write
Description :
Only for AR.Drone 2.0 Number of the last recorded video (video_XXX.mp4) on USB key.

Note : Application should not write any value to this key.

88

8.9 Leds configuration

LEDS:leds_anim CAT_COMMON | Read/Write
Description :
Use this setting to launch leds animations.

The parameter is a string containing the animation number, its frequency (Hz) and its duration (s), separated with
commas. Animation names can be found in the led_animation.h file.

Note : The frequency parameter is a floating point parameter, but in configuration string it will be print as the
binary equivalent integer.

AT command example : AT*CONFIG=605,"leds:leds_anim","3,1073741824,2"

API use example :
char param[50];
float frequency = 2.0;
snprintf (param, sizeof (param), "%d,%d,%d", ARDRONE_LED_ANIMATION_BLINK_ORANGE, *(unsigned
int *)&frequency, 5);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (leds_anim, param, myCallback);

89

8.10 Detection configuration

DETECT:enemy_colors
CAT_COMMON | Read/Write

Description :
The color of the hulls you want to detect. Possible values are green, yellow and blue (respective integer values as of
2.1/1.10 firmware : 1, 2, 3).

Note : This config will only be used for standard tags/hulls detection. Roundel detection don’t use it.

AT command example : AT*CONFIG=605,"detect:enemy_colors","2"

API use example :
ENEMY_COLORS_TYPE enemyColors = ARDRONE_DETECTION_COLOR_BLUE;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (enemy_colors, &enemyColors, myCallback);

DETECT:groundstripe_colors
CAT_SESSION | Read/Write

Description :
Only for AR.Drone 1.0 , with legacy groundstripe detection.

The color of the ground stripe you want to detect. Possible values are orange/green and, yellow/blue (respective
integer values as of 1.6.4 firmware : 0x10, 0x11).

Note : This config will only be used for groundstripe detection.

AT command example : AT*CONFIG=605,"detect:groundstripe_colors","0x10"

API use example :
COLORS_DETECTION_TYPE color = ARDRONE_ENEMY_COLOR_ARRACE_FINISH_LINE;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (groundstripe_colors, &color, myCallback);

DETECT:enemy_without_shell
CAT_COMMON | Read/Write

Description :
Activate this in order to detect outdoor hulls. Deactivate to detect indoor hulls.

AT command example : AT*CONFIG=605,"detect:enemy_without_shell","1"

API use example :
uint32_t activated = 0;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (enemy_without_shell, &activated, myCallback);

DETECT:detect_type
CAT_SESSION | Read/Write

Description :
Select the active tag detection.

Possible values are (see ardrone_api.h) :

• CAD_TYPE_NONE : No detections.
• CAD_TYPE_MULTIPLE_DETECTION_MODE : See following note.
• CAD_TYPE_ORIENTED_COCARDE_BW : Black&White oriented roundel detected on bottom facing cam-

era.
• CAD_TYPE_VISION_V2 : Standard tag detection (for both AR.Drone 2.0 and AR.Drone 1.0).

90

Any other values are either deprecated or in development.

Note : It is advised to enable the multiple detection mode, and then configure the detection needed using the
following keys.

Note : The multiple detection mode allow the selection of different detections on each camera. Note that you should
NEVER enable two similar detection on both cameras, as this will cause failures in the algorithms.

Note : The Black&White oriented roundel can be downloaded on Parrot website

AT command example : AT*CONFIG=605,"detect:detect_type","10"

API use example :
CAD_TYPE detectType = CAD_TYPE_MULTIPLE_DETECTION_MODE;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (detect_type, &detectType, myCallback);

DETECT:detections_select_h CAT_SESSION | Read/Write
Description :
Bitfields to select detections that should be enabled on horizontal camera.

Possible tags values are (see ardrone_api.h) :

• TAG_TYPE_NONE : No tag to detect.
• TAG_TYPE_SHELL_TAG_V2 : Standard hulls (both indoor and outdoor) tags, for both AR.Drone 2.0 and

AR.Drone 1.0 .
• TAG_TYPE_BLACK_ROUNDEL : Black&While oriented roundel.

All other value are either deprecated or in development.

Note : You should NEVER enable one detection on two different cameras.

AT command example : AT*CONFIG=605,"detect:detections_select_h","1"

API use example :
uint32_t detectH = TAG_TYPE_MASK (TAG_TYPE_SHELL_TAG);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (detections_select_h, &detectH, myCallback);

DETECT:detections_select_v_hsync
CAT_SESSION | Read/Write

Description :
Bitfileds to select the detections that should be enabled on vertical camera.

Detection enables in the hsync mode will run synchronously with the horizontal camera pipeline, a 30fps instead
of 60. This can be useful to reduce the CPU load when you don’t need a 60Hz detection.

Note : You should use either v_hsync or v detections, but not both at the same time. This can cause unexpected
behaviours.

Note : Notes from DETECT:detections_select_h also applies.

AT command example : AT*CONFIG=605,"detect:detections_select_v_hsync","2"

API use example :
uint32_t detectVhsync = TAG_TYPE_MASK (TAG_TYPE_ROUNDEL);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (detections_select_v_hsync, &detectVhsync, myCallback);

http://ardrone.parrot.com/parrot-ar-drone/fr/ar.games/ar-rescue/special_target.pdf

91

DETECT:detections_select_v CAT_SESSION | Read/Write
Description :
Bitfileds to select the detections that should be active on vertical camera.

These detections will be run at 60Hz. If you don’t need that speed, using detections_select_v_hsync instead will
reduce the CPU load.

Note : See the DETECT:detections_select_h and DETECT:detections_select_v_hsync for further details.

AT command example : AT*CONFIG=605,"detect:detections_select_v","2"

API use example :
uint32_t detectV = TAG_TYPE_MASK (TAG_TYPE_ROUNDEL);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (detections_select_v, &detectV, myCallback);

92

8.11 SYSLOG section

This section is a Parrot internal debug section, and should therefore not be used.

8.12 USERBOX section

USERBOX:userbox_cmd CAT_SESSION | Read/Write
Description :
The USERBOX:userbox_cmd provide a feature to save navigation data from drone during a time period and to take
pictures. When the USERBOX:userbox_cmd is sent with parameter USERBOX_CMD_START, the AR.Drone create
directory /data/video/boxes/tmp_flight_YYYYMMDD_hhmmss in AR.Drone flash memory and save a binary file
containing navigation data and named /data/video/boxes/tmp_flight_YYYYMMDD_hhmmss/userbox_<timestamp>.
<timestamp> represent the time since the AR.Drone booted.

When the USERBOX:userbox_cmd is sent with parameter USERBOX_CMD_STOP, the AR.Drone finish saving of
/data/video/boxes/tmp_flight_YYYYMMDD_hhmmss/userbox_<timestamp>. and rename directory from
/data/video/boxes/tmp_flight_YYYYMMDD_hhmmss to /data/video/boxes/flight_YYYYMMDD_hhmmss.

When the USERBOX:userbox_cmd is sent with parameter USERBOX_CMD_CANCEL, the AR.Drone stop the user-
box like sending USERBOX_CMD_STOP and delete file
/data/video/boxes/tmp_flight_YYYYMMDD_hhmmss/userbox_<timestamp>.

When the USERBOX:userbox_cmd is sent with parameter USERBOX_CMD_SCREENSHOT, the AR.Drone takes pic-
ture of frontal camera and saves it as JPEG image named
/data/video/boxes/tmp_flight_YYYYMMDD_hhmmss/picture_YYMMDD_hhmmss.jpg.

Note : If the userbox is started, the picture is saved in userbox directory. Note : After stopping userbox or taking
picture, you MUST call academy_download_resume function to download flight directory by ftp protocol.

Typical values are :

• USERBOX_CMD_STOP : Command to stop userbox. This command takes no parameters.
• USERBOX_CMD_CANCEL : Command to cancel userbox. If the userbox is started, stop the userbox and

delete its content.
• USERBOX_CMD_START : Command to start userbox. This command takes the current date as string pa-

rameter with format YYYYMMDD_hhmmss
• USERBOX_CMD_SCREENSHOT : Command to take a picture from AR.Drone . This command takes 3

parameters.

– 1 - delay : This value is an unsigned integer representing the delay (in seconds) between each screen-
shot.

– 1 - number of burst : This value is an unsigned integer representing the number of screenshot to take.
– 1 - current date : This value is the current date as string parameter with format YYYYMMDD_hhmmss.

Note : The file /data/video/boxes/tmp_flight_YYYYMMDD_hhmmss/userbox_<timestamp> will be used for future
feature. (AR.Drone Academy).

AT command example : AT*CONFIG=605,"userbox:userbox_cmd","0"

API use example :
char command[ARDRONE_DATE_MAX_SIZE + 64];
char date[ARDRONE_DATE_MAX_SIZE];
time_t t = time (NULL);
ardrone_time2date(t, ARDRONE_FILE_DATE_FORMAT, date);
snprintf (command, sizeof (command), "%d,%s", USERBOX_CMD_START, date);
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (userbox_cmd, command, myCallback);

93

8.13 GPS section

GPS:latitude CAT_SESSION | Read/Write
Description :
GPS Latitude sent by the controlling device.

This data is used for media tagging and userbox recording.

Note : value is a double precision floating point number, sent as a the binary equivalent 64bit integer on AT com-
mand

AT command example : AT*CONFIG=605,"gps:latitude","4631107791820423168"

API use example :
double gpsLatitude = 42.0;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (latitude, &gpsLatitude, myCallback);

GPS:longitude
CAT_SESSION | Read/Write

Description :
GPS Longitude sent by the controlling device.

This data is used for media tagging and userbox recording.

Note : value is a double precision floating point number, sent as a the binary equivalent 64bit integer on AT com-
mand

AT command example : AT*CONFIG=605,"gps:longitude","4631107791820423168"

API use example :
double gpsLongitude = 42.0;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (longitude, &gpsLongitude, myCallback);

GPS:altitude CAT_SESSION | Read/Write
Description :
GPS Altitude sent by the controlling device.

This data is used for media tagging and userbox recording.

Note : value is a double precision floating point number, sent as a the binary equivalent 64bit integer on AT com-
mand

AT command example : AT*CONFIG=605,"gps:altitude","4631107791820423168"

API use example :
double gpsAltitude = 42.0;
ARDRONE_TOOL_CONFIGURATION_ADDEVENT (altitude, &gpsAltitude, myCallback);

94

8.14 CUSTOM section - Multiconfig support

CUSTOM:application_id
CAT_SESSION | Read/Write

Description :
Sets the current application identifier (creates application settings if they don’t exist, switch to application afterwise)
Note : To remove an application, put a "-" before its id (e.g. "-01234567"). Note : To remove all applications, use
"-all" as id. Note : When removing a multiconfig setting, ensure that you won’t remove any "other application" setting !

AT command example : AT*CONFIG=605,"custom:application_id","0a1b2c3d"

CUSTOM:application_desc
CAT_APPLI | Read/Write

Description :
Sets the current application description string

AT command example : AT*CONFIG=605,"custom:application_desc","My Application Name"

CUSTOM:profile_id
CAT_SESSION | Read/Write

Description :
Sets the current user identifier (creates user settings if they don’t exist, switch to user afterwise) Note : To remove a
profile, put a "-" before its id (e.g. "-01234567"). Note : To remove all profiles, use "-all" as id. Note : When removing
a multiconfig setting, ensure that you won’t remove any "other application" setting !

AT command example : AT*CONFIG=605,"custom:profile_id","0a1b2c3d"

CUSTOM:profile_desc
CAT_USER | Read/Write

Description :
Sets the current user description string (typically user name). Note : "Hidden" users description starts with a dot
(’.’)

AT command example : AT*CONFIG=605,"custom:profile_desc","My Visible User" AT command exam-
ple : AT*CONFIG=605,"custom:profile_desc",".My Hidden User"

CUSTOM:session_id CAT_SESSION | Read/Write
Description :
Sets the current session identifier (creates session settings if they don’t exist, switch to session afterwise) Note : To
remove a session, put a "-" before its id (e.g. "-01234567"). Note : To remove all session, use "-all" as id. Note : When
removing a multiconfig setting, ensure that you won’t remove any "other application" setting !

AT command example : AT*CONFIG=605,"custom:session_id","0a1b2c3d"

CUSTOM:session_desc CAT_SESSION | Read/Write
Description :
Sets the current session description string.

AT command example : AT*CONFIG=605,"custom:session_desc","Session 0a1b2c3d"

Part II

Tutorials

95

9 Building the iOS
Example

The AR.Drone 2.0 SDK provides the full source code of AR.FreeFligt iPhone application.

To compile both the Control Engine and the AR.FreeFlight project, you need to use Apple XCode IDE on an Apple
computer.
You also need to have an Apple developper account with associated Developper profiles.
Further informations can be found on Apple website

Note : The FreeFlight application can’t run on iOS Simulator, as we are using armv7 optimized assembly code for
the video decoder.

97

http://developer.apple.com/devcenter/ios/index.action

10 Building the Linux
Examples

The AR.Drone 2.0 SDK provides three client application examples for Linux.

The first one, called Linux SDK Demo, shows the minimum software required to get AR.Drone 2.0 navigation datas,
and is a base skeleton for more complex applications.

The second one, called Linux Video Demo, shows the minimum software required to receive and decode the video
from both versions of AR.Drone 2.0 . It should be used as an example for all application that require live video.

The third one, called ARDrone Navigation, is the tool used internally at Parrot to test drones in flight. It shows all
the information sent by the drone during a flight session.

In this section, we are going to show you how to build those example on an Ubuntu 10.04 workstation. We will
suppose you are familiar with C programming and you already have a C compiler installed on your machine.

Note : These examples are not compatible with 64bits versions of Linux.

99

100

10.1 Set up your development environment

If you have not done so yet, please download the latest version of the SDK here (you must first register on the site).

Then unpack the archive ARDrone_SDK_Version_X_X_<date>.tar.gz in the directory of your choice. In this docu-
ment we will note 〈SDK〉the extracted directory name.

$ tar xzf ARDrone_SDK_Version_X_X_<date>.tar.gz

10.2 Compile linux examples

To compile all linux examples :

$ cd 〈SDK〉/Examples/Linux/
$ make

Executable programs will be created in the 〈SDK〉/Examples/Linux/Build/Release

https://projects.ardrone.org/projects/list_files/ardrone-api

101

10.3 Run the SDK Demo program

Before running any demo, make sure that your computer is connected to your AR.Drone

You can test the connection with a ping command :
$ ping 192.168.1.1

If connection is successful, the ping command will return you the time needed for data to go
back and forth to the drone.

You can then launch the demo program :

It will display various informations about the AR.Drone

Note that this demo does not include gamepad management code, so you won’t be able to pilot
the AR.Drone with it.

102

10.4 Run the Video Demo program

Before running any demo, make sure that your computer is connected to your AR.Drone

You can test the connection with a ping command :
$ ping 192.168.1.1

If connection is successful, the ping command will return you the time needed for data to go
back and forth to the drone.

You can then launch the demo program : The program should launch a GTK2+Cairo window,
displaying the drone front camera live streaming.

The demo program accepts two arguments :

• -c : Change the codec used by the AR.Drone . On AR.Drone 1.0 , it changes the codec
from P264 to VLIB. On AR.Drone 2.0 , it changes the codec to h.264-360p to h.264-720p.

• -b : Use bottom camera instead of front camera.

Note that this demo does not include gamepad management code, so you won’t be able to pilot
the AR.Drone with it.

103

10.5 Run the Navigation program

Before running any demo, make sure that your computer is connected to your AR.Drone

You can test the connection with a ping command :

$ ping 192.168.1.1

If connection is successful, the ping command will return you the time needed for data to go
back and forth to the drone.

You can then launch the navigation program :

What to expect ?

You should see a GUI showing the current drone state. If connection with the drone is success-
ful, the central graphs entitled theta,phi and psi should change according to the drone angular
position.

Configure your controller

To configure your controller, open the "Input Configuration" part, and click on the "USB Con-
figuration" button. You should then see a window allowing you to select the controlling device,
and to configure the keys.

Note : The keyboard piloting mode is not supported, even if the configuration windows seems
to work. You’ll have to use an USB gamepad.

Depending on the computers, it may not be possible to configure directly the controller from
the software. In this case, you’ll need to edit the
〈SDK〉/Examples/Linux/Build/Release/ardrone.xml file.

104

ardrone.xml file structure

An example of the ardrone.xml file stucture can be found on listing 10.1.

Listing 10.1: ardrone.xml device example

<?xml version="1.0"?>
<ardrone>
<devices>

<device id="74301981" name="Generic X-Box pad" default="yes">
<controls>
<control name="takeoff" value="6" type="3"/>
<control name="emergency" value="10" type="3"/>
<control name="pitch_front" value="-2" type="1"/>
<control name="pitch_back" value="2" type="1"/>
<control name="roll_left" value="-1" type="1"/>
<control name="roll_right" value="1" type="1"/>
<control name="yaw_left" value="-4" type="1"/>
<control name="yaw_right" value="4" type="1"/>
<control name="speed_up" value="-5" type="1"/>
<control name="speed_down" value="5" type="1"/>

</controls>
</device>
[...]

</devices>
</ardrone>

The ID can be retreived with lsusb tool. Its the integer value corresponding to the USB id of
your device.

All other informations can be found with the jstest tool :
The type determines if the control is an analogic axis (1) or a button (3).
The value determines the axis/button which control this feature.

• Axis values are jstest’s axis numbers +1 (i.e. jstest axis 2 will be "3" or "-3" in the xml file)
• Negative axis values indicates a negative value on this axis (e.g. -2 for forward, 2 for

backward movement means that our axis takes negative values to the front)
• Button values are the same as jstest button numbers (i.e. jstest button 2 will be "2" in the

xml file)

105

Fly

Now press the button you chose as the select button. Press it several times to make the motors
leds switch between red (emergency mode) and green(ready to fly mode).

Clear the drone surroundings and press the button you chose as the start button. The drone
should start flying.

Get video

Press the Video Window button to show the video from the AR.Drone .

11 Android example

The AR.Drone SDK now also provide the Android app example.

In this section, we are going to show you how to build this example app on an Ubuntu work-
station.

11.1 Set up your development environment

Before compiling any Android example, you will need to download and install the latest An-
droid SDK and NDK.

The example was written using SDK 4.1 (API Level 16), and NDK r8b.

The Android SDK can be found here.
The Android NDK can be found here.

Unzip both SDK and NDK files where you want. In this document, we will refer to this folder
as 〈ANDROID_SDK〉.

After this, add the following folders to your PATH. You can do this by editing the ~/.bashrc
file, and add the following line at the end:
PATH=$PATH:〈ANDROID_SDK〉/android-sdk-linux/tools:〈ANDROID_-
SDK〉/android-sdk-linux/platform-tools:〈ANDROID_SDK〉/android-ndk-r8b

Then run the following commands:
$ source ~/.bashrc
$ android

107

http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

108

The Android SDK Manager window should appear.

To build the AR.Drone Android example, you must select and install the following packets:

• Android SDK Tools (rev 20.0.3 or newer)
• Android SDK Platform Tools (rev 14 or newer)
• Android 4.1.x (API 16) SDK Platform
• (Optionnal) Android Support Library

You will also need to install ant. You can install it using the following command line:
$ sudo apt-get install ant

Last part is to edit the 〈SDK〉/Examples/Android/trunk/FreeFlight2/environment.properties
file. This file contains some environment variables that you will need to modify according to
your android sdk/ndk installation:

• ANDROID_SDK_PATH : Path to the root folder of Android SDK (〈ANDROID_SDK〉/android-
sdk-linux)

• ANDROID_NDK_PATH : Path to the root folder of Android NDK (〈ANDROID_SDK〉/android-
ndk-r8b)

109

11.2 Building and installing the Android example

To build the android example, go to the 〈SDK〉/Examples/Android/trunk/FreeFlight2/ folder,
and run the following script:
$./build.sh release

This will build the app in release mode. Other options to the script are:

• release > build the app in release mode (APK File : bin/FreeFlight-release.apk)
• debug > build the app in debug mode (APK File : bin/FreeFlight-debug.apk)
• clean > clean the app and the SDK

In either case, the app will be signed with a dummy release key. This means that:

• You’ll need to uninstall the Google Play app before installing this one as the keys are not
the same

• You can share the resulting APK with anyone as long as it is not published to an online
app market (Google Play, Amazon marketplace ...)

• If you want to distibute a resulting app, you will need to generate (or reuse) your own
release key

To install the app using adb, just type the following command:
$ adb install -r bin/FreeFlight-release.apk

11.3 Modifying the Android example source code

11.3.1 Modifying the ARDroneLib part

The ARDroneLib is ONLY compiled by running the build.sh script. If you do any modification
to this part, you will need to rerun that script to rebuild the libraries.

11.3.2 Modifying the JNI part

The JNI part of the application is the link between the ARDroneLib (Native C code) and the
UI (Android Java code). The JNI part source code can be found in the jni/ folder inside the
example folder.

To rebuild the final .so file for the app, you can either use the build.sh script, or simply run
ndk-build from the root app folder.
Note : Using ndk-build will only work if build.sh had been run at least once

110

11.3.3 Modifying the UI part

The root folder of the example contains an eclipse project that you can import to an exist-
ing workspace as long as you don’t copy the project into your workspace (relative path to
ARDroneLib must be kept).
Note : To be able to run the application from ecplise, native parts of the project must have
already been built using the build.sh file

The project was developped using the following eclipse configuration, but should work on
newer version with minor changes:

• Eclipse version : Juno Classic 4.2.0
• Android ADT version : 20.0.3
• Additionnal plugins : CDT v8.1.0 (if you want to edit C code from eclipse)

	A.R.Drone Developer Guide
	Contents

	SDK documentation
	Introduction
	AR.Drone 2.0 Overview
	Introduction to quadrotor UAV
	Indoor and outdoor design configurations
	Engines
	LiPo batteries
	Motion sensors
	Assisted control of basic manoeuvres
	Advanced manoeuvres using host tilt sensors
	Video streaming, tags and roundel detection
	Wifi network and connection
	Communication services between the AR.Drone 2.0 and a client device
	Differences between AR.Drone 2.0 and AR.Drone 1.0

	AR.Drone 2.0 SDK Overview
	Layered architecture
	The AR.Drone 2.0 Library
	The AR.Drone 2.0 Tool
	The AR.Drone Engine - only for Apple iOS devices

	ARDroneLIB and ARDroneTool functions
	Drone control functions
	ardrone_tool_set_ui_pad_start
	ardrone_tool_set_ui_pad_select
	ardrone_at_set_progress_cmd
	ardrone_at_set_progress_cmd_with_magneto

	Creating an application with ARDroneTool
	Quick steps to create a custom AR.Drone 2.0 application
	Customizing the client initialization
	Using navigation data
	Command line parsing for a particular application
	Thread management in the application
	Managing the video stream

	AT Commands
	AT Commands syntax
	Commands sequencing
	Floating-point parameters
	AT Commands summary
	Commands description
	AT*REF
	AT*PCMD / AT*PCMD_MAG
	AT*FTRIM
	AT*CALIB
	AT*CONFIG
	AT*CONFIG_IDS
	AT*COMWDG

	Incoming data streams
	Navigation data
	Navigation data stream
	Initiating the reception of Navigation data
	Augmented reality data stream

	The AR.Drone 1.0 video stream
	Image structure
	UVLC codec overview
	P264 codec overview
	Specific block entropy-encoding
	Transport layer
	End of sequence (EOS) (22 bits)
	Intiating the video stream

	The AR.Drone 2.0 video stream
	Video codecs
	Video encapsulation on network
	Network transmission of video stream
	Latency reduction mecanism
	Video record stream

	Drone Configuration
	Reading the drone configuration
	With ARDroneTool
	Without ARDroneTool

	Setting the drone configuration
	With ARDroneTool
	From the Control Engine for iPhone
	Without ARDroneTool

	Multiconfiguration
	With ARDroneTool
	Multiconfiguration with Control Engine (iPhone only)
	Without ARDroneTool
	Common category (CAT_COMMON)
	Application category (CAT_APPLI)
	User category (CAT_USER) – also called "Profile" category
	Session category (CAT_SESSION)
	Technical details on id generation and descriptions

	General configuration
	GENERAL:num_version_config
	GENERAL:num_version_mb
	GENERAL:num_version_soft
	GENERAL:drone_serial
	GENERAL:soft_build_date
	GENERAL:motor1_soft
	GENERAL:motor1_hard
	GENERAL:motor1_supplier
	GENERAL:ardrone_name
	GENERAL:flying_time
	GENERAL:navdata_demo
	GENERAL:navdata_options
	GENERAL:com_watchdog
	GENERAL:video_enable
	GENERAL:vision_enable
	GENERAL:vbat_min

	Control configuration
	CONTROL:accs_offset
	CONTROL:accs_gains
	CONTROL:gyros_offset
	CONTROL:gyros_gains
	CONTROL:gyros110_offset
	CONTROL:gyros110_gains
	CONTROL:magneto_offset
	CONTROL:magneto_radius
	CONTROL:gyro_offset_thr_x
	CONTROL:pwm_ref_gyros
	CONTROL:osctun_value
	CONTROL:osctun_test
	CONTROL:control_level
	CONTROL:euler_angle_max
	CONTROL:altitude_max
	CONTROL:altitude_min
	CONTROL:control_iphone_tilt
	CONTROL:control_vz_max
	CONTROL:control_yaw
	CONTROL:outdoor
	CONTROL:flight_without_shell
	CONTROL:autonomous_flight
	CONTROL:manual_trim
	CONTROL:indoor_euler_angle_max
	CONTROL:indoor_control_vz_max
	CONTROL:indoor_control_yaw
	CONTROL:outdoor_euler_angle_max
	CONTROL:outdoor_control_vz_max
	CONTROL:outdoor_control_yaw
	CONTROL:flying_mode
	CONTROL:hovering_range
	CONTROL:flight_anim

	Network configuration
	NETWORK:ssid_single_player
	NETWORK:ssid_multi_player
	NETWORK:wifi_mode
	NETWORK:wifi_rate
	NETWORK:owner_mac

	Nav-board configuration
	PIC:ultrasound_freq
	PIC:ultrasound_watchdog
	PIC:pic_version

	Video configuration
	VIDEO:camif_fps
	VIDEO:codec_fps
	VIDEO:camif_buffers
	VIDEO:num_trackers
	VIDEO:video_codec
	VIDEO:video_slices
	VIDEO:video_live_socket
	VIDEO:video_storage_space
	VIDEO:bitrate
	VIDEO:max_bitrate
	VIDEO:bitrate_control_mode
	VIDEO:bitrate_storage
	VIDEO:videol_channel
	VIDEO:video_on_usb
	VIDEO:video_file_index

	Leds configuration
	LEDS:leds_anim

	Detection configuration
	DETECT:enemy_colors
	DETECT:groundstripe_colors
	DETECT:enemy_without_shell
	DETECT:detect_type
	DETECT:detections_select_h
	DETECT:detections_select_v_hsync
	DETECT:detections_select_v

	SYSLOG section
	USERBOX section
	USERBOX:userbox_cmd

	GPS section
	GPS:latitude
	GPS:longitude
	GPS:altitude

	CUSTOM section - Multiconfig support
	CUSTOM:application_id
	CUSTOM:application_desc
	CUSTOM:profile_id
	CUSTOM:profile_desc
	CUSTOM:session_id
	CUSTOM:session_desc

	Tutorials
	Building the iOS Example
	Building the Linux Examples
	Set up your development environment
	Compile linux examples
	Run the SDK Demo program
	Run the Video Demo program
	Run the Navigation program

	Android example
	Set up your development environment
	Building and installing the Android example
	Modifying the Android example source code
	Modifying the ARDroneLib part
	Modifying the JNI part
	Modifying the UI part

