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Abstract

In this thesis, we elaborate on image captioning concerning especially dense image cap-
tioning. We present technical fundamentals of a model striving to solve such a task.
Concretely, a detailed structure of DenseCap and Neural Image Caption is discussed.
Experimentally, we examine results of DenseCap and analyse the model’s weaknesses.
We show that 92% of the generated captions are identical to a caption in the training
set while the quality of those and the novel ones remains the same. We propose a
criterion that significantly reduces a set of captions addressing an image whilst SPICE
score of the set is maintained.

Keywords: image captioning, dense captioning, convolutional neural networks, long
short-term memory

Abstrakt

Tato bakalářská práce se zaměřuje na automatickou tvorbu popisu obrázk̊u (angl. im-
age captioning), konkrétně na tzv. dense captioning. Problematika je ukázána ve
světle současných model̊u se zaměřeńım na stavbu DenseCap a Neural Image Cap-
tion. DenseCap zejména je prodoben experiment̊um, d́ıky nimž jsou identifikovány
nedostatky modelu. Pokusy ukazuj́ı, že 92 % generovaných popisk̊u je identických
vzork̊um v trénovaćı množině. Je zjǐstěno, že jejich kvalita v porovnáńı s těmi, které v
trénovaćı množině nejsou, je stejná. V neposledńı řadě je navrženo kritérium, pomoćı
něhož lze významně zmenšit množinu popisk̊u vztahuj́ıćıch se ke konkrétńımu obrázku,
kdy SPICE skóre této menš́ı množiny z̊ustává stejné.

Kĺıčová slova: automatická tvorba popisu obrázk̊u, dense captioning, konvolučńı neu-
ronové śıtě, long short-term memory

Český název: Automatická tvorba popisu obrázku pomoćı konvolučńıch neuronových
śıt́ı
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Image Captioning with Convolutional Neural Networks

1 Introduction

For most computer vision researchers the classification task has always been dominant
in the field. Either it was a scene understanding in the pioneer 1960s or a traffic sign
detection in the modern days, the task has been rooted in the soil of computer vision.
It is not surprising that one of the most significant competition in the field comprises
the image classification task among others.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) awards annually
the algorithm which is most successful at predicting the class of an image in its five
estimates (known as top-5 error). For the record, the lowest top-5 classification error
reached 28.2% at the ILSVRC2010 and 25.8% a year later, respectively [1].

Nonetheless, an unxpected breakthrough came in the year 2012 when Krizhevsky
et al. [2] presented decades old algorithms [3,4] enhanced by novel training techniques
achieving so-far-not-seen results. In particular, the top-5 classification error was pushed
to 16.4%. At the latest contest in 2015, the lowest top-5 error was brought to 3.5%,
drawing on the work of Krizhevsky et al.

After this success, neural networks has revolutionised the field and brought in new
challenges that had not been merely considerable before. One of those newly feasible
techniques – image captioning – is discussed in this thesis. In fact, as an arising
discipline with promising potential, image captioning still is an active area of research
nowadays, striving to answer unsolved questions. Consecutively, since the field has not
been entirely established yet, one must rely mainly on recently published papers and
on-line lectures only.

Considering recent work, we define image captioning as a task in which an algo-
rithm describes a particular image with a statement. However, it is expected that the
statement is meaningful, self-contained and grammatically and semantically correct. In
other words, the caption shall describe the image concretely, shall not require or rely on
additional information and, last but not least, be consisted of a grammatically correct
sentence that semantically corresponds to the image.

The reader is advised to fully appreciate the complexity of this problem. Note that
an image can be thought of as an vector in a million dimensional space. For a three-
channel 1024×768 image, its dimensionality reaches nearly 2.4 million. This extensively
long vector is then mapped into a space of statements, expecting to meet requirements
set above. The notion is illustrated more concretely in Fig. 1.

Based on full-image captioning research, in their work Johnson et al. [5] propose
that the image captioning task can be viewed as weak classification since a caption
is a label expressing richer concepts. Recent work in object detection enabled correct
identification of multiple salient regions in an image and, similarly, rapid progress
in image captioning extended the complexity of generated statements referring to an
image. Therefore, Johnson et al. argue the recently seen fruitful advances in image
captioning were excited along two axes — label density and label complexity. Naturally,
a new unifying task they called dense captioning has arised [5]. See Fig. 2 elaborating
on the notion of dense captioning.

In dense captioning, an algorithm detects salient regions in an image and captions
each of those regions separately as in image captioning. Thus, the dense captioning
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task consists of two joint subtasks: object detection and captioning of those objects.
Although the dense captioning task raises new challenges, and thus is examined

in this thesis, only Johnson’s work regards it as the paper presenting the task was
published only recently. Therefore, when comparing, this thesis takes into account
full-image captioning mostly.

In conclusion, recent development in research utilizing accomplishments of neural
networks creates a challenging opportunity of following the most up-to-date advances in
image captioning while putting those notions into perspective with previously published
results.

In this thesis, we examine and elaborate on the recent development in image cap-
tioning, especially concerning the latest work of Johnson et al. [5], the DenseCap model,
and Vinyals et al. [6], Neural Image Caption (NIC).

First, we elaborate on neural networks and deep learning, yearning to describe
thoroughly the notions in relation to image captioning. In Sec. 3, influential work
as well as state-of-the-art models are put into perspective with available datasets and
evaluation functions. As already mentioned, the thesis regards mainly the models
DenseCap and NIC whose detailed examination can be found in Sec. 4.

The results of DenseCap are discussed in Sec. 5 together with a detailed analysis
of the model’s drawbacks. Following the findings, we propose experiments improving
the model’s results and evaluate them.

2
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Figure 1: When developing an automatic captioner, the desired behaviour is as follows: an
image, which to a computer is a 3×W ×H tensor containing integers in range from 0 to 255, is
described with a sentence, which is just an ordered sets of pre-defined tokens. To illustrate the
difficulty of the task, we use the famous inscription written in Black Speech that is engraved in
the One Ring from the Lord of the Rings trilogy. Assuming the reader does not speak fluent
Black Speech, this motivates the notion of translating a tensor into a sequence without further
understanding of any of the two concepts. Essentially, we argue, this is the image captioning
task.

Figure 2: In this picture, recent progress in image description is shown as improvement along
two axes. From classical one-label classification new tasks have emerged — salient object in the
image are labeled independently and, in contrast, labels have been extended into sentence-like
captions. We define dense captioning by combining the two. Image taken from [5]
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2 Neural Networks

In order to tackle the image captioning task, recent work shows it is in one’s interest
to utilize neural networks [7]. This frequently used term dates back to 1950s when
notions such as the Perceptron Learning Algorithm were introduced [8]. Modern neural
networks draw on notions discovered in the era of a Perceptron. In this section, we first
define a neuron as a fundamental part of modern neural networks. Then we elaborate
on Convolutional Networks and Recurrent Networks.

2.1 Perceptron

For the purposes of this work, a perceptron is defined generally as it became a funda-
mental part of modern neural networks and the notation is utilized further on. Thus, a
perceptron is compounded of one neuron. The neuron’s output, known as the activation
a, is mapped by Φ : RN → R as follows:

a = Φ(x) = σ(wTx + b) (1)

where x ∈ RN is a feature vector, w ∈ RN and b ∈ R are weights and σ(·) is a non-linear
function. In case of the Perceptron, σ(·) stands for

σ(z) =

{
1 if z > 0

0 otherwise
(2)

In other words, a perceptron is a non-linear function separating data into two classes
each associated with either 1 or 0. A perceptron is parametrized by weights w and b.
By setting proper weights, one effects the output and the perceptron’s behaviour for
a given feature vector. Therefore, such weights trimming is essential, yet non-trivial
task. In order to find the weights, a learning algorithm was introduced, named the
Perceptron Learning Algorithm [8]. This algorithm has a limiting property such that
successful learning is achieved if and only if the data are linearly separable which is a
major drawback pointed out in by Minsky and Papert in 1969 [9]. For example, there
is no vector w and bias b that would make a perceptron mimic the XOR function.

2.2 Multi-Layer Neural Network

Taking the perceptron as inspiration, the XOR problem can be overcome by aligning
neurons into layers and interconnecting those layers. This function is called a Feedfor-
ward Neural Network, an Artificial Neural Network or simply a Neural Network.

In a neural network, each layer comprises N neurons processing inputs coming from
the previous layer and producing activations used later in the following layer. For the
sake of simplicity, it is now assumed that the number of neurons N is same for all
layers. However, this varies very often, for example, usually the output layer consists
of fewer neurons corresponding to the nature of the problem being solved. To conclude,

the activations of the k-th layer (a
(k)
1 , a

(k)
2 , . . . , a

(k)
N ) = a(k) ∈ RN are each a function of

5
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the activations of the previous layer k − 1, noted as a(k−1) ∈ RN :

a
(k)
1 = Φ

(k)
1 (a(k−1))

a
(k)
2 = Φ

(k)
2 (a(k−1))

...

a
(k)
N = Φ

(k)
N (a(k−1))

(3)

where Φ
(k)
i (·) is a function defining the properties of the i-th neuron in the layer k,

often having the form similar to Eq. (1). However, there are exceptions that proved
to be essential to modern neural networks designs [2,7,10–12]. We discuss these in the
later sections.

In practise, to lower the complexity of a network, in the given layer k all the functions

Φ
(k)
i (·) are always of the same form, only distinct in weights. Therefore, it is convenient

to use vector notation. This is done by simplifying Eq. (3) into the following form:

a(k) = Φ(k)(a(k−1)) (4)

As an example, we show a neural network with one hidden layer. The network
takes in a vector that is propagated forward into the hidden layer. The processes in
the hidden layer are noted here as Φ(1). Further, the activations of the hidden layer
are again propagated, analogically, into the second layer Φ(2) whose activations are the
output of the network. The network’s design is shown in Fig. 3. Formally, the network
is fed with a feature vector x ∈ RN producing a vector y ∈ RM :

y = Φ(x) = Φ(2)(Φ(1)(x)) (5)

where Φ1 : RN → RH is called the hidden layer and Φ2 : RH → RM is called the output
layer. Note that the number of neurons in the hidden layer H is a hyper-parameter.

Although the structure of the network in the example has been defined, there are
still other hyper-parameters to be determined. For example, the form of the layer
mappings Φ(1) and Φ(2) needs to be specified. A layer with the most simple form of its
mapping is called a Fully Connected Layer and is discussed in the following subsection.

2.2.1 Fully Connected Layer

In the most basic neural network — a feedforward neural network comprising fully-
connected layers only – each neuron processes activations of all neurons in the previous
layer and is activated using Φ(·) defined in Eq. (1). Thus, based on vector notation in
Eq. (4), the activations of the k-th fully-connected layer are defined as

a(k) = σ(W(k−1,k)a(k−1) + b(k−1,k)) (6)

where W(k−1,k) ∈ RN×N is a weights matrix with weights vectors aligned in rows,
b(k−1,k) ∈ RN is a vector of biases and σ : RN → RN is a non-linear function. Note
that, since in practise the elements σi(·) are identical single-variable functions, we refer
to them as simply σ(·).

6
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Figure 3: Inputs x1, . . . , xN are processed by a hidden layer and, consecutively, by an output
layer producing outputs y1, . . . , yM . Biases b were omitted for the sake of simplicity.

In contrast to a perceptron, σ(·) is generally required to be differentiable due to the
nature of learning algorithms used in the field. For example, σ(·) used to be set to a
sigmoid curve as similar to the perceptron’s activation fuction shown in Eq. (2). Most
commonly, tanh() or the logistic function (Eq. (7)) were used.

σ(z) =
1

1 + e−z
(7)

Nevertheless, when used in deep learning sigmoids suffer from problems such as
vanishing or exploding gradients, therefore those were replaced with a Rectified Linear
Unit (ReLU) [13]:

σ(z) = max(0, z) (8)

In modern networks, it is recommended to use ReLUs as they proved to provide
better results and are thus the most common activation function used nowadays [7].

Drawing on the example presented above, we now assume that both layers are fully
connected, meaning that layer mappings have a form of Eq. (6). Then Eq. (5) can be
rewritten as follows:

y = σ(W(1,2)σ(W(0,1)x + b(0,1)) + b(1,2)) (9)

2.2.2 Number of Parameters

Let us now assume x ∈ RN , the activations of the hidden layer a ∈ RH and y ∈ RM .
Then we can calculate the number of parameters asN+N×H+H+H×M . Considering
a small gray-scale image, 28 × 28, of a hand-written number taken from the MNIST
dataset [14], that is classified as 0-9 digit, N = 784 and M = 10. Then the number of

7
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parameters, needed to be learned, is 795 × H + 784 where H, the number of hidden
layers, is a hyper-parameter. For a hidden layer having the same width as the input
vector, i.e. H = 28 in this example, the number of parameters reaches 23, 044.

Truly, this is a large number for such a shallow network suggesting that fully con-
nected layers extensively increase the number of parameters.

2.2.3 Hornik’s Theorem

The network mentioned above is a common design that in past was believed to yield
promising results. It was shown by Hornik [15], a multilayer feedforward neural network
is able to approximate any continuous function that is bounded. Yet, a possibly great
number of hidden neurons might be needed in order to do so because the theorem does
not quantify this important hyper-parameter.

2.2.4 Name Origin

As shown in Fig. 3, the structure is called a network since it can be drawn as a
directed acyclic graph. Wondering about the name’s background, one may notice the
word neural and mistakenly assume a relation to biological neurons. However, as stated
for example in [7], it is a common misconception as the name, neural networks, was
derived in 1950s from former biological models serving as motivation. Those models are
now, however, considered outdated, and conversely, modern neural networks are not
designed to be realistic models, rather going beyond neuroscience perspective. Since
that, endeavours to infer an algorithm from the brain’s functioning have not faded. For
example, Jeff Hawkins et al. developed Hierarchical Temporal Memory (HTM) [16] as a
strict mathematization of human neocortex based on current neuroscience. Internally,
HTM as a biologically inspired algorithm is distinct from deep learning and, admittedly,
its results have not been as fruitful as those obtained by deep nets [17], which are
discussed int the following section.

2.3 Deep Learning

In spite of former beliefs, it was found that [7] it is more efficient to insert several hidden
layers one by one and propagate information sequentially creating a deep structure,
instead of utilizing a shallow network given in the example. This concept is called deep
learning and, surprisingly, has its roots already in the pioneer 1960s as it was assumed
that an intelligent algorithm solving complex problems shall work with hierarchy of
concepts [7] that was rather deep. This is why we get the name deep learning.

The notion was later found in the idea of modern neural networks which, as stated
above, consist of numerous nested layers each extracting more abstract and complex
features as information is propagated forward the network. Therefore, the modern
neural networks and techniques used for learning them are usually nowadays referred
to as deep learning.

Deep neural networks were introduced already in 1998 [18] and the optimization
algorithm (back-propagation) was known by then and used frequently [3]. Yet, the
deep nets were found too complex to be trained. In their books, Ian Goodfellow et

8
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al. list those reason that enabled the boom of neural networks in 2012: firstly, more
data were available as well, therefore, the deep nets have started to outperform other
models. Secondly, deeper models require decent architectures both in software and
hardware and those had become available. Then on, promising results enabled advent
of neural networks, especially in their deep form. Models such as convolutional neural
networks or recurrent nets are considered state-of-the-art building blocks nowadays.
Their detailed design is discussed in the following subsections.

2.4 Convolutional Neural Networks

In image analysis, many of recent advances in deep learning are built on the work of
LeCun et al. [18] who introduced a Convolutional Neural Network (CNN) which had
a large impact on the field. A CNN is a type of a neural network that is designed
to process an image and represent it with a vector code. The architecture of CNNa
draws on fully-connected neural networks. Similarly, a convolutional neural network
is a compounded structure of several layers processing signals and propagating them
forward.

However, in contrast to a vector activation in a fully-connected layer, activations
in CNNs have a shape of three-dimensional tensors. Commonly, this output tensor is
called a feature map. For instance, an input image of shape 3×W ×H is transformed
by the first convolutional layer into a feature map of shape C ×W ′ ×H ′, where C is
the number of features. In other words, a convolutional layer transforms a volume into
a volume.

A typical CNN consists of several convolutional layers and, at the top, fully con-
nected layers that flatten convolutional volumes into a vector output. In the field’s
terminology, this vector code of an image is often called fc7 features as it used to be
extracted from the seventh fully connected layer of AlexNet [2]. Even though AlexNet
has already been outperformed by many and the state-of-the-art designs are different
from AlexNet, the term maintained its popularity. Additionally, depending on a prob-
lem the network is supposed to solve, an additional layer, such as soft-max, can be
added on top of fc7 features. A common design of a CNN is depicted in Fig. 4

2.4.1 Receptive Field

As mentioned above, a convolutional layer takes a tensor on input and produces a ten-
sor, too. Note that these tensors have two spatial dimensions W and H, and one feature
dimension C as they copy the form images are stored in. The context conveyed by the
spatial dimensions is utilized in the CNN design which takes into account correlations
in small areas of the input tensor called receptive fields. Concretely, in contrast to a
neuron in a fully connected layer that processes all activations of the previous layer,
a neuron in a convolutional layer ”sees” only activations in its receptive field. Instead
of transforming layer’s activations it restraints to a specific small rectangularly shaped
subset of the activations. When mentioning a receptive field, it is often expected only
spatial dimensions of the input volume are referred to, i.e. a receptive field defines an
area in the W × H grid. The shape of the receptive field is a hyper-parameter and
varies across the models.

9
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Figure 4: A convolutional neural network takes an image on input (in blue) and transforms it
into a vector code (in blue). Convolutional Neural Networks are characteristic for processing
volumes. An output of each layer is illustrated as an orange volume. Each neuron process only
activations in the previous layer that belong to its receptive field. The same set of weights is
used for neurons across the whole grid. On top of convolutional layers, fully-connected layers
are commonly connected.

2.4.2 Convolution in CNNs

A neuron’s receptive field is processed similarly to fully connected layer neurons. The
values below the receptive field along the input tensor’s full depth are transformed by
a non-linear function, typically ReLU (Eq. (8)).

However, in contrast to fully connected layer neurons, the same set of weights
(referred to as a kernel) is used for all receptive fields in the input volume resulting into
a transformation that has a form of convolution across the input. A kernel is convolved
across W and H spatial dimensions. Then, a different kernel is again convolved across
the input volume producing another 2D tensor. Aligning up the output tensors into a
C ×W ′ ×H ′ volume assembles the layer’s output feature map.

This is an important property of convolutional neural networks because each kernel
detects a specific feature in the input. For example, in the first layer, the first kernel
would detect presence of horizontal lines in the receptive fields, the second kernel would
look for vertical lines, and similarly further on. In fact, learning such types of detectors
in the bottom layers is typical for CNNs.

The design of CNNs has an immensely practical implication – since a kernel is con-
volved across the input utilizing the same set of weights and it covers only the receptive
field, the number of parameters is significantly reduced. Therefore, convolutional layers
are less costly in terms of memory usage and the training time is shorter.

2.4.3 Pooling Layer

Convolutional layers are designed in such a way the spatial dimensions are preserved
and the depth is increased along the network flow. However, it is practical to reduce
spatial dimensions, especially in higher layers. Dimensions reduction can be obtained
by using stride when convolving, leading to dilution of receptive fields overlap. Nev-
ertheless, a more straightforward technique was developed called a pooling layer. An

10



Image Captioning with Convolutional Neural Networks

input is partitioned into non-overlapping rectangles and the layer simply outputs a grid
of maximum values of each rectangle. In practise, pooling layers are inserted often in
between convolutional layers to reduce dimensionality.

2.5 Recurrent Neural Networks

Convolutional and fully connected layers are designed to process input in one time step
without temporal context. Nonetheless, some tasks require concerning sequences where
data are temporally interdependent. For that, a Recurrent Neural Network (RNN) – an
extension of fully connected layers – has been introduced. RNNs are neural networks
concerning information from previous time steps .

RNNs are used in a variety of tasks: transforming a static input into a sequence
(e.g. image captioning); processing sequences into a static output (e.g. video labelling);
or transforming sequences into sequences (e.g. automatic translation).

A simple recurrent network is typically designed by taking the layer’s output from
the previous step and concatenating it with the current step input:

yt = f(xt,yt−1) (10)

The function f is a standard fully-connected layer that processes both inputs indis-
tinctly as one vector. Due to its simplicity, this approach is rather not sufficient and
does not yield promising results [19]. Thus, in past years, a great number of meaningful
designs have been tested [20]. The notion was advanced and designs have become more
complex. For example, an inner state vector was introduced to convey information
between times steps:

ht,yt = f(xt,ht−1) (11)

The most popular architecture nowadays is a Long Short-Term Memory (LSTM) [21]
– a rather complex design, yet outperforming others [20].

2.5.1 Long Short-Term Memory

A standard LSTM layer is given as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (12)

it = σg(Wixt + Uiht−1 + bi) (13)

ot = σg(Woxt + Uoht−1 + bo) (14)

ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc) (15)

ht = ot � σh(ct) (16)

where xt is an input vector and ht−1 is an output vector. All matrices W and U
and biases b are weights that together, with σg which is a logistic function Eq. (7),
represent a standard neural network layer.

Thus, the forget gate vector ft, the input gate vector it and output gate vector ot

are outputs of three distinct one-layer neural nets each having its output between −1
and 1. ct is a cell state vector that, as a hidden output, is propagated to the next time
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step. ht is an output of the LSTM cell. � stands for element-wise multiplication, σc
and σh are usually set to tanh.

Note that ct is a combination of the previous time step ct−1, element-wisely adjusted
by the forget gate ft, and the output of a neural network, gated similarly by the input
gate it.

The output of LSTM ht is a function of the cell state vector, first squashed between
0 and 1, and then adjusted by the output gate ot.

Connected to a network, LSTM consists typically of one layer only. LSTMs are
known to preserve long-term dependencies, as shown for example by Karpathy [22].
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3 Related Work

For a human, seeing an image for a short time is sufficient enough to describe it com-
prehensively [23]. Humans undertake this task intuitively and can produce immensely
detailed description of the image. Nonetheless, producing similar results with a com-
puter has proven to be a rather difficult task.

Image description was first tackled in a classification task where a label is assigned
to an image [1, 24]. Although this approach have recently reached outstanding results
as mentioned in Introduction, they cannot overcome the essential limitation as their
set of outcomes is predefined and thus fixed. In real-world tasks a method yearning to
compete with human abilities has to be capable of working with an unlimited set of out-
puts. In image captioning, such quality is especially desired as natural language, that
captions are expressed with, is essentially unlimited. This fact has led to utilizing Re-
current Neural Networks in numerous recent papers [6,25–29] as they are theoretically
able to process and generate any sequence.

In Sec. 3.1, the relevant models leading to modern examples are discussed. Then,
in Sec. 3.2 we elaborate on the most advanced algorithms that have been developed in
image captioning. The detailed structure and principles are, however, extended on in
Sec. 4.

3.1 Models History

The idea of describing an image with a statement was first unfolded using hard-coded
rules that specified which visual context shall be used [30]. Some of the early approaches
[31,32] targeted videos as their visual input instead of nowadays more popular images.
Nevertheless, the limitation of the fixed size output set still held true.

Challenging it, some authors came up with image-sentence embeddings [33] that
bound an image and a textual statement in a common space [34,35]. Also, it was very
often to view the problem as document retrieval, meaning that for a given test image,
a statement is retrieved from the training dataset, on the basis of image similarity [30,
36–38]. The latest mentioned approach uncovers the potential of a baseline method k-
nearest neighbours in which the non-trivial task of finding convenient distance between
images is tackled with CNNs [39]. In particular, the authors of [40] show that an image
can be represented with a vector code obtained by a CNN. Image similarity is then
measured in the space of those vector codes using, for example, euclidean distance.
The caption is then chosen from the nearest images in the training set. In addition,
some authors combine sentences stored in a database [41,42].

After publishing their work referred to as AlexNet [2], Krizhevsky et al. were
followed by many with applying convolutional neural networks to various problems.
Recent work in image captioning, in particular, utilizes CNNs as image encoder [5, 6,
43,44].
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3.2 Current Models

3.2.1 Image Classification

In the most recent work in computer vision, variations of neural networks trained with
stochastic gradient descent [2] are mostly used. These models are trained to classify
an image, i.e. assign a class label to it [3, 10]. It proved to be very efficient to utilize
a pre-trained image classification model in similar tasks. [5, 6, 25, 43, 44]. From the
great variety of pre-trained models, let us mention VGG-16 [10] and Inception V3 [11]
that set the state-of-the-art performance. Most recently, Inception V4 was introduced
proposing a new framework of a convolutional layer that adds the feature map to its
input and outputs this sum.

3.2.2 Object Detection

In the dense captioning task [5], an image is described with a set of statements, each
corresponding to a salient region in the image. Thus, different phenomenons present
in the image need to be detected and localized in order to describe them. The most
advanced methods solving such a task (object detection) draw again on CNNs, such as
YOLO [45] or Fast R-CNN [46].

Lately, Ren et al. [47] focused on generating boxes with a fully convolutional network
by converting anchors into region proposals (Faster R-CNN), yet they do not propose
end-to-end trainable architecture. Drawing on Faster R-CNN, a model entirely trained
with back-propagation has been proposed by Johnson et al., called FCLN [5]. In terms
of time performance, SSD by [48] outperforms others.

3.2.3 Recurrent Neural Networks

Assuming an image have been decoded into a feature map, recent publications adopt
Recurrent Neural Networks (RNNs) [27, 49, 50] to construct a language model that
generates text. Ability of RNNs to preserve long-term relations and generate sequences
was studied by Bahdanau et al. [51–53].

Calling on these notions, a multimodal RNN was introduced [25,27,44,54]. Further
work, on the other hand, simplified the language model and developed other RNN
designs. Karpathy and Fei-Fei [43] exploited a Bidirectional RNN [55], whereas for
example Kiros et al. [27] rather drew on the LSTM recurrence [21] by propagating
the visual information from the decoder directly to the language model. Karpathy et
al. [22] showed why LSTM in particular provides surprisingly good results despite their
complex architecture. A certainly interesting idea was introduced by Bengio et al. [56]
who took into account spatial attention – a map that highlights areas of an image that
shall be described by the language model.

3.2.4 Metrics and Challenges

To measure performance of image captioning models, several metrics have been de-
veloped, such as CIDEr [57], BLEU [58] or METEOR [59] that each exploits different
natural language characteristics. Yet it is a commonly shared opinion that each of them
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suffers from major drawbacks. To show that even a sufficient metric of image caption-
ing is still an open problem, the reader is encouraged to consider 2015 MSCOCO Image
Captioning Challenge [60] that introduced a unique human-evaluated judge system to
overcome drawbacks of each automatic method. And in the post-contest evaluation,
the submissions are judged with all the metrics mentioned above.

METEOR and BLEU are machine translation metrics adopted for image captioning,
while CIDEr was designed to evaluate image captions. However, most recently intro-
duced SPICE [61] is highlighted for its correlation with human judgements reaching
0.88 whereas CIDEr achieves 0.43.

Based on the results of 2015 MSCOCO Image Captioning Challenge, the best state-
of-the-art performance was achieved equally by the Neural Image Caption model (NIC)
[6] and the model presented by a team from Microsoft Research [28]. In terms of dense
captioning, the best results are produced by the DenseCap model [5] which together
with NIC is examined in this work further on.

15





Image Captioning with Convolutional Neural Networks

4 Image Captioning Model

Image captioning models are complex systems that have been consisted of several mod-
ules from the very beggining. Presence of modularity holds true for modern captioning
models as well. Framed by Vinyals et al. [6], modern image captioning models are
generally compounded of two parts: an image encoder and a language model. In this
section we adapt the framework and extend it to dense captioning. The notion of
modularity is shown in Fig. 5.

In other words, an image encoder takes in a raw image an encodes it into a feature
map using a CNN. As there has emerged numerous CNN models in past few years, we
examine VGG-16 and Inception V3 in Sub. 4.1.

Having the feature map extracted, the most recent language models generated text
sequentially, word by word, relying on inherited probabilistic dependency. Therefore,
given an image, a caption S having the biggest probability is expected to paint the
image most accurately, i.e. S = arg max p(Si|I).

To break this two-module scheme right away, in dense captioning a model generates
text corresponding to regions in the image, therefore, such a model extends on the
scheme and embeds a salient region detector in between the modules. Concretely, the
region detector localizes objects in the full-image feature map and, for each, interpolates
its own feature map that is further propagated into the language model. A scheme of
a dense captioning model is shown in Fig. 6.

Regarding training captioning models, it is common in deep learning, models are
constructed in such a way they can be trained in an ”end-to-end” fashion. End-to-end
means only single loss function is used for optimizing the entire model which simplifies
training significantly. This intriguing quality holds true for both examined models.
Therefore, all modules of the models are optimized jointly utilizing a loss function
operating over the output words. The error is back-propagated through the language
model, optionally the salient region detector, down to the image encoder if fine-tuning
is enabled. As a result, these modules are intertwined and non-interchangeable without
further interventions.

Figure 5: An image captioning model consists of an image encoder and a language model.
The image encoder transforms an image into a vector code with a CNN. The language model
generates sequentially a caption conditioned on the image code.
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Figure 6: A dense captioning model consists of three modules: an image encoder, a salient
region detector and a language model. The image encoder transforms an image into an image
feature map (in blue) that is accepted by the salient region detector that localizes regions in the
image using a localization layer. The language model generates sequentially a region caption
conditioned on the region code (in blue) for each region separately.

In this section, we look at the architecture of image captioning models and explore
and examine the most advanced two of them representing the state-of-the-art design,
in particular DenseCap and NIC.

4.1 Image Encoder

Regarding an image encoder as a black box, it is fed with a raw image of shape 3×W×H
without additional pre-processing and it outputs a C ×W ′ × H ′ tensor denoted as a
feature map.

4.1.1 Transfer Learning

Typically, the image encoder is a CNN architecture that has been pre-trained on a
similar task concerning images, e.g. image classification. In practise, this means one
chooses a particular CNN architecture from a great variety of them and removes some
of the top layers of the network. In the case of AlexNet [2], it is very common to
extract the features of the seventh layer (fc7 features); and for example Jonhson et al.
removed in DenseCap only the final pooling layer of the VGG design [10].

Since the encoder network has been trained on images, the required feature detectors
at each layer has already been established. Although this is a useful trick decreasing
training time, transfer learning [62] yields drawbacks — the nature of the image dataset,
that the model was pre-trained on, determines what features are learnt. If the network
was trained to describe significantly distinct images, the language model receives just
partial information of what the given image captures. This is partially overcome by
fine-tuning, which is a training phase in which the weights of the image encoder are
adjusted as well, usually with lower learning rate. Concretely, in DenseCap, Johnson
et al. fine-tuned all but the first four convolutional layers after 1 epoch.
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Figure 7: VGG-16 [10] and Inception V3 [11] are illustrated in the figure. Note that in contrast
to VGG-16 that consists of traditional convolutinal layers, Inception V3 comprises Inception
blocks that each is a convolutional network. It is underlined that Inception V3 has significantly
deeper structure. The ratios of the output volumes (in orange) are not preserved.

4.1.2 VGG-16 and Inception V3

CNN models differ in depth and overall design. Nevertheless, a common framework was
outlined by AlexNet proposing what type of convolutional layers shall be used. The
image encoders in DenseCap and Show and Tell are based on AlexNet – VGG-16 [10],
and respectively Inception V3 [11], both reach impressive performance [1,60] where the
later, as of writing this thesis, is one of the most advanced CNN networks yielding in
an ensemble 3.58% top-5 error on the validation set of the ILSVRC 2012 classification
challenge. To compare, VGG-16 achieved 6.8% top-5 error on the same dataset.

Although detailed analysis of VGG-16 and Inception V3 goes beyond the scope of
this work, we would like to point out that there is a fundamental difference between
the networks. Whereas VGG-16 is constructed of traditional convolutional and max-
pooling layers, Inception V3 goes beyond this framework and incorporates very deep
structure of Inception blocks. The comparison of the two is shown in Fig. 7.

Having mentioned the design of the networks, the image encoder is treated in image
captioning as a black box that extracts features from an image.

4.2 Salient Region Detector

This module is specific to dense captioning in terms of describing images. However,
salient region detectors are essential for object detection. In this section, we describe
Fully Convolutional Localization Layer (FCLN) introduced in DenseCap by Johson et
al. FCLN is based on the Faster R-CNN model [47] built up for object detection. Fig.
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Figure 8: The scheme of the DenseCap model. Taken from [5].

8 shows that, as a black box, FCLN accepts an image feature map and returns B in-
terpolated region codes of each region. B is a hyper-parameter setting the number of
regions being described. In addition to the region codes, FCLN passes on four param-
eters denoting a rectangular bounding box and a region confidence into the language
model.

Although it is theoretically not necessary, the salient regions are considered to be
rectangular as it is more convenient to pass on four parameters defining a rectangle
instead of a more complex structure marking a real shape of the region. Also, the later
is much harder to detect since object segmentation is considered to be a more difficult
task than detection and convenient datasets have been published just recently (e.g.
Visual Genome [63]).

4.2.1 From Anchor to Region Proposal

In FCLN, an approach similar to Faster R-CNN is utilized to predict region proposals.
For each point in the W ′ × H ′ grid, a corresponding point in the image is found,
i.e. the grid W ′ × H ′ is stretched out onto the W × H grid. k default anchors of
various aspects ratios are assigned to each mapped point in the stretched out grid,
creating kWH ′ anchor boxes distributed regularly across the image in groups of k.
Since FCLN regresses each region proposal on its anchor independently, this method is
translation invariant to the actual position of objects in the image which, indeed, is a
very convenient property.

The regression in particular is done as follows: the image feature map is transformed
by a CNN into a 5k×W ′ ×H ′ tensor containing four bounding box coordinates and a
confidence score of each region proposal – five numbers per anchor, hence 5kW ′H ′ in
total.

In FCLN, the box coordinates parametrize a region with respect to its anchor’s
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default position and aspects. In order to define the bounding box in the 0− 1 interval,
the parametrization exploits normalized offset and log-space scaling transformation
adapted from [46]. The confidence score denotes objectness of the captured area in the
region and, thus, evaluates the content of the bounding box.

The extensive number of region proposals needs to be subsampled. Once the region
proposals have been obtained, B of them are sampled using greedy non-maximum
suppression (NMS) and the confidence score at test time.

To conclude, the CNN regresses bounding boxes and confidence scores from an
image feature map. Due to the extensively large number of region proposals, only B of
them are sampled.

4.2.2 Region Feature Map

Having the bounding box generated, a feature map for each individual region needs
to be projected from the full-image feature map. To do so, Faster R-CNN sets in an
RoI pooling mechanism. The RoI layer is proposed in such a way back-propagation
is exploitable only for the weights of the image decoder, but not for the CNN that
transforms coordinates and scores. In Faster R-CNN they overcome this with instead
developed four-step optimization process which the detector is trained with.

To extend on that, the subtask is defined as follows: given the coordinates of the
region and the C×W ′×H ′ image feature map, extract a C×X×Y region feature map,
where X and Y are fixed, thus independent on actual dimensions of the region. The
given subtask is not trivial due to regularity of the grid, where its dimensions X,Y and
the dimensions of the region proposal are generally incommensurable – we transform
a variable rectangular area of W ′ × H ′ into a fixed grid X × Y . In Faster R-CNN,
they solve the problem with grounding which is a non-differentiable function, thus an
obstacle for back-propagation.

In contrast, Johnson et al. overcame this method with bilinear interpolation which
is the main contribution of FCLN, enabling the DenseCap model to be trained in an
end-to-end fashion.

Intuitively, the full-image feature map is cropped at the real-valued area of the
bounding box, stretched out and ”averaged” so that only corresponding areas of the
W ′ ×H ′ grid are mapped into the X × Y grid.

Concretely, if we denote a full-image feature map C ×W ′×H ′ by a tensor U and a
region feature map C ×X × Y by V , FCLN interpolation U → V is defined as follows:

Vc,i,j =

W ′∑
i′=1

H′∑
j′=1

Uc,i′,j′ · k(i′ − xi,j) · k(j′ − yi,j) (17)

where xi,j and yi,j are real-valued coordinates in U so that Vc,i,j should be equal to U at
(c, xi,j , yi,j). xi,j and yi,j are computed based on dimensions and position of the region
proposal. Computation of xi,j and yi,j is an essential step in projecting the region
proposal to U and stands for the ”cropping and stretching” part of the process. The
”averaging” part is done by bilinear interpolation where kernel k(d) = max(0, 1− |d|)
is used.
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To sum up the projection step, the values of the X×Y grid are a linear combination
of the corresponding values of the W ′ × H ′ grid whilst the number of features C is
preserved.

4.2.3 Recognition Network

Lastly, to reshape the tensor into a vector and provide additional transformation, a
Recognition Network is connected to the output of FCLN. This two-layer fully con-
nected neural network serves as a utility reshaping the region feature map tensor into
a D-dimensional code representing the region. Also, such transformation is applied
to the bounding box parameters and the confidence score. Johnson et al. argue this
refines the required values needed in the language model.

4.3 Language Model

For generating text, a language model conditioned on the region codes is used in both
DenseCap and NIC (where a full-image code is accepted instead). In fact, these models
are merely identical regarding text as a sequence of tokens from a pre-defined vo-
cabulary. When working with sequences, recurrent neural networks [39], the LSTM
recurrence yields best results in cases of processing language [22]. It is no wonder this
rather complex architecture was chosen for its performance in both examined models.

The sentence S that is to be generated consists of T words creating a chain s1, . . . , sT
where each word is an element of the vocabulary V . The generative process starts
with the region code obtained from the previous module. The code is transformed
additionally to a smaller sized vector and fed into the LSTM at the zero time step.

x0 = W (region code) (18)

y0 = LSTM(x0) (19)

where W is the down-scale transformation of the region code.
The zero time step initializes hidden states, therefore, the output of LSTM y0 is

discarded. After it, x1 is set to a special START token that is passed on to the LSTM
which, in contrast to the zero step, now generates the token the first word is chosen
from.

y1 = LSTM(x1) (20)

Now on, at every time step, yt is regressed to a word st ∈ V . After selecting the word
st, the token xt+1 corresponding to this word is inputted again into the LSTM at time
t+ 1, creating a loop. This process repeats on, until the END token, yT , is obtained on
the output of the LSTM. Note that every sentence has a different length, therefore, T
just denotes the times step in which the END token was sampled.

Regressing st on yt is not a trivial task. Both NIC and DenseCap utilize a soft-
max layer that estimates probabilities of each word from V given yt. In DenseCap,
st is sampled greedily meaning that at each time step t, the word having the highest
probability is chosen, i.e. st = arg maxsi∈V p(si) where p(si) is the probability of the
word si at the time step t.
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Yearning for more sophisticated results, NIC extends the regression by maximizing
the probability of the whole sentence S. It is assumed the optimal sentence S∗ is
given by S∗ = arg maxS p(S), and the probability of the sentence S is given by p(S) =
p(s1) · . . . · p(sT ). Sampling the words greedily, as it is done in DenseCap, does not
guarantee bringing in the optimal solution. For that reason, NIC employs the beam
search algorithm that, at every time step, keeps in l sequences of words that have the
highest probability. Beam search does not guarantee finding an optimal solution either
but surely can generate more likely sentences. In fact, in the latest NIC paper [6], they
report that their model yields best performance when l = 3.
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5 Experiments

Having stated the fundamentals of image captioning models, this section presents the
experiments conducted to verify hypotheses regarding their performance. It is impor-
tant to underline the fact that improvement is traceable as long as there is sufficiently
defined evaluation function. In the problem of dense captioning, there are several as-
pects to be measured. Namely, a generated bounding box shall be positioned correctly
and a caption shall be well-written and meaningful. Note that the later is defined
vaguely and, thus, needs to be specified (caption quality is discussed in Sec. 5.2).

Although immense progress in the field has been seen lately, there is still notable
dependency on computational power when applying changes to a model. Thus, when
drawing up this thesis it was right away determined that all possible experiments trig-
gering with weights in the model are, unfortunately, infeasible if one seeks to ehnance
model’s performance significantly using an average computer. To illustrate the fact,
Vinyals et al. [6] state that training the NIC model took over three weeks with a high-
end GPU and, similarly, Johnson et al. [5] report the DenseCap model generates 100
captions in 166ms using a single GPU whereas the same task is done on our machine
in 31s running on CPU (190× slower). From that reason, experiments that require
re-training, i.e. modifying a localization layer in DenseCap, were omitted.

Further, Hessel et al. show that the failing cases of image captioning have its roots
in the language model [64]. They report that training the image encoder gradually,
while keeping the same language model, improves the results at every step. Conversely,
while fixing the image encoder, training the language model yields better captions to a
certain level after which additional training does not improve the results. They argue
the finding suggests that the current language models are the core limitation.

Therefore, we focused the experiments on quality of captions where we see a room
for improvements. As an experimental model, DenseCap is used since its authors made
their pre-trained model available on-line [65].

5.1 Dense Captioning Results

Given an image I, the DenseCap model generates a set of captions C where each caption
c ∈ C is associated with its bounding box b = (x1, y1, x2, y2) and a region confidence
score s. During our experiments, we set the number of generated captions B = 300
while we consider only those of them whose s > −4, leading to C ≈ 150 on average.

A typical result of DenseCap and NIC is shown in Fig. 9. The most significant
distinctness of the models is their output – a caption in contrast to a set of captions.
Therefore, the nature of generated text is different. Concretely, covering the example
image, the NIC model captions the scene generally whereas DenseCap detects each
salient region (the kite, the person, the sand, the blue sky and others) and captions
them separately. More information is found using the later approach, for example, the
color of the t-shirt, the sky, the trees on the hill.

The reader is encouraged to appreciate the quality of the generated captions as this
performance was far from achieving no more than three years ago. Yet, in the following
pages we examine drawbacks of the DenseCap method.
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Figure 9: Note that NIC captions the image generally relating to important phenomenons in
the image whereas each caption of DenseCap corresponds to a salient region in the image. The
captions shown were cherry-picked from a set of 153 captions to illustrate the performance. The
image is taken from [66].

Redundancy We found that the set of captions C is redundant and contains a rel-
atively big number of identical captions in terms of textual similarity (shown in Fig.
10), thus it is relevant to reduce the set while maintaining the conveyed information,
see Sec. 5.4.

Restricted Outcomes Concerning generated statements, we found that only a lim-
ited number of words from the training vocabulary is retrieved. Concretely, the model
was trained on a vocabulary containing 11 thousand words, whereas the set of words
generated on the test set (Pascal 50S) was significantly smaller, concretely 719 words.
In addition, in Sec. 5.2.3 we show that 92% of the generated captions are identical to
the training samples.

Scene Setting Dependency Moreover, we found that the generated captions rep-
resent the distribution of words in the training set but not tightly – this can be shown
with articles. For example, we examined the training set distribution of the following
terms: a front wheel, the front wheel, front wheel. The term front wheel is by far most
common. Same applies to the distribution found in pictures of front wheels of a bicycle
where the term front wheel is the most frequent one as well.

However, when the angle from which the image was taken is changed and typically
the object does not face the camera directly, this distribution is affected leading to
misclassification of an object. For example, we found that a bicycle that has its front
wheel on the right-hand side is misclassified more often than when facing the left side.
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Figure 10: This figure illustrates redundancy of the set of the generated captions. Note that
all of the bounding boxes depicted are described with factually identical captions, only articles
and prepositions differ. Additionally, some of the boxes do not overlap thus it is not possible to
determine how many boats there are in the picture. Although not depicted, given this image,
similar redundancy was observed with the caption Boat is white.

Also, if the bicycle is taken from the forty-five angle position, the model captions the
rear wheel as front wheel or generates meaningless captions (bike on the bike, a black
metal umbrella).

The finding suggests that objects set up unusually in the scene are captioned incor-
rectly or not recognised at all; and that common phrases are linked with specific object
positions whereas least common or rare settings of the same objects are captioned in-
correctly (see Fig. 11). In conclusion, to find the most failing case and examine their
source one needs to test the model on a dataset containing unusual scene settings which
is presented in the following section.

5.2 Caption Quality

5.2.1 Pascal 50S Dataset

Unfortunately, the only dataset available for dense captioning is the Visual Genome
dataset that was used for training the model – the test set used by Johnson et al. is
not available. We decided to evaluate caption quality on the Pascal 50S dataset [57].
Pascal 50S contains 1000 images, each captioned with 50 statements covering to the
full image. Also, Pascal 50S contains images which some of them are blurred or taken
from an unusual angle.

Despite dense captioning is examined, we decided to use a dataset of full-image
captions. Thus, we evaluate a set of captions C, generated given an image I, against a
ground truth set CGT that covers I.
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Figure 11: The figure illustrates scene dependency of DenseCap. Taking a bicycle from an
unusual angle leads to misclassification. The image on the left is taken from behind and the
other depicts a bike facing right-hand side – both positions are considered unusual scene settings
(if the same bike is taken facing left-hand side, wheel captions are correct). Note that all wheels
are captioned as a front wheel. Also, the other captions are erroneous.

5.2.2 Evaluation Metrics

In this work, SPICE [61], Levenshtein distance and sets overlap are used.

As SPICE works with semantic propositional content of a caption converting it into
a scene graph, it provides more transparent evaluation than other captioning metrics,
in our view. More importantly, SPICE is adaptable to dense captioning due to its
properties. We propose a trick that extends its capabilities from evaluating a statement
to a set of statements. In practice, this means that the set C is concatenated into a
single string in which captions are separated with a dot, as in real text.

To evaluate a caption, similarity of a candidate caption scene graph and a reference
scene graph is computed. In SPICE, graph similarity is given by F-score of correspond-
ing edges in the graphs. Working with graphs provides convenient implications: SPICE
is invariant to order and duplicity of the concatenated statements.

In conclusion, SPICE covers factual accuracy taking into account linguistic varia-
tion.

Beside SPICE, Levenshtein distance and sets overlap are used in this thesis. Lev-
enshtein distance denotes a minimum number of edits applied to change one statement
into the other, i.e. inserting, substituting or deleting one word.

For fast evaluation, we use sets overlap. We create a set of words from each caption
and exclude stop words, then we compute sets overlap as intersection over union. The
set of stop words contains the most frequent words: {a, an, the, is, are, in, on, of, with,
to, and}.

As shown later, it is convenient to find the nearest caption. This can be interpreted
as looking for the most similar caption. This is done with both Levenshtein distance
and sets overlap. In case of the former, given a set of captions E, the nearest captions
e∗ ∈ E to a caption c is defined as follows:

e∗ = arg min
e∈E

l(e, c) (21)

where l(·, ·) is Levenshtein distance. The nearest caption for sets overlap is defined as
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the caption e∗ maximizing sets overlap:

e∗ = arg max
e∈E

s(e, c) (22)

where s(·, ·) is word sets overlap of two captions. Further on, we denote maximal sets
overlap as MSO.

5.2.3 Nearest Caption Analysis

Using the Pascal 50S dataset, it was found that the generated captions are very similar
to the captions in the training set Ctrain. In fact, 91.94% of the generated captions are
identical to a caption in Ctrain. To address the remaining 8.06% of captions, we utilize
minimal Levenshtein distance over Ctrain to find the nearest caption. In Tab. 1, the
frequency of minimal distances is shown. Note that more than 99% has a minimum
distance one or zero. Examples of one-distanced captions is shown in Tab. 2.

Levenshtein Distance Frequency

0 91.94%
1 7.32%
2 0.69%
3 0.05%

Table 1: The generated captions are very sim-
ilar to the examples in the training set. Nearly
92% of them are identical to some caption in
the training set. Minimal distance of 1, i.e.
only one word was inserted, substituted or
deleted, has frequency of 7.32%. Less than
1% has a nearest distance 2 or 3. Genereated
by DenseCap [5] on Pascal 50S [24].

Minimal Levenshtein distance does not
provide sufficient details for captions fur-
ther than 1, hence for additional analysis,
we used maximal sets overlap (MSO). This
measure is utilised especially when looking
for the nearest caption in CGT where Lev-
enshtein reaches values beyond 5 or 6 which
for a short caption often means entire sub-
stitution.

Looking at the nearest captions in CGT ,
we found that 35.59% of the generated
captions has MSO equal to 0. On the
other side of the spectrum, the captions
with MSO greater than 0.5 has frequency
of 1.29%. Examples of such captions and
their nearest samples in CGT are shown in
Tab. 3.

To compare the sets, average MSO over Ctrain is 0.98 whereas over CGT it is only
0.14. The findings suggest that the generated captions and the ground truth captions
are significantly distinct. An example of CGT and C is shown in Fig. 14.

The following findings in this section are comprehensively depicted in Fig. 12,
in which captions are compared with Ctrain and CGT , and the histograms of their
evaluation scores are shown.

We found that SPICE and MSO has correlation of 0.77 when evaluating against
CGT . Therefore, we use MSO when evaluating against Ctrain as this operation would
be very costly using SPICE. Certainly, on the other hand, SPICE as a more complex
evaluation function provides more accurate results.

As stated above, 92% of the generated captions are retrieved from Ctrain. However,
when stop words are not taken into account, this number rises to 95.0%. Each generated
caption can be sorted into one of two sets, a ”non-creative” set and a ”creative” set –
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the former containing captions that has a textual identity in Ctrain, the later denoting
the opposite.

To analyse the quality of the sets of ”creative” and ”non-creative” captions, we plot
MSO over Ctrain and SPICE against CGT for each generated caption (see Fig. 12 for
more details).

Also, we found the distributions of scores are merely the same proving that in terms
of factual accuracy there is no difference between a caption from the training set and
a ”creative” caption.

Note that nearly half of the captions has SPICE score of zero. Partially, this is
caused by the nature of the PASCAL 50S ground truth captions that is different from
what is generated by DenseCap. However, a great portion of the zero-scored captions is
wrong. Interestingly enough, this can be put into perspective when compared with the
frequency of captions having MSO over CGT equal to 0. As stated above, 35% of the
captions does not relate to ground truth at all. But 15% of the captions has non-zero
MSO and yet still SPICE score of 0. Thus, some words in those captions are correctly
retrieved but they are factually wrong, e.g. wrong colour of an object is predicted.

In the following subsections, we try to improve caption quality with beam search.

5.3 Beam Search

Vinyals et al. implemented beam search to enhance the results of the NIC model.
They report beam size l = 3 produced the most advanced results [6]. Adapting their
approach, we implement beam search to DenseCap as both models use LSTM and
softmax layer to generate the probability of the next word. (In fact, the DenseCap
repository [65] already contained implementation of beam search that was labeled ex-
perimental and needed to be completed and debugged.) The results of beam sizes l = 3
and l = 20 are depicted in Fig. 13. In spite of expectations, the generated captions
are worse when using beam search. The model produced captions that are shorter and
incomplete, for example the same salient region generated cat looking at the window
without beam search, the cat with both l = 3 and l = 20. Similarly, in other examples
captions without beam search are better-looking, therefore, we did not perform quan-
titative analysis as the result is obvious. The reason for beam search worsening the
DenseCap results, despite in NIC those were improved, remains an open problem.

Generated Caption Nearest Caption in Training Set

a decorative design on the wall a design on the wall
the design on the wall a design on the wall
a white plane in the background a second plane in the background
the boy is holding a baby the boy is holding a bat
a dark green hair a dark green hedge

Table 2: Example of generated captions that have a minimal distance equal to 1. Note that
some differences are meaningless (e.g. articles) while some changed the meaning entirely (e.g.
a bat to a baby)
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Figure 12: Scatter Plots: Each point in a scatter plot represents an individual caption generated
on the Pascal 50S images. Point’s darkness illustrates the number of captions having the same
coordinates. Note that the colors in all graphs match. Both scatter plots depict the same set
of all generated captions (i.e. all images together). The y-axis shows similarity to the nearest
caption in the training set (MSO over Ctrain). In case of the upper plot, the x-axis represents
caption’s similarity to its ground truth (MSO over CGT ) and in case of the bottom plot, the
x-axis stands for the same but using SPICE. Note that both distributions are very similar,
concretely, correlation of SPICE and MSO is 0.77. Histograms: The upper histogram depicts
that 95% of all generated captions are identical to a sample in the training set in terms of
sets overlap. The bottom histogram shows the distribution of SPICE scores of the generated
captions that are in the Ctrain and that are not in Ctrain are very similar.
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Figure 13: Therefore, the nature of generated text is different. Concretely, covering the example
image, the NIC model captions the scene generally and comprehensively whereas DenseCap
detects each salient region (the kite, the person, the sand, the blue sky and others) and captions
them separately.

5.4 Distinct Caption Set

In the recommended setting by the authors of DenseCap, the number of generated
captions per image B is 300. As already mentioned, the set of captions C is redundant
and partially contains false members. Thus, we look for a subset of the generated
captions C∗ ⊆ C that describes the image as well as C while using only distinct
captions. As we define it, a distinct caption c ∈ C provides semantic information about
the image which is not conveyed by any of C/{c}. In other words, such a caption brings
in unique facts about the image.

5.4.1 SPICE Score Delta

The notion of caption distinctness can be expressed with its contribution to the overall
score. To address distinctness, we define ∆(c) as follows:

∆(c) = f(C)− f(C/{c}) w.r.t. CGT (23)

where f is an evaluation function that computes score with respect to ground truth.
We use the SPICE score.

From definition, caption distinctness is dependant on C, and thus the same text
could have different ∆ for different images and different methods of generating C.

Generated Caption Nearest Caption in Ground Truth MSO

cat laying on a bed a cat laying in a bed 1
car parked on the side of the road white car is parked on the side of a road 0.8
man and woman sitting on couch man sitting on a couch 0.75
a body of water a barge is on a body of water 0.67
wooden table top a cat sits on top of a wooden table 0.6

Table 3: Examples of captions that has MSO greater than 0.5.
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Figure 14: The figure depicts the results for the picture taken from Pascal 50S [57]. On the
left, the generated captions c ∈ C with their ∆(c) are shown. Top right, the Pascal 50S ground
truth set CGT is presented. Bottom right, we present the distinct caption set C∗ for this image.
This picture was cherry-picked to illustrate the following. C contains captions that are correct
but not present in CGT , incorrect captions and redundant captions (all in blue). Note that one
could argue even C∗ contains incorrect captions as the people do not seem to be walking.
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A caption c is distinct if ∆(c) > 0 which, in other words, means it enriches the
scene graph of C with at least one true positive edge that was not retrieved by any of
captions in C/{c}. Conversely, a caption having ∆(c) < 0 brings in an false positive
edges. If ∆(c) = 0, caption’s semantic propositional content is duplicate in the scene
graph. Note that ∆(c) is equal to 0 for all of those duplicates.

Taking into account ∆(c), we extend the definition of the distinct caption set C∗

as follows:

C∗ = {c | c ∈ C, ∆(c) > 0} (24)

It turns out that only a few captions in C are distinct. We found that using the
same setting as in the previous experiments, the average cardinality of C∗ is 10.24, the
median is 4. Rarely, the number of distinct captions reaches higher numbers, concretely,
the maximum is |C∗| = 107. An example of a low cardinality set C∗ is shown in Fig.
14.

Despite relatively low cardinality of C∗, we found the score maintains its value,
f(C∗) ' f(C). Concretely, we found that on average:

f(C∗)

f(C)
= 1.011 (25)

We arrive at the conclusion that the average distinct caption subset C∗ has slightly
better SPICE score than the set of generated captions C, yet having significantly lower
cardinality. In other words, the outcomes of DenseCap can be reduced to a smaller
amount of factually diverse captions.

5.4.2 Caption Distinctness Predictor

In the experiment above, C∗ was found using PASCAL 50S ground truth CGT . In this
section, we present an experiment yearning to predict whether a caption is an element
of C∗. Such a predictor shall be independent on ground truth, thus when predicting
distinctness of c, we utilize the parameters of a caption’s bounding box b and its region
confidence score s. Formally, a predictor h is defined as follows:

h(b, s) =

{
1 if c ∈ C∗

0 otherwise
(26)

We use the support vector machine method to learn h() using a RBF kernel and soft-
margin. Searching the hyper-parameter space while using 10-folded cross validation, the
highest average test accuracy we obtained is 0.891±0.008. Since the relative frequency
of non-distinct captions is 0.88, a successful predictor was not found using this method:

p(c is correctly classified) ' p(c 6∈ C∗) (27)

5.5 Discussion

We found that 92% of the generated captions are identical to those in the training set.
Together with scene setting dependency it seems the DenseCap model is over-fitted and
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retrieves caption from the training set instead of generating novel captions for unseen
region codes. However, we found that once it does the quality remains the same.
A common example of one word substitution is color exchange. This can be viewed
positively, for instance in medical use, it is desirable to make diagnosis non-creatively.
On the other hand, in real-world image captioning, unseen settings require the model’s
ability to interconnect concepts present in the training set, e.g. colours or sizes.

Despite its fruitfulness in the NIC model, it seems that beam search cannot be
transferred easily to DenseCap without further development and analysis. For example,
it shall be examined what is the cause of higher probability of extremely short captions
that we have observed. We hypothesize that there is no fundamental restraint that
precludes successful adaptation of beam search to DenseCap as both models use a very
similar loss function in their language models. Significant cause of this, however, might
have its roots in the nature of captions that are used for full images and for salient
regions only.

Regarding the caption distinctness predictor, we found a predictor based on a
bounding box and confidence score cannot be trained. However, we hypothesize that
such a predictor exists. Yet it might need more variables such as for instance the set
C itself. Note that the localization layer of DenseCap generates a rather extensive
number of bounding box proposals that are subsampled using a confidence score, a
value obtained by a neural net. In future work, this approach to score captions shall
be tested.

Further, we would like to underline the fact that dense captioning can be extended
by introducing additional criteria to the set of generated captions. Above, we defined
a criterion minimizing the cardinality of the set. A possible criterion might cover, for
example, restriction to value adding captions. In our criterion we assume ∆(c) > 0,
excluding ∆(c) = 0. This means information that is represented by more than one
caption is not present in C∗. Future work shall find a way of extending our C∗ with
captions ∆(c) = 0.

Lastly, the results are biased by the fact Pascal 50S is a dataset designed for full-
image captioning whereas we used it unsuitably for the dense captioning task. However,
our approach shows that this trick is feasible and yields promising results; and the set of
generated captions can be optimized to correspond to ground truth of different nature.
In further work, optimizing the set of generated captions to a natural language text
describing the image shall be tested.
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6 Conclusions

In this thesis, we elaborated on image captioning, underlining especially characteristics
of dense image captioning. We showed Convolutional Neural Networks and Reccurent
Neural Nets are fundamental parts of modern Deep Learning that successfully provides
solutions to the discussed tasks. It was demonstrated the most recent models draw
primarily on CNN-based image encoders and the LSTM recurrent method. Concretely,
the models DenseCap and Neural Image Caption were compared and examined.

Taking drawbacks of available evaluation techniques into account, we showed the
qualities of the SPICE score when evaluating a dense captioning model using a full-
image dataset. Concretely, SPICE can be extended in such a way it accepts a set of
captions referring to an image and evaluates it thoroughly against ground truth.

In addition, we showed that SPICE correlates highly with maximal sets overlap and
therefore this function is applicable to cases where big data are concerned.

When analysing the outcomes of DenseCap, it was found the set of generated cap-
tions is redundant, restricted and dependant on scene setting. In particular, the set
contains identical captions in terms of textual similarity and consists of greatly re-
duced vocabulary compared to the training set. Most importantly, the language model
in DenseCap can be viewed as a sentence retrieval system since 92% of the gener-
ated captions are within the training examples. However, the quality of those and the
novel ones remains the same. Together with the scene setting dependency problem, we
arrived at the conclusion the DenseCap model is over-fitted in those terms.

Also, we found that improving such a complex system is not straightforward. By
adapting approaches successful in full-image captioning, the results are worsen in case
of dense captioning. Similarly, a SVM predictor was proposed to estimate the set of
distinct captions. The chosen methods illustrates that generation of high-quality set
of captions that together describe the image comprehensively and non-redundantly,
remains an open problem.
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