
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

The usage of BPMN library to
define workflow

Evgeniya Brichkova
Study program: Software Technologies and Management
Branch: Web and Multimedia

January 2017
Supervisor: Ing. Jiří Šebek

Acknowledgement / Declaration
I thank Ing. Jiří Šebek for the guid-

ance of my bachelor thesis, help and
valuable advices.

I declare, that i have done assigned
the bachelor thesis alone led by supervi-
sor. I used only literature, that is list-
ed in work. Furthermore i declare, that
i have no objections against lending or
making public of my bachelor thesis or
it’s part with agreement of department.

In Prague 3.1.2017

. .

iii

Abstrakt / Abstract
Bakalářská práce se zabývá proble-

matikou návrhu a modelování workflow
procesu a jejich integrace do logiky apli-
kace. Workflow procesy jsou vytvořeny
v souladu s Business Process Model
and Notation (BPMN) 2.0 standar-
dem a representované ve formě BPMN
diagramu. Aplikace představuje dvě
horní vrstvy systému, který se zabývá
problematikou přiřazení rolí uživate-
lům a umožňuje správu účtů uživatelů,
oprávnění a úpravu organizační struk-
turu firmy. Diagramy, representujici
workflow procesy, mají více specifický
formát, než standardní BPMN dia-
gramy. Nový formát diagramů vychází
z vlastních pravidlech modelování,
které vyhovují cílovému systému. První
vrstva představuje BPMN modelář,
který podporuje vlastní pravidla mode-
lování. Druhá vrstva zajišťuje validátor
a parser BPMN diagramu, který jej
převede do stromů Plain Old Jáva ob-
jektů (POJO). Tím pádem, správcům
roli je poskytován pohodlný způsob, jak
vyřešit problémy správy role s velkými
úspory času.

Klíčová slova: BPMN, definice work-
flow, řízení uživatelských rolí, vnitřní re-
prezentace XML

The bachelor thesis deals with the
issue of the definition and modelling
workflow processes and their integra-
tion into the application logics. Work-
flow processes are created according
to the Business Process And Modelling
Notation (BPMN) 2.0 standard and rep-
resented in the form of BPMN diagram.
The application represents two upper
layers of the system, which deals with
the problem of user role assignments
and allows managing users’ accounts,
permissions and modifying organiza-
tional structure of the company. The
diagrams, which represent the workflow
processes, have more specific format,
than standard BPMN diagrams have.
New format of diagrams is based on
the custom modelling rules, which suit
the aims of the target system. The
first layer is represented by the BPMN
modeler, which supports custom rules.
The second layer provides the validator
and parser of BPMN diagram, which
converts it to the tree of Plain Old
Java Objects (POJO) objects and saves
the diagram to the database. Thereby,
role administrators are provided with
a convenient way to solve the role
management issues with big savings of
time.

Keywords: BPMN, workflow defi-
nition, user role management, internal
representation of XML

iv

Contents /
1 Introduction .1
1.1 Motivation .1
1.2 Purposes. .1

1.2.1 Modeler .2
1.2.2 XML Parser2

2 Background .3
2.1 Business process3
2.2 Business process manage-

ment and modeling3
2.3 Business modeling lifecycle3
2.4 Modeling techniques overview . . .4
2.5 BPMN 2.0 standard6

2.5.1 Types of BPMN pro-
cesses .6

2.6 BPMN 2.0 core structure6
2.6.1 Infrastructure package7
2.6.2 Foundation package.7
2.6.3 Common package8
2.6.4 Service package8

2.7 XML to POJO converting
with JAXB .8

2.8 Used technologies8
2.8.1 Node Package Manag-

er(NPM)8
2.8.2 Node.js .9
2.8.3 Grunt .9

3 Related work. 10
3.0.1 TIBCO Business Studio . 10
3.0.2 Aris Express. 10
3.0.3 Yaoqiang BPMN Editor . 10
3.0.4 Bizagi. 11

4 Analysis and design of the
application . 12

4.1 BPMN-js overview 12
4.1.1 Diagram-js core classes

overview 12
4.1.2 Dependency injection

in Diagram-js 14
4.1.3 Other customized com-

ponents 14
4.1.4 Custom rules 14

4.2 Class diagrams of the Mod-
eler part . 15
4.2.1 DirectEditing module

customization diagram . . 15

4.2.2 Palette and Con-
textPad modules
customization diagram . . 16

4.2.3 The whole customiza-
tion package diagram 17

4.2.4 BpmnRenderer cus-
tomization diagram 19

4.3 Sequence diagram 20
4.3.1 Unsuccessful valida-

tion by java functions. . . . 20
4.3.2 Unsuccessful valida-

tion by XSD. 22
4.3.3 Successful validation

by XSD and java func-
tions . 22

4.4 Use case diagram 24
5 Implementation. 26
5.1 The project structure 26

5.1.1 Server side packages 26
5.1.2 Client side packages 27

5.2 BPMN-js customizations 27
5.2.1 Adding custom modules . 27
5.2.2 DirectEditing module

customization 28
5.2.3 BpmnRenderer cus-

tomization 29
5.2.4 ContextPadProvider

customization 29
5.2.5 PaletteProvider cus-

tomization 30
5.3 Server side implementation 31

5.3.1 Configuration 31
5.3.2 Processing request 32
5.3.3 XSD validation. 32
5.3.4 Validation by Java

functions 33
5.3.5 Saving diagram to the

database 34
6 Evaluation. 36
6.1 Error handling 36

6.1.1 Error example: ele-
ment misses description . 37

6.1.2 Error example: dia-
gram contains isolated
elements 37

v

6.1.3 Error example: dia-
gram is not complete 38

6.1.4 Error example: wrong
order of elements in the
diagram 38

6.1.5 Error example: dia-
gram contains loops. 38

7 Installation . 40
8 Conclusion . 41
A Specification . 43
B Symbols . 45
C Code examples 46
D References . 47
E Content of the practical part . . . 49

vi

Tables / Figures
2.1. Techniques comparison5 2.1. Modeling life cycle4

2.2. Example of a private Busi-
ness Process .6

2.3. Example of a public Business
Process .6

2.4. Class diagram showing the
core packages .7

4.1. bpmn-js architecture: parts
and responsibilities 12

4.2. DirectEditing customization . . . 16
4.3. Palette and ContextPad cus-

tomization . 17
4.4. Customization package dia-

gram . 18
4.5. BpmnRenderer customization . 19
4.6. Unsuccessful java validation . . . 21
4.7. Unsuccessful XSD validation . . 22
4.8. Successful validation 23
4.9. Use case . 25
5.1. Server side package structure . . 26
5.2. Client side package structure . . 27
5.3. Element editing customiza-

tion . 28
5.4. IntermediateCatchEvent

types . 29
5.5. IntermediateCatchEvent

transformation 29
5.6. ContextPad transformation. . . . 30
5.7. Palette transformation 30
5.8. Target directory 31
5.9. Schema directory content 32

5.10. Diagram before converting. 34
5.11. Diagram after converting 34
6.1. Correct diagram 36
6.2. Server response: success 36
6.3. Not fully described diagram . . . 37
6.4. Server response: missing de-

scription . 37
6.5. Diagram contains isolated

elements . 37
6.6. Server response: isolated ele-

ments . 37
6.7. Diagram is not complete 38
6.8. Server response: incomplete

diagram . 38
6.9. Wrong order of elements 38

vii

6.10. Server response: wrong ele-
ments order . 38

6.11. Diagram contains loops 39
6.12. Server response: diagram

contains loops 39

viii

Chapter 1
Introduction

Web applications are usually accessed by a large number of users, so the role manage-
ment is a significant aspect of each application. A set of permissions for an authorised
user is defined by the role, which the user owns. It needs to make sure, that all the
important business informations can only be accessed by selected users, who dispose it
in a correct way.

1.1 Motivation
The management of user roles might be a tiresome process, especially in large compa-
nies. In many cases, such companies have a huge amount of user roles and a difficult
hierarchy of them. Thereby, the process of user role assignment might be long and
inconvenient. Moreover, the user role administration might be time-consuming for the
people, who own the particular roles in that hierarchy. The company might have thou-
sands of different roles, thereby the role administrators are supposed to know those
roles and the rights assigned to them. One of the solutions for this problem is an au-
tomation, which performs the role approval request and releases the role assignment, if
the response is positive. An automation tool can be a simple web application, which
has two interfaces: the first one servers for sending a request from one side and the
second one serves for accepting or declining it in another side. The aim of this applica-
tion is to provide the administrator with an ability to define the workflows of approval
processes. With the help of a simple graphical toolkit, the administrator can define
the workflow for each role approval. It means that it defines the path of this request
and treats all the possible faults during this path. Thereby, each time when somebody
needs to own a particular role, the appropriate request is sent and a certain workflow
process is executed. As it was mentioned before, all the possible problems, which can
break the workflow, are avoided. For instance, in some workflows there is defined the
time limit of waiting for the answer from the target person. In case the waiting time
gets too long, the request goes to another target person, who has the same rights as the
previous one or higher. The target person then gets the request, containing the infor-
mation needed. As soon as the decision is taken, the target person sends the response
by simply choosing „approve“ or „reject“ option. In case of the positive response, the
role is assigned and the confirmation is sent. In another case, the applicant only get
the notification, that the role is not assigned and the reason for it.

1.2 Purposes
The purpose of this bachelor thesis is to provide the detailed way how to handle role-
based management. So the administrators of the application are able to define and
modify the workflow processes of the system using comprehensible and user-friendly
graphical interface, which is accessible from browser.

1

1. Introduction .
1.2.1 Modeler

The uppermost layer of the application is a web-modeler, which is implemented in
JavaScript (js) language using the BPMN-js library. The main function of this module
is to provide the graphical interface for defining workflow processes for the administrator
of an application. The interface allows displaying and modifying the BPMN diagrams
representing workflow processes and creating new ones, saving them in BPMN 2.0
format and then passing to the lower layer. The issue is to use and customize the
BPMN-js library for the clear definition of the purpose of individual objects which
make up the business process elements.

The library modification included the followings:. restriction of the variety of available elements for the diagram creation.modification of elements’ design. restriction of the ability to add features to the elements and connections according
to their type. restriction of the elements’ naming according to the type and function. restriction of ability to connect some elements to others according their type

The module also allows:. storing and sending the diagram to the web service (the second module) in the format
of BPMN 2.0.visualization of the server’s response with the result of sending and validation of the
diagram

1.2.2 XML Parser
The second module represents an (Extensible Markup Language)XML parser and val-
idator for the workflow modeler. This module converts the diagram into java POJO
objects using Java Architecture for XML Binding (JAXB). Its responsible for the di-
agram validation against custom rules, which have been created with the purpose of
the target application. The first part of the validation is performed against an XML
Schema Definition (XSD) file, which is the customisation of initial schema created ac-
cording to the standard BPMN diagram rules. The second part is the validation by
java functions. The module validates the tree of POJO objects, which represents the
initial diagram. The module also contains the services for working with the generated
objects and defines a unified interface for the lower layers of the target application

2

Chapter 2
Background

2.1 Business process
Each flow of actions, which is happening around us can be characterized as a process,
as well as there are business processes in business, which are commonly found in busi-
ness organizations. Michael Hammer, a former professor of computer science at the
Massachusetts Institute of Technology, in his seminal work gave such a definition of a
business process: „A collection of activities that takes one or more kinds of input and
creates an output that is of value to the customer. A business process has a goal and
is affected by events occurring in the external world or in other processes“. But quite a
significant feature of each business process is also an existence of actors, roles and the
collaboration between them for achieving a specified business goal.

2.2 Business process management and modeling
Business process management is the discipline, which deals with designing, modeling,
execution, analyzing and optimization of business processes [1] in Appendix D. The
most important component of this discipline is the business process modeling. It is a
mechanism for describing the states of a business process in different intervals of time.
Simple geometrical symbols and arrows are used to represent the sequence of activities.
They serve for the visualization of the „if/then“ relationships in the workflow. The busi-
ness process model typically defines the goal of business process, its inputs and outputs,
resources, activities and events, which drive the process and other elements. This is
highly used in large organizations to improve organizational efficiency by representing
the workflows, analyzing this representations and modifying them. The modeling of
processes, which is going on in a business, can bring an instant problem identification
and it is an important tool for the simulation of efficiencies of certain processes. Some
of the benefits of analyzing and modeling business processes are the following:. clear definition of roles and responsibilities in the company. easy detection of potential problems. clear understanding the company activities

2.3 Business modeling lifecycle
Business modeling lifecycle is the process by which business models are created, used
and maintained. It allows the organization to make changes and improve it from time
to time. The modeling lifecycle is described in Figure 2.1

3

2. Background .

Figure 2.1. Modeling life cycle (undertook from reference 2 in Appendix D)

Phases of the modeling lifecycle [2] in Appendix D:.model phase
The first phase of the modeling life cycle is called model phase, when the diagram is
being created. There is plenty of different modeling techniques and tools, which can
be chosen according to the context of the business process..analyzing and simulation phase
During this phase the diagram is examined and simulated. As the result of this phase
it might be changed. In the picture such a change is represented by an arrow going
back to the modeling phase..deploy
During the deployment phase, the diagram is converting into a specified format to
be used as an application or to be integrated into some application..execute and monitor
During this phase the application, which received a newly created model, is running,
according to its input (the model)..measure and improve
The output data is analyzed and compared to the expected values.

2.4 Modeling techniques overview
There is a number of standards for business process modeling and it might be an issue
to choose the correct one for the defined purposes. Different modeling techniques focus
on different features of processes..Role activity diagrams (RAD)

RADs are the graphical representation of processes in terms of roles presented within
these processes, their component activities and their interactions, together with ex-
ternal events and the logic, which determines the sequence of those activities (when
and by whom) [3] in Appendix D. Thereby, the main function of RAD diagrams is
to emphasize the interaction between the roles in the organization..Data Flow Diagrams (DFD)
Data flow diagrams (DFD) are used to illustrate the system functionality with un-
derlying processes and data flows..Activity Diagrams
Activity diagrams are used for the workflow mapping. It is a graphical representation
of the steps, actions and decisions that are made in a certain process [4] in Appendix
D.

4

. 2.4 Modeling techniques overview

.Business Process Model and Notation (BPMN)
BPMN is a graphical notation that depicts the steps in a business process [5] in
Appendix D. It is the most common graphical representation tool for the business
process visualization, because it contains the semantics, which is quite richer, than
the other modeling techniques have. The modeling techniques comparison is shown
in the Table 2.1

Modeling technique name Advantages Disadvantages

Role Activity diagrams (RAD) elements of diagram
are grouped into blocks
according to the roles,
so it is easy to understand
the flow of processes:
switching between the
roles and the reasons
for their actions;
flexibility: easy behavior
redefinition of some
concrete roles not touching
the whole diagram.

Data Flow Diagrams (DFD) ability to create the modeling is time-consuming;
child diagrams for each huge models, which might
activity, so the diagram be uncertain and probably
might have multiple levels; will not cover the
understandability and flexibility: whole system [4] in Appendix D
each activity can be decomposed
into smaller processes, which
allows easy redefinition

Activity Diagrams understandability: built on no distinguishes between
simple symbols; activities, which can be
parallel activities modeling quite confusing

Business Process Model good for both: huge amount of symbols
and Notation (BPMN) complex and might be confusing

simple projects for unskilled users
Table 2.1. Techniques comparison

5

2. Background .
2.5 BPMN 2.0 standard

2.5.1 Types of BPMN processes

.private processes

Private processes define the internal workflows of the organization and they never
leave the organization scope [6] in Appendix D. The private processes can be exe-
cutable and non-executable. Each executable process has enough details to be ex-
ecuted. Non-executable process does not have enough details and serves for the
workflow description at the modeler defined level. An example of a private busi-
ness process is in Figure 2.2. Private processes are used for the workflow approval
definitions in this thesis.

Figure 2.2. Example of a private Business Process (undertook from reference 6 in Ap-
pendix D).public processes

Public processes are used to represent the interaction between some private process
and the participant [6] in Appendix D. In the public process, the internal behavior
of it is not shown. Only the points of interaction are shown with the help of Message
Flows. An example of a public business process is shown in Figure 2.3.

Figure 2.3. Example of a public business process (undertook from reference 6 in Appendix
D)

2.6 BPMN 2.0 core structure
The BPMN specification is structured by layers, where each layer is inherited by some
other layers. This kind of structure allows easily redefinition and extending of layers by
creating new successors of them. Thereby, the backwards compatibility is not modified.
The core of BPMN includes three sub packages: the foundation package, the service

6

. 2.6 BPMN 2.0 core structure

package and the common package [6] in Appendix D. The class diagram in Figure 2.4
shows the core packages

Figure 2.4. Class diagram showing the core packages (undertook from reference 6 in Ap-
pendix D)

2.6.1 Infrastructure package
The infrastructure package contains two elements, which serve for the diagram modeling
and abstract syntax modeling [6] in Appendix D..Definitions is the element, which contains all other elements in the diagram. It

defines the namespaces and the the scope of visibility for all the elements contained.. Import element is used to reference an external BPMN element from another Defi-
nitions element or non-BPMN element.

2.6.2 Foundation package
The foundation package contains classes, which are shared by all the members of the
abstract syntax model’s core [6] in Appendix D..BaseElement is extended by almost all BPMN elements. It contains id and docu-

mentation attributes, which all the elements inherit.. Import element is used to reference an external BPMN element from another Defi-
nitions element or non-BPMN element..Documentation is used to add one or more text descriptions to all BPMN elements..Extensions allow to extend the BPMN diagram with other elements and leave it
still BPMN compliant. This set of elements allows adding custom attributes to the
existing elements and the result elements will still be understood by BPMN adopters..ExternalRelationships are intended to enable BPMN artifacts to be integrated into
more complex structures..RootElement is the abstract superclass of all BPMN elements, which are placed
within Definitions. It has the own defined lifecycle and it is not deleted when the
elements inside are deleted.

7

2. Background .
2.6.3 Common package

The common package represents the standard BPMN diagram elements, which can
be used in more than one type of diagrams (for instance Collaboration, Process or
Choreography) [6] in Appendix D. Following ones are used in this thesis..FlowElement is an abstract superclass for all elements that can appear in a Process

flow..Event element is used to represent a real event, that happens during the flow of
process or Choreography. The Event normally has a cause and the result of it.
Thereby, the Event might be of different types, such as for example Start Event, End
Event, Intermediate Event and others..Extensions allow to extend the BPMN diagram with other elements and leave it
still BPMN compliant. This set of elements allows adding custom attributes to the
existing elements and the result elements will still be understood by BPMN adopters..SequenceFlow is used to show the order of Flow Elements in the Process or a Chore-
ography. Each Sequence Flow has only one source and target..Gateway is used for the representation of the convergence and divergence during the
process flow. It might have one input and multiple output Sequence Flows.

2.6.4 Service package
The service package contains the important interfaces and operations needed for mod-
eling services and interfaces [6] in Appendix D.

2.7 XML to POJO converting with JAXB
In many applications an XML document serves as an external representation of some-
thing, therefore it needs to have some internal form to be used in lower layers of an
application. One of the most popular tools is Java Architecture for XML Binding
(JAXB). JAXB is a tool, which provides a fast and convenient way to bind XML
schemas and Java representations, making it easy for Java developers to incorporate
XML data and processing functions in Java applications [13] in Appendix D.Binding
a schema means generating a set of Java classes that represents the schema [14] in
Appendix D. All JAXB implementations provide a tool called a binding compiler to
bind a schema. So, the XML elements are mapped into java POJO objects.

2.8 Used technologies

2.8.1 Node Package Manager(NPM)
NPM is a technology, which allows easy sharing of the js code among developers. It
works the way, that each time, when the foreign code is getting updated, the NPM
allows easily downloading of a new version of that code, so a developer does not need
to make changes himself. The bits of reusable code are called packages or modules.
Each package also contains a file called package.json, which is used for the package
management. Basically, it serves for the documentation of the packages the project
depends on and for the version control.

8

. 2.8 Used technologies

2.8.2 Node.js
Node.js is a server-side solution for js. It is intended to run on the HTTP server and
is event-based and asynchronous. It is made on the base of Google V8, which is the
js engine, that compiles js into the machine code. The core functionality of Node.js is
written in js. Normally, js can only run in browser, but Node.js provides an environment
for js running, it can access the local files, listen to the network traffic, accept HTTP
requests the machine gets, send responses and access the databases directly.

2.8.3 Grunt
Grunt is a js Task Runner for Node.js projects. It is the tool used to automatically
perform frequently used tasks such as minification, compilation, unit testing and others.
It uses a command-line interface to run custom tasks defined in its configuration file
(known as a Gruntfile).

9

Chapter 3
Related work

The problem of role management, in the terms of role approval definition is quite an
untouched topic in software. Until now, there were no special tools for the definition
of role approval processes. However, there is a huge amount of tools for the definition
of business processes in general. The BPMN-js library has been used for the applica-
tion, described in this thesis. The library is still in progress, but it contains all the
functionality needed to provide import, export and modifying of BPMN 2.0 diagrams.
Moreover, it already contains enough features to prove, that it is one of the best BPMN
modeling tools for embedding diagrams into the application logics. The library can be
easily customized and extended according to the purposes of the target application.
The BPMN-js toolkit does not have most of the disadvantages, which other modelers
have. But on the other hand, the biggest part of the other modelers have quite wider
functionality and they are not restricted only by process modeling and export/import.
Some of them have an Application Programming Interface (API) for executing and
testing the result diagrams.

3.0.1 TIBCO Business Studio
TIBCO Business Studio is a standard based business process modeling environment,
which enables business experts and process authors to collaborate for creating process
models, organization models and data models [7] in Appendix D. It is also an eclipse-
based free business modeling tool that lets you model and simulate business processes.
One of the major characteristics of TIBCO is that it provides single environment for
process modeling, testing, simulation and deployment. One of the main disadvantage of
this tool is that it is not easy to use. It also has no graphical export for BPMN-diagram.

3.0.2 Aris Express
Aris Express is one more modeling tool for business process analysis and management.
It is not open source and has not open license, but it is free to use. Among the
advantages of Aria Express is the idea of using model fragments: the pieces of diagram
or collection of objects, which can be considered as new units of the diagram, which
helps to avoid creating the same parts of the diagram. The Aris Express is written in
Java and the disadvantage of it is that it requires Java Web Start every time to get
started. The Java Web Start software allows to download and run Java applications
from the web [9] in Appendix D. Moreover, it does not matter if it has already been
installed, the internet access with the community account is needed. It also sometimes
gets slow while using.

3.0.3 Yaoqiang BPMN Editor
Yaoqiang BPMN editor is one more open source graphical editor for business process
diagrams, compliant with BPMN 2.0 specification. Yaoqiang BPMN Editor is a very
small application written in Java. It requires no installation and makes it easy to view
and modify BPMN processes. Among the main advantages of Yaoqiang BPMN Editor

10

. .
is the existence of LDAP browser and executable BPMN simulation in its later versions.
It can also deploy directly to the existing BPMN 2.0 Engine. It has small disadvantages,
such as the restriction of the amount of processes by the page size. Also the connections
and lines from one symbol to another are not controlled.

3.0.4 Bizagi
Bizagi BPMN Modeler is a freeware application to graphically diagram, document
and simulate processes in BPMN format. With the Bizagi Modeler, processes can be
published to Word, Portable Document Format(PDF), Wiki, Web or SharePoint, or
exported to Visio, image formats, such as Portable Network Graphics (png), bpmn,
Scalable Vector Graphics(svg) or Joint Photographic Experts Group(jpg), and XML
Process Definition Language(XPDL), to be shared and communicated across the orga-
nization. It also has Bizagi Studio, which serves for business process automation and
Bizagi Engine, which takes the previously modeled and automated processes and exe-
cutes them across the organization. The installation is quite easy as well as the usage.
It contains some small graphical disadvantages, such as, for example, the availability of
connections and associations only at the left or right side of the elements.

There are much more different BPMN tools. For the need of the current application,
the main feature of a modeling tool is the ability to easily customize and extend it as
much as possible for the application purposes. It is also supposed to be easy to use,
install and embed into the application logics. BPMN - js library perfectly satisfies all
these points.

11

Chapter 4
Analysis and design of the application

4.1 BPMN-js overview
BPMN-js was created for working with BPMN 2.0 standard. It can be used with any
modern browser, which allows easily embedding BPMN 2.0 into the web application.
BPMN-js can be used as a viewer and as a modeler. In the first case, it is used to
embed and display the BPMN 2.0 diagrams in browser. In the second case, it serves
for creating the own BPMN 2.0 diagrams and extending them. The library is built on
the base of two main components: diagram-js and bpmn-moddle [10] in Appendix D.

Figure 4.1. bpmn-js architecture: parts and responsibilities (undertook from reference 10
in Appendix D)

For the purposes of the current application, the number of changes and extensions
to the diagram-js components have been carried out.

4.1.1 Diagram-js core classes overview
The Diagram.js library is responsible for the creating, displaying and modifying BPMN
2.0 diagrams. It provides users with the interface for interaction with shapes and

12

. 4.1 BPMN-js overview

connections, handles user’s actions like move, hover, select, add, remove. It offers the
module system, which can easily be extended. It also contains own implementation of
dependency injection, so each component can be accessed by the unique name it was
given in the start of the program. The Diagram.js contains a huge system of modules.
The core of this system consists of five main modules..Canvas provides the interface for adding and removing elements. In fact, it is re-

sponsible for the whole image of a diagram. When the application starts running,
the Canvas creates an svg element which is wrapped into div - container, where the
diagram is placed. It also provides a log of services for working with the diagram
and its elements, such as, for example, modifying the diagram’s viewport, which is
the visible part of the main svg element, adding and removing elements..EventBus serves as a communication channel across the diagram instance between
the actions, performed by a user or the individual components and answers to those
actions by other application logics. It was created to decouple the concerns and it
provides a very easy way to custom the existing application behavior by overloading
existing event listeners. The Event Bus interface contains such methods as Event-
Bus.on() and EventBus.once() to register new listeners. The EventBus.off() method
is used to remove the registration. All these methods receive an event object as the
first parameter, which allows them to hook into the event execution. The priority
of listeners is configured by the value of an optional parameter called priority. It is
used for the listeners customization, so on the purpose to overload an existing event
listener, it is only needed to set the registration priority higher that the default one.
The events can also be emitted by the method EventBus.fire(), which fires a named
event..ElementFactory serves for the creating of shape and connection according to the
Diagram.js internal data model. The data model says, that each shape has a parent,
a list of children, incoming and outgoing connections. Each connection has a parent,
a source and a target, which is pointing to the concrete shape. ElementFactory model
contains the reference to the Model class, which follows the data model to create an
element. In fact, the only work of ElementFactory is to handle the element type
name, create the element’s id (in case it does not exists) and the attributes, then
transfer them to the Model. The Model defines all the element’s components needed
such as, for example, parent and children, so the result object contains the initial
attributes received and the components according to the data model. The model
contains the defined structures for each element type, so it only applies the received
attributes to those structures. When the result element is created, it directly goes
to the Graphics factory to be rendered in Canvas..ElementRegistry contains the information about all the elements added to the dia-
gram and provides a user with the interface to access the elements by id. In fact, it
represents a collection with the possibilities to add, remove, update, get elements by
id and get the complete information about them..GraphicsFactory is responsible for the rendering shapes and connections into the
canvas. However, the real rendering is performed by the Renderer module. The
actual main work of Graphics Factory is that it creates the graphical background for
elements, such as graphical containers and notifies the Renderer module about the
updates, which need to be expressed in canvas. It uses the EventBus to fire the event
about the updates. The module is also used for other purposes like accessing any
kind of graphics in the diagram (for instance, getting element’s children) or removing
elements.

13

4. Analysis and design of the application .
4.1.2 Dependency injection in Diagram-js

Dependency injection (DI) is the process of supplying a resource that a given piece of
code requires [11] in Appendix D. The required resource, which is often a component
of the application itself, is called a dependency. The Diagram-js library uses the Injec-
tor.js module, which is responsible for the dependency injection in the application. It
provides an access to each of the application components/modules, which are needed
to be instantiated once during the application lifetime. When the application starts
running, the Injector is instantiated and its constructor gets a set of objects as a pa-
rameter. Each object represents a value, which is used later, or a real component with
its own functionality. The Injector has two main fields: a set of instances and a set of
its providers. Provider creates an instance of a class, passing all the attributes needed.
During the Injector’s initialization the set providers gets filled with special representa-
tions of each module/value. Each provider contains the information, saying how the
object has to be used: if its a module - call the constructor, if it is just a value - return
it. Each of the result instance has a unique name and then can be accessed by the get
method.

4.1.3 Other customized components

.ContextPad and ContextPadProvider are responsible for the pad with available
tools and actions, which belongs to each element in the diagram. It appears after
clicking on the element and offers different kinds of actions to perform on the current
element. It might be a connection to another element, creating a new element after
the current one and others. The ContextPad module represents the pad itself. The
ContextPadProvider module fills the ContextPad with concrete actions and defines
its behavior..Draw module is responsible for the look and feel of BPMN elements: for each element
type it has defined parameters for drawing. The module also contains all the basic
methods for drawing, which use the defined parameters. The Draw module contains
two classes: BpmnRenderer, which actually contains all the module functionality and
PathMap, which contains the geometrical information about the elements’ paths.
Then this information is used in BpmnRenderer while defining the elements’ look..Palette and PaletteProvider modules are responsible for the bar of available BPMN
elements and tools. The elements from the bar can then be added to the diagram.
The tools are used to modify and work with the diagram. The element bar is placed
in the left side of the window. The Palette module represents the bar of elements
itself and defines its behavior. The Palette provider manages the content of the bar.. the separate library diagram-js-direct-editing is responsible for the text description
of the diagram elements. It deals with the look and behavior of the input field for
text description on each element. The input field appears after double click on the
element and saves new or modified description after clicking outside it. The library
contains two classes: DirectEditing class is responsible for the behavior of the element
editing and the TextBox represents the input field itself.

4.1.4 Custom rules
The modeler follows specific custom rules, created on the purposes of the target applica-
tion. The following elements are needed for the workflow approval process: StartEvent,
EndEvent, Task, ExclusiveGateway and Timer. Some of them contain substantial in-
formation about the workflow, which is then saved to the database. This information

14

. 4.2 Class diagrams of the Modeler part

is placed in these elements’ description, so the description is an obligatory parameter
them. The description is restricted into the set of values received from the server.
The content of this set depends on the application context and dynamically changes.
Among these elements are Task, End event and Timer. Task contains all the informa-
tion about the request sent: type of it, action and responder. The End event represents
the result of a workflow, thereby it contains “yes” or “no” values. The Timer element
represents the waiting period and its value indicates the amount of time for waiting.
Other elements play a visualization role and contain no information: they help a user
to comprehend or create the diagram in a right way and the server to interpret it. Ex-
clusiveGateway is used to evaluate the state of a business process and breaks the flow
into mutually exclusive paths. StartEvent indicates the start of a workflow. The order
of diagram elements is also defined in the custom rules.

4.2 Class diagrams of the Modeler part
A class diagram represents the project architecture by the visualization of classes and
their relations. The following class diagrams describe the front end of the application,
namely, the BPMN-js customizations. Each diagram package represents a separate
module. In the diagram, the packages contain only modified units, so most of them
contain more classes, than the following diagram represents. Also, most of the classes in
the diagram contain instances of different library utilities, which are not represented in
the diagram due to their insignificance in the current topic. All the classes, which relate
to the modules’ customization, are placed in the custom-modeler package. The actual
customizations are places in the package custom-modeler.custom, while the package
custom-modeler contains the main class, which binds the customizations to the appli-
cation routine.

4.2.1 DirectEditing module customization diagram
The CustomElementEditor class inherits the library class DirectEditing. It modifies the
editor behavior and substitutes the text box for editing by a select box. The SelectBox
class represents a simple select box with some additional behavior.

15

4. Analysis and design of the application .

Figure 4.2. DirectEditing customization

4.2.2 Palette and ContextPad modules customization diagram
The classes CustomContextPadProvider and CustomPaletteProvider inherit the library
classes ContextPadProvider and PaletteProvider respectively. They include some over-
ridden methods and attributes from the parent classes. The CustomContextPad-
Provider extracts the number of elements and tools contained in the pad and mod-
ifies some of them. The CustomPaletteProvider extracts and modifies the number of
elements in the standard palette bar.

16

. 4.2 Class diagrams of the Modeler part

Figure 4.3. Palette and ContextPad customization

4.2.3 The whole customization package diagram
The following diagram represents the whole customization package. The package cus-
tom contains all new custom modules. The package custom-modeler contains the class
CustomModeler which inherits the default modeler and uses the new modules instead
of the default ones.

17

4. Analysis and design of the application .

Figure 4.4. Customization package diagram

18

. 4.2 Class diagrams of the Modeler part

4.2.4 BpmnRenderer customization diagram
CustomBpmnRenderer class inherits the library class BpmnRenderer, which serves for
changing the look of some library elements. The custom class modifies the rules for the
elements’ rendering, which are placed in the constructor of BpmnRenderer.

Figure 4.5. BpmnRenderer customization

19

4. Analysis and design of the application .
4.3 Sequence diagram

Sequence diagram is used primarily to show the interactions between the objects in
the sequential order that those interactions occur. The processes of sending BPMN
diagram to the server, its validation and sending response to a client are represented
by the following sequence diagrams. Unsuccessful validation by java functions is shown
in the first diagram. Unsuccessful validation by XML schema is shown in the second
diagram. The third diagram represents successful validation by both XSD and java.
The diagrams represent only the substantial methods, participating in the process.

4.3.1 Unsuccessful validation by java functions
The validation by java functions can fail in two places. As it is shown in the diagram,
the first fail can happen during the tree generating. The second fail can happen during
validation.

20

. 4.3 Sequence diagram

Figure 4.6. Unsuccessful java validation

21

4. Analysis and design of the application .

4.3.2 Unsuccessful validation by XSD

The validation by XML schema fails in case SAX exception is thrown.

Figure 4.7. Unsuccessful XSD validation

4.3.3 Successful validation by XSD and java functions

In this case, the validation is successful and no exceptions are thrown.

22

. 4.3 Sequence diagram

Figure 4.8. Successful validation

The following elements take part in the diagram:.objects
Objects are used to represent the classes, which are used in the process, described
in the diagram. Among the diagram objects are: BpmnController, IBpmnModelSer-
vice, RulesDiagramValidation, XSDDiagramValidation, ValidationResponseDto, Val-
idationException, DiagramTreeGenerator, DiagramParser. The sequence diagram
represents their interaction and the results of it. Each object has the own lifeline,
which represents the period of time that the object exists in the application..actor
The actor is a user, who initiates the process, which is described in the diagram. In
the case of current process, he creates the BPMN diagram and sends it to the server
in the form of XML..arrows
The arrows represent the messages sent between the objects. Communication is
started when the user sends the diagram to the server. It is actually sent to the
controller’s method processModel. Following messages take place in the diagram:.BpmnController:: processModel - handles diagram from client and transfers it to

the IBpmnModelService. IBpmnModelService:: processDiagram - handles a diagram from the controller and
delegates it to the particular validators for validation.RulesDiagramValidator:: validate - validates the semantics of a diagram against
java functions.DiagramParser:: parse - parses a diagram into java POJO objects and retrieves
the objects, which are responsible for the diagram logics. Returns the collection
of these objects

23

4. Analysis and design of the application .
.DiagramTreeGenerator:: generate - generates a tree from the collection of POJO

objects, which represents the diagram, and returns the root of the tree.RulesDiagramValidator:: doValidate - does the diagram validation using the col-
lection of POJO objects and tree representation of the diagram.XSDDiagramValidation:: validate - validates the semantics of the diagram agains
XML schema.XSDDiagramValidation:: interpretExceptionDescription - interprets the SAX ex-
ception thrown during the XSD validation.new:: ValidationException(message) creates the object of ValidationException
class.new:: ResponseDto(status, message) creates the Data Transfer Objects for the
notification, that the diagram passed validation.DiagramTreeGenerator:: generateDiagramInternalRepresentation() - saves the
particular parts of the diagram to the database.break

The break block is used for the representation of the exception handling. In the
current application it represents the program flow when a diagram does not pass
the validation. In this case, the ValidationException is thrown in some validator,
according to the place where the validation error happened. Then it is delegated
through service to the controller, where the exception is caught.

4.4 Use case diagram
The use case diagram represents the relation between a user and an application. The
diagram shows the main functions, that can be used.

24

. 4.4 Use case diagram

Figure 4.9. Use case

25

Chapter 5
Implementation

5.1 The project structure
The application is of client-server type, thereby it has the separate implementations for
the client and server sides.

5.1.1 Server side packages
The server side of application is located in the directory java. Spring framework is used
for its implementation. Building of the application is performed by Apache Maven.
The file structure of the server-side is shown in Figure 5.1.1.

Figure 5.1. Server side package structure

It contains the following packages:.config package contains the configuration of persistence layer. It contains the class,
where the data source, entity manager and transaction manager are defined..controller package contains the controllers of the application. Controllers are respon-
sible for incoming requests. Usually they invoke business logics, update the model
if needed and return the view. When a new request comes, the dispatcher servlet
handles it to a particular controller, according to the URL mapping configuration..dto (data transfer object) package contains the data transfer objects, which are used
for data transferring between the parts of application, mainly between the client and
server sides.exception package contains the ValidationException class, which is an extension of
the RuntimeException class. The exception is thrown if the diagram does not pass
the validation against custom rules..helper package contains classes, which are responsible for the particular functionali-
ties of the application, for example the diagram parsing services..model package contains definitions of business objects, which are mapped to the
database entities.

26

. 5.2 BPMN-js customizations

. service package contains the service, where the main application logics is located.
Services are used for the data handling from controllers and processing it. In the case
of current application, the service class uses the validators to process the diagram
and then saved it the database..validation package contains the validators for the BPMN diagrams.. resources package contains the XML schemas of the BPMN specification and the
resource bundle message source.

5.1.2 Client side packages

Figure 5.2. Client side package structure

The client side of the application is placed in the view directory:.app package contains the main page and script of the application, all the custom
classes and styles.. resources package contains the default diagram, which is displayed in the BPMN
editor after the application is launched..Gruntifile.js is used for the definition and configuration of tasks and loading the
Grunt plugins..Package.json is the configuration file for NPM.

5.2 BPMN-js customizations
The client side of the application is implemented with the help of BPMN-js library.
The implementation includes the customization of some library modules.

5.2.1 Adding custom modules
When the main script of the application starts running, the instance of CustomModeler
is created. The CustomModeler class inherits the default Modeler class of BPMN-js
library. Modeler contains a set of references to the default library modules. Thereby, it
decides, which of the modules are used in the application. CustomModeler expands its
parent with the custom modules. RequireJS is used for the module loading. RequireJS
is a js file and module loader. It is optimized for in-browser use, but it can be used in
other js environments, like for example Node [15] in Appendix D.

CustomModeler.prototype._modules = [].concat(
CustomModeler.prototype._modules,
[
require(’./custom’)
]

);

Listing 1: The extension of the default modules collection in the CustomModeler

27

5. Implementation .
Each module contains the field name, which is used to access the reference to the

instance of this module during the application lifetime. The name of each custom
module is identical to the name of the default module, which it inherits. An example
of a custom module export is in Listing 2

module.exports = {
paletteProvider: [’type’, require(’./CustomPaletteProvider’)]
};

Listing 2: Exporting of the custom modules with corresponding names

While initializing, the Injector module receives the collection of modules, which con-
sists of the default ones and the custom ones. The Injector creates a map of the modules’
instances, where keys are the module’s names and values are instances. Custom mod-
ules are in the end of the module list, because they are added the last, so the Injector
put them to the map after all default ones. The key set of result map cannot contain
duplicates, thereby when the Injector accesses the custom module to put it to the map,
it does not create a new key-value pair - the value of already created key-value pair
gets overridden by the custom one. As a result, map with custom values is generated
and used during the application lifetime.

5.2.2 DirectEditing module customization
The CustomElementEditor module is created to override the DirectEditing module. It
inherits the DirectEditing and changes some points of its implementation. Unlike the
default module, the custom one uses select box for the element description and forbids
the description on some kinds of elements. Moreover, due to the usage of select box it
is possible to restrict the values, which can be passed to the element description. The
element description consists of three select boxes. The first one serves for the choosing
the type of a task: it might be, for instance, notification or request. The second one is
responsible for the action type. The third one is responsible for the responder type. In
the target application, the values for select boxes are generated dynamically, depending
on the application context. In the current application, the values are hardcoded in a
static JSON document.

Figure 5.3. Element editing customization

The SelectBox instance is passed to the constructor of CustomElementEditor instead
of the text box, as it is done in the library module. On the purpose to forbid the
description of some elements, the method responsible for the description activation is
overridden and the restrictions are added.

28

. 5.2 BPMN-js customizations

5.2.3 BpmnRenderer customization
BpmnRenderer module is customized on the purpose to create a separate Timer ele-
ment. In the primary modeler version, the Timer element could be created only as
an extension on an IntermediateCatchEvent. So in the custom version, Intermediate-
CatchEvent is created with the type of Timer by default. The IntermediateCatchEvent
types are shown in Figure 5.4

Figure 5.4. IntermediateCatchEvent types

After the customization, the new element Timer is accessible from palette and context
pad as any other element. BpmnRenderer module contains the rules, which define the
way each element type looks like. Each element of the BpmnRenderer’s field handlers
represents a function, which draws a particular object according to the rules. Before the
actual rendering, the particular type rules are chosen and passed to the module, which
is responsible for the graphics rendering. The rules for the IntermediateCatchEvent
element are configured in such a way, that Timer type is assigned to it by default while
initialising in the CustomBpmnRenderer module. The definition uses rules from the
BpmnRenderer module.

handlers[’bpmn:IntermediateCatchEvent’] = function(p, element){
var outer= handlers[’bpmn:Event’](p, element, {strokeWidth:1});
handlers[’bpmn:TimerEventDefinition’](p, element);

};

Listing 3: Redefinition of the IntermediateCatchEvent’s look

Handlers[’bpmn: Event’] definition represents a circle, which every Event-type ele-
ment has. Handlers[’bpmn: TimerEventDefinition’] definition represents a small clock
figure. The result is of the customization is in Figure in Figure 5.5.

Figure 5.5. IntermediateCatchEvent transformation

5.2.4 ContextPadProvider customization
The customization of ContextPadProvider module is done on the purpose to change the
content of the context pad for particular elements. Initially all the context pad of all

29

5. Implementation .
elements had the same content. The customizations of the ContextPadProvider module
are placed in the module CustomContextPadProvider, which inherits the default one.
Some elements are forbidden to activate the context pad or their content is restricted.
The result of ContextPad customization is shown in Figure 5.6.

Figure 5.6. ContextPad transformation

The method getContextPadEntries() is overridden in the custom module. The re-
strictions for the element type are added and the set of elements in the context pad is
modified.

5.2.5 PaletteProvider customization
The content of the default library palette is modified in the CustomPaletteProvider
module, which inherits the default one. The method getPaletteEntries() is overridden
and the content of the palette is changed the way it is shown in Figure 5.7.

Figure 5.7. Palette transformation

30

. 5.3 Server side implementation

5.3 Server side implementation

5.3.1 Configuration
The application is made in Spring Model View Controller (MVC) framework. The
Spring MVC applications are designed around the Dispatcher Servlet, which handles
all the requests coming to the server and passes them to the particular controllers, de-
pending on the URL requested [16] in Appendix D. The configuration of the Dispatcher
Servlet is placed in the web.xml file.

Spring-servlet.xml contains different spring-mvc configurations and configuration
beans. However, there is no special need to create any configuration beans, because
Spring MVC maintains a list of default beans to use. The following beans have been
configured on the purposes of the current application.. InternalResourceViewResolver bean serves for the resolving of string-based view

names to View types. Thereby, the prefix and suffix are added to the view name.
Since the current application needs to resolve only one simple index.html view, the
suffix is set to html.ResourceBundleMessageSource bean serves for the accessing to the resource bundles
using specified base names.

Application-context.xml defines the spring container. The components of the con-
tainer can be defined via xml configuration or annotations. Pom.xml is the configuration
file of Maven. It is an XML file which contains information about the project and con-
figuration details used by Maven to build the project. The result of the Maven build
is generated to the target folder by default. In the current project, it performs a few
additional goals during the build of the whole application. Among those goals are:. installing Node.js and NPM locally in the project.downloading BPMN library sources into the Target directory by NPM.building the front end of the application into the Target directory.generating JAXB classes from the specified XML schemas into the Target directory

All the application’s outputs are shown in Figure 5.8:

Figure 5.8. Target directory

The result of maven build is located in the target directory:

31

5. Implementation .
.classes package contains compiled java classes.cz.cvut.fel.mapping package contains the classes generated by JAXB.META-INF package contains the only one file sun-jaxb.episode. This is a binding

file generated by XJC compiler, which associates schema types with existing classes..view package contains the client side files. Among them is node modules folder,
which contains the BPMN-js library sources; dist folder is the output of the Grunt
build; node is the locally installed Node.js.

5.3.2 Processing request
The modeled diagram is sent from the client side by Asynchronous JavaScript and XML
(AJAX) and the request is mapped onto the processing method, which is declared in
the BpmnController.

@RequestMapping(value = "/validate", method = "RequestMethod.POST")
@ResponseBody
public ValidationResponseDto processModel(@RequestBody String diagramXml)

Listing 4: Head of the function, which handles the request with the diagram

The BpmnController class transfers the diagram to BpmnModelService class, where
the particular validation services are invoked for the diagram validation.

5.3.3 XSD validation
XML schema is used to define the rules for XML document. It defines the values for
the elements and attributes, their order, types and the number of children of particular
elements. It is a very convenient way to define the desirable look and feel of the BPMN
diagram. The BPMN specification has its own XML schema, which can be customized
and extended. In the current application the XML schema is changed according to the
specific custom rules. Custom XSD files are created, where new rules are defined. The
files are placed in the resources/schema folder, the content of it is shown in Figure 5.9.

Figure 5.9. Schema directory content

Semantic rules of the diagram are placed in the Semantic.xsd file, thereby the default
modeling rules are taken from this file for customization. Custom rules are placed in
CustomSemantics.xsd. The XMLDiagramValidator class is responsible for the XSD
validation in the current application. It uses the package javax.xml.validation, which
provides an API for the validation against XML schema. The Validator class performs
the validation. The path to custom XSD file is used for creating Validator instance,
so the diagram is validated according to the custom rules instead of the default ones.
In case the validation fails, the Simple API for XML (SAX) Exception is thrown and
then interpreted by the interpretExceptionDescription() method, so the comprehensible
answer is returned to the client.

32

. 5.3 Server side implementation

5.3.4 Validation by Java functions
The RulesDiagramValidator class is responsible for the validation against Java func-
tions. The validation process includes three steps:.parsing XML diagram into POJO objects

As it was mentioned before, the JAXB is used for the schema binding in the cur-
rent application. The custom XML schema is used for binding, so the POJOs are
generated according to the custom rules. The project is configured in the way, that
each time when it builds, the binding compiler is launched and the classes are gen-
erated according to the XML schema. XML to Java Compiler(XJC) is a tool which
performs the actual schema binding, so it accepts an xml schema and generates java
classes. The DiagramParser class is responsible for the diagram parsing. When the
classes are generated, the DiagramParser’s method getDefinitions uses the JAXB
unmarshaller to read and translate the diagram into a collection of TFlowElement
objects, corresponding to the XML elements in the diagram..generating the tree from diagram
The TreeGenerator class is responsible for the tree generating from the diagram. It
uses the collection of TFlowElements, which is created by the DiagramParser class.
Basically it iterates the collection and creates the instances of the Node and Tran-
sition classes for each element and sequence. Since the diagram can be represented
in a form of tree, each element can have a predecessor and a collection of successors.
An instance of the Node class represents an element in the diagram. Structure of
this class is shown in the Listing 5

public class Node{
private TFlowElement value;
private Transition incoming;
private Node parent;
private String name;
private List<Node>successors;

Listing 5: Node object structure

An instance of the Transition class represents the diagram’s connection between
two elements. Structure of the Transition class is shown in the Listing 6

public class Transition{
private TSequenceFlow value;
private Node destination;
private Node source;

Listing 6: Transition object structure

Basically, the Transition and Node classes wrap the initial diagram elements,
parsed from XML, with the references to successors and predecessors, so the tree
is generated.. the diagram tree validation
As soon as the diagram tree is generated, the validation is performed by doValidate
method. This method validates the order of elements, the amount of particular
elements in the diagram and presence or absence of elements’ descriptions. There is
a special function, which is used for each of the validation aspects. An example of

33

5. Implementation .
elements’ order validation is shown in the Listing 7. This piece of code assures, that
the ExclusiveGateway and EndEvent can not be located after the ExclusiveGateway
element.

if(isSuccessor(root, EXCLUSIVE_GATEWAY, EXCLUSIVE_GATEWAY)||
isSuccessor(root, EXCLUSIVE_GATEWAY, END_EVENT))

String message=bundle.getMessage(’error.diagram.wrong-order’);
throw new ValidationException(message);

Listing 7: Elements’ order validation

Successful validation means that no exception has been thrown during it. In this
case, the diagram is saved to the database and the positive response in JSON format
is sent to client.

5.3.5 Saving diagram to the database
The elements of diagram can be divided into two types: the elements with significant
information about the workflow and the elements which serve only for the graphical rep-
resentation. Thereby, the information about the workflow must be extracted from the
diagram to be saved to the database. TaskEvent, EndEvent and Timer are considered
as significant parts of diagram. Figure 5.10 represents the diagram before converting,
while Figure 5.11 demonstrates the result of converting.

Figure 5.10. Diagram before converting

Figure 5.11. Diagram after converting

Basically, Figure 17 shows the form in which diagram is saved to the database.
ExclusiveGateway and StartEvent elements are not internally represented, because they
serve only for visualization. Rest of the elements is converted into business objects

34

. 5.3 Server side implementation

(BO). Each business object is mapped to the particular entity in the database and its
attributes are mapped to the particular columns. There are three types of business
objects in the application:.Workflow

Workflow BO serves to identify diagram. It contains only ID field and serves for the
grouping elements, which belong to the same diagram..Element
Element BO is the internal representation of the diagram element. It contains infor-
mation about the element’s value (text description), workflow identification and the
type of element, which can be EndEvent, TaskEvent or Timer..Transition
Transition BO represents the connection between two elements. It contains the in-
formation about its source and destination, response and responder of the request.
The responder of request is defined according to the context, where it is located in
the diagram. It can be of three types:.Person responder

If transition has exclusive gateway on its way, then the responder is a person. In
this case, the result of request is defined according to the answer of a particular
role representer. In target application the request is sent directly to the person
who accepts or declines through some interface..Timer responder
The responder is Timer when the transition contains it on its way. It defines
the amount of time of waiting. If the time runs out, the answer is automatically
positive..System responder
The responder is system in the rest of cases and the answer from it is always
positive.

35

Chapter 6
Evaluation

The purpose of the evaluation is to check the correct behavior of the client-server
communication in the application. It means, that the validation of the diagram which
is sent from the client side is done in a right way and all the possible mistakes are
treated correctly. For the purposes of this thesis, both modules are combined into a
separate application, so no lower layers are needed for testing.

6.1 Error handling
There are two kinds of response types, that can be sent from from the server. The
first one describes the successful result of the diagram validation. It means, that the
diagram follows all the default and custom syntax rules. A correct diagram and the
server response is shown in the Figure 6.1.

Figure 6.1. Correct diagram

According to the custom rules, the diagram elements are supposed to be in this
strictly defined order and the particular elements have descriptions. In this case, the
server response in JSON format looks like in the Figure 6.2:

Figure 6.2. Server response: success

36

. 6.1 Error handling

6.1.1 Error example: element misses description
Each element in the workflow has its significant role and most of them need to have
description. The description gives the fundamental information about the request. An
example of an element, which misses the description, is shown the Figure 6.3.

Figure 6.3. Not fully described diagram

In this case, the Timer element misses the description, where the amount of time for
waiting has to be defined. The actual server response in shown in the Figure 6.4.

Figure 6.4. Server response: missing description

6.1.2 Error example: diagram contains isolated elements
According to the custom rules, a diagram can represent only one workflow process.
Thereby, the diagram can not contain isolated elements, like it is shown in the Figure
6.5.

Figure 6.5. Diagram contains isolated elements

Server response:

Figure 6.6. Server response: isolated elements

37

6. Evaluation .
6.1.3 Error example: diagram is not complete

Each diagram is obligated to have some elements, such as, for example, start and end
events. The Figure 6.7 shows an example of diagram, which is not complete.

Figure 6.7. Diagram is not complete

Server response:

Figure 6.8. Server response: incomplete diagram

6.1.4 Error example: wrong order of elements in the diagram
The wrong order of elements is treated by both: XSD validation and Java functions
validation. In some cases, it is possible to concretize the exact place of the missing
element and in other cases, the general notification is thrown.

Figure 6.9 represents the diagram with the wrong order of elements.

Figure 6.9. Wrong order of elements

Server response:

Figure 6.10. Server response: wrong elements order

6.1.5 Error example: diagram contains loops
The diagram is not allowed to contain loops, like it is shown in the Figure 6.11

38

. 6.1 Error handling

Figure 6.11. Diagram contains loops

Server response:

Figure 6.12. Server response: diagram contains loops

39

Chapter 7
Installation

. import Maven project to IDE.deploy the application in Tomcat server. run the application.open in browser: http://localhost:port/bpmn-modeler/bpmn/create-diagram with
the corresponding port, where Tomcat is running.done

40

Chapter 8
Conclusion

The amount of huge companies increases fast and some of their internal management
issues can be solved with the help of management tools. The management tools, if they
are used appropriately, can be powerful enablers of change and actions in companies.
These tools make it possible for people to implement the processes and strategies they
desire. One of those management issues is the role approval processes, which is discussed
in this thesis. The theoretical part of this thesis is devoted to the investigation of
business process management and modeling, as well as the comparison of different
modeling techniques and tools. The investigation also included the attempts to find
out which tools are appropriate for the purposes of the target system and why BPMN-js
library is among them. Since the library is quite new and its development is still in
progress, the functionality and programming features of existing modules are explored.
The core modules and features of the library are described in the text. Practical part
implements the top part of the target application: the two upper layers of it. BPMN
modeler belongs to the client side of the target system, while the parser belongs to
the server side. On the purpose of this thesis, these two layers are combined into
a separate Spring MVC application. Thereby, the modules can work together as a
separate application and can be tested independently of the target system. The details
of implementation for both client and server sides are described in the Chapter 6. It
also includes the brief description of the Spring MVC application configuration. The
analysis and design of the application are described in the Chapter 5. Domain models
represent the architecture of the application’s client side and the way, in which the
library was customized. The tests of the application were performed according to the
different scenarios, which are described in the Chapter 7. They proved, that both
modules work according to the requirements of the target system. Thereby, only the
diagrams, which match the custom rules are accepted by the server and ready to be
handled by the next layer.

41

Appendix A
Specification

43

Appendix B
Symbols

BPMN Business Process Model and Notation
XML Extensible Markup Language
XSD XML Schema Definition
RAD Role Activity Diagrams

POJO Plain Old Java Object
JAXB Java Architecture for XML Binding
DFD Data Flow Diagram
DTO Data Transfer Object
DAO Data Access Object
NPM Node Package Manager

AJAX Asynchronous JavaScript and XML
HTTP Hypertext Transfer Protocol

XJC XML to Java Compiler
MVC Model-View-Controller

js Java Script
POM Project Object Model

BO business object
png Portable Network Graphics
svg Scalable Vector Graphics
jpg Joint Photographic Experts Group

XPDL XML Process Definition Language
PDF Portable Document Format

45

Appendix C
Code examples

Listing 1: The extension of the default modules collection in the CustomModeler
Listing 2: Exporting of the custom modules with corresponding names
Listing 3: Redefinition of the IntermediateCatchEvent’s look to Timer in the array

of elements’ definitions
Listing 4: Head of the function, which handles the request with the diagram
Listing 5: Node object structure
Listing 6: Transition object structure
Listing 7: Elements’ order validation

46

Appendix D
References

[1] R. KOSTER, Stefan.An evaluation method for Business Process Management
products. Enschede, Netherlands, 2009.
https://www.utwente.nl/ewi/trese/graduation_projects/2009/koster.pdf

[2] Executing a Business Model: BUSINESS Modeling LIFE CYCLE. M. BRIDGE-
LAND, DAVID a RON ZAHAVI. A Practical Guide to Realizing Business Value. 1.
San Francisco, CA, USA: Morgan Kaufmann, 2008, 346-347. ISBN 9780080920955.

[3] ALDIN, Laden a Sergio DE CESARE.A comparative analysis of business pro-
cess modeling techniques: role activity diagram (RAD) [online]. Oxford, UK: UKAIS,
2009, 9-10 [cit. 2017-01-03].
http://aisel.aisnet.org/ukais2009/2

[4] TANGKAWAROW, Irene a J WAWORUNTU.A Comparative of business pro-
cess modeling techniques: Activity Diagrams [online]. IOP Conference Series: Ma-
terials Science and Engineering, 2016 , 9-10 [cit. 2017-01-03]. DOI: 10.1088/1757-
899X/128/1/012010.
http: / / iopscience . iop . org / article / 10 . 1088 / 1757-899X / 128 / 1 / 012010 /
pdf

[5] Business Process Model and Notation (BPMN). In:Quizlet[online]. 2015 [cit. 2017-
01-03].
https://quizlet.com/91709565/learnsmart-chapter-22-flash-cards/

[6] ISO/IEC 19510: Business Process Model and Notation. 2.0.2. Geneva,
Switzerland: International Organization for Standardization (ISO), 2013, 570 s.
http://www.omg.org/spec/BPMN/ISO/19510/PDF/

[7] TIBCO Business Studio. In:TIBCO[online]. Palo Alto, CA, USA: TIBCO Software,
2014 [cit. 2017-01-03].
http: / / www . tibco . com / assets / blt21fbce784d794e28 / ds-business-studio .
pdf

[8] Comparison of BPM tools. In:Techajo News! [online]. 2014 [cit. 2017-01-
03].
http: / / www . techajo . com / comparison-bpm-tools-pegasystems-ibm-tibco /

[9] What is Java Web Start and how is it launched? ORACLE.Java[online].[cit. 2017-
01-03].

47

https://www.utwente.nl/ewi/trese/graduation_projects/2009/koster.pdf
http://aisel.aisnet.org/ukais2009/2
http://iopscience.iop.org/article/10.1088/1757-899X/128/1/012010/pdf
http://iopscience.iop.org/article/10.1088/1757-899X/128/1/012010/pdf
https://quizlet.com/91709565/learnsmart-chapter-22-flash-cards/
http://www.omg.org/spec/BPMN/ISO/19510/PDF/
http://www.tibco.com/assets/blt21fbce784d794e28/ds-business-studio.pdf
http://www.tibco.com/assets/blt21fbce784d794e28/ds-business-studio.pdf
http://www.techajo.com/comparison-bpm-tools-pegasystems-ibm-tibco/
http://www.techajo.com/comparison-bpm-tools-pegasystems-ibm-tibco/

D References .
https: / / www . java . com / en / download / faq / java_webstart . xml

[10] Bpmn-js: Getting familiar with bpmn-js, one step at a time. In:bpmn.io [online].
camunda Services, 2013 [cit. 2017-01-03].
https: / / bpmn . io / toolkit / bpmn-js / walkthrough /

[11] Dependency injection. In:SearchSOA[online]. TechTarget, ©2001-2017 [cit. 2017-
01-03].
http: / / searchsoa . techtarget . com / definition / dependency-injection

[12] BELL, Donald. The sequence diagram. In:IBM [online]. 2004 [cit. 2017-01-03].
http://www.ibm.com/developerworks/rational/library/3101.html

[13] Introduction to JAXB. In:ORACLE [online]. [cit. 2017-01-03].
https://docs.oracle.com/javase/tutorial/jaxb/intro/

[14] Java Architecture for XML Binding (JAXB). In:ORACLE [online]. [cit. 2017-01-
03].
http://www.oracle.com/technetwork/articles/javase/index-140168.html

[15]RequireJS: A JAVASCRIPT MODULE LOADER[online]. San Francisco: Andy
Chung, ©2011-2015 [cit. 2017-01-03].
http: / / requirejs . org /

[16] Web MVC framework. Spring.io [online]. [cit. 2017-01-05].
https://docs.spring.io/spring/docs/current/spring-framework-reference/
html/mvc.html

48

https://www.java.com/en/download/faq/java_webstart.xml
https://bpmn.io/toolkit/bpmn-js/walkthrough/
http://searchsoa.techtarget.com/definition/dependency-injection
http://www.ibm.com/developerworks/rational/library/3101.html
https://docs.oracle.com/javase/tutorial/jaxb/intro/
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://requirejs.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

Appendix E
Content of the practical part

The content of the practical part:.materials.zip contains the tex source files, figures and diagrams.The usage of BPMN library to define workflow.pdf is the text of the bachelor thesis.assignment.pdf is the assignment of the bachelor thesis.modeler.zip contains the implementation of the application

49

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Motivation
	Purposes
	Modeler
	XML Parser

	Background
	Business process
	Business process management and modeling
	Business modeling lifecycle
	Modeling techniques overview
	BPMN 2.0 standard
	Types of BPMN processes

	BPMN 2.0 core structure
	Infrastructure package
	Foundation package
	Common package
	Service package

	XML to POJO converting with JAXB
	Used technologies
	Node Package Manager(NPM)
	Node.js
	Grunt

	Related work
	TIBCO Business Studio
	Aris Express
	Yaoqiang BPMN Editor
	Bizagi
	Analysis and design of the application
	BPMN-js overview
	Diagram-js core classes overview
	Dependency injection in Diagram-js
	Other customized components
	Custom rules

	Class diagrams of the Modeler part
	DirectEditing module customization diagram
	Palette and ContextPad modules customization diagram
	The whole customization package diagram
	BpmnRenderer customization diagram

	Sequence diagram
	Unsuccessful validation by java functions
	Unsuccessful validation by XSD
	Successful validation by XSD and java functions

	Use case diagram

	Implementation
	The project structure
	Server side packages
	Client side packages

	BPMN-js customizations
	Adding custom modules
	DirectEditing module customization
	BpmnRenderer customization
	ContextPadProvider customization
	PaletteProvider customization

	Server side implementation
	Configuration
	Processing request
	XSD validation
	Validation by Java functions
	Saving diagram to the database

	Evaluation
	Error handling
	Error example: element misses description
	Error example: diagram contains isolated elements
	Error example: diagram is not complete
	Error example: wrong order of elements in the diagram
	Error example: diagram contains loops

	Installation
	Conclusion
	Specification
	Symbols
	Code examples
	References
	Content of the practical part

