
THE CZECH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Electrical Engineering

BACHELOR'S THESIS

Miodrag Ignjatovic
Platooning with Low-Cost Sensors

Project supervisor: Dr. Gaël Ecorchard

Department of Control Engineering
Major: Cybernetics and Robotics

Specialization: Systems and Control

January 2017

Prohlášení autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité
informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praye dne ….. …..

Acknowledgements
I would like to express gratitude to my thesis supervisor Dr. Gaël Ecorchard

for his guidance and patience. Also, I would like to thank everyone in the IMR
group as well as Czech Institute for Informatics, Robotics and Cybernetics.
Finally I would like to thank my family for their inexhaustible support.

Abstract

The goal of this project is to design and implement a platoon system between
two vehicles based on relative localization system and odometry path follower.
The system utilizes quasi operating system called Robot Operating System for
the purpose of communication between vehicles and computation of relative
parameters. Relative localization is based on a vision-based external localization
system called Whycon. Furthermore, this thesis is about investigation of what
can be achieved when combining low cost sensors in order to achieve better
results. Extended Kalman Filter was used to combine wheel odometries of
vehicles and Whycon localization in order to overcome their individual problems.

Keywords: Platoon system, Relative Localization, Odometry path follower,
Robot Operating System, Odometry combination.

Abstrakt

Cílem toho projektu je návrh a implementace systému konvoje dvou vozidel
založeném na relativní lokalizaci a sledování trajektorie z odometrii.
Systém používá kvazi operační systém Robot Operating System pro
komunikaci mezi vozidly a určení relativních parametrů. Určení relativní
polohy vozidel je realizováno externím systémem Whycon, který
zpracovává obrázky z kamery. Tato práce rovněž zkoumá možnosti
použití levných základních senzorů pro zlepšení výsledků. Byl použit
rozšířený Kalmánův filtr pro fúzi odometrických dat a lokalizace ze
systému Whycon pro zlepšení výsledků, které produkují jednotlivé metody
samostatně.

Klíčové slova: konvoj, relativní lokalizace, sledování trajektorie z
odometrie, Robot Operating System, kombinace odometrie

Contents

1. Contents

1. Contents 1
2. Introduction 2
3. Robot Operating System (ROS) 4
4. Robot Model 5

4.1. Unified Robot Description Format (URDF) 5
4.2. Drive System 6
4.3. Camera and Patterns 7

5. Kinematic Equations and Control Law 8
5.2. Control Law for Angular Velocities 9
5.3. Control Law for Linear Velocity 11

6. Relative Localization System 14
6.1. How does Whycon work? 14
6.2. Limitations of Whycon algorithm 15
6.3. Calculating Relative Positions of a Vehicles using Whycon 17

7. Odometry Follower Algorithms 20
7.1. Position following algorithm 20
7.2. Path Following Algorithm 22

8. GPS Following Algorithm 25
9. Combining Algorithm 26

9.1. Extended Kalman Filter (EKF) 26
9.2. Covariance 27
9.3. Combined Odometry Topic 27

10. Results of Simulations 28
11. Conclusion 30
12. References / Bibliography 31
13. Appendix: CD Contents 33

11

Introduction

2. Introduction

In recent years many different car manufacturing companies have started to
develop and even produce their own brands of autonomous cars. This
technology, even thou it seems already available and viable, has a lot more to go
through until it becomes part of our daily interaction with technology. This is why
many intermediate steps will have to be taken before we can achieve fully
automated vehicles.

In order to properly define any intermediate step, certain premise has to be
taken into account. This is done in order to give breathing space for other,
perhaps smaller problems that will have to be solved in order to achieve better
systems. The main premise to which this project has been oriented around is the
fact that a human driver is irreplaceable. However, behavior of a human driver
can be emulated by an autonomous vehicle. From these two assumptions a
system can be formulated such that a human driver would be in control of a
guiding vehicle, while an autonomous vehicle can be guided along the same path
taken as the guiding vehicle. This solutions is usually referred to as a Platooning
Systems.

Figure 2.1.1. A Platoon of Robots made by the IMR group

A Platooning System can be defined as a collection of vehicles that travel
together, while actively coordinated in formation. Algorithms and systems that
are being designed to create platoons are not trivial at all. They are going to
improve upon fuel consumption, safety, traffic efficiency, comfort as well as

12

Introduction

potentially change the way we think about out transportation systems. Another
significant factor which makes this project relevant to the future of autonomous
vehicles is the fact that one way or the other, platooning systems will be
incorporated into fully automated cars. This is because platooning revolves
around cooperation between vehicles and with autonomous vehicles this
cooperation will lead to better solutions and better utilization of our
transportation systems.

Platooning has been developed by many researchers. Some of these are
European platooning project (SARTRE), California traffic automation program
that includes platooning (PATH), Cooperative driving initiative (GCDC) and
Energy ITS (Japanese truck platooning project) [1] [2].

In order for any platooning algorithm to work, a good localization system must
me developed in order to determine relative positions of the following and
leading vehicle. There is wide range of these algorithms and even wider range of
the types of sensors they use, but for the purposes of my thesis I have decided
to use a visual-based external localization algorithm called Whycon.

Another important part of this thesis is the development of a path following
algorithm. There are many different solutions of how the following vehicle could
conduct its purpose, but the solution that I have implemented revolves around a
path following algorithm based on the combined odometry information from
wheels, localization algorithm and GPS

It is important to note that most all of my work will be conducted in computer
simulated environments, but it will also include implementation of a platooning
system on real robots robots provided by the IMR group of Czech Institute for
Informatics Robotics and Cybernetics (Figure 2.1.1.). The main software tool
used in this project is an open source computer system infrastructure called
Robot Operating System.

I firmly believe in the power of open source concept. And since all of the
work don't on this thesis has been on open source based computer programs I
would like to share some of my thoughts about them. Open source programs and
projects give future engineers like myself the necessary tools and freedom with
which we can built upon existing technologies. The community of open source
users provides a great support and knowledge in our endeavors. My beliefs and
ideology around open source concept goes beyond the scope of this project, but
it is important to know that because of open source projects developed by
people around the world I was empowered to do my bachelor thesis.

13

Robot Operating System (ROS)

3. Robot Operating System (ROS)

Robot Operating System is a quasi operating system designed to provide the
necessary software infrastructure for software developers who focus on
different aspects of robotics. Since one of the primary goals of ROS is
standardization and reuse of programs, a good and large community of users
was organized in order to share, instruct and help fellow engineers.

This network has provided me with helpful instruction as well as some code
ideas and packages which I have implemented in my bachelor work. The main
aspect of what makes ROS so versatile and useful is its utilization of a
distributed system composed of ROS nodes, ROS topics and ROS messages. It
is important to understand them, and in this project they will be referred to as
just nodes, topics and messages.

ROS messages
ROS messages [8] are standardized and simplified forms of data values

which are to be transported across systems.

ROS topics
ROS topics [9] are named buses over which ROS nodes can exchange

messages. In general, ROS nodes are not aware of who they are communicating
with. Instead, nodes that are interested in certain data subscribe to the relevant
topic and nodes that generate data publish to the relevant topic.

ROS nodes
ROS nodes [10] are processes that preform computation. Code complexity is

reduced and systems can be easily mapped so that they make more sense. ROS
nodes are written with ROS client library, such as roscpp and rospy. For the
purposes of this project, I have used roscpp, as it is a C++ implementation in
ROS.

Gazebo
Gazebo [11] is robot simulation tool. It is equipped with a physics engine and

graphical interface. It is integrated into ROS. For the purposes of this project, a
2D surface plane was simulated in Gazebo. All of my simulations have been
through gazebo.

14

http://wiki.ros.org/Messages

Robot Model

4. Robot Model

The main idea behind creation of the model I used in the simulation and
testing of the algorithms I was required to build, was to develop as simple of a
model as possible to which I can continuously add more features that I felt were
required. Since I also wanted to test algorithms on real machines (that were
provided by the IMR group), robot model had to faithfully represent
characteristics of these machines as well. Therefore robot model produced was
created in the struggle to satisfy previously mentioned ideas.

I did not want to get too involved in creating visually faithful representations
of provided robots, or to get too pedantic on physical parameters (such as size,
mass, inertias …) of the provided machines. This is why my model and the
machines provided do not look alike. The more important aspect that I put my
focus on was for the model and provided machines to behave in the same manner
when put in the same conditions. In order for this to be a realistic desire,
throughout this project, I was trying to identify crucial parameters that could be
easily adjustable in order to match behavior of the model to the behavior of
robots.

It has to be said that all this was made a lot easier because of the way Robot
Operating System (ROS) works with Gazebo and Unified Robot Description
Format (URDF) models.

4.1. Unified Robot Description Format (URDF)

Unified Robot Description Format (URDF) [12], is an XML file format used in
ROS in order to describe different elements of a robot. URDF files can also be
simulated in Gazebo (some additional simulation-specific tags must be specified
in order to work properly). While URDF files are a useful and standardized
format in ROS, they are lacking many features and have not been updated to
deal with the evolving needs of robotics. However for purposes of this project
URDF models worked perfectly. It is important to mention that URDF models can
only specify the kinematic and dynamic properties of a single robot in isolation.
However ROS provides the ability to replicate the same model multiple times.
URDF can not specify the pose of the robot itself within a world, this is the job of
Gazebo and ROS. It is apparent that URDF models, Gazebo and ROS do not
provide much when used separately from each other, but when combined
together they make a very powerful simulation tool, and all of the previously

15

Robot Model

outlined problems of URDF models have been rendered irrelevant.

Another tool that was used in order to add onto URDF model was Xacro (XML
Macros). Xacro [13] is an XML micro language, and for the purpose of this
project it was used in order to simplify the robot description. Specifically it was
very helpful when some design changes were required.

The way URDF models are created is by defining different links of the model
and how they are joint together. Primary characteristics of links are visual and
collision geometries of parts and their inertias, while primary characteristics of
joints are the type of joint in question, parent link, child link and origin (position)
where links are joint. In this sense, links of URDF models are inherently
hierarchical.

Basic links of any model are Base Link, Base Footprint and Internal Link of
the robot modeled. Base link of a model functions as a chassis of the robot. Base
link dose not joint to any other link because other links are joint to base link.
Base link is also the main link through which Gazebo and ROS utilize URDF
models. Base footprint of a model is the point that is on the surface directly
underneath the center of the base link. Internal Link of the model stores its
internal properties (like inertia). Both base footprint and internal link are joint to
the base link with a fixed joint type. Robot model files are defined in Platoon
Description package.

4.2. Drive System

This was perhaps the most crucial part of the model design as it has massive
influence on so many other aspects of this project, like steering system.
However, this is also one of the aspects in which I had to assimilate provided
robots with my model. Provided machines were of differentially wheeled robot
type, and so are my models.

Differentially wheels robots that were provided had left and right side wheel,
as well as caster wheels for balance. For the model purposes, left and right
wheel link were created and joint onto base link. As the wheels are suppose to
turn, the joint type here is continuous. Continuous joint types, require
transmission to be specified. This was defined as simple transmission. Since
wheels are not passive, but active parts of the model, Gazebo reference had to
be specified for both wheels. Also in order to control wheels, Gazebo plugin
[14] called Differential Drive Controller was set up. Final step is to activate

16

Robot Model

the controller with controller manager [15] ROS package and to start
publishing states using robot state publisher [16] package. These two
packages along with yaml file (specifying further attributes of the controller)
form Platoon Control package.

Platoon control package opens cmd_vel topic through which commands are
sent to specify linear and angular velocities that the robot is suppose to make.
These are known as twist commands. This means that after specifying all
necessary parameters of differential drive controller I did not have to focus on
speeds and accelerations of specific wheels, but to focus on velocities of the
model as a whole. Platoon control package also initiates odometry topic which is
essential for this project. However, real robots do not need platoon control
package, as specific packages were also provided for them, witch preform these
functions. These are Morbot and ER1 packages. Because of this transition from
simulation to realization was simple as far as this aspect was concerned.

In order to control the leading robot I have decided to use a simple joystick.
Teleop twist joy [17] package provided me with the necessary transition
between joystick commands and twist commands. I also created additional
package in order to specifically define different functions I wanted to get out of
different buttons on the joystick [18]. This package also offer much better
communication with ROS than packages implementing control from a keyboard.
This package is called Platoon Teleop package.

4.3. Camera and Patterns

Model of a camera was made using another gazebo plugin called camera
controller. Unlike some parts of the model, I felt like camera had to be
accurately modeled on the real camera used in the real machine. Since this
project is about platooning with low-cost sensors, camera selected was a simple
UVC camera. A ROS package was already written for a UVC camera [19] and
was setup according to tutorial [20]. Camera also had to be calibrated since
additional nodes were required for Whycon algorithm to function properly.

Another link was added to the robot model defining the shape and graphics of
the pattern used by Whycon algorithm. This link, since it has to contain very
specific graphics of patterns, it was designed by using open source programs:
Blender [21] and MeshLab [22].

17

Kinematic Equations and Control Law

5. Kinematic Equations and Control Law

From the model described in the previous chapter, it is clear that since the
vehicle is described by two independently controlled wheels such that linear and
angular velocity of the vehicle can be controlled independently.

First step I took is to develop polar coordinate system to describe the
kinematic equations. This is done because it is a much more intuitive way of
thinking about the control problem, as it emulates human driving behavior.

To formulate the basic problem of the system, I supposed that there is a
desired position and orientation different form the current position and
orientation of the follower vehicle. The following three parameters become
apparent and they describe the system absolutely in the polar coordinate
system.

r Distance between current and desired position
δ ∈ (−π ,π] Smallest angle between current orientation and desired position
θ ∈ (−π ,π] Smallest angle between current and desired orientation

This is called egocentric polar coordinate system with respect to observer.
These can be graphically represented in Figure 5.1.1..

Figure 5.1.1. Egocentric Polar Coordinate System

18

r

δ

θ

v

ω

x

y

Kinematic Equations and Control Law

Relationship between egocentric polar velocities and vehicle velocities can
therefore be written as follows:

(
ṙ
θ̇
δ̇
) = (

−v cos (δ)
v
r

 sin (δ)

v
r

 sin(δ) + ω) (1)

Where v and ω are linear and angular velocity of the vehicle.

5.2. Control Law for Angular Velocities

In the previous subsection the coordinates of error space was defined. In this
part the control problem of moving a vehicle from given position and orientation
to desired position and orientation becomes a problem of bringing the

coordinates of error space to origin, or in other words: bringing r, δ and θ to zero.

The solution to this problem is described in [4] . In [4] this problem was
solved by decomposing the system (1) into two subsystems:

(ṙθ̇) = (
−v cos (δ)
v
r

 sin(δ)) (2)

δ̇ =
v
r

 sin (δ) + ω (3)

The idea is to find a virtual control, δ which steers the subsystem (2) (vehicle

position) to the origin and the real control, ω which renders the dynamics of the

subsystem (3) sufficiently faster than subsystem (2) and stabilizes δ quickly to
the desired virtual control.

Finally, the control law proposed by [4] for ω is:

ω = −
v
r

 [k2 (δ − arctan (−k1 θ)) + (1 +
k1

1 + (k 2θ)
2) sin(δ)] (4)

Where k1 and k2 are positive constants. It is worth to say that this

control law dose not put any restrictions on v, other than to be a nonzero

19

Kinematic Equations and Control Law

positive. This also means that ω is now a linear function of v, since:

ω = k (r ,θ ,δ) v

Where k is the curvature of the path resulting from proposed control law,

modified by k1 and k2 , where k1 is the ratio of the rate of change in θ to

the rate of change in r (shown in Figure 5.2.1.) and k2 modifies the general
shape of the path as shown in Figure 5.2.2.

Figure 5.2.1. Example of how k1 modifies the path taken

Figure 5.2.2. Example of how k2 modifies the path taken

20

Kinematic Equations and Control Law

The curvature of a path of a vehicle moving on a plane is simply ω/ v . So we
can write:

k = −
1
r

 [k2 (δ − arctan (−k1θ)) + (1 +
k1

1 + (k2 θ)
2) sin (δ)] (5)

Geometrically speaking, the path given by the virtual control is the
Archimedean spiral as shown in the previous diagram. This also implies that the

shape of the path taken by the vehicle is not influenced by the choice of v. This
is true for the problem for which this control algorithm is designed but not true
for my problem. The main difference being the fact that in my problem
formulation, the target could dynamically change all the time, while in [4] the
target is static. This became apparent while testing these algorithms. The main
idea behind the following change was that the angular velocity should not be

influenced by the distance r. This was made possible by switching the parameter

v with the distance r in the equation for the angular velocity (4). This change

results in removing parameter r from control law for angular velocity since the
new function is:

ω = − [k 2 (δ − arctan (−k1θ)) + (1 +
k1

1 + (k2 θ)
2) sin(δ)] (6)

This solution was tested and it worked much better than one proposed by [4]
 for my problem. Instinctively I was worried that this change might affect the
shape of the path taken by the vehicle, however this is not a problem since

parameter k1 is the ratio of the rate of change in θ to the rate of change in r.

5.3. Control Law for Linear Velocity

The proposed algorithm for the linear velocity controller is based on a PID
controller where the dynamically minimized error signal is the error between the

current and desired distances of the follower vehicle (r).

v (t) = K p e(t) + K i∫
0

t

e(τ)d τ + Kd

d e (t)
dt

(7) Where: e (t) = L − r (t)

Where parameter L is the longitudinal referential distance that the follower
robot must keep away from the leading robot.

21

Kinematic Equations and Control Law

PID controller

The PID control tools necessary for control program were provided by ROS
control toolbox [23] package and the PID controller [24] was tuned manually
using Ziegler-Nichols’ closed loop method [6].

CO filter

The PID controller, especially the derivative part of the controller, produced
noise and erratic control behavior. This is caused by the amplification of the
measured process variable which is reflected as “chatter” in the controller
output signal [25]. In order to create a better controller, a signal filter was
added to the controller output as shown in Figure 5.3.1.

Figure 5.3.1. PID controller with Controller Output filter

For my controller output filter, I have chosen a simple first order filtering
algorithm.

Continuous time filter:

T f
dCO*

dt
 + CO* = CO (8)

Discrete time filter:

T f

(CO*new−CO *old)

(tnew−t old)
 + CO*old = CO (9)

or: CO*new = CO*old +
(tnew−t old)

T f

 (CO − CO*old) (10)

Where CO is the raw controller output, CO* is the filtered controller output

and T f is the filter time constant (tuning parameter). In Figure 5.3.2. and

22

PID
controller

CO
filter

SystemAdd
+

-

Process Variable (PV)

Controller
Output
(CO) CO*

Kinematic Equations and Control Law

Figure 5.3.3. it can be seen how the first order filtering algorithm influences
results of the linear velocity control algorithm.

Figure 5.3.2. PID controller without CO filter

Figure 5.3.3. PID controller with CO filter

All controller algorithms were specified in Platoon Algorithms package under
odometry_follower_test_with_navigation node.

23

3 4 5 6 7 8 9 10

e (t)

v (t)

r (t)

L

v (t)

e (t)

r (t)

e (t)

v (t)

r (t)

L

e (t)

v (t)

r (t)

Relative Localization System

6. Relative Localization System

The pattern detector algorithm that was used in this project is Whycon
recognition system [3]. Whycon is a vision-based external localization system. It
is a very precise, robust, efficient and low-cost system because it is able to
utilize even the smallest and cheapest cameras to produce first class sensors.

6.1. How does Whycon work?

Whycon operates by processing images provided by a simple camera system
and is based on a fast and precise detection of a black and white pattern, which
consists of two concentric annuli with a white central disc. An initial detection
step is performed to identify the position of the pattern in pixel coordinates.
Using camera re-projection techniques and known dimensions of the inner and
outer roundels, the three-dimensional position of the target with respect to the
camera is computed. Finally, a transformation of the coordinate frame is applied
to compute target coordinates with respect to a user-defined frame, either in
three or two dimensions, depending on the chosen scenario. More detail can be
found in [3]. Basic parameter of the Whycon algorithm can be found in Figure
6.1.1.

Figure 6.1.1. Whycon pattern localization and Whycon pattern/roundel shape

Whycon topics and messages

In practice, the whycon algorithm requires raw images to be processed and
calibrated. This service is provided by the ROS package image_proc [26]. All
connections can be simply understood from the RQT graph shown in Figure
6.1.2.

24

Relative Localization System

Figure 6.1.2. RQT graph for whycon and image_proc

The published topic of most relevance is the poses topic. Poses topic is
composed of relevant positions of roundels. Each roundel is assigned an ID
reference and each roundel position is defined by its position relative to the
camera (x, y and z) as well as its orientation to the camera in the form of a
quaternion (x, y, z and w). It is important to note that all roundels have to be the
same size in order for whycon algorithm to recognize their position properly.

6.2. Limitations of Whycon algorithm

The Whycon algorithm outputs position (3D) and orientation (3D) of the
pattern relative to the camera. However, it is not able to give any information on
the “roll” around the pattern, as the pattern itself dose not change shape if it
rotates around axes perpendicular to its plane. But whycon does provide the
ability to recognize and output information about several patterns at once.

Because of this, I have decided to use three patterns in order to utilize the
abilities of the algorithm. Using three patterns has also allowed me to ignore the
output information of the orientation of the patterns, since I could easily and with
greater precision use the point position information to calculate the orientations
needed. The positions of roundels are show in Figure 6.2.1.

Figure 6.2.1. Arrangement of Roundels used

Some significant limitations of the whycon algorithm were discovered very
quickly. The first main problem with whycon is that once any part of a roundel is

25

Pattern ID = 1

Pattern ID = 2

Pattern ID = 3

Relative Localization System

outside of the camera frame, the algorithm keeps sending the last recognized
position of the roundel to the poses topic. As soon as a roundel is fully back in
the frame it will resume working correctly. However, since I am using three
roundels, another problem was encountered.

If roundels go out of the frame, and then come back into the frame, their ID
referenced in the poses topic could be different than before exiting the frame.
This is why it was very important to have the three roundels spaced out so that
their distances in 3D space from each other would all be different. In this way
roundels would always be defined by their relevant distances from each other.

Another problem that was encountered with whycon algorithm is the fact that
as the yaw orientation of the robot is increased, precision of whycon algorithm
worsens. Uncertainty of positions of patterns is increased. Luckily, this was
easily solved by taking the average position of the roundels along all three axes.
This step was also necessary as these averages represent the position of the
leading robot relative to the camera. Figure 6.2.2. shows whycon limits regarding
orientation of roundels.

Figure 6.2.2. Whycon algorithm publishing “image out” topic at zero and at limit

orientations

Finally there are basic limitations of the whycon algorithm based on how far
away from camera can the algorithm recognize roundels. This limitation is
influenced by the size of roundels as well as the quality of camera used. When
combined with with limitations caused by the relative position of the pattern
along the x axis (according to whycon) we get the area in which whycon can
function relative to the follower robot (represented in Figure 6.2.3.)

26

Relative Localization System

Figure 6.2.3. Geometrical Limitation of Whycon algorithm as used in simulation

This information is then used to calculate the optimal position where the
leading robot should be located in order to provide the most flexible system.

6.3. Calculating Relative Positions of a Vehicles using
Whycon

The callback function to whycon poses topic in the system provides us with a
lot of useful information. First, in order to avoid confusion on whether whycon
node is sending new information on the poses of roundels, time stamp given in
the header of whycon poses topic is compared to the time stamp of the system.
This provides a simple boolean parameter that will be useful in further
implementation.

The second thing done in the callback function is the calculation and
comparison of distances between poses of roundels in order to accurately know
which pose corresponds to which roundel.

Finally, the relative position and relative orientation of the leader robot is
calculated:

xrel = (rx 1 + r x 2 + 2r x 3)/ 4 (11)

27

θlimits = ±0.35 rad

dmax = 8.85m

dmin = 0.68m

Relative Localization System

zrel = (rz1 + rz2 + 2r z3)/4 (12)

yaw rel = arctan (2 r z3 − rz1 − r z2

2r x 3 − r x 1 − r x 2
) (13)

 Where xrel and zrel represent the position of the leader robot along x and

z axis as given by whycon pose topic and r x1 , r x2 , r x3 , r z1 , r z2 and

r z3 represent the positions of three roundels along x and z axis as given by
whycon pose topic. Their ID (1, 2 and 3) is the same as pattern ID in figure

6.2.1. Finally, yawrel represents the orientation of the leader vehicle relative to
the follower.

This piece of information is then used to calculate information needed in
order to create odometry topic. Two different algorithms were developed to do
this. The first one calculates odometry of the leader robot relative to follower
robot (follower is set at origin on x-y plane with zero yaw angle), and second
one calculates odometry of the follower robot to the leader robot (leader is set
at origin on x-y plane with zero yaw angle). In both cases, delta and theta angles
(as described in chapter on control algorithm for angular velocity) were
calculated first. This information is then used to calculate the position of the
robot on x and y axis as well as the yaw orientation on the x-y plane relative to
relevant robot. Figure 6.3.1. shows the geometry of these calculations:

For leader relative to follower :

δ = −atan2(−xrel

zrel
) (14)

θ = δ − yaw rel (15)

x = √(zrel)
2 + (xrel)

2 cos (δ) (16)

y = √(zrel)
2 + (xrel)

2 sin (δ) (17)

yaw = δ + θ (18)

For follower relative to leader :

δ = atan2(−xrel

zrel
) (19)

θ = δ − yaw rel (20)

x = −√(zrel)
2 + (xrel)

2 cos(θ) (21)

28

Relative Localization System

y = −√(zrel)
2 + (xrel)

2 sin(θ) (22)

yaw = −(δ + θ) (23)

Figure 6.3.1. Relative parameters and coordinates of vehicles

Implementation of the solution to this problem was done in Platoon
Algorithms package under navigation node.

29

δ

θ

δ

y

x

y

x

yawrel

yaw

yaw

δ

θ

δ

y

x

y

x

yaw

yaw

Red parameters represents
Follower relative
to Leader calculations Blue parameters represents

Follower relative
to Leader calculations

Odometry Follower Algorithms

7. Odometry Follower Algorithms

7.1. Position following algorithm

A penultimate step before designing my path following algorithm was
designing a position following algorithm. In this project the position that is
followed is given by the position and orientation of the leading vehicle as well as
some fixed parameters.

In ROS, odometry navigation messages provide a subscriber with information
on the position of a robot in 3D space (x, y and z coordinates), orientation of the
robot (in the form of quaternion x, y, z and w) and twist velocities of the robot
(x, y and z translational velocities, and x, y and z rotational velocities). Since
this project is constrained to 2D space, robot positions of interest are going to
be x and y coordinates of leading and following robot. Robot orientations of
interest are yaw orientations of leading and following robot (on x-y plane).

For simulation purposes, ROS together with Gazebo provide odometry topics
for spawned robots. For realization purposes, special packages were developed
by the IMR group for robots they have made on which I have applied my
algorithms. These packages are morbot and er1. All these packages provide
odometry based on wheel movement.

The odometry callback function provides three important parameters that
perfectly describe position and orientation of the robot on a x-y plane. These
are:

xL xF position of leading and following robot on the x axis (world frame)

yL yF position of leading and following robot on the y axis (world frame)

yawL yawF angle between orientation of leading (and following) robot and

x axis (yaw ∈ (−π ,π])

To create a successful position follower algorithm and to utilize already
specified control algorithms, odometry topics from leader and follower robots

are used to calculate r, δ and θ topics. An additional parameter was added in
order to simplify the calculation. This is the angle which the line connecting
centers of two robots makes with the x axis on the plane. This angle is

referenced as α.

30

Odometry Follower Algorithms

α = atan2(y L − yF

x L − xF
) (24) α ∈ (−π ,π]

The following are the equations for calculating parameters needed for control
algorithms:

r = √((xL − xF)
2 + (y L − yF)

2
) (25)

δ = α − yawF (26)

θ = α − yaw L (27)

Longitudinal reference distance that the follower robot must keep away from

the leading robot (L mentioned in Kinematic Equations and Control Law chapter)
is chosen by the user. However, this parameter will be closely tied in with the
optimal working distance discussed in the whycon limitation chapter above. This
is also the main parameter that is used to create the transformation from
position of leading robot and desired position of the follower robot. It also
becomes clear that the orientation of the follower robot is directly calculated
from the orientation of the leading robot without any transformation. All this is
visualized in Figure 7.1.1.

Figure 7.1.1. Position Follower Parameters

31

xL

yL

xF

yF

yawL

yawL

α

α

δ

θ

L

Odometry Follower Algorithms

7.2. Path Following Algorithm

The main merit of the position following algorithm and its controllers is that
they do follow positions continuously relatively accurately. The main fault was
that there was no proper dynamic between follower robot and leader robot and
as a result the path taken by the follower robot was much different that the path
taken by the leader robot. To fix this fault and to keep the merits of previous
algorithms, same odometry algorithm is used, but a point management algorithm
was developed in order to make the follower robot keep to the path made by the
leader robot. It is important to mention that odometry of both robots at the start
is zero, but their initial positions and orientations are set by the user.

The path taken by the leader robot is basically a curve and all curves are
collections of points. In order to make the follower robot keep to the path while
using the position following algorithm the following path management algorithm
was made:

1. Initialization of a list of points in 2D space based on x and y coordinates of
the leader robot. The beginning point and only point on this list is the starting
position of the leader robot based on the odometry of the leader robot.

2. The leader robot moves forward and if the distance between the end point
on this list and the current position of the leader robot exceeds a given limit, t1,
the current position of the leader robot is added to the end of the list and
becomes the end point on the list.

3. If the list is empty, the current position of the leader robot is added to the
list.

4. The x and y coordinates of the beginning point on the list are published
5. The follower robot moves forward and follows the beginning point on the

list. If the distance between current potion of the follower robot and beginning
point on the list is smaller than a given limit, t2, the beginning position of the list
is removed.

6. if the list is empty, the current position of the leader robot is added to the
list.

7. Algorithm returns to the second step.

In order for both position follower algorithm and path management algorithm
to work properly more adjustments need to be made. The length of the path
taken by the leader robot also has to be maintained since the distance between
current positions of the leader robot and follower robot is not the real distance
that the follower robot has to take. A good approximation of the path length is

32

Odometry Follower Algorithms

calculated by incrementing the path length by the distance between current
position of the leading robot and the end point on the list each time a new
element is added to the end of the list, and also decrementing the path length by
the distance between fist two point on the list each time beginning point is
removed from the list.

Another problem that can be solved by the path management algorithm is the
one created by the fact that the orientation of the following robot is constantly
changed by orientation of the leading robot. This can be solved by recording the

orientation of the leading robot (yawL) and saving it as another parameter on
the list with its corresponding position. This adjustment changes the nature of
this algorithm from being a collection of points into being a collection of
positions.

Adjustments that need to be made to the position following algorithm to make
it into path following algorithm are simple. The change is required only when it
comes to the node from which this algorithm receives information about
odometry of the leading robot. Before, odometry information was provided by
morbot, er1 or gazebo, now this information is provided by the path management
algorithm. Figure 7.2.1. shows changes that are made compared to position
following algorithm when compared with Figure 7.1.1.

Figure 7.2.1. Leading and Following robot with Path management algorithm

33

xL

yL

xF

yF

(x1, y1)

(x2, y2)

(x i , y i)

(x i−1, y i−1)
t1

t2

t1

Odometry Follower Algorithms

Path management algorithm is not without its faults. The main one being the
fact that if the leader robot goes backwards, the follower robot is not capable of
following at all. The second problem is the fact that if the following robot passes
by the first point on the list, it may not be able to continue following the path at
all. This can be treated but at a cost. The parameter for determining the removal
of a point from the list, t2, can be increased while the parameter for adding a
point to the list, t1, can be decreased. This allows some flexibility to the path
management algorithm, but it will produce noise in the controlling parameters
that will not be fixed by the CO filter.

All follower algorithms were specified in Platoon Algorithms package under
odometry_follower_test_with_navigation node. Path management algorithm
was specified in Platoon Algorithms package under
path_creation_algorithm_with_navigation

34

GPS Following Algorithm

8. GPS Following Algorithm

Unfortunately, this part of the project was abandoned. The reasons for this
mainly revolve around the fact that Whycon based localization is not compatible
with GPS localization in the sense that limits of these algorithms do not allow
them to work together in a meaningful way.

GPS, or more specifically SPS systems provide us with information on
position that currently claims 4 meter RMS (7.8 meter 95% Confidence Interval)
horizontal accuracy. Vertical accuracy is worse. Some devices/locations reliably
can get 3 meter accuracy. Technical document on that specification can be
found here [7]. However this is the minimum distance that can be told apart.
Whycon and odometry information is much more precise and the control laws
used require this information to be like this. Introducing GPS information will
simply not increase accuracy of the algorithm.

Another issue with GPS is the fact that even if robots used to realize this
project were much bigger and sensitivity of algorithms was much smaller, they
would simply not satisfy the basic premise that I am trying to use low-cost
sensors for this project. They will still have to be very expansive devices used in
order to provide any meaning full data.

Final issue, which is least relevant perhaps, is that the algorithm I used for
combining information from odometry, whycon and GPS is already developed
extended Kalman Filter. This EKF is simply not designed yet to take information
from both visual odometry and GPS [27]. This will however change in the future.

35

Combining Algorithm

9. Combining Algorithm

Odometry information, as provided by Morbot, ER1 and Gazebo packages,
rely only on wheel odometry. This means that position and orientation of robots
is calculated only from wheel movement. This inevitably leads to miscalculation
as uncertainty of the pose of robots increases over time. This also leads to
covariance growing without bonds. This is why it is imperative that odometry of a
robot is not only calculated from integration of wheel movement, but should also
include information that is more based in reality. Luckily, we have developed a
relative localization system which can provide us with such information. The
question now becomes of how to combine localization parameters from wheel
odometry and whycon odometry. This was done using Extended Kalman Filter.

9.1. Extended Kalman Filter (EKF)

Extended Kalman Filter [5] used in this project has been provided as ROS
package Robot Pose EKF [28]. Robot Pose EKF package is used to estimate
the 3D pose of a robot based on partial pose measurements coming from
different sources. The idea is to combine measurements from different sensors
in order to create good estimation of robot position and orientation. For the
purposes of this project only wheel odometry and visual odometry measurements
were used to create combined odometry topic.

How dose it work?

Both odometry sources send information to the filter node which computes
relative pose differences of each sensor to update the extended Kalman filter.
This allows sensor sources to have their own world reference frames, and each
of these world reference frames can drift arbitrary over time. Another advantage
is the fact that not all sources need to be available all the time. The sources can
operate at different rates and with different latencies. If a source reappears
over time, the node will automatically detect and use all available sources. This
sort of setup allowed maximum independence for each sensor source, which is
exactly what my system needed.

One of the obvious indications this made was that localization provided by
whycon algorithm can work in relative world reference frame while wheel
odometry can have its own, so no changes are need for whycon provided
odometry. Another important thing to consider is that if patterns are outside of

36

Combining Algorithm

camera view and whycon is not providing any information, the robot can simply
continue to function with wheel odometry as a sole sensor.

9.2. Covariance

Since covariance and uncertainty of robot pose in a world reference frames
will grow, it is not useful to publish this information to robot pose EKF. Instead,
sensor sources should publish how covariance changes over time (covariance is
published in odometry message). Some manipulation of covariance was required
in order to match information from both algorithms. What became apparent in
simulations, was the fact that if covariances from whycon and wheel odometry
were overly mismatched, robot pose EKF would not give good results once
patterns would go out of the camera frame. Even worst results were given once
whycon could send out information again. Because of these reasons,
covariances were matched so that whycon and wheel odometry would have
same reliability to robot pose EKF.

9.3. Combined Odometry Topic

Combined odometry was not used for both leader and follower robots. Wheel
odometry was of course provided for both robots. Whycon odometry on the
other hand, even thou it was possible to use both “follower relative to leader”
and “leader relative to follower” information, this would have been meaningless.
Since whycon odometry is one based on relative positions of one robot to
another, it would have been a simple duplication of same information, and would
not have shown any improvement on the combined odometry. This claim was
derived from observations made during simulations. This now meant that I will be
using wheel odometry for one of the robots and combined odometry for the other
one. Both possibilities were tested in order to perhaps observe some advantage
between them, but no observable differences were noticed between them. They
both worked equally good.

Manipulation of covariances were specified in Platoon Algorithms package
under navigation node.

37

Results of Simulations

10. Results of Simulations

In order to properly show results of my work, a test was designed which will
show exactly how platooning system created works and what are its merits and
its faults. Both position following algorithm and path following algorithm were
tested. Results of the test made in the simulation are shown in Figure 10.1.1.
and Figure 10.1.2..

Figure 10.1.1. Simulation of Position Following Platooning System

Simulation test, as It can be observed in (Figure 10.1.1.) is composed of four
sections. Section A is platooning system operating in the most ideal way. Both
whycon odometry and wheel odometry is available to robot pose EKF. Section B
is platooning system functioning without whycon odometry being available as
patterns are not out of the camera frame. It is important to note that robot pose
EKF continues to function properly without problems. In sections C and D leading
robot makes very sharp turns, and similarly to the situation in section B, whycon
odometry is not available. However, the position following algorithm shows

38

Section A

Section B

Section C

Section D

Leader
Robot

Follower
Robot

Results of Simulations

robustness as the following robot keeps doing exactly what is predicted.

Figure 10.1.2. Simulation of Path Following Platooning System

When comparing results shown in Figure 10.1.1. and Figure 10.1.2. It can be
observed that a lot more faithful path was made by the follower as a result of
using the path management algorithm. This most apparent in Sections A and B.
However, these results also show us that path following algorithm is not as
robust as position following algorithm when it comes to sharp corners in sections
C and D. Even thou the path is followed faithfully, potential hazards can be
observed in these sections.

Visualization of models and their odometries was made using a ROS tool
called RViz.

39

Section A

Section B

Section C

Section D

Leader
Robot

Follower
Robot

Conclusion

11. Conclusion

With the exception of creating GPS based path following algorithm, all goals
of this thesis were fulfilled. A platooning system was created and tested.

Relative localization system with a camera and a pattern detector algorithm,
called Whycon algorithm, was implemented in order to determine the position of
the follower vehicle relative to the leader vehicle, as well as to determine the
position of leading vehicle relative to the follower vehicle.

A path following algorithm based on wheel odometry of both leading and
following vehicle was developed and combined with control laws based on
parametrized Archimedean spiral and a PID controller. This path following
algorithm did show some faults regarding proper management of information
provided to controllers. However, these were very specific conditions at which
the path following algorithm failed to deliver its full potential. It also showed
precision once it was allowed to utilize combined information from Whycon
odometry and wheel odometry.

A combining algorithm, based on Extended Kalman Filter, was implemented
and developed to a highly satisfactory level and since this thesis is basically
investigation of what can be achieved when cheap and weak sensors are
combined together, implementation of EKF might be the most important part of
this thesis. Combination of Whycon provided odometry and wheel provided
odometry worked perfectly in the since that these two sources of information
were able to remedy each others weaknesses.

Flexibility and versatility of Robot Operating System has been made
apparent. The ease with which one can utilize and create upon other peoples
good work is only matched with other peoples good will to help each other in
creation of good work.

40

References / Bibliography

12. References / Bibliography

[1] Bergenheim C. Shladover S. and Coelingh E. Overview of platooning
systems (2012) Proceedings of the 19th ITS World Congress

[2] Alan Ali, Gaetan Garcia and Philippe Martinet. Safe Platooning in the
Event of Communication Loss using the Flatbed Tow Truck Model (2014)

[3] Tomas Krajnik, Matias Nitsche, Jan Faigl, Tom Duckett, Marta Mejail and
Libor Preucil. External Localization System for Mobile Robotics (2013)

[4] Jong Jin Park and Benjamin Kuipers. A Smooth Control Law for
Graceful Motion of Differential Wheeled Mobile Robots in 2D Environment

[5] Sebastian Thrun, Wolfram Burgard and Dieter Fox. Probabilistic
Robotics (2000)

[6] J. G. Ziegler and N. B. Nichols. Optimum Settings for Automatic
Controllers (1942)

[7] John G. Grimes. Global positioning system Standard positioning
service Performance standard (2008)

[8] ROS Messages, ROS tutorials (2016) (online) http://wiki.ros.org/msg

[9] ROS Topics, ROS tutorials (2014) (online) http://wiki.ros.org/Topics

[10] ROS Nodes, ROS tutorials (2012) (online) http://wiki.ros.org/Nodes

[11] Gazebo (online) http://gazebosim.org

[12] Ioan Sucan. URDF, ROS package (2014) (online) http://wiki.ros.org/urdf

[13] Stuart Glaser, William Woodall and Robert Haschke. Xacro, ROS package
(2016) (online) http://wiki.ros.org/xacro

[14] John Hsu. Gazebo Plugins, ROS package (2015) (online)
http://wiki.ros.org/gazebo_plugins

[15] Wim Meeussen and Mathias Ludtke. Controller Manager, ROS package

41

http://wiki.ros.org/gazebo_plugins
http://wiki.ros.org/xacro
http://wiki.ros.org/urdf
http://gazebosim.org/
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/msg

References / Bibliography

(2016) (online) http://wiki.ros.org/controller_manager

[16] Wim Meeussen. Robot State Publisher, ROS package (2016) (online)
http://wiki.ros.org/robot_state_publisher

[17] Mike Purvis. Teleop Twist Joy, ROS package (2015) (online)
http://wiki.ros.org/teleop_twist_joy

[18] Writing a Teleop Node, ROS tutorials (2016) (online)
http://wiki.ros.org/joy/Tutorials/WritingTeleopNode

[19] Ken Tossell. UVC Camera, ROS package (2015) (online)
http://wiki.ros.org/uvc_camera

[20] Using ROS Indigo/Jade with a web-cam by the uvc_camera (USB
Video Class) package (2014) (online)
https://defendtheplanet.net/2014/11/05/using-ros-indigo-webcam-by-the-
uvc_camera-usb-video-class-package/

[21] Blender (online) https://www.blender.org/

[22] MeshLab (online) http://www.meshlab.net/

[23] Melonee Wise, Sachin Chitta and John Hsu. Control Toolbox, ROS
package (2013) (online) http://wiki.ros.org/control_toolbox

[24] Andy Zelenak and Paul Bouchier. PID controller Node, ROS package
(online) http://wiki.ros.org/pid

[25] Control Guru. Signal Filters and the PID with Controller Output Filter
Algorithm (online) http://controlguru.com/pid-with-controller-output-co-filter/

[26] Patrick Mihelich, Kurt Konolige and Jeremy Leibs. Image Proc, ROS
package (2015) (online) http://wiki.ros.org/image_proc

[27] Robot Pose EKF, GPS Sensor, ROS tutorials (2011) (online)
http://wiki.ros.org/robot_pose_ekf/Tutorials/AddingGpsSensor

[28] Wim Meeussen. Robot Pose EKF, ROS package (2012) (online)
http://wiki.ros.org/robot_pose_ekf

42

http://wiki.ros.org/robot_pose_ekf
http://wiki.ros.org/robot_pose_ekf/Tutorials/AddingGpsSensor
http://wiki.ros.org/image_proc
http://controlguru.com/pid-with-controller-output-co-filter/
http://wiki.ros.org/pid
http://wiki.ros.org/control_toolbox
http://www.meshlab.net/
https://www.blender.org/
https://defendtheplanet.net/2014/11/05/using-ros-indigo-webcam-by-the-uvc_camera-usb-video-class-package/
https://defendtheplanet.net/2014/11/05/using-ros-indigo-webcam-by-the-uvc_camera-usb-video-class-package/
http://wiki.ros.org/uvc_camera
http://wiki.ros.org/joy/Tutorials/WritingTeleopNode
http://wiki.ros.org/teleop_twist_joy
http://wiki.ros.org/robot_state_publisher
http://wiki.ros.org/controller_manager

Appendix: CD Contents

13. Appendix: CD Contents

43

Root Directories Description
Thesis PDF format of the Bachelor Thesis
Platoon Platoon source codes implemented in ROS
Video Videos from Position and Path follower algorithm implementation

	1. Contents
	2. Introduction
	Figure 2.1.1. A Platoon of Robots made by the IMR group

	3. Robot Operating System (ROS)
	4. Robot Model
	4.1. Unified Robot Description Format (URDF)
	4.2. Drive System
	4.3. Camera and Patterns

	5. Kinematic Equations and Control Law
	Figure 5.1.1. Egocentric Polar Coordinate System
	5.2. Control Law for Angular Velocities
	Figure 5.2.1. Example of how modifies the path taken
	Figure 5.2.2. Example of how modifies the path taken

	5.3. Control Law for Linear Velocity
	Figure 5.3.1. PID controller with Controller Output filter
	Figure 5.3.2. PID controller without CO filter
	Figure 5.3.3. PID controller with CO filter

	6. Relative Localization System
	6.1. How does Whycon work?
	Figure 6.1.1. Whycon pattern localization and Whycon pattern/roundel shape
	Figure 6.1.2. RQT graph for whycon and image_proc

	6.2. Limitations of Whycon algorithm
	Figure 6.2.1. Arrangement of Roundels used
	Figure 6.2.2. Whycon algorithm publishing “image out” topic at zero and at limit orientations
	Figure 6.2.3. Geometrical Limitation of Whycon algorithm as used in simulation

	6.3. Calculating Relative Positions of a Vehicles using Whycon
	Figure 6.3.1. Relative parameters and coordinates of vehicles

	7. Odometry Follower Algorithms
	7.1. Position following algorithm
	Figure 7.1.1. Position Follower Parameters

	7.2. Path Following Algorithm
	Figure 7.2.1. Leading and Following robot with Path management algorithm

	8. GPS Following Algorithm
	9. Combining Algorithm
	9.1. Extended Kalman Filter (EKF)
	9.2. Covariance
	9.3. Combined Odometry Topic

	10. Results of Simulations
	Figure 10.1.1. Simulation of Position Following Platooning System
	Figure 10.1.2. Simulation of Path Following Platooning System

	11. Conclusion
	12. References / Bibliography
	13. Appendix: CD Contents

