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Abstract
In this thesis, I propose an unsupervised
computational model of language acqui-
sition through visual grounding. I espe-
cially focus on a case where the language
input is in a form of variable length sen-
tences. The state-of-the-art cognitive ar-
chitectures with the focus on grounding
language in vision are explored. I take
an advantage of probabilistic Bayesian
models which are besides neural networks
one of the main tools used in a compu-
tational cognitive modeling. The proba-
bilistic (Bayesian) models have been used
in the tasks such as language processing,
decision making or causality learning. In
the first part of the thesis newly proposed
method for estimating a number of clus-
ters in data is described. In the second
part of the thesis I focus on the description
of the cognitive architecture itself. The
developed hierarchical cognitive architec-
ture processes separately visual (static)
and language (time-sequence) data and
combines them in a multimodal layer. The
important feature is a compositionality of
the system - ability to derive meaning
of previously unheard sentences and un-
seen objects and its ability to learn all
features describing the object from sen-
tences of variable length. The proposed
architecture was implemented into the hu-
manoid robot iCub and tested on both
artificially generated data and on the real-
world data.

Keywords: unsupervised learning,
language acquisition, symbol grounding,
Gaussian mixture model, probabilistic
Bayesian model
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Abstrakt
V této disertační práci se zabývám ná-
vrhem výpočetního modelu osvojování ja-
zyka skrz ukotvení symbolů ve vizuálních
vjemech. Speciálně se zaměřuji na případ,
kdy je jazykový vstup ve formě vět va-
riabilní délky. V rámci práce byla prove-
dena rešerše recentních kognitivních archi-
tektur se zaměřením na ukotvení jazyka
ve vizuálních vjemech. Navrhovaná ar-
chitektura využívá pravděpodobnostních
Bayesovských modelů, které jsou vedle
neuronových sítí jedním z hlavních ná-
strojů používaných ve výpočetním kogni-
tivním modelování. Pravděpodobnostní
(Bayesovské) modely byly využity v ta-
kových úlohách jako zpracování jazyka,
rozhodování nebo kauzální učení. V první
části práce je popsán nově navržený algo-
ritmus pro odhad počtu shluku v datech.
Druhá část se již zabývá popisem samotné
kognitivní architektury. Předkládaná hie-
rarchická kognitivní architektura zpraco-
vává samostatně vizuální (statická) a jazy-
ková (časová) data a kombinuje je v multi-
modální vrstvě. Důležitou vlastností je
komposicionalita systému - jeho schopnost
odvodit význam předtím neslyšených vět
a neviděných objektů z předchozích pozo-
rování a jeho schopnost naučit se přiřadit
význam k jednotlivým vizuálním vlastnos-
tem na základě vět s variabilní délkou.
Navrhovaná architektura byla implemen-
tována do humanoidního robota iCub a
testovaná jak na uměle generovaných da-
tech, tak na datech reálných.

Klíčová slova: učení bez učitele,
osvojování jazyka, ukotvení symbolů,
směs Gaussiánů, pravděpodobnostní
Bayesovský model

Překlad názvu: Hierarchický
pravděpodobnostní model akvizice jazyka
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AIC Akaike information criterion

AWE Approximate weight of evidence

BIC Bayesian information criterion
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fMRI Functional magnetic resonance imaging
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Chapter 1
Introduction and Motivation

The emergence of language in human prehistory enabled people to expand knowledge
quickly and pass it from generation to generation, something humans have been unable
to do up to this point or it was done mainly through genetics. The amazing language
capacity caused a quick development of the language and the language evolved through
ages from the system of few sounds describing simple objects or situations to a very
complex and abstract symbol system with a complex grammatical structure. As it was
getting more and more complex, it became more powerful tool, which was able not only
to describe the sensory data, but also situations, express metaphorical meaning or some
abstract concepts.

The essential (and still not fully answered) question in language acquisition is how
percepts are anchored in some arbitrary symbols. In other words, how words (symbols)
get their meanings. This is a so called symbol grounding problem. For many years, there
has been a joint attempt of cognitive modeling, neuroscience, psychology and machine
learning to understand how human solve this ‘problem’. There are many questions which
are left open – how is the language acquired by a newborn child? How do babies find to
which object or property should the perceived word be assigned to in sensorically very
rich world? How do they deal with the noise and uncertainty in received data? How
do they find out how many different words or properties should be discriminated? And
what about the case when the unambiguous mapping between the language and sensory
data does not exist? Furthermore, what about cases when the language inputs describe
abstract concepts or very complex situations, to which we cannot simply point by a finger?
In this Ph.D. thesis, I aim to answer some of these questions although some of them are
beyond the scope of this thesis.

The difficulty of the task was well described in a well-known experiment done by
Quine [1] who imagined the anthropologist meeting a native who pointed at the scene and
said “gavagai”. When the anthropologist is stimulated in a situation by seeing a rabbit,
he will suppose that the word represents running rabbit in front of him, even though it
could mean as well “ground”, “sun”, “hello”, or whatever else. This problem is related to
language relativity, as there are several objects and their features that are described by
words. The simple version of this problem consists of simple visual scene and separate
words that are grounded based on statistical co-occurrence (cross-situational learning). A
more difficult version of this problem requires cognitive mechanism for grounding visual
scenes described by sentences with variable structure.

Computational cognitive models of grounding language are primarily based on the
psychological experiments which have studied relation between perception and language [2]
and language and action [3] . There are two main streams of these models: one focuses on

3



1. Introduction and Motivation ...................................
developing models based on highly adaptive neural networks [4, 5], others have developed
probabilistic models [6], which can handle better noisy and incomplete data. One of the
main long-term objectives of many teams worldwide is building the conversational robots,
which will be able to participate in cooperative tasks mediated by a natural language. It
has been shown how robots can learn new symbols using already grounded symbols and
their combination [4] and how to transfer knowledge between agents [7]. Cangelosi [4] has
presented their research on language emergence and grounding in sensorimotor agents
and robots. This model was further extended by Tikhanoff [8], who did iCub simulation
experiments and focused on integration of speech and action. Grounding of higher order
concepts in action was also explored by Stramandinoli at al. [9], who made use of recurrent
neural networks. Sugita and Tani [10] in their paper describe the experiment dealing with
semantic compositionality – the capability of a robot to use the compositional structure
to generalize novel word combinations. The current state-of-the-art on grounding variable
length sentences is very restricted and deals only with static scenes [6].

The ability to learn language through perception and especially through visual ground-
ing is not only important for understanding human cognition but is also applicable in
many areas such as verbal control of interactive robots [11], automatic sports commenta-
tors [12], car navigation systems, for visually impaired, situated speech understanding in
computer games [13], automated generation of weather forecasts [14], tutoring children
foreign language [15], etc. It should be mentioned that there is also a recent interest in
European and other institutions to provide industrial and rescue robotics with cognitive
capabilities – especially language – so those can easier communicate with a human
operator.

Despite the growing number of studies, there is still not available fully unsupervised
architecture, which would be able to deal with language grounding [16], particularly
language grounding in a case where we don’t have each sentence with fixed structure and
when there is more than one object in a scene.

The overarching goal of the research proposed herein is to extend the capabilities of
robotic systems to provide more autonomous and adaptive behaviours and to allow a more
natural communication between human and robots not dependent on the recognition
of sentences with fixed structures. The hierarchical probabilistic architecture for the
language acquisition is proposed with the focus on grounding the language (in a form of
variable length sentences) in a visual input. Because the focus of the thesis is mainly on
how to find mapping between language and vision, I used very simple datasets consisting
of one object in a scene with varying properties, which are described by a sentence with
fixed or variable length.

The goals of the thesis are following:. Propose the probabilistic hierarchical architecture for the language acquisition,
which will be fully unsupervised.. Propose algorithms, which will enable working in this unsupervised environment
(finding unknown number of clusters in a data autonomously, deal with non-
unambiguous mapping or variable length sentences etc.).. Test this architecture on artificial data (both visual and language).. Test this architecture in a robotic scenario on the real-world data.
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............................... 1.1. Personal background and Motivation

1.1 Personal background and Motivation
As an introduction to this thesis, I would like to mention here some background in-
formation about my journey towards the research described herein. After finishing
master studies at Mathematical-Physical faculty at Charles University, where I focused
on magnetic properties of lanthanoid compounds [17], my first daughter was born and I
got fascinated by incredibly quick progress that she was doing every day. This motivated
me to start reading first books about neuroscience and cognition and I soon decided
that I would like to dedicate my life to understanding how these cognitive abilities are
created and evolved. By that time I found one of the few cognitive scientists in Czech
Republic, Mgr. Michal Vavrečka, Ph.D., in BioDat group (biomedical data processing
group) at Faculty of Electrical Engineering, who kindly took me with doc. Lhotská as
their Ph.D. student. I started to process EEG data during cognitive tasks (my works
from this research were published in [18, 19]) and slowly moved to cognitive modeling and
its application in robotics [20], where my multidisciplinary background (and especially
mathematical background) turn to be an advantage. My research focused mainly on
models of language acquisition and grounding language in perception – the results of this
research are described in this thesis. My own architecture was published in [21] and I
implemented it into the humanoid iCub robot during my research stay in Plymouth, UK
(resulting video can be seen at [22]). To be able to design fully unsupervised architecture,
I had to deal with problems in unsupervised learning such as ability to find unknown
number of clusters in data [23] or finding the best mapping between two clusterings.
It was a long way, but I finally know, that I found the field where I could hopefully
contribute to the nowadays knowledge, apply my multidisciplinary background and which
will never stop to fascinate me.

1.2 Task specification
The more detailed specification of individual thesis goals is described here.. Propose the probabilistic hierarchical architecture for the language acquisition,

which will be fully unsupervised. This task consists of following subtasks:. Explore the state-of-the-art cognitive architectures with the focus on grounding
language in vision and clustering algorithms used for processing visual and
language information.. Propose and implement the algorithms for processing data in individual
modalities. Visual (static) and language (time sequence) data should be
processed separately using unsupervised clustering algorithms.. Propose the mechanism for assigning information from individual layers in
the multimodal layer. The proposed algorithms should be able to deal both
with sentences having fixed and variable structure.. Propose algorithms, which will enable working in this unsupervised environment.. Propose the algorithm which will be able to detect the number of clusters in
observed data. Especially focus on finding optimal number of components in
a mixture of Gaussians which should be used for processing visual data.

5



1. Introduction and Motivation ...................................
. Propose an algorithm which will be able to find mapping between individual

modalities in a case of variable length sentence and when there is non-equal
number of clusters in individual subdomains.. Test the performance of the architecture on artificial data. The artificially gener-

ated visual data should have varied several visual features such as color, shape,
orientation, size and texture.. Test performance of the proposed algorithms on the data from individual

subdomains (vision and language) and compare the performance to other
state-of-the-art algorithms.. Test dependency of the recognition accuracy on the level of noise in data.. Test compositionality of the architecture - ability to derive meaning of unknown
sentences and combinations of percepts from that of known ones.. Test ability to find mapping between visual and language layer on these data.. Test this architecture in a robotic scenario on the real-world data. Implement

the proposed architecture into the robotic simulator and test its performance in a
real-world scenario (real images and voice). For this task, number of objects and its
differing visual properties will be restricted. Architecture will be first implemented
into the robotic simulator which will enable easier control of experimental conditions.
Afterward, the architecture will be implemented into the physical robotic platform.
As a robotic platform will be used humanoid robot iCub. Similarly as for the
artificial data, performance of individual modalities should be tested as well as
the ability to find mapping between individual modalities. The effect of noise in
language data should be also investigated.

1.3 Thesis organization
The rest of the thesis is organized as follows. The thesis consists of two major parts.
The first part describes a technique for estimating number of components in Gaussian
mixture models (GMM). This is an important issue in tasks that take advantage of
unsupervised learning, including symbol grounding where we don’t know the number of
visual and language categories beforehand. This proposed algorithm is subsequently used
in the multimodal cognitive architecture, which is described together with experimental
results in the second part of the thesis. Chapter 2 gives an overview of the state-of-the-
art probabilistic models of cognition, namely general Expectation-Maximization (EM)
algorithm and GMM are described. In Chapter 3, the proposed algorithm for unknown
number of components is described and its performance on both artificial and real-world
datasets is shown. Second part of the thesis starts with Chapter 4, where state-of-the-art
cognitive models of vision, language and symbol grounding are summarized, focusing on
implementation of these models into the robotic platform. The proposed multimodal
cognitive architecture for language acquisition is presented in Chapter 5. Datasets used
for testing the performance of this architecture are described in the Chapter 6 and in
Chapter 7 are presented experimental results for unimodal layers as well as for the top-
most multimodal layer both on artificial data and on the real-world data from humanoid
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................................ 1.4. Computational cognitive modeling

iCub robot. Results of mapping language-to-vision are emphasized. These results are
discussed in Chapter 8. In Chapter 9 is provided an overview of thesis contribution and
in Chapter 10 are outlined possible extension and future prospects of the presented work.

1.4 Computational cognitive modeling

A computational cognitive modeling covers simulations of complex mental processes in
different areas of cognition, especially in human problem solving, based on computational
model. The goal of cognitive modeling is not only to understand, describe and model
observed human behavior, but also to predict it.

Cognition can be defined as the mental process of knowing, including aspects such as
awareness, perception, reasoning and judgment [24]. The term itself originates from the
Latin word cognitio, from cognoscere, which is composed from -co (intensive) + nosecere
(to learn).

The history of interest in human cognition is untraceable. The first documented
remarks can be found in the antic philosophy where the human psyché is discussed.
The dualism of a body and mind was firstly proposed by Plató who believed that the
mind is located within the brain. Even though the Antic era was followed by centuries
of Christian dogmatism during the Middle Ages, the philosophical focus has shifted
from God to the humankind during the Renaissance and the Plato’s idea of mind-body
dualism was recovered in the 17th century by Descartes who believed in the introspective
methods.

Immanuel Kant, the great philosopher of the 18th century, was the first to realize
that the understanding requires synthesis of two distinct types of knowledge – the general
truth (a priori) and experience-based (a posteriori) knowledge. Kant had a huge impact
on philosophy and his ideas in connection with knowledge of human body (physiology)
of that times were the base stones for establishing psychology as a separate discipline.
The first half of the 20th century was an era of behaviorism which believed that all the
basis for knowledge is a sensory perception.

In 1950s, primitive computers have been constructed, George Miller summarized
studies showing that the mental capacity of human is limited, Herbert Simon, Marvin
Minsky, John McCarthy, Allen Newell and others found artificial intelligence and the
linguist Noam Chomsky rejected ideas of behaviorism [25]. That was the beginning
of the cognitive science as an interdisciplinary study of mind, which interconnects
knowledge from philosophy, neuroscience, linguistics, psychology, artificial intelligence
and anthropology. Oppositely to the behaviorism, cognitivists believe that the human
behavior can be understood mainly by grasping how the human mind works. This is a
reason why many detailed psychological models of human thinking were developed and
computerized using artificial intelligence methods (which should be based on neuroscience
findings).

The majority of these models are focused on specific cognitive areas – e.g. visual
perception [26], implicit and explicit learning [27] or language processing [28].

Analysis can be done on different levels of abstraction. There are several theories what
are these levels. Well known is division to the three levels defined by David Marr [29]:..1. Computational level
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In my work, I use the differentiation to four levels, which was defined by Sun et al.
in 2005 [30]. The levels are:..1. Sociological level – inter-agent processes, collective behavior of agents..2. Psychological level – individual behavior of agents..3. Componential level – intra-agent processes, modular construction of agents..4. Physiological level – biological implementation

Most of the computational analysis is performed on the componential level where
agents’ functions and internal processes are defined.

These levels correspond to four bands defined by Newell [31]: biological, cognitive,
rational and higher bands (social, historical and evolutionary band). Each of them being
divided into separate levels and operating on a different time scale.

Comparing different models of cognition
Traditional models of cognition can be divided into three major groups – connectionistic
modeling, Bayesian parametric models and rule-based modeling proposed by Minsky [32].
In the last years, Bayesian nonparametric models became very popular. This method
was proposed to suppress limitations of simple parametrical models, but the volume of
classification space grows exponentially with the dimensionality. Training requirements
for nonparametric paradigms have thus often exponential complexity [33].

The above mentioned models combine different degree of adaptivity and apriority,
their neurorelevance differs widely and all of the concepts face combinatorial explosion of
computational complexity [33].

The number of cognitive models is big. It is useful to give some restrictions and rules
for them to be able to choose the best one.

Constraints on complex cognitive system (mind, cognitive architecture) summarized
in Newell [31] are following: flexibility, adaptivity, autonomy, self-awareness, operation
in real-time and in complex environments, usage of symbol and abstractions, usage
of language, learning from environment, acquiring capabilities through development,
be realizable as a neural system, be constructable by an embryological growth process
and arise through evolution. The extended version of these desiderata for cognitive
architectures includes [34]: ecological realism, bio-evolutionary realism, cognitive realism
and eclecticism of methodologies and techniques.

In [35], four properties are discussed, which should satisfy every computational
cognitive neuroscience (CCN) model:. The neuroscience ideal: A CCN model should not make any assumptions that are

known to contradict the current neuroscience literature.. The simplicity heuristic: No extra neuroscientific detail should be added to the
model unless there is data to test this component of the model or the model cannot
function without this detail.
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................................ 1.4. Computational cognitive modeling

. The Set-in-Stone Ideal: Once set, the architecture of the network and the models
of each individual unit should remain fixed throughout all applications.. The Goodness-of-Fit Ideal: A CCN model should provide good accounts of behav-
ioral data and at least some neuroscience data.

These neuroscience requirements increase a number of constraints for the wide field
of cognitive models, which focuses mainly on behavioral aspects. The above mentioned
properties will enable to find relations between seemingly unrelated behaviors through
same neuroscience aspects or to predict some behavioral aspects, which could be hidden
from a strictly cognitive perspective.

Models can be compared based on their degree of adaptivity and apriority, neural
and biological plausibility and computational complexity.

We could also focus on whether the model integrates online or perform incremen-
tal learning, which would enable the model to continuously update with an incoming
information.
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Estimating number of components in
mixture models
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Chapter 2
Probabilistic (Bayesian) models of cognition

Probabilistic models of cognition describe learning and reasoning as inference in complex
probabilistic models. The history of probability theory dates as far back as 18th century.
The theory was developed to analyse games of chance but quickly became a formal
account of rational reasoning in a case of uncertainty [36]. The Bayesian statistics
was used in cognitive science in many different ways, which are discussed in [37]. We
can separate them to three main flows: statistician view uses Bayesian approach for
conducting standard analysis of data sampling distributions and null hypothesis testing
(e.g. [38]); the theoretician view uses it to describe how inferences are made by a human
mind on a computational level [39, 40] or as an theoretical metaphor for behavior at
the implementation and algorithmic levels [41]; the last approach relates models of
psychological processes to data (e.g. [42]).

Among other topics, Bayesian models have addressed animal learning [43], visual scene
perception [44], sensorimotoric tasks [45, 46], semantic memory [47], language processing
and acquisition [28, 48], and social cognition [49]. Recently, also nonparametric Bayesian
models became increasingly used. The probabilistic models try to find the answer to the
question how could the human mind learn so much from such a sparse and noisy data,
which we observe through our senses [40].

The biggest advantage of the parametric-based models is that their parameters can
capture variabilities and uncertainties in the data because probability distributions are
used instead of frequencies or sampling distributions. Models based on a priori logic
rules [32] require no training but cannot adapt. On the other hand, neural networks use
no a priori knowledge and learn only through the adaptivity (e.g. [50, 51]). Parametric
model-based algorithms combine adaptivity of parameters with apriority of models
(e.g. [40, 28, 48, 52, 53, 54]) and can adapt the models to the variabilities in data.

The main problem of neural networks and other adaptive models learning from data
is the ”the curse of dimensionality” [55]. It addresses the problem that the number of
necessary training examples is increasing combinatorially with the dimensionality of the
problem. On the other side, rule-based models with a priori rules face the combinatorial
growth of the number of rules necessary to teach the system [33]. The parametric models,
which combine both apriority and adaptivity, face the combinatorial explosion of the
computational complexity because the segmentation requires evaluation of combinatorially
many data subdivisions into subsets corresponding to the individual models [52].

Concerning the behavioral and neural plausibility, it is reasonable to ponder that the
organism’s response to the signals received from afferent sensory fibers is selected by
choosing an option from a list of all possibilities, which is most appropriate considering a
current state of an organism [56]. It should be also mentioned that during certain tasks
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2. Probabilistic (Bayesian) models of cognition ............................
people make use Bayesian inference. These tasks include combination of haptic and
visual information about an object [57], perceptual [58, 59] or sensorimotoric [45, 46]
tasks. On the other hand, even though there exist proposals how could neural populations
performing Bayesian inference [60], up to date the neuroscience evidence is only limited; a
high-level perception and many other biological mechanisms probably do not implement
Bayesian inference (or do not rely only on it). Also some processes at algorithmic or
neurocomputational levels and these on computational level with no induced inference
are not suitable for Bayesian analysis [40]. Rather than advocating a monolithic and
exclusively probabilistic view of the mind, Chater, Tenenbaum and Yuille in [28] suggest
instead that probabilistic methods have a range of valuable roles to play in understanding
cognition.

2.1 Bayesian modeling

Bayesian models are based on Bayes’ rule [61, 62], which is an elementary result of the
probability theory:

P (h|d) = P (d|h)P (h)∑
h′∈H P (d|h′)P (h′) . (2.1)

As can be seen, a posterior probability P (h|d) depends only on prior probabilities
P (h) and conditional probabilities P (d|h). Suppose that h is a hypothesis from the
hypothesis space H and d are measured data. Conditional probabilities P (d|h′) reweigh
the hypothesis h′ from the hypothesis space H and describe how well they match the
data d.

We say that a parametric adaptive model Mk(θk, N) models data X, if:

X = Mk(θk, N), (2.2)

where X is data, θk are parameters of model Mk, and N is number of input data
vectors.

The learning of parameters θk is provided by maximizing the similarity measure
between data and a current model.

Association (or segmentation) between the input data vector and objects can be
described mathematically as a subdivision Ξ of the inputs (x1, . . . ,xn) to the subsets ξk,
which correspond to the objects Ξ = {ξ1, ξ2, . . . , ξk}. The overall likelihood (similarity
measure) between model and data can be defined as follows:

LL(θ) =
K∑

j=1

N∑
n=1

ll(xn|Mj) =
K∑

j=1

N∑
n=1

log(l(xn|Mj)), (2.3)

where l(xn|Mj) is a conditional similarity measure between data xn and model Mj , K is
number of components (objects), and N is number of data points.

The aim is to find such a segmentation Ξ (which defines e.g. number of models K)
and models parameters θk to maximize the similarity LL:

max
Ξ

K∑
j=1

max
θMj

N∑
n=1

ll(xn|Mj). (2.4)
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....................................... 2.1. Bayesian modeling

The positives of the models are the following: they provide a link between human
cognition and the normative prescriptions of a theory of rational inductive inference,
combine statistical learning with symbolic structure and enable communication with
other fields studying computational principles [40]. The models mainly work at Marr’s
computational level rather than on the algorithmic or process level.

There exists no closed form solution for finding optimal parameters θ∗ = argmaxθ LL(θ).
Therefore parameters θ∗ have to be estimated either by the numerical optimization meth-
ods such as Markov Chain Monte Carlo (MCMC) method or learned using an iterative
EM algorithm [63, 64].

EM algorithm maximizes instead of LL(θ) its lower bound F (θ). At each iteration
we find an optimal lower bound F (θt) at the current guess of parameters θt and then
maximize this bound to obtain an improved estimate θt+1. Initial values of parameters
θ0 may be chosen randomly or using more sophisticated method...1. Expectation step (E-step): Calculate the expected value of the log likelihood function

with the respect to the unknown data Y given the observed data X and the current
estimate of the parameters θt:

Q(θ,θt) = E[log(p(X ,Y|θ)|X ,θt]...2. Maximization step (M-step): Find parameters that maximize the expected value of
the log likelihood estimate:

θt+1 = argmax
θ

Q(θ,θt).

General Gaussian mixture model algorithm
General mixture models are defined as a convex mixture (with mixing proportions rk) of
some probability distribution lk(xn|θk):

fk(xn) =
K∑

k=1
rklk(xn|θk). (2.5)

In the case of Gaussian mixture model (GMM), probability distributions lk(xn|θk) are
d-dimensional Gaussian densities (where parameters θk are cluster centres mk and
covariance matrices Sk):

lk(xn|mk,Sk) = (2π)−d/2|Sk|−1/2 exp[−0.5(xn −mk)>Sk
−1(xn −mk)]. (2.6)

The overall likelihood (or log-likelihood) between data and model is described by the
following equation:

LL(θ) =
N∑

n=1
ln
(

K∑
k=1

rklk(xn|θk)
)
, (2.7)

where K is number of components, N is number of data points, θ are estimators
(approximated parameters of model k), lk(xn|θk) are Gaussian densities (similarities of
data point xn with the component k), and rk is mixing proportion of component k.

Mixing proportions must satisfy:
K∑

k=1
rk = 1 and rk > 0 for k = 1, . . . ,K. (2.8)
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2. Probabilistic (Bayesian) models of cognition ............................
Estimating GMM parameters

Since there exist no closed form solution for finding optimal parameters θ∗, we have to
find the parameters by the numerical methods or by using simple iterative EM algorithm.
The EM algorithm for GMM iterates between two steps:..1. E-step: Estimating all probabilities :

fk(xn) = rklk(xn|mk,Sk)
K∑

k′=1
rk′ lk′(xn|mk′ ,Sk′)

, (2.9)..2. M-step: Choosing the parameters that maximize the log-likelihood when the
probabilities are known:

rk = 1
N

N∑
n=1

fk(xn), (2.10)

mk =

N∑
n=1

fk(xn)xn

N∑
n=1

fk(xn)
, (2.11)

Sk =

N∑
n=1

fk(xn)(xn −mk)(xn −mk)>

N∑
n=1

fk(xn)
. (2.12)

2.1.1 Convergence of EM algorithm

EM algorithm is an iterative algorithm. The EM algorithm is guaranteed to monotonically
converge to local optima of likelihood L under mild continuity conditions [64]. The
likelihood L is non-decreasing at each iteration. In my implementation of EM algorithm
for mixture models I used a heuristic method to avoid singularities of likelihood. Lets
suppose that current estimate of parameters θ is θn. Parameters in a next iteration of
the algorithm θn+1 are chosen to maximize L(θ): L(θn+1)−L(θn) ≥ L(θn)−L(θn) = 0.
Therefore L(θ) is non-decreasing at each iteration. The monotonic convergence to a fixed
point is guaranteed. Anyway it is not guaranteed that the fixed point reached for θ∗
will be global or local maxima. It has been shown [63, 65], that θ∗ can be either local
maximum, local minimum or stationary point (see example in Murray [66]).

It was also shown, that EM algorithm is generally first-order or linearly convergent
algorithm [67]. Rate of EM algorithm convergence can be found by calculating the
information matrices for the missing data and for the observed data [64, 68].

Xu and Jordan [69], proved the general dominance of EM algorithm over gradient
method for Gaussian mixtures. Anyway the convergence rate strongly depends on the
overlap of components [64, 63, 70]. The methods aiming to increase the convergence are
usually based on superlinear optimization theory [71, 72].
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2.2 Time Sequences – HMM
Hidden Markov Model (HMM) is a simple and effective tool used to model time-varying
signals. The Hidden Markov Model is a special case of a probabilistic finite-state machine
that was successfully applicated for example in speech recognition task [73], hand-written
text processing [74] or gesture recognition [75]. The assumption that the probability of
an observation at time n only depends on the state at time n− 1 is called a first-order
Markov assumption. HMM is characterized by the following parameters described in [73]:

T = length of the observation sequence
N = number of states in the model
M = number of observation symbols
S = {s0, s1, ..., sN1} = distinct states of the Markov process
V = {v0, v1, ..., vM1} = set of possible observations

A = {aij} = state transition probabilities,
N∑

j=1
aij = 1,

aij : probability of going from si to sj

B = {bi(vk))} = observation probability matrix,
bi(vk): probability of generating vk at si

Π = {π1, . . . , πN} = initial state probabilities,
N−1∑
i=0

πi = 1,

πi: probability of starting at state si

O = (O0, O1, ..., OT 1) = observation sequence.

(2.13)

There are three fundamental problems that can be solved using HMMs:..1. Problem 1: Given a sequence of observationsO and a modelHMM = (S, V,B,A,Π),
determine the likelihoods P (O|HMM) of the observed sequence O (solved by the
the forward algorithm [73])...2. Problem 2: Given a sequence of observationsO and a modelHMM = (S, V,B,A,Π),
find an optimal sequence of states S (solved by Viterbi algorithm [76])...3. Problem 3: Given a sequence of observations O, find the model parameters that
maximizes the probability of observing a sequence O (solved by learning procedures
such as Baum-Welch algorithm).

The most known learning procedure used to find unknown parameters of HMM is a
Baum-Welch algorithm which is a variant of the iterative EM algorithm.

Clustering HMMs
Clustering of HMMs provides a way to identify similar sequences and group these data
sequences based on the transition patterns [77]. There is variety of algorithms for
discovering clusters within data (both parametric and non-parametric), ranging from
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2. Probabilistic (Bayesian) models of cognition ............................
traditional clustering methods, such as the k-means or hierarchical clustering to spectral
clustering that has got an increasing attention recently. Anyway, the application of these
techniques for clustering sequential data poses a number of additional challenges. For
example, we have to detect similar hidden properties between sequences of different
lengths etc. [78]. There are also several methods, which do not cluster HMMs but make
use of HMM to cluster data.

Application of traditional k-means algorithm for clustering HMMs is described in
Algorithm 1.

Algorithm 1 Clustering HMM using k-means
1: for k random data points xn do
2: draw a data point xn at random (without replacement)
3: create an HMM and train on data point xn
4: end for
5: while cluster membership change do
6: for each data point xn do
7: for each cluster c do
8: compute log likelihood of xn under c
9: assign xn to its highest likelihood cluster

10: end for
11: end for
12: for each cluster c do
13: retrain HMM on items in c
14: end for
15: end while

Jabera et al. [78] developed the semi-parametric method for clustering HMMs and
applied recent work of spectral clustering to the time-series data. They use probability
product kernels [79] to measure similarity between HMMs and laid down the foundations
for the use of the Bhattacharyya affinity in this area. Fan in his dissertation thesis [77]
followed up on this approach and proposed a semi-parametric method using Bhattacharyya
affinity to measure the pairwise similarity between sequences. He used sequential model
to extract the features of the data, constructs the distance matrix based on the features
and finally he applies existing clustering algorithms to obtain the cluster assignment.

Another method is the agglomerative HMM clustering. Smyth in [80] used the log-
likelihood to measure the discrepancy between two sequences and then applied hierarchical
clustering on the resulting distance matrix. Butler [81] found that the hierarchical HMM
is an effective tool for unsupervised learning of sound patterns. Initially there are N
singleton clusters ci, i ∈ 〈1, N〉 each modeled by one HMM Mi, i ∈ 〈1, N〉 each trained
on a single data item. These singleton clusters are sequentially merged according to the
distance measure LLij = log(l(xj |Mi)) (each item xj is evaluated under each model Mi),
which is normalized (column-wise [81]) and symmetrized LLij = LLij+LLji

2 . The pair of
clusters with the lowest distance measure is merged in each iteration. The combined
cluster replaces the lower-numbered merged cluster k = min(i, j), with ck = cicj and j
discarded. Afterward, the distance measure LLij is updated: ∀l : Lkl, Llk are computed.
The singleton initialisation is intended to scatter the cluster models randomly through
the data. Items are then moved among clusters until a stable arrangement is found (see
Algorithm 2) [80, 81].
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Algorithm 2 Agglomerative HMM clustering
1: for each data point xn do
2: init a HMM with k states
3: learn a single HMM
4: compute LL(i)
5: end for
6: for each data point xn do
7: for each data point xj , j 6= n do
8: loglik(n, j) – compute log-likelihood of data point xn in a HMM learned using data

point xj
9: end for

10: end for
11: while number of HMM > K (K – number of clusters to detect) do
12: find loglik maximum value to detect the two HMMs, which will be merged
13: relearn merged HMM and update loglik variable
14: delete merged HMM from all variables and update indices vector
15: end while

Coviello in [82] presented the algorithm to cluster HMMs based on the hierarchical
EM (HEM) algorithm and applied it to clustering of motion capture sequences. A
given collection of HMMs is clustered into groups based on distributions they represent
and each group is characterized by a cluster centre. That is, a novel HMM that
concisely and appropriately represents each cluster. A model-based method was also
developed by Panuccio et al. [83] or Garcia et. al [84] and a similarity-based method was
proposed by Bicego et al. [85]. These methods do not scale well for large data problems
because constructing the distance matrix based on the pairwise likelihood of HMMs is
computationally expensive. Alon et al. [86] considers EM algorithm for clustering HMM.
His method has a problem when time series data are not radially distributed.

There are several other methods such as a clustering method using HMM parameter
space and eigenvector decomposition proposed by Porikli et al. [87] or sequence clustering
method with HMM setting based on the transition matrix induced in a common HMM
which was proposed by Garcia et al. [88]. Porikli et al. [87] has shown that the number
of eigenvectors is proportional to the number of clusters.

2.3 Hierarchical Bayesian Models

Hierarchical models structure data into groups, which can be represented by a set of
modules or sub-modules. Different parameters are used for each group. Some of these
parameters describing the model are conditionally dependent on other parameters. The
example of such a case is measuring data from a group of subjects, where each subject
characterized by its own parameters is an element from superior population distribution
(parameters of this superior distribution are called hyperparameters) [89].

Hierarchical Bayesian model is a model written in a hierarchical form that is estimated
using Bayesian methods [90]. Usually, we cannot analytically determine the posterior
distribution because we cannot find analytically the normalizing constant in Bayes’
theorem. Parameters of hierarchical models can be determined by the maximum likelihood
estimation method. There has been a dramatic increase of interest in the recently
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2. Probabilistic (Bayesian) models of cognition ............................
developed MCMC (Monte Carlo Markov Chain) methods to sample from the posterior,
which work in hierarchical models particularly well.

Lee [37] has described the basic design of hierarchical Bayesian models and their use
for modeling cognitive functions. Hierarchical Bayesian models are based on the simplest
Bayesian non-hierarchical model, which is visualized in Fig. 2.1. In this type of model,
data is generated directly from parameters through a likelihood function f . Despite its
simplicity this model was used in Signal Detection Theory [91] to model memory [92],
in Generalized Context Model for category learning [93] or for finding distribution of
accuracy and response times of simple decisions [94].

Figure 2.1: General non-hierarchical Bayesian model [37]: d – data, f(.) – processes, θ –
parameters.

More complex hierarchical models can be of many types. Three basic models are
visualized in Fig. 2.2 [37].

Figure 2.2: Three basic types of complex hierarchical models [37]: d – data, f(.), g(.) –
processes, θ – parameters, h – unification rule, z – bias.

Model A reflects the situation where combination of 2 mappings is used and parameters
θ are generated from basic parameters ψ using a process g(.). This model was used for
accommodation of individual differences, for modeling memory retention [89], memory [95]
or emotional states [96].

Model B is a visualization of the situation where the same parameters θ can lead
to different data d1, . . . , dn through the processes f1, . . . , fn. Based on this model, a
joint model for recognition, free recall and serial recall was designed, assuming that all
processes work on the same memory system [97].
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The last presented model C describes the opposite situation where one set of data
d is influenced by different sets of parameters θ1, . . . ,θn through processes f1, . . . , fn.
This model was applied by Ratcliff [98] for modeling the accuracy and reaction times
distributions for simple decision-making or in the Topics model [99].

In Figure 2.3 [37], the most complex hierarchical model can be seen which interconnects
models of type A, B and C from Fig. 2.2.

Figure 2.3: A hierarchical model where data d are generated from different models which
have parameters θ1, . . . ,θn (which are generated from basic parameters ψ through process
g(.)) through processes f1, . . . , fn. The unification with bias z is governed by the rule h [37].

21



...

22



Chapter 3
Proposed technique for estimating number of
components in Gaussian mixture model

As a part of the proposed cognitive architecture I have designed the algorithm for finding
the number of clusters in a data. The problem of unknown number of clusters is a
common problem in a clustering analysis, which has not been solved yet. The following
chapter is mainly based on the article published in [23].

The ability to find the number of concepts (clusters) in a dataset is essential to
many cognitive tasks, spanning from the analysis of objects in a visual scene to word
categorization during language acquisition. In the field of machine learning, this is still
an unsolved problem. One possible solution is to take inspiration from humans.

In the traditional machine learning approach, the visual input is processed in a
bottom-up manner, and cortical regions analyse increasingly complex information. On
the other hand, recent neurological and fMRI neuroimaging studies have confirmed that
visual processing is performed by a combination of top-down and bottom-up processes in
the brain [100]. Moreover, another research [101, 102] has concluded from fMRI data
that top-down signals in attentional experiments are initially vague. This leads us to the
conclusion that it should be useful to use this knowledge in the field of machine learning.

The abovementioned processes have already been transformed into mathematical
equations by Perlovsky [33, 52] who called them the ”knowledge instinct”, which is
defined as an unsupervised cluster analysis, where data comes from unknown sources
with some probability distribution (in the simplest case, the Gaussian distribution). The
whole problem can be modelled on a mixture model, specifically, on a Gaussian mixture
model for Gaussian distribution. The Gaussian mixture model (GMM) is a very powerful
model-based unsupervised clustering method [103].

Perlovsky hypothesizes that the process of learning for a given number of concepts
and parameters is based on the adaptive convergence from vague, highly fuzzy concepts to
crisp and deterministic ones using dynamic logic equations [104, 105, 106]. This approach
was tested in such complex tasks as pattern recognition [107], tracking [108] or acquisition
of language in cognitive robotics [109]. The dynamic logic is an unsupervised model-based
learning technique that maximizes similarity over the model parameters and the number
of models. The correspondence of dynamic logic to the Expectation-Maximization (EM)
algorithm was shown in [33]. The EM algorithm is a standard method used to fit finite
mixture models to observed data. When fitting mixture models, we face two main
problems. First is the fact that the EM algorithm is a method converging to a local
optimum and thus it is very sensitive to initialisation. The second problem is the selection
of the number of components.
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3. Proposed technique for estimating number of components in Gaussian mixture model ..........
The standard GMM algorithm can be used only in cases where the number of clusters

is known, at least approximately. However, there exist several modifications of the
standard GMM algorithm that are suitable for an unknown number of components. The
most widely used of these are the split-merge method [110, 111, 112] and the greedy
Gaussian mixture model (gGMM) method [113]. The greedy approach starts with a single
component and new components are sequentially added into the mixture. In [114], it is
shown that this approach can be superior to a normal GMM even in cases where the
number of components is known. Both the GMM and gGMM ability to find the optimal
solution depends strongly on the initialisation of the cluster centres.

Also, the stopping criterion used for finding the optimal number of clusters plays
an important role in this process. These are mostly information criteria that penalise
the log-likelihood function, e.g. AIC [115], BIC [116], NEC [117, 118]. Both of these
problems (initialisation and criteria for assessing the optimal number of clusters) are
discussed in the next few chapters in greater detail.

In the following sections, a proposed novel greedy GMM method with merging
(gmGMM) is described. It is shown that it performs generally better than existing
algorithms when searching for the optimal number of components. The important feature
of the proposed method is that it combines the greedy and the merging approaches. This
results in a better accuracy in the estimation of the number of components (compared to
the simple greedy GMM) without the necessity to know the upper bound for the number
of components (which is necessary for merging algorithms). The performance of the
greedy and normal GMM approaches is compared on unified datasets and further the
proposed method is compared to other well-known methods for learning GMM, using
both artificial and real-world datasets. Different stopping criteria are confronted and
some enhancements to them are proposed.

3.1 Initialization techniques
In the past few years, several methods for the initialisation of component parameters
and the localisation of optimal new components have been proposed. Methods used for
the initialisation of new components can be divided into those that use only input data
and those that also use the parameters of components that are already included in the
mixture. Below, a brief overview of the existing initialisation methods is provided.

A simple but, in many cases, very efficient method is the random initialisation [110]
of a known number of components K. Centres of clusters are randomly chosen vectors
from the sample dataset, priors are set to 1/K and covariance matrices Sk are initialised
as:

Sk = 1
10dTr(S) · I, for k = 1, . . . ,K, (3.1)

where d is a number of dimensions, and S is covariance matrix of the data set and I is a
unit matrix.

For the greedy GMM, a partial random initialisation can be used. After the EM
converges, a new cluster centre is randomly chosen with a covariance matrix that has
smaller values on the diagonal than the covariance matrices of components already
included in the mixture [113].

A very commonly used method for initialisation in the GMM with a known number
of parameters is a k-means or fuzzy c-means [119] algorithm that, unfortunately, faces
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high computational demands and tends to find local optima. Hence, it is not a suitable
method for the gGMM. The incremental k-means algorithm for the gGMM was used
in [120]. A new cluster centre is found using the global search k-means algorithm
described in [121]. Other methods include the optimally smoothed kernel estimate with
local maxima search [122] or resampling [113, 123, 124].

The initialisation of components in was described in [52]. The clusters are initialised
with large covariance matrices and random centres. The method is limited to tasks with
an approximately known number of clusters.

Moreover even a very careful initialisation of the gGMM cannot prevent the system
from converging to the local optima. Therefore, multiple initialisations, a genetic
algorithm, and split and merge criteria have been used [125, 110]. In the split and merge
method proposed in [126], centres of the new components are initialised with the old
centre values.

3.2 Criteria for assessing the number of components
Several methods have been proposed for finding the optimal number of components in
a mixture. The simplest method is to test different number of clusters and compare
the overall likelihood among the data and model. Any method, which aims to find the
optimal number of components in a mixture must and which is based on log-likelihood
among data and model, deals with the problem that log-likelihood increases with the
number of components. There have been various criteria proposed to overcome this
problem. Hence information criteria are applied to penalise the term −LL(θ) which
provides an asymptotically unbiased estimate of the relative entropy loss (its essential
part). The general form of the information criteria can be described as:

− 2LL(θ) + P (K,N,E,F−1(K), r), (3.2)

where P is the penalisation function for models that are too complex.
P is an increasing function of the number of components. The information criteria

differs in this P function. P function is always dependent on the number of components
K and can be further dependent on the number of data points N , entropy E, M - number
of parameters specifying each component, inverse-Fisher information matrix F−1(K), or
mixing proportions r. An overview of the most-used information criteria is in Table 3.1.

Criteria can be divided into those based on the log-likelihood LL(θ) (AIC, BIC,
AWE, etc.) and those based on the classification log-likelihood (ICL, etc.). Classification
log-likelihood is defined as:

CML(θ) = LL(θ) +
K∑

k=1

N∑
n=1

znk log fk(xn), (3.3)

where znk = 1, if and only if xn arises from component k.
Criteria AIC, BIC, MML, ICOMP, AWE and MDL are dependent on the number

of free parameters in the mixture model with K components η(K), which is for the
d-dimensional GMM with full covariance matrix:

η(K) = (K − 1) + dK + dK(K + 1)
2 . (3.4)
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Criterion Formula Reference

AIC (Akaike in-
formation crite-
rion)

−2LL(K) + 2η(K) Akaike
(1974)[115],
Bozdogan
(1984)[127]

BIC (Bayesian
information cri-
terion)

−2LL(K) + η(K) ln(N) Roberts
(1998)[128],
Schwarz
(1978)[116]

LEC (Laplace-
empirical crite-
rion)

−2LL(K)− 2 log r + log|I(K)| − η(K) log(2π()) McLachlan
(2000)[124]

AWE (Approxi-
mate weight of
evidence)

−2LL(K) + 2η(K)( 3
2 + lnN) Bafield

(1992)[129]

ICOMP (In-
formational
complexity
criterion)

−2LL(K) + η(K) ln
(Tr(F−1(K))

η(K)

)
− ln |F−1(K)| Bozdogan

(1990)[130]

MIR Minimum
information ra-
tio

1−||θm+1−θm||
||θm−θm−1||

AMIR MIR(K)(LL(K)− LL(1)) Windham
(1991)[131]

NEC (Nor-
malised entropy
criterion)

E(K)
LL(K)−LL(1) Celeux

(2006)[117]

ICL (Integrated
classification
likelihood

−2CL∗(K) + η(K)
2 ln(N) Biernacki

(1999)[132]

MML (Mini-
mum message
length)

−2LL(K) + η(K) ln(N) Oliver
(1996)[133]

MDL (Mini-
mum descrip-
tion length)

−2LL(K) + K
2 ln N

12 + η(K)+K
2 + η(K)

2K
∑

limK
k=1ln Nrk

12 Rissanen
(1989)[134]

L N
2
∑

limk:rm>0 log
(
Nrk

12
)

+ knz

2 log N
12 + knz(M+1)

2 Figueiredo
(2002) [110]

Table 3.1: An overview of information criteria
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.......................... 3.2. Criteria for assessing the number of components

In this equation, the first term corresponds to the estimated priors, the second to the
estimated means, and the third to the estimated parameters of covariance matrices. If
we had used diagonal covariance matrices instead, the number of free parameters would
have been lowered from K(K+1)

2 to K for each covariance matrix.
The MIR criterion measures how the data are able to model densities of components.

(θm,m > 1) is a sequence of parameters generated by the EM algorithm. The entropic
criterion NEC is derived from the linking between the maximum likelihood (ML) and the
classification maximum-likelihood (CML) approaches. It is defined as follows: LL(K) =
CL(K) + E(K). The entropic term E(K) measures the overlapping of the clusters.

The minimum encoding length criteria (MDL, MML and L) estimate parameters so
that they minimise the length of the message Length(θ,v). Message length consists of two
parts, Length(θ) and Length(∆|θ), i.e. Length(θ,∆) = Length(θ) + Length(∆|θ). The
first part, Length(θ), is the length needed to estimate parameters θ (a priori unknown
for dataset ∆), and the second part, Length(∆|θ), is the data code length.

Biernacki in his study [135] compared the performance of these information criteria.
Performance of all criteria strongly depends on the fitted data, especially the NEC
criterion [118] as well as the criteria based on the classification likelihood (CLM, CLM2,
CL and CL2). In case of equal mixing proportions, AIC and ICOMP criteria show the
tendency to overestimate the right number of components, while BIC and AWE tend to
underestimate the number of components. In case of different mixing proportions, AIC,
BIC and ICOMP highly overestimate the number of components, while CLM, AWE and
NEC perform better.

There are also different methods [136, 120] based on the mutual relationship be-
tween the components. Mutual information measures the statistical dependency of the
components. The mutual relationship between components i and k is:

φ(i, k) = p(i, k) log2
p(i, k)
p(i)p(k) , (3.5)

where

p(i) = 1
N

N∑
n=1

fi(xn), (3.6)

p(i, k) = 1
N

N∑
n=1

fi(xn)fk(xn). (3.7)

This criterion can be effectively used in gGMM as described in [120].
The general NMF theory [33] assumes that there exists a rough idea of how many

components are in the mixture system. Components are initialised with high variances
and with random centres. The algorithm forms a new concept or eliminates an old one
after a fixed number of iterations to find the optimal number of components [52]. After
the optimal number of clusters are found, the parameters describing the concept can be
changed from a general Gaussian distribution to a more precise one (e.g. a parabolic
shape) that will further increase the overall log-likelihood [104].

Split and merge algorithms can also be used for assessing the optimal number of
components. These algorithms can work either in an agglomerative or divisive way. The
drawback of the agglomerative approach is the necessity to know the maximum number
of components to be expected kmax [137]. In [110], an agglomerative method is described
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3. Proposed technique for estimating number of components in Gaussian mixture model ..........
where components are initially generated with random centres and the same covariance
matrices (number of components > expected number of clusters in the data). These
components are iteratively merged until the stopping criterion L is met.

An opposite approach of working in divisive way is proposed in [126]. Components to
be split are found via a multivariate normality test based on the Mahalanobis distance of
each sample measurement vector from the component centre to which it belongs. In each
step, the cluster that deviates the most from the Mahalanobis distance distribution, is
split. When no cluster deviates from this distribution, the optimal number of clusters is
found.

3.3 The proposed gmGMM algorithm
In the proposed gmGMM algorithm (Gaussian mixture model with merging), I deal with
the problem of prior knowledge by considering that the information about the number of
components is not always accessible to humans as they perform various tasks. In many
cases, a human has no initial idea of how many clusters there are in a given dataset. This
problem can be tackled by using the greedy GMM, which avoids the necessity of knowing
the upper bound of the number of components and tests the criteria for all possible
numbers. The algorithm creates one highly fuzzy component and sequentially adds the
others to find the optimal number of clusters. The merging of clusters can be done from
time to time, as suggested in [52]. This idea is implemented in the proposed algorithm
in following manner. When the algorithm stops adding new clusters, the dependent
components are sequentially merged. Let us look at the algorithm in a greater detail in
the next chapter. Figure 3.1 shows an overview of the proposed gmGMM algorithm.

Initialisation of component centres and covariance matrices
In the GMM, convergence to the local optima is a frequent reason why the algorithm
fails to find the best partition of the data (the correct number of clusters). The diagonal
initial variance matrices are widely adopted to suppress any direction preferences. The
newly added component is initialised vaguely (with a large variance), which corresponds
to the high fuzziness of a newly searched concept. Concepts that are already included in
the mixture should also be made more vague than their previous convergence.

The newly added GMM components are initialised in the following manner. At the
start, the mean vectors of Kmin components are initialised to randomly chosen data
points from the sample dataset. The component priors are set to 1

Kmin
and the covariance

matrices are initialised as:

Sk = Tr(cov(v)) · I, for k = 1, . . . ,Kmin. (3.8)

Components that are added to a mixture subsequently at each iteration are ini-
tialised in the same way. The initialisation of a newly added component is described in
Algorithm 3.

The number of components
The general idea of the proposed technique is described in the flowchart shown in Fig. 3.1.
The whole algorithm is presented in Algorithm 4.
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................................ 3.3. The proposed gmGMM algorithm

Figure 3.1: The general scheme of the proposed algorithm.

Initially, kmin components are initialised and classical EM steps are performed (see
Eqs. (2.9–2.12)). A new component is added after each iteration until the selected
stopping criterion is not met (see Algorithm 4). In the opposite case, a local convergence
of the EM algorithm is avoided to allow the improvement. This is accomplished by
initialising a new component and then removing the most dependent one. The mutual
information (cluster statistical dependency) adopted from Ueda [111] (see Eq. (3.5))
serves as a merging criterion. Centres and covariance matrices of the merged components
were computed as proposed in [111]. The initial parameter values for the merged model
(rm, Sm and mm) are set as a linear combination of the original ones before the merge:

rm = ri + rj (3.9)
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Algorithm 3 Initialisation of a new component by initTech ”random”

Inputs:
the input data v, approximated model parameters θ (cluster centres m,
covariance matrices S and mixing proportions r)

Input parameters:
the number of components already included in a mixture K, a number of
dimensions d

Output:
the new approximated parameters of mixture model θnew

mK+1 ← random data point from a dataset v
SK+1 = Tr(cov(v))
r(K + 1) = 1

K+1
θnew = {m1, . . . ,mK+1,S1, . . . ,SK+1, r} ← add a newly initialized component into a set of
approximated model parameters

mm = rimi + rjmj

rm
(3.10)

Sm = riSi + rjSj

rm
(3.11)

The partial EM algorithm can be used for reestimating parameters to make the total
algorithm more efficient [111]. After the EM steps (Eqs. (2.9–2.12)) are performed, the
selected stopping criterion is tested once again after the EM convergence. If the stopping
criterion is not met, we accept the newly proposed mixture and its parameters θnew and
continue with adding new components to the mixture. Otherwise, we reject it and stop
the algorithm with the previous set of parameters θbest. This process avoids stacking in
the local minima and can be done repeatedly.

The selected stopping criterion should slightly overestimate the number of clusters
to enable the consequential reduction of the number of clusters (dependent clusters are
merged). As a testing criteria we have compared AIC, BIC, AWE and the likelihood
L proposed by Figuiredo [110] (see Table 3.1 for computational details). These include
both underestimating and overestimating criteria.

In the final stage, when the stopping criteria are met or the maximum number of
components kmax is reached, all dependent components can be merged in one iteration
or alternatively, they can be merged sequentially until there is no dependent cluster
left in the mixture (the parameters of the merged components are computed using Eqs.
(2.9–2.12)). Finally, the classical EM steps are performed until the convergence to get
the final estimates of mixture parameters.

3.4 Computational complexity of the proposed algorithm

Convergence of EM algorithm is guaranteed at each iteration. In addition, removal
or addition of a component is done only when: F (θn+1) ≥ F (θn) + ε, where F =
−2LL(θ) + P (K,N) is a criterion function. Therefore F is nondecreasing during the
algorithm and the convergence of the algorithm to some stationary point is guaranteed
although the convergence to the global optima is not guaranteed.
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Algorithm 4 An overview of the gmGMM (greedy GMM with merging) algorithm
Inputs:

the input data v
Input parameters:

the initialisation technique initT ech, minimum number of components minCmp,
maximum number of components maxCmp, stopping criterion stopCrit,
threshold T , number of initialisation candidates when dependency nmbT rials,
new = 1

Output:
the mixture model at θbest (cluster centres m, covariance matrices S and mixing
proportions r)

v ← normalize(v)
θ = {m1, . . . ,mminCmp,S1, . . . ,SminCmp, r} ← initialize minCmp components using an initT ech
f, l, ll,θ ← EM steps until convergence
if minCmp == maxCmp then

stop← 1
else

stop← 0
end if
θbest ← θ
while not stop do

K ← number of components
while new do
θ = {m1, . . . ,mK+1,S1, . . . ,SK+1, r} ← initialize new component using an initT ech
f, l, LL,θ ← EM steps until convergence
if (trial < nmbT rials and any dependent component) then
θ = {m1, . . . ,mK ,S1, . . . ,SK , r} ← merge the most dependent components (mutual infor-

mation)
trial← trial + 1

else
new ← 0

end if
end while
θbest ← θ
stop1← test stopping criterion stopCrit: stopCrit(iter)− stopCrit(iter − 1) < T
if stop1 then
θ = {m1, . . . ,mK ,S1, . . . ,SK , r} ← merge the most dependent component (mutual informa-

tion)
f, l, LL,θ ← EM steps until convergence
stop2← test stopping criterion: stopCrit(iter)− stopCrit(iter − 1) < T
if stop2 then

stop← 1
end if

end if
if (stop or K ≥ maxCmp ) then

while there is any dependent component do
θ ← merge the most dependent components (mutual information)
f, l, LL,θ ← EM steps until convergence

end while
end if
iter ← iter + 1

end while
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Algorithm 5 The testing stopping criterion ”stopCrit”

Inputs:
the criterion value at each iteration CritV alue, log-likelihood at each
iteration LL, approximated model parameters θ (cluster centres m,
covariance matrices S and mixing proportions r)

Input parameters:
the number of components already included in a mixture K, number of
data points N , threshold T , iteration iter

Output:
the decision of whether to stop adding new components or to not stop

CritV alue(iter) = −2LL(iter) + P (K,N, r)← compute a criterion value
if CritV alue(iter)− CritV alue(iter − 1) < T then

stop = 1
end if

Analysis of convergence rate of the algorithm is beyond the scope of this thesis since it
depends on many parameters such as overlap of the components, initialization technique
for adding a new component, number of potential candidates for new component, etc.

The computational complexity of each iteration can be derived from the fact that
EM algorithm is a linear method. Therefore computational complexity of the proposed
algorithm is O(m ·N), where m is a number of potential candidates for a new component
and N is number of datapoints.

3.5 Experimental evaluation

Datasets

The selected algorithms were tested on artificially generated datasets S1-S4 adopted
from [138]. These are synthetic 2-D data with 5000 vectors having 15 predefined Gaussian
clusters with varying complexity in terms of spatial data distributions. With an increasing
index number of the dataset, the degree of the clusters overlap increases, and thus the
task complexity also increases. We have further tested the algorithms on the real-world
4-d dataset Iris (150 instances, three classes) and on the real-world 16-d dataset Letter
recognition (20 000 instances, 26 classes) [139]. The character images (black-and-white
rectangular pixel displays as one of the 26 capital letters in the English alphabet) in
the Letter recognition dataset were based on 20 different fonts and each letter within
these 20 fonts, was randomly distorted to produce a file of 20,000 unique stimuli. Each
stimulus was converted into 16 primitive numerical attributes (statistical moments and
edge counts) which were then scaled to fit into a range of integer values from 0 through
15.

All data were normalized using a standard score normalization:

xn,norm = xn −mean(xn)
std(xn) (3.12)

(xn – each data point; mean(xn) – the average of all the sample data points; std(xn)
– the sample standard deviation of all the data points)
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Comparison of a greedy and normal GMM
Initially, the greedy and normal GMM algorithms were compared to verify results
in [114] and to see whether the greedy approach is more effective than the conventional
EM algorithm (measured by computational complexity and achieved accuracy). The
comparison for all datasets can be seen in the Figure 3.2. Both algorithms were initialised
randomly and run 20 times. To compute the accuracy, each cluster is assigned to the class
that appears most frequently in the cluster, and then the accuracy of this assignment is
measured by counting the number of correctly assigned data points and dividing this by
the total number of data points.

Figure 3.2: Comparison of greedy and normal GMM: Both greedy (gGMM) and normal GMM
(GMM) algorithms are initialised randomly, results averaged over 20 repetitions. Algorithms
are compared also to the supervised GMM (GMM-sup). The mean and standard deviation
from 20 repetitions is visualised. * (resp. **) signifies that gGMM and GMM differ on the
significance level p=0.05 (resp. p=0.01) (pair-sample t-test).

The greedy algorithm (gGMM) performed significantly better than GMM for artificial
datasets S1, S4 (p=0.05, pair-sample t-test) and in the real-world dataset Letter recogni-
tion (p=0.01, pair-sample t-test). For other datasets, the difference was insignificant.

Number of components
The algorithm ability to find the optimal number of clusters with different stopping
criteria (AIC, BIC, AWE and likelihoood L proposed by Figueiredo [110]) was tested.
A number of components found for different datasets is visualised in Fig. 3.3 (averaged
over 20 trials).

The best results were achieved for the AIC criterion followed by the L criterion. The
BIC and AWE criteria resulted in a strong underestimation of the number of clusters,
because they tended to underestimate the correct number of clusters even without the
final merging.

The performance of the proposed algorithm was compared to the algorithm proposed
by Figuieredo [110], to the greedy algorithm proposed by Verbeek [113], and to the greedy
merge learning algorithm (GMEM) proposed by Li [112].
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Figure 3.3: An ability of gmGMM algorithm to find the optimal number of components
when integrating different stopping criteria: Results are visualized for artificial datasets S1-S4
(averaged over 20 trials) and real-world dataset Iris (averaged over 100 trials). Dashed lines
denote the correct number of components. (On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually.

It is important to notice, that the GMEM algorithm [112] was not applicable in
the version presented in the article because there are several local optima on the AIC
(and also L criterion) curve during the merging process and the algorithm tends to
stack as it detects an abnormal number of clusters. The GMEM algorithm had to be
modified to overcome the small local optima. The algorithm was modified by adding ε
into the stopping criteria S (AIC or L stopping criterion) so the algorithm stops merging
components when: S(i) > (1 + ε)S(i+ 1), ε = 0.01, where i goes from the initial number
of components (100) to 0.

The results for all compared algorithms are visualised in Fig. 3.4.
The achieved results for all tested algorithms were compared using the standard

deviation from the theoretical correct value (for the artificial datasets, the theoretical
correct value was 15; for the real-world dataset Iris, it was three; and for the Letter
dataset it was 26). The standard deviations for all datasets and both stopping criteria
can be seen in Fig. 3.5.

The proposed gmGMM algorithm outperformed all compared algorithms (gGMM,
Figueiredo and GMEM) for datasets S1-S3 for both stopping criteria. The gGMM
algorithm proposed by Verbeek using the L stopping criterion strongly overestimated the
number of components in the data, more so for well separated clusters (dataset S1, S2).
On the other hand, for the AIC stopping criterion gGMM algorithm achieved very good
results (for dataset S4 it performed best among the compared algorithms). There was no
correction used as was in GMEM algorithm. When the stopping criterion L was modified
the same way as in GMEM algorithm, the gGMM algorithm achieved better results than
GMEM algorithm. The algorithm proposed by Figueiredo also strongly overestimated

34



.....................................3.5. Experimental evaluation

Figure 3.4: Comparison of different algorithms for finding optimal number of components
in GMM: Results are visualized for artificial datasets (averaged over 20 trials) and real-
world dataset Iris (averaged over 100 trials). Dashed lines denote the correct number of
components. Compared algorithms are: gmGMM (proposed algorithm), Verbeek (gGMM
algorithm proposed by Verbeek [113]), Fig (merging algorithm proposed by Figueiredo [110])
and Li (a greedy merge learning algorithm proposed by Li [112]). As a stopping criteria are
used AIC (upper) and L stopping criterion [110] (lower) (on each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted individually).

the number of components in data and was outperformed for all artificial datasets by
both gmGMM and GMEM algorithm for both AIC and L stopping criteria. It was also
outperformed by gGMM algorithm when the AIC criterion was used.

For the real-world dataset Iris, the Figueiredo algorithm achieved the best results for
both stopping criteria. The number of clusters detected (averaged over 100 trials) was:
2.7 (0.7), the classification error: 18(10)%, followed by gmGMM algorithm resp. gGMM
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Figure 3.5: Finding optimal number of components in GMM (standard deviations): the
achieved results (see Figure 3.4) were compared to the correct theoretical value using a
standard deviation: standard deviations for all datasets and compared algorithms for AIC
criterion (left) and L stopping criterion (right).

algorithm for L resp. AIC stopping criterion.
The question that arises is why did we use the modified version of the stopping

criterion for the GMEM algorithm and not for the gGMM algorithm. The reason for this
is that we would not be able to compare the GMEM algorithm with the others without
modification, because they stack in the local optima after two or three iterations. On the
other hand, for the gGMM algorithm, the learning curve of L criterion was smooth and
by using the modified version of the stopping criterion, we would only say that we are
not interested in the small improvements of the criterion. The results for gGMM confirm
that the L criterion overestimates the number of clusters.

Also, the time efficiency of the algorithms is not directly comparable. The resulting
time and the number of EM iterations is dependent on the initial and final number of
components. The initial number of components for Figueiredo and GMEM algorithms
further depends on the number of data points in a dataset.

The evolution of models is visualised in Fig. 3.6.

3.6 Summary to novel gmGMM algorithm

This section presented the greedy Gaussian mixture model with merging, which is the
algorithm that is capable of finding the optimal number of components in the mixture
without any prior information [23]. The novel step in the greedy algorithm allows the
improvement of performance when the stopping criterion is met, as the most dependent
component is removed and the new component is initialised. The second novelty lies in
the merging of all the dependent clusters in the final stage.

Enhancement of the method, which detects the optimal number of clusters, led to
an improvement of its effectiveness compared to the method based on stopping criteria.
This can be seen in more accurate estimation of the number of clusters and the lower
classification error for most of the datasets. The effectiveness of the proposed method
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Figure 3.6: Initialisation and algorithm progress: Here there are shown normal distributions
of components with the black line for covariances. The red point shows the initial position
of the newly inserted component. Green points are final positions of centres after the EM
algorithm.

originates from the fact that it does not have to go through all possible numbers of
components.

Initially, results in [114] were verified and it was shown that the gGMM algorithm is
generally more effective than the conventional EM algorithm. The comparison of the
achieved accuracy for both real-world and artificial datasets can be seen in the Fig. 3.2.

In the second stage, the properties of the proposed gmGMM algorithm were investi-
gated in detail. Its ability to find optimal number of components in data for different
stopping criteria was compared. The best results were obtained for AIC criterion in highly
overlapping mixtures, while it was more effective to use mutual information criterion
without final merging for well separate clusters.

The final components in the merging process should be treated carefully. The
administration of this process in one final step should lead to the deletion of important
components. Hence performing the final merging sequentially is recommended. This
will lead to little increase in time demands but the classification error will be lowered
significantly.

Finally, the performance of the proposed algorithm to other similar algorithms was
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compared. The deviation from the correct theoretical number of clusters was used as
the comparison criterion. The proposed gmGMM algorithm achieved the lowest error
variability (compared to other algorithms) for most of the datasets.
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Multimodal cognitive architecture for
language acquisition
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Chapter 4
Existing cognitive models of vision and language

Brain is studied by neuroscientists on different levels of processing – starting from
molecular to psychological level [56], which corresponds to appropriate computational
cognitive models. These models are not focused mostly on all levels of processing
simultaneously. They rarely incorporate all cognitive modalities and rather focus on
processing only one of them. Furthermore, current models of language and vision can be
divided based on the used computational framework to connectionistics, probabilistic
and symbolic models. Anyway, this division is definitely not strict since some models
tend to use a combination of computational frameworks, try to incorporate more levels
of signal processing or combination of modalities.

4.1 Main computational cognitive models of vision
The vision is the most important sense for human (in contrast to many animals) and
approximately half of the cortex is involved in vision. What makes the vision difficult
is the large number of objects in the surrounding world (approximately 20 000), which
in addition have many specific features such as orientation, texture, shading etc. The
development of infant vision is shown in Figure 4.1.

The brain areas responsible for processing separate parts of the visual information
were detected both by studying effects of brain lesions in human beings and primates and
by neuroimaging methods. The most important findings of the exhaustive neuroscience
research are that in the brain there are apart of primary visual cortex also separate
higher visual centra responsible for processing colour, movement, shape, face recognition,
orientation etc., all retinotopically organized. The signal which is captured by our eyes is
firstly processed by retina’s photoreceptors and ganglion cells. These cells are collected
by optical nerve which transfers the signal to the primary visual cortex in the occipital
lobe (the left half of the field of vision is processed by the primary visual cortex in the
right hemisphere). The information is further processed by two distinct neural pathways
both responsible for specific tasks: ventral pathway which extends to the temporal lobe is
responsible for processing the information about the shape, colour and other information
important for object recognition (also known as a WHAT pathway) and dorsal pathway,
which extends to the parietal lobe is responsible for processing the information about the
position and movement of the objects (known as a WHERE pathway) [140]. Vision is fully
developed to adults’ level between ages 3 and 5, which corresponds to the myelinization
of neural fibers, development of photoreceptors or synchronization of muscles controlling
eye movements.

As a response to the progression in the neuroscience research, the focus to cognitive
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Figure 4.1: The development of infant vision: the vision progresses from seeing just fuzzy
blob at birth to being able to see the toy as it is by 10 month. Kids start also to be more
interested in toys by 3 months, which can be connected to their vision development.
Source: ”https://lasermom.wordpress.com/2012/06/24/infant-vision-research/”.

models of vision have been gradually shifting: from the models primarily inspired by the
psychological research to the neuroinspired cognitive models.

Early attempts to model vision were mainly based on template matching. The
problem of such an approach is that you need as many templates as many possible objects
should the model learn and different viewpoints must be covered by many templates.
Current state of the art object recognition systems [141, 142] are primarily based on local
image descriptors. These can be distinct features (such as edges, colours,. . . ) which are
composed together and are invariant under transformations.

”Neocognitron” [143] is the model of object recognition where hierarchical neural
network is used to achieve the position-invariance, the invariance to moderate changes in
size and orientation and also the invariance to a moderate noise. The limitations of the
model are that it is not fully view-invariant and is designed only for a limited domain
(text recognition). In the SEEMORE [144], an extension of Neocognitron, more feature
detectors are used and the training set is variable. The model is able to recognize objects
across changes in position, size, orientation, noise, etc.

Following extensions of cognitive models focused on the biological plausibility of
specific features. The new features should match the nowadays neuroscience knowledge
and be comparable to features, which are processed by neural pathways in primary and
higher visual cortices. The examples of these features are MEX or C2 features [145, 146].
There were also attempts to extend invariance of the features to be able to recognize
objects seen from different viewpoints and to detect objects which are representatives of
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the same class (e.g. the class dog) [147, 148, 149, 150].
Various sets of visual descriptors, which are rich descriptors of objects, were created:

SIFT (scale invariant features) [151], HoG, Haar features, Spin Images over 3D point
clouds [152], or kernel descriptors [153, 154] (which have been shown to be equivalent
to a type of match kernel that performs similarly to sparse coding [142, 155] and deep
networks [156] on many object recognition benchmarks). Features of the image are com-
puted after segmentation of the image. There are various segmentation methods ranging
from simple thresholding method, clustering methods, methods based on histograms or
detected edges to more sophisticated methods such as methods using graph partitioning
or solving partial differential equation. The selected type of segmentation plays an
essential role in object recognition and it will, for example, influence the sharpness and
softness of detected objects boundaries.

Special attention is given in object detection to the so called occlusion problem. Ogale
and Aloimonos [157] take advantage of torque and FFT of descriptors to detect the
occluded moving objects. They used normalized cut for scene segmentation, colour and
texture are used to define edge pixels and motion is used to detect object boundaries.

Many cognitive models of vision have taken advantage of neural networks. Neural
networks have shown good performance in many pattern recognition tasks [158] such as
object recognition and classification [159] or hand-written letters recognition [160]. Their
disadvantage is that they need many training examples to adjust weights. On contrary,
humans are in some cases able to learn from very limited number of examples.

In recent years, probabilistic models of vision have become increasingly popular
[28, 161, 162, 163, 164]. These models are taking into account the necessity of composi-
tionality/modularity of the system, which enables an unsupervised incremental learning
of the visual scene. Thanks to them, traditional theories of visual perception have
been revolutionized, ranging from low-level models such as shape perception or motion
prediction to higher-level models, which resemble probabilistic parsing in natural lan-
guage and operate over hierarchically organized representations of objects (generated by
probabilistic grammar for natural scenes) [165, 166, 167, 168].

Yuille in [163] deals with the enormous complexity and ambiguity of the images using
a Bayesian inference on structured probability distributions, and that use ”analysis by
synthesis” strategies with intriguing similarities to the brain. Moghaddam and Pentland
in [169] applied probabilistic models (probability densities – multivariate Gaussian
and mixture of Gaussians) to the visual search and target detection for automatic
object recognition and coding, especially to the probabilistic visual modeling, detection,
recognition, and coding of human faces and non-rigid objects such as hands. Bayesian
vision system was also used as a model of vision when modeling intuitive physics for
scene understanding [170].

4.2 Main computational models of language
In this chapter, I will summarize main computational models of language. Firstly, I
will briefly mention the current knowledge about language acquisition, processing and
development in human brain to show challenges which every cognitive model must face.

The development of language perception and production is visualized in the Fig. 4.2.
As can be seen, ability of perception precedes the production by few months. Baby starts
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with learning phonemes (sounds) at 2 months, followed by learning words (capability
of sound segmentation is very important in this stage) at 8 months, the first words
are produced at 12 months, and grammar is last to occur (at 2 years). The increased
abilities correspond to the myelination (the process by which a fatty layer, called myelin,
accumulates around axons, which increases speed and specificity of neural transmission)
of axons which is reflected in a rapid increase of the brain weight during the first year
(from 350 g at birth to approximately 1 kg at 1 year, adult brain weight 1350 g is reached
by 15 years) [171], see Table 4.1 for detailed information.

Figure 4.2: Timeline of speech-perception and speech-production development: changes in
human infant during the first year of life [172].

We should keep in our mind, that different cognitive areas in brain are not maturated
at the same time. Neural pathways important for the language processing (acoustic areas)
achieve its developmental maxima (fibers become fully myelinated) few months later than
pathways responsible for processing visual information. Myelination is like a slow wave,
which spreads in each lobe of cortex gradually. In each lobe, the first areas to myelinate
are the primary areas (the classical projection areas that mediate functions in one specific
sensory or motor modality), followed by unimodal and multimodal association areas
(some are not fully myelinated until the late adulthood) [174].

There are 4 basic language skills needed for complete communication: language
comprehension, speech, reading and writing. Two well-defined areas in the brain are
considered to be the most important for the language processing: Wernicke’s area
(responsible for the language comprehension) and Broca’s area (responsible for the speech
production). These areas communicate directly with the tonotopically organized primary
auditory cortex and are usually located in the dominant hemisphere (the left hemisphere
for 97% of people). However, the less-dominant hemisphere also participates in language
processing and can fully adopt language skills when the left hemisphere areas are removed
before the age of two (this ability weakens strongly after the age of six) [175]. Broca’s
area further transmit the signals from primary auditory cortex and communicate with
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Age Language production Brain weight

5-7 months Sounds similar to speech 660 g
7-8 months Putting syllables together (babbling) 750 g

10 months Babbling similar to speech flow (intona-
tion) 800 g

1 year First words 900 g
18 months Increased speed of words learning, combi-

nations of words
1050 g

2 years Complex phrases, origin of grammar (arti-
cles, prefixes,. . . ) 1100 g

3 years

Correct usage of grammar, advanced lan-
guage construction, fluent conversation,
only minor and systematical errors (”why
did he dis it appear?”)

1270 g

Table 4.1: Brain weight and corresponding language production during the first years of
life [173].

the primary motorical cortex (see Fig. 4.3).

Figure 4.3: The most important areas for language processing [176].

The neuroscience research which in last two decades massively uses neuroimaging
methods did not bring any clear conclusion about the location of the semantic system
(the system that brings meaning to all verbal and non-verbal stimuli). There are two
main theories concerning this topic.

The first theory is that apart of processing of separate modalities (e.g., colour/s-
mell/shape of an object) there is also a transmodal ”hub”, which activates the intermodal-

45



4. Existing cognitive models of vision and language ..........................
ity information. Neuroscientific experiments provide some evidence that this ”hub” could
be supported primarily by the regions within the anterior temporal lobe, bilaterally [177].

The second school believes that semantics is basically just the world representation
in the brain (so the semantics of a cup would be the visual representation of the cup
in the visual areas, the affordance representation in motor and somatosensory cortex,
etc.) and no such ”hub” exists, because even this multi-modal conceptualization cannot
provide coherent, generalizable concepts and other additional inter-modalities processes
are necessary [178]. Binder’s meta-analysis of 120 fMRI studies [179] focusing on semantic
processing showed some higher activated regions which form a distinct, left-lateralized
network, but mainly points out that the processing is highly distributed in the brain and
does not come to any consensus about the identity of the neural systems that should
store and retrieve semantic information.

As with the models of vision, progression in the neuroscience research had strongly
influenced the cognitive models of language. Models had been gradually shifting from
symbolic models to neural networks and probabilistic models and these all different
types of models have been recently combined on different levels of processing. There
are wide range of domains in language processing where specific models should be
applied. These are processing incoming signals (speech processing) [180], word recognition,
phonology, morphology, syntax, lexical semantics and language acquisition [28]. The
main computational models of language are well summarized in Chater [181]. The basic
frameworks are:..1. Chomskian (symbolic) models are early models where the knowledge of the

language is embodied in a set of declarative rules and a set of processing operations.
Two main processes are parsing (used to find a syntactic derivation that yields
to the observed sequence of words) and production (uses the rules to construct a
derivation and output the resulting sequence of words). These models are unable
to fully model psycholinguistic data which indicate that purely structural features
of language are just one of the factors and experimental results are also influenced
by probabilistic and world-knowledge factors. Among the first symbolic models
of words is the Forster’s model [182]. Forster implemented the model where
symbolically represented word forms are matched against acoustic or visual input.
In this model, the sequential search in memory is necessary. Parallel search of
multiple word forms was proposed (but not implemented) by Morton [183].

Symbolic models of sentence processing have been extensively used in computational
linguistics [184, 185, 186, 187]. Nowadays, are often replaced by (or combined
with) connectionistic and probabilistic models. Vasishth in [188] divided these
models into grammar-based approaches, which presuppose a syntactic theory [184,
189, 190], symbolic models involving complexity metrics and ambiguity resolution
principles which can be defined without reference to a particular architecture for the
competence grammar [191, 192] and approaches where fixed cognitive architecture
is used as a starting point (for example READER model [193] or utilization of
independent cognitive architecture such as ACT-R [194]).

To explain language acquisition, Chomsky hypothesizes that child has a hypothesis
space of candidate grammars and choose on the basis of experience one of these
grammars [195]. His argument for this hypothesis is the poverty of the stimulus
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(this includes, among others, absence of negative feedback and presentation of only
positive examples) which should lead to the production of the overgeneral grammar
(but we do not observe it)...2. Connectionist models are bottom-up models of learning. Connectionism is often
used in a combination with a symbolic approach when modeling language processing
while each of them models different level of processing (symbolic approach at a
psychological level and connectionism at an implementation level) [196, 181, 197].

There exist detailed cognitive models of speech processing, which capture a wide
range of empirical data and have also made novel predictions (e.g. TRACE
model [198] consisting of a sequence of layers for phonetic features, phonemes
and words). Despite the doubts, these bottom-up connectionist models can also
accommodate apparently ”top-down” effects [199]. Among the first connectionist
models of language processing was also the Rumelhart’s model [200] where the
connectionist model of the acquisition of the past tense in English is developed.
These first models and their claims about the dispensability of rules was criticized
by Pinker and Prince [201].

The model by Christiansen [202] is a simple recurrent network (SRN) trained to
integrate phonetic features with information about lexical stress and can capture
also infant speech segmentation. Takáč [203] proposed a connectionist model of
the language acquisition and sentence generation where the messages, which form
the input to the network, are structured as sequences, so that message elements
are delivered to the network one at a time. Models of reading aloud have focused
mainly on naming single words – e.g. Sejnowski model NETtalk [204] or model
of Seidenberg [205] who proposed the feed-forward network for mapping from a
distributed orthographic representation to a distributed phonological representa-
tion which can achieve human levels of performance on both word and non-word
pronunciation when trained on actual word frequencies.

In sentence processing, there have been proposed two main classes of models.
Models from the first class are related to stochastic context-free grammars and learn
to parse ”tagged” sentences [206, 207] where networks are trained on sentences
associated with a particular grammatical structure and appropriate grammatical
structures should be assigned to novel sentences [196]. The second class of models
tries to learn syntactic structure from sequences of words using SRN [208, 209].
Besides simple recurrent networks, also two-route networks [210] or bidirectional
fully recurrent networks [211] have been used to model processing of words and
sentences in current models.

Connection of symbolic models and connectionistic models is briefly mentioned in
Vasishth [188]. Nowadays, the parallelism is included in all prominent symbolic
cognitive architectures (SOAR [31], ACT-R [212] etc.) and also cognitive models
of sentence processing involve parallelism. Furthermore, even though we consider
symbolic cognitive models as systems that manipulate with discrete representations
they are able to manipulate, in some degree, also with some continuous aspects.
This means that distinction between purely ”symbolic” or ”connectionistic” model
is being progressively decreased.
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Over the past several years, Deep Neural Networks have shown remarkable success
in many computer science areas such as image classification [159] and revolutionized
the field of speech recognition [180]. These multi-layer networks were recently
incorporated as an improvement to Google Voice transcription instead of GMM
acoustic models...3. Probabilistic models differ from the Chomskian tradition in one main point.
They merely try to find any derivation but try to find the most probable derivation.
The probabilities can be added to the existing linguistic rules to indicate usage
frequency of rules or more competitive approach can be used when language
structures itself are viewed probabilistically. The probabilistic models of language
are well summarized in the work of Chater and Manning [28]. The state of
the art speech recognition algorithms used in probabilistic models are hidden
Markov models [213], vector quantization or dynamic programming. One of the
leading speech recognition system Sphinx 4 is based on fully-continuous hidden
Markov models [214]. Bayesian word learning is described in the work of Xu and
Tenenbaum [48]. Araki et al. [215] proposed the online version of multimodal latent
Dirichlet allocation (MLDA) using Gibbs sampling for the multimodal categorization
together with the unsupervised word segmentation method based on the hierarchical
Pitman-Yor Language Model (HPYLM).

Probabilistic models can be used for a theoretical analysis of connectionist models
behavior. Their performance can be understood as depending on the regularity of
orthography-phonology mapping at different levels of analyses (phonemes, n-grams,
onsets/rimes,. . . ) [181]. Furthermore, probabilistic models can produce predictions
about pronunciation of non-words [216] and can also provide a model of optimal
eye movements to maximize information coming into the reading system [217]. The
question why we do not hear any of the possible partitions of the speech can be
explained by the fact that we build a huge network of brain cells, which is capable
of computing probabilities of possible partitions [218].

The probabilistic model of sentence processing is a model that will predict the
following words on the basis of previous experience. These models make a significant
simplification when the probabilities of words are calculated on the previous n
words but real language depends on entire sentence (or even texts). Models are
trained on a corpus of language data. The models of the sentence processing engage
Bayesian mixtures, HMM, Suprisal theory, n-gram-based models or context-free
phrase-structure grammar. Probabilistic models of sentence processing have been
used to study variations in observed corpus frequencies across languages [219, 220].
Regularities between words should be taken into account to capture the probabilistic
influence of the lexical information as the computational parsing performance is
substantially improved when the co-occurrence of words is considered [221, 222].
The model of general knowledge [223] and ”theory of mind” [224] should be also
engaged into the models. Probabilistic symbolic models [188] are models where
a set of symbolic rules is used to generate syntactic structures [185, 225]. The
probability of these rules is computed using a corpus (a Penn treebank). This
enables these models to capture the role of the experience and frequency in the
language processing.
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4.3 Language acquisition and symbol grounding

There is an ongoing debate in the language acquisition research on the question whether the
language is acquired through learning and interaction with environment or there are innate
structures in brain. The behaviorist theory proposed by Lado [226], Skinner [227] and
Weinreich [228] describes language as an unconscious, automatic process acquired by the
stimulus-response condition method. The nativist theory was proposed by Chomsky [195,
229] who posits that language abilities must be innate and these innate grammatical
structures are evolved through interaction with the world. As mentioned above, his
argument for the innate grammar is the poverty of stimulus and also the generativity
of the language. The cognitive theory developed by Piaget [230] sees the language
acquisition as a conscious process (cognitive development precedes language development
as well as semantics precedes syntax) composed of the following periods of development:
Sensorimotor (birth to 18-24 months), preoperational (18-24 months to 7 years), concrete
operational (7 through 12) and formal operational (adolescence through adulthood).
These stages can be passed in different ages by some children, but any of them cannot
be skipped. Another researchers such as Gopnik [231] gives much more emphasis to the
human factor when parents helps to give sense of the situations to children.

A more modern theory is the social-interactionist theory [232] combining importance
of social influences with Vygotsky’s socio-cultural theory. Vygotsky defined the zone
of proximal development in every learner which is ”the distance between the actual
developmental level as determined by independent problem solving and the level of
potential development as determined through problem solving under adult guidance or in
collaboration with more capable peers” [233]. Social-interactionists criticize Chomsky’s
clame about lacking a negative feedback and corrections from parents on childrens’
errors (see meta-analysis conducted by Moerk [234]). The importance of the interaction
with the environment is also highlighted in the Relational-frame theory developed by
Hayes and Barnes-Holmes [235, 236] who stated that psychological events are predicted
and influenced by the environment. Opposed to Skinner they identified the derived
relational responding (a particular type of operand conditioning to be found only in
human). Emergentism [237] provides a theory of how language learners come to identify
and prioritize the various competing cues such as word order, animacy or agreement that
are relevant to sentence comprehension. Other theories of language acquisition are Usage-
based theory [238], Optimality theory introduced by Prince and Smolensky [239, 240] or
Native language magnet model [241, 242].

Chomsky argued that the absence of the negative feedback would lead to the production
of the over-general grammar. In contrast, the probabilistic language acquisition hypothesis
proposed for example by Hsu and Chater [243, 244] have shown that statistical methods
are capable to learn restrictions of general rules only from the positive feedback [245, 246,
247, 248, 249, 250] when it is sufficient to learn language only with a high probability
and within the statistical tolerance [251, 252]. Klein and Manning [253] combined the
extended distributional phrase clustering model for learning word classes (where left and
right word context is taken into account) with a dependency-grammar-based model. This
model was able to learn high-quality parses from little unlabeled text from a wide range
of languages with 80% accuracy.

The essential question in language acquisition is how symbols are anchored in some
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arbitrary symbols – this is a so called symbol grounding problem (SGP). This problem
was firstly described by Harnad in his work [254] and since then several attempts to solve
this problem have been presented. It has been shown how to learn new symbols using
already grounded symbols and their combination (e.g. Cangelosi [4, 255]) and how it
is possible to transfer the knowledge between agents (e.g. Vogt’s model [256]) but the
question how capacities of any agent to ground symbols are evolved at the first place is
still unanswered.

Taddeo and Floridi [16] defined the zero semantical commitment condition, which
must be satisfied by any model which claim to solve the symbol grounding problem:. no innatism allowed (no semantic resources are preinstaled in the artificial agent). no externalism (no semantic resources are uploaded from outside). artificial agent has its own capacities and resources to ground symbols

Taddeo and Floridi [16] further divide current models to representationalist, semi-
representationalist and non-representationalist approaches and show that all of them
break some of the zero semantical commitment conditions.. The representationalist approaches [254] such as symbolic theft hypothesis by

Cangelosi [4], functional model by Mayo [257] or intentional model by Sun [258]
use representations that cannot be presupposed without begging the question. This
means that they presuppose availability of semantic capacities or resources that
the approach is trying to show to be evolvable by an artificial agent.. The semi-representational approaches such as epistemological model by Davids-
son [259], physical symbol grounding by Vogt [256] or model utilizing temporal delays
and predictive semantics [260] use representations while relying on principles im-
ported from behavior-based robotics. These models cope with problems illustrated
in a detail on the Vogt’s model example. The Vogt’s solution of SGP combines
Harnad solution with situated robotics and semiotic definition of symbols (symbols
are defined as pairs of sensorimotor activities and environmental data). The sym-
bol grounding problem is transformed to the physical symbol grounding problem
(grounds meaning of the symbols in the sensorimotor activities while the precedent
models ground symbols only in sensory domain) and is solved by usage of semiotic
symbol systems and Guess game. Guess game [261] is a game where a common
language is developed by two robots (speaker and hearer) in a common environment:
the speaker firstly names an object and hearer tries to find the object by the trial
and error. This leads (in 4 separate stages of the game) to development of a
common semiotic symbolic system. Problems of this solution are the following:
signs are meaningful symbols in the eyes of the interpreter without begging the
question and the guess game is not meant to ground the symbols. But the two
agents share the same grounded vocabulary by iterated communication which only
multiplies the number of agents who need to learn grounded symbols [16].. In non-representational approaches such as communication-based models [262]
or behavior-based models [263] only sensorimotor couplings are considered and
symbolic representations are thought to be unnecessary. These models face the
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problem that SGP is rather postponed than avoided: after developing even an
elementary protolanguage and higher cognitive capacities it will have to be able to
manipulate some symbols.

The conclusion of Taddeo and Floridi [16] is that the current models solve mainly the
problem how to transfer the knowledge of grounded symbols among agents (breaking
the condition of externalism) but does not solve how an artificial agent evolves such
capacities at the first place (breaking the condition of innatism). The valid solution of
the symbol grounding problem will need to combine at least: bottom-up (sensorimotor)
approach, top-down feedback, representational, categorical and communication capacities
of artificial agents, evolutionary approach and satisfaction of the zero commitment
condition mentioned above.

Current approaches to symbol grounding in robotics and intelligent systems were well
summarized by Coradeshi [264] and the key challenges for symbol grounding research
area were summarized by Roy [265] and particularly in Cangelosi [266] who reviewed
what has been done, what has been negotiated and what they expect that will be done
in next 2, 4, 6, 8,10 and 20 years in developmental robotics with the focus on integration
of action and language.

4.4 How children acquire language?

Children have to solve the primary symbol grounding problem when learning language
although the agent (parent) with the knowledge of the grounded symbols (language) is
available. Therefore the question how the word-to-meaning mapping is learned remains
open. How the first words are separated from the speech and how is their meaning
understand? This is the so called ”chicken-egg-problem” because after learning first
words children could derive meaning of other words (including verbs) from situations.

Snow in her paper [267] found out that mothers’ speech to 2-years-olds is much simpler
and more redundant than their speech to 10-years-old. The same results were observed
for mothers and nonmothers, which indicates that young children have available a sample
of speech, which is simpler, less redundant, and less confusing than normal adult speech.

There is also evidence that children are sensitive to word meaning even within the first
year of life, 6-months olds could pair word ”mommy” with the videos of their mother [268]
and 9-, 10- and 12-month old infants accumulate receptive lexical knowledge [269, 270].
13- or 14-months old can link a sound to an object when unambiguous pairings are
repeated in one session [271]. On the other hand, some studies showed that children
even as old as 18 months sometimes do not make the right inferences of novel words,
e.g. [271, 272, 273]. The Woodward’s observation that 20-months did not link the novel
sound to the object can reflect some awareness of how sound and name differ. One of
the explanations provided by Woodward is that 20-months old have a strong expectation
that spoken words serve as names, and thus resist learning about signals, which do not
have this form. This idea is supported by Namy and Waxman’s [274] study with similar
conclusions. The 26- and 27- month-olds in their studies resisted learning gestural labels
even given pragmatic and syntactic cues that the gestures were being used as labels while
18-month-olds were able to learn gesture as a label to a novel object. The second factor
discussed by Woodward [271] can be that sounds in the study were not treated as a
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grammatical unit and occurred outside the utterance boundaries. Overall, these findings
raise the possibility that there might be special way how infants learn word-referent
mapping compared to the simple associationist theory [275].

Blooms’ [273] arguments against the simple associationist theory are that the language
is not only used when referent is present, ostensive labeling does not occur at all in some
cultures. The first words learnt by children often denote more abstract concepts than
the simple associationists would suppose – e.g. ”kiss”, ”brother” etc.

The empirical test (refutation) of simple associationism was provided by Baldwin et
al. [276, 277, 278] in his experiments where a novel object in combination with novel word
was presented to children. In the first experiment [276, 277], there were two buckets both
containing novel objects and exprimenter said ”It’s a modi!”. Child did not associated
novel word with the object it was focused on but with the object the experimenter was
looking at. In the second experiment [278] the experimenter said ”It’s a modi” when the
child was interacting with the novel object. The children was able to learn the novel word
only when there was a direct interaction with the experimenter and not in the situation
when the experimenter was outside the room and only the voice was present. Similar
experiments were summarized by Tomasello in his article [279, 280].

One possibility how could be word-to-meaning mappings learned by children is cross-
situational learning [281, 282, 283, 284] which is based on the idea that a learner can
determine the meaning of a word by finding something in common across all observed
uses of that word. [282] (see Fig. 4.4).

Figure 4.4: The lexical acquisition task and its interaction with other cognitive faculties [282].

Another researcher who has attempted to answer the question how children acquire
language is Deb Roy with his ambitious project Speechome [285]. He has recorded 230,000
hours of audio-video recordings spanning the first three years of one child’s life (his
son) at home. The project addresses questions such as where and when different words
were learned (the word birth is defined as ”the moment of the first reliably transcribed
utterance of a new word type by the child”) [286] and how the pronunciation and utterance
has been changing over time. The curve of a number of word births per month showed
an interesting peak at 20 months. One explanation for these results is that words learned
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later are less likely to show at the production. The another explanation is that when a
child finds out the combinatorical power of a vocabulary it starts to combine already
learned words into sequences to produce new meanings and words.

4.5 Learning language through visual grounding

Ability to learn the language through the perception and especially through visual
grounding is not only important for understanding human cognition. It is also applicable
in many areas such as automatic sports commentators [12], situated speech understanding
in computer games [13], car navigation systems (based on map routes), for visually
impaired, automated generation of weather forecasts [14], large-scale image database
retrieval by natural language query, verbal control of interactive robots [11], in search
engines where language and visual information can be combined while finding the best
matches for the language query etc.

Computational cognitive models of grounding language are primarily based on the
psychological experiments which have studied relation between perception and lan-
guage [287, 2] and language and action [3]. The computational models have been
developed by Deb Roy [288, 289, 290, 6, 291], Angelo Cangelosi [292, 293], Nicholaos
Mavridis [294, 11], team of Yannis Aloimonos [295, 296], Michal Vavrečka [5] and oth-
ers. While some researches have focused on modeling language grounding by neural
networks [297, 4, 298, 5], others have developed probabilistic models [299, 48, 300, 6].
Researchers who have grounded language in interactive robots see symbol as a structural
coupling between an agent’s sensorimotor activations and its environment [301, 256, 7, 302]
and as well researchers who deal with the evolution of the language [303] are also partic-
ularly interested in the language grounding problem.

Roy [291] have highlight issues to take into account when grounding language in
perception. These are for example context dependency (difference in colour we imagine
under ”red wine” vs. ”red hair”), functional dependency (difference between ”clean
behind the couch” vs. ”hide behind the couch”) or the fact that larger models should
cover not only words but also phrases and sentences.

Conversational robotics

One of the main long-term objective of many teams worldwide are the attempts to build
the conversational robots, which will be able to participate in cooperative tasks mediated
by a natural language. The corresponding cognitive architecture must be developed. This
architecture should process synchronously and online visual and language input and solve
to some extend the symbol grounding problem. Recently, several European projects with
these aims were sponsored such as iTalk [304] or Poeticon [305].

As summarized in [292], adaptive agent models and evolutionary and epigenetic
robotics focus on four main issues: understanding interdependence among language and
perceptual, motor and cognitive capabilities; understanding psychological and cognitive
bases of language and its grounding; development of autonomous interactive systems;
and simulation of evolutionary emergence of language. There have been a shift from the
fully or partly supervised models [4, 294] to the models which are fully based on the
unsupervised learning [5, 306, 293]. The adaptivity of models is also emphasized. The
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4. Existing cognitive models of vision and language ..........................
disadvantage of these models is a very limited vocabulary and a mainly fixed grammar.
Moreover, the number of objects to appear on the scene is limited.

In [292], Cangelosi has presented their research on language emergence and grounding
in sensorimotor agents and robots. The sensory system of the robot is composed of a
contact sensor on the body, which detects when body collides with another one and
proprioceptive sensors which give an information about the current position of each joint
of the arm. The output layer of their model controls actuators and could be compared
to the functionality of motor neurons. Evolution of the agents’ behavior is modeled
by a genetic algorithm, which is based on the assumptions that emergence of signaling
brings direct benefits to the agents and the populations (increased behavioral skills and
comprehension ability); that there is a benefit in direct communication between parents
and children (while parents produce more stable and reliable input signals); and that the
preevolution of good sensorimotor and cognitive abilities permits the establishment of a
link between production and comprehension abilities, especially in the early generations
when signaling is introduced. They have also studied imitation and language in epigenetic
robotics. Two robots (12 degrees of freedom) were placed into the virtual world, the
physics of the environment was controlled by open dynamic engine (ODE) and the online
mimicking algorithm was applied. Agents, in absence of a linguistic input, performed
a different default action for every object, which caused the object recognition area to
have a double function: categorizing the objects and bootstrapping a default action in
absence of linguistic input (see Fig. 4.5).

Figure 4.5: Simulation setup for the model of imitation and communication in epigenetic
robots (see [292] for more details).
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............................ 4.5. Learning language through visual grounding

This model was further extended by Tikhanoff [8], who did an iCub simulation
experiments and focused on integration of speech and action. The humanoid robot
was able to learn to handle and manipulate objects autonomously, to understand basic
instructions, and to adapt its abilities to changes in internal and environmental conditions.
Artificial neural networks were used as a feed-forward controller for solving the task of
reaching for an object and another control system consisting of a neural controller (Jordan
neural network) was used to actually grasp the object. In the experiment described
in [306], mixture of multivariate Gaussians (Neural modeling field theory [33, 52]) was
applied to the data on the classification of the posture of robots, as in an imitation task.

Crangle and Suppes in [307] proposed a natural-model semantics which they applied
to the interpretation of robot commands. Two experimental projects are described, which
provide natural-language interfaces to robotic aids for the physically disabled. They also
examine the use of explicit verbal instruction to teach the robot new procedures or the
interpretation of spatial prepositions. This model lacks a perceptual system and there is
also manually inserted model of background into the knowledge based. McGuire et al.,
in [308], built a hybrid architecture that combines statistical methods, neural networks,
and finite state machines into an integrated system for instructing grasping tasks by
man-machine interaction. This system incorporates gestures interpretation as well as
visual attention or language interpretation. Sofge et al., in [309], utilized an agent-based
architecture to achieve a multimodal human-centric interface for controlling a dynamically
autonomous mobile robot. An occupancy map was created using various sensorical data,
which enabled the robot to separate the individual objects and communicate about their
spatial relationships which was further exploited in interpretation of separate robotic
actions.

Another researcher, Cynthia Breazeal has focused on sociable robots. The first of
them was a Kismet [310, 311], which was developed to explore social and emotional
aspects of human-robot interaction and is able to speak protolanguage and express
emotions. Robot Leonardo [311] is a successor of Kismet, which has an implemented
cognitive architecture created on the bases of its own database. Language, visual and
motoric data are interconnected using central model, so called ”Belief system”. Sensorical
data are captured in separate moments, classified using the hierarchical structures and
subsequently sent into the central system which decides whether new beliefs about an
object will be created or not. The model also incorporates human beliefs about objects
and attentional mechanisms.

Mavridis developed the multimodal architecture and implemented it into the robotic
arm called Ripley [294, 11], which enables the robot to transfer spoken commands into
situated action and vice versa. This architecture is partially similar to the cognitive
architecture implemented in Leonardo robot but extends it by providing an ability to
quantify and express owns beliefs and confidence. The core of the architecture is dynamic
mental model, which updates itself using haptic, visual and language input. This model
is able to ground verbs, adjectives and nouns referring to physical referents using an
unified representational framework. Even though many parts of the architecture are
adaptive – combination of neural networks and probabilistic models is used, some parts
are supervised or fixed – for example the fixed grammar and only predefined number of
words and categories.

While the models above have focused mainly on acquisition of nouns and adjectives
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Figure 4.6: Leonardo’s cognitive architecture for learning and performing cognitive tasks
and motor skills. It is built on top of the c5 codebase (see [310] for more details).

Figure 4.7: Modular software implementation of grounded situation model (GSM) for a
Ripley robot (see [294] for more details).
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referring to physical objects and their properties, I would like to summarize briefly main
research directions in the area of verbs acquisition. Bailey [312] have proposed the concept
of x-schemas which are control sequences of movements of simulated manipulator arm.
Action primitives can be organized using these schemas into networks. Each verb is
defined by its associated x-schema and control parameters (e.g. each verb ”pick up”
and ”push down” has its own x-schema while ”push” and ”shove” differs only in control
parameters of identical x-schemas – forces and velocity).

Yiannis Aloimonos and his team have focused on manipulation actions for robotics.
In [295] they propose that tree banks are an effective and practical way to organize
semantic structures of manipulation actions for robotics and they have introduced
the manipulation action context-free grammar which was used to parse semantic tree
structures. In another research [296], they have studied occlusions and defined 6 action
consequences: assemble, divide, consume, create, transfer, deform. X-bar schema was
used to describe robotic action. The collaboration of agents was necessary to solve
some presented problems. In [313], human actions extracted from video sequences were
represented as short sequences of atomic body poses. Probabilistic context-free grammar
(PCFG) was constructed based on these sequences, which enables the model to recognize
new actions and changes from a new single viewpoint video.

Another approach was used by Siskind [314] who analysed video sequences of human
hands manipulating coloured blocks. Subsequently, he has extracted visually derived
features that express contact, support and attachment relationship between hands, blocks
and tabletops. Temporal relations between force dynamic features were described using
Allen relations which are 13 possible logical relations between time intervals.

Recent research indicates that sensory and motor cortical areas could play a significant
role in the neural representation of concepts. In a recent fMRI study [315] 900 words
with five sensory-motor attributes (colour, shape, motion, sound and manipulation) were
presented and associated activation was examined. The results indicate involvement of
multimodal and higher-level unimodal areas.

Roy in review [291] proposes to combine these two approaches to model verbs
acquisition – Siskind perceptually grounded verb learning and Baileys x-schemas. In
review he also summarizes questions for future research to create a framework for
grounding words in terms of structured networks of motor and sensor primitives. Verbs
acquisition has been recently also incorporated into the developed conversational robots
(mainly through experiments with iCub humanoid robot).

Special part of the grounded models of language are infants models, which deal with
sensor-grounded language. Roy have developed the CELL model [316], where spoken
words of shape and colour are segmented and associated. In the model, only one object
was presented in corresponding video sequence. Yi and Ballard [317] have combined
spoken input with the visual input composed of multiple objects and they also have taken
advantage of eye tracker when studying eye movements.

Probabilistic models
Finaly, I will focus on probabilistic models of grounding language in perception.

The team of Josh Tenenbaum has been dealing with probabilistic models of cognition
and developed also probabilistic model of language grounding. In the article [299, 48] they
have proposed the Bayesian framework for word learning and then tested the predictions
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in three experiments, with both adult and child learners. The model is formulated
within the Bayesian framework for concept learning and generalization introduced by
Tenenbaum and his colleagues [299, 300, 318] (see Fig. 4.8). Bayesian approach naturally
explains the spectrum of generalization behavior observed given one or a few positive
examples. Also hypotheses about word meanings are evaluated by Bayesian probability
theory which means that the hypotheses are scored according to their probability of
being correct.

Figure 4.8: Hierarchical clustering of similarity judgments yields a taxonomic hypothesis
space for word learning (see [299] for more details).

In [319], they presented a Bayesian model of cross-situational word-learning and an
extension of this model that also learns which social cues are relevant to determining
reference. This model should answer the question which word has been most probably
used in the presence of specific social cues. They also examined several important
phenomena in word learning: mutual exclusivity (the tendency to assign novel words to
novel referents), fast-mapping (the ability to assign a novel word in a linguistic context
to a novel referent after only a single use), and social generalization (the ability to use
social context to learn the referent of a novel word). The proposed model was tested on
a corpus of mother-child interactions where each utterance was annotated with the set of
objects visible to the infant and with a social coding scheme (infants eyes, infants hands,
infants mouth, infant touching, mothers hands, mothers eyes, mother touching). The
model has outperformed association models as well as translation models learning from
noisy corpus data.

Fontanari et al. [284] used a mixture of Gaussians which learn by an EM algorithm,
specifically Neural modeling fields categorization mechanism [33], for cross-situational
learning of object-word mapping. The work aimed to show that a general purpose catego-
rization algorithm can be used as a mechanism to acquire a lexicon in an unsupervised
learning scenario. The language is viewed as a mapping between sounds (words) and
objects. After learning was the model sensitive to the frequency of co-occurrence of
objects and words. They have also showed that the inclusion of a clutter detection module
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can identify and automatically discard the inputs representing wrong object–word associ-
ations. So the model created distinct categories for all correct object–word associations
and dumped all wrong associations in a single category.

Another researchers have focused on learning probabilistic language models from
natural language input [154, 320], some of them also include a visual component [321].
However, these approaches ground the language into predefined language formalisms,
rather than extending the model to account for entirely novel input.

Cynthia Matuszek et al. presented in [154] an approach for joint learning of language
and perception models for grounded attribute induction. The approach builds on existing
work on visual attribute classification [322] and probabilistic categorical grammar induc-
tion for semantic parsing [323, 324]. The goal is to map automatically a natural language
sentence x and a set of scene objects O to the subset G ⊂ O of objects described by
x. The individual objects are extracted from the scene via segmentation and learning
is performed via optimizing the data log-likelihood using an online, EM-like training
algorithm. This system is able to learn the accurate language and attribute models for
the object set selection task, given data containing only language, raw percepts, and the
target objects. To bootstrap the learning approach, they first train a limited language
and perception system in a fully supervised way (each example additionally contains
labeled logical meaning expressions and classifier outputs). The system can be taught
to recognize previously unknown object attributes by someone describing objects while
pointing out the relevant objects in a set of training scenes. The approach was evaluated
on Amazon Mechanical Turk.

Tellex [321] introduced a novel model called Generalized Grounding Graphs (G3),
which is a type of grounding graph – a probabilistic graphical model that is instantiated
dynamically according to the compositional and hierarchical structure of a natural
language command. Each grounding is taken from a semantic map of the environment,
which consists of a metric map with the location, shape and name of each object and
place, along with a topology that defines the environment connectivity. The model
was trained using a corpus of commands collected by crowdsourcing and paired with
groundings for each part of the command. This enabled the system to automatically
learn meanings for words in the corpus (including complex verbs such as ”put” and
”take”). The system was evaluated in the specific domain of natural language commands
given to a robotic forklift.

There are also several researchers who have used probabilistic models to represent
sentences describing videos, scenes and pictures. However, these approaches are mainly
supervised (e.g. [325, 326]) and do not solve the symbol grounding problem even though
the meaning of a phrase in a description is implicitly grounded by the relevant content of
the image.

Kulkarni et al. presented in [325] the supervised automated system for generating
and understanding simple image descriptions. A Conditional random field (CRF) was
used to predict the best labeling for an image where nodes of the CRF correspond to
several kinds of image content (objects, attributes which modify the appearance of an
object, and prepositions which refer to spatial relationships between pairs of objects).
The language model was trained using Wikipedia pages that describe objects the system
can recognize, and evaluated by the UIUC PASCAL sentence dataset [327]. Sentences
were represented using n-grams and HMM. After learning the system automatically
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Figure 4.9: Grounded language learning from video sequences. Suppose that each word in
the sentence has one or more arguments (α and possibly β), each argument of each word
is assigned to a participant (p0, ..., p3) in the event described by the sentence, and each
participant can be assigned to any object track in the video. Here is shown one of the possible
interpretation of the sentence (erroneous). (see [328] for more details).

generates the descriptive text for the presented image (e.g. “This picture shows one
person, one grass, one chair, and one potted plant. The person is near the green grass,
and in the chair. The green grass is by the chair, and near the potted plant.”).

The unsupervised learning was used in the model presented by Yu and Siskind [328].
They applied factorial HMM to learn representations for word meanings from short
video clips (people interacting with multiple complex objects in outdoor environments)
paired with sentences. The model learns the entire lexicon, including nouns, verbs,
prepositions, adjectives, and adverbs, simultaneously from video described with whole
sentences. ”Compositionality is handled by linking or coindexing the arguments of the
conjoined HMMs which were parametrized with varying arity. Thus a sentence like ’The
person to the left of the backpack approached the trashcan’ would be represented as a
conjunction of person (p0), to-the-left-of (p0, p1), back (p1), approached (p0, p2), and
trash-can (p2) over the three participants p0, p1, and p2. This whole sentence is then
grounded in a particular video by mapping these participants to particular tracks and
instantiating the associated HMMs over those tracks, by computing the feature vectors
for each HMM from the tracks chosen to fill its arguments.” (see Fig. 4.9)

The most relevant research to my work was done by Deb Roy and his team who have
developed a series of techniques for grounding words in visual scenes [6, 294, 329, 330].
In [6], Roy has focused on learning visually grounded language and spatial relationships
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between the objects represented by relative spatial clauses. Several visual features
were used to represent objects (radius, width, colour, x and y coordinate etc.). Two
speakers described the observed objects and their spatial relationships using utterances
and clauses with varying difficulty (e.g. ”The red square”, ”The purple rectangle to the left
of the pink square”). Subsequently, these speaker recordings (2x 90 min) were manually
transcribed. Language was represented using hidden Markov models. Words and phrases
were separated into clusters based on their semantic features associations. Parameters of
multivariate Gaussian models associated with each word were learned by EM algorithm
and KL distance was used as a similarity measure. Word order constraints were modeled
by class-based bigram transition probabilities (see Fig. 4.10). This stochastic network
was able to capture spatial relationships between objects. Compared to our model, the
class-based bigram is trained on the corpus of sentences.

Figure 4.10: Word-class based statistical bigram for simple utterances (see [6] for more
details).
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Chapter 5
Proposed multimodal cognitive architecture

5.1 General overview
In the thesis, mainly the architecture, which was further used for processing artificial
data with five separate visual features (size, colour, texture, orientation and shape), is
described. The architecture can be as well adapted for specific cases such as was done
for experiments with iCub (see architecture shown in Section 5.5). My own architecture
was published in [21] and the video from implementation into humanoid robot can be
seen at [22].

5.2 Visual layer
The sensory input is captured by the visual layer which serves as an artificial retina. The
visual layer is represented by a set of mixture models, specifically mixture of Gaussians.

Firstly, the visual input is divided based on the different visual features (colour,
orientation, shape, etc.) (see Fig. 5.2) and these visual features are subsequently processed
separately. From the neuroanatomic point of view, this corresponds to the processing
of the visual input in the separate higher visual centres in the brain, specifically to the
independent processing of the information about position and identification of an object
in the ventral (”what”) and dorsal (”where”/”action”) neural pathways respectively [331,
332]. Individual object properties are identified in the separate visual centres of the
occipital lobe.

The input to the first visual layer can be both vector of features extracted from a raw
image data or the raw data transformed from the matrix to the vector form (e.g. ysize

n ,
ycolour

n , yorientation
n , ytexture

n and yshape
n ) and serves as an input to the first layer. Outputs

of all unimodal modules from the first layer are concatenated and serve as an input vector
to the second layer where the identification of an object is performed. Object recognition
is realized by an unsupervised learning, specifically data are modeled by a mixture of
Gaussians learned by the EM algorithm. This approach is compared to the k-means
algorithm, SOM, GWR and supervised learning of the mixture of Gaussians.

The first layer – processing of individual visual features
Each visual feature (e.g. size, colour, etc.) of input data point is processed separately
using the mixture of Gaussians in the first visual layer (see Fig. 5.3). The number
of models in the mixture model matches the number of expected classes. In the first
experiments, the known number of classes is supposed (e.g. 10 for shapes, 5 textures, 3
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Figure 5.1: General overview of the proposed architecture

sizes, 3 orientations and 9 colours) and simple GMM is used. Subsequently, the number
of Gaussians is found automatically (greedy GMM or the newly proposed greedy GMM
with merging are used).

The used Gaussian mixture model is a convex mixture of d-dimensional Gaussian
densities lk(xn|θk):

ffeature
k (xn) =

Kfeature∑
k=1

rkl
feature
k (xn|θk),∀feature, (5.1)

(e.g. feature ∈ {size, colour, orientation, texture, shape}),
where xn is d-dimensional continuous-valued data vector, rk are the mixture weights,
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Figure 5.2: Processing of the visual information in the proposed architecture.

parameters θk are cluster centresmk and covariance matrices Ck,and Kfeature is number
of clusters in data associated with a given visual feature.

Mixture of Gaussians is trained by the EM algorithm (see Eq. (2.9–2.12)).
An output of this layer is the vector y of

∑
featureKfeature output parameters de-

scribing the data point – the likelihood that the data point belongs to each cluster (we
get the information about redness, stripeness and horizontalness of an object or how
much is the object star-like).

yn = [l(O|Ksize
1 ) . . . l(O|Ksize

3 ), l(O|Kcolour
1 ) . . . l(O|Kcolour

9 ),
l(O|Korient

1 ) . . . l(O|Korient
3 ), l(O|Ktexture

1 ) . . . l(O|Ktexture
5 ),

l(O|Kshape
1 ) . . . l(O|Kshape

10 )]
(5.2)

An overview of the algorithm used in the first layer is presented in Algorithm 6.

The second layer – Evaluating and integrating visual features of an
observed object

Output parameters from the first layer are being integrated in the second layer. The
identification of an observed object is based on these concatenated parameters. In this
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Figure 5.3: The first visual layer of the proposed architecture.

Algorithm 6 Architecture – the first visual layer.
Inputs:

input visual data xij for each feature i and each data point j
Input parameters:

number of classes NmbCli for each feature i (optional)
Output:

matrix of likelihoods y that the given data point j belongs to the given
cluster k of the given mixture i

for i ∈ {size, colour, orientation, texture, shape} do
if known number of classes NmbCli then
θi = {M i,Ci} initialize parameters of NmbCli components of a mixture
[LLi,F i, li] ← EMalg(xi,θi) train a mixture by EM algorithm, LLi – log-likelihood,

F i – memberships of each data point to each cluster in a mixture, Li ← l(xij |Ki
n) – matrix of

likelihoods that the given data point xij belongs to the given cluster Ki
n in a mixture i

else(unknown number of classes NmbCli)
θbest ← gmGMM(xi) estimate components’ parameters and number of classes by

gmGMM algorithm (or another similar algorithm for unknown number of classes in GMM)
Li ← l(xij |Ki

n) compute likelihoods that the given data point xij belongs to the given
cluster Ki

n in a mixture i
F i ← compute memberships of each data point to each cluster in a mixture

end if
yij = [l(xij |Ki

1), l(xij |Ki
2), . . . , l(xij |Ki

NmbCli
)] output of unimodal layer i

end for
y = [ysize,ycolour,yorientatiton,ytexture,yshape]← concatenate outputs of unimodal layers
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level, the symbol grounding problem must be solved as well as so called binding problem.
The binding problem refers to the segregation problem how to retroactively assign
decomponed features to the individual objects or how ”to bind together all the features of
one object and segregate them from features of other objects and the background” [333].
This problem is solved by interconnecting visual and language layer and could be also
solved by utilizing the feature integration theory of attention developed in 1980 by Anne
Treisman and Garry Gelade [334]. They suggested that during the decomposition of an
object to specific features attentional resources are used to bring the various independent
feature maps into register with respect to a master map of location. This master map of
locations will indicate what combinations of features coexist at each location in the map
which will enable subsequent feature integration.

There are two basic options how to transfer the information of data point clusterization
from the first to the second layer:..1. Winner-takes-all (localist representation) – the strategy where only the cluster

with the highest cluster membership probability is considered (the data point is
assigned to this cluster):

M(O|Kfeature
k ) =

{
1 if k = argmaxj l(O|K

feature
j )

0 if k 6= argmaxj l(O|K
feature
j )

(5.3)

∀feature (e.g. feature ∈ { size, colour, orientation, texture, shape}).

Example: in the case that output likelihoods that data point corresponds to the
given texture are: 0.01, 0.3, 0.5, 0.1 and 0.05 for dotted, lined, tweed, grid and
plain respectively, we will transform the output to the vector: 0 0 1 0 0 and assign
the data point only to the 3rd cluster (tweed).

yj = [0.1 0.2 0.4 0.8 0.7 0.01 0.04 0.2 0.12 0.001 0.002 0.001 0.2 0.05 0.3
0.01 0.3 0.5 0.1 0.05 0.04 0.2 0.1 0.03 0.5 0.6 0.1 0.002 0.003 0.04]
(Outputs of the 1st layer)

− >
zj = [0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0]

(Inputs to the 2nd layer)..2. Fuzzy memberships (distributed representation) – the fuzzy membership to
different clusters are considered and further combined with the language output
and with prior expectations. The prior expectation corresponds to the situation
when a red apple is more likely to be observed than a red banana. The likelihoods
to different clusters are used directly as an input to the second layer.

Outputs of the 1st layer = Inputs to the 2nd layer

yj = zj
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The final object identification can be done directly based on the winner-takes-all

outputs from the 1st layer (Eq. (5.3)). These data will tell us an assignment of a data point
to individual clusters. Therefore we can generate the ”prototypical object” representing
an observed object. This prototypical object would be generated from the mean values
of winning clusters. Furthermore, if we have available the true labels, we can label the
clusters (based on the most occurred label in a cluster) and consequently evaluate the
recognition accuracy.

In next chapters there is described how the visual clusters can be labeled in an
unsupervised manner by mapping vision to the language data. In this case both winner-
takes-all and fuzzy membership can be applied.

We could alternatively use fuzzy outputs from the 1st layer and cluster these data
once again in the second layer. The outputs from the first layer (n dimensional vector
of output parameters) would serve as an input to the self organizing neural network
with the number of neurons equal or bigger than the expected number of classes (for 10
shapes, 5 textures, 3 sizes, 3 orientations and 9 colours this will give total amount of 4050
classes). The clusterization error will be tested in the following manner: after learning
the neural network, neurons will be labeled by the class to which they respond the
most and then in the testing stage. Alternatively GMM can be used for data clustering.
Anyway, it is worth mentioning that this approach is very ineffective since we would need
enormous number of training data and it also partly goes against the reason why we did
decomposition of an object to separate visual features.

5.3 Language layer
Language (or auditory) inputs (English sentences) in a vector form are processed in the
following manner: firstly individual words are processed and subsequently full sentences
are processed in the second layer. Hidden Markov models (HMM) are used in both layers
of hierarchy. Outputs of both layers are combined into one output, which describes the
likelihood that the language input corresponds to the appropriate sequence of words.
Input sentences can have fixed or variable length and are encoded as high-dimensional
patterns.

Word processing
Words are modeled by m-state Hidden Markov model (HMM) with one output Gaussian
distribution for each hidden state (see Chapter 2.2).

In this case, each hidden state can represent either one phoneme or bunch of the
phonemes. Depending on it, number of hidden states can either correspond to:. number of individual phonemes, or. bunch of phonemes can be represented by one hidden state where emission proba-

bilities of this hidden states identify the used phoneme. In this case, the optimal
number of hidden states will be estimated based on the clusterization error.

If the lexicon is given, we can construct separate HMM models for each lexicon
word Wi. After fitting all models li, we can generate corresponding log-likelihoods
llij = log l(Wj |Li), 1 ≤ i, j ≤ N (evaluate the log-likelihood of each of the N sequences
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Figure 5.4: Processing of the language data in the proposed architecture.

given model Li) that could be computed either by Baum-Welch or by Viterbi algorithms
(see Fig. 5.5).

A variety of clustering methods can be used to cluster the sequences into K groups
using log-likelihood distance matrix. The symmetrized distance:

llij = log(l(Si|Lj)) + log(l(Sj |Li))
2 , (5.4)

can be used as an appropriate measure of dissimilarity between models Li and Lj [335, 80].
There are also other methods based on different kernel to measure the pairwise similarity
between sequences such as Bhattacharyya affinity [78] (for more details see Chapter 2.2).

In this thesis, two clustering techniques are compared:. k-means clustering (implementation described in [81]) (see Section 2.2, Algorithm 1),. agglomerative clustering [80] (see Section 2.2, Algorithm 2)

Cluster redistribution is deterministic, assigning each item xn to the cluster cj that gives
it the highest posterior l(xn|cj).

The first implemented algorithm was clustering of HMM using k-means (see Chap-
ter 2.2, Algorithm 1) which served as a referential method for more sophisticated
algorithms.

Two alternative designs of the first layer are compared:
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Figure 5.5: The first language layer of the proposed architecture – word processing...1. All possible words are clustered altogether. This method enables variable length of
the sentence as well as variable grammar. On the other hand clustering will achieve
worse results in a case of a fixed grammar where the corresponding feature to the
given word is known (see Fig. 5.6).

Figure 5.6: Word processing – visualization of distance measure between sequences repre-
sented by HMMs (all words clustered altogether).
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The process of learning is as following:. 1. ll(k, j, i) = l(wj
k|Li),∀j,k,i. 2. assign word wk

j to the language model Lim,∀j,k : im = argmaxi ll(k, j, i). 3. relearn Li, ∀i. 4. repeat from 1...2. Similarly to the visual layer, words corresponding to each feature (or word type)
are clustered separately. This is possible when we use the fixed grammar and length
of the sentences or by utilizing the probabilities of transition between different
features computed in the second layer (see Fig. 5.7). It has to be mention, that
in this case the number of language clusters will be different generally from the
number of visual ones because we cannot restrict the recognized words only to
words used for the given feature (e.g. even though we say ”Blue” and in front of
us is a cube, we can hear ”Cube” so the word ”cube” will create a new cluster in
language).

Figure 5.7: Word processing – visualization of distance measure between sequences repre-
sented by HMMs (words corresponding to each feature are clustered separately).

Notes:. What would happen when a two-state HMM with discrete or continuous output
probabilities would be used? This model would be able to only differentiate between
a small number of words. The discrete model would not be able to differentiate
between words, which have different level of energy in a given hidden state.. What if we considered words as static n-D patterns. Even though this model would
be easier to implement and would achieve higher clusterization accuracy, we would
not be able to use this model for speakers varying in prosody or phrasing of the
words as well as it would not be able to differentiate among words of different
length.
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. In the algorithms used in this thesis, every item is assigned unambiguously to a

single cluster (represented by a single HMM) on each iteration, and the HMM
parameter updates are influenced only by those items currently in the associated
cluster. This leads to much quicker convergence of the algorithm [81]. Cluster priors which could reflect the cluster size are ignored in these implementa-
tions. There are other clustering algorithms which can be used such as divisive clustering
or model-based clustering

Sentence processing
In the second layer, sentence processing is modeled by a probabilistic model, specificaly
HMM. The probabilistic model of sentence processing will predict the following words on
the basis of previous experiments. While in word processing we solved the ”Evaluation
problem”: given a HMM model Li and sequence of observations O1, O2, . . . , On what is
the probability that the observations are generated by the model: p(O|Li), in sentence
processing we are mostly interested in a ”decoding problem”: Given a model Li and
sequence of observations O1, O2, . . . , On what is the most likely state sequence in the
model that produced the observation? In both cases (word and sentence processing),
learning problem must be solved because HMMs should be trained online while newly
data are continuously added to the training set.

Figure 5.8: The second language layer of the proposed architecture – sentence processing.

The simplification that the probability of an observation at time n only depends on
the observation at time n− 1 is called the first-order Markov assumption. Even though
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the proposed model could be used to the sentences of an arbitrary length and grammar
(see Fig. 5.11), in the thesis I will focus only on very simple sentences of variable or fixed
length describing one observed object.

Each hidden state corresponds to one feature (the 5-states HMM is used) and the
transition between hidden states is described by the transition matrix. Each hidden
state can produce a bunch of observations which output probabilities are described by an
emission matrix. (e.g. hidden state ”size” will produce output observation ”big”, ”small”
or ”medium”). The output probabilities defined by transition and emission matrices can
evolve during the learning (e.g. more one-word sentences are produced at the start and
longer sentences can be added as the learning progresses) (see Fig. 5.9).

I compare two alternative designs of the sentences:..1. The full-length sentence having a fixed grammar and fixed length which has a
following structure:

<Size> <Colour> <Orientation> <Texture> <Shape>
(e.g. ”Big red horizontal dotted cross”)

Example of transition matrix for sentences with fixed length and grammar is shown
in Table 5.10a.
In this case, the model and its transition matrix is given and only emission matrix
can be relearned after each observation...2. The sentences with a variable length. The examples of these sentences are following:

”Rectangle”
”Red triangle”

”Big striped circle”
etc.

In this case, parameters of transition matrix must be derived from the input data.
The structure of transition matrix can evolve through learning (e.g. at the start of
learning there are only short one-word sentences describing only shape or colour of
an object, in the next stage, sentences describing more features of an object can
arrive). Specific observations of the specific state are described by an emission
matrix.
Example of transition matrix for sentences with a variable length is in Table 5.10b.
When we would like to consider also non-fixed order in the sentence corresponding
to a variable grammar, transition matrix would change so that there are non-zero
elements below the diagonal.
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5. Proposed multimodal cognitive architecture ............................

Figure 5.9: The second language layer of the proposed architecture – sentence processing,
illustrative Transition and Emission matrix.
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T1 T2 T3 T4 T5 F
St 1 0 0 0 0 0
T1 0 1 0 0 0 0
T2 0 0 1 0 0 0
T3 0 0 0 1 0 0
T4 0 0 0 0 1 0
T5 0 0 0 0 0 1

(a) : Fixed length
T1 T2 T3 T4 T5 F

St 0.2 0.2 0.1 0.1 0.4 0
T1 0 0.1 0.1 0.1 0.2 0.5
T2 0 0 0.1 0.1 0.5 0.3
T3 0 0 0 0.1 0.7 0.3
T4 0 0 0 0 0.9 0.1
T5 0 0 0 0 0 1

(b) : Variable length

Figure 5.10: Transition matrices for fixed (a) and variable length (b) (St – Initial state, T1 –
Size, T2 – Colour, T3 –Orientation, T4 – Texture, T5 – Shape, K – Final state).

In Fig. 5.11, I propose an extension of the sentence processing model for more complex
sentences with variable grammar and length. This model would capture more complex
sentences, which describe multiple objects and their spatial relation including action
verbs (e.g. ”Big red cross on the left is moving quickly towards the dotted triangle in the
front.”)

5.4 Multimodal Cooperation Between Visual and Auditory
Layers

After individual modalities are processed separately, they are interconnected in a top
most multimodal layer of the architecture. To be able to correctly join the information
from the separate unimodal areas, corresponding clusters in both modalities have to be
mapped to each other. From a neuroscientific point of view, this can be viewed as a
process of finding mapping between primary unimodal visual and language brain areas.
Where the integration is performed is still the subject to research and existing literature
provides conflicting accounts of the cortical location of this convergence. For example, the
study of [336] provides evidence for the involvement of the left basal posterior temporal
lobe (BA37) in the integration of language and visual information. On the contrary, e.g.
Spitsyna et al. [337] propose that access to the verbal meaning depends on both anterior
and posterior heteromodal cortical systems within the temporal lobe.

The mapping solves the problem how to correctly assign words to individual object
properties (e.g. that word ”triangle” describes the shape of an object and not its colour).
The mapping task is non-trivial even for the fixed length grammar sentences. In a
case of variable length/grammar sentences, we have to deal with even more incomplete
information. Good sentence model (see Section 5.3) including the previously learned
transition matrix (see Table 5.10) describing the sentence can help. Nevertheless, the
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Figure 5.11: Sentence processing – scheme of HMM used for processing sentences with a
variable length (DET – the, a, an,. . . ; Adverb – slowly, quickly,. . . ; Position – on the left,
at the bottom,. . . ; Direction – to, from,. . . ; Verb – move, bounce, jump,. . . ; Object – cross,
chair, wall, triangle,. . . ).

amount of data necessary for finding the best mapping is in this case obviously increased
compared to the case of a fixed grammar.

Finding the best mapping between visual and language layer – fixed
lenght and grammar sentence

After both visual and language data are clustered, the mapping between the two layers
must be found. For each cluster Li in language layer corresponding cluster Kfeature

j in
visual layer for each feature feature (e.g. feature ∈ {size, colour, shape}) is found or vice
versa. In a case of fixed length and grammar sentence the situation is slightly simpler
since we know to which visual feature the heard word corresponds to. Therefore we can
find the number of co-occurrence of the visual feature with the given word without any
need for a sentence model (or the sentence model is described by a diagonal transition
matrix).

The basic model for a fixed grammar and length sentence is visualized in Figure 5.12.
You can see that in the scheme there is also proposed that the clustering of Kfeature

j and
Li and their mapping could be updated with the newly added datapoints and based on
the result of their clusterization.

The mapping is found as follows: for each j and feature we find cluster Lkmaxjf

from language layer which will be assigned to the cluster Kfeature
j from the visual layer.

Two different models how to find indices kmaxjf are compared.
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Figure 5.12: Scheme of the architecture for the fixed length sentences. Communication
between visual and language layer is visualised by dashed lines. In the case of the fixed length
sentences, type of the feature (j) which is described by the given word is known from the
position of the word in the sentence.

Model 1 (one-step mapping): Indices kmaxin are found as following:

∀j,featurekmaxjf = max
k

∑
i∈Kfeature

j

l(Lk,x
feature
i ), (5.5)

where xfeature
i are selected data from dataset xfeature which based on the vision should be

assigned to the cluster Kfeature
j and l(Lk,x

feature
i ) is likelihood that data point xfeature

i

will be assigned to the cluster Lk.
Model 2 (sequential mapping): Indices kmax are found sequentially so that

always the best mapped data are excluded and the rest is reclustered using GMM.
Afterward, one-step mapping is performed (see Alg. 7).

In the ideal case, the unambiguous mapping between the two clusterizations will
be found. In the real case (when clusterizations in visual and language layer are not
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5. Proposed multimodal cognitive architecture ............................
Algorithm 7 Sequential mapping

Inputs:
language clusters Li (i ∈ 1 : M), visual clusters Kfeature

j ∼ N(mk,Sk),
j ∈ 1 : Nfeature, input data xfeature for each feature
feature ∈ {size, colour, orientation, texture, shape}, number of clusters
NmbClfeature for each feature feature

Output:
mapping between all visual classes Kfeature

j and language classes Li

for feature ∈ {size, colour, orientation, texture, shape} do
NCl← NmbClfeature

while NCl > 0 and xfeature is not empty do
assign each data point from xfeature to visual and language cluster (Winner-takes all,

see Eq. (5.3))
for j = 1 : Nfeature do

for i = 1 : M do
Tij ← how many times was class i actually classified as j

end for
end for
[im, jm]← argmaxi argmaxj Tij
xfeatureNCldel

← data points assigned to both Kfeature
jm and Lim

θfeaturenewNCl
← N(xfeatureNCldel

) learn Gaussian on the to be deleted data
xfeature ← delete all data points assigned to both Kfeature

jm and Lim
NCl← NCl − 1
relearn Kfeature

j ∼ N(mk,Sk) on new data xfeature with NCl number of clusters
end while

end for
cluster visual data using new θfeaturenew parameters (cluster centres mk and covariance matrices
Sk and perform One-step mapping (Model 1)

optimal), none or more than one cluster from language layer will be assigned to one
cluster Kfeature

j in visual layer or vice versa .
To compute the accuracy, each cluster is assigned to the true (manual) class that

appears most frequently in the cluster, and then the accuracy of this assignment is
measured by counting the number of correctly assigned data points and dividing this by
the total number of data points. It is important to notice, that true (manual) labels can
be partly subjective.
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Figure 5.13: Finding mapping between visual and language layer (Shape feature).

Figure 5.14: Sequential mapping - in each iteration one mapping is found and corresponding
datapoints are removed, resting points are reclustered. Different colors in each iteration
correspond to individual clusters.

Finding the mapping between the visual and language layer – variable
lenght/grammar sentence

In a case of a fixed grammar, each word position corresponds to the individual visual fea-
ture (e.g. sentence is in a form <Size> <Colour> <Orientation> <Texture> <Shape>).
On the contrary, in a case of variable-length/grammar sentence, every word in a sentence
can be assigned to any visual feature (when taking into account restrictions given by a
sentence model). This makes mapping a little bit more tricky. Nevertheless, the basic
idea how the mapping is done remains same.

In this case, product of probabilities P (wm
k |Li) that the given word is modeled by the

language model Li and probabilities that the given model Li will occur on the specific
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5. Proposed multimodal cognitive architecture ............................

Figure 5.15: Mapping: columns correspond to the visual clusters and rows to different
language classes. Model 2 a,–e, corresponds to the sequential removing of the clusters based
on the mapping which is found in each step (by red colour are denoted points which will be
deleted from the dataset corresponding to mapped language cluster i and visual cluster j).
After each cluster removal, remaining points are clustered based on the visual features and
the second best assignment is found. Model 1 (f) shows how the one-step mapping would be
performed.

position in a sentence is summed up over all co-occurrence of a given visual cluster
Kfeature

j and language model Li. These values are stored in a variable T (i, j, feature).
From these values we select the highest number over all clusters and features:

[im, jm, fm] = argmax
i

argmax
j

argmax
feature

T (i, j, feature), (5.6)

and assign language model Lim to a visual cluster Kfm
jm . Afterward, datapoints belonging

to both Lim and Kfm
jm are deleted from the dataset and visual feature fm is reclustered.

The whole algorithm is described in Alg. 8.
The Algorithm 8 can be further extended when we incorporate language model

and corresponding probabilities of sequence of individual visual features. In that case,
instead of only counting co-occurrence of visual and language classes, I do the following
computation:

T feature
i,j =

∑
k;vfeature

k
==j

l(wm
k |Li) · P (Li|Tt, Li−1) · P (Tt|Tt−1), (5.7)

where t is time.
The mapping in an ideal case when there is 100% word-recognition accuracy is shown

in Fig. 5.17. The more realistic case with variable accuracy of word-recognition and
also some misclassification errors in visual clustering is shown in Fig. 5.18. These are
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Figure 5.16: Mapping vision to language in a case where all language data are clustered
altogether.

Algorithm 8 Sequential mapping – variable sentence
Inputs:

language clusters Li (i ∈ 1 : M), visual clusters Kfeature
j ∼ N(mk,Sk),

j ∈ 1 : Nfeature visual input data x and corresponding language data
Wi = w1, . . . , wk, number of clusters Nfeature for each feature feature

Output:
mapping between all visual classes Kfeature

j and language classes Li

while
∑

(NmbCln) > 0 and xfeature is not empty do
lmk ← assign each word wmk from each sentence k to language cluster (Winner-takes all, see

Eq. (5.3), lmk = argmaxi(P (wmk |Li))
for feature ∈ {size, colour, orientation, texture, shape} do

vfeaturek ← assign each datapoint xfeaturek to a visual cluster (Winner-takes all, see
Eq. (5.3), vfeaturek = argmaxj(P (xfeaturek |Kfeature

j ))
for j = 1 : Nfeature do

for i = 1 : M do
T featureij ← how many times did visual class i co-occurred with language class j

(T featureij =
∑
k;vfeature

k
==j

∑
m(lmk |lmk == i))

end for
end for

end for
[fm, im, jm]← argmaxfeature argmaxi argmaxj T

feature
i,j (visual cluster Kfm

jm is mapped to
language cluster Lim)
xfmNCldel ← data points assigned to both Kfm

jm and Lim
θfeaturenew NCl ← N(xfeatureNCl del) learn Gaussian on the to be deleted data
xfeature ← delete all data points assigned to both Kfm

jm and Lim
NmbClfm ← NmbClfm − 1
relearn Kfm

j ∼ N(mk,Sk) on new data xfeature with NmbClfm number of clusters
end while
cluster visual data using new θfeaturenew parameters (cluster centres mk and covariance matrices
§k and perform One-step mapping (Model 1)

only illustrative examples to explain how the mapping is performed, restricted on a low
number of visual classes described with the low number of words. In these examples, it
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is also impossible to see how the sequential mapping is performed in a case of variable
grammar because the number of each visual feature was restricted to two. Therefore, only
one-step mapping is performed in this case. However, the idea of sequential mapping is
described in a detail in the Alg. 8 and remains the same as for the fixed length/grammar
sentence. The real examples with results are described in the Section 7 of this thesis.

In a case of clusters with non-equal size, it is also important to normalize the summed
values by the number of datapoints assigned to the corresponding visual cluster.
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No.
Vision LanguageSize Colour Shape

1 2 1 2 1 2 1 2 3 4 5 6
1 1 0 1 0 0 1 0 0 0 1 0 0
2 0 1 0 1 0 1 0 0 1 1 1 0
3 1 0 0 1 0 1 0 1 0 1 0 0
4 1 0 0 1 1 0 0 0 0 0 1 1
5 0 1 1 0 0 1 1 0 1 1 0 0
6 0 1 0 1 1 0 0 0 1 0 1 1
7 0 1 1 0 1 0 0 0 1 0 0 1
8 1 0 1 0 1 0 1 1 0 0 0 1

(a) : Clustering results for individual datapoints (No.) (winner-takes all) (1 denotes
that the datapoint is assigned to the corresponding cluster). E.g. 1st datapoint is
image of a small blue cube with the sentence ”Cube”, 2nd datapoint is the image of
a big red cube with the sentence ”Big red cube” (therefore there is 1 for a language
cluster 3, 4 and 5 which corresponds to 3 words in the sentence).

Size Language
1 2 3 4 5 6

V
is 1 1 2 0 2 1 2

2 1 0 4 2 2 2

(b) : Confusion matrix (visual feature Size).

Colour Language
1 2 3 4 5 6

V
is 1 2 1 2 2 0 2

2 0 1 2 2 3 2

(c) : Confusion matrix (visual feature Colour).

Shape Language
1 2 3 4 5 6

V
is 1 1 1 2 0 2 4

2 1 1 2 4 1 0

(d) : Confusion matrix (visual feature Shape).

Figure 5.17: Mapping vision to language in a case of variable length/grammar sentence
– ideal case. In the ideal case all datapoints are clustered correctly (all individual visual
features as well as all words). Clustering results are shown in a subfigure a, (in this simplified
example we consider only 2 different colours – red/blue, 2 shapes – cube/sphere and 2 sizes –
big/small). Confusion matrices (b,–d,) show co/occurrence of visual and language clusters for
individual visual features. In this case one-step mapping can be performed since clustering
cannot be further improved. The shades of grey show the time-sequence of mapping individual
clusters (darker shades indicate mapping which is performed earlier). In particular, first are
mapped clusters with the highest co-occurrence (visual clusters 2 (Size), 1 (Shape), and 2
(Shape) are mapped to language clusters 3, 5, and 6 respectively) then the second highest
co-occurrence is found and visual cluster 2 (feature Colour) is mapped to the language cluster
5. From the resting clusters the highest co-occurrence is found so the visual clusters 1 (feature
Size) and 1 (feature Colour) are mapped to the language clusters 2 and 1 respectively.
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No.
Vision LanguageSize Colour Shape

1 2 1 2 1 2 1 2 3 4 5 6
1 1 0 1 0 1 0 0 .6 0 .4 0 0
2 1 0 0 1 0 1 .1 .2 .8 .9 .7 .3
3 1 0 0 1 0 1 0 1 .6 .4 0 0
4 1 0 1 0 1 0 0 .1 0 0 .9 1
5 0 1 1 0 0 1 1 .2 .8 .7 0 .3
6 0 1 0 1 1 0 0 .2 1 0 .8 1
7 0 1 0 1 1 0 .1 .2 .7 0 0 1
8 1 0 1 0 1 0 .7 .5 .1 .6 .1 1

(a) : Clustering results for individual datapoints (No.) (winner-takes all). Vision:
1 denotes that the datapoint is assigned to the corresponding cluster, darker
shade of grey denotes incorrectly classified datapoints. Language: probability
that the datapoint belongs to the given model is a product of probability that an
individual word is described by the given model P (wmk |Li) and probability from a
sentence model that the given model Li will occur on this position in a sentence
P (Li|Ti) · P (Ti|Ti−1) .

Size Language
1 2 3 4 5 6

V
is 1 .8 2.4 1.5 2.3 1.7 2

2 1.1 .6 2.5 .7 .8 2.3

(b) : Confusion matrix (visual feature Size).

Colour Language
1 2 3 4 5 6

V
is 1 1.7 1.4 .9 1.7 1 2.3

2 .2 1.6 3.1 1.3 1.5 2.3

(c) : Confusion matrix (visual feature Colour).

Shape Language
1 2 3 4 5 6

V
is 1 .8 1.6 1.8 1 1.8 4

2 1.1 1.4 2.2 2 .7 .6

(d) : Confusion matrix (visual feature Shape).

Figure 5.18: Mapping vision to language in a case of variable length/grammar sentence –
non-ideal case. In this case not all data are clustered correctly. Clustering results are shown
in a subfigure a, (in this simplified example we consider only 2 different colours – red/blue, 2
shapes – cube/sphere and 2 sizes – big/small). Confusion matrices (b,–d,) show co-occurrence
of visual and language clusters for individual visual features (similarly to confusion matrices
in Fig. 5.17 here are summed probabilities of language models). The shades of grey show
the time-sequence of mapping individual clusters (darker shades indicate mapping which
is performed earlier). Even though in this simplified case it is not obvious, the mapping
should be in this case performed sequentially. Which means that after any mapping is found,
corresponding visual feature is reclustered (see Alg. 8).

84



.................... 5.4. Multimodal Cooperation Between Visual and Auditory Layers

Conjunction of visual and language layer
After the mapping between visual and language layer is found, the resulting likelihoods
are sent to the second layer. In the second layer, results from auditive and visual layer
are combined (see Fig. 5.19). The assignment to the class is found for each data point
from the conjunction of visual (Vis) and auditive (Aud) likelihoods to the appropriate
clusters (representing types of features).

Figure 5.19: Combining visual and language input in a second layer. The conjunction
(∧) between likelihoods from visual and language first layers is computed to get the final
assignment of the data point.

For a fixed length/grammar sentence the transition probabilities from the sentence
model are restricted to the diagonal case (see Fig. 5.10a).

Pfin(im, fm) = l(O|Kfm
jm ) ∧ [l(Wk|Lim)P (Lim|State)],

∀jm, fm
(5.8)

3 types of fuzzy conjunction (triangular norm) are compared:. Standard (Gődel) fuzzy conjunction:

Vis ∧Aud = min(Vis,Aud) (5.9)

. Algebraic product fuzzy conjunction:

Vis ∧Aud = Vis ·Aud (5.10)

. Lukasiewicz fuzzy conjunction:

Vis ∧Aud =
{
Vis + Aud− 1 if Vis + Aud− 1 > 0
0 otherwise

(5.11)

The observed datapoint will be assigned to the visual clusters Kfm
imax:

imax = argmax
im

Pfin(im, fm),∀fm (5.12)

and corresponding language cluster.
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5.5 Architecture used for processing data from an iCub
simulator

The multimodal hierarchical architecture used for processing data from an iCub simulator
and real iCub is a specific case of the general architecture described above. It consists of
separate processing of visual and language information, which are consequently mapped
one to the other (see Fig. 5.20). Individual steps of visual and language data processing
are described in a Chapter 6, Section 6.2.

Figure 5.20: Multimodal architecture used for experiments with iCub simulator and real iCub.
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Chapter 6
Datasets

6.1 Input data description and visualisation – Artificial
data

The input data consist of visual and language inputs. The Gaussian noise was added to
both visual and language data to enable to investigate the relation between fuzziness of
the input and the error in the visual and language layer clusterizations.

Visual input

The visual scene is composed of an object in a centre of the scene. The scene size (retina)
is 10x10 pixels and the size of each object is 7x7 pixels. The position of an object can
be varied or fixed. Each of the presented objects has five visual features: size, colour,
orientation, texture and shape (see Table 6.1).

Figure 6.1: Visual input data: An example of visual input and visualization of features it is
composed of.

Altogether this gives 4050 possible combinations of features. The example of a visual
input can be seen in Figure 6.1 and a complete set of used visual features is visualized in
Fig. 6.2. The stimuli with variable fuzziness of the objects features (Gaussian noise was
added) and position were presented to study the relation between the noiseness of the
data and the resulting clusterization error of the visual and multimodal layer.
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Feature Number of classes Number of data points/class

Shape 10 405
Colour 9 450
Texture 5 810
Size 3 1350

Orientation 3 1350

Table 6.1: Overview of input data.

Figure 6.2: Visual features – A complete set of features used for generating a visual input.

Firstly, Principal Component Analysis (PCA) was applied to investigate separability
of the visual data. Fig. 6.3 shows a projection onto the first two principal components
(PCs) separately for each visual feature. I have also plotted contributions of individual
PCs to the overall variance in the data (based on the eigenvalues of the principal vectors).
We can see that in the case of shape feature, the first two PCs capture about 73% variance
and 6 PCs are needed to capture 90% of variance generated by individual features.
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Figure 6.3: Feature space visualization — (A) variability due to shapes with a 10% noise
level. Data are visualized in the space of first two principal components. (B) Contributions of
first n principal components to explain 90% of variance in the data. Note: For visualization
purposes, only 1/10 of the data points were plotted.

In order to get a more quantitative understanding of the problem, I computed
Bhattacharyya distance matrix among each feature type separately for each feature and
visualised the normalized histogram of these distances (see Fig. 6.4).

Figure 6.4: Bhattacharyya distances. Histogram of inter-distances between feature types
shown separately for each visual feature (normalized to a number of object).

Bhattacharyya distance is a more general case of Mahalanobis distance, which can
be used also in cases where the variance of the data is not same for all distributions (to
enable generalization of this particular case, Bhattacharyya distance is used instead of
Mahalanobis distance). The higher distances the better clusterization results we can
achieve. As can be seen, only orientations have the same inter-distances for all 3 feature
types. Colours have the highest number of small inter-distances (the neighbours are very
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close which results in the overlap of the distributions and higher clusterization error).
Also as can be seen in the PCA space, colours are distributed linearly which results in
small inter-distances between neighbours and large distances between the farthest ones.
Even though there are 9 types of shape, shapes are distributed more uniformly, compared
to colours, with the closest shapes ”diamond” and ”ellipse”.

Language input
Language data (English sentences) (see Fig. 6.6) are processed simultaneously with the
visual input (see Figure 6.1). These auditory inputs were encoded to a high-dimensional
vector form using a PatPho, a phonological pattern generator, which parsimoniously
captures the similarity structures of the phonology of monosyllabic and multisyllabic
words [338]. PatPho uses the concept of a syllabic template: a word representation is
formed by combinations of syllables in a metrical grid, and the slots in each grid are
made up by bundles of features that correspond to consonants and vowels. The length
of all words in a vector form after encoding is 54-d, however the same length of words
is not a need. The number of presented words corresponds to the number of observed
visual features (in our particular case this gives 3 (size) + 10 (shape) + 9 (colour) +
5 (texture) + 3 (orientation) = 30 words). An example of language input for sentence
”Middle dotted cross” is shown in Fig. 6.5.

Figure 6.5: Input language data – sentences with variable length in a vector form (encoded
to a high-dimensional vector form using a PatPho). Example shows language input for the
sentence ”Middle dotted cross.”.

If we consider language data as d-dimensional vectors with a same fixed length and
we do not consider data as a time-series, we can visualize them in a same manner as
visual data. Firstly, PCA was applied to language data (see Fig. 6.7) and all words are
visualized altogether. In this case, five PCs were needed to explain 90% of data variance.

In order to get a deeper insight into the problem, I also visualised closeness of words
by a dendrogram (see Fig. 6.8).

6.2 iCub simulator and physical iCub

iCub robotic platform and iCub simulator
The experiment used a simulated [339] and a physical [340] iCub robot. The iCub
(Fig. 6.9c) is an open-source humanoid robot with the size of a three and a half year-old
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Figure 6.6: Language input data – words after encoding by a PatPho generator (with an
added noise, joined by visual features).

child, fully articulated hands as well as a head-and-eye system which makes him ideal for
cognitive experiments. The iCub simulator has been designed to reproduce, as accurately
as possible, the physics and the dynamics of the robot and its environment [339]. The
simulator and the actual robot have the same interface supporting YARP [341], which is a
robot platform for interprocess communication and control of the physical and simulated
robot in a real-time.

Visual and language inputs
The visual scene was composed of an object in a centre of the scene with slightly varying
position. The visual features (size, shape and colour) of an object were varied. We
compared two separate datasets in the paper. Real-world dataset: visual sensory data
were acquired from the cameras of the physical iCub robot who observed the simple
objects placed on the whiteboard in front of his eyes (see Fig. 6.9, (c) and (d)) (204
instances, 3 sizes, 5 colours and 7 shapes). Simulated dataset: data were acquired from
the iCub simulator (see Fig. 6.9, (a) and (b)) where we placed objects generated in the
Blender software (432 instances, 3 sizes, 6 colours and 6 shapes). In both cases, the
full-colour images were saved in the .ppm format and further processed in MATLAB.

The spoken language input were sentences pronounced by a non-native English
speaker describing the image in the format: <size> <colour> <shape> (e.g. ”Small red
triangle”) and were processed simultaneously with the visual input.
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6. Datasets............................................

Figure 6.7: Feature space visualization — (A) variability of language data (30 different words)
with a 10% noise level. Data are visualized in the space of first two principal components.
(B) Contributions of first n principal components to explain 90% of variance in the data.
Note: For visualization purposes, only 1/20 of the data points were plotted.

Figure 6.8: Visualising closeness of individual words by a dendrogram.

Speech recognition

CMU Sphinx was used for speech recognition, which is an open-source flexible Markov
model-based speech recognizer system [342]. Sphinx itself offers large vocabulary, but we
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(a) : iCub simulator. (b) : Blender object. (c) : Physical iCub. (d) : Real object.

Figure 6.9: Experiment design and corresponding input data.

created our own task-specific smaller vocabulary using online IMtool that produces a
dictionary based on a CMU dictionary and matches its language model.

The 10 best hypothesis with corresponding scores were saved for each utterance
(those are log-scale scores of the audio matching the model). Because the scores for
hypothesis of each word in the sentence were needed for further evaluation, the words
were pronounced with the large pauses and the end of the sentence was marked by the
word ”STOP”.

This corresponds to the findings of Werker et al. [343] that infant-directed words
are usually kept short with large pauses between words and to the study of Brent and
Siskind [344] which showed that frequency of exposure to a word in isolation predicts
better whether that word will be learned than the total frequency of exposure to that
word.

Image processing

The image inputs are processed using standard MATLAB functions. First, the image
is morphologically opened with a disk-shaped structuring element (imopen) to remove
the noisy background of an image, then all greyish pixels are removed and the image is
converted from the true colour RGB to the greyscale intensity image (rgb2gray). Finaly,
the intensity image is converted to a binary image (threshold).

Figure 6.10: Image processing – original image, removal of the background, converting to
BW image and filling the holes for the images acquired through iCub simulator and physical
iCub.

Afterwards the properties of image regions are measured using the function regionprops.
Individual visual features (shape, colour, size) are subsequently processed separately.
Following features were used: Colour (3: Average RGB of the selected region), Size (6:
Perimeter of an object, distance from the centroid to the left corner of the bounding
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box, width and length of the bounding box), Shape (13: Area, centroid, major axis
length, eccentricity, orientation, convexArea, FilledArea, EulerNumber, EquivDiameter,
Solidity, Extent, Perimeter). To obtain shape features we cropped and resized the
image to equalize the size of objects. All data were normalized using a standard score
normalization.
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Chapter 7
Results

7.1 Results - visual layer

Comparing classification accuracy of different algorithms
Final classification accuracy of individual features is listed for all compared algorithms
in Table 7.1 (10 repetitions). To compute accuracy, each cluster is assigned to the class
that appears most frequently in the cluster, and then the accuracy of this assignment is
measured by counting the number of correctly assigned data points and dividing this
number by the total number of data points.

Accuracy [%] Size Colour Orientation Texture Shape
GMMsup 100 ± 0 81 ± 0 100 ± 0 100 ± 0 100 ± 0
GMMunsup 96 ± 10 63 ± 8 77 ± 16 74 ± 13 76 ± 9
k-means 100 ± 5 56 ± 10 66 ± 11 80 ± 8 30 ± 5
SOM 97 ± 14 87 ± 7 86 ± 17 85 ± 10 79 ± 6
GWR 100 ± 0 82 ± 4 99.9 ± 0.1 100 ± 0 100 ± 0

Table 7.1: Classification of visual input: Comparison of GMM supervised, GMM unsupervised,
k-means, SOM and GWR (Growing when required neural gas) [345, 346] algorithms. Listed
means and standard deviations are computed from 10 repetitions.

The GMM algorithm performance is compared to the supervised GMM algorithm,
k-means, SOM and GWR algorithm (growing when required neural gas, implementation
in MATLAB [346]) [345] (both SOM and GWR had 100 nodes) . The comparison
for real-world dataset and simulated dataset with Blender objects can be seen in the
Table 7.2. It should be mention that even though SOM and GWR are considered to be
unsupervised algorithms, the way we are labeling them corresponds to the model with
highly overestimated number of clusters (number of nodes corresponds to the number
of clusters – in this case 100), which means that this algorithm is partly overfitting the
data (which was omitted by dividing the set to testing and validation data) and its
performance is much closer to supervised algorithms.

Impact of added noise on classification accuracy
The classification accuracy of shape and colour feature for different levels of noise is
visualized in the Figure 7.1. Results for supervised GMM, unsupervised GMM, k-means
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Real-data Blender

Accuracy [%] Size Colour Shape Size Colour Shape
GMM sup. 83.3 ± 0 99.0 ± 0 81.4 ± 0 98.6 ± 0 97.9 ± 0 93.1 ± 0

GMM unsup. 76.2 ± 6.8 76.1 ± 9.1 56.1 ± 6.2 74.2 ± 10.1 60.9 ± 9.0 64.3 ± 7.2
K-means 67.8 ± 6 81.2 ± 1 53.1 ± 4.2 66.3 ± 0.2 77.1 ± 10.7 72.8 ± 6.9
SOM 69.6 ± 5.6 78.9 ± 6.8 54.2 ± 4.1 66.1 ± 4.2 81.7 ± 7.6 59.3 ± 6.2
GWR 89.9 ± 2.1 99.5 ± 0.4 76.6 ± 1.4 88.9 ± 0.7 98.1 ± 0.9 94.2 ± 0.6

Table 7.2: Comparison of clusterization accuracy of visual data. The mean and standard
deviation from 100 repetitions is visualised.

and SOM algorithms are compared. The noise added to the raw data has a Gaussian
distribution.

Figure 7.1: Impact of added noise on the classification accuracy for individual algorithms
(supervised GMM, unsupervised GMM, k-means and SOM). The mean accuracy is visualised
by the coloured line and std of accuracy is visualised by a coloured area (averaged over 10
repetitions). Data are visualised for shapes (upper) and colour (lower) features.
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Object recognition – compositionality
The test of compositionality during the object recognition was performed only for
artificially generated data. To test the compositionality of the architecture, I will perform
the following experiment. In the training stage, we will not present to the architecture
an object with a specific combination of features and then we will test whether the
architecture is able to recognize the previously unseen objects.

For example there will be no small hearth (small (feature size) + hearth (feature
shape)) presented in training dataset. The architecture can see small rectangles, small
triangles, middle hearths, big hearths, etc. but no small hearth. The data in training and
testing dataset for this specific example are visualized in the Fig. 7.2 and Fig. 7.3.

Figure 7.2: Training and testing dataset for an example where no ”small hearts” are presented
to the architecture during training

The accuracy for each eliminated combination of two features was computed (for the
used set of features, it is altogether 338 combinations). The results for all individual
combinations of specific type of feature are averaged over each feature. Results can be
seen in Table 7.3.

After the reduction of data was done to test the compositionality of architecture for
two features (during the training stage an object with a specific combination of features is
not presented), the performance of clusterization for individual features was tested. The
results are listed in the Table 7.4 (those are accuracies averaged over all 338 combinations
grouped by specific combination of features).

In Figure 7.4 are listed similar results for combinations of three features (e.g. averages
over all combinations for colour-texture-shape which are omitted in training stage and
their recognition subsequently tested are listed under the label ”CTSh”), four features
and all five features.
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Figure 7.3: Compositionality – Visual data space visualization using PCA (training and
testing dataset, noise level 5). Size feature data are on the left and shape feature data are
on the right. Data are divided into training (blue) and testing (red) set. In this case ”small
hearts” are excluded from training data and are used for testing.

Accuracy [%] Size Colour Orientation Texture Shape
Size - 58 ± 7 76 ± 22 82 ± 20 70 ± 14

Colour 58 ± 7 - 48 ± 12 53 ± 9 45 ± 6
Orientation 76 ± 22 48 ± 12 - 68 ± 19 58 ± 14
Texture 82 ± 20 53 ± 9 68 ± 19 - 64 ± 14
Shape 70 ± 14 45 ± 6 58 ± 14 64 ± 14 -

Table 7.3: Testing compositionality of visual layer – testing for previously unseen combination
of two features: In this Table, accuracy of testing stage is listed for each combination of
features (accuracy for shape + size means average accuracy for all combination of shape-sizes
which were missing during training stage. For example testing for ”small hearts” and no
”small hearts” were presented during training stage. The testing accuracy is computed for all
combinations of features values.) – 20 repetitions. Results for standard GMM are shown.

Accuracy [%] Size Colour Orientation Texture Shape
96 ± 14 61 ± 6 79 ± 18 89 ± 19 74 ± 9

Table 7.4: Testing compositionality of visual layer – performance of clusterization of individual
features in a case where specific combination of 2 features is not presented to the architecture,
so the number of data is adequatelly reduced. Results for standard GMM are shown (20
repetitions).
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Figure 7.4: Testing compositionality of visual layer – testing for previously unseen combination
of 3, 4 or 5 features: In Tables accuracy of testing stage is listed for each combination of
features (S – size, C – colour, O – orientation, T – texture, Sh – shape). Accuracy for
SCOSh means average accuracy for all combination of sizes-colour-orientation-shape which
were missing during training stage. For example testing for ”small red vertical hearts” and
no ”small red vertical hearts” were presented during training stage. The testing accuracy
is computed for all combinations of features’ values. – 20 repetitions. Results for standard
GMM are shown.

7.2 Results - language layer

Ability to recognize separate words

In the first language layer, separate HMM models were constructed for each lexicon word
and those were subsequently clustered. Firstly, HMMs with different number of hidden
states were compared (see Fig. 7.5).

Figure 7.5: Compare accuracy of word recognition for HMMs with differing number of hidden
states

Based on the preliminary results, I decided to use the HMM model with five hidden
states in the first language layer. For the given lexicon, separate HMM models were
constructed for each lexicon word wi (the length of all sequences are set to be T = 54).
There are 3, 9, 3, 5 and 10 clusters for words describing size, colour, orientation, texture
and shape feature respectively. After fitting all models Li, corresponding log-likelihoods
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7. Results ............................................
llij = log l(wj |Li), 1 ≤ i, j ≤ N were generated (evaluate the log-likelihood of each of the
N sequences given model Li). K-means and agglomerative clustering method were used
to cluster the sequences into K groups using log-likelihood distance matrix and their
performance was compared. The case where words describing individual features are
clustered separately was compared to the case when all features are cluster altogether
(see Fig. 7.2).

Figure 7.6: Accuracy of word recognition – clustering of HMMs representing words. K-means
1 and agglomerative 2 clustering methods are compared. Comparison of the case when words
describing individual features are clustered independently and altogether. (10 repetitions)

As can be seen from the Figure 7.6, the agglomerative clustering achieved comparable
or significantly better results than k-means clustering in all cases. We can also see from
the Figure 7.6, that clustering words altogether achieves for 30 words quite low accuracy
(28% and 37.6 % for k-means and agglomerative clustering respectively). When the noise
is added to the language data, these values are getting even lower.

7.3 Results – multimodal layer

Mapping visual and language layer – fixed length sentence
Firstly, both visual data and corresponding language data are clustered separately and
the resulting outlabels are compared to true labels. In Figures 7.7a and 7.7b, confusion
matrices of the visual and language layer clusterings respectively for the feature Size are
shown. This means that the clusterings obtained from unimodal layers (Predicted labels)
are compared to true labels (Targets) which are previously known, but hidden. The
confusion matrix is created based on these outlabels where each column of the matrix
represents the instances in a predicted class, while each row represents the instances in
an actual class (target).

Afterwards, to find mapping between visual and language clusterings, outlabels from
one unimodal clusterization are called Targets and outlabels from the second are called
Predicted labels. Assignment between the visual and language clusterings will enable us
to assign correct ”names” or ”labels” to visual inputs or vice versa to find out which
feature of visual input does the language word describe. Resulting confusion matrix
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Figure 7.7: Finding mapping between vision and language (feature Size) – confusion matrices
of resulting individual clusterings in Visual and language layer are visualized as well as
assignment between visual (Targets) and language outlabels (Predicted labels). The number
of datapoints assigned to the given class is shown (total is 4050 datapoints).

of assignment between clusterings from language and visual layers for a feature Size is
shown in the Figure 7.7. In this case, outlabels from clustering in visual layer are Targets
and outlabels from language layer are Predicted label. This can be changed throughout
the experiment when our believes to individual modalities may vary as our knowledge or
experience increases.

The mapping between outlabels and targets is found using the confusion matrix
using either one-step mapping or sequential mapping. Both mappings are described in
Section 5.4, specifically one-step mapping is formalized in Eq. 5.5 and sequential mapping
is described in an Algorithm 7 (fixed grammar) and Algorithm 8 (variable grammar).

From Figure 7.7c, we can see that when we use one-step mapping, the corresponding
assignment between unimodal visual and language clusterings in this particular case will
be: L2 − V1 (medium), L3 − V2 (small) and L1 − V3 (big). This mapping is a bijection in
this case, but does not have to necessarily be, since more visual clusters can be assigned
to the same language cluster (or potentially vice versa).

Confusion matrices for visual, language and multimodal layer for feature Shape are
shown in Figures 7.8a, 7.8b and 7.8c, respectively.

For the feature Shape (see Fig. 7.8c), the mapping is harder to find. The assignment
between clusterings found using an equation Eq. 5.5 is not bijective mapping. The best
bijective mapping in this particular case would be: L2 – V1 (cross), L7 – V2 (star), L10
– V4 (crescent), L3 – V7 (diamond), L8 – V5 (rectangle), L6 – V6 (hexagon), L4 – V7
(ellipse), L1 – V8 (pentagon), L5 – V9 (hearth), L9 – V3 (triangle).

As can be seen, when we have achieved high-quality clustering (meaning well-separated
clusters corresponding to respective true labels) in both (or at least one) unimodal layers,
the unambiguous mapping between the clusters from unimodal layers can be found easily
(see confusion matrix for feature Size in Fig. 7.7). On the other hand, when the clusterings
from one or both unimodal layers are of a poor quality - e.g. highly overlapping clusters
(see Fig. 7.8c), the unambiguous mapping between the two clusterings cannot be found (or
is hard to find) which will result in further problems in object recognition and description,
mainly in a case of the sentences with variable length.
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(a) : Visual layer clustering.

(b) : Language layer clustering.

(c) : Assignment between clusterings from language
and visual layer.

Figure 7.8: Finding mapping between vision and language (feature Shape) – confusion
matrices of resulting individual clusterings in Visual and language layer are visualized as
well as assignment between visual (Targets) and language outlabels (Predicted labels). The
number of datapoints assigned to the given class is shown (total is 4050 datapoints).
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In Table 7.5 and Table 7.6, accuracies for unimodal Vision, Language and vision to
language mapping are listed (one-step mapping to sequential mapping is compared). The
comparison was done for artificially generated visual data with corresponding language
data generated by the PatPho generator (see Table 7.5). In the case of fixed grammar, the
diagonal transition matrix was used while the generation of the sentences (see Fig. 5.10a).
In Table 7.6, results for real-world data from iCub and for Blender objects used in
the iCub simulator are compared, specifically accuracies for unimodal vision (GMM),
language (Sphinx), one-step mapping and sequential mapping (where mapping between
vision and language is found in a stepwise mode (see Alg. 7)) are listed.

Artificial data
Accuracy [%] Size Colour Orientation Texture Shape

Vision 76 ± 10 63 ± 8 77 ± 16 74 ± 13 76 ± 9
Language 73 ± 2 72 ± 4 87 ± 7 73 ± 2 67 ± 2

One-step mapping 70 ± 17 69 ± 4 68 ± 3 75 ± 6 61 ± 9
Sequential mapping 91 ± 2 88 ± 8 97 ± 6 75 ± 6 77 ± 5

Table 7.5: Comparison of One-step mapping and Sequential mapping for artificial data. The
mean and standard deviation from 100 repetitions is visualised.

Real-data Blender
Accuracy [%] Size Colour Shape Size Colour Shape

Vision 76 ± 7 76 ± 9 56 ± 6 74 ± 10 61 ± 9 64 ± 7
Language 71 ± 0 82 ± 0 78 ± 0 98 ± 0 96 ± 0 98 ± 0

One-step mapping 54 ± 4 58 ± 10 52 ± 5 67 ± 8 56 ± 6 62 ± 3
Sequential mapping 74 ± 15 87 ± 10 73 ± 5 96 ± 31 95 ± 1 92 ± 1

Table 7.6: Comparison of One-step mapping and Sequential mapping for data from iCub
simulator (Blender) and physical iCub (real-data). The mean and standard deviation from
100 repetitions is visualised.

As can be seen, for artificial data, the sequential mapping reaches better results for
all features than both unimodal language and vision as well as than one-step mapping.
For real-data, it reaches better results than vision for the features colour and shape and
outperform language for colour. For data from Blender, it outperforms vision for all
features and is comparable to language for size and colour.

Dependence of the accuracy of the sequential mapping on the noise in the language data
is visualized in the Figure 7.9 for data from iCub simulator in combination with language
data processed by Sphinx 4. The noise to the language data is added subsequently
and evenly to all classes (given proportion of language inputs was randomly changed to
the random word). The noise was added artificially, but can be interpreted either as
a noise in the data or mistakes in labeling perceived objects. I grouped them together
into a misclassification variable. The visual data are let intact so the only cause of the
observed variations in the accuracy is initialization. As can be seen, the accuracy of
sequential mapping remains very stable even though the accuracy of language decreases
and outperforms both language and vision for almost all values of the misclassification.

103



7. Results ............................................

Figure 7.9: Dependence of mapping accuracy on the misclassification in the language data
for fixed length sentence (mean values over 50 repetitions are visualized). Different colours
correspond to different visual features (red – size, blue – colour, green – shape). Visual data
are generated in Blender and acquired through iCub simulator, language data are processed
using Sphinx 4.

The same comparison was done for artificially generated data. The dependence on
the misclassification in language data is visualized in the Figure 7.10. Misclassification of
language data is added equally to all classes.

Figure 7.10: Dependence of mapping accuracy on the misclassification in the language data
for fixed length sentence and artificially generated data (mean values over 10 repetitions are
visualized). Different colours correspond to different visual features (red – size, blue – colour,
green – shape). Visual data are generated artificially and language data are generated using
a PatPho generator.

Mapping visual and language layer – variable length and grammar
sentence

For the variable length/grammar sentence, only the artificially generated visual and
language data were used. In this case, language data are clustered altogether and mapped
to the visual features (those are clustered separately). The sequential mapping for a
variable length sentence (see Algorithm 8) was used.
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Artificial data
Accuracy [%] Size Colour Orientation Texture Shape

Vision 75.8 ± 15.8 61.2 ± 6.0 78.9 ± 17.8 59.2 ± 15.1 74.4 ± 9.8
Language 31.02 ± 0.04

One-step mapping 77.8 ± 19.2 33.8 ± 2.9 33.7 ± 0.0 76.2 ± 12.5 57.4 ± 4.6
Sequential mapping 78.4 ± 18.7 40.2 ± 7.6 76.9 ± 15.9 78.1 ± 14.7 70.3 ± 8.2

Table 7.7: Comparison of One-step mapping and Sequential mapping for artificial data and
variable length sentence. The mean and standard deviation from 20 repetitions is shown.

Size Colour Orientation Texture Shape
`````````````̀Language [%]

Vision [%] 76 ± 16 61 ± 6 79 ± 18 59 ± 15 74 ± 10

100 100 ± 0 69 ± 7 89 ± 17 75 ± 18 89 ± 8
95 100 ± 0 76 ± 9 100 ± 0 56 ± 11 88 ± 7
90 100 ± 0 68 ± 7 89 ± 17 75 ± 18 91 ± 6
86 100 ± 0 68 ± 11 100 ± 0 70 ± 14 92 ± 7
82 100 ± 0 71 ± 8 96 ± 11 70 ± 14 88 ± 10
78 100 ± 0 66 ± 10 93 ± 15 75 ± 18 86 ± 9
75 100 ± 0 65 ± 6 100 ± 0 50 ± 15 95 ± 5
71 100 ± 0 69 ± 7 93 ± 15 53 ± 10 95 ± 7
68 100 ± 0 65 ± 11 100 ± 0 52 ± 14 97 ± 5
56 96 ± 11 69 ± 11 96 ± 11 53 ± 13 94 ± 7
46 89 ± 33 66 ± 26 78 ± 33 52 ± 17 82 ± 4
39 96 ± 11 58 ± 13 100 ± 0 53 ± 15 95 ± 5
33 89 ± 16 67 ± 9 100 ± 0 53 ± 10 90 ± 1
9 85 ± 17 61 ± 11 74 ± 15 52 ± 14 69 ± 11

Table 7.8: Comparison of accuracy of Sequential mapping for different levels of misclassifica-
tion in language data – variable length sentence. Visual data are artificially generated data,
language data are correct labels with artificially added equally distributed misclassification.
The mean and standard deviation of accuracy from 10 repetitions is listed.

First, the ability to map together both vision and language was tested. The results
can be seen in the Table 7.7.

Since the accuracy of the language clustering for artificially generated language data
is very low when all words are clustered altogether, the found mapping between the
two modalities is not very reliable and the effect of the different levels of language
misclassification would be really hard to see. Furthermore, the noise added to the
language data is not evenly distributed, which results in a fact that for some cases it
decrease the accuracy compared to vision (initialization of clustering in visual layer using
the found mapping is worse than the random initialization). Therefore I decided to use
true labels and add a given amount of noise (misclassification) evenly to all classes and
afterward evaluate performance of the resulting sequential mapping. As can be seen from
the Figure 7.11, the found mapping between the two modalities achieves higher accuracy
compared to both subdomains and is very stable to misclassification in a language data.
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Figure 7.11: Dependence of mapping accuracy on the misclassification in the language data
for variable length sentence (mean values over 10 repetitions are visualized). Different colours
correspond to different visual features (red – size, green – colour, blue – orientation, yellow –
texture, cyan – shape). Visual data are artificially generated data, language data are correct
labels with artificially added equally distributed misclassification. As can be seen, with the
decreasing accuracy of language, accuracy after mapping approaches the accuracy of the
visual subdomain.

Conjunction of visual and language input – fixed sentence

After the assignment between clusterings from the unimodal visual and language layer
is found, the resulting likelihoods are combined in a multimodal layer using a fuzzy
conjunction. In following figures, I will mainly visualize the likelihood to individual
clusters (and not the probability or an accuracy of final assignment), to enable a deeper
insight into the whole process of putting together data from unimodal layers. Likelihoods
are also used as input values for conjunction. As will be seen, likelihoods in a visual
layer and likelihoods in language layer differ a lot. This is given by the fact that different
models are used in a case of language (HMM) and vision (GMM), and that there is also
different number of clusters in both subdomains. As can be seen, the assignment in
language layer is much more fuzzy (an observed word has quite high likelihood to a lot of
HMM models) while in the visual layer it is quite the contrary (mostly one model show
high likelihood while others have very low likelihood). This is not only given by the fact
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that there is used different metric for likelihood in a case of GMM than for HMM, but
also because the visual data are much easier to cluster.

An example of one data point assignment is shown in Figure 7.12 where the likelihoods
to individual clusters in the visual layer, language layer and multimodal layer after
Lukasiewicz fuzzy conjunction are visualized. As can be seen, the resulting multimodal
likelihood will assign the data point to the cluster V L1,8 (corresponding to the visual
cluster V1 and language cluster L8), which was selected neither by visual nor language
layer. The visual layer would select the cluster V10 and language layer would select cluster
L3 (corresponding to the cluster V3).

Figure 7.12: Combining likelihoods from visual and language layer in a multimodal layer
by Lukasiewicz fuzzy conjunction for 1 datapoint (feature Shape) – likelihoods to individual
clusters are shown (language clusters are reordered based on the assignment of clusters
between visual and language layer described in previous Section 7.3). The likelihood for
individual clusters for Vision (Vis), Language (Lang) and Multimodal layer (ML) is shown
for individual clusters (multimodal likelihood V1,8 corresponds to the visual cluster V1 and
language cluster L8).

In Table 7.9, results for 3 types of fuzzy conjunction are listed (Product, Gödel and
Lukasiewicz). The resulting clusterization accuracy in multimodal layer is compared to
the clusterization accuracy obtained in visual and language layer.

In the computations above, emission probabilities for each possible emission are
considered to be equal.
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Accuracy [%] Product

∧
Gödel
∧

Lukasiewicz
∧

Seq.mapping Vis. Lang.

Size 92 ± 2 93 ± 4 91 ± 3 91 ± 2 76 ± 10 73 ± 2
Colour 89 ± 3 89 ± 4 90 ± 2 88 ± 8 63 ± 8 72 ± 4

Orientation 97 ± 6 97 ± 6 97 ± 6 97 ± 6 77 ± 16 87 ± 7
Texture 76 ± 7 75 ± 5 76 ± 5 75 ± 6 74 ± 13 73 ± 2
Shape 80 ± 5 80 ± 6 81 ± 5 77 ± 5 76 ± 9 67 ± 2

Table 7.9: Results of multimodal layer – comparison of fuzzy conjunction: Product, Gödel
and Lukasiewicz conjunction of visual and language clusterings is compared to the results
from the first unimodal layers (averaged over 10 repetitions).

Conjunction of visual and language input – variable sentences

As well as for a fixed length sentence, the mapping between language and vision must be
found when dealing with a variable length sentence. Afterward, likelihoods from both
unimodal layers can be combined using a given conjunction. The whole process will be
shown on a simple example. Let us suppose that we have a sentence ”Small cross” and
corresponding image with a small purple diagonal lined cross.

After processing the visual layer, we get the corresponding likelihoods for each cluster
in each visual feature. These are visualized in Figure 7.13 and reordered based on the
found mapping to the language layer.

Figure 7.13: First visual layer – Likelihood to individual clusters for image ”Small purple
horizontal lined cross”.

As well, likelihoods to the clusters in a language layer can be computed (in this
case we suppose that words describing different visual features are clustered separately).
These likelihoods to each language model are subsequently processed in a second language
layer where they are multiplied by the probability of a given state in a sentence. This
probability is found from an appropriate sentence model described by a given transition
matrix. Lets suppose that the transition matrix shown in a Table 7.14 is used in this
example.

T1 T2 T3 T4 T5 F
St 0.2 0.2 0.1 0.1 0.4 0
T1 0 0.1 0.1 0.1 0.2 0.5
T2 0 0 0.1 0.1 0.5 0.3
T3 0 0 0 0.1 0.7 0.3
T4 0 0 0 0 0.9 0.1
T5 0 0 0 0 0 1

Figure 7.14: Transition matrices for variable length (St – Initial state, T1 – Size, T2 – Colour,
T3 – Orientation, T4 – Texture, T5 – Shape, K – Final state).
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The Problem 1 (described in Section 2.2) must be solved: Given a sequence of obser-
vations W and a model HMM = (S, V,B,A,Π), determine the likelihoods P (W |HMM)
of the observed sequence W . To find out the most probable sequence of a given length
(having a given observation sequence W ), likelihoods P (W |HMM) must be computed
for all possible sequences of a given length and the most probable one is found.

Firstly suppose that we have one-word sentence. The incoming word is processed by
the first language layer. Subsequently, the transition matrix for sentence processing (the
second language layer) is taken into account and the output of the first language layer is
multiplied by the transition probabilities. This means that likelihoods for each feature
are multiplied by values in a first row of the transition matrix (for example likelihoods
for feature Size are multiplied by 0.2 and similarly likelihoods for feature Orientation are
multiplied by value 0.1). Subsequently, conjunction with the visual layer (Fig. 7.13) is
performed. Output likelihoods from unimodal visual and language layer, language layer
values after multiplication by transition matrix and results from the multimodal layer for
sentence ”Small” are shown in Fig. 7.15 and for sentence ”Cross” in Fig. 7.16.

Figure 7.15: Likelihood to individual clusters in visual layer, likelihood to individual clusters
in second language layer after multiplication by transition probabilities and the resulting values
after Algebraic product fuzzy conjunction with visual layer for sentence ”Small.” presented
together with an image ”Small purple horizontal lined cross.”. X axis label (X,Y) (e.g.(1,3)
means that the given column (likelihood) corresponds to the visual cluster V1 and language
cluster L3 (to which the visual cluster is mapped) from a given feature (e.g. Shape).

As can be seen from Fig. 7.15 and Fig. 7.16, likelihoods of language layer for selected
sentences ”Small.” and ”Cross.” are quite similar which will result – after multiplication
with sentence transition matrix and conjunction with visual layer – to the final decision
that both sentences are ”Cross.”. This is an incorrect decision for the first sentence and a
correct decision for the second sentence ”Cross.”. The incorrect decision in the first case
(sentence ”Small.”) is caused by the fact that based on our sentence model described by
transition matrix we expect that one-word sentence. One-word sentence describing the
feature Shape is two-times more probable than the sentence describing the feature Size.

Now have a look at the case when the sentence with more words is coming. For
example we got two-word sentence ”Small cross.” (see Fig. 7.17). Because outputs from
the first language layer are only likelihoods that the observed word was generated by
the given model (which should represent individual word), our aim is to use also visual
information and the sentence model λ (sentence is modeled by HMM represented by
transition matrix (see Table 7.14) and emission matrices. In this particular case, we have
to compute for each object likelihood as follows: that the object has visual features i and
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Figure 7.16: Likelihood to individual clusters in visual layer, likelihood to individual clusters
in second language layer after multiplication by transition probabilities and the resulting values
after Algebraic product fuzzy conjunction with visual layer for sentence ”Cross.” presented
together with an image ”Small purple horizontal lined cross.”. X axis label (X,Y) (e.g.(1,3)
means that the given column (likelihood) corresponds to the visual cluster V1 and language
cluster L3 (to which the visual cluster is mapped) from a given feature (e.g. Shape).

j (i, j ∈ 1, ..., 30) described by sequence of words W1W2:

ML(i, j|O,W ) =[LL(O|Ki)
∧
F (l(W1|Li) · P (WiWjWF |λ))]∗

[LL(O|Kj)
∧
F (l(W2|Lj) · P (WiWjWF |λ))],

(7.1)

where Ki is the model of the type of feature i in the first visual layer, Li is the HMM
model of individual word i in the 1st language layer, l(W1|Li) is the likelihood that the
word Wi was generated by the model Li, P (WiWjWF |λ) is a likelihood of observing
sequence of words W = WiWjWF where WF is the end of a sequence and

∧
F is the

arbitrary fuzzy conjunction.
To compute the probability P (OiOjOF |λ), the forward algorithm is used [73].
The algorithm will find likelihood of every combination of observation sequences of

the given length after evaluating all possible combinations of observation sequences OiOj

(here the length of the sentence is 2 for the case when we do not consider Start and End
of the sentence or 4 if we do).

The likelihood of the sentence Start Oi Oj End for each i and j is listed in Fig. 7.17.
As can be seen, the model will select correctly ”Small cross” as the most probable

sentence corresponding to the observed object. The second and the third most probable
sentences would be ”Horizontal cross” resp. ”Small hexagon”.
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Figure 7.17: Likelihoods for two-word sentences. The likelihood of the sentence Start W1
W2 End for each possible word W1,W2 ∈ {big, ...,rectangle} is visualized.
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Chapter 8
Summary to the proposed architecture

The bioinspired unsupervised hierarchical multimodal architecture for parallel language
and vision processing was proposed. Particularly, I have focused on how is the vision-to-
language mapping performed with the focus on an unequal number of classes in both
modalities. I also investigated how the mapping performance is affected by noise in the
data. Results for artificially generated data (both visual and linguistic), data from iCub
simulator and from real iCub robot with language analysed by Sphinx 4 were shown.
Artificially generated data enabled creating a bigger dataset for testing purposes as well
as higher variability of features or possibility to control different parameters of input data
(such as added noise, movement, size of objects etc.). Real data acquired from physical
iCub robot gave the more realistic distribution of noise in data as well as processing of
real speech signals.

First, the ability of different algorithms to classify unimodal visual data was compared.
As expected, for data which are well separated and mainly spherically distributed (this
is generally a case for simulated and artificially generated data), k-means algorithm
outperformed GMM algorithm. On the other hand for non-spherical real data performed
generally better GMM algorithm (see Table 7.1 for artificially generated data and Table 7.2
for simulated data placed in an iCub simulator and data from real iCub robot cameras).
Impact of added noise on classification accuracy is shown in Figure 7.1. Since the
unsupervised algorithms are highly dependent on the initialization, it can be seen, that
the standard deviation of data is quite high even though 20 repetitions were averaged.
Furthermore, compositionality of algorithm was tested which means that the performance
on previously unseen combination of features was evaluated. The modularity of the
architecture ensured that the performance in this case is comparable to the case when
the objects are seen during the training phase (see Table 7.3 and Fig. 7.4 for results with
combination of two features and more features respectively).

In the speech recognition layer, Hidden Markov Models (HMM) were used to model
separate words. Two clustering algorithms were compared for clustering these HMM
models – namely k-means and agglomerative clustering. As can be seen from the
Figure 7.6, agglomerative clustering outperformed k-means clustering in most of the cases.
The most important parameter of For HMM is the number of hidden states. Therefore
performance of the clusterization algorithm was analysed for different number of hidden
states and based on these preliminary results (see Table 7.5) five hidden states were
selected for further analysis. As can be seen, performance of clusterization is not very
high compared to standard speech recognition tools. This is given by the fact that in
this case, to simulate real language acquisition, no prelearned vocabularies are used.
Hidden Markov Models (HMM) require a large amount of training data to obtain reliable
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probability estimates. For isolated word recognition (100 words or more), we cannot
expect a user to speak each word more than several times. This problem can be partly
overcome when we focus on learning individual phonemic groups while each state will
incorporate the whole group of different phonemes or by using online clusterization.

One of the main concerns of this thesis is how to find the mapping between the
language and vision in a case of both fixed and variable length sentence and its resistance
against the noise or misclassification in separate subdomains. In the thesis, two approaches
are compared: one-step mapping to sequential mapping which in a stepwise manner finds
the best mapped clusters while constantly relearning clusterization of visual data. The
novel sequential mapping (see Algorithm 7 and Algorithm 8) led to an improvement of
effectiveness compared to the method which maps vision to language directly in one step.
This can be seen in finding more accurate mapping which leads to better estimation of
the labels of the clustered data and consequently to the lower classification error for all
of the evaluated datasets and features (see Table 7.5 for artificially generated data and
Table 7.6 for data from iCub simulator and real iCub robot). The accuracy after mapping
(initialization for clustering visual data is based on the found mapping to language layer)
outperformed either vision or language and in some cases both of them. This is an
important finding, since the sequential mapping does not improve only accuracy of visual
clustering, but can as well fix mistakes in the language recognition, which provides the
labels.

The ability to find the mapping in a case when we have to deal with the increasing
volume of misclassificiation in a linguistic domain was tested for both fixed length
sentence (see Figure 7.10 for artificially generated data and Figure 7.9 for data from iCub
simulator) and for variable length sentence (see Figure 7.11). As can be seen, the ability
to find the mapping is very resistant to the misclassification in language subdomain. It
remains almost intact when the noise is equally distributed to all classes. For data from
iCub simulator, the mapping accuracy decreases only very slightly and remains around
90% while the accuracy of language recognition drops from original approx. 95% to
approx. 70% (depends on the specific visual feature). Furthermore, when the sequential
mapping is used and the found mapping is used for the new initialization of visual data,
the clustering achieves better results compared to both subdomains. Similar results as
for iCub simulator were obtained for artificially generated data with fixed grammar.

Ability to find mapping for a variable length sentence was tested only on artificially
generated data. Since the accuracy of the language clustering for artificially generated
language data is very low and the misclassification of language data is not evenly
distributed among classes, in some cases the accuracy after mapping is decreased compared
to individual visual and language subdomains (initialization of clustering in visual layer
using the found mapping is worse then the random initialization). Therefore the effect of
different levels of language misclassification on sequential mapping would be hard to see.
To see the effect of misclassification on performance of mapping, true labels were used
and a given amount of noise (misclassification) was added evenly to all classes. As can
be seen from the Figure 7.11, the found mapping between the two modalities achieves
higher accuracy compared to both subdomains and is very stable to misclassification
in a language data. With the decreasing accuracy of language, accuracy after mapping
approaches the accuracy of the visual subdomain.

The found mapping between the language and vision is used for evaluating the most
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probable class to which the observed data should be assigned to in the top most layer
of the architecture. The information from individual subdomains is combined using the
fuzzy conjunction. Different types of fuzzy conjunctions were compared (see Table 7.9
for results). As can be seen from the table, improvement after using fuzzy conjunction is
very small and non significant compared to clusterization based on simple visual inputs
initialized using information from sequential mapping. This does not necessarily mean
that the better method for joining information in multimodal layer should be proposed.
More probably, sequential mapping improves clusterization accuracy so much that there
is only very small space for further improvement of accuracy. Anyway, these results will
be basis for further investigations.

An example of likelihoods to individual clusters in individual layers (including multi-
modal layer after algebraic fuzzy conjunction) for sentence ”Small” and ”Cross” is shown
in Figure 5.16 and Figure 5.16 respectively. The second sentence ”Cross” is an example
of the case where multimodal layer improves the decision of unimodal visual layer and
correctly sentence ”Cross” is correctly selected. An example of likelihoods for a two-word
sentence is shown in Figure 7.17.
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Part III

Thesis contribution and future research
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Chapter 9
Thesis contribution

Most of the current work on language grounding assumes a fixed grammar and length
sentence and uses at least partly supervised approach (e.g. image recognition or speech
recognition is based on deep neural networks, which are pre-trained on large labeled
databases; actions are pre-learned; number of clusters in data is hardcoded; etc.). Only
few models investigate language compositionality and its grounding in multimodal
perception [10]. The research on grounding variable length sentences is very restricted
and deals only with static scenes [6]. The synergy of fully unsupervised approach, variable
length sentence and multimodal grounding is virtually nonexistent.

The approach proposed here go beyond the current state of the art in several key
aspects. First, the thesis focuses on creating fully unsupervised cognitive architecture.
Unsupervised approach was used both for processing individual modalities (vision and
language) as well as for their mapping in the multimodal layer. To avoid necessity of
prior knowledge, algorithm for finding optimal number of components in a mixture was
proposed. The unsupervised approach is important in the situations where the adaptive
and autonomous behaviour is required. Secondly, the variable length sentence containing
visual properties was used as a language input. To find mapping between individual
modalities, sequential mapping was proposed. The mapping is able to map also non-equal
number of clusters from individual subdomains and assign words from variable length
sentence to observed visual features. The comparison of proposed algorithms to other
state-of-the-art algorithms was provided on both simulated and real-world data. The
presented dissertation thesis shows how is it possible to combine information from different
modalities (static visual data and time-varying language data) and give a meaning to
observed visual scenes. Furthermore it shows, that it is possible to increase the overall
accuracy by combining the information from individual subdomains.

9.1 A novel clustering algorithm – gmGMM
In the Chapter 3, a novel clustering algorithm was proposed [23]. Specifically, greedy
Gaussian mixture model with merging (gmGMM), which is an algorithm that is capable of
finding the optimal number of components in the mixture without any prior information.
The novel step in the greedy algorithm allows the improvement of performance when
the stopping criterion is met, as the most dependent component is removed and the new
component is initialised. The second novelty lies in the merging of all the dependent
clusters in the final stage. The ability of gmGMM algorithm to find optimal number of
components in data for different stopping criteria was evaluated and the performance
of an algorithm was compared to other similar algorithms using four artificial and two
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real-world datasets.

Many methods other than the gGMM have been proposed for the detection of the
number of components in the data. Most of the algorithms nowadays [347, 348] stems
from non-parametric Bayesian methods. For example, the Bayesian approach, based
on the reversible Markov Chain Monte Carlo, was proposed in [349], but the method is
computationally very demanding. Generally, parametric methods are more efficient than
non-parametric ones when the number of estimated parameters is relatively low.

The gmGMM algorithm is suitable for tasks with an unknown number of components
(e.g. image recognition, feature selection or speakers identification) and could be further
improved by taking advantage of more sophisticated initialisation methods and incremen-
tal GMM methods. The proposed method can be also generalised for mixture models of
an arbitrary probability distribution.

9.2 Proposed multimodal cognitive architecture

In the Chapter 5, hierarchical architecture of language acquisition was proposed [21]. The
architecture aims to replicate organization of the similar processes in the brain. Therefore
the language and visual information are processed separately, while mapping between
these two modalities is found subsequently. This architecture is fully unsupervised, which
enables autonomous behavior, adaptation to the gradually changing environment, as
well as ability to learn things for which it wasn’t trained before. Even though in many
fields supervised teaching is possible at least to some extent, in many others, autonomous
behavior and unsupervised behavior is a big advantage.

The main novelty of this thesis lies in the fact that I investigated how to ground
variable length sentence in a perception. In my case, I used as a visual input static
scene consisting of object with varying visual features. The variable length sentence and
unsupervised approach makes the task of finding mapping between the modalities (in
this case vision and language) much harder.

In cross-situational learning, the mapping between modalities is usually found by
one-step mapping – by directly using frequencies of referent and meaning co-occurrences
(the ones with the highest co-occurrence are mapped together) [350]. When the problem
is extended to the more realistic case where meanings and referents are recognized with
some uncertainty, or when there is non-equal number of classes of those clusterings, more
advanced methods are needed. How to map in an unsupervised manner several clusterings
(e.g. for vision, action, language) is not only important question in cognitive modeling,
but also in general machine learning, where data acquired from different sensors or in
different situations can be independently clustered and mapped one to each other. In this
thesis, I tested newly proposed method called sequential mapping for mapping language
to vision on both artificial and real data from humanoid robot iCub. It was shown, that
the method is able to find mapping between language and vision, it improves the accuracy
of both individual subdomains and shows very good resistance to noise in language. This
is an important result which says that we are able not only to find mapping between
more clusterings, but we can also improve clusterization accuracy by combining individual
classifiers.

The mapping will find a reliable labeling for the visual input data (more generally
for data from any other modality) with a possibility to also incorporate fuzziness of this
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mapping. For some concepts finding an unambiguous mapping is very easy, for others
it is much more difficult or impossible (such as the love has no dominating colour, but
sky is usually blue). Since the mapping is established only among the clusters where it
makes sense, dealing with a lot of redundant information is avoided. Similar idea is used
in classification algorithms which use sparse matrices.

The proposed architecture also treasures from the fact, that processing more smaller
problems in parallel is both computationally effective and reaches better performance than
processing them altogether. The lower computational demands can be easily seen e.g.
for visual processing where the GMM is used. The estimated parameters for the model
are means and covariance matrices. The number of estimated parameters is therefore
quadratically dependent on the number of dimensions. Therefore when dividing the initial
problem to N equally sized subproblems (e.g. language data and visual data processed
separately), the number of estimated parameters will be N ∗ D/N + N ∗ (D/N)2 =
D + D2/N compared to D + D2. Also all operations required for estimating these
parameters will benefit from this fact (e.g. finding inverse of matrices).

Furthermore when we divide the input data so each subproblem has lower number
of clusters to be found, it is higher probable that those will be found correctly (e.g.
processing separately different visual features such as colour, texture, size, orientation or
shape) because the complexity of the problem decreased and restrict the space of possible
variations, so the initialization-dependent unsupervised clustering algorithms perform
better. This is not always possible, for example for variable sentences and language data
we do not know which data will belong to which cluster before the clusterization is done.
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Chapter 10
Future research

The presented research can be extended from many aspects: whole architecture design
and learning mechanisms, processing of unimodal information and experimental design
and used datasets.

Processing of unimodal information

From the processing of unimodal information aspects, state-of-the-art vision and speech
algorithms can be applied to improve performance of clusterization of individual modalities.
Since this work focuses mainly on symbol grounding problem and finding the mapping
between language and vision; processing of the individual modalities is not optimized.

Particularly, in vision, the methods used in the thesis are not able, in the presented
design, to recognize partly occluded objects and have problems with objects seen from
different perspective. Even though methods for automatically finding the number of
clusters were proposed, there is still a big place for improvements in this area. Automatic
detection of number of clusters is very important and its combination with online learning
should be used. The ability of clusterization to deal with unequal number of datapoints
in clusters is another important parameter which should be taken into account in the
future research.

In a speech recognition processing part, Hidden Markov Models were used to model
separate words. Hidden Markov Models are used also in the publicly accessible software
for language processing such as Sphinx 4, which I tested in the experiment with iCub
robot. I plan to use these software more extensively in a future research. Anyway, when
dealing with unsupervised learning for learning larger number of words, the problems
with clusterization occur. Therefore more sophisticated clusterization methods should be
used (e.g. spectral clustering). Also step-wise learning of individual words during online
learning should help to easier separate the input data. In future, I would like to focus on
processing only real speech signals instead of using artificially generated language data,
which were used in a major part of the thesis. As well, as for vision, automatic detection
of the number of clusters (separate words) in the data should be implemented.

The sentence processing could be improved by gradual evolution of the form of
transmission and emission matrices describing the sentence so they can adapt to the
current situation. Starting from simpler to more complex sentences (this corresponds
to teaching kids who are firstly taught by simple mainly one-word sentences which are
gradually getting more and more complex). As well processing sentences with more
complex grammar including verbs, adjectives and prepositions will be necessary. The last
thing is to implement continual processing of language data instead of batch learning.
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Architecture design and learning

From the architecture design aspect, the architecture should be extended so also infor-
mation from other modalities can be incorporated (e.g. touch sensors or movement of
the robot are combined with a language information). This will enable finding mapping
between language and motoric actions. Further, more modalities can be combined together
to further increase the accuracy of their individual recognition (e.g. we have in hand
partly occluded object having most probably red colour, we hear something like ”box”
or ”sock” and when we touch it, it is soft and having a fabric texture, so we decide it is
most probably ”red sock”).

When focusing on the used learning, I would like to refocus from a batch learning to
more natural online learning or its combination. This should be combined with the fact
that data from different modalities can be learned in different peace because not always
corresponding information from both modalities is available.

Another mechanism, which I would like to enable in the future version of the archi-
tecture is asking for the missing knowledge. This means that we can ask for the name
of an object which we do not know how to label (”What is this?”) or the opposite way
around we can ask to be shown an object/situation for which we only know the name
(”Show me a cube”). This behavior could appear in a case when our knowledge is very
fuzzy or when this information is totally missing.

Experimental design and used datasets

To test the ability of the architecture to generalize the acquired data, more complex
scenarios should be used. This include learning more different objects in visual domain
and their corresponding names in language domain or trying to detect more objects in
the scene described by more complex language information provided together with a
visual input.

When focusing on the scenarios with more objects in a scene, we can also vary their
position or focus on the interaction among these objects. The first mentioned aspect will
correspond to preposition in a sentence (on, under, at) or spatial information (left, right)
and the interaction of objects can be described and mapped to the verbs provided in the
sentence (”pull”, ”push”, ”tear apart”, ”jump”, ”walk” etc.). To be able to map these
time-varying visual information together with language data, also tracking algorithms
will have to be incorporated into the architecture.

Furthermore, the proposed architecture could generalize learned words describing
situations or objects and create model of suffixes and prefixes of words. This means,
that the robot can create new words for weird new objects and situations based on the
similarity to previously observed data (e.g. after learning words ”heat”, ”play”,”replay”
he will be able to create a new word ”reheat”). Then, he can start to consistently call
the observed object by the newly learned word.
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