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Abstract

The multi-agent non-deterministic planning in general has issues with its scalability. This
thesis presents a solution for multi-agent planning of problems with decoupled tasks to
overcome these issues. We have chosen a subclass of problems with limited interactions to
exploit its characteristics. Those interactions are restricted to the shared environment and
the utility. Our aim is to increase the scalability by using decomposition of multi-agent
problem into number of subproblems centered around each individual agent together with
the self-absorbed approximation and simulation of other agents to evaluate the e�ect of
their action on global reward. The problem solution is de�ned and formalized for general
problems with decoupled tasks and later applied on a concrete problem. The problem of
multi-agent multi-target tracking is then implemented and compared with the (baseline)
centralized solution and to the self-absorbed solution.

Abstrakt

Multi-agentní nedeterministické plánování má obecn¥ problémy se ²kálovatelností. Tato
práce se zabývá °e²ením °e²ením ²kálovatelnosti multi-agentních problém· s odd¥lenými úlo-
hami. Vybrali jsme skupinu problém· vyzna£ujících se omezenými interakcemi s cílem vyuºít
jejich speci�cké vlastnosti. Tyto interakce jsou omezeny na sdílené prost°edí a utilitu. Na²ím
cílem je zvý²it ²kálovatelnost rozd¥lením multi-agentního problému na n¥kolik podproblém·
spjatých s jednotlivými agenty. Za pouºití self-absorbed aproximace a simulace ostatních
agent· hodnotíme vliv jejich akcí na spole£nou odm¥nu. �e²ení problému je de�nováno a
formalizováno pro obecný problém odd¥lených úloh a pozd¥ji pouºito k °e²ení konkrétního
problému. Problém multi-agentního sledování více cíl· je poté implementován a srovnáván
s centralizovaným a self-absorbed °e²ením.
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Chapter 1

1 Introduction

This thesis presents a solution for multi-agent planning with decoupled tasks. Planning is
one of the techniques used in modern arti�cial intelligence. It is a technique that solves
a problem by de�ning a sequence of actions. These actions gradually accomplish all the
subgoals and lead us to a problem solution. We focus on the non-deterministic planning
where the actions in the environment can have multiple outcomes. In the real world due
to an error or bad luck we often see outcomes that we did not anticipate. So to match
this non-determinism we also model it in the planning problems. This thesis focuses on
tackling the scalability issues of multi-agent non-deterministic planning. We have chosen
a subclass of problems that is speci�c by limited interaction between agents. Our aim is
to increase the scalability by using decomposition of multi-agent problem into number of
subproblems centered around each individual agent. We have also used the self-absorbed
approximation together with simulation of other agents to evaluate the e�ect of their action
on global reward. The presented solution based on these techniques should provide more
scalability compared to the (baseline) centralized solution and better reward compared to
the self-approximation solution.

The decoupled tasks can be found in real world problems and are speci�c by allowing
only a limited interactions between agents. These interactions are limited to the shared
environment and the utility of the solution. We want to exploit these characteristics to
improve the scalability. In general, multi-agent planning based on Dec-POMDP [1] model is
hardly scalable because of the combinatorial explosion in the number of joint action space.
The aim of this work is to combine latest probabilistic techniques and multi-agent planning
to solve these problems and propose a way how to take advantage of the speci�c properties
of this class of problems.

The complexity of multi-agent planning arises from number of agents involved in the
problem. A possible way to reduce the complexity is the decomposition of multi-agent prob-
lems. The decomposed sub-problems alone do not face such computation complexity but
they lack the ability to capture the entire problem. The challenge is to use the latest tech-
niques to optimize computation of individual decomposed sub-problems and to compensate
for the lack of the global view. We focus on combining the knowledge about agent position
and use available techniques to simulate and estimate their behavior. The goal is to design
an improved algorithm that would bene�t from decomposition while at the same time it will
compensate for the loss of knowledge of other agents behavior.

1



2 CHAPTER 1. 1 INTRODUCTION

The main idea used for the implementation part of this work is based on a concrete
problem of multi-agent multiple target tracking problem. This problem was inspired by
work of Bernardini et al. presented in [2], which describes a novel solution for tracking of the
target with a single UAV. It is based on combination of deterministic planning and Bayesian
inference. Our intention is to use the model of problem described in that article and extend
it for multi-agent multiple target tracking. Then we identify its speci�cs and formally de�ne
and describe it as planning for decoupled tasks. We design a planner and a simulation
environment based on latest probabilistic techniques found in literature by modifying and
applying it to our problem.

The designed solution is then implemented and at the end of this thesis veri�ed in a
series of experiments. Both the implementation and the experiments show use of proposed
solution on a concrete real world problem of multi-agent tracking of multiple targets.

1.1 Outline

This work is divided into 8 chapters. The �rst chapter is an introduction to the class of
problems addressed by this thesis, its focus and goals. Next we o�er a background informa-
tion about the related work and more in-depth information about latest techniques in the
�eld of planning. The third chapter provides general description of the decoupled tasks and
their speci�cs in the context of planning. Also, we formally de�ne a model for this planning
problem and propose some helpful methods to decrease its complexity. In the next chapter
we specify a concrete real-world problem, its environment and all the involved entities.Then,
we formulate a concrete model based on the general problem formulation and we discuss
its speci�cs and ways we can exploit them. In chapter �ve we describe the implementation
of the planner and simulation, its structure, used algorithms, other improvements and the
visualization of its data. Chapter six provides experimental evaluation and comparison with
the (baseline) centralized solution and a solution from the literature, self-absorbed approx-
imation. Last two chapters provide conclusion of this work and possible ideas and areas of
future research in this �eld.



Chapter 2

Background and related work

In this chapter we talk about the background of planning and its use for multi-agent problem
solving. We mention the most common models used for problem description and formaliza-
tion and highlight its di�erences. Later we mention techniques and algorithms used in prob-
abilistic planning and the most important algorithms used for computing a policy. Mutually
we discuss the literature related to this work. We assess the di�erences and similarities of
existing research and talk about the inspiration there.

2.1 Planning

Planning is a method used in AI for solving a large class of general problems. The problems
have a common characteristic that they deal with action selection or control. To �nd a plan
then means to select a sequence of actions that transform the problem from its initial state to
a desired goal state. It is often used in multi-agent systems as a means of e�ective allocation
of goals among the agents. Each agents then follows a plan for completing these task in a
suitable order. Multi-agent planning can be divided into several subgroups depending on
speci�cs of problems each subgroups solves. These groups are de�ned by these aspects [24]

• on-line vs. o�-line

• centralized vs. distributed

• cooperative vs. self-interested

• dynamics (deterministic, non-deterministic, probabilistic)

• observation (none, partial, full)

• horizon (�nite, in�nite)

The o�-line planning is typical by computing the plan before its execution starts. It is
often used in situations where the environment is known in advance and we have enough
time to carefully think about the whole course of the operation. In other cases where the

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

environment is dynamic we can either use o�-line planning with the added possibility to
replan or we can compute the plan on-line as we execute it.

We distinguish classical planning, that is de�ned [22] as problem solving method for
environments that are fully observable, deterministic, �nite, static and discrete. Static en-
vironment changes only when an agents uses an action. Classical planning problems are
often represented using STRIPS [12] or PDDL [17] language, which de�nes the properties
of domain and a concrete problem de�nition. Every action in the domain is represented us-
ing preconditions and e�ects. These de�nitions are then introduced into specialized solvers
which �nds a sound or in some cases optimal solution. The solvers are mostly based on a
forward or backward state space search together with the use of a heuristic.

We focus on probabilistic planning, which is an extension of non-deterministic planning,
where each outcome of an action can be de�ned by multiple successor states. The di�erence
is that the transition between states is de�ned by a probability distribution. Many models
were created to help describe various planning problems. These models are constructed on a
basis of Markov decision processes. MDP is a mathematical framework for modeling decision
making. An E�ect of the decision does not always have deterministic outcome and we want
to model its stochastic behavior.

Models

The subject of Markovian models is thoroughly described in article [14]. There is a number
of well-known models that can be used to describe and formulate problems. They all belong
to the class POSG which describes partially observable stochastic games. These models
are then speci�cally extended for a given subclass of these games. For example MDP [14]
model is a centralized model designed for fully observable sequential decision processes. On
a contrary POMDP is a model for problems with partial observability.

M
M
D
P

DEC−
MDP

POSG

MDPI−POMDP
(finitely nested) POMDP

MTDP

DEC−POMDP
DEC−POMDP−COM

Figure 2.1: Relantionship among the models [24].

Most basic of these models is MDP. It is centralized and fully observable and it describes
states, actions, transition probabilities and rewards in a given problem. The other models
were derived from this model to describe larger classes of problems. Due to the nature of
real-world problems there is a need for speci�c model for problems with partial observability.
This model is called POMDP [15]. Other models were presented to support multi-agent
problems with cooperation. MMDP [4] is often used for them. And also if we need to model
decentralized problems we have the possibility to use Dec-MDP or Dec-POMDP [1]. All
these models represent problems that are complex and hard to solve. Majority of them are
NEXP-C or NP-C. Further information on complexities of these classes can be found in [24].
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Other model closely related to our problem is so called factored Dec-POMDPs [18]. This
model is based on a factorization of state into multiple fragments. The model then enables
exploitation of independence between agents. It also allows variability over subset of agents.
These models present an individual state and transition for each agent but for example
they can be coupled by the reward function. The transition and observation independent,
event-driven or temporally decoupled Dec-MDP and other models are described [18].

Algorithms

Planning algorithms can be divided based on the quality of their solution into optimal
and approximate. Another di�erence is if they compute the solution with �nite or in�nite
horizon. Probabilistic planning is often solved by using iterative methods. Two commonly
known algorithms are value iteration [20] and policy iteration [5] . Value iteration is an
algorithm that approximates the value of optimal plan with discounted rewards. In each
iteration we sum up rewards from executing action a in current state s plus the discounted
value of future rewards weighted by the transition probability P(s'|s,a). We can iterate
until the values converge, respectively as long as the future obtained reward after discount
is greater than ε. Parameter ε is a threshold under which we consider the values negligible.

V ′(s)← R(s) + γmaxa
∑
s′

P (s′|s, a)V (s′) (2.1)

Second well known algorithm is called policy iteration and is based on a di�erent ap-
proach. Policy is a mapping from states to actions and it describes behavior. π∗(s) is an
optimal policy from state s. Policy iteration starts by selecting an arbitrary policy. This
policy is then evaluated in iterations

V nt(s) = R(s, πt(s)) + γ
∑
s′∈S

T (s, πt(s), s
′)V πt(s′). (2.2)

Evaluation can be done by multiple steps of simpli�ed value iteration where the action
is de�ned by the policy. Next a policy improvement is computed for each pair of state and
action. A new policy is �nally created by choosing the best improvement to the policy. The
policy is improved repeatedly until it converges.

These algorithms provide optimal solutions but are in practice intractable. To solve big-
ger problem instances an approximate algorithm can be used. As example of these algorithms
[24] mentions JESP (Joint Equilibrium Search for Policies) and MBDP (Memory Bounded
Dynamic Programming). Another example of algorithm capable of solving an on-line plan-
ning problem is MCTS. A thorough survey of Monte Carlo tree search and its enhancements
can be found in [6]. MCTS is a method based upon search and approximation of states in a
tree. These approximations are made by issuing a large number of simulation samples which
estimate the reward value of these states. This simulation is controlled by a metric which
ensure focus on promising regions of the state space search. It o�ers many advantages [23].
One of them is that the algorithm converges to optimal solution but can also be stopped at
an arbitrary time. It samples state transitions instead of the whole state space. Also it is
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highly parallelizable and easy to implement. The algorithm can also be enhanced by the use
of heuristics and by controlling the search.

MCTS is based on 4 steps repeated inside a loop. First a promising leaves node is chosen
by the selection. Then the tree is expanded by possible actions. After selecting one of these
expanded leafs we then perform the simulation. Simulation can be a random or a statistically
biased sequence of actions that helps evaluate the expected outcome of selected node. When
simulation is complete and rewards are collected we back-propagate the results on the way
to the root of the tree. This way the back-propagation in�uences the next selection.

2.2 Related articles

In this chapter we present and discuss a number of articles that are closely related to the
topic of the thesis. Mentioned articles propose some methods that can be used to improve
scalability of planning for decoupled tasks. Other articles show improvements and possible
solutions for problems related to the target tracking problem we have decided to implement
for the purpose of testing the solution and comparison.

E�ective approximations

The article [11] is about e�ective approximations for multi-robot coordination in spatially
distributed tasks and is on of the substantial sources for this thesis. It proposes approxima-
tion methods that are able to lower the combinatorial growth in the size of the state space.
It also presents the idea of subjective approximations that help decrease the number of joint
actions. These approximations aggregate or neglect the e�ect of other agents. They inspired
the subjective approximation that was used in this thesis and also pointed us to using the
positional information of other agents and compose it in the obtained reward. The article
further describes methods for empathy by predicting agents location and empathy by �xed
weight discounting. Both o�er some interesting ideas. For example a use of presence mass
to describe possibility of other agents being present at a given location. It is a simpli�cation
due to the fact that identity of agent which is present is not important.

The second approximation is a method that provides an improvement in reducing the
state space which e�ectively improves problem solving times. It resides in handling of the
current "phase" of the problem rather than seeing each potential change that may arise. As
presented by the authors this technique focuses only on currently active tasks and ignore the
possibility of change in their set. In other words the tasks will be only services when they
are relevant in the current time frame. This approximations reduces the otherwise rapidly
growing state space to a more manageable size. The high dependence on current scenario
is also mentioned in the article. It causes that in some cases this approximation does not
provide any bene�ts at all. It also has the disadvantage that it adds the need for more
complex temporal structure in cases where the sum of move and execute times is di�erent
for each task. The authors also mention that both of these approximations can be combined
and further improved by a limit for k closest tasks. This combination provides even better
reduction of complexity.

The article presents these methods on a class of Spatial Task Allocation problems. This
SPATAPs [11] class is a subclass of MMDP [4]. As we are focusing on a di�erent class of
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problems represented by Dec-POMDP we must be aware of their di�erences. In our case the
agents model of interaction is di�erent. SPATAP uses a model where interactions are locally
restricted. Also it has negative interactions where each task can be serviced only once.In
our case the decoupled tasks do not allow any direct agent interactions. These agents only
in�uence themselves based on reward changes. Also unlike the SPATAPs decoupled tasks
allow repeated completion of tasks. Only di�erence is that each completion can give a
di�erent reward based on other agents behavior.

Multi-UAV tracking

Another article [7] related to our thesis is the Decentralized cooperation of multiple UAS
for multi-target surveillance under uncertainties. It focuses on solving a similar problem as
the one presented in our planner for UAV tracking. In this article we can �nd some tricks
to alleviate the complexity of given problem. One of them is a use of mixed observability.
With mixed observability we consider some variables being observable while the others rest
unobserved. It is suitable for representing UAV position as known. The second speci�c is
a use of factored models, where each state is divided in factors. The complexity is reduced
when some of these factors are reused and they do not have to be recomputed. Next they use
roles, which are represented by optimal policy for single UAV models. Those roles are then
combined and assigned to UAV during execution. The policy for multi-agent is not computed.
The presented approach is then based on a decentralization and o�-line pre-computation of
these single agent policies. The agents then make an auction and the di�erent roles are
allocated to agents. This ensures that all roles are covered and that agents perform best
suited actions in joint action space. The reward function is designed so that it penalizes if a
target is already monitored by another UAV. And the reward is also a�ected by a time since
the target was last seen. These techniques promote cooperation and distribution of targets
between agents.

Our approach to the problem is more general and extends beyond the speci�c tracking
problem. Speci�cally to the class of decoupled tasks planning. This article presents infor-
mation about mixed observability. We can relate this with the need to know localization
of other UAVs to improve upon the subjective approximation in our problem. The main
di�erence compared to our problem is that we want our solution to be more scalable. This
algorithm was tested only on two UAVs tracking two targets. Also we would prefer an on-
line approach without the need to pre-compute single agent policies o�-line. Moreover this
article includes a model with limited communication where beliefs are shared when two UAV
are in a near distance. More details on the topic of delayed or limited communication are
in the articles [21, 8, 19]. We want to forbid any communication except the acquisition of
UAV positions. In fact position can be obtained by sensors of some centralized authority.
So the communication in our case is much more limited and we do not have to carry about
connectivity issues or delays. On the other hand article o�ers great inspiration in computing
the reward based on information about other UAV positions and also in the addition of last
seen timer that promotes the search for lost targets.
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Combining probability reasoning with deterministic planning

One of the interesting works in this �eld is hybrid approach to Search and tracking problem
[2]. It focuses on large scale SaT missions and presents a solution that employs both deter-
ministic planning model in combination with Bayesian inference. The authors are presenting
a novel solution to a problem of autonomous surveillance by a UAV. The goal of this UAV
is to search for and subsequently follow the target to its destination. The destination is
unknown, but there is a set of possible candidate cities. The main focus of this work lies in
improving of the search part of SaT. As the article points out purely probabilistic solutions
are often usable only for small scale problems and other previously used methods may strug-
gle when the target's behavior is unpredictable. Because of that the authors have decided to
take a di�erent approach and combine automated planning with Bayesian reasoning. What
makes it unique is that it uses Bayesian inference and past observations to make a prediction
about target's position.

There basic model of the problem was adopted from this work and generalized for use
of multiple UAVs tracking multiple targets. The model speci�es that the target is a road
vehicle and it is located somewhere on a road network. The motion of both the target and
the UAV is uniform and it goes to a speci�c location by using an e�cient path. In the
process of localizing the target the UAV maneuvers over locations with high probabilities of
target incidence. The goal is to �nd a set of maneuvers that would maximize probability
of detecting the target. The search is described as being a sequence of standard patterns
(spirals and lawnmowers).

The solution is based on candidate pattern selection by Monte Carlo search (MCS). The
authors use it to �nd points with the highest probability of �nding the target in certain
time periods. MCS is run over a shortest path graph connecting last known position and all
the destination nodes. Two most probable locations are selected for each temporal section.
Then they use these information to �nd the best sequence of these patterns. The selected
sequence maximizes the probability of locating a target and preserves UAV resources like
fuel. The planner also has to predict where the target is heading and it has to update this
prediction in time. For this it uses the information about its previous predictions together
with the fact that since it hasn't found the target the last search sequence has failed. The
authors exploit the fact that this provides an opportunity to get negative information about
target's location and improve estimation of its real destination. The target is either found or
the information serve as an improvement increasing the probability of �nding it next time.
This work was tested on real-world problems with long temporal horizons and large mission
areas.

This article had inspired the actual problem solved in the implementation of this thesis.
We took the basic problem from this article and improved it to solve a similar one containing
multiple UAVs and targets. This way we will verify our decoupled task planners ability to
solve complex large scale problems. The structure of the problem is similar including the
model of targets movement on the roads and their destinations being a random location from
set of cities on the map. The solution is then very di�erent. It is based purely on probabilistic
reasoning together with complexity enhancements and MCTS more of a core algorithm than
an instrument for sampling. Since the problem for more UAVs is more complex we have
relaxed the constrains. For example we consider the observations strictly true so that the
outcome of search action is always accurate.
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Bene�ts of multiple UAVs

Important information about requirements on number of UAVs with bounded speed can be
found in article [13]. Main focus lies on determining the least number of UAV required for
continuous tracking of n targets. Additionally the authors study how speed and tracking
range in�uences number of needed UAVs. This article is unique by the approach to reformu-
late this problem as network �ow problem. The article shows that setting a lower bound on
number of UAV to have a perfect tracking of n targets is NP-complete. Even in situations
where target movement is known in advance the complexity still persists. The use of knowl-
edge of exact trajectory of target movement instead of uncertain movement make that an
optimization problem that can be solved by network �ows. Although this approach seems
very distant from our vision of the solution it still o�ers important information about how
speed, tracker radius and number of UAVs in�uence each other. This information can be
later used for example to set a reasonable speed to UAVs in our problem.

Multi-target Detection and recognition

The article[9] is closer to our the problem we are trying to solve. It is a multi-target detection
and recognition problem. It also build on an uncertain probabilistic environment with the
exception that it only operates with a single UAV. Also the goal of this problem lies in
recognition of targets and not in their surveillance. The mission is based on moving between
zones, changing height, recognition done by image processing and a use of database of models.
The proposed technique in this article is an on-line algorithm for planning under strong time
constraints. The optimize-while-execute framework is an interesting optimization which
while executing the current action uses the time to anticipate and plan for next possible
belief state. Duration of executed action a its probabilistic e�ects is used to construct
possible belief states and then proportional time to their probability is spent computing
policy for each of them.
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Chapter 3

Problem description

In this thesis we focus on a problem class of multi-agent planning for decoupled tasks. In
general we are set in a situation, where we have multiple agents and the goal is to �nd and
complete a number of tasks in the environment. Each agent can service any of these tasks
without restrictions. In planning of decoupled tasks interactions are limited to the shared
environment and interactions by means of utility. They do not in any case prevent an agent
from executing chosen action.

To successfully solve this problem, we have to make sure these tasks are serviced by one
of the agents. Of course any overlapping in task allocation may cause the solution to be sub-
optimal. Since there are multiple agents involved, we face the problem of exponential growth
in the joint action space and the state space. Consequently this makes it more di�cult to
�nd an optimal solution. In order to make this problem more scalable, we have to use
special methods like partition organization or self-absorbed approximation[11]. In contrast
with SPATAP class of problems in this article [11], we do not face spatial constraints but
rather constraints regarding agent interaction. As we want to use this model for dealing
with real-life problems, using some of them does not provide desired bene�ts. For example
use of the environment partitioning would only be a waste our resources on locations, where
the distribution of tasks is not even.

Therefore we propose using a model based on Dec-POMDP [1] with some special features
unique to this class of problems. Dec-POMDP is a framework that uses decentralized ap-
proach on multi-agent decision making under uncertainty. Unlike POMDP each agent uses
only its local information based on their own observations. Given these partial observations
the agents try to maximize a single reward function. Solving Dec-POMDP is NEXP-complete
[3]. So without the use of approximations and exploits of additional problem characteristics
it is not tractable to solve larger problems.

Mainly we want to exploit the property of decoupled tasks that interactions between
agents are limited. An action performed by one of the agents does not directly e�ect other
agents. Furthermore there are no actions that need agents' cooperation. So in a short
summary actions of a single agent cannot prevent other agents from following a certain goal,
block his path, or cause other similar in�uences. The only in�uence permitted is established
by the shared environment and by means of obtained reward which is a crucial tool for
e�ectively splitting the task handling among the agents.

11
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By a property of the decoupled tasks, each of our agents is autonomous and unaware
or the actions and beliefs of the others. This leads us to another speci�c of this problem
and that is limited communication. Communication between the agents is minimized to the
extent that they only know position of each other. This is one of the reasons why we want
to build the model on a decentralized and partially observable basis.

3.1 Formal description

As mentioned before the formal model is based on Dec-POMDP.
By de�nition [18], Dec-POMDP is a tuple <D,S,A,T,R,O,O,h,I>.

• D={1,. . . ,n} is a set of agents.

• S is a �nite set of states of the environment.

• A is a �nite set of joint actions.

• T : S ×A×S'→ R is a transition probability function.

• R : S ×A×S'→ R is a function that speci�es obtained rewards.

• O is a �nite set of joint observations.

• O is the observation probability function

• h is the horizon of the problem.

• I is the probability distribution of sn ∈ S being the initial state.

A joint action A is a combination of actions available to individual agents. Each agent
has a di�erent set of available actions. The outcome of a joint action is determined by the
transition probability function T. This function T(s,a)=s' speci�es all the states that are
reachable from state s and probabilities Pr(s'|s,a) that using action a in state s leaves the
environment in state s'.

Every time a joint action is used the environment provides a joint observation O. From
this joint observation each agent only perceives its own private observation ok. Because
we minimize communication between agents we can omit any communication about agent
behavior, cost of this communication and its e�ects and we do not have to model it. This
is in agreement with Dec-POMDP model where each agent acts only based on his own
observations. The only thing that remains is that each agent has the ability to observe
positions of other agents. This can be modeled as a part of the observation where each agent
receives information about one anothers position as a part of their individual observation.
Since this information is the same for every agent joint observationOi can be modeled as a
vector < α, o1, o2, . . . , on >.

We can also exploit a set of special information about the environment. To be more
speci�c they are potential task locations κ, their possible movement M and the agents
position λ. This information is gathered from the environment map that can be represented



3.1. FORMAL DESCRIPTION 13

freely by any means of grid or a graph. This additional structure a�ects how we transition
between states and how reward is computed. To represent it in the model we make some
changes to the representation of the state s =< λ, κ >. In this tuple λ now represents a vector
of agent positions and κ the potential position of tasks in the environment. M is an additional
function that speci�es the probability of task changing its location. Transition from state s
to s' is then described by transition function T (s′, s) giving us the probability (3.1).
pTx is the probability of transition of targetx and pMn is probability of movement of UAVn .

Pr(λ′, κ′|λ, κ, a,M) =
∏
x∈M

pTx (κ′x|κx)
∏
n∈D

pMn (λ′n|λn, an, κ) (3.1)

If we take a look at the reward function (3.2) we need to specify what behavior should
a�ect the decision making. It can be broken down into reward received for accomplishing
the task Rx and a reward for agents cooperation RD. The second one can be modeled either
as a positive reward for completing tasks far away from other agents or negative one for
being too close together. The reason behind this second reward is to force agents to focus
on di�erent tasks without the knowledge of their action selection thus reducing unnecessary
overlapping. The reward function is computed from these two factors. RU is the reward for
localization of targetx by the UAVy and RD is the reward in�uence caused by other UAVs.

R(s, ay) =
∑
x∈κ

RUx (λy, κx, ay,Mx) +
∑

i∈D\{y}

RDi (λi, κ, ai,M) (3.2)

3.1.1 Independence of actions

Compared to an ordinary Dec-POMDP we have the speci�c that the interactions between
agents are limited. These limits include a characteristic that no actions of two arbitrary
agents are dependent. So to say the set of dependent action Ad = ∅. For example there
are no actions that would require another agents cooperation in its positioning or use of of
his actions. This property is important in later development of our solution. If an agent n1
in state s uses the action a, then the transition probability function of other agents in the
newly-emerged state s′ is the same as in state s.

3.1.2 Proposed methods

In this section we propose some methods that will enable us to solve the larger scale problems
de�ned in the last chapter. Use of these methods was inspired by an article on solving multi-
agent coordination in spatially distributed tasks [11]. Our goal is to use speci�c features of
described problem to reduce the complexity of its joined state and action space. A substantial
part of the complexity lies in a fact that both the transition function and reward function is
dependent on multiple agents behavior. The number of agents then a�ects the complexity of
given problem exponentially. We use the property of decoupled tasks that each of our agents
is autonomous and unaware of others behavior. To split the problem in a number of similar
sub-problems using self-absorbed approximation. Next we further decrease the complexity
by reducing the state space by using phase approximation.
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3.1.2.1 Multi-agent decomposition

A suitable method that can be used is multi-agent decomposition. It is based on the principle
of splitting the problem into smaller subproblem that can be then solved separately. When
we decompose the problem we either lose the information about other agents or we are forced
to simulate their behavior. Complete simulation of other agents would add even more to the
complexity of the problem. That is why we want to use the self-absorbed approximation with
an addition of limited horizon simulation and you its results to alter the obtained reward of
the UAV.

3.1.2.2 Self-absorbed approximation

The self-absorbed approximation [11] is one of the subjective approximations used to reduce
complexity created by number of agents in joined action space. It is an approach where we
decide to reduce the problem to a single agent scenario. From there we act as this agent
is the only one in the environment and all the state transitions and reward function are
computed as if no other agents were present. This method reduces the problem action space
from |A||D|to|A|.

As there are no other interactions between the agents other than by means of obtained
reward we can use combination of the two previously presented methods and split the problem
in |D| sub-problem each a self-absorbed version of one of these agents. We then improve this
technique by simulating other agents as a part of the environment. Using information about
their position presents an opportunity to a�ect obtained rewards of self-absorbed actions in
such a way that actions with higher probabilities of being serviced by another agent yield
less reward. Thus promoting selection of actions that have higher value in means of agent
cooperation and preventing agents from servicing only the most valuable task.



Chapter 4

Tracking using decoupled tasks

We demonstrate the use of the techniques presented in chapter 3 on a particular example
based on a real-world problem. It is a multi-agent multiple-target tracking problem and we
show how to solve it by means of planning for decoupled tasks. The basis of this tracking
problem comes from an article [2], which presents a solution for single-agent tracking prob-
lem. It focuses on large scale search and tracking (SaT) missions and presents a solution
that employs both deterministic planning model in combination with Bayesian inference. In
this thesis we model a similar problem and push it even further by not limiting the number
of both UAVs and the targets that are being tracked. We use the same model of the targets
with the exception that our search results are considered errorless. In contrast to [2], we
propose a purely probabilistic solution to this problem.

4.1 Problem de�nition

Our goal is to design an on-line planner based on general model described in chapter 3 and
use it to solve this tracking problem. For the purpose of this example we have to model an
environment with n unmanned aerial vehicles (UAV) and m targets. In this environment
each UAV has its own starting position. The goal of these UAV is to continuously track
targets' position. We assumed that number of the targets can be greater than number of
the UAV at our disposal. This prevents us from allocating each speci�c UAV to track a
single target. Using this speci�c 1:1 allocation was also proven sub-optimal [7], since there
may arise a situation where swapping targets may increase the tracking e�ciency. Since it is
impossible in some cases to continually track m targets with n UAVs we focus on acquisition
of the latest and most accurate data about their positions.

Another important element of this problem is that the targets have the ability to move.
Available moves are restricted by a de�ned road network. There are also several important
locations in each environment. We can see them as large cities and they represent a possible
�nal destination of the targets. Every time each UAV locks its selected action for execution
a target chooses a move action towards its destination and executes its movement. UAVs
are unaware of the destination of the targets. As the number of these potential destinations
rises, the probability of successfully predicting targets next move decreases. On the other
hand the UAVs have a total freedom of movement since they are not dependent on the road
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network. It is natural that road transport has speed limits and congestions. That is why we
allow UAVs to move at a higher speeds.

In order to solve this problem we use the techniques mentioned in section 3.1.2 to re-
duce the complexity caused by number of agents involved in this problem. Also we present
additional probabilistic techniques to handle the uncertainty of the targets' positions.

4.1.1 Environment

We now de�ne the environment of the problem as

< P,S0, PE > . (4.1)

P =< p1, p2, ..., px > is a set of locations inside the environment map.

S0 ⊆ S de�nes a starting state of our problem.

The initial state S0 =< λ0, κ0, t0 > de�nes the setting of the environment before we start
the planning phase. It de�nes position of all the UAVs λ0 =< puav1 , puav2 , . . . , puavn >,
the distribution of probabilities of target locations κ0 =< pt1 , pt2 , . . . , ptn > and t0 =<
t10, t

2
0 . . . , t

n
0 > which is a vector that describes age of the information about targets' positions.

PE ⊆ P is a subset de�ning possible destinations for targets. The exact assigned values for
each target are unknown.

4.1.2 Agent

The unmanned aerial vehicles are modeled as the agents. The UAV is autonomous and can
complete any task. They all possess the same actions and are homogeneous. The movement
of each UAV is limited by a representation of the environmental map and is de�ned by its
constant speed. The only ability given to these UAVs is a combined move and search action.
This action Ams represent a movement to speci�ed location automatically followed by a scan
for targets in the destination area. Also the UAVs are forced to move every turn because
we don't expect them to levitate. This limitation is present to enable the use of plane-like
UAVs.

4.1.3 Targets

The targets are an unspeci�ed object which can represent any type of moving road vehicle.
For every target a speci�c destination location is selected at the start of the problem execu-
tion. This destination is �nal and cannot be altered during the execution phase. Each time
step the target takes a step towards its destination. This step is computed by a means of
shortest path algorithm from its current position to the destination.
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4.1.4 Interaction with the environment

As speci�ed above the interaction between the environment and the UAVs is represented by
actions. Each executed action has speci�c e�ects on the environment and it also provides a
partial observation for a given agent that executed it. Together with this observation also
comes a feedback in a form of reward that evaluates e�ectiveness of this decision.

Another interaction is by means of the obtained reward. The reward evaluates the quality
of actions performed by the UAVs and a�ects their decisions. It is computed based on reward
for localizing the target, time passed since their previous encounter and reward derived from
the positions of other UAVs.

4.2 Model

This chapter describes the model constructed for multi-agent multi-target tracking problem.
We formally de�ne the states of the environment together with de�nition the actions that
cause transition between them.

This UAV mission planning problem is de�ned using modi�cation of the general model
as

< D,S,A, T,M, R,O, O, h, S0, ◦ > . (4.2)

• D = {1, . . . , n} is a set of UAVs.

• S is a �nite set of states of the environment, where state s =< λ, κ, t >.

� λ is a vector of UAV positions, λ =< p1, p2, . . . , pn >, pk ∈ P is position of UAVk,
where k ∈< 1, n >.

� κ speci�es potential target position, κ =< p1, p2, . . . , pn >, pl ∈ P is position of
Targetl, where l ∈< 1, |κ| >.

� t is a vector of integers, t =< t1 , t2 , . . . tn > where t1 is time since target1 has
been seen.

• A is a �nite set of joint actions.

• ◦: is operator that describes application of an action in state ◦ : S ×A → S′ .

� Ams in the only type of action which secures both UAV movement and search for
targets.

� S ◦ Ams → S ′

� Each joinet action ā =< a1, a2, . . . , an > consists of individual actions of the
UAV.

• T : S ×A× S′ → R is a transition probability function.

• M : S × S′ → R is movement probability of targets
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The probability of transition between states is computed from the probability of transition
of targetx pTx and the probability pMn of movement of UAVn.

Pr(λ′, κ′|λ, κ, a,M, T ) =
∏
x∈M

pTx (κ′x|κx)
∏
n∈D

pMn (λ′n|λn, an, κ) (4.3)

• R : S ×A → R is a function that speci�es obtained rewards.

The reward obtained after the execution of an action is composed of RU , a reward for
localization of targetx by the UAVy and RD, which is the reward in�uence caused by other
UAVs.

R(s, ay) =
∑
x∈κ

RUx (λy, κx, ay,Mx) +
∑

i∈D\{y}

RDi (λi, κ, ai,M) (4.4)

• O =< α, o1, o2, . . . , on > is a �nite set of joint observations.

� It consists of agents individual observations oi.

� and an observation of UAV positions α

• O : S ×A → ∆(O) is the observation probability function

� O(oi |s, a) is a probability of agent i seeing observation oi after using action a
from the state s.

• h is the horizon of the problem.

� In our case the horizon is in�nite and we use a discount factor 0 ≤ γ < 1 .

• S0 is the initial state .

4.3 Solving the tracking problem

Using the speci�cs of our problem with the application of self-absorbed approximation we
manage to break this problem down into n problems of a smaller size. Each represented as
if only one of the UAV was present. This decomposition is possible due to the speci�cs of
decoupled tasks and it does not change the size of UAV's action pool or its abilities to reach
any of the goals.

Next idea is to use the information about UAV positions. They can be easily modeled as
part of the current environment state and in fact can be completely considered a property of
the environment as opposed to a information from other agent. These localization informa-
tion enable us to reason about other agents actions and how they a�ect the global reward
with the advantage that we do not have to speci�cally model all action combinations in the
joint action space. We model only its e�ects as approximated rewards.

These values are computed from shared information about the positions of other UAVs.
The UAVs are unaware of each others actions, but they still tend to choose their behavior
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based on reward function that promotes actions with bigger e�ect on global reward. Gen-
erally speaking we want to exploit the fact that close proximity of other agent to a task
increases the chance that this task is serviced by it. By this assumption we should encourage
other agents to pursue completion of other tasks.

All these small details lead to a decision on how to solve this problem. Since we want
to decompose the problem and we prefer to use an on-line planning approach which is more
agile and can be used in many real life situations we want to apply this concept together
with the MCTS algorithm and see how will it a�ect its performance and scalability.

We decompose the problem to a number of UAV centered subproblems and de�ne the
problem as

< M,T,N,L(n1,n2), D > . (4.5)

The de�nition of the environment can be used globally for all the subproblems.
M =< m1,m2,...,mx > is a set of Sectors in our mission map. ms =< l1, l2, ..., lx > is
a Sector that is comprised of a number of locations. Speci�cally all locations that can be
accessed in 8-connected neighborhood graph in one step given the speed of the UAV . T is
�nite number of enemy targets we are searching for. N is a �nite number of UAVs available
for this operation. We also de�ne a function L(x ,y) : N× N → R that returns distance
between sectors x and y, s.t. x, y ∈ {0, 1, . . .M}.

The number of subproblems is equal to the number of UAVs present in the problem instance.
The set of UAV decompositions is D =< d1, d2,..., dn >. Each decomposition is de�ned as

di =< Si, Ai, Ui(x, y), P ra(s, s
′), Ra(s, s

′), γ > . (4.6)

Since we use the self-absorbed approximation for UAVs each of the decomposed subproblems
now has its own set of states. Si is a �nite set of states

s =< Pi, Ei, Ii > . (4.7)

The state describes position of UAV, enemies and times since the targets were encountered.
P is a n-tuple of UAV positions P =< P1 ,P2 , . . . ,Pn >. E is a T-tuple of vectors with
possible Enemy positions E =< E1 ,E2 , . . . ,Et >.

U (x , y) is a function that returns probability for every pair of position x and entity y.
Probability of transition between states is based on probabilities that the UAVs are in given
sector U (mk , j ) and the enemies are at given locations U (lg , e). In case of U (mk , j ), mk ∈M
is a position of UAVj , M set of sectors. s ≤ n is an identi�er of UAV and n is number of
UAVs. Again the same applies for targets where e is the identi�er of a target and lg the
location of its incidence. Location lg ∈ mf is a part of sector mf and g ≤ |mf |.

Last part of the state is vector of integers Ii. It is a T-tuple of timers holding last enemy
localization values I =< i1 , i2 , . . . , it >. For each transition between states all the values of
Ii are incremented by one. The only exception is when an UAV �nds a target. Then ie = 0
because targete has been recently found.
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After the de�nition of state the next important topic is actions. Ai is a �nite set of actions
usable by agenti. The operator ◦ de�nes the application of actions ◦ : Si×Ai → S

′
i . Action

ā is applied st ◦ ai → s
′
t and state s

′
t models the e�ects of this action on the environment.

We de�ne the type of moveSearchAction as Ams ⊂ Ai. This action combines UAV
movement with the subsequent search. It enables the UAVs to move from one location to the
other and at the destination location it searches for present targets. The moveSearchAction
ams is de�ned by destination of movement mk, identi�er of UAV j and the distance of
movement L(pj ,mk) has following e�ects

• st ◦ ams → s
′
t .

• < P,E, I > ◦ams →< P ′, E′, I ′ >

• P ′ =< mk, p2, . . . , pN > positions of UAV after action Ams.

• E′ =< e
′
1, e

′
2, . . . , e

′
T > positions of target after action Ams.

• I ′ =< i
′
1, i

′
2, . . . , i

′
t >, where each i

′
v ∈ I = iv + 1 or 0 if targetv was found by this

action.

Outcome of these action depend on the probability that describes the transition between
current and the next state. The action at ∈ Ams. Probability Pr(s, s′) = pr(s′|s, at).
The movement part of the action is deterministic and is completely dependent on previous
state. The change of state caused by the search is then dependent on probabilities of targets
locations. The probability that a target is found is∏

ek∈E′

∏
t∈ek∩P ′

U(lt, k). (4.8)

In other words the probability is dependent on probabilities of incidence where both the
UAV and the target is in the same location.

The reward function speci�es the utility of a transition between two states. It depends
on number of targets found and also on time that they were last seen. The localization of
targets in a single time step can be obtained from vector I0, which contains all the indexes
k of vector I s.t. ik = 0.

Ra(S, S
′) = (

∑
x∈I0

Rc · x) +Ro. (4.9)

The reward is computed using information about found targets, time x that represents how
long was a target lost and the approximated reward for other agents as we try to simulate
their presence. Rc - is a reward constant that speci�es a gain for locating a single target.
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The reward function employs a discount factor to prefer immediate reward compared to
a future one. The discount factor is set to 0 ≤ γ ≤ 1 . Problem of �nding the best actions
throughout the mission can be classi�ed as a maximization of this sum

∞∑
t=0

γtRat(St, St+1). (4.10)

at = π(St) is the action selected at time step t according to policy π.
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Chapter 5

Implementation

In this chapter we present how to build a planner and simulator speci�cally tailored for this
multi-agent multi-target tracking problem. Making this implementation also enables us to
perform extensive testing of our approach and a comparison with a centralized implementa-
tion. To do so we have to create a reality simulation. In the forthcoming text we present how
individual parts are constructed and how they work together. A special attention is given to
the representation of the environment, methods used to decompose the problem and solve
the sub-problems, and usage of probabilities to our advantage when searching for a solution.

5.1 On-line planning

When obtaining the plan for our agents we want them to be autonomous and able to react to
changes in the environment. On-line planning is ideal for our purpose of solving a problem
in a decentralized way. It �ts in our strategy of interleaving planning phase with action
execution. Also it provides an advantage in situations where an o�-line planner would have
to re-plan part of its plan due to unexpected changes in the environment. These planning
methods have demonstrated good performance in solving large scale POMDPs. On the
other side with size of the state space it becomes intractable. We are trying to combat the
intractability by improvements mentioned in chapters above.

5.2 High-level view

If we look at the architecture (viz. Algorithm 1) of this simulator, it can be broken down
into tree main parts. The �rst of those three parts is the actual planning component. It
works with the information from the environment. The information can be pre-processed
but also with the dynamic information acquired from the agents. The second part is called
the Environment and it speci�es features of the environment, how is it decomposed into
smaller regions and what possibilities from the perspective of movement it allows. The last
component is the reality and it substitutes the perception of the real world. By other words
it provides observations and e�ects for actions executed by the UAVs.
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Algorithm 1: Planner - main loop
1: reality ← createReality();
2: mctsSolvers ← initMctsTrees();
3:

4: while(reality.getTime() < limitSteps)
5: reality.timeTick();
6: reality.moveTargets();
7: for all tree in mctsSolvers
8: nextAction ← tree.getNextAction();
9: outcome ← reality.execute(nextAction);

10: reward += outcome.getReward();
11: consumption += outcome.getConsumption();
12: tree.restart(nextAction,outcome);
13: endfor
14: for all tree in mctsSolvers
15: tree.shareUavPositions();
16: end for
17: endwhile

5.3 Algorithm description

Let us break down each part of the simulation and show how exactly it works and on which
principles and algorithms is it built.

5.3.1 Environment

First, we focus on the Environment to gain closer understanding of the problem and what
information is then available in the problem solving algorithms. The de�nition of the envi-
ronment is read from an external �le. In folder ./resources/ are located some examples of
map speci�cation �les. These �les are in a format called JAVA property �les. It is a type
of XML �le used for storing and loading con�gurations for JAVA applications. As XML is
a simple language we have decided to use this format external map information storage.

A map �les speci�es information about size of the environment, its concrete structure
including roads, starting positions for UAVs and targets and many more information.

<entry key="dist0">2211</entry>
<entry key="dist1">1222</entry>
<entry key="dist2">1211</entry>
<entry key="dist3">1222</entry>

Figure 5.1: Example of map representation in properties �le. (1 - empty location, 2 - road)

This �le is loaded by EnvLoader() and the information is then processed into a usable
structure. Once all of the information from the map �le is loaded and processed the algorithm
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then uses it to create an inner instance of the environment which the suits as a storage of
these information. The pre-processing of the information decides the inner interpretation of
the environment. The environment map input and inner structures are separated by this.
It can be later extended to allow other input formats and its translation into the inner
graph representation. Based on the input pre-processing a�ects possibilities of movement
and number distinct moves from a speci�c location.

The environment contains a special data structure. We are creating a two layered grid
graph for movement. First layer is a simple graph made of a grid by connecting neighboring
tiles. This graph has the information about neighboring locations and also about neighboring
roads if there happen to be any. The second graph is build over the �rst one. It is used for
UAV movement and actions and it decomposes the locations into overlapping sectors.

Sectors

A sector is a set of neighboring locations that can be accessed by the UAV in one move. Its
size depends on the speed parameter of the UAV. Sectors are created from set of locations
called hub locations. They are in a grid distance of one UAV step apart. Each hub location
represents the center of the sector. Locations that are part of the sector are acquired using
an 8-neighborhood. Each location that can be accessed in a number of steps equal to the
speed of the UAV is considered part of the sector. UAV movement is then realized on a graph
of neighboring sector. These graphs are constructed using a recursive search in all directions
with the restrictions on distance and map border check. Before the planning begins each
UAV is also associated with one of these Sectors so that it could start using its connection
network.

Figure 5.2: Example of hub locations (speed=2) and overlapping of neighboring sectors.

When both sector graph and road graph is created the algorithm sets destination locations
that have been read from the map �le. With the application of Dijkstra's shortest path
algorithm search for all the paths leading to the destination nodes. We have decided not
to use A* since it only provides optimal path between two locations and we want to collect
shortest paths for all combinations of locations and destinations. That is also the reason why



26 CHAPTER 5. IMPLEMENTATION

we are running this algorithm in opposite direction. Starting at the destination it obtains
all of the distances to other locations. Also it locates the next steps which is always on the
shortest path leading the UAV to a desired destination. These paths are then kept as part of
the environment representation. Each path graph is distinguished by id of the destination.
Every location is also marked by ids of paths that lead through it. This enables us to later
to identify a correct next step for a certain destination in cases where multiple paths cross
in that location.

Pre-processing helps us reduce operations inside the planning phase where they would
have been needlessly repeated. Now that we have shown creation of the environment and
preparations we can move forward and explain the decomposition of problem used by the
planner.

Figure 5.3: Example of movement graphs. Filled line represents graph for movement of
targets, dashed line graph for UAVs.

5.3.2 Handling decomposed solvers

As we have mentioned it the theoretical part of this thesis we want to increase e�ectiveness
of problem solving by decomposition. In this chapter we talk about how we decompose the
problem and solve a sub-problem for each of the UAVs present in the simulation. Simulations
can be run with an in�nite number of planned steps or if we want to limit the problem we
can set a �nite number of steps that are calculated by the planner. The main routine of
our planner is a while loop that can be terminated after speci�ed number of steps. This
loop secures execution of several subsequent actions. First we register change of time in
our timer. Following that we look for target movement actions and execute their position
change in the reality representing module. Next we iterate over all the decomposed solvers.
There are n solvers, each planning action for one UAV in a self-absorbed environment with
simulation that substitutes other UAVs. After the retrieval of the next action we apply it
and receive the e�ects from the reality. Now that we know if we have successfully located
some enemies we can use these observations to identify the state of the planner. From these
observations we are also able to count the reward participation of this UAV in the ongoing
step. Last thing that needs to be done is to set the planner to a state corresponding to the
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reality a observation made for execution of next iteration. When this loop �nishes we are
able to share changes in UAV positions and we are ready for planning of another step.

5.3.3 Solvers based on MCTS

The most interesting part of this application is the Monte Carlo Tree Search algorithm. It
is a part of the planner that creates a tree upon receiving the environment object with the
initial state of the world. A Monte Carlo tree search provides a solution for each UAV's
decomposed sub-problem. It also requires some parameters. These settings change how
accurate the solution is. But on the other hand they can drastically decrease its performance
when chosen poorly. We focus more on setting these parameters in chapter 6. Nevertheless
we are able to set the number of iterations of MCTS and number of samples generated before
it returns next action.

MCTS

The core of our system uses a Monte Carlo Tree Search (MCTS) algorithm implemented
specially for this piece of software. This technique enables us to �nd a good policy for
problems with high branching factors where it would be impossible to calculate the exact
best sequence of actions. It is based on an idea that with increasing number of samples we
are getting a better approximated image of the reality. One of its key features is that it can
be stopped in arbitrarily chosen time and it always presents the best solution found within
this time limit or number of steps. Bear in mind that it is always a compromise between
the computation time and the quality of the solution. The MCTS algorithm is comprised
of four main parts. They are selection, expansion,simulation and �nally backpropagation.
These four main steps repeat in a loop and in every iteration converges closer to an optimal
solution.

 

        Selection     Expansion 

 

 

 

 

 

            UnobservedNode 

      30%            70% 

 

Action  a                                          

from node S 

 

 

 

 

 

S 

       Simulation              Backpropagation 

 

 

 

 

 

 

 

 

 

 

 

   Rollouts     Rewards 

 

 

 

 

 

Figure 5.4: Four steps of the MCTS algorithm.
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Selection using UCT

The selection step of the algorithm employs a function for selection of the most pro�table
action from current state. Without any knowledge from MCTS the UAVs would have to make
a random decision here. But because of a great number of samples that can be executed in
any node in the tree we are able to make an assumption about average reward received after
the use of this action. Our MCTS implementation uses the upper con�dence bound applied
to trees (UCT) [16] .

πUCT (s) = argmax
a
{QUCT (s, a) + 2Cp

√
log n(s)

n(s, a)
} (5.1)

QUCT (s, a) is estimated value of state-action pair (s, a) taken to be a weighted average of
its children's values. Cp > 0 is a constant that in�uences exploration of state space.
n(s) is a total number of rollouts starting from state s and n(s, a) is the number of rollouts
that execute action a at state s.

UCT is a metric that helps us in selection process to decide which action is better
than the others. Selection traverses the tree and �nds a leaf node at the end of the path
with biggest UCT values. Selection may also end at a node that has not been previously
evaluated and has no UCT value calculated. Selecting this node is then more favorable than
any o� the others. Our implementation is then slightly altered to work with nodes that
represent uncertainty. Each of these uncertain nodes holds multiple child nodes representing
the possible outcomes of given action. Each time the selection procedure encounters this type
of node, it has to decide the outcome from given probabilities and select the corresponding
node.

For example our node represents a situation where we execute the search action and
the outcome of this action is stochastic. The probability of �nding the target is 50%. The
search node has two child nodes. One represents the possibility of �nding the target, while
the other one represents unsuccessful search. So statistically in one half of the selections at
the node we need the algorithm to select a child node where the target is found and in the
second half the second one.

Expansion

The second step of MCTS handles the expansion of the tree. In our case we have chosen
to expand selected node and create all the child nodes in one step . It is easier to �nd
all actions available from this node and expand them all then holding a list of unexpanded
actions. Since we are using combined move and search actions each of the actions available
to us creates one child node in the tree that represents movement. This child node then
again has several child node each representing a di�erent outcome of the search part of this
action. These nodes are linked to their parent and the other way around. Also each node
has to be identi�ed in such way that we can easily reach for it later (�g.5.5). From these
expanded nodes one leaf nodes is selected.

The creation of child nodes representing the search outcomes is done in a sophisticated
way. The algorithm only creates those nodes representing possible search outcomes. In cases
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where we have N enemies the total number of combinations of enemies is 2N . This would
in most cases make the tree grow at a pace that it would considerably slow the computation
times and heavily increase the memory consumption.

Having this in mind we have proposed an expansion method that �rst looks on the prob-
abilities of enemy presence in given sector. Then based on these probabilities we construct
an enemy presence vector which is a sequence of ones and zeros. Each number one represents
that the target with id matching the position of this number in this sequence has a non-zero
probability of presence. In this sequence we can count the number of ones. Let's say we only
counted two. If we generate all binary numbers from zero to 2 2 − 1 . If we take each of these
binary numbers in terms and replace the ones with the ones in the presence vector we end
up with all the possible combinations of found enemies. This combination then becomes an
identi�er for a particular child node. Because the probability of all the enemies being in the
same locations is not large, this method should be in most cases very e�ective in reducing
the number of state nodes.

Presence Vector

101

binary
00
01
10
11

outcomes
000
001
100
101

Figure 5.5: Generating expansion nodes identi�ers.

Simulation

Next step in our tree search is called simulation. This part is what makes MCTS so e�ective.
From the node selected in previous steps we run a sample. It is a random sequence of actions
played from this point until we hit the action limit. Each subsequent action is always random
and we only allow those actions that are available in the state we're currently in. When
the simulation is carried through we simply gather all the rewards received in its progress.
Rewards help us evaluate the importance of completion of a certain sub-tasks. This system
then promotes use of actions with better rewards.

In our case the simulation phase has been implemented to enable parallelization. As
the literature indicates there are a few types of MCTS parallelization[10]. Speci�cally leaf
parallelization, root parallelization, and tree parallelization. We are using leaf parallelization
which runs multiple threads for the simulation and when all of them are �nished gather the
rewards that have been collected.

The simulation is in our case represented in the Simulator class. It requires a link to
the environment model, and the leaf state that has been selected in previous MCTS phase.
However there are also 4 parameters that specify how the simulation proceeds. It is number
of repetitions of this simulation, a limit of simulated steps, and a discount factor.

Loop of the simulation phase starts by making a copy of the initial state that has been
selected. The information in this state are probabilistic and thus must be sampled from given
probabilistic distributions. We have implemented a Decider class that handles sampling of
enemy positions and their destination locations. Now that we have converted the state to be
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deterministic, we can start to simulate individual time steps. First we generate the actions
executed by our moving targets. They simply follow the shortest route to their destination.
Next we generate a random action for each of the simulated UAVs. This is done prior to
selection of main UAV's action. These simulated UAVs have the ability to �nd the targets
and thus lower the reward received by the main UAV if it discovers it too. Last to select
and evaluate its action is the main UAV. It collects its rewards and we increment the timer
by one step.

When we �nish all the iterations of this simulation we then evaluate the terminal state.
This is done because of the nature of this problem. The duration of the simulation can be
in�nite as opposed to other problems where we can simulate until we reach a state with
all goals complete. By limiting the number of simulation steps we speed up the algorithm
while at the same time we cut of part of its ability to describe the quality of given state. A
solution that we used is to employ a discount factor for rewards together with heuristic that
evaluates the end state of the simulation. The discount factor 0 < γ < 1 is a tool that scales
down reward values. The rewards is calculated in a way, that it promotes immediate gain of
reward as seen in the following formula

end∑
t=T

γt−TR(t). (5.2)

With the use of a discount factor after threshold of n steps, any reward that is smaller then
ε and can be neglected. But in our case we may need to �nish the simulation s steps where
s < n. This is why our implementation uses an evaluation of the end state. It is a heuristic
that evaluates distance of UAVs to the nearest target and also takes into the account how
many UAVs are the closest trackers. Ultimately the states with all targets close to an UAV
and all UAVs being a closest tracker to at least one of the targets should be preferred.

5.4 Implementation details

In this section we introduce some of the details about the implementation. We will discuss
the the process of generating actions for UAVs and we provide more details about how we
work with the probabilities.

5.4.1 Generating actions

The dynamic objects in our environment are the UAVs and the targets. Both have the ability
to execute an action which has certain e�ect on the environment. To model these actions we
use a general class Action from which all the speci�c actions inherit its general characteristics.
The system is designed to support addition of new types of actions. For example we can
easily add an action to refuel UAVs. In current state we only need one combined action
(�moveAction�) for movement and search for UAV and one movement action for our targets
(�moveTargetAction�).

These actions are indispensable in the MCTS expansion phase to determine the expanded
states of the tree and also in simulation to execute the random actions performed by the
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UAVs. To generate these actions we have created a class called ActionGenerator which han-
dles their creation. This class has methods for creating all possible actions or a randomly
selected action. It requires a reference to a node of the MCTS tree, reference to the environ-
ment and mostly an id of the UAV. Only when creating moveTargetAction it instead requires
a set of possible destinations because all target actions are created as one action. This is
possible due to the probabilistic representation of target positions. The action generation
uses the map graph for generation of move actions to neighboring sectors or locations. In
case of the UAVs the fuel consumption restrictions are applied and all the locations in the
sector are searched to build the presence vector of the enemies. This vector can be used later
if the action is executed and we need to expand its outcome nodes.

The method for generating random action is used to generate actions for UAVs in the
simulation phase. It optimizes the speed of the simulation where it is undesirable to generate
all possible actions when only a single one is used.

5.4.2 Working with probabilities

The positions of targets and UAVs are represented as part of the states. The representation
is made using a HashMap, because of the fact that each position is stochastic. This way we
have avoided using a large sparse arrays for position representation. These large arrays would
have slowed the computation by over and again copying large number of values representing
a 0% probability of occurrence. Even though the proposed solution consumes part of the
saved time by declaring this data structure, it is still greatly bene�cial. Probabilities are
always stored using the location as a key and the probability being the value.

These probabilities present a method for storing the uncertainty of a state in the en-
vironment. We use these values to generate outcomes of stochastic actions, to sample a
deterministic state from these probabilities and to change these probabilities. Probabilities
are handled by ProbDistribution,Decider classes and by the expansion part of MCTS algo-
rithm . The �rst one handles the changes of probabilistic distribution in locations issued by
the outcome of search action. Second on is present to sample a deterministic image of the
state from its stochastic template.

The change of probabilities is executed each time when we expand the Monte Carlo Tree
and we want to predict change of targets positions. From the current probability distribution
of target locations we take all the particles. A particle in this case means a probability with
speci�ed location and target identi�er of this particle. For each of these particles we can
identify all the possible destinations depending on current position and their target a�liation.
Next we �nd their next steps towards these destinations and make a unique collection. These
next steps are then used to create new particles which then carry a proportional part of the
probability in the expanded nodes.

Probability distributor is needed to set the probabilities in nodes that represent outcome
of a stochastic action. In our case we use it to de�ne the probabilities that match the state
after execution of search action. Each child node of the search node represents a di�erent
possible outcome of the search for the targets. We have already covered in chapter about
MCTS expansion how it creates child nodes are how to distinguish them later. What we
did not mention was how exactly the state of these child nodes is di�erent and how the
outcome of search is projected into probabilities describing target's location. Each target's
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position is de�ned by < 1 − L > probabilities, where L is the upper bound set by number
of locations in the environment. As a part of the expansion of a search node we have the
enemy presence vector. This vector identi�es which enemies have a non-zero probability of
occurrence in given sector where search was activated. Based on that we can pre-compute
probabilities of each target in both cases it has been found or otherwise. Then we combine
these pre-computed chunks according to individual outcome nodes. We are again trying to
avoid repetitively computing the same thing.

A single outcome of a search for an enemy changes the probabilities as follows. If a
target has been found there, we simply throw away all particles representing location of this
target outside of given sector. The location inside is then set to 1. At the other end if
we were not able to localize the target, then all of the probabilities inside of the sector are
redistributed among the particles outside. The sector where search was executed is searched
for target occurrence and the found probability is then relatively distributed among the
particles outside of the search sector.

The last paragraph is dedicated to a sampling class called Decider. This class ful�lls the
role of sampling deterministic objects from a stochastic representation in nodes. It is used
to sample position of targets from a probabilistic distribution and to sample a destination
for each of the moving targets. To sample these values from given probabilities we are using
the roulette wheel selection known for example from genetic algorithms. In our case the
probability values in particles representing a position of one target sum up to 1. In order to
choose a sample according to these probabilities we have to generate a random real number
from a range (0 , 1 >. Then we go through these particles and sum up their probabilities.
When the summed value exceeds the random number we can stop and we select the last
particle as our representant in the sample. This way we can sample all the representants in
our sample and we have a completely deterministic representation of positions.

27,78%

33,33%

25%

13,89%

RNG = 0,782564

Figure 5.6: Example of roullete wheel sampling.
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5.4.3 Visualization

For better observation of the progress of the simulation we have implemented a simple visu-
alization interface. It is based on java Swing and it repaints the UAV a target positions into
the environment map after each planning step. In consists of few data structures for storing
the information about the environment and the objects in it. Then few methods dedicated
to update these information and a paint method which is able to draw the information into
the window.

The visualization shows several important things. First thing it show the layout of the
map, all the roads in gray color and the possible destination locations in darker shade of gray.
Then after each iteration of the main planner loop when all UAVs executed their actions it
repaints the position of UAVs a targets. UAVs are shown as blue squares, while targets are
the yellow ones.

Another interesting ability of this visualization is to show for each UAV the locations
with non-zero probability of enemy incidence. These probabilities are shown as a small red
or black squares. One square represents a probability for each target with the most left
one being the �rst targets probability. The closer the probability gets to 100% the more
they shine in red. To be able to change between the individual beliefs of the UAVs we
have implemented a keyboard listener. By pressing a number on the keyboard the view is
automatically change to view of UAV with the corresponding id. To know which view is
currently active the UAV is marked in cyan color.
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Figure 5.7: Visualization of 3UAVs tracking 6 targets.



Chapter 6

Experiments

This chapter evaluates proposed solution from the perspective of quality, scalability and in
direct comparison with other previously known methods used to obtain solution. At �rst
we describe the testing, its environment and design of these experiments. Then we conclude
the experiment and discuss the results and competing methods. The output �les generated
after each experiment provide a complete information about experiment setting. Detailed
reports about results of the experiments can be found on the included CD.

We planned out a series of experiments to test out our implementation. First we have
observed and decided which factors we want to test and for what purpose will they be
conducted. Also we wanted to compare di�erent setting of parameters. The results for
tested problem instances are dependent on the setting of main MCTS parameters. If we
want to maximize the utility and o�er results comparable to other proposed solutions, we
need to compare several combinations of parameter settings and decide which among them
promise biggest utility gains. Following that we have identi�ed variables that we want to
study. Our intention is to observe changes in obtained reward, time of execution and how they
depend on various variables. We want to compare the results of the decentralized solution
developed in this thesis with a centralized and a self-absorbed solution. The comparison is
based on giving the centralized solution n-times the samples of decentralized solution, where
n is the number of UAVs in given scenario.

The main properties we want to identify are

• Setting of MCTS parameters that maximize obtained utility.

• Compare reward obtained in presented settings.

• Compare scalability in the individual settings.

Environment

The whole planner and simulator is written in the JAVA language. The implementation
should be multi-platform and not dependent on any other software or library version. It is
build and compiled into a one jar �le and uses external map �les located inside the resources
folder. To run an experiment we recommend to use the same version as was used in the
process of development. The tested version is JAVA 1.7.0_67-b01 (64-bit).

35
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Execution of each individual experiment was performed on MetaCentrum. MetaCentrum
is an virtual organization that unites and shares computers of academic and research facilities.
Their grid o�ers distribution of workload among the accessible systems. Thanks to that we
had the opportunity to run more and much longer experiments than it would be possible on
a single computer. The computers are mostly running a Debian 8 version of Linux. When
queuing the experiments we can dedicate a number of CPUs and de�ne an amount of memory
to be used during the experiment. We have used the setting where 16 CPUs and maximum
of 20GB memory can be used.

Execution

The experiments are operated by two BASH scripts. First script queues the experiments into
MetaCentrum. It generates combinations of speci�ed parameters a queues these experiments
in the line for execution. The second one is then run when one of the grid computers
is assigned to this task. This second script copies data needed for the experiments, de�nes
JAVA version, size of JAVA heap to 8GB and runs the experiment with speci�ed parameters.
Each experiment is run with the 15 hour limit and 10 iterations. By running the same
experiment with exactly the same parameters we can reduce the randomness of the algorithm
results. After the experiment �nishes we gather the output �les and we can use them to gain
mean values for each of the completed runs.

To run a single experiment we have to run the jar �le of the desired planner and to
specify several parameters.

java −Xmx8G − jar DIP .jar $map $uav $enemies $samples $par $depth $mode

$discount $threads $steps

The parameters are used to change the environment map, alter settings of MCTS algorithm,
set the depth of simulation and reward discount factor. Additionaly we can also change
the number of threads used in the simulation and number of steps after which we end the
planning.

6.1 Parameter selection

First experiment that belongs to this category is the experiment for optimization of MCTS
parameters. As we have no understanding how each parameter a�ects the global reward, we
have to make a few experiments to see which one have greater impact and which values are
associated with best performance of this algorithm. The indicated parameters that should
be tested are number of samples, depth of simulation and discount factor for the reward
function. These parameters a�ect how the algorithm searched the state space and how much
it prefers immediate gain of rewards. The tested parameters were combinations of following
settings

• Samples = 500, 1000, 5000, 10000, 50000

• Depth = 20, 40, 60

• Discount factor = 0.5, 0.7, 0.9
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If we look at the results (�g. 6.1) of this experiment we can see how the discount factor
a�ects the obtained reward. As we can see the discount factor 0.7 provides biggest gains of
reward. Other settings have approximately the same dispersion of values, however both the
highest mean and the highest absolute reward were acquired with this settings.
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Figure 6.1: The e�ects of discount factor on obtained rewards.

The next graph (�g. 6.2) shows us how the reward depends on number of selections and
simulations done by the algorithm. As we can see with higher number of samples the reward
stays around the same values, but the variance is lower. The results for 50000 samples can
be a little misleading. Since the computation time is dependent on number of samples we
only managed to acquire two results for this setting. If we look at the graph we can expect
that with increased number of samples we can expect more accurate values with stagnating
or maybe slightly increasing mean values.
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Figure 6.2: E�ects of number of samples on rewards.
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6.2 Quality

The experiments concluded to study the quality of obtained solution are all executed with
the preset MCTS parameters gained from the previous experiment. The parameters are
10000 samples, the depth of each simulation run set to 40 actions and the discount factor
set to 0.7. With these settings �xed we have selected our experiment variables and few
levels for each of them. To receive results non-dependent on other factors we have to run
the same experiments on multiple maps with di�erent target routes and destinations. The
layout of these maps can be seen in appendix B. We have used following combinations of
these parameter settings

• 6 maps - size from 16x16 to 64x64 with 8-15 destination locations.

• N UAVs, where N ∈< 1, 3 >.

• M targets, where M ∈< N , 2N >.

We can further study the quality of presented solution with a comparison to results
obtained by (baseline) centralized solution and the self-approximation solution. The same
experiments were executed for all three versions and the data can be compared both in terms
of quality, scalability and time demands. On (�g.6.3) you can see the average values gained
by each of the compared solutions. The values are shown across all UAV, target and map
combinations.
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Figure 6.3: Comparison of obtained rewards.

The scatterplots (�g.6.5) depict the comparison of obtained rewards by all three solutions.
As we can see the centralized version yields the best results. Unfortunately the results of
solution proposed in this thesis does not outperform the self-absorbed solution. In many
instance results of both solutions are similar and in general on this experiment sample it
seems that the UAV simulation does not provide deemed bene�ts. This means that further
study of the simulation and extensive testing will be necessary. On the other hand a minor
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Figure 6.4: Comparison of di�erent maps.

positive thing is that there are more instances where the proposed solution surpassed the
reward gained by the centralized solution.

The graphs that compare global reward (�g.6.6) and rewards gained by individual UAVs
(�g.6.5) show that as expected the centralized version has a little bit higher rewards. Despite
of that there are several exceptions where the decentralized solution scored analogous and
even few with slightly better results. From this comparison we can state that the rewards
are slightly higher in the centralized version as anticipated from their nature.
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Figure 6.5: Values of agent rewards in compared solutions

In order to eliminate e�ects of the environment, we compare gained rewards on the same
problem in a series of experiments on di�erent maps with two possible destination location
sets. On the graphs (�g.6.4) you can see that the maps and number of possible destinations
for targets have a slight e�ect on the obtained reward. The structure of the map and number
of destinations in�uence how probabilities of target's incidence are spread on the map in time.
This is the reason why we also compare individual results on given maps.

The results on di�erent maps show that the size of the map has an e�ects on the obtained
reward (�g.6.8 and 6.4) . At smaller maps the di�erence is marginal, but at the largest one,
even when the number of target destination is lower, the reward is smaller. The in�uence of
the number of target destinations cannot be evaluated alone. It is bound with the location
of target's destination which subsequently in�uences the quantity of used road segments.
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Figure 6.6: Comparison of obtained global reward by centralized and distributed solutions.
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At �gure 6.8 you can see how reward is dependent on number of UAVs and the number
of targets present in the problem instance. Furthermore �gure 6.9 shows the histograms of
obtained reward in problems with 3 UAVs. You can see the obtained reward values for both
3 target and 6 target instances.

3UAV, 3Targets

total reward

F
re

qu
en

cy

0 10000 20000 30000 40000 50000

0
5

10
15

3UAV, 6Targets

total reward

F
re

qu
en

cy
30000 40000 50000 60000 70000 80000

0
2

4
6

8
10

Figure 6.9: Histograms of obtained reward.

Interesting information can be found, if we take a look at the �gure 6.10. It shows the
increase of reward earned per single UAV in situation when we decrease the total number
of UAVs by one. In this example a 3 UAV, 3 target scenario is compared with a 2 UAV, 3
target one. The �gure 6.11 then shows how reward is a�ected both by the number of UAVs
and the number of targets.
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6.3 Scalability

In this part we talk about the scalability of our solution. The concluded experiments focus on
how certain parameters in�uence the computation time. We want to observe how the growing
number of UAVs in�uence the complexity. Moreover we have identi�ed more variables that
we want to monitor and learn about their e�ect on the performance while computing a plan.
For example they are number of targets. We are aware that these results can be dependent
on concrete road network structure and this problem would require more extensive testing.
But for the sake of the solution comparison it is su�cient.

First we would like to present some data gained from the parameter setting experiments
that also provide information about scalability. The experiments with di�erent settings of
the MCTS parameters. All the parameter combinations can be found in section 6.1.
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Figure 6.12: Detailed time dependence on the number of samples.
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Figure 6.13: Time dependence up to 50000 samples.

What we can see from the results (�g.6.12) gained across all the di�erent settings is that
the time needed to solve the tracking problem is dependent on number of the samples. The
experiments with number of samples up to 10 000 �nished in under 30 minutes. In case of
the 50 000 samples, we can see the computation times growing to somewhere around 3 or 4
hours.
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The next experiment was focused especially on the scalability. Again we have used the
MCTS parameters settings 10000 samples, 40 depth of simulation and 0.7 reward discount
factor gained in previous experiment (section 6.1). Unlike in the last experiment we have
also locked the map selection to an unchanging middle sized environment.

This experiment was designed to provide information on scalability of proposed solution
when more UAVs are present. We want to survey if the computation time changes when we
add more UAVs. Also the important question is how the computation times change when
more target entities with the need to select an action at each time step are present. The
selected levels for our parameters are as follows

• Number of UAVs < 1 , 10 >.

• Number of targets = 5, 10.
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Figure 6.14: Time complexity dependence on the number of UAVs.
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Figure 6.15: Time complexity with increasing number of UAVs and 10 targets.

The results of scalability experiments can be seen at �gure 6.14 and 6.15. As we have an-
ticipated the centralized solution is the most time consuming. The growth between instances
with 3 and 4 UAVs is much greater compared to the increase seen in both the distributed
and self-absorbed solutions. The time complexity is not the only problem of the centralized
version.
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As the �gure 6.14 depicts, the instances with greater number of UAVs did not �nish
due to their memory demands. In the centralized solution the number of states is growing
rapidly with both the number of UAVs and the number of targets. The state space size
grows with both the number of combinations of UAV's actions and all the possible outcomes
of the search for targets. This is the reason why we have obtained even less results for the
10 enemy instance.

The comparison between the distributed solution presented in this thesis and the self-
absorbed solution o�ers more complex information. Both �gure 6.14 and 6.15 depicts that
the computation time of the decentralized solution is higher, but the increase is not that
steep. We can state that the increase of time caused by the addition of the UAV simulation
is reasonable. Also both the decentralized and self-absorbed solutions are more scalable in
regards to both the time and memory requirements.
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Chapter 7

Conclusion

We have studied the concepts of multi-agent planning, the foundations of both the classical
and the probabilistic planning. With the use of the recommended literature and a number of
additional books and articles, we have familiarized ourselves with a number of models based
on Markov decision processes, algorithms used in planning for computing both the optimal
and approximated policies, and e�ective approximations.

In this thesis we have focused on the subclass of planning problems called multi-agent
planning for decoupled tasks. We have studied the unique features of this problem, researched
solutions and state of the art methods used for solving similar problems. We have judged
the usability and bene�ts of these methods in connection with our problem. The real-world
applications of the decoupled tasks were also considered and the multi-agent multi-target
tracking problem was selected as the ideal representant to demonstrate our solution.

As the �rst step of our solution we have described the general problem of multi-agent
probabilistic planning for decoupled tasks. Following this description we have formulated a
theoretical model with speci�c properties rising from the substance of this problem subclass.
We have proposed a solution that exploits the problem characteristics and incorporates
use of problem decomposition, self-absorbed approximation and simulation of other agents'
actions by means of the alteration of the obtained reward. This general model and proposed
solution was then used as the starting point for a model speci�cally tailored for the real-
world problem of multi-agent multi-target tracking. This second model is more speci�c and
provides de�nitions of the environment, UAVs and tracked targets.

The planner and simulation environment was then built on the basis of this second model.
The implementation illustrates the solution for multi-agent multi-target tracking problem
and enables the evaluation by experiments. It is based on the decentralized planning where
each UAV uses Monte Carlo Tree Search algorithm for acquisition of their next action.
The implementation also builds on the UCT metric and additional improvements for tree
expansion and probabilistic planning. The simulation part of the MCTS then incorporates
an innovative algorithm for simulation and evaluation of presence of other UAVs by means
of reward altering.

The thesis also presents results of experiments used to evaluate characteristics of proposed
solution. These experiments are focused on setting the algorithm parameters, quality of
the presented solution and the scalability in real-world applications. The results of these

47
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experiments were confronted with results obtained by (baseline) centralized and the self-
absorbed solutions. As expected the centralized solutions outperforms both the decentralized
and self-absorbed solutions. If we look at the comparison of obtained reward between the
presented decentralized solution and the self-absorbed one, we can see that in many scenarios
the results are similar. As opposed to what we have expected the results of solution proposed
in this thesis compared to the self-absorbed solution did not present the anticipated increase
in utility.

We have several ideas what may cause this outcome. It can be a result of insu�cient e�ect
of the reward alteration based on other UAVs location. This can be solved by introducing a
parameter that will enable to control it's e�ects. Another possibility is that the process of
simulating the surrounding UAVs is too simple. The randomness of the simulation may cancel
out most of the e�ect of their presence. In each decomposition the main UAV follows a much
more sophisticated model of behavior than in the simulation. In the future we suggest adding
multiple models of their behavior and compare them in extensive testing. The complexity of
these new models must balance it's bene�ts with the time demands to preserve the scalability
of presented solution. Also the model in current use does not guarantee localization of target
and it can happen that all surrounding UAVs decide not to locate the target and rely on
others to do so.

The experiments also provide comparison of scalability of proposed solution. As we have
expected the advantage of the decentralized solution presented in this thesis was proven
far more scalable than the centralized solution. The computation times were signi�cantly
shorter than for the centralized version and moreover the experiments have pointed out that
the memory demands are also much smaller. Compared to the self-absorbed solution the
increase of time consumption of proposed solution by adding the simulation and evaluation
of nearby UAVs in solution presented in this work is reasonable.

This thesis and the solution proposed by it shows, that the speci�cs of decoupled tasks
present an opportunity for their exploitation in order to make the planing more scalable.
The decoupled tasks and their usage to model large real-world problems should be further
researched. We believe that the scalability and quality of the obtained solution can be further
improved on.
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7.1 Future work

Future work and additional improvements can be done in regards of both the proposed
general model in this thesis, or the solution of the multi-agent multi-target tracking problem.
We present a short list of possible areas of additional research:

• Improve UAV simulation
One of the possibilities is to improve the simulation of surrounding UAVs and their
e�ect on reward by adding multiple models of their behavior and perform a set of com-
paring experiments. Also the addition of control parameter for the reward alteration
caused by other UAVs in close proximity can be introduced and possibly combined
with a machine learning algorithm for its setting.

• Additional real-world problems
Another follow-up to this work could be the de�nition of other real-world problem as
the multi-agent planning for decoupled tasks. This could also provide additional ideas
for improvement of the general model for solving decoupled tasks that is presented in
this thesis.

• Expanding the presented problem
The current problem of multi-agent multi-target tracking can be further enhanced to
employ fuel capacity and refueling actions, movement restrictions or for example a
thread in a form of anti-air defense or unwanted radar tracking which must be evaded.
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Appendix A

List of abbreviations

UAV Unmanned aerial vehicle

SaT Search and tracking

MCTS Monte Carlo Tree Search

SPATAP Spacial Task Allocation problem

MDP Markov decision process

POMDP Partially observable Markov decision process

Dec-POMDP Decentralized partially observable Markov decision process

...
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Appendix B

Environment maps used in

experiments

Figure B.1: 16x16 map with 10 destinations
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Figure B.2: 32x32 map with 15 destinations

Figure B.3: 16x16 map with 8 destinations



Appendix C

Experiment results preview

uavs targets samples par depth discount avgTotalReward avgTotalTime avgRewardPerTime
1 3 6 500 1 20 0.50 66600.00 0.66 101903.91
2 3 6 500 1 20 0.70 62600.00 0.65 96949.72
3 3 6 500 1 20 0.90 63300.00 0.50 126314.72
4 3 6 500 1 40 0.50 57300.00 0.66 86530.63
5 3 6 500 1 40 0.70 67200.00 0.67 100312.39
6 3 6 500 1 40 0.90 64200.00 0.67 96347.55
7 3 6 500 1 60 0.50 56800.00 0.73 77708.55
8 3 6 500 1 60 0.70 61100.00 0.73 83682.08
9 3 6 500 1 60 0.90 62600.00 0.67 92983.44
10 3 6 1000 1 20 0.50 61000.00 0.97 63277.01
11 3 6 1000 1 20 0.70 60800.00 0.95 64410.10
12 3 6 1000 1 20 0.90 63100.00 1.35 46656.65
13 3 6 1000 1 40 0.50 59000.00 3.35 17611.29
14 3 6 1000 1 40 0.70 65300.00 1.51 43180.10
15 3 6 1000 1 40 0.90 65800.00 1.52 43194.55
16 3 6 1000 1 60 0.50 60500.00 1.59 38376.77
17 3 6 1000 1 60 0.70 65500.00 1.59 41423.54
18 3 6 1000 1 60 0.90 65300.00 1.74 37601.14
19 3 6 5000 1 20 0.50 61800.00 5.00 12376.42
20 3 6 5000 1 20 0.70 66700.00 4.96 13446.45
21 3 6 5000 1 20 0.90 63300.00 5.05 12543.33
22 3 6 5000 1 40 0.50 61600.00 6.55 9408.28
23 3 6 5000 1 40 0.70 63500.00 9.78 6490.02
24 3 6 5000 1 40 0.90 60900.00 8.82 6905.57
25 3 6 5000 1 60 0.50 65500.00 9.46 6933.58
26 3 6 5000 1 60 0.70 59100.00 6.53 9058.15
27 3 6 5000 1 60 0.90 62600.00 7.87 7980.74
28 3 6 10000 1 20 0.50 59500.00 10.79 5594.26
29 3 6 10000 1 20 0.70 67700.00 10.88 6224.36
30 3 6 10000 1 20 0.90 64700.00 10.90 5939.08
31 3 6 10000 1 40 0.50 63600.00 14.46 4401.46
32 3 6 10000 1 40 0.70 67300.00 14.49 4648.24
33 3 6 10000 1 40 0.90 66000.00 13.45 4912.98
34 3 6 10000 1 60 0.50 60600.00 14.19 4272.67
35 3 6 10000 1 60 0.70 60800.00 14.39 4225.69
36 3 6 10000 1 60 0.90 64900.00 20.50 3171.69
37 3 6 50000 1 20 0.50 61444.44 90.15 682.32
38 3 6 50000 1 20 0.70 62777.78 99.84 629.08
39 3 6 50000 1 20 0.90 65125.00 101.26 643.24
40 3 6 50000 1 40 0.50 57250.00 190.54 303.58
41 3 6 50000 1 40 0.70 66142.86 125.93 525.02
42 3 6 50000 1 40 0.90 63250.00 185.79 340.77
43 3 6 50000 1 60 0.50 60000.00 212.46 282.05
44 3 6 50000 1 60 0.70 61666.67 247.88 248.50
45 3 6 50000 1 60 0.90 56500.00 192.16 294.19

Table C.1: Average values obtained in parameter setting experiment
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Appendix D

User manual

In order to run the planner you have to install JAVA runtime environment �rst. Any version
of JAVA 7 or above should su�ce. The software was tested on version JAVA 1.7.0_67-b01.
No further software installation is required.

The source code can be found on the included CD or on the Bitbucket repositories
https://bitbucket.org/starouscz/dip_janstary .

The planner can be either run by a script or from the command-line. It is necessary that the
folder .\resources is present in the location of main jar �le of the application. This folder
contains necessary map �les. To run the planner from the command-line use

java -jar DIP.jar $map $uav $enemies $samples $threads $depth 1

$discount $threads $steps

for example with parameters env16_5.properties,2,3,10000,1,40,1,0.7,1,20 .
To make further experiments or to try other settings the map �le must be edited. It can
be opened in a ordinary text editor. Inside the map �le you can speci�es size of the map,
layout of roads, starting positions of targets and UAVs, fuel of the UAVs and possible and
true destinations for targets. In order to run a problem with a certain number of UAVs and
targets their starting positions have to be speci�ed inside the map �le.
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Appendix E

Content of the enclosed CD

.

|-- binaries #planner executables

| |-- DIP.jar

| |-- DIP_noGUI.jar

| |-- resources #map folder

| | |-- env16_10.properties

| | |-- env16_5.properties

| | |-- env32_10.properties

| | |-- env32_15.properties

| | |-- env64_12.properties

| | |-- env64_8.properties

| | `-- env_scale.properties

| |-- runCmd.txt

| `-- run.sh #example of run script

|-- experiments #folder with the experiments

| |-- compared #solutions used for comaprison

| | |-- centralized

| | | |-- binary

| | | | `-- DIPC2a.jar #the centralized solution

| | | `-- source

| | | `-- src.zip

| | `-- self-absorbed

| | |-- binary

| | | `-- DIPSA.jar #the self-absorbed solution

| | `-- source

| | `-- src.zip

| |-- out_centralized1.csv #experiment results

| |-- out_centralized2.csv

| |-- out_centralized3.csv

| |-- out_distributed1.csv

| |-- out_distributed2.csv

| |-- out_distributed2new.csv
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| |-- out_parameters_15h.csv

| |-- out_parameters_2.csv

| |-- out_parameters_3.csv

| |-- out_scalability_c2a.csv

| |-- out_scalability_c2.csv

| |-- out_scalability_c3.csv

| |-- out_scalability_c4.csv

| |-- out_scalability_d2.csv

| |-- out_scalability_d3.csv

| |-- out_scalability_d4.csv

| |-- out_scalability_d.csv

| |-- out_scalability_sa2.csv

| |-- out_scalability_sa3.csv

| |-- out_scalability_sa4.csv

| |-- out_scalability_sa.csv

| |-- out_self_absorbed2.csv

| |-- out_self_absorbed.csv

| |-- out.zip

| |-- results_compare.csv

| |-- results_distributed_avg.csv

| |-- results_parameters_avg.csv

| |-- results_scalability.csv

| `-- RunScripts #MetsCentrum run scripts

| |-- deployall.sh

| |-- deploy.sh

| |-- enqueue_experiments_15h.sh

| |-- enqueue_experiments_centralized3.sh

| |-- enqueue_experiments_centralized.sh

| |-- enqueue_experiments_distributed2.sh

| |-- enqueue_experiments_long.sh

| |-- enqueue_experiments_parameters2.sh

| |-- enqueue_experiments_parameters3.sh

| |-- enqueue_experiments_scalability_fix.sh

| |-- enqueue_experiments_scalability_fix_small.sh

| |-- enqueue_experiments_scalability.sh

| |-- enqueue_experiments_self.sh

| |-- enqueue_test.sh

| |-- join.sh

| |-- kill_all.sh

| |-- pull.sh

| |-- run_experiment_centralized_a.sh

| |-- run_experiment_centralized_b.sh

| |-- run_experiment_centralized.sh

| |-- run_experiment_self.sh

| |-- run_experiment.sh

| |-- test_centralized.sh
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| |-- test_distributed.sh

| `-- test_self_absorbed.sh

|-- readme.txt

|-- sources #java source codes

| |-- java

| | |-- resources

| | | |-- env16_10.properties

| | | |-- env16_5.properties

| | | |-- env32_10.properties

| | | |-- env32_15.properties

| | | |-- env64_12.properties

| | | |-- env64_8.properties

| | | `-- env_scale.properties

| | `-- src

| | |-- environment

| | | |-- AntiAir.java

| | | |-- Area.java

| | | |-- Environment.java

| | | |-- EnvLoader.java

| | | |-- Paths.java

| | | |-- Sector.java

| | | `-- Unit.java

| | |-- fleet

| | | |-- ActionGenerator.java

| | | |-- Action.java

| | | |-- EvasiveAction.java

| | | |-- Fleet.java

| | | |-- MoveAction.java

| | | |-- MoveTargetAction.java

| | | |-- RefuelAction.java

| | | `-- SearchAction.java

| | |-- graphics

| | | |-- EnemyMarker.java

| | | |-- KeyboardListener.java

| | | |-- MyMouseListener.java

| | | |-- MyMouseMotionAdapter.java

| | | |-- Square.java

| | | |-- TestPane.java

| | | `-- Window.java

| | |-- planner

| | | |-- Decider.java

| | | |-- Main.java

| | | |-- Mcts.java

| | | |-- Node.java

| | | |-- Planner.java

| | | |-- ProbDistributor.java
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| | | |-- Simulator.java

| | | |-- State.java

| | | |-- UnobservedNode.java

| | | `-- UnobservedTargetNode.java

| | `-- test

| | `-- Reality.java

| `-- text #text source code

| |-- csplainnat.bst

| |-- DIP_zadani.PDF

| |-- figures

| | |-- LogoCVUT.eps

| | |-- LogoCVUT.pdf

| | |-- seznamcd.eps

| | `-- seznamcd.pdf

| |-- hyphen.tex

| |-- img #images

| | |-- 131_cropped.pdf

| | |-- 16.png

| | |-- 32.png

| | |-- 64.png

| | |-- bin_cropped.pdf

| | |-- comp_avgrew.pdf

| | |-- comp_avgrewxuav_d.pdf

| | |-- comp_avgrewxuav.pdf

| | |-- comp_avgrewxuav_sa.pdf

| | |-- comp_env16_10.pdf

| | |-- comp_env16_5.pdf

| | |-- comp_env32_10.pdf

| | |-- comp_env32_15.pdf

| | |-- comp_env64_8.pdf

| | |-- comp_rew.pdf

| | |-- comp_rewxtime.pdf

| | |-- comp_sc_line10.pdf

| | |-- comp_sc_line5.pdf

| | |-- dipu2.png

| | |-- mcts_nodes1.pdf

| | |-- mcts_nodes2.pdf

| | |-- ovr_cropped.pdf

| | |-- q1.pdf

| | |-- q2.pdf

| | |-- q3.pdf

| | |-- q4.pdf

| | |-- q5.pdf

| | |-- q6.pdf

| | |-- q7.pdf

| | |-- q8.pdf



67

| | |-- reward-discount.pdf

| | |-- reward-sel.pdf

| | |-- reward-time_.pdf

| | |-- reward-time.pdf

| | |-- roates_cropped.pdf

| | |-- roulette_cropped.pdf

| | `-- sec_cropped.pdf

| |-- k336_thesis_macros.sty

| |-- reference.bib

| |-- Rscripts #graph scripts

| | |-- process_centralized.r

| | |-- process_compare.r

| | |-- process_distributed.r

| | |-- process_parameters.r

| | `-- process_scalability.r

| `-- Stary-thesis-2017.tex #thesis source

`-- text

`-- Stary-thesis-2017.pdf #thesis text

25 directories, 162 files
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