CzecH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF CIRCUIT THEORY

Doctoral Thesis

September 2016 Michal Borsky






CzecH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF CIRCUIT THEORY

Robust recognition of strongly distorted
speech

Doctoral Thesis

Author: Michal Borsky
Supervisor: Doc. Ing. Petr Pollak, CSc.

Branch of study: Electrical Engineering Theory
September 2016



1



ABSTRACT

The automatic speech recognition systems have become a part of our daily lives.
People often rely on virtual personal assistants in smartphones, use their voice to control
intelligent devices in cars and smart homes or communicate with automatic dialogue
systems in call-centres. Since these systems often suffer from a performance drop in
realistic acoustic conditions which are characterized by strong distortions, a large portion
of research still must be focused on robust front-end algorithms and acoustic modelling
methods for distorted speech recognition. This thesis is focused on these compensation
methods working at the level of front-end processing and acoustic modelling, whose aim is
to compensate the degradation introduced by a distant microphone, noisy environments
and a lossy compression.

The techniques for noisy and distant speech recognition studied in this thesis were fo-
cused on front-end noise suppression techniques, feature normalization techniques, acous-
tic model adaptations and discriminative training. Said techniques were evaluated in
three different car conditions and two different public environments. The experiments
have proved, that extended spectral subtraction can bring significant improvement even
for the state-of-the-art systems in public environments with a strong noise and for a
far-distance microphone recordings.

The evaluation of compressed speech recognition examined the degrading effects of
lossy compression on fundamental frequency, formants and smoothed LPC spectrum and
for standard MFCC and PLP features used for ASR. The low-pass filtering and the areas
of very low energy in a spectrogram were identified as the two main reasons of degradation.
The practical experiments evaluated the contributions of specific feature extraction setups,
combinations of normalization and compensation techniques, supervised and unsupervised
adaptation and discriminative training methods and finally the matched training. The
largest contributions were gained from the application of adaptation techniques, subspace
GMM and discriminative training.

A novel algorithm named Spectrally selective dithering (SSD) was proposed within this
thesis, which compensated the effect of spectral valleys. The contribution of said algorithm
was verified for both GMM-HMM and DNN-HMM speech recognition systems for Czech
and English and for a GMM-HMM system for German. The practical experiments proved
that the proposed algorithm can lower WER for all languages with GMM-HMM systems.
Concerning DNN-HMM system, a significant contribution was achieved only for Czech.
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ABSTRAKT

Systémy automatického rozpoznéavania reci prenikli do mnohych oblasti nasho zivota.
Stale castejsie sa spolichame na personalnych asistentov pri obsluhe mobilnych zariadeni,
hlasové ovladanie spotrebicov v domécnosti alebo navigacie v automobile, pripadne ko-
munikujeme s automatickymi dialégovymi systémami v call centrach. Pri nasadeni tychto
systémov do redlnych akustickych podmienok vyznacujicich sa zvySenou troviiou rusenia
sa vsak stretdvame s vyraznym poklesom ich tspesnosti. Je preto stale nevyhnutné, aby
sa znacné Cast vyskumu zaoberala robustnymi metédami zpracovania recového signalu a
akustického modelovania. Tato praca analyzuje metédy pracujiice na irovni predzpracov-
ania signalu a akustického modelovania v tlohéch rozpoznévania nahravok zo vzdialeného
mikrofénu, hlu¢ného prostredia auta a po aplikacii ztratovej kompresie.

Techniky pre kompenzaciu vplyvu vzdialeného mikroféonu a hlu¢ného prostredia boli
zamerané na algoritmy odstranovania Sumu, normalizacie priznakov, adaptacie akustick-
¢ho modelu a nakoniec vplyv diskriminativnych technik trénovania akustického modelu.
Ich prinos bol ohodnoteny pre tri rozne autové prostredia s vysokym SNR a dve rézne
verejné prostredia s vysokou troviiou aditivneho a konvolu¢ného zkreslenia. Praktické ex-
perimenty ukazali, Ze pouzitie rozsireného spektralneho odcitania prinasa vyrazne zlepse-
nie aj pre stucasné systémy v pripade, ze nahravky pochadzaji z verejného prostredia s
vyraznym Sumom a vzdialeného mikrofénu.

Vplyv ztratového kodéru bol analyzovany na tlohach odhadu zékladného ténu, for-
mantovych kmitoc¢tov, vyhladeného LPC spektra a nakoniec pre standardné MFCC a
PLP priznaky pouzivané pre systémy rozpoznavania reci. Tato analyza odhalila, Ze
hlavné priciny zhorsenia st nizko-pasmova filtracia a oblasti s prakticky nulovou energiou
vo spektru, nazyvané tiez spektralne tidolia. Nasledné praktické experimenty analyzuja
vplyv $pecifického nastavenia pri extrakcii priznakov, kombinacie normaliza¢nych a kom-
penzac¢nych technik, riadenej a neriadej adaptacie, diskriminativneho a prispésoveného
trénovania. Najvacsi prinos bol dosiahnuty s pomocou adaptacie akustického modelu,
subspace GMM a diskriminativneho trénovania.

Tato praca navrhuje novy algoritmus s nazvom Spektralne selektivne zasumovanie,
ktory kompenzuje spektralne tdolia. Prinos tohoto algoritmu bol zkimany pre GMM-
HMM a DNN-HMM systémy pre cCesky, anglicky a nemecky jazyk. Exprimenty potvrdili
jeho prinos pre GMM-HMM systémy pre vietky jazyky. Statisticky vyznamny prinos pre
DNN-HMM systém bol potvrdeny len pre cesky jazyk.
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CHAPTER 1
INTRODUCTION

Human to machine interaction has become a common form of communication in the
current world. This interaction was historically provided by devices such as a keyboard,
a mouse or a touchscreen but the current trend is to replace these with automatic speech
recognition (ASR) systems in situations which require a more natural form of communica-
tion. It is becoming fairly common nowadays, that people make use of personal assistants
built in their smartphones, control the intelligent appliances in their homes and offices
with the voice or communicate with automatic dialogue systems in the call centres. Also,
the automatic transcription systems are being used to create subtitles for television broad-
casts, to index the audio archives or to transcribe personal recordings. This progress came
with the introduction of advanced signal processing and machine learning algorithms as
well as due to the massive increase in available data and computational power.

However, the variability of the speech greatly increases the difficulty of these tasks.
The speaker-based variability is natural and carries additional paralinguistic information,
but has no relevance to the content. The general tendency is to remove this information
by normalizing the vocal tract parameters or using a speaker adaptation. For example,
an ASR system based on artificial neural networks intended for the large vocabulary con-
tinuous speech recognition (LVCSR) task which is designed for clear acoustic conditions
and is adapted to a particular speaker can achieve the accuracy as high as 95%. How-
ever, even these modern systems still struggle with conditions regularly encountered in
real-life situations which in turn limits their usability. The recording conditions introduce
additional variability that degrades the signals quality and we often say that the speech
is distorted. The degrading conditions are generally divided into two main groups.

e Environmental: The most relevant factors in this group are the types and the
levels of noises present during recording. The additive noises are present for nearly
all public environments such as a street, a driving car or an auditorium. The
convolutional noises occur for recordings done in closed spaces, where the sounds is
reflected back to the speaker as echoes or reverberations.
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e Channel: The relevant factors in this group are the types and positions of a micro-
phone, employed coding and compression. Each microphone has a specific transfer
function which alters the spectrum of speech. The second important thing is its
position, whether the microphone is close to the speaker or not. Third, the signals
are often coded and compressed in order to reduce their size for further transmission
and storage, which introduces unwanted compression artifacts.

The task of the robust speech recognition is to reduce the impact of the above men-
tioned adverse acoustic conditions by removing, or at least suppressing, their effects. The
common options include suitable pre-processing algorithms or extracting robust features.
Another option is to employ robust ASR architectures which make use of the multi-
conditional training, parallel model combination or acoustic model adaptation. The ad-
ditive noise is often removed in the spectral domain while the convolution noise is often
suppressed in logarithmic-spectral domain. Distortions introduced by coding and com-
pression are harder to address as they often remove ”information” rather than add a new
one. The purpose of this thesis is to contribute to research focused on distorted speech
recognition, namely for the distant, a noisy car and compressed speech. It explores al-
gorithms working at the level of signal processing, feature extraction and acoustic model
training and proposes a compensation method designed for compressed speech which
works at the level of front-end processing. The thesis is structured as follows.

e Chapter 2 provides an overview of an ASR system and focuses more closely on the
front-end signal processing and acoustic modelling blocks. These are limited to the
techniques applicable for robust speech recognition, as they are the main research
topics of this thesis.

e Chapter 3 presents the set research goals and introduces the questions this thesis
attempts to answer.

e Chapter 4 describes the resources used in the experimental part and presents two
optimization steps for constructing the baseline acoustic model.

e Chapter 5 focuses on noisy car and distant speech recognition from the public en-
vironment and evaluates the contribution of the front-end processing and acoustic
modelling techniques in this task.

e Chapter 6 focuses on compressed speech recognition. It begins with the theoretical
description of the compression, introduces the distortions and evaluates their effects
in an ASR system. This analysis lays the groundwork which is used to design a
novel compensation method proposed by this thesis.

e Chapter 7 presents a novel compensation method named Spectrally Selective Dither-
ing (SSD) and demonstrates its contribution for Czech, English and German. The
experimental part concludes with a comparison of SSD against a perceptually-
motivated compensation technique called Spectral Band Replication (SBR).

e Chapter 8 summarizes the findings from the previous chapters and draws the final
conclusions and outlines the directions for the future research in these areas.



CHAPTER 2

AUTOMATIC SPEECH RECOGNITION

This chapter aims to introduce two state-of-the-art ASR architectures together with
their relative strengths as well as their weaknesses. The special focus is given to methods
which directly contribute to the acoustic model quality and which were optimized for the
distorted speech recognition. Typical architecture of an ASR system can be described by
a simple block scheme in Figure 2.1.

Acoustic M odel

I AM score

Speech Signal Processing & Decoding I Recognition

Feature Extraction Result
| LM score

Language M odel

Figure 2.1: General stochastic ASR system

The task of the signal processing and feature extraction block is to take the audio signal
on the input, preprocess the signal and extract the feature vectors that are suitable for
the following acoustic modelling. It usually involves transforming the speech from the
time domain into the frequency domain and enhancing its quality. The acoustic model
(AM) block takes the feature vectors as an input and outputs the acoustic score for a set
of fixed, usually subword, phonetic units. The knowledge about phonetics is essential at
this step and represents one of the most important a priori decisions that determines the
AM quality. The purpose of the language model (LM) block is to estimate the probability
of generating the hypothesized word sequence given the set of all possible word sequences.
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This task is highly domain-dependent and thus we often see specialized LMs developed for
a specific domain. The decoding block combines the acoustic score for the given acoustic
observations and the language score for given word sequence and outputs the most likely
word sequence as the recognition result. Within this thesis I focus on the improvements
to the blocks of Speech Processing and Feature Extraction and the Acoustic Model. The
following sections describe a typical recognition system and focus in more details on robust
methods of AM creation which were explored in the experimental part of this thesis.

2.1 Stochastic ASR

Nowadays, the two different architectures are used for ASR. The first one is based on the
combination of Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM).
The purpose of the GMM is to statistically model the speech variability while the HMM
is a probabilistic finite state machine that can model the varying speech length. In the
past, this approach played a dominant role in the ASR field and produced first state-of-
the-art systems that were capable of delivering the needed performance to pass the bar
for commercial use. These systems often used Mel-frequency cepstral coefficients (MFCC)
as input feature vectors, speaker-adapted AM and a statistical n-gram LM. Their rise in
popularity begun in the early 90’s but their appeal slowly faded away since the introduc-
tion of "new” models based on artificial neural networks around 2010. Nevertheless, most
of the experiments in this thesis were done using a GMM-HMM system and therefore
their description will be more thorough than that of neural networks.

The second architecture is based on ”"modern” artificial neural networks and a com-
pletely new field of deep learning has been created since their popularization. These
discriminative hierarchical models have surpassed conventional GMM-HMM systems and
replaced them as the state-of-the-art ASR systems for practically every recognition task.
This rapid shift started due to the progress made in several key areas. First, the com-
putational power has become more available and its power has increased massively with
deployment of parallel processing units such as GPUs. Second, the amount of available
data has increased as well. There was also another reason for a resurgence of neural nets.
The original multilayer nets had their parameters initialized randomly and then trained
using back-propagation algorithm. This approach often led to the problem of vanishing or
exploding gradient. This problem was effectively solved by introducing the pre-training
step which initialized the parameters, often one layer at a time, see [1]. Current trends
in deep learning include many different architectures some of which are : deep neural
networks (DNN), convolutional neural networks or recurrent neural networks. The de-
scription in this thesis will focus on DNN-HMM as it was the only architecture used for
practical experiments.

Let us now define a statistical speech recognizer that is independent of the used AM
architecture. Lets assume a process that generates the sequence of acoustic observations
O = {o0;,0z,...07} given the sequence of words W = {w;, ws,...wy}. The primary
goal of the speech recognizer is to answer the question ” What is the most likely sequence



CHAPTER 2. AUTOMATIC SPEECH RECOGNITION

of words W given the sequence of acoustic observation O for our model defined by its
set of parameters @ 7. This problem can be formulated in a mathematical way as the
conditional probability by using the formula:

~

W = argmvgx,P(W|O,@). (2.1)

As it is not possible to estimate the probability of P(W|0O, @) directly, we can use
Bayesian rule and rewrite Eq. (2.1) into the form :

- P(O|W,0)P(W|O®)
W—argmvgx, P(0|©) )

which contains two terms in the numerator and a single term in the denominator. The
denominator term P(O|@) represents the a priori probability of the observation sequence
O, which is constant for all hypothesis W, and thus can be omitted from the equation.
The term P(O|W,@®) is now the probability of the observation sequence O given the
word sequence W and the P(W|@) is the probability of the word sequence W which
is now independent of the observation. The Eq. (2.2) can be simplified if we further
assume that the set of model parameters & comprises of acoustic parameters @ 4,, and
language parameters @p;; which are independent of each other. The conditional prob-
ability P(O|W, @) is now assumed to be dependent only on the acoustic parameters,
while the probability of P(W|@®) is now assumed to be dependent only on the language
parameters. Then, we can then rewrite the Eq. (2.2) to a new form:

(2.2)

W = argmv%X,P(O|W, Oan)P(W|OLy). (2.3)

In this form, the acoustic observations are determined solely by the acoustic parameters
and the probability of words is determined solely by the language parameters. This
expansion allowed us to define the statistical recognizer on a basis of two separate models.

e P(O|W,@,)) - determines the probability of acoustic observation given the set of
acoustic parameters combined in the Acoustic model.

o P(W|@p,,) - determines the probability of words given the set of language parame-
ters combined in the Language model. As this thesis is not orientated on language
modelling, the LM will be discussed only very briefly further in the text.

If we assume that each word can be modelled by a sequence of subword units, then
this scheme can be fragmented even further. This approach is practically always used
as the number of words in any language is too high to model. The most common set
of phonetic units consists of either simple phones or their context-dependent variants
biphones, triphones etc. The problem of estimating the parameters for the acoustic model
and the language model comprises two great research areas of speech recognition. The
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following text will focus on signal preprocessing and feature extraction algorithms and on
the AM training algorithms, whose purpose is to estimate the @ 4;; parameters.

2.2 Feature Extraction

The process of feature extraction involves transforming the speech signal into the form
that is more suitable for acoustic modelling and decoding. These features should provide
good discriminability between phonetic units, the vector has to be compact so that the
whole extraction is fast and the features should be robust against speaker and environ-
mental variability. However, the latest trend for recognizers based on neural nets is to use
short snipets of raw speech which usually several hundred [ms] long. This approach was
shown to bring comparable or even better results in certain recognition tasks such as dis-
torted speech recognition [2, 3]. However, a closer look at the first few layers reveals, that
these nets effectively emulate known extraction schemes [4] and thus a general overview
of the standard extraction techniques is helpful to understand the underlying principles.

2.2.1 Speech Production Model

Since practically all popular parametrization schemes for ASR exploit the speech pro-
duction and perception knowledge, this section will begin with introducing the speech
production model. The proposed compensation algorithm for lossy compressed speech
recognition exploits this model as well as thus its beneficial to have a point of reference.

Speech production is a process in which the stream of air exiting the lungs passes
through the glottal area (vocal folds), enters the vocal tract area (which consists of the la-
ryngeal, the oral and the nasal cavity) and finally exits through the nose and the mouth as
sound. The distinctions between different articulated sounds (phonemes) are determined
by different parameters of all components. The vocal tract can be fully described as a
tube with a time-varying cross-section [5] that behaves like a passive resonator with mul-
tiple resonating frequencies. These frequencies, which are called formants, are determined
by the shape of the vocal tract. The voice source characteristics are more complicated.
Vocal folds modulate the airflow exiting the lungs and produce the voice source signal. If
the vocal folds are fully open, the air stream is characterized as a turbulent airflow which
produces unvoiced consonants. If the vocal folds are tightly stretched, the air stream
builds up under the glottis and the folds open and close periodically. This mode produces
a quasi-periodic source signal and creates voiced phones (vowels and voiced consonants).

The block scheme in Figure 2.2 describes this process as a linear time invariant (LTI)
system. In this model, the voice source signal represents the driving signal z[n] and the
vocal tracts characteristics are modelled as an all-pole filter with the impulse response
hln]. This model can be expanded further by introducing the lip radiation filter with an
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Figure 2.2: The linear time-invariant model of speech production

impulse response r[n]. The speech y[n] is then written as:

y[n] = x[n] * hin] * r[n], (2.4)
and frequency responses of vocal tract and lip radiation filters have the form of:

G

1=y k2

where G is the gain, N is the order of the filter and a; are the coefficients of the filter.
Further analysis of H(k) and R(k) reveals, that the vocal tract dominates as a primary
source of information about the content. As a consequence, the standard features are
designed to remove the voice source parameters of the the speech signal and model only
the vocal tract characteristics.

H|[Z] R[z] = Ro(1 — 2), (2.5)

2.2.2 Cepstral-based Features

The most popular features currently used are designed to model the frequency enve-
lope of above mentioned vocal tract and lip radiation filters using the short-time Fourier
transform (STEFT). Figure 2.3 illustrates the block schemes for Mel-Frequency cepstral
coefficients (MFCC) [6] and perceptual linear prediction cepstral coefficients (PLP) [7].

The process of their extraction is similar to a certain degree. The MFCC algorithm
first splits the speech into short, quasi-stationary frames with an overlap. Then the
weighting window (usually Hamming) is applied to attenuate the spectral leakage. In the
next step, the energy spectrum is computed for windowed frames using the formula for
STFT. The Mel filter bank is then applied to integrate energy in each critical frequency
band. Each filter has a magnitude frequency response that is triangular in shape and
their central frequencies are placed equidistantly on a non-linear mel-frequency axis f,,.
defined by the Eq. (2.6). This characteristic emulates the non-linear frequency resolution
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Figure 2.3: The parametrization scheme of MFCC and PLP cepstral features

of the hearing. Finally, the logarithm is applied and the discrete cosine transform is used
to extract MFCCs. However, the current trends in feature extraction also favour mel-
scale log-filter bank features. Their computation is identical to standard MFCCs, but
the process is truncated before the application of the cosine transform. Multiple works
demonstrated their superior quality over MFCCs [8, 9], especially in conjunction with an
AM based on neural networks.

fmet = 25951og;, (1 + J;gg ) ) (2.6)
f fr-\
Hz Hz
fbark = 6 ln 600 + <600 ) —+ 1 . (27)

The PLP computation begins with the same steps of segmentation, windowing and
computing the energy spectrum and then a trapezoidal filter bank is applied. The filters
are placed equidistantly on the bark-frequency scale fy,, defined by the Eq. (2.7). The
next steps are different as PLPs were designed to emulate sound perception more closely.
The equal loudness block simulates the perceived intensity and the cubic root compression
transforms the intensity into loudness. The energy spectrum is represented by the linear
prediction coefficients which are then transformed into the PLP cepstral coefficients.

2.2.3 Temporal Context Information

Described features can accurately capture the spectral envelope in a short window
in which the signal is assumed to be static, but the temporal information about the
neighbouring content is usually added to the static features. The standard approach is
to add 1% and 2"? order dynamic parameters as the dynamic and acceleration cepstral
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features can be more robust against convolutional distortions. The dynamic parameters
are computed using the formula

Z M(Ckim[n] = Crom[n])
Acyln] = 2=

(2.8)

where cx[n] is the k' cepstral coefficient and m is the length of the derivation window
which is usually set to 2. The acceleration coefficients are computed by reusing the for-
mula (2.8) and substituting the static coefficients for dynamic ones from the previous step.
More recent solutions favour concatenating several neighbouring static feature vectors into
a single high-dimensional feature vector. A factorization method in then applied in order
to reduce the vector dimensionality and to decorrelate the features. The context length
varies highly as there is no clear consensus for its proper value. If we assume the average
vowel duration in a fluent, continuous speech is between 100 to 200 ms on average [10],
and the segmentation step was set to 10 ms, then we arrive at the conclusion that 7 pre-
ceding and following vectors provide sufficient temporal context. However, these values
are highly speaker, language, dialect and context dependent. A second thing to consider
is that vowels are generally longer in duration than consonants. Another solution is to
derive dynamic MFCCs directly from dynamic spectrum [11].

The common approach is to reduce vectors’ dimensionality by the application of a linear
discriminant analysis (LDA) [12], heteroscedastic linear discriminant analysis [13] or some
other factorization technique [14]. The principle of these techniques is to transform the
input feature vector into the space of output vectors and to truncate it at N principal
components. All of these methods also serve the purpose of decorrelating the features
in a vector, which has been also shown to improve the performance of standard ceptral
features in the presence of noise [15, 16, 17].

2.3 GMM-HMM Acoustic Model

The GMM is a statistical generative model that can very effectively model the static
cepstral features, while HMM is a statistical model that is able to model the temporal
dynamics of speech. Thus, the fusion of these two components creates a model capable
of describing both spectral and temporal characteristics of the speech. The use of GMM-
HMM for speech modelling involves selecting an appropriate structure. This decision is
usually done expertly and depends on the type of modelled speech units.

Figure 2.4 illustrates a classical composite GMM-HMM model that is used in ASR. The
typical GMM-GMM structure for subword units consists of 3 emitting states {s1, s2, s3},
the entry and exit states. The model is fully described by the transition matrix A = {a;;},
which defines the probability of moving from state ¢ to state j, and the emitting functions
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Figure 2.4: A classical left-to-right HMM with 3 emitting states s; defined by its state
transitional probabilities a;; and observation emission probabilities b;(o;)

b;(0;). The model usually lacks backward transitions as only forward and state-repeating
transitions are allowed. Each state is assigned its emitting function b;(0;) which estimates
the probability of the observation vector o; being generated by the state ¢ and can be
expressed as

bi<ot> = cmN (0t§ Him, Eim)- (2-9)

1=

The set of acoustic model parameters @ 4y = {cm, flim, Xim } are the weight, the mean
and the covariance matrix of a multivariate normal distribution N (jtip,, X, ). Given the
defined GMM-HMM, the probability of generating the state sequence S = sy, s9, ..., i is
dependent only on the transition probabilities and the observation probability for frame o,
is dependent only on the emission probability b;(o0;) of the corresponding state i. The total
likelihood of generating the observed sequence of acoustic features O = {01, 09, ..., 07} is
then expressed as

PO|@ay) = > [ assiibslon), (2.10)

S1,...,5 t=1

where a,|s,_, represents the state transition probability p(s:|s;—1). The described acoustic
model is fully defined by the set of acoustic model parameters @ 4,, that need to be
inferred from the training data. Several learning schemes already known in the field
of the machine learning have been adopted for this purpose, while many others have
been proposed specifically for ASR. Historically, the most common method for the AM
parameters’ estimation was based on Maximum Likelihood estimation (MLE). However,
this conventional approach has several drawbacks, some of which stem from the unmet
assumptions for HMM when used for modelling the human speech, others stem from the
assumptions of the MLE itself. This fact can cause the MLE to yield suboptimal results

10
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in terms of classification accuracy. As a result, discriminative training algorithms have
taken over as the principal training algorithms. Their main advantage is the fact that
they don’t make any assumptions about the distribution of training data.

2.3.1 Generative Training

A generative training algorithm based on MLE was implemented for ASR systems using
a very efficient Baum-Welch algorithm. The algorithm is derived from the Expectation
Maximization (EM) algorithm that aims is to maximize the likelihood of training data
generation using the given model. The whole training procedure can be divided into two
essential steps; the E-step and the M-step. The goal during the E-step is to estimate the
likelihood of generating observed data given the current set of model parameters and new
model parameters are estimated during the M-step. Its main advantage is the fact that if
the training data truly belong to the class of presumed distribution, the generative training
leads to optimal parameter estimation [18]. Given the set of training observation O, their
corresponding transcriptions W and the set of unknown acoustic model parameters & 4,,,
the MLE approach attempts to maximize the function

T
Frzp(@an) =Y _logPe,,, (0, M), (2.11)
t=1
where M, is the model corresponding to the correct transcription w;. The maximization
of the likelihood function is generally done in practice by mentioned Baum-Welch algo-
rithm, which is repeated in cycles until a larger than set difference between ”o0ld” and
"new” parameters is achieved. The new model parameters are then re-estimated using the
formulas which can be found in [19]. However, it is important to note that Baum-Welch
algorithm leads only to the local maximum of P(O|® 4,,), which means that the training
results are dependent on the initial conditions.

2.3.2 Discriminative Training

The principle of discriminative training (DT) techniques, in comparison to the gener-
ative ones, is the effort to minimize the recognition error directly instead of maximizing
the observation likelihood. This is generally achieved by formulating an objective func-
tion which is directly relevant to the actual classification and is able to ”discriminate”
against the model parameters which are likely to confuse the classification. This can
be expressed in the form of multiple competing hypotheses, when both the correct and
incorrect classifications are used for actual training.

However, DT suffers from a set of problems in conjunction with the ones already men-
tioned for MLE. The addition of incorrect classifications to the learning criteria function
for DT expands the original homogeneous polynomial criterion function to the rational
one. Authors in [20] proposed a new optimization method called Extended Baum-Welch,

11
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which was later on [21] successfully extended for continuous density HMMs. The extensive
computational load, the second major problem of DT, was satisfactory resolved by the use
of lattice-based training framework [22]. Another problem of DT in general is a poor test
data generalization, when the discriminative models tend to work well on training data
but relatively poorly on unseen test data. One of the possible solution is to employ an
AM scaling factor x to increase the amount of confusable training data or use a ”weak”
unigram LM for lattice generation.

The most prevalent DT methods include entropy-related Maximum Mutual Informa-
tion (MMI), boosted Maximum Mutual Information (bMMI), Large Margin Estimation,
Conditional Maximum Likelihood or classification-based Minimal Classification Error,
Minimal Word Error (MWE) and Minimal Phone Error (MPE) [23, 24].

Maximum Mutual Information

MMI estimation was first proposed from the point of view of information theory [25],
when the goal of the parameter estimation was to maximize the mutual information
I(O, W) between observations O and their transcriptions W. It was later proved [26] that
MMI outperforms the MLE if observation data has different than assumed distribution.
This is naturally true for any real-world signals. Given the same model parameters and
observations as for MLE, the MMI criteria has the form of:

T

FMMI(@AM) = Z lOg

t=1

P@AM (Ot|Mt)P<wt>
Zﬁ; P@AM(Ot|M'Li))P(ﬁ7) ’

(2.12)

where the numerator is the traditional MLE and the denominator is the summation over all
possible word sequences (correct and incorrect) defined in the recognition task. The My is
the composite model corresponding to the word sequence w, P(w;) and P(w) represents
the word sequence probability given by a stochastic language model. The maximization
policy is evident from the form of the objective function; the numerator representing
the correct word hypothesis must increase (the same as ML), while the denominator
representing any possible words hypotheses must decrease. The MMI algorithm deals
with the generalization problem by interpolating ML and MMI criteria functions, which
is known as H-criterion [27] or I-Smoothing [22].

Minimum Phone/Word Error

The Minimum Word Error was first proposed in [28], where the focus was on minimizing
the estimation of training set errors. The MWE was thus defined to maximize the expected

12



CHAPTER 2. AUTOMATIC SPEECH RECOGNITION

word accuracy with the objective function of:

Zl ng Po ,,, (0| My)P(w)Raw Accuracy(w) (2.13)
Zﬁ; P@AM (Ot‘MifJ)P(w) ’ .

where the RawAccu'r’acy('w) is the measure of the number of correctly transcribed words
in the word sequence w. The MWE function (2.13) gives the weighted average of correct
words over all possible word sequences w, which is in fact the metric used to estimate
the standard error rate. If Kk — oo, the maximization of MWE criterion leads the mini-
mization of the error rate. The Minimum Phone Error uses the same objective function
as Eq. (2.13), but the formula is defined for the phone error instead. The details on
RawAccuracy(w) computation can be found in [28]. In addition to already mentioned
problems, the application of MWE or MPE can easily result in over-training, thus the
[-Smoothing was proposed and shown to be necessary in order for MPE to outperform

MLE.

F MWE @AM

Boosted-Maximum Mutual Information

The standard MMI objective function got later extended in [29] by introducing a term
similar to one that is used in Minimum Phone Error. In bMMI the objective function has
the form of:

P@ (ot|Mt)P(’wt)
F @ l AM
bz (O anr) Z o9 Y i Poay (0| M) P(w) exp(—b * RawAccuracy(w))’

(2.14)

where b is the boosting factor from which the technique got its name. The purpose the
term is to boost the likelihood of the sentence containing errors and thus to produce more
confusable data.

2.4 DNN-HMM Acoustic Model

Figure 2.5 illustrates an example of a hybrid DNN-HMM system with a feed-forward
architecture, where the temporal dynamics of speech is modelled by HMM and the DNN
is used to model the observation probabilities within a static frame. The actual structure
of DNN in the figure is composed of an input, an output and 4 hidden layers with different
number of units in each layer. A unit j in each hidden layer employs a non-linear activation
function to map the total sum of inputs from the preceding layer to the output that is sent
to the next layer. The unit input z; at the current layer is computed as a weighted linear
combination as per the Eq. (2.15), where b; is the bias, y; is the output from the unit 7 in
the preceding layer and w;; is the weight of a connection from unit ¢ to unit j. The most
common activation function include the logistic (sigmoid) function, hyperbolic tangent or
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Figure 2.5: An example of a DNN-HMM with an input layers, four hidden layers and
an output layer.

rectified linear function. The recognition experiments in this thesis were conducted with
a DNN-HMM system with a sigmoid activation function (2.15). The output value of j
unit represents the probability Py, (j,0) that the observation vector o belongs to class j
which can be done by using the ”soft-max” function as per Eq.( 2.16).

1
xj =bj + Zyiwij ) Yj = 1+ e (2.15)
: e’
Papn(ilo) = — . (2.16)
>
j=1

Currently, the most popular DNN recognition frameworks are built to model HMM
states of context dependent phones, called senons. This approach, also called continu-
ous density DNN-HMM, is very similar to previous state-of-the-art HMM-GMM systems
which contributed heavily to its rapid development as large number of previously appli-
cable processes and methods were easily transferable to this newer framework. In the
DNN-HMM, the output layer of DNNs is trained to estimate the conditional state poste-
rior probabilities p(s; = i|o;) given the observation o;. The most popular DNN training
method is to employ the error back-propagation algorithm in conjunction with a gradi-
ent descent optimization method. However, the algorithm suffers from the problem of
vanishing or exploding gradient that occurs mostly due to the practise to initialize the
parameters randomly. This problem has been effectively solved by introducing improved
deep learning algorithms. This section has only touched on the problems of DNN training
and has not touched on the problems of DNN feature extraction optimization. A more
thorough description on neural networks for ASR can be found in [30].
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2.5 Language Model and Decoding

The purpose of the LM is to estimate the probability of generating the hypothesised
word sequence P(W'), which can be further decomposed using the chain rule as:

P(W) =[] Plwilwy, ..., wi_1), (2.17)
i=1

where P(w;|wy, ...,w;_1) is the probability that word w; is spoken given the previously
uttered word sequence wy, ..., w;_1. The past word sequence is also called the history. The
purpose of the language model is to provide the recognizer with an adequate estimate of
P(w;|wy, ...,w;_1). However, it is practically infeasible to create a model with large history
given all possible word sequences. As a consequence, the current state-of-the-art approach
is to employ n-gram models which limit the history length down to n—1 number of words.
The recognition experiments presented in this thesis were done using a bigram LM, which
simplifies the formulated probability to the form of:

P(W) = P(wy) [ [ P(wilwi). (2.18)

i=1

The optimization of LM was not part of my research topics and thus it is not discussed
further. The final component of any speech recognizer is the decoding block, which com-
bines the probability scores of acoustic and language models and outputs the most likely
word sequence W. Although it is computationally infeasible to search the whole recogni-
tion space for the optimal solution, it can still be can be very effectively solved by utilizing
the dynamic programming and Viterbi algorithm. Their application in speech recognition
greatly simplifies the decoding process by utilizing the optimality principle which postu-
lates, that the optimal path through a directed graph is equivalent to taking optimal
partial paths between the nodes. The optimality principle ensures that the likelihood for
each state at each stage t can be computed by means of a simple recursion. Besides the
described recursion, the Viterbi algorithm requires additional steps of recursion initial-
ization, termination and path-backtracking. Another advantage of the algorithm is that
it does not need to keep track of all partial paths leading to stage ¢t + 1. It is important
to realize that the described procedure can be applied to both GMM-HMM as well as
DNN-HMM architectures.

2.6 ASR’s Robustness

The current ASR systems perform very well under clean acoustic conditions and with
high quality signals. However, when the recordings come from a noisy environment or
the speech signal is distorted on its way from a microphone to the ASR engine, the
system performance can drop significantly. The types of conditions which can result in
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performance drops are numerous, but the the ones explored within this thesis are as
follows.

e Far microphone: In order to provide a natural speech input for voice controlled
devices in smart-homes and offices, the common practice is to make use of distant
microphones with omnidirectional characteristics. These microphones are usually
embedded in devices themselves or in the walls or a ceiling and lead to the presence of
various kinds of additive and convolution distortions such echoes and reverberations.
Also, an attenuation of distant speech is rather high. The methods for robust far
microphone recognition studied in this thesis include methods of noise subtraction,
feature vector normalization and robust acoustic modelling.

e Driving Car - While the voice controlled devices in intelligent cars (i.e. a nav-
igation) also rely on the use of omnidirectional middle-distance microphones, the
acoustic conditions are very different from the smart-homes. The environment is
practically reflectionless and thus the recordings contain very little convolution dis-
tortion. On the other hand, both the running engine and the aerodynamic noise
of the air introduce strong additive noises. Each has its own specific spectral char-
acteristics and requires a special tailoring to compensate. The methods for robust
driving car recognition studied in this include methods of noise subtraction, feature
vector normalization and robust acoustic modelling.

e Lossy Compression - The perceptual audio coders contain a psychoacoustic block
that exploits the imperfection of human hearing in order to code the speech signal
into a low-bitrate digital stream. Certain temporal and spectral parts of the signal
that are considered inaudible and therefore redundant are removed. Unlike the
previously discussed situations, compression introduces unwanted information and
removes the desired information from the signal at the same time. As a result,
this process introduces multiple non-linear distortions which are hard to describe
using the standard signal processing theory, but are known to severely degrade the
performance of ASR systems. The methods for robust lossy compression recognition
include methods of noise addition, matched training and robust acoustic modelling.

2.6.1 Robust Front-End Processing

The robustness of ASR can be solved at front-end processing level at first and there are
generally three options [31]. The preprocessing algorithms which modify the signal before
the actual parametrization, robust feature extraction schemes or methods which modify
the already extracted features. The preprocessing algorithms are usually designed to be
independent of used features and their purpose is to target specific distortions, which
limits their usage for other conditions. On the other hand, robust parametrizations are
often just extensions or modifications to the existing algorithms and their deployment is
not conditioned so strictly by the presence of a specific distortion. Finally, the methods
which modify the extracted features are largely independent of the used features and also
the conditions.
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Spectral Subtraction

Spectral Subtraction represents one of the oldest, yet still used, method for compensat-
ing additive noise. The principle idea is to estimate the spectral characteristics of noise
and to subtract it directly from a signal in the frequency domain [32]. There are two main
approaches on how to estimate noise characteristics : employ a voice activity detector and
estimate noise spectrum from silence segments [33] or use the spectral minims for esti-
mation [34]. The study on spectral subtraction done in [35] showed that its application
can actually decrease ASR’s performance on clean and slightly noisy speech due to the
introduction of non-linearities, but it also reported improvements for artificially added
car noise for SNR < 6 dB. I use within this thesis the extended spectral subtraction [36]
(ESS) which is an iterative version of spectral subtraction that works without the need of
a voice activity detection and uses the principle of deriving the noise spectrum by tuning
the gain of a matched Wiener filter. This method is based on the initial assumption
that noise changes its characteristics more slowly than speech does. As a result, this
algorithm works well for background stationary noises or for the noise with slow changes.
Significant improvements from using ESS for removing noises introduced in a public place
(a shop) for SNR < 20 dB were shown in [37]. A comprehensive summary on various
modifications to this technique was done in [38] and the overall conclusion was that the
technique can bring both subjective and objective performance improvements in case the
initial conditions about the noise characteristics are met.

Cepstral Mean and Variance Normalization

Cepstral Mean Normalization (CMN) is a well established technique for robust speech
recognition. The principle of is based on the assumption that the average cepstrum of
real speech ¢, that contains stationary convolutional distortions added by a channel h
can be expressed in the form:

L—1

C, = % ;cs[i] +cp =Es + cp, (2.19)
where €, is the average cepstrum of clean speech computed from L number of segments
and ¢y, is the cepstrum of the channel. If we further assume that ¢, — 0 if L — oo, then
we can approximate the average cepstrum of real speech with cepstrum of the channel,
which means that ¢, =~ ¢;,. Thus, the aim of CMN can be easily explained as a process of
removing convolutional distortion by subtracting its contribution c; in cepstral domain.
Although it is a fairly simple method it has been proved to provide robustness against
the environmental and channel distortions and speaker variability. Cepstral mean and
variance normalization (CMVN) is technique that normalizes the mean and variance of
cepstra to give zero mean and unit variance. Even though there is no precise theoretical
explanation for normalizing the cepstral variance, it is know to remove additive noises
and to normalize the speaker variability. If the statistics are accumulated over time from
a suitably long window, this approach is often called cepstral mean subtraction (CMS).
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The application of CMS for telephone band recognition was done in [40]. The study used
4 s sliding window and reported about 15% relative improvement. Significant relative
improvements of 25.5% for noisy car recognition were reported in [41].

2.6.2 Robust Acoustic Modelling

The robustness of ASR can be also solved at the acoustic modelling level. The most
common approach is to use an AM adaptation technique whose task is to adapt the
AM parameters or transform feature vectors prior to decoding to specific environmen-
tal conditions with ”a little” amount of adaptation data. The most common methods
are Maximum A-Posteriori Probability (MAP), Maximum Likelihood Linear Regression
(MLLR) and feature Maximum Likelihood Linear Regression (fMLLR). The second op-
tion is to use the described adaptation techniques during the training process to reduce
the variability in the training data. Although adaptive training is concerned with remov-
ing all variability present in the training set, a method called noise adaptive training [42]
aims to obtain a ”pseudo-clean” AM that specifically lacks the acoustic variability. The
third approach is based on increasing the overall robustness AM. The conventional system
based on GMM can contain several hundred thousands mixtures. As a result, subspace
Gaussian Mixture Model (SGMM) has been proposed as an alternative approach in which
the model parameters are typically initialized from the clustered Universal Background
Model (UBM) and then shared. The result is a situation when a trained SGMM system
has typically less parameters than a standard GMM system [43]. Likewise, DT has been
studied for noisy speech recognition as well and the authors have concluded that its usage
can increase the overall robustness of the system. However, it was also shown that the
application of DT suffers from poor generalization and is thus not always applicable for
distorted speech, especially if the acoustic conditions in the training set differ greatly from
the test set. Despite this obvious disadvantage, the improved AM quality often outweighs
the generalization problem.

Maximum A-Posteriori Adaptation

The MAP adaptation [44] is based on the definition of an ASR system as a Bayesian
classifier with a zero-one loss function. In paper [45], the authors introduced the re-
estimation formulas for HMMs by addressing the problem of a priori distributions for
the HMM parameters, which they stated can be adequately represented as a product of
Dirichlet and normal-Wishart densities. Given the vector of model parameters @, the set
of observation vectors O, and using the well-known Bayes’ theorem, the formula for MAP
estimated vector of model parameters &,;4p can be written as:

Ovap = argm@axP(O|@)P(@), (2.20)

where the P(@) represents the a priori information about parameters probability dis-
tribution, also known as the informative prior. To solve the Eq. (2.20), it is assumed
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that O is the set of independent observations and the parameters are from the assumed
distributions. The new model parameters @,;4p can be estimated by the standard EM
algorithm. It is important to note that the speaker-independent model is used to get a
priori probability distribution. This means, that less data is needed to estimate the new
model parameters when compared to standard re-training. In case the information prior is
not taken into account, or is not present, the MAP estimation takes the form of standard
ML estimation. Otherwise the new model parameters are estimated as the weighted aver-
age of a priori information and ML estimation. One disadvantage of MAP adaptation is
the large amount of data needed to satisfactory update the old parameters. This problem
becomes especially pressing in the case of complex AMs (e.g. triphone-based AMs) with
a large number of parameters.

Maximum Likelihood Linear Regression Adaptation

The MLLR adaptation method uses the maximum likelihood estimation for finding
the optimal transformation to fit the general model on the adaptation data [46]. The
solution to data problem for MAP was introduced in [47], where the author proposed to
cluster the parameters for similar models into groups (regression classes) and to find a
linear transformation for the whole group. In a strict sense of speaking, the MLLR can
be applied both in constrained and unconstrained version and on the model parameters
or feature vectors, summarized in [48]. The constrained MLLR (CMLLR) uses the same
transformation matrices for all model parameters and can be applied to both the AM or
feature vectors. If CMLLR is applied to feature vectors, it is usually referenced as the
feature MLLR. The formula introduced for mean vectors fr update, using the previously
stated conditions is:

fL= Ao + b, (2.21)

where the Aq is the transformation matrix and bg is the bias vector, both for the regres-
sion class ). The formula for covariance matrix is:

S = HoSHY, (2.22)

where now H g, is the desired transformation matrix. Standard MLLR was studied in [49],
where the authors used clean trained AMs for recordings from a car environment. The
recognition task consisted of a simple digit recognition and showed that using two re-
gression classes (speech vs. noise) in MLLR can yield up to 87.1% WERR. A slightly
different approach was take in [50], where the authors experimented with multi-channel-
based MLLR and MAP adaptations. The authors evaluated the performance of AMs
for each feature stream (static, dynamic, acceleration) separately and adapted the whole
vector based on the best-performing one. Their evaluation set contained artificially noisy
recordings with various SNR levels. This splitting approach brought 22% absolute im-
provement while the standard MLLR+MAP approach achieved only 8% improvement.
This work further demonstrated that static parameters are more prone to degradation
due to the presence of noise than the dynamic ones. The authors in [51] investigated
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the performance of MLLR in a distant speech recognition and reported 15% WERR.
Yet another example of MLLR on Aurora2 database can be seen in [52], where the au-
thors experimented with pooling data into either a global cluster or SNR specific clusters.
Interestingly, the SNR specific MLLR outperformed the generic MLLR in 4 out of 8 en-
vironments (car, street, airport, station). A slight modification to the existing CMLLR
was proposed in [53]. The authors called it noisy CMLLR and evaluated its performance
against the standard MLLR and CMLLR on artificially noisy recordings which contained
operations room and car noises. The CMLLR adaptation proved to outperform the stan-
dard MLLR while the proposed noisy CMLLR achieved even slightly better results. The
CMLLR achieved better WER for the car and 20 dB operation room environments but
lagged behind for 14 dB room subset. Another modification to the standard MLLR was
presented in [54] where the authors dealt with adapting a noisy AM to another noise types
from Aurora4 database. The proposed method consisted of MLLR and CMLLR adap-
tations in conjunction with uncertainty decoding and the authors reported 6% absolute
improvement over the SPLICE UD reference.

Speaker Adaptive Training

Speaker-adaptive training (SAT) is based on the assumption that the variability in the
training data is caused not only due to the phonetic content, but also by the variability
among speakers and environmental conditions. The purpose of the SAT is to remove this
variability from the the SI model by the application of the before-mentioned adaptation
techniques during the training process and to create a more general (canonical) AM.
Thus, this is a completely opposite process from the classical adaptation which creates
a SA model. However, the canonical contains very little information about speakers or
acoustic conditions and thus it is necessary to adapt it prior to decoding. The MLLR and
fMLLR adaptations are used most often for this purpose and my SAT setup made also
use of fMLLR.

Discriminative Training

The authors in [55] studied the MMI trained models on isolated and connected digits
recognition tasks in noisy environments and reported approx. 3% improvements for both
tasks over the standard MLE. This work also demonstrated that MMI training can be used
for a key word-spotting task as the article reported approx. 7.5% error rate reduction.
Another results with DT models for Aurora2 corpus have been presented in [56], where
the authors used MMI training scheme for the same multi-condition training task. Their
work reported up to 11% relative improvements.

The study on MWE and minimum divergence (MD) training algorithms for both clean
and multi-condition training for Aurora2 set was presented in [57]. This work reported
41% and 35% relative improvements of MWE and MD trained models for the clean task.
They also demonstrated that the increased train-test mismatch lowers the contribution
of DT. The highest WERR of 45.45% was achieved with MWE algorithm and digits
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recognition task for the 20 dB SNR test set. However, the relative improvements for
0 db and -5 dB evaluation sets were only 6.25% and 3.01% respectively, which further
demonstrates the limits of DT for distorted speech.

A more realistic scenario of DT models working with real-life recordings from a domes-
tic environment was presented in [58]. This work evaluates the performance of MMI and
bMMI trained AMs for 2" CHiME challenge. The evaluation tasks consisted of multi-
ple subsets with different SNR levels -6, -3, 0, 3, 6, 9 dB and the authors studied the
performance of both MFCC and PLP features. The best absolute improvement of 5.52%
was achieved for MFCC features and bMMI criteria. The improvement for PLP features
was only 3.75% using the same setup. Interestingly, the best performing MFCC system
outperformed the PLP system by more than 10% (41.12% vs 52.62%). These results
were achieved for features without any special noise suppression. However, the authors
also showed that the additional noise suppression can lower the absolute WER down to
33.71%. Another interesting thing to note was the fact that bMMI always outperformed
the standard MMI.
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GOALS OF THE THESIS

The development towards a fully informational society requires a better integration of
machines into our lives and creating a more natural form of communication with them.
The general objective of this thesis is to study existing methods and to find novel methods
for robust recognition of strongly distorted speech. The situations include signals recorded
with far distance microphones, in a noisy car environment and compressed speech. The
focus will be given to techniques working at the level of acoustic model creation and
front-end processing. The motivation for this research can be formulated as follows.

The recognition of recordings from a distant microphone is analysed for its application
in the so-called smart homes which is based around the idea of using voice controlled
appliances and controlling home faculties remotely. The second practical application is
for the transcription of lectures and conference speeches recorded in auditoriums, where
the microphone is usually placed at a distance from the speaker. The recognition of
recordings from a car environment is analysed for two primary reasons. The first one is
to provide human-to-machine interface for the voice controlled devices which include on-
board navigation systems and other systems for controlling the car faculties. The second
reason is more general as the conversations and phone calls made in cars also suffer from
specific acoustic distortions which limits their usability for further processing.

Concerning the compressed speech, the algorithm widely known as MP3 belongs to
the group of perceptual audio coders whose worldwide popularity is mainly historical as
it appeared in the period of the rapid growth of the Internet and media sharing that
came with it. It was developed primarily for the multimedia, namely for video and music
storage and distribution [59], but it has seen successful use for speech encoding as well.
Only music professionals, phoneticians, and audiophiles have always avoided using it.
However, various studies have proved that even expert listeners can’t distinguish between
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original and encoded files for bitrates higher than 256kbps [60]. Also, people tended to
use much lower bitrates because even highly compressed speech which containing audible
distortions was perceived by human listeners as intelligible. Recently, professional studios
and many broadcasters are leaving the MP3 coding tools and prefer formats that are better
suited for speech (e.g. Speex or FLAC). However, a lot of speech data has already been
compressed and archived utilizing the MP3 format, which makes the task of MP3 speech
recognition a true research challenge. This fact led me to decision to study compensation
methods which would enable the automatic processing of MP3 compressed recordings.
Particular ideas analysed within this thesis can be formulated as follows.

e Signals recorded with far distance microphones suffer from additive noises, strong
echoes and reverberations. Home environments often introduces only weak additive
noises but public places introduce strong additive and convolution noises. What is
the contribution of front-end compensation methods for these situations? What is
the contribution of acoustic modelling techniques? How much do these two environ-
ments differ in terms of ASR performance?

e Signals recorded in a running car suffer from a strong additive noise caused by the
running engine and the aerodynamic noise. Both get stronger as the driving speed
increases. What is the contribution of signal pre-processing methods for a running
car ASR? What is the contribution of acoustic modelling techniques? How much do
the differing driving conditions matter in terms of ASR performance?

e The principal idea of MP3 compression is based on removing the imperceptible
parts of the signal. What are the primary distortions introduced by the compression
and how do they affect the standard cepstral-based features? It is possible that the
distortions are located at certain parts of the speech more often that at others?

e The compression introduces non-linear distortions which corrupt signals spectra and
the extracted features. It is possible to optimize the feature extraction parameters
such as the window length/step? Do the standard compensation and feature nor-
malization methods improve the performance? Which features are better suited for
this task?

e Common way of improving ASR performance in adverse conditions is to employ
either matched training or adapt the general purpose models to specific conditions.
What is the contribution of using the bitrate specific in comparison to general-
purpose AM? Can the AM adaptation reduce this mismatch?

e Theoretical and practical works on distorted speech recognition demonstrated, that
adding noise to speech signal can improve ASR performance. Can these ideas be
extended further for MP3 speech?

e Recognition systems based on neural networks have displayed much greater ro-
bustness against adverse environmental conditions than their GMM predecessors.
However, these systems are discriminatory by their nature and thus purely data
reliant, unlike the GMMs. Can the DNN-HMM system outperform the GMM-HMM
system? Can the DNN-HMM system still contribute from any feature-level compen-
sation methods such as the ones studied in this thesis?
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Goals of the Thesis

On the basis of the above mentioned discussion, the principal goals of the thesis can be
summarized as follows :

e to get acquainted with current state-of-the-art ASR systems and robust methods of
front-end processing and acoustic model creation,

e to assembled an ASR system and to design appropriate evaluation tasks for a distant
microphone, a running car and a compressed speech recognition,

e to analyse the contribution of the front-end noise suppression techniques, AM adap-
tation and discriminative training algorithms in the case of strongly distorted distant
microphone and a driving car speech recognition,

e to analyse the contribution of various feature extraction setups, front-end com-

pensation techniques, AM adaptation, discriminative training and to compare the
GMM-HMM and DNN-HMM systems in the task of non-linearly distorted com-
pressed speech recognition,

e to optimize the setup of the studied techniques for given recognition tasks,

e to design a novel compensation technique for compressed speech recognition and to
verify its contribution using the assembled framework.
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BASELINE ASR SYSTEM

Although this thesis is focused on separate topics of robust speech recognition, most of
the experiments shared used software, databases and recognition toolkits. This section
summarizes these common resources. The initial studies were realized using the HTK
Toolkit, the later ones were done using newly issued KALDI toolkit. The description
of DNN-HMM system is provided in the particular section as it was used only for last
experiments with compressed speech recognition. The following sections describe initial
optimizations of AM creation. The first analysis compared the differences of using a
triphone AM with a high number of tied-states and low number of added mixtures against
an AM with a low number tied-states and a higher number of mixtures. The second
analysis compared two different clustering strategies, an automatic and a knowledge based
one, for a MLLR based AM adaptation.

4.1 Software tools

Following software was used to perform the described research.

e HTK [61] is a toolkit that was widely used for HMM construction and manipulation.
It provides all of the necessary ASR utilities, but I used it only for AM training and
decoding with basic AM techniques before switching to KALDI.

e KALDI [62] is a modern, widely popular ASR toolkit. It supports most of the

current state-of-the-art AM techniques and ASR architectures. I used it for more
advanced GMM-HMM training and for building DNN-HMM systems.
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e CtuCopy [63] is our internal tool for feature extraction and speech enhancement
that supports file formats usable for other ASR tookits such as HTK or KALDI. It
was developed in our research group and is offered for free on our websites. I used
it as a primary feature extraction tool for all experiments.

e LAME [64] is a free, high-quality MP3 encoder that uses improved psychoacoustic
model and supports multiple compression features. It also gets used in many other
third party encoders which broadens the relevance of presented results. My com-
pression setup always used a constant bitrate, free format bitstream and the highest
audio quality on output.

e SoX [65] is a command line utility which was used to convert MP3 coded speech
back to PCM quality.

e FFmpeg [66] is a command line utility for high quality media manipulation. I used
it to compresses speech into MPEG-4 (AAC) format and then decompress it back to
PCM quality. I worked with the highest quality encoder libfdk_aac and a constant
bitrate.

e Praat [67] is a free tool widely used for phonetic analysis. I used it to extract the
pitch and formant contours.

4.2 Databases

Major portion of performed analyses were done on Czech recordings from the SPEECON
and CZKCC databases. The databases contain recordings from acoustically clean condi-
tions as well as recordings from acoustically adverse environments. This attribute made
it possible to analyse real-life distortions and I didn’t need to rely on adding artificial
noises. The compressed speech analysis was also done for English and German languages
to demonstrate that the negative effects are language independent. Foreign databases
used for this purpose are introduced later in the corresponding sections.

The studies were performed using a Czech phoneme set which consisted of 44 mono-
phones and a single silence model which also served as a garbage model for all other
non-speech events, summarized in Table 4.1.

Table 4.1: Monophone set for Czech

Class Phonemes
Non-speech silence
Vowels a, a, e, é, 1,1, 0,6, u, 1, swa
Diphthongs au, eu, ou
Consonants Voi. | b, d, d, dz, dz, g, h, j, |, m, mv, n, i, ng, 1, ¥, z, %
Consonants Unvoi. f, v, s, 8 ch, /F, p, t, €,k ¢ ¢
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4.2.1 SPEECON

The adult part of Czech SPEECON database [68] contains utterances from 580 speakers
recorded under different conditions, i.e. in offices, home environments, at public places,
or in a car. Each speaker recorded utterances with an overall length of about 20 minutes.
The database was recorded in 4 channels with different microphone types and positions,
summarized in Table 4.2. The signals were sampled with f; = 16 kHz rate and 16-bit
precision and coded in the PCM format. All utterances were manually annotated and
the actual pronunciation was written down along with possible mispronunciations or non-
speech events.

The data for the subsets were selected as follows. The ”Clean” set comprised signals
from the office and entertainment environment with a switched-off background audio.
The recordings in this subset were characterized by a weak background noise and were
used to train a general purpose AM and for compressed ASR. The ”"Public” set comprised
signals from the hall public environment, which was characterized by strong convolution
distortions, and an open public environment which was characterized by strong back-
ground noises. The ”"Noisy Car” set comprised recordings from a standing car with a
switched-on engine and a running car. The usage of CS0, CS2 and CS3 channels made it
possible to analyse the influence of additive and convolution noises for distant microphone
recognition as significant channel distortions appeared only in signals from CS2 and CS3
channels, as it is summarized in Table 4.2.

Table 4.2: Description of channels in SPEECON

Channel Microphone Type Position | Level of Distortion
CSo Sennheiser ME104 headset 2 cm -
CS2 Sennheiser ME64 | middle-talk | 0.5-1 m ++
CS3 MBF HAUN far-talk 3 m +++

4.2.2 CZKCC

CZKCC database contains utterances from 710 speakers recorded in three different
car brands and varying driving conditions. Each speaker recorded utterances with an
overall length of about 40 minutes, pauses included. Three different microphones were
used, two in a medium distance and one in close headset distance, as it is summarized in
Table 4.3. The recordings were sampled at f; = 44.1 kHz rate, coded with 16-bit precision
and saved in the PCM format. The signals were later downsampled to 16 kHz in order
to merge the data with SPEECON signals. Special care was taken to ensure that the
acoustic conditions of selected signals were similar to the conditions found in SPEECON.
All utterances were manually annotated and the actual pronunciation was written down
along with possible mispronunciations or non-speech events.

The data for different subsets were selected as follows. The ”Clean” set comprised
recordings from a standing car with a switched-off engine and were used to train a general
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Table 4.3: Description of channels in CZKCC

Channel Microphone Type Position Distortion
CSo Sennheiser ME102 headset 2cm -
CS2 AKG Q400 MK3T | middle-talk dashboard +++
CS3 Peiker ME27 middle-talk | rear-view mirror +++

purpose AM and for compressed AS. The ”Noisy car” set comprised recordings from a
standing car with a switched-on engine and also speech from a running car. CZKCC
database did not contain signals to match the public environments from SPEECON. The
data from CZKCC was used only to train the general purpose AM but not for the actual
evaluation on this task. Table 4.4 summarizes the selected data from both databases.

Table 4.4: Summary of used sets for distorted speech recognition

FEvaluation Task | SPEECON CZKCC
Far-microphone | Office, Entertainment, Pub- | Car engine off
lic Place Hall, Public Place

Open
Driving Car Car engine on, running car | car engine on, running car
Compression office, entertainment, car | car engine off

engine off

4.3 Common ASR Framework

The initial experiments were realized using a progressively refined ASR framework, that
is always described in a corresponding section. The remaining experiments were realized
using a common ASR framework that was built partially upon this basic framework and is
described below in order to avoid repetitions. This setup is always referred to as common
later in the text.

4.3.1 Feature Extraction

The 13-dimensional PLP and MFCC features were computed from the signals using
CtuCopy and with a window length of 32 ms and 16 ms shift. The vector was then
normalized using CMN or CMVN. Five preceding and successive feature vectors were
spliced onto the central vector and it was then transformed into 40 dimensional decorre-
lated vector via LDA and then transformed using MLLT. These features were used in my
experiments as baseline features.
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4.3.2 Acoustic Modelling

The process of acoustic model creation started with training a monophone AM using
the Viterbi training algorithm. The monophone AM was then expanded into context-
dependent crossword triphones and state-tied. The quality of this baseline AM was later
improved using SAT, a combination of a UBM and SGMM and discriminative training
using either the MMI, bMMI or MPE criteria. The final step involved using one of the
discussed adaptation technique; MLLR, fMLLR or MAP; during the decoding. My SAT
setup was based on fMMLR. The adaptation was always performed in an unsupervised
fashion in two steps. In the first pass, I used the baseline SI model to obtain the pho-
netic transcription from which the linear transformations were estimated. During the
second pass, these transforms were applied to get the final output transcriptions. It must
be noted, however, that fMMLR also served the purpose of channel and environment
adaptation in the case of mismatched recognition.

4.3.3 Language Model and Decoding

An internally developed LM [69] with a 340k vocabulary was used for the Czech. Tt
was created using publicly available resources of the Czech National Corpus [70]. Most
of the experiments were performed with the bigram LM as the contribution of using
the trigram LM was marginal but the additional computational costs were great. The
phoneme recognition task was also done on the bigram LM trained on local newspapers
"Lidové Noviny”. However, some analyses were performed for connected digits or voice
commands recognition tasks and the LM in these cases was just a simple zero-gram infinite
loop grammar. The decoding was done using HVite and HDecode from the HTK toolkit
or one of the decoders from KALDI toolkit, depending on the stage of AM refinement.

4.3.4 Evaluation Criteria

The results of word level recognition were evaluated by word error rate (WER) and the
word error rate reduction (WERR) criteria using the formulas:

WER = % x 100 [%] (4.1)

WE Rpase — WERjm,,
WERbase
where S, D, I and N represents the number of substituted, deleted, inserted and the total
number of words respectively. WER,,,, represents the improved error rate and WERs.
the base error rate against which the relative improvement was computed. The result of
phoneme recognition was evaluated by phone error rate (PER) and the phone error rate
reduction (PERR) criteria using analogous formulas. In addition, the recognized phonetic

WERR =

x 100 [%), (4.2)
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transcription was remapped into three phonetic classes: voiced consonants, unvoiced con-
sonants and vowels, and the phone error rate contribution for a particular phonetic class
(PERC,) was computed using the following formula:

PER,
PER.

PERC, — %) (4.3)
where PER,; and PER. and were the total phone error rate and phone error rate for a
particular class respectively.

4.4 State-Tying for GMM-HMM

This section describes an optimization analysis for a triphone-based GMM-HMM sys-
tems in the case of training data deficiency. This process involves reducing the total num-
ber of AM parameters © 4, by clustering ”similar” phoneme states. The most common
approach is to employ the tree-based clustering algorithm with the help of the phonetic
trees. The first option is to use a rather low number of tied-states with an addition of a
high number of mixtures. It means using strict clustering conditions for context-dependent
phonemes or using of a monophone AM without context dependency. An example of a
recognition system which employed a monophone AM with up to 100 Gaussian mixtures
per state was presented in [71]. The system was developed for the purpose of transcrib-
ing broadcast news. Alternatively, the system can be built to contain a high number of
tied-states in conjunction with a small number of mixtures per state. In practise, this op-
tions means employing context-dependent AM trained with relaxed clustering conditions.
For example, the system built for the purpose of online TV captioning presented in [72]
contained approximately 5000 tied-states with 8 mixtures per state. Another example of
this approach was examined in [73].

The ASR initial system for this analysis was created with the following setup. The
full training set contained signals from 190 speakers with an overall length of 51 hours
and contained 15392 different triphones. The full training set was then reduced in order
to achieved the desired effect of data deficiency. A special focus was given to ensure
that the selected signals in the reduced sets contained as much of a phonetically rich
content as possible. This approach degraded the training sets quality only marginally
as they contained a very similar number triphones. Only the quantity of data in it was
significantly reduced. The details about the particular training sets are summarized in
the Table 4.5.

The feature vector consisted of standard MFCC features complemented by dynamic
and acceleration features and then normalized using the CMVN. The AM was trained
using Baum-Welch algorithm. Five different stopping thresholds (denoted as TB_zzz)
during the state-tying process were selected and the minimal occupation count for each
leaf was set to 100 frames in order to avoid the problem of insufficient training data after
the state-tying. Roughly 400 questions were defined, asking only about the immediate
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Table 4.5: Training sets for optimized state-tying

Data | Rich signals | Triphones
Full 51h 4.5h 15392
Reduced_A | 10.8h 4.5h 13451
Reduced_B | 8.9h 2.6h 12131

left and right context. The total number of generalized triphones, same as the number
of mixture added, depended on state-tying conditions, but all systems were created to
contain approximately 30k Gaussians in total. The evaluation set contained 15 minutes
of recordings and the evaluation task consisted of a connected digits and voice control
commands recognition and the whole system was built using the HTK toolkit.

The initial one mixture AMs achieved roughly the same results for the full training set,
as is summarized in Figure 4.4. As the number of mixtures increased, the overall WER
dropped, but the T'B_360 and TB_720 models outperformed more strictly tied models for
both recognition tasks. Table 4.6 summarizes the best achieved results for each training
set and recognition task. The lowest WER of 2.4% and 1.89% was achieved for TB_720
setup in the digit and command tasks respectively. The second lowest values were then
achieved for TB_360 setup and the TB_3800 setup proved to be the worst. Generally
speaking, more complex AM (meaning models which were tied ”less” strictly and thus
allowed for more ”free” parameters) with less added Gaussian mixtures achieved better
results that less complex models with more added mixtures. This conclusion was true for
both recognition tasks. This trend could be attributed to the fact that the training set
contained enough data which allowed for a proper training of more complex models. On
the other hand, the less complex models showed signs of overtraining very early in the
process, especially for the digit task.

Table 4.6: Results for full training set for optimized state-tying

TB Init. End WER [%]
Set Thresh. | Gauss. | Mixt. | Gauss. | Digits | Comm.
Tri_360 360 6665 5 33225 | 2.56 1.35
Tri_720 720 3893 7 27251 | 2.15 1.35
Tri_1800 | 1800 1926 15 28890 | 2.29 1.62
Tri_2800 | 2800 1410 20 28200 | 2.59 2.16
Tri_3800 | 3800 1138 22 25036 | 2.56 2.16

Table 4.7: Results for reduced sets for optimized state-tying

Reduced A Reduced B
Digits | Comm. | Digits | Comm.
TB_360 2.69 2.16 3.23 2.43
TB_720 2.4 1.89 2.83 1.89
TB_1800 | 2.96 2.43 4.31 1.89
TB_2800 | 3.36 2.43 4.58 2.43
TB_3800 3.5 3.5 3.5 2.7
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Figure 4.1: Results for : a) Digits full set; b) Commands full set,
c) Digits set A; d) Commands set A,
e) Digits set B f) Commands - set B.

The results for the reduced training sets are summarized in Table 4.7. The best results
were achieved for TB_720 setup for both recognition tasks and the rest of the previously
discussed conclusion proved to be true for the reduced training sets as well. Figure 4.4
summarizes the WER for an increasing number of Gaussians. It shows that the less strictly
state-tied AMs achieved worse results for initial one mixture models. As the number of
mixtures increased, the WER for TB_360 and TB_720 setups achieved comparatively
better results. This trend occurred when the AMs reached more than 15k Gaussians.

The performed analysis demonstrated that using more tied-states and less mixtures is
an optimal solution to parameter reduction as opposed to having less free states and more
mixtures. As a result, AMs in all further experiments built using this strategy.
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4.5 Clustering in MLLR Adaptation

This section proceeds with the optimization analysis of a GMM-HMM system with the
help of phonetic trees. It describes a comparison analysis between the automatic and
knowledge based clusterings for MLLR adaptation. Automatic clustering is based on an
objective similarity measure between different phonetic models. The knowledge-based
clustering exploits the division of phonemes into classes based on their manner of produc-
tion. In this case, the phonemes with similar articulation and vocal tract characterization
were assumed to be acoustically similar and thus were placed into the same regression
class. It was shown in [49] that knowledge-based clustering with only two defined classes,
one for speech phonetic units and one for non-speech units, may bring considerable im-
provement to accuracy in real-life conditions with a high level of background noise.

Table 4.8: Used knowledge-based triphone classes

Class Phonemes

Class 1 silence

Class 2 | (F-at™) (4 9), (%ot ), (F-6%), (5107, (),

(-0 ),(5-644) () (i) (Feswa )

Class 3 (*-au+*),(*-eu+*),(*-ou+*)

Class 4 G5, (Frt ), (F+)

Class 5 (*-m+*),(*-n+*),(*-14+%), (*-ng+*),(*-mv+*)

Cllass 6 | (), (5-v) (-5, (-2, (54, (-2,
I+%)

Class 7 | (F-pt), (b %), (=t (-d ), (-7, (F-dt ),

Class 8 (F-c+%),(*-dz+*),(*-¢+*),(*-dz+*)

Table 4.9: Further division of vowels

A) Lip Position
Class 2.1a | (*-at*),(*-a+%),(*-e+%),("-+%),(*-i4%),(*-i+%),

Class 2.2a (0 +4), (=649, (-u ) (=it )
B) Tongue Movement
Class 2.1b (et ), (6.1, (5147), (7).

Class 2.2b | (*-a+¥),(*-447%), (*-04%),(*-6+™),(*-ut*),(*-0+%)

This analysis extended the cited approach further by defining multiple regression classes
according to basic phonetic categorization of generally recognized Czech phonemes [74].
Since this division was too coarse for the purpose of this study, the vowels were further
divided into the following classes: vowels, nasals, liquids, fricatives, plosives and affricates
and special classes were added for the diphthongs and a silence. Since it was proved
that the acoustic representation of a triphone is mostly determined by its middle mono-
phone [75], all triphones with the same middle monophone were clustered into a same
class. The described strategy resulted in a fairly straightforward composition with a total
number of 8 expertly determined regression classes summarized in Table 4.8. This Basic
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setup was also expanded further as vowels in Class 2 were split into two classes, according
to either the lip position or tongue movement, summarized in Table 4.9. These setups are
denoted 10a and 10b further in the text.

The feature vector consisted of standard MFCC features complemented by the dynamic
and acceleration features and then normalized using the CMVN. The training set con-
tained 51 hours of speech. The AM was trained to contain 15k states and six mixtures
per state. The adaptation was performed in a supervised, speaker-specific fashion. The
transforms were estimated using a set of 170 utterances for a speaker on average, with
an overall length of about 4 minutes. The number of regression classes for automatic
division was gradually increased, starting from 2 and ending at 32. The performance was
evaluated in the LVCSR task on the set of 275 utterances containing only whole sentences
with an overall length of 27.5 minutes. The decoding was done with HDecode decoder
and a trigram LM with 340k vocabulary.

Table 4.10: Results for both MLLR clustering strategies

Automatic Knowledge-based
Num. of Classes 2 4 8 12 16 32 8 10a  10b
WER|%] 22.1 20.3 20.1 20.5 20.6 20.4| 20 203 20.4
WERR[%)] 16.7 19.7 20.2 193 19.5 19.8 209 20.1 199

| Baseline | 25.67 % |

Table 4.10 summarizes the obtained results. The best results with automatic clustering
were achieved for 8 regression classes and the WERR reached 20.25% over the baseline
system. The WER then began to rise after a slight decline for 12 classes, but 32 classes
proved to be a performance ceiling, since no improvement past this value was measured.
Also, the highest WERR was measured for speakers with a relatively high WER before
adaptation and likewise speakers with relatively low baseline WER showed only small val-
ues of relative improvement. The best overall results for knowledge-based clustering were
achieved with the Basic setup, which yielded an average absolute reduction in WER of
5.69% over the baseline system. Both 10a and 10b setups yielded very similar mbox WER
reductions, 5.35% and 5.26% respectively. Also, all studied manual clusterings achieved
better results than the automatic one, albeit only very slightly. One interesting thing was
a high value of variance in WER for the baseline system, when the difference between the
best and the worst speaker was 29.84% in absolute.

The most limiting factor of this study was that the number of manually determined
classes and their composition had to be optimized according to the amount of adaptation
data. The more I had for adaptation the finer division was required in order to achieve the
optimal MLLR performance. As a result, all further experiments which employ the MLLR
adaptation use an automatic regression classes construction approach as the improvements
of using manual division was too small to justify the necessary design adjustments and
optimizations.
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CHAPTER 5

DISTANT MICROPHONE AND CAR
RECOGNITION

This chapter deals with the recognition of strongly distorted speech recorded with a dis-
tant microphone or in a running car. Each degrading situation is analysed separately and
the focus is given to algorithms working at the front-end processing level or acoustic mod-
elling level. The front-end processing algorithms include Extended Spectral Subtraction,
feature normalizations and the combination of LDA and MLLT. The acoustic modelling
algorithms include SAT, UBM, SGMM and discriminative training. The study was per-
formed on SPEECON and CZKCC data due to the fact that both databases contain
utterances recorded simultaneously by several microphones located in different positions
and conditions.

5.1 Distant Speech Recognition

This section describes the optimization analysis on speech recorded with a middle- and
far-distance microphones. The reference results for the close-talk microphone are always
presented along the results for distance microphones. The contribution of the discussed
front-end processing and acoustic modelling algorithms is evaluated in one acoustically
clean and two public environments, each characterized by its own specific acoustic dis-
tortions. The AM trained on acoustically clean speech was also used for mismatched
recognition of public recordings in order to evaluate generalization qualities of the stud-
ied acoustic modelling techniques, especially the AM adaptation. Also, this mismatched
training-evaluation scheme allowed to compare the generalization qualities of different
discriminative training criteria for different acoustic conditions.
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5.1.1 Acoustic Conditions

The acoustic analysis presented in this section compares the estimated SNR between
each channel in three studied environments. The SNR levels discussed in this section were
estimated during the database collection by a recording device and are included in the
annotation files. The distant microphone recordings from acoustically clean environment,
commonly denoted as ”Quiet” further in the text, were characterized by a relatively
low additive and convolutional noises, especially if compared to the public environments.
The SNR histograms for each channel are summarized in Figure 5.1. More than 20 dB
difference in SNR between close and far distance speech prove that far channel data
had significantly worse quality even for this environment. This degradation was most
likely caused by attenuation of the speech signal and increased additive and convolution
distortions. There was also another interesting thing to note. The distributions for
CS2 and CS3 shifted their central positions (which was to be expected) but they also
became more tilted towards the lower SNR values. The CSO channel was tilted slightly
towards the higher SNR values, while the CS2 and CS3 started to approximate a lognormal
distribution rather than the expected normal one. This observation proved that robust
ASR is necessary even for acoustically clean environments in case the recording come from
a distant microphone.

CSO CS2
10000 : : : : 15000 , ,

10000
5000t
5000

5000

Figure 5.1: SNR histograms for all channels for Quiet Environment

The following analysis on far distance microphone recognition were focused on record-
ings from a public environment. Public environment was characterized by a naturally
present additive and convolution noises. The selected recordings were divided further into
two distinct subsets. The recordings denoted as PubHall later in the text were recorded
in a closed space and thus contained a relatively strong convolutional distortion caused
by the echoes and reverberations. The SNR histograms for the PubHall are illustrated in
Figure 5.2. The SNR analysis revealed, that the CS0 channel contained only small amount
of noise, which was to be expected. The SNR levels for CS2 and CS3 channels were much
lower as we once again observed about 20 dB drop. Overall, the SNR distributions were
only marginally worse and closely resembled the Quiet environment for all channels.
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Figure 5.2: SNR histograms for all channels for Public Hall Environment
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Figure 5.3: SNR histograms for all channels for Public Open Environment

The final evaluation was realized with the data denoted as PubOpen which were
recorded in an open environment, such a street. These recordings contained stronger ad-
ditive noises which are naturally present in these types of situations. The SNR histograms
for the PubOpen are illustrated in Figure 5.2. This environment displayed non-Gaussian
distributions for all analysed channels. This trend was especially pronounced for CS3
channel which displayed a high peak in the histogram around 3 dB value. This peak
indicated a strong and consistent distortion present during the recording session for a
large potion of signals. Table 5.1 summarizes the parameters of the estimated Gaussian
distributions for all environments. It can be noted that CS3 channel displayed very similar
statistics across the channels, while the values for CSO and CS2 were significantly differ-
ent across the environments. This analysis indicated that using ASR in these condition
was most likely to be rather difficult. However, it is also important to realize that the
presented SNR values were just estimates and thus might not be 100% accurate.

37



CHAPTER 5. DISTANT MICROPHONE AND CAR RECOGNITION

Table 5.1: Statistical parameters for distant microphone (u & o) [dB]

Env. CS0 CS2 CS3

Quiet 27 £ 4.66 | 134 £ 4.45| 6.7 £+ 3.06
PubHall || 25.2 £4.9| 9.2+ 54 6.7+ 4.2
PubOpen || 24.1 + 7.2 | 104 +£4.6 | 6.7 £ 3.5

5.1.2 Front-End Processing for Distant Speech

This section analysed the performance of the optimized ASR presented in the previ-
ous chapter in conjunction with the ESS and CMS techniques for Quiet environment
with distant microphones. The intended application was for the so-called ” Smart Home”.
The deployment of ASR system for voice command control in such application leads to
the usage of middle or far distance microphones, which are usually embedded in devices
themselves or in the walls and ceiling of the house. This requirement disables the usage
of directional microphones. When a microphone with omnidirectional characteristics is
used, especially with far distance placement typically, it leads to the inevitable presence
of various kinds of noises of rather high levels. The purpose of ESS was to compensate
the lower SNR which is typical for far microphone speech in general. This technique was
chosen because it works without the need of a voice activity detector and the authors
in [49] also proved that it contributed reasonably well to speech recognition in very noisy
environments. Another advantage of this technique is the fact that it can also suppress
non-stationary noise when its spectral characteristics changes more slowly then the char-
acteristics of speech. The noise cancellation based on ESS was implemented with the
following parameters:

e integration constant p = 0.95,
e realized in magnitude domain,

e applied before the filter-bank.

The second studied technique was a simple CMS. Although the general principle of
CMN/CMS is clear and simple, the practical implementations differ. The CMN esti-
mates the average cepstrum over the whole utterance which leads to a various number
of samples over which the average is estimated. Another drawback is the possibility to
apply CMN only in off-line applications. On the other hand, the CMS accumulates the
necessary statistics and averages the cepstrum over the sliding window of a limited length
which makes it possible to use this techniques for both on-line and off-line applications.
This section analysed two approaches to CMS computation. Firstly, it was the standard
computation of a moving average (MA) over the long-time window of a given length. The
second approach was the computation on the basis of recursive exponential averaging
(EA). There were, however, several decision that had to be made. The key one was the
length of a long-time window over which an average cepstrum was computed. Particular
authors work with various lengths of this window from 1 s up to values above 10 s. Fig-
ure 5.4 illustrates the averaging results for both solutions. There are several important
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things that can be taken from them. The long-time window should be definitely longer
than 1 s, but the results for windows longer than 5 s began to be near the same.
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Figure 5.4: Illusration of CMS with EA/MA averaging and smoothing constants 1 s
(red), 5 s (black), 10 s (green)

Since all of the signals were recorded simultaneously using different microphones, chan-
nel distortion could be quantified basically by an Euclidean cepstral distance computed
between the reference CS0O signal and CS2/CS3 signals computed either from complete
cepstral vector with coefficient ¢y (CDO0) or just from the coefficients ¢; <+ ¢, (CD1). Ta-
ble 5.2 shows results estimated from subset of about 2000 utterances. The trend observed
for both CMS methods was the decrease in the (CD0) and (CD1) as the averaging time
windowed increased in length. The (CD1) distance was consistently lower for independent
CMS system than for the combined system, regardless of the channel. The differences
were however very small.

Table 5.2: Cepstral distance for various parametrizations

CS2 CS3

CDO0 CD1 CDO0 CD1
CSO0  x CSx wEto wEto wEto wto
mfce X mfcc 42.57+11.11 | 37.57+11.30 | 54.91 +16.33 | 49.11 +£18.87
mfecc x  mfec.ESS | 41.99411.32 | 38.79+11.52 | 54.69 +£17.04 | 50.36 £18.70
mfcc X mfcc_expl | 48.23 +14.02 | 43.44+£15.46 | 54.25+16.80 | 48.26 +19.57
mfcc X  mfcc_expd | 45.82+12./5 | 41.06 +13.1/ | 52.93 +15.74 | 46.93 +18.29
mfcc X mfcc_expl0 | 45.27+12.14 | 40.48 £12.71 | 52.60 £15.55 | 46.57 +18.07
mfecc x  mfecbl | 49.25+14.26 | 44.59 +15.62 | 55.02+17.01 | 49.15+19.71
mfecc x  mfecbd | 46.07+12.39 | 41.41+12.84 | 53.10+15.52 | 47.18 £17.92
mfcc x  mfcc b10 | 45.51£12.15 | 40.77 £12.67 | 52.77 +£15.55 | 46.78 £18.03

The ASR system was built with the following setup. The feature vector consisted
of standard MFCC features, complemented by their 1°* and 2"¢ order dynamics. The
ESS was applied during the MFCC computation and before the application of the filter-
bank and the CMS was applied afterwards. Equivalent time constants for both methods
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Table 5.3: Summary of used parametrization setups

Param. ESS T [s]
mfcc no -
mfcc_ESS yes -
mfcc_b/mfcc_exp no | 1|5 ] 10
mfcc-ESS_b/mfcc_.ESS_cms | yes | 1 | 5 | 10

were set to 1, 5, and 10 s. Together with ESS, 14 different feature extraction setups
summarized in the Table 5.3 were analysed. The training sets contained signal with an
overall length of about 51 hours for all channels. The final triphone-based AM contained
approximately 7k tied states and 14 mixtures per state. The systems were always trained
in matched conditions and no adaptation was employed as the purpose was to evaluate
the performance of these front-end processing techniques. The evaluation was done on
a small vocabulary recognition task of 468 different commands. The utterances had a
single word or multiple words structure and they contained potentially used commands
for household appliances. The evaluation set had an overall length of about 15 minutes
and the system was constructed using HTK.

In the first experiment the performance was evaluated for a system with a standalone
CMS and the results are summarized in Table 5.4. In this case, a clear improvement
was observed for all setups on the CS2 channel, while the CSO showed the degradation in
accuracy. The results for CS3 channel were mixed. The time constant of 5 seconds for
both averaging methods proved to be unfit. The EA/MA methods with time constant
1/10 seconds performed better and decreased the error rate when compared to reference
feature extraction.

Table 5.4: Results for reference and standalone CMS

CS0 CS2 CS3
Param WER | WERR | WER | WERR | WER | WERR
mfcc 1.89 0 9.73 0 33.51 0
mfcc.b10 | 2.43 | -28.57 | 4.59 52.86 | 31.89 | 4.83
mfcc_bs 243 | -28.57 | 4.86 50.05 | 37.57 | -12.11
mfcc_bl 216 | -14.28 | 541 | 44.39 | 32.7 2.41
mfcc_exp10| 2.97 | -57.14 | 5.95 38.84 | 32.7 2.41
mfcc_expd | 2.16 | -14.28 | 5.41 44.39 40 -19.56
mfcc_expl | 2.16 | -14.28 | 4.59 52.82 | 33.24 0.8

The second analysis compared the system without any noise suppression and the system
with either ESS or the combination of both ESS and CMS. The results with standalone
ESS and the combined system are summarized in Table 5.5. The application of a stan-
dalone ESS increased the robustness only in the case of CS3 channel. In both the CSO
and CS2 channels, the additive noise from the background was rather small, SNR¢gy =
27 dB and SNR¢se = 13.4 dB. The most likely explanation was that the introduction
of non-linearities and musical tones degraded the speech quality, which resulted in the
increase of WFER. The final analysis employed the combination of both methods. The
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combined system proved to be the most effective when an improvement was reached for
any setup and for both noisy channels. Even a slight decrease of 0.27% in WER for CS0
channel was observed. Figure 5.5 illustratively summarizes the principal results and the
main conclusions can be summarized as follows.

Table 5.5: Results for ESS compesanted and combined system

CS0 CS2 CS3
Param WER | WERR | WER | WERR | WER | WERR
mfec_ESS 2.43 | -28.57 | 12.7 | -30.52 | 29.46 | 12.08
mfec_ESS_b10 | 2.43 | -28.57 | 6.22 | 36.07 | 31.08 | 7.25
mfecc_ESS_b5 | 2.16 | -14.28 | 5.95 | 38.8/ | 27.3 | 18.53
mfecc_ESS_b1 | 2.43 | -28.57 | 5.95 | 38.8/ | 30 | 10.47
mfcc.BESS_expl0| 3.24 | -71.42 | 6.22 | 36.07 | 25.95 | 22.56
mfcc_ESS_exp5 | 1.62 | 14.28 | 6.22 | 36.07 | 28.38 | 15.3
mfec_ESS_expl | 1.89 0 432 | 55.60 | 32.16 | 4.02

e The contribution of CMS was overall positive for CS2 channel. The WERR for
mfcc_expl /10 and mfcc_block1/10 reached up to 52.8%.

e The contribution of CMS also positive for CS3 channel, but only with the highest
10 s and the lowest 1 s integration constants. The WERR reached up to 4.8%.

e This combination of ESS and CMS achieved the best results and decreased the error
Specifically for CS2 channel, the highest
WERR of 55.6% was obtained for mfcc_ESS_expl and for CS3 channel the highest
WERR of 22.5% was obtained for mfcc_ESS_exp10.

rates for both CSO and CS3 channels.
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e The sole application of ESS proved to yield negative improvement for the close-talk
channel. This problem is rather known and is tied to the introduction of non-
linearities and music tones. However, the combination of ESS and CMS showed
improvement even for CS0 channel for one specific setup.

5.1.3 Acoustic Modelling for Distant Microphone

The previous analyses concluded that the combination of ESS and cepstrum normal-
ization could bring addition improvements for heavily distorted CS2 and CS3 channels.
Further analysis was focused on extending the validity of these experiments with more
advanced systems. The recognition system was built using the common ASR framework
described in Chapter 4, while it also included the addition of ESS and was extended for
all three far distance microphone environments. However, there were only two AMs. The
first AM was trained for the Quiet environment and a common AM was trained for both
public subsets. The choice to train a single public AM was influenced mainly by the lack
of data. Only the evaluation set was split into two subset, PubHall and PubOpen. The
amount of training and evaluation data is summarized in Table 5.6. It is also important to
realize that the amount of data remained the same for all three channels. The evaluation
was done on a standard LVCSR task with a bigram LM and 340k vocabulary. The po-
tential application of these systems is for the recognition of speeches made in auditoriums
or in open public spaces.

Table 5.6: Summary of data sets for distant microphone

Quiet PubHall PubOpen
Train | 72h 43.5h

Test 2.7h 0.5h 0.55h
OO0V || 1.4% 0.7% 0.5%

The results for the Quiet environment are summarized in Table 5.7. This recognition
task represented an ideal situation where the acoustic conditions during the recording
were good. Thus, this system set the bar for the subsequent ASR systems that were
analysed in this thesis. This framework was also used for all other acoustically degraded
conditions in the mismatched training-evaluation scheme. The initial system achieved
the WER of 23.74% and the final MPE trained models performed at 14.01% and the
actual difference between the Baseline and MPE trained models was only 9.7% absolute,
which corresponded to 41% WERR. The results for the CS2 were only slightly worse
when the Baseline system performed at 28.89% and the MPE models at 15.39%, which
corresponded to 46.7% WERR. Finally, the results for the CS3 channel were much worse.
The Baseline system achieved 54.14% error rate while the MPE models performed at
34.32%, which corresponded to 36.6% WERR. The highest average WERR across the
channels was achieved by the application of SAT, 18.46% on average. The second highest
relative reduction of 15.4% was observed for the combination of UBM and SGMM, then
the MPE training criteria and finally the usage of LDA. The MPE training criteria has
achieved slightly better overall results than the bMMI (0.55% on average) for all studied

42



CHAPTER 5. DISTANT MICROPHONE AND CAR RECOGNITION

channels. The direct comparison between the channels showed that the the absolute
WER difference for the baseline AMs between CS0 and CS2/CS3 channels was 5.15%
and 30.4% respectively. The same difference for MPE models dropped down to 1.38%
and 20.31%. It is also interesting to note that the CS2 channel contributed the most
from practically all studied modelling techniques (aside from the UBM+SGMM, which
was highest for CS3), while the lowest WERR between each subsequent refinement was
observed for CS3 channel on average. This results documented a decreasing robustness
of studied techniques against the distortions in CS3 channel.

The application of ESS increased the error rates for all studied channels and evalu-
ation sets. This conclusion held true even for weakly refined Baseline AMs. However,
the WERR had an overall decreasing tendency for higher channels. Thus, it could be
concluded that the application of ESS was not recommended for the clean acoustic condi-
tions as the introduction of additional music tones brought more harm than the removal
of noises. These results also indicated that the actual degradation to the speech wave
recorded with a distant microphone in clean conditions was not necessarily tied to the
introduction of additive noises.

Table 5.7: Results for Quiet environement

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 23.74 21.8 | 18.19 | 16.14 14.25 | 14.01
CS2 28.89 |26.37 [ 19.99 | 16.49 15.74 | 15.39
CS3 54.14 | 51.37 | 43.84 | 36.16 | 34.75 | 34.32

CSO+ESS | 26.03 |24.12]20.29 | 17.89 | 15.21 | 14.99
CS2+ESS | 30.67 | 28.24 12199 | 17.99 | 17.00 | 16.21
CS3+ESS | 54.86 | 53.21 | 47.98 | 40.72 | 37.03 | 35.65

The result for the PubHall environment with matched training for the progressively
refined AM are summarized in Table 5.8. The results for the Baseline system were con-
siderably worse in comparison to the Quiet subset. The CS0 channel performed at 36.78%,
the CS2 channel at 66.36% and the CS3 channel at 82.29%. The MPE models performed
at 20.91%, 43.21% and 63.5%. These final error rates corresponded to 43.1%, 34.9% and
22.8% WERR. Since these relative improvements over the initial systems had a decreasing
tendency, which documented the limitations of the studied techniques in the case of strong
convolution and additive noises. It was also interesting to compare the performance for
each channel in the Quiet and PubHall conditions. The relative difference between the
CS0 microphone and the MPE models reached 33%. This was a considerable performance
drop. However, the relative difference between the CS2 was much worse, it reached 64.4%
while the relative difference for the CS3 microphone was 46%. This observation lead to
the conclusion that the CS3 channel for Quiet environment must have contained a certain
level of distortion that was present for CS2 only marginally. However, once the distortion
got stronger due to the nature of the environment (PubHall is a closed space with sound
reflections), even the CS2 microphone which was about 0.75 m away from the speaker
started picking up these reverberations and the performance dropped more significantly
than for CS3 channel.
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Table 5.8: Results for PubHall environment with matched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 36.78 | 35.13 129.16 | 23.63 | 21.40 | 20.91
CS2 66.36 | 61.16 | 54.81 | 45.37 | 43.74 | 43.21
CS3 82.29 | 78.82 | 73.40 | 65.19 | 62.74 | 63.50

CSO+ESS | 38.12 | 36.42 | 29.65 | 24.57 | 21.58 | 21.44
CS2+ESS | 64.55 | 61.42 | 54.63 | 47.27 | 43.92 | 44.00
CS3+ESS | 79.73 | 7820 | 71.87 | 63.91 | 60.87 | 60.85

The results with the mismatched training are summarized in Table 5.9. The mismatched
AM performed actually better for the CSO microphone than the matched models. This
performance drop for CS0O channel could be explained as follows. The mismatched data
contained recordings from all two public subsets which have been shown to have different
SNR levels and distributions. As a consequence, the matched AMs were less suitable for
these recordings than the mismatched Quiet AM which was trained on more acoustically
similar and homogeneous recordings. On the other hand, the advantage of matched train-
ing was clear for the CS2 and CS3 channels where the absolute difference in WER reached
5.1% and 3.5% respectively. These results again demonstrated a decreasing capability of
the studied modelling techniques to deal with strongly distorted speech from CS3 channel.

A second interesting thing was the contribution of the ESS technique. The contribution
for CSO was statistically insignificant for the mismatched training and only marginal for
matched training. The CS2 recordings contributed from its application with matched
training only marginally for the Baseline, and SAT models. The WERR for these stages
reached 2.7% and 0.3%. However, a significant improvement for the CS2 channel and
mismatched training was observed for all AM refinement stages, where even the MPE
trained models contributed by 9% WERR. Also, the CS3 channel displayed a consistent
improvement from the ESS application with matched training, when the WERR reached
3.1%, 0.8%, 2.1%, 2%, 3% and 4.2% respectively. This observation further proved that the
application ESS was able to bring improvement for the far distance microphone recognition
in case of a strong distortion.

Table 5.9: Results for PubHall environment with mismatched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 38.16 | 35.09 | 28.80 | 22.51 19.35 | 20.02
CS2 73.77 169.09 | 58.69 | 51.54 | 47.97 | 48.28
CS3 83.77 | 82.18 | 76.98 | 68.45 | 67.28 | 67.02

CSO+ESS | 38.92 |36.02 | 28.62 | 23.50 | 19.13 | 19.79
CS2+ESS | 66.84 | 64.33 | 55.20 | 48.06 | 43.43 | 43.92
CS3+ESS | 81.88 |80.45|75.09 | 67.79 | 65.19 | 66.62

The result for the PubOpen environment with matched training are summarized in
Table 5.10. The results for the Baseline system were again much worse in comparison
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to the Quiet subset. The CSO channel performed at 40.18%, the CS2 channel at 51.23%
and CS3 at 64.64%. The MPE criteria again outperformed the bMMI criteria. The er-
ror rates reached 24.29%, 30.47% and 44.48%, which corresponded to 39.5%, 40.7% and
31.2% WERR. These relative improvements were higher on average than the ones for the
PubHall environment. However, the CSO results were worse than their PubHall coun-
terparts but the CS2 and CS3 channels achieved considerably better results. These two
observation demonstrated that the studied techniques were much more robust against the
additive noises, which dominated the PubOpen environment, than against the convolu-
tion noises which dominated the PubHall environment. This conclusion was especially
important, if we take into account that the estimated SNR levels for both public subsets
were very similar (difference was within 1.5 dB). However, the contribution of the ESS
was only marginal in this case, unlike in the previous case, as a statistically significant
contribution was observed only for CS2 channel. No improvement was observed for CS2
channel.

Table 5.10: Results for PubOpen environment with matched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CSo 40.18 37.23 | 30.54 | 26.21 23.53 | 24.29
CS2 51.23 | 47.46 | 38.53 | 31.70 | 30.43 | 30.47
CS3 64.64 58.88 | 51.88 | 46.40 44.80 | 44.48

CSO0+ESS | 41.03 |36.38 |30.36 | 26.25 | 23.53 | 24.60
CS2+ESS | 52.76 | 48.69 | 38.84 | 33.06 | 31.96 | 31.65
CS3+ESS | 64.92 | 59.16 | 52.68 | 45.56 | 44.36 | 43.56

The results for the PubOpen environment with mismatched training are summarized in
Table 5.11. Matched training brought a statistically significant improvement only for the
CS3 channel and some improvement for CS2 channel. Once again, the matched models
performed worse for CSO channel than the mismatched models. The application of ESS
was found to be beneficial only in the case of CS3 channel.

Table 5.11: Results for PubOpen environment with mismatched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 41.38 36.16 | 29.64 | 25.22 23.97 | 23.62
CS2 50.53 | 46.89 | 37.35 | 32.14 | 30.30 | 29.55
CS3 71.44 ]69.16 | 57.12 | 48.96 | 47.08 | 47.24

CSO+ESS | 41.34 | 3598 |30.40 | 25.71 | 24.64 | 24.42
CS2+ESS | 50.04 | 45.58 | 37.70 | 32.09 | 30.30 | 29.25
CS3+ESS | 68.24 |66.88 | 56.36 | 47.60 | 46.48 | 45.80
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Figure 5.6: Summary for MPE trained AMs for all environments
5.1.4 Summary

The results for the final MPE models for all environments are illustratively summarized
in Figure 5.6 and the main conclusions can be summarized as follows.

e The recording from the close-talk microphone achieved good results for all three
environments which leads to conclusion that using a close-talk microphone greatly
reduces the difficulty of using an ASR system even in noisy environments.

e Regarding the PubOpen environment, CS2 microphone was also found to produce
reasonably good recordings for ASR. Also, the contribution of the studied techniques
was the highest for this channel. However, the distortions introduced by CS3 channel
were too severe. Thus, it can be concluded that using a microphone in more than
about 1 m distance from a speaker is not advised for GMM-HMM systems.

e Regarding the PubOpen environment, only the CSO microphone was found to be
suitable for ASR as the convolution noises degraded even the CS2 channel greatly.

e The studied techniques proved to be more robust against the distortions in PubOpen
environment than against the distortions in PubHall environment. Given the nature
of distortions, the studied AM techniques were more robust against strong additive
distortions than against strong convolution distortions.

e The application of SAT and SGMM proved to yield the greatest relative improve-
ment. The MPE showed slightly better results on average than the bMMI criteria.
The only exception was the CS3 channel for PubHall environment, where the bMMI
performed better, which was also the worst performing subset. Thus, MPE proved
to be a more robust discriminative training than bMMI.

e The application of the ESS brought significant and consistent improvements for the
far distant CS3 microphone for both public environments and with both matched
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and mismatched training. The CS0O did not contribute from its application while
the CS2 channel showed improvement only for the mismatched training case.

5.2 Noisy Car Recognition

This section describes the optimization analysis on speech recorded in a running car
in different traffic conditions. The analysis also compared three different microphones, a
head-set microphone and two middle-distance microphones. The recognition system was
built using the common ASR framework described in Chapter 4, while it also included the
addition of ESS. The AM trained on Quiet environment data was also used for mismatched
recognition of car recordings in order to evaluate generalization qualities of the studied
techniques, especially the AM adaptation. The amount of training and evaluation data
was not evenly spread among the channels as the CZCKCC database contained much
more CS2 and CS3 recordings in comparison to CS0. SPEECON contained the same
amount for all channels. Since it was practically unreasonable to train a specific AM
for each velocity and driving environment separately, the training was done on the full
car set. The information about each setup is summarized in Table 5.12. The evaluation
task consisted of a standard LVCSR task with a bigram LM and 340k vocabulary. The
evaluation set was divided into three different subsets: car driving in a City, Country or
a Highway. The information about the subsets is summarized in Table 5.12.

Table 5.12: Summary of training sets for noisy car environments

CS0 CS2 CS3
City Country Highway | City Country Highway | City Country Highway
Train 89h 188h 108h
Test 6.5h 1.7h 1.4h 6.8h 6.4h 1.4h 7.2h 1.7h 1.4h
OO0V || 1.8% 1.5% 1.4% 1.8% 1.6% 1.4% 1.8% 1.5% 1.4%

5.2.1 Acoustic Conditions

The main difference between the analysed conditions was the driving velocity, which
was the lowest in the City, higher in Country and the highest in the Highway conditions.
The speed directly correlated with the level of the aerodynamic noise as well as the noise
made by the running engine. Also, these noises got stronger as the speed increased. The
second important factor were additional noises, which are specific for each condition (a
tram in a City, a passing car in Country or Highway). Thus, it was reasonable to assume
that the City recordings had the most favouring acoustic quality, the Country recordings
were degraded by a moderate level of noise and the Highway recording suffered from the
strongest degradation.

The SNR histograms for each evaluation set are illustrated in Figure 5.7, 5.8 and 5.9.
It can be noted that unlike in the previous analysis, the distributions do not resemble
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Table 5.13: Statistical parameters for noisy car (u =+ o) [dB]

Env. CS0 CS2 CS3

City 118 +£52]102+£47| 864
Country || 10.9 £ 5.1 | 9.7+ 54 | 8 +4.1
Highway | 11 +5.1 | 84 +4.1 |63+ 34

CS0 CS2

1000 600

400
500

200

30 40

CS3
1500 :
30 40
Figure 5.7: SNR histograms for all channels for City car
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Figure 5.8: SNR histograms for all channels for Country car

the normal distributions. The CS0O channel has a bimodal Gaussian distribution, which
gets more pronounced for the Country and the Highway subsets in particular. This be-
haviour indicated that there were two distinct sources of distortion and each had its own
SNR characteristics. It is also interesting to note the corresponding peaks are located at
approximately 4 dB and 14 dB levels, regardless of the environment. The 4 dB peak was
more narrow and got higher as the driving velocity increased. On the other hand, the
14 dB peak was relatively wide and its corresponding distribution got flatter with increas-
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Figure 5.9: SNR histograms for all channels for Highway car

ing velocity. Only the CS3 channel displayed a previously seen lognormal distribution.
Table 5.13 summarizes the parameters of the estimated Gaussian distributions. It can be
also noted that the estimated parameters were relatively similar across the channels and
subsets.

5.2.2 Acoustic Modelling for Noisy Car

The initial analyses evaluated the possibility of using a general AM that was trained
on recordings from the Quiet environment, whose performance was evaluated in the pre-
vious section. The results for mismatched training for City subset are summarized in
Table 5.14. The close talk channel performed at 33.02% with the initial AM and the
MPE model performed at 22.23%, which corresponded to 32.7% WERR. The distant
microphones CS2 and CS3 performed at very similar rates, especially for the final MPE
models. The error rate reached 32.56% and 33.12% respectively, which corresponded to
32% and 36.7% WERR. This result would indicate that the recordings from both CS2
and CS3 microphone had very similar acoustic quality. The clean AM displayed relatively
similar performance gains across the channels in this particular mismatched conditions,
but the overall error rates were higher than they were for the Quiet subset. In compari-
son, the WER difference reached roughly 8% for CSO channel, 16% for CS2 channel and
approx. -1% for CS3 channel.

The results for matched training for City subset are summarized in Table 5.15.The
results for the Baseline system differed greatly between the close talk CS0 and CS3 distant
microphone. However, gradual improvements to AM’s quality brought the final error rates
to a very similar level. The WERR reached 32.5%, 42.4% and 47.6% for CS0, CS2 and
CS3 channels. Interestingly, the CS3 microphone outperformed the CS2 microphone,
even if only by a very slight margin. Thus, it can be concluded the position of the
microphone in a car was less important as long as it was not in a close proximity to the
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Table 5.14: Results for City subset with mismatched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 33.02 | 31.63 | 27.43 | 23.53 | 22.37 | 22.23
CS2 46.44 | 48.35|41.99 | 35.51 32.42 | 31.56
CS3 52.31 54.08 | 43.69 | 37.96 | 34.36 | 33.12

CS0+ESS 32.93 | 31.67 | 27.36 | 23.89 | 22.73 | 22.57
CS2+ESS 45.71 | 46.58 | 42.39 | 34.49 | 32.39 | 31.52
CS3+-ESS 55.47 | 55.84 | 46.35 | 4045 | 36.34 | 35.15

speaker’s mouth. In another words, the distant car microphone simply picked up a lot
of noise regardless of of its positions. However, it is also important to realize that these
conclusion were reached for the least noisy, City environment. The direct comparison of
the studied DT criteria showed that MPE achieved better results overall. The absolute
difference in WER between bMMI and MPE was more than 1% for for the CS3 channel,
nearly 1% for CS2 and a marginal 0.04% for CS0. Overall, this difference was greater for
the distant microphones which lead to the conclusion that MPE training criteria was more
suitable for the distorted speech recognition with great training-evaluation mismatch.

A consistent improvement with ESS was observed only for the weakly trained Baseline
AMs. This trend was most notably visible for the matched training and CS2 and CS3
channels, which contain stronger additive distortions. The ESS application on the CSO
channel had either negative or very little positive impact. There was, however, an ex-
ception to this rule. The CS2 channel with matched training displayed a consistent and
significant WERR for all stages of AM refinement. The values ranged from 4.9% for the
SGMM up to 9.5% / 8% for the bMMI/MPE techniques. A less significant trend was also
observed with this channel for mismatched conditions. The WERR for CS3 channel with
matched training had a sharply decreasing tendency as it reached 14.6%, 11.4% and 1.9%
for the Baseline, LDA and SAT models respectively. The improvements for subsequent
refinement techniques models were negative.

Table 5.15: Results for City subset with matched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 31.76 | 31.14 | 27.22 | 23.83 | 21.41 | 21.45
CS2 46.65 | 42.19 | 34.36 | 29.48 | 27.73 | 26.88
CS3 49.12 | 44.10 | 34.27 | 28.86 | 26.21 | 25.74

CS0+-ESS 31.50 | 30.83]27.29 | 23.95 | 21.30 | 21.49
CS2+ESS 43.05 | 3946 | 32.57 | 28.11 | 25.33 | 24.88
CS3+-ESS 42.85 | 39.59 | 33.64 | 29.44 | 27.38 | 26.60

The Quiet AM recordings were expected to be acoustically similar to the City record-
ings, especially for the close-talk microphone. The position of the CS0O microphone as
well as its directional characteristics produced clean recordings without any significant
additive or convolutional noises even in such adverse conditions. The potential mismatch
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was also reduced by the application of AM adaptation and other modelling techniques.
As a consequence, the final AMs were expected to perform equally well is mismatched
and matched conditions. The situation for the CS2 and CS3 channels was, however, more
complicated. These channels contained specific types of distortions which was present
only in the car evaluation sets and not in the clean training set and only the AM adap-
tation could lower this mismatch. Thus, it was expected that the error rates would differ
greatly for the matched and mismatched conditions.

The performed experiments reveal that the advantage of matched training was statisti-
cally insignificant for the close-talk CS0O microphone and thus proved the previously stated
hypothesis. The average difference in WER for the best MPE trained AM was just 0.8%.
Thus, it could be concluded that a general purpose AM performed sufficiently well and it
was not necessary to train a car-specific AM. The results were different for the CS2 and
CS3 channels where the advantage of matched training was clearly visible. A significant
improvement was gained for these channels as the WER difference reached 4.7% for CS2
and 7.8% for CS3. There were two factors which lead me to conclude that the studied
techniques were fairly robust against distortions present in a slowly moving car in a city
environment. First, the absolute difference for Baseline AMs between matched and mis-
matched conditions was only marginal. Second, the WERR between the initial and final
models had an increasing tendency. Also, these results qualitatively corresponded with
conclusions reached for the PubOpen subset, which showed that additive distortions were
relatively easy to deal with. These experiments also further proved the significance of
domain-specific SAT, SGMM and discriminative training as three methods achieved the
highest WERR in the matched training, in this respective order.

Table 5.16: Results for Country subset with mismatched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 44.80 |41.70 | 31.82 | 27.11 25.64 | 25.47
CS2 50.89 | 51.55 | 41.53 | 34.72 32.69 | 32.06
CS3 57.41 57.71 | 45.32 | 39.22 | 36.28 | 35.10

CS0+ESS 4491 | 41.41 | 32.45 | 27.64 | 26.27 | 26.09
CS0+ESS 90.69 |49.94 | 41.83 | 35.39 | 33.50 | 32.44
CS0+-ESS d7.14 | 58.61 | 48.37 | 40.72 | 37.03 | 35.65

Table 5.17: Results for Country subset with matched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 45.57 | 44.62 | 37.34 | 32.61 26.31 | 25.92
CS2 50.28 | 47.20 | 39.24 | 34.26 | 32.14 | 32.04
CS3 52.32 | 48.99 | 40.13 | 33.90 | 32.73 | 31.60

CS0+-ESS 45.52 | 44.36 | 38.06 | 32.87 | 26.93 | 26.38
CS2+ESS 49.15 | 46.97 | 39.65 | 33.87 | 32.34 | 30.98
CS3+ESS 48.11 | 45.68 | 39.26 | 34.44 | 33.20 | 32.29
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The results for mismatched training for Country subset are summarized in Table 5.16.
The initial AMs performed at relatively similar error rates of 44.8%, 50.89% and 57.41%
for CSO, CS2 and CS3 channels. The results for the CSO channel were much worse
than for the City subset, but the results for CS2 and CS3 channel were only about
5% worse. This observation showed that the background aerodynamic noise and the
engine noise began to heavily influence even the close talk microphone recordings as the
speed got higher. The final MPE models performed better than bMMI models and the
error rates reached 25.47%, 32.06% and 35.1%, which corresponds to 43.1%, 37% and
38.9% WERR. If we compare these results with the City subset we will notice that
the WER difference reached approximately 3%. These results demonstrated that the
studied techniques were still reasonably robust against the car noise with the SNR of
about 10 dB. Also, even if the relative improvement across the channels reached similar
values, it was still the highest for the CSO, which could be explained as follows. As the
acoustic conditions got worse and the amount of noise increased, the relative contribution
of described modelling techniques decreased and the channel that contributed the most
was the one whose acoustic conditions were most similar with the training conditions.

The results for matched training for Country subset are summarized in Table 5.17.
The Baseline AMs performed at 45.57%, 50.28% and 52.32% while the final MPE models
performed at 25.92%, 32.04% and 31.6%. This corresponded to 43.1%, 36.3% and 39.6%
WERR. These values were once again very similar to the results for the City subset, both
qualitatively and quantitatively. They also further demonstrated the reduced robustness
of these techniques for more noisy CS2 and CS3 microphones. The direct comparison of
the Country subset with the City subset showed that average decrease of 0.6 dB SNR
between these two environment brought about 5% WER difference. Interestingly, the
usage of matched training proved to be fairly insignificant for Country environment as
only the CS3 contributed by 3.5% in absolute. The CS0O and CS2 channel displayed a
minimal or even a negative improvement. These results documented the limits of the
studied techniques to compensate the introduced distortions in such adverse conditions.
However, the application of ESS brought significant WERR for distant channels and
weakly trained models, which was a trend that has been previously observed for City
subset as well. The WERR of using the ESS reached 8.8%, 7.2% and 2.2% for the
Baseline, LDA and SAT stages and CS3 channel. Also, some improvement were observed
for CS2 channel. The improvements for the CS0O channel were once again statistically
insignificant for weakly refined AMs and negative for discriminative models.

Table 5.18: Results for Highway subset with mismatched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 44.55 | 41.88 | 33.42 | 28.39 | 26.98 | 27.31
CS2 61.96 | 58.06 | 50.44 | 42.25 | 39.05 | 39.76
CS3 64.97 | 63.80 | 50.86 | 43.74 | 41.60 | 40.60

CS0+ESS 44.15 | 41.29 | 32.94 | 28.09 | 26.35 | 26.46
CS2+ESS 58.20 | 56.99 | 50.97 | 42.16 | 39.99 | 38.92
CS3+-ESS 64.72 | 65.53 | 53.82 | 45.98 | 42.13 | 41.43
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Table 5.19: Results for Highway subset with matched training

Adapted
Channel | Baseline | LDA | SAT | SGMM | bMMI | MPE
CS0 44.61 | 44.80 | 36.96 | 31.48 | 27.24 | 27.64
CS2 59.19 | 58.56 | 48.14 | 39.44 | 38.99 | 38.70
CS3 57.94 | 55.16 | 47.95 | 39.25 | 38.53 | 38.46

CS0+ESS 43.98 | 44.24 | 37.20 | 31.57 | 27.47 | 27.64
CS2+ESS 07.94 | 54.24 | 46.28 | 39.68 | 37.85 | 37.45
CS3+-ESS 27.94 | 55.16 | 46.52 | 39.64 | 37.77 | 37.45

The results for mismatched training for Highway subset are summarized in Table 5.18.
The results for the Baseline AMs reached 44.55%, 61.96% and 64.97%, which was actually
the highest measured WER for CS2 and CS3 channels. However, the results for the CS0
were in fact slightly better than for the Country subset. The final MPE trained models
achieved the error rates of 27.31%, 39.76% and 40.60%, which corresponded to 38.7%,
35.8%, 37.5% WERR. The comparison of these results with the City subset showed that
the additional 0.8 dB SNR caused 5.1% performance drop for the CS0 channel, additional
1.8 dB SNR caused the 8.2% drop for the CS2 and the additional 2.3 dB SNR caused the
7.5% drop for the CS3 channel. Simply speaking, the levels of noise present in the car
riding a highway degraded the recording much more than in other subsets. This increased
mismatch was clearly degrading the ASR performance but it also showed that the AM
adaptation was the best source of improvement.

The results for the matched Highway subset are summarized in Table 5.19. The results
displayed the trend of very similar results between the CS2 and the CS3 channel. Also, the
CSO0 channel performed at very similar error rate with the Country subset. One interesting
thing, however, was the comparison of the relative improvement with matched training for
SAT across subsets. The analyses have documented a decrease in its capability to improve
the AM quality as the degradation got stronger. The WERR for CS3 channel reached
22.3%, 18.1% and 13.1% for the City, Country and Highway environments respectively.
This observation would suggest that the fMLLR adaptation was losing its capability to
create a generalized AM. A very similar trend could also be observed for the discriminative
training when the highest WERR were also observed for the City environment on average,
then the Country and finally the Highway. Finally, the contribution of the ESS was proved
only for the CS2 channel. This conclusion was consistent with my previous findings from
the distant microphone recognition in the Quiet and Public environments as notable
improvements were observed for the middle distance CS2 microphone.

5.2.3 Summary

The results for the final MPE models for all car environments are illustrated in Fig-
ure 5.10 and the most important conclusions can be summarized as follows.
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Figure 5.10: Summary for MPE trained AMs for all car environments

The usage of general purpose AM trained on quiet environment recordings achieved
worse results than the car environment trained AMs. This difference was more
pronounced for CS2 and CS3 recordings. However, there was very little difference
for the close-talk microphone. This observation supported the conclusion that close-
talk microphones with a good directional characteristics were suitable even for noisy
environments.

Out of the two studied DT schemes, the MPE yielded slightly better results on
average. This conclusion held true for matched and mismatched training, which
demonstrated that MPE had better generalization capabilities on unseen acoustic
conditions than the bMMI criteria. However, its generalization capabilities de-
creased with the increasing training-evaluation mismatch.

The highest WERR were achieved with the application of SAT, but it also displayed
a tendency of a decreasing WERR as the degradation got stronger in Country and
Highway subsets. The relative improvements of SAT in mismatched training stayed
roughly the same for all subsets.

The application of ESS was proved to have a consistent and significant improvements
for the CS2 channel and the Country subsets. The lightly degraded City subset did
not contribute from its application at all while the Highway subset was degraded
too much and the improvements were much less on average.
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CHAPTER 6

COMPRESSED SPEECH RECOGNITION

MP3 compression exploits the deficits of human auditory system which is capable of
distinguishing among individual sinusoidal components in a complex harmonic signal by
performing a sort of Fourier analysis with a limited spectral and temporal resolution. In
practice, these two physiological limitations result in situations when one sound (maskee)
is rendered inaudible in the presence of another sound (masker). This situation is com-
monly called the auditory masking [76] and the psychoacoustics distinguishes between
two different types of masking, each caused by its own mechanism.

e Simultaneous - The masker is present for the whole time the maskee is present.
The phenomena is dependent on the relative difference between the masker’s and
maskee’s frequency. If the frequency difference is too small, the sounds reside in the
same critical band and can’t be distinguished from each other.

e Nonsimultaneous - The masker occurs before or after the maskee, denoting the
situations as forward and backward masking respectively. The forward masking is
caused by the fact that the auditory system’s sensitivity is reduced directly after the
termination of a sound. The generally accepted explanation is that either the neural
response is suppressed after the stimulation or the neurons stay adapted to the first
sound and cannot immediately tune to a different sound. Very little is known about
the backward masking, but it has been shown that people can learn to suppress it.

Using this knowledge, MP3 omits the perceptually “irrelevant” information from the
audio, basically the sounds which can’t be heard anyway, to save the data. While the
designers of the algorithm placed strong requirements on preserving the high-fidelity of
the output audio for subjective listening tests, the nature of the coding is still lossy
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Figure 6.1: Block diagram of MP3 coder/decoder

and introduces multiple distortions [77, 78]. The general effects of PAC schemes have
been studied in the literature from both the objective and subjective points of view.
Several official materials and guidelines have been published on subjective listening tests,
see [79, 80, 81]. These materials specify numerous conditions for testing, evaluation and
reporting procedures, define the artifacts to listen for, sort them according to their severity
and type or simply provide results for carried out tests. This topic was not explored
further as the purpose of subjective tests is to study the perceived quality by a listener,
a task which plays only marginal role for ASR and is not necessarily correlated with the
actual recognition accuracy. However, the conclusions reached within these works could be
extended to the field of ASR as well as the application of auditory masking functions and
the quantization resulted in the distortion of the signal’s spectra. Some of the artifacts
were only perceptually identifiable while others directly influenced the quality of extracted
features and could be easily identified using the spectral analysis. They have been shown
to also influence the estimations of basic speech characteristics such as pitch and formants
frequencies [82]. The following text studied two main distortions:

e bandlimiting due to the application of a low-pass filter,

e unnaturally deep spectral valleys (also called gaps), which are frequency bins with
a very low energy.

Figure 6.2 plots the logarithmic spectrum in a 32 ms frame from a 16 kbps coded signal
to illustrate the effects of both distortions. The bandlimiting occurred for f greater
5600 Hz and the flat areas with the central frequencies at 1400 and 3300 Hz were the
spectral valleys. The width of the first valley was about 250 Hz while the second valley
was more than 1000 Hz wide. The next sections are devoted to the analysis of the
above mentioned artifacts in great detail as well as their effects on the ASR blocks of the
front-end processing and the AM training. The focus was to utilize objective methods
for analysis and to present conclusions which could be directly related to the particular
blocks of a recognition system and the output accuracy. The design of the proposed
compensation technique was derived from the conclusions reached in this section.
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Figure 6.2: Logarithmic spectrum of a frame distorted by MP3 coding.

6.1 Related Works

All previous studies on practical usability of ASR for MP3 recordings have commonly
concluded that the GMM-HMM systems can work with little difficulties if sufficiently high
bitrate is used. The authors agreed that the bitrate of 32 kbps represents a threshold
after which the accuracy starts to drop rapidly [83, 84, 85, 86]. Several solutions to the
discussed problems have been proposed and experimented with, starting with limiting
the training signals bandwidth, using PLP features for bitrate-specific AMs, adding a
controlled amount of noise [87] or using DNN-HMM architecture [88].

The contribution of PLP features for the ASR system built for compressed signals has
been reported in [86], where the authors trained AMs specifically for each bitrate from
the pre-compressed database. The main advantage of PLP over MFCC features was the
fact that the error rate of the system did not rise as significantly for lower bitrates. This
work reported about 40% absolute difference in WER between MFCC and PLP features
in a simple digit recognition task for 8 kbps bitrate.

The first attempt to account for the problem of bandwidth limitation which avoided the
process compressing the whole training set was presented in [83]. The authors proposed
and practically tested a feature extraction scheme where the training data was low-pass
filtered on cut-off frequencies which corresponded to each bitrate. The purpose was to
train AMs that were better matched against the testing conditions and the results showed
an absolute decrease in WER of about 1-2%.

The main issue with spectral valleys is that only a part of training data for each speech
unit is likely to be affected by it and even then not always the same bins. Authors in [87]
employed a pre-processing scheme where signals were dithered by a controlled amount of
noise to "fill in” these holes. The amount of added noise was estimated manually and
then interpolated using a logistic regression from the observed trends. The results showed
that the application of this technique could bring significant error reduction, about 45%
absolutely for 16 kbps and MFCC features. In general, better results were obtained for
lower bitrates, while the results for higher bitrates were only slightly compromised due to
the introduction of the noise.
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A more recent study in [88] compared the DNN-HMM and DNN-HMM architectures for
MP3 recognition. The DNN-HMM without any feature-level compensation outperformed
the GMM-HMM system by more than 25% for 16 kbps coded speech. The histogram
equalization method for MFCC features was found to be particularly effective for the
HMM-GMM system. Also, the application of AM adaptation in the form of CMLLR
served very well, when the absolute WER dropped to values comparable with a DNN-
HMM system. These findings are of particular interests for several reasons. First of all,
the DNN acoustic models were able to outperform the GMM models for MP3 recognition.
Second, the application of proper pre-processing methods at the level of feature extrac-
tion was found to increase the accuracy for GMM-HMM systems, but brought mixed
results for DNN-HMM. Third, AM adaptation was found to perform very well as a MP3
compensation technique, while also had the added benefit of not being MP3 specific.

6.2 Bitrate detection

The cited works pointed out that the key issue in matched training for real-life ASR is
the precise bitrate detection. A simple SVM classifier based on energy values from narrow
frequency bands [89] was shown to achieve 97% accuracy in detecting bitrates greater than
128 kbps. This work also showed that transcoding a lower bitrate into a higher bitrate does
not effect the detection accuracy. The problem of double compression was studied in [90],
which analyzed both the up-transcoding and down-transcoding scenarios for bitrates in
the range from 192 kbps to 64 kbps. The results showed significant differences in detection
accuracy, depending on whether the signal was down- or up-transcoded. The classifier
achieved 100% accuracy in the case of up-transcoding 64 kbps—192 kbps but only 61.8%
accuracy for down-transcoding 192 kbps—64 kbps. The work of [91] followed up on
using different encoders in each step and found a small difference in detection accuracy.
It is interesting to note that these results qualitatively corresponded with the findings
in [87], but the results for using different encoders were not nearly as significant. It is
also important to note that the use of different encoders is not that rare as it may seem.
It often occurs in broadcast archives where some speech segments were compressed for
telephone transmission first and later re-compressed for archivation.

6.3 Effects of MP3 on the ASR

Previous chapter on distant and car speech recognition has established that recog-
nition in adverse conditions puts an increased demand on ASR design as more robust
pre-processing and AM refinement algorithms are required in order to compensate the
introduced distortions. While some types of signal degradation can be hardly avoided,
there are distortions that have been introduced unintentionally and this fact proves to
be especially true for speech compressed by a lossy compression. The following section
analyses the effects of MP3 compression on the quality of the speech wave in time and
spectral domains, the extracted features and finally on the trained AM.
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Figure 6.3: PSD estimation for the same signal compressed with various bitrates

6.3.1 Effects on Speech Wave in Time and Spectral Domain

The set of pictures in Figure 6.3 illustrate the power spectral density (PSD) estimated
from the compressed speech. The plotted spectrograms contain a full sentence of read
speech in Czech, sampled at 16 kHz sampling rate and coded in 16 bit precision. The PSDs
were computed from the same utterance for both the uncompressed and MP3 speech using
Welch methods for 32 ms frames with 50% overlap and 8 frame averaging. The figures
once again documented the degrading effects introduced by MP3 compression and also
demonstrated that these effects were becoming more severe with a decreasing bitrate.
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Bandlimiting

Table 6.1: Summary of the LP cut-off frequencies as reported by LAME

bitrate [bps| | (Inf.-28k) | (28k-20k) | (20k-12k)
feur [Hz] no LP filt. | 5750-5950 | 5500-5700

The MP3 format actively narrows the spectral bandwidth as the bitrate decreases in
order to improve the subjective quality after the compression. Table 6.1 summarizes the
cut-off frequencies as they are reported by LAME coder. It is interesting to compare
these values to the spectrograms displayed in Figure 6.3 and it is worth noticing that
the bandlimiting occurred even though the block of LP filtering was disabled by encoder
for bitrates greater than 28 kbps. The lowest cut-off frequency of about 5600 Hz was
observed for the 16/12 kbps bitrates, and a slight bandlitmiting at about 7200 Hz was
observed even for bitrates greater than 28 kbps. The severity of the effect increased with
decreasing bitrate and it should therefore be, at first glance, of concern only for rates
lower than 28 kbps, if at all. The generally accepted consensus on the position of formant
frequencies for Czech postulates that none of the generally estimated ones (F1-F3) occur
at frequencies higher than 5600 Hz [74]. Therefore, their estimation should be robust
against lossy compression. However, this may not be the truth. Son [82] analyzed the
precision of f0 and formant estimation for the Vorbis and MP3 coders at 40 kbps, 80 kbps,
192 kbps rates for Dutch. The author demonstrated the formant estimation error was less
than 3% for bitrates higher than 80 kbps, but concluded that the estimation for 40 kbps
rate was unsuitable due to a markedly larger error. The author also concluded that {0
computation was largely unaffected by the compression.

Table 6.2: Error of f0 estimation for various bitrates

bitrate [kbps| | 160 64 32 28 24 20 16
feur [Hz] 7200 | 7200 | 7200 | 7200 | 5800 | 5800 | 5600
Af [Hz] 0.04 | 0.05 | 0.06 | 0.1 01 | 01 | 01

In order to verify these results reported in [82], I did a precision analysis of f0 and
formants estimation for Czech. The obtained results are presented in Table 6.2 for {0
and in Figure 6.4 for formants. The measurement was done with Praat using the cross-
correlation method. The reported values represent an average difference in f0 between
PCM quality and compressed signals. There are several conclusion which could be drawn
from this experiment.

e The results proved that fO estimation was generally very robust against bandlimiting
regardless of the bitrate. The absolute error was within the 0.1 Hz range, which
could be considered as statistically insignificant. It is important to note that using
cross-correlation method of f0 estimation was influenced by the measurement error
which occurred due to the fixed windowing. However, it could be assumed the
introduced error was random and thus had zero mean for a large set measurements.
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e The error of formant estimation was much more significant. My results showed only
a slight error for F1 (less than 30 Hz), which corresponded to about 7% relatively.
On the other hand, the estimation of F2-F3 was much more erroneous as the absolute
difference reached 370 Hz and 720 Hz respectively, which meant nearly the same
22% relatively. It can be also said that the relative error for F2/F3 increased by a
factor of 3 when compared to F1.
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Figure 6.4: Development of the formant estimation error, Af [Hz] for various bitrates

It is important to note however, that these results were obtained using automatic
measurements for speech segments cut-off from the signal by an energy-based voice activity
detector with an adaptive dynamic threshold. The output formant listing from Praat
was further post-processed by applying the moving average filter to smooth the formant
contours. The uncompressed quality signal was always used as reference and assumed
to give correct results. Although this might not have held true for all cases, the upward
trend in error was apparent nonetheless.

The immediate concern this effect raised was the loss of content carried by frequencies
grater than f.,;, which provide the major source of information for signals with rich high-
frequency (HF) components such as unvoiced consonants. Thus, it was reasonable to
assume that the partial error rate for unvoiced speech units would increase more rapidly
than for voiced units, which would in turn steeply increase the overall error rate. On
the other hand, the voiced speech units (vowels and voiced consonants) have a strong
harmonic structure at low frequencies which should make them more robust against this
type of distortion.

The bandlimitation problem is common for all PACs and have been known since the
introduction of MP3 in the nineties. Therefore, the audio coding research has been focused
on improving the subjective quality of coded signals by reconstructing the missing bands.
The algorithms belonging to this group are generally called Artificial Bandwidth Extension
or Spectral Band Replication (SBR), see Liu [92], Hsu[93], Diet [94] or Arora [95]. The
core idea is the assumption that higher frequency bands are in fact redundant and the
information they carry can be inferred from the lower bands. The common principle is to

61



CHAPTER 6. COMPRESSED SPEECH RECOGNITION

extrapolate the spectral envelope of the filtered bands from the lower bands and to shape
its contour by a frequency dependent function. In fact, SBR [94] is the core of Advanced
Audio Coding (AAC) and is considered to be the main reason why this new coder sounds
better than its predecessor MP3. However, there are no surveys on its performance in
ASR systems, to the best of my knowledge.

Spectral Valleys

The application of a psychoacoustic model creates artifacts which are easily identifiable
in a spectrogram as almost zero energy areas at low and middle frequencies. These
artifacts are referred to as “spectral valleys (SV)“ [77] or “spectral holes” [87] in the
literature. Following the results presented in Table 6.2, the analysis on their nature was
done only for bitrates of 28 kbps and lower as the frequency error started to rise rapidly
after passing this threshold.

Figure 6.5 plots the spectrum of a speech segment compressed by low bitrates. The
first valley spans progressively larger frequency bands, always beginning at 2500 Hz and
continuing up to 3700 Hz for 28 kbps, 3800 Hz for 24 kbps, 3800 Hz for 20 kbps and finally
3900 Hz for 16 kbps. The following peak represents the 3"¢ formant, that is located right
after the valley at the 4000 Hz. The second SV once again begins at 5600 Hz for all
bitrates and gradually increases its width until it spans the whole frequency range up
to 8 kHz for the 16 kbps. It can be reasoned that the noticeable difference in formant
estimation accuracy was primarily caused by this phenomenon.

The most common formant estimation method relies on a linear prediction coding
(LPC) of the speech, which uses the AR model to characterize the vocal tract as a con-
catenation of resonance filters, as has already been explained in detail in Chapter 2.
However, the compression destroys this all-pole characteristics as the zero-energy areas
often occur right next to the formant peaks. Figure 6.5 illustrates the shift of the formant
peaks in a segment of speech estimated by the LPC model of the 12" order. The notice-
able characteristics of the spectral envelope for MP3 impaired speech is that the curve
follows the valleys which precede the formants. As a result, the AR model incorrectly
estimates the position of the peaks on the frequency axis.

It can be also noticed that the LPC algorithm completely failed to detect the 4" formant
for the lowest bitrate, simply because the coder zeroed all frequency bins higher than 4600
Hz, even if the position of this formant was clearly visible in the raw signal spectrum.
These findings further support the previously presented experimental analysis. Another
important conclusion is that the order of the AR model greatly influenced the estimation.
The lower order models, e.g. (8*) order which is generally used for PLP features, are
more prone to completely ignoring the higher formants if there is a valley preceding it.
This observation lead me to conclusion that PLP features for MP3 recognition should be
computed with a higher order LPC analysis.

This phenomenon also tends to reach into much lower frequencies than is the f.,; as
higher frequency bands have already been cut-off by the low-pass filter. Unlike bandlim-
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Figure 6.5: The illustration of the negative effect of compression on LPC spectrum and
the estimation of formant peaks for compressed and PCM speech. Full line
is the signal itself and dashed line is the LPC spectrum.

iting, the exact nature of spectral valleys is also highly context dependent, which makes
it statistically impossible to predict the affected frequency bins. It often influences only
some parts of speech (usually starts and ends of continuously uttered phrases) and some
phonemes. It makes spectral features, and those that build on them (e.g. cepstral ones),
less reliable. Its detrimental effect on formants estimation was the primary reason the
results in 6.4 did not include the estimation of F4 as the error was simply too high. On
regular occasion, the algorithm could not even detect the presence of F4 while no such
problem occurred for uncompressed speech.

6.3.2 Effects on Cepstral-based Features

The standard acoustic features for GMM-HMM /DNN-HMM systems are derived from
the short-time estimation of power spectra, either in the form of MFCCs, PLPs or Mel-
frequency energies, and then concatenated into feature vectors. For further statistical
processing in a GMM model, the basic vectors are mainly low-dimensional, decorrelated,
and they ignore the time context outside the extraction frame. It can be assumed the es-
timation of speech features is also influenced by the degradation described in the previous
sections, which in turn creates a problem of innate degradation to the system. The corre-
lation between the degradation in power spectra and the degradation in spectra-derived
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Figure 6.6: Relative power ratio [%] and cepstral distance for static parameters for
decreasing bitrates [kbps]

features can be illustrated on the trend of cepstral distance (CD), as it is shown in Fig-
ure 6.6. The CD was computed as the standard Euclidean distance in multidimensional
space and can be interpreted as a measure of similarity: the more two signals resem-
ble each other, the closer is their position in space and vice versa. The relative power
ratio of the error function increases with decreasing bitrate, which can be subsequently
extrapolated to the cepstral domain as the increase in distance between the reference
uncompressed and compressed signals.

The problem of frequency-band narrowing influences the ASR mainly due to the loss of
information carried by higher frequencies and due to the mismatched filter-bank for feature
extraction. If we consider the standard feature extraction scheme for short-time spectral
features, we can conclude that the distortion will effect always the same higher cepstral
coefficients regardless of the neighboring context. The filter-bank range is usually set to
the upper limits of available spectra, i.e. f;/2, in order to extract as much information
out of the signal as possible. But in the case of compressed speech, the upper frequency
limits are zeroed, and the energy extracted by the filter-bank in these bands is equal to
zero as well. As a result, the representations of the acoustic units in the feature space
are shifted and the resulting AMs trained on these features are mismatched against the
standard AMs.

The spectral valleys problem is closely tied to the commonly used feature vectors which
contain the temporal information from the preceding and following frames. Authors in [87]
theoretically analyzed the effects of spectral valleys on extracted features and showed that
the MP3 coding displaced the positions of features in the cepstral domain and significantly
increased their variances. The latter has a large impact on the dynamic and acceleration
coefficients. Since their computation in a frame is dependent on the values from neigh-
boring frames, the areas of low energy act as a sudden step change and can dramatically
increase the resulting values. The main difference between badnlimitation and spectral
valleys is that while the former affects mainly higher order cepstral coefficients, the later
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can affect much lower coefficients. Another important fact to realize is that spectral val-
leys are more or less random in nature and they create a serious problem as we proceed
further into ASR architecture.

Another problem that occurs when a general purpose ASR is used to decode compressed
speech is due to the mismatch between training and testing conditions. Although it might
seem tempting to solve this problem by training AMs on compressed signals, there are
several drawbacks to this strategy. Each bitrate is assigned its own low-pass cut-off
frequency, and thus this strategy would require training bitrate-specific (matched) AMs.
Moreover, a bitrate signal detector would have to precede the standard ASR scheme and
we have shown that it is not an easy task in certain situations. We also have to remember
that there is no strict specification for MP3 coder only the suggestions on its parts and
any interested party is free to use their own implementation. This creates a situation
when there are many encoders available on the market; i.e. LAME [64], mp3Pro [96]
or iTunes; with perceptually different audio quality on the output [97]. Thus, we can
safely assume that a signal coded at the same bitrate but with different coders will differ.
Authors in [87] have shown that ASR accuracy achieved with two same (low) bitrates
but different encoders may differ by more than 40% absolutely. This would suggest that
matched AMs would have to be not only bitrate-specific, but coder-specific as well.

When we take into account the degree of trouble involved in accurately detecting real
compression rates in certain setups and a differing audio quality for different encoders,
we have to reach the conclusion that matched training for each bitrate is not a prefer-
able solution for an every-day system. Nonetheless, I still investigated this option in
the experimental part of this thesis in order to compare its performance against the un-
matched conditions to see whether the potential improvement was worth the additional
computational and design effort.

A multitude of other artifacts (pre-echo, tonal spike, noise amplification, etc.) are
introduced in conjunction with the ones already mentioned, but since most of them are
easily identifiable only through listening tests, they will not be explored further. A more
thorough overview can be viewed either in [79] or in [77], which also includes the list of
applicable compensation methods.

6.4 Basic Front-End Optimization for Digit Task

This section presents the initial results of MP3 recognition with a baseline ASR sys-
tem. The analysis is focused on the contribution of various feature extraction setups and
the application of feature normalization for PLP-based systems. The first series of ex-
periments were focused on determining the influence of frame length and frame shift for
compressed data and to compare the results with non-compressed data. For this purpose,
individual AMs were trained for each setup and their quality was evaluated in the task
of isolated digit recognition.

The analysis was done for three compression rates: 160 kbps, 32 kbps and 16 kbps.
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The PLP features were computed using CtuCopy for different frame lengths and shifts.
The purpose was to determine the effect of frame length and shift for the compressed
data in a LVCSR task. The training set consisted of 51 hours of speech and the feature
extraction used 13 PLP plus dynamic and acceleration coefficients. Normalization was
applied for each speaker separately. The signal modifications can occasionally result in
a sequence of zeros in the time domain which, if not treated properly, can cause the
extraction algorithm to fail. Since the standard procedure to avoid infinite values in
logarithmic spectra is to add small amounts of uniformly distributed noise, all signals
were dithered with a uniformly distributed random values from < —1,1 > interval.

The AM was trained without any advanced refinement technique, with identical state-
tying conditions for each bitrate, and the final models contained about 60k Gaussians.
The digit recognition task was performed on 15 minutes of speech and used a simple
unlimited loop zero-gram grammar. The whole system was constructed using the HTK
toolkit and HDecode decoder.

6.4.1 Results for Reference System in Digit Task

Table 6.3: Results for RAW data with different window lengths/shifts [ms] and normal-
ization schemes: a)Non-Normalized; b)CMN; ¢)CMVN

A Shift B Shift
Length | 8 | 10 | 125 13 | 15 | 16 || Length | & | 10 |125] 13 | 15 | 16
16 | 633 | - : - : - 16 | 2.02| - - : : -
25 4.31 | 2.29 | 2.42 - - - 25 2.15 | 1.88 | 1.88 - - -
30 | 471|220 | - - 269 - 30 | 148|162 - - 229 -
32 |552(269| - |256| - |256]| 92 |175|188| - [202] - |L75
C Shift

Length | 8 | 10 [125] 13 | 15 | 16

16 | 538 | - - : : -

25 | 4.98|323|135| - ; -

0 | 39|35 - - 162 -

92 269|175 | - |215] - |2.02

The presented results from non-compressed data proved the overall advantage of using
CMN and CMVN techniques. The recognition results for a CMN technique were fairly
similar across the setups. The commonly used values of 25 ms window length and 10 ms
shift and 32 ms length and 16 ms shift achieved good results in general, but not the overall
best. The average relative improvement of CMN for all parametrizations was 38%, while
the four highest values of improvement belonged to parametrizations with the shortest
shift (8 ms). These findings could be attributed to the fact that these window shifts
achieved initially higher WERs. The average relative improvement of CMVN was 11%.
The best overall error rate of 98.65% was achieved for 25/12.5 ms setup with CMVN
normalization.
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6.4.2 Results for Compressed Speech in Digit Task

The next analysis was focused on data compressed with different bitrates when the
methodology remained the same. The 160 kbps compression rate is generally considered
to be high enough to not distort the speech wave in any significant way. The 32 kbps and
16 kbps bitrates should distort the signal more severely, with 32 kbps being the breaking
point after which the WER starts to drop rapidly. The purpose of this analysis was to find
the optimal window setup and to investigate the contribution of normalization schemes for
these three bitrates. The results are organized into the tables as in the previous section.

Table 6.4: Results for 160 kbps data with different window lengths/shifts [ms| and nor-
malization schemes: a)Non-Normalized; b)CMN; ¢)CMVN

A Shift B Shift
Length | 8 10 | 12,5 | 13 15 16 Length | 8 10 | 12.5 | 13 15 16
16 5.92 - - - - - 16 3.23 - - - - -
25 7.13 | 511 | 3.1 - - - 25 3.1 | 296 | 1.75 - - -
30 7.67 | 5.65 - - 2.29 - 30 2.69 | 2.56 - - 2.15 -
32 8.08 | 4.04 - 2.56 - 1.62 32 3.1 | 2.29 - 1.75 - 1.08
C Shift
Length 8 10 | 125 | 13 15 16
16 2.15 - - - - -
25 2.42 | 1.75 | 1.08 - - -
30 2.69 | 2.29 - - 1.48 -
32 2.96 | 2.69 - 1.21 - 0.94

Table 6.5: Results for 32 kbps data with different window lengths/shifts [ms| and nor-
malization schemes: a)Non-Normalized; b)CMN; ¢)CMVN

A Shift B Shift
Length | 8 10 | 12,5 | 13 15 16 Length | 8 10 | 12.5 | 13 15 16
16 6.19 - - - - - 16 2.29 - - - - -
25 4.71 | 2.02 | 2.02 - - - 25 1.35 | 1.35 | 1.62 - - -
30 5.38 | 2.29 - - 1.62 - 30 1.35 | 1.62 - - 1.35 -
32 6.33 | 3.23 - 1.62 - 1.62 32 1.88 | 1.75 - 1.35 - 1.35
C Shift
Length 8 10 | 125 | 13 15 16
16 2.56 - - - - -
25 2.15 | 1.62 | 1.21 - - -
30 1.75 | 1.08 - - 1.35 -
32 2.02 | 1.21 - 1.48 - 0.94

The window length and step proved to play a large role in the overall quality of the
trained AM, especially if the data were not normalized. The shorter window lengths cou-
pled with shorter shifts achieved worse results in general. The trend of a decreasing WER
for increasing shift was apparent for all setups and normalization schemes. Especially
notable values highlighting this fact were 8% absolute increase for 32/16 ms vs. 32/8 ms
setup for 160 kbps or over 10% for 25/12.5 ms vs. 25/8 ms setups for 16 kbps rate. The
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160 kbps and 32 kbps rates benefited more from the increased lengths and shifts, when
the overall highest recognition results were achieved for longest frame-lengths and shifts
(32/16 ms) and CMVN normalization, in both cases 0.94%.

On the other hand, the 16 kbps achieved the lowest error of 0.67% for a rather non-
standard 25/12.5 ms setup, while the more common 32/16 ms setup achieved the error
rates of 1.35% and 1.48% for CMN and CMVN normalization. Another interesting thing
to note was that the results for 16 kbps bitrate followed the same trend as the one observed
for uncompressed speech, where the window shift played a major role in the overall error
rate. Certain setups, 16/8 ms in particular, proved to yield unacceptable WER for such
an easy task such as digit recognition.

Table 6.6: Results for 16 kbps data with different window lengths/shifts [ms] and nor-
malization schemes: a)Non-Normalized; b)CMN; ¢)CMVN

A Shift B Shift
Length 8 10 | 12.5 | 13 15 16 Length | 8 10 | 12,5 | 13 15 16
16 18.84 - - - - - 16 2.83 - - - - -
25 12.79 | 10.5 | 2.42 - - - 25 1.48 | 1.21 | 0.81 - - -
30 7.54 | 7.13 - - 1.21 - 30 1.75 | 1.21 - - 1.08 -
32 8.48 | 6.86 - 8.48 - 1.88 32 2.15 | 1.35 - 0.81 - 1.35
C Shift
Length 8 10 | 125 | 13 15 16
16 2.56 - - - - -
25 2.56 | 1.08 | 0.67 - - -
30 2.83 | 2.42 - - 1.21 -
32 2.29 | 1.48 - 0.81 - 1.48

Table 6.7 summarizes the potential gain of increasing the values of frame-length or shift
for a fixed value of shift or length. As the table indicates, once a certain window shift
was chosen, the overall effect of window-length played only marginal role and the systems
achieved roughly the same results. On the other hand, the decrease in WER for fixed
window-length and increasing window-shift was noticeably higher. Thus, the conclusion
from these experiments was that the window overlap had much greater impact on the
resulting WER of the system.

Table 6.7: Average decrease in WER for fixed length /shift and increasing shifts/lengths

Fized Shift [ms] | Fized length [ms/]
8 10 25 | 30 32
0.34 0.15 1271 11| 0.95

The WERRs for all parametrizations are shown in figures below, where the trend al-
ready observed from previous experiment was observed again. The improvement decreased
as the window-shift was getting longer, which could be attributed to the fact that longer
window-shifts achieved considerably lower base WER and thus there was less room for po-
tential improvement. The experiments also showed that the major portion of improvement
was due to the CMN and that the subsequent extension to CMVN decreased the error
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only slightly. In both cases, the relative error reduction reached for certain parametriza-
tion nearly 80%, while the average reduction for CMN was 57% and for CMVN 60%.
The second observation is the fact that the application of normalization evened out the
performance among different bitrates for such a simple task as digit recognition.
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Figure 6.7: WERR for CMN and CMVN techniques in digit recognition

6.4.3 Initial Results for LVCSR task

As the LVCSR task was the primary application of the MP3 speech recognition, the
overall best performing setup determined in previous analyses (25/10 ms with CMVN)
was evaluated in a LVCSR task. The evaluation set consisted of 1 hour of speech and the
decoder used a bigram LM and 340k vocabulary with 4% OOV. The obtained results are
summarized in Table 6.8.

The RAW models achieved 28.56% WER and the absolute WER difference reached
6.61%, 7.84% and 13.32% for 160 kbps, 32 kbps and 16 kbps bitrates respectively. On
the other hand, the previous loop-digit recognition tests showed lower WER for non-
compressed data than for compressed, a fact that was not observed in the LVCSR test.
This situation occurred most likely because the loop-digit task tested only a part of trained
triphones from the whole AM, while the LVCSR set contained phonetically richer content
and the AM was tested as a whole. Although non-compressed AM achieved overall worse
results, the absolute WER difference was only about 0.5%. Given the size of the loop-digit
testing dataset, the 0.5% difference meant about 4-5 correctly recognized words.

Table 6.8: Results in LVCSR task for the best parametrization setup as determined from
digit recognition. The digit recognition task is repeated for comparison.

RAW | 160 kbps | 32 kbps | 16 kbps
Digit | 1.35 1.08 1.24 0.94
LVCSR | 28.56 | 35.17 36.4 41.88
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6.4.4 Summary
The most important conclusions of these analyses can be summarized as follows.

e The commonly used frame setups of 32/16 ms and 25/10 ms achieved generally
good results for higher compression rates of 160 kbps and 32 kbps. The best error
rates of 0.94% was achieved for 32/16 setup for both the 160 kbps and 32 kbps
rates. The lower compression rate of 16 kbps required lower segmentation setup
of 25/12.5 ms, but with a proper setting achieved results even marginally better
(0.67%) than higher compression rates for a simple digit recognition.

e The contribution of normalization schemes was crucial for system refinement and
yielded up to 80% relative improvement. Although very slightly, the average contri-
bution of CMVN outperformed the CMN and should therefore be used regardless
of segmentation setup.

e The performance of AMs in the LVCSR task showed clear advantage for uncom-
pressed speech with 28.56% WER, while the 160 kbps and 32 kbps rates performed
at 35.17% and 36.4% W ER respectively. The worst overall results of 41.88% were
achieved for 16 kbps.

6.5 Basic Front-End Optimization for LVCSR

The analyses and results of particular experiments presented in this section follow on
the findings from the previous section and extend on them. It investigates the contribution
of methods working at the level of front-end processing (CMVN) and acoustic modelling
(MAP and CMLLR adaptations) which are generally used for distorted speech recognition.
It also presents a more thorough analysis on frame level optimization for a LVCSR task
using the same protocol as in the previous section. The compression rates were chosen
according to the previously presented results with the intention to map the performance
more closely for lower bitrates (160 kbps, 32 kbps, 24 kbps and 16 kbps) where the error
rate started to rise rapidly. The system was constructed using the same setup as in the
previous section. The recognition task consisted of 1 hour set of signals containing only
full sentences. Both the supervised and unsupervised speaker adaptation was performed
using the CMLLR and MAP adaptation techniques. The MAP adaptation constant 7 and
the number of regression classes for CMLLR were set according to the previous empirical
analyses. The decoder used the bigram LM with 340k vocabulary. The decoding was
done with H Decode decoder.

6.5.1 Results for Matched conditions

The experiments in this section were performed for matched conditions when the fea-
tures were extracted with the basic setup and the AMs were speaker independent and in
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match with the testing conditions. The results are summarized in Table 6.9. The analysis
of the feature extraction setup for compressed speech showed that the optimal values of
the frame-shift were around the values of 10/12.5 ms with a slight variation and that the
longer shifts were suboptimal. These results were marginally different from the results
for the uncompressed speech were the statistically important differences were achieved for
slightly longer shifts of 12.5/13 ms. The optimal values for frame lengths were found to
be around 30/32 ms for both the compressed and uncompressed speech. The frequently
utilized setup of 25/10 ms proved to work well for all bitrates, while the other standard
setup of 32/16 ms showed the worst results. The absolute difference between 160 kbps
and 16 kbps AMs was relatively small, at about 7%.

Table 6.9: Results for matched training for different window lengths/shifts [ms]

Shift [ms]

Length [ms] 10 12.5 13 15 16

No 25 35.17 | 31.37 - - -

comp. 30 39.2 28.87 | 29.43 | 32.47 -
(ST) 92 30.47 | 28.02 | 29.39 | - | 36.21

25 28.81 | 29.58 - - -

160 kbps 30 29.95 | 29.12 | 29.83 | 32.03 -
32 40.28 | 29.72 | 29.56 - 34.86

25 3247 | 32.36 - - -

32 kbps 30 29.08 | 30.28 | 30.89 | 33.69 -
32 29.14 | 30.08 | 32.24 - 36.54

25 37.08 | 32.38 - - -

24 kbps 30 36.98 | 34.57 | 31.95 | 35.83 -
32 40.62 | 31.47 | 32.22 - 36.77

25 36.58 36.4 - - -

16 kbps 30 35.11 | 35.69 | 37.1 | 39.26 -
32 35.17 | 39.33 | 37.21 - 41.88

Supervised Adaptation

The deployment of ASR system for MP3 recognition is often intended for pre-recorded
speech, where the identity of the speaker in known and the AM adaptation can be per-
formed in the supervised fashion. The goal of the following analysis was to investigate in
limit case of WER the ASR system can potentially achieve. The CMLLR adaptation was
performed in a two-step fashion. The global transformation acted as the parent for the
class specific one. The number of regression classes for supervised CMLLR adaptation
was set up to 12 and the MAP adaptation constant 7 was set to 10. The results for
CMLLR adaptation are summarized in Table 6.10 and were expected to follow the trend
already observed for the SI system, where certain segmentation setups would achieve con-
siderably better results then the other. The average WERR for the CMLLR was slightly
over 35%. The absolute difference between 160 kbps and 16 kbps rate was lowered down
to 3%. The results for MAP adaptation, summarized in Table 6.11, improved the recogni-
tion even further and lowered the absolute error rate just under 10%, which meant about
65% WERR. The difference between particular bitrates was generally around 1%. These
results showed that the application of an AM adaptation has evened out the differences
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between particular segmentation setups and bitrate speeds. This results indicated that
extracted feature still contained enough information about the content and that the ob-
served ASR performance drop occurred mostly due to the training-evaluation mismatch.
However, it is still important to remember that the AM adaptation was employed in a
supervised fashion.

Table 6.10: Results for supervised CMLLR with matched training and different window
lengths/shifts [ms]

Shift [ms]

Length [ms] 10 12.5 13 15 16

No 25 20.12 | 19.33 - - -

comp. 30 19.04 | 18.64 19 21.06 -
32 19.06 | 18.87 | 19.7 - 21.91

25 19.58 | 20.37 - - -

160 kbps 30 18.98 | 19.21 | 19.91 | 22.37 -
32 18.71 | 19.58 | 19.95 - 24.07

25 18.44 | 19.73 - - -

32 kbps 30 18.73 | 19.04 | 19.75 | 21.04 -
32 21.04 | 18.89 | 18.6 - 22.99

25 20.52 | 21.16 - - -

24 kbps 30 19.43 | 21.04 | 20.81 | 23.26 -
32 21.37 | 19.66 | 20.62 - 24.53

25 2291 | 23.09 - - -

16 kbps 30 20.66 | 22.07 | 22.64 | 25.42 -
32 2247 | 23.32 | 23.03 - 27.69

Table 6.11: Results for supervised MAP, matched training and different window
lengths/shifts [ms]

Shift [ms]

Length [ms] | 10 12.5 13 15 16

No 25 10.85 | 9.89 - - -

comp. 30 11.39 | 9.98 | 9.77 | 10.33 -
32 11 9.3 9.87 - 11.58

25 10.54 | 10.68 - - -

160 kbps 30 9.23 | 9.69 | 9.44 10.6 -
32 9.46 9.44 | 9.87 - 12.91

25 9.69 | 9.96 - - -

32 kbps 30 10.21 | 9.54 | 9.79 | 11.14 -
32 13.06 | 9.08 | 9.21 - 12.7

25 10.23 | 9.58 - - -

24 kbps 30 9.81 | 12.51 9.4 13.43 -
32 11.21 | 9.19 | 9.42 - 11.68

25 11.16 | 10.56 - - -

16 kbps 30 10.62 | 9.42 | 10.85 | 11.64 -
32 10.1 11.2 | 10.41 - 12.37
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Unsupervised Adaptation

The analysis in this section was focused on using the unsupervised adaptation from rec-
ognized transcription and the results were compared against the supervised adaptation
from the previous section. The adaptation was performed only with the CMLLR tech-
nique. The optimization of the number of regression classes did not have such a significant
impact on the error rate as it did for supervised CMLLR, although a few differences have
been observed. The application of the global transformation worked well in general, but
the optimal number ranged from 2 to 4. As a results, the number of regression classes
was lowered to 4 to compensate for the transcription errors. The application of MAP
was found to actually degrade the performance instead of improving it. This problem
occurred mostly due to the number of errors in prior transcription used for subsequent
adaptation. The results are summarized in Table 6.12. The overall difference between the
supervised and unsupervised adaptation for the selected segmentation was always above
5% absolutely. The adaptation achieved progressively worse results with a decreasing
bitrate, which could be partially attributed to the increasing input error in the obtained
transcription.

Table 6.12: Results for unsupervised CMLLR adaptation, matched training and differ-
ent window lengths/shifts [ms]

Shift [ms]

Length [ms] 10 12.5 13 15 16

25 25.59 | 26.27 - - -

160 kbps 30 26 25.17 | 25.77 | 28.1 -
32 35.96 | 25.73 | 25.55 - 30.99

25 27.33 | 27.83 - - -

32 kbps 30 95.5 | 26.61 | 27.48 | 290.54 | -
32 25.48 | 26.86 | 27.33 - 32.88

25 3053 | 27.04 | - - -

24 kbps 30 30.45 | 31.34 | 28.52 | 31.66 -
32 35.77 | 28.14 | 28.52 - 33.24

25 3251 | 3238 | - B -

16 kbps 30 36.4 32.11 | 33.05 | 35.59 -
32 31.26 | 34.59 | 33.69 - 37.44

6.5.2 Results for Mismatched conditions

The previous sections have established that building an AM for each specific bitrate is
both a time and resources consuming process, that provides only limited usability in a
real-life situations. As a result, we would often want to have a generic AM that would
perform equally well on RAW and compressed speech regardless of used bitrate. The
results achieved from the previous experiments suggested that the AMs would mutually
interchangeable if a proper AM adaptation was used. The focus of the following analysis
was to evaluate the performance of an uncompressed AM on the compressed data using
the best achieved setups. The previous analysis showed that the proper frame setup can
vary for compressed and uncompressed speech. Therefore, the first step was to determine
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which uncompressed AM would perform the best if used on compressed speech. From all
the possible options, four were selected:

e 25/10 ms - most frequent in ASR, good results for RAW and compressed speech,
e 30/10 ms - most consistent for compressed speech but very poor for RAW speech,
e 32/12.5 ms - best results for uncompressed and well for compressed speech,

e 32/16ms - frequently used setup in ASR although the results were suboptimal.

Table 6.13: Results with mismatched AMs for selected segmentaion setups

160 kbps | 32 kbps | 24 kbps | 16 kbps
25/10 [ms] 30.37 32.76 34.55 41.36
30/10 [ms] 38.08 41.07 42.51 45.62
32/12.5 [ms] 27.89 30.18 32.26 39.91
32/16 [ms] 27.35 30.38 32.45 38.86

Table 6.14: Results for supervised CMLLR and MAP in mismatched conditions

CMLLR MAP
160 kbps 32 kbps 24 kbps 16 kbps | 160 kbps 32 kbps 24 kbps 16 kbps
25/10 20.45 21.21 21.69 21.91 10.37 10.55 10.38 10.89
30/10 21.32 21.67 22.01 21.2 10.99 10.21 11.29 10.72
32/12.5 19.98 20.71 20.19 20.65 9.21 9.71 9.7 9.79
32/16 19.77 20.45 20.22 20.7 9.56 9.73 9.7 9.99

The results for the baseline system are summarized in Table 6.13. Interestingly, the
32/16 ms setup performed the best in this mismatched scenario while the 32/12.5 ms
setup performed as the second best. The worst results were achieved for the 30/10 ms.
Also, the results repeated the trends of of a rapid rise in WER for the bitrates higher
than 24 kbps. The absolute difference in WER between the RAW and 16 kbps compressed
speech reached 12.49%. These results confirmed that without any AM adaptation, the
uncompressed and AM could be used on the compressed data only in a limited number
of cases and always resulted in significantly worse performance.

Table 6.14 summarizes the contribution of supervised MAP and CMLLR adaptation
technique in the mismatched training. The application of AM adaptation techniques has
improved the recognition significantly and the obtained results obtained comparable to
the bitrate specific AMs. The recognition results after the MAP adaptation were even
marginally better and proved that the AM trained on the uncompressed data could be
used for the compressed signals in case of subsequent supervised adaptation, which is the
case for any current off-line dictation systems. The comparison of different segmentation
setups demonstrated that longer window lengths were preferable while the results for shift
were not as clear. The best overall results with MAP adaptation were achieved for the
32/12.5 ms segmentation and the 32/16 ms proved to be only slightly worse. However, the
situation was actually reversed for the CMLLR adaptation. Based on these findings I have
chosen to use the 32/16 ms segmentation for all my further analyses and the reasoning is
as follows. The following analyses make use fMLLR adaptation for the SAT and speaker
adaptation during the decoding step. Also, the 32/16 ms segmentation is more standard
for ASR systems.
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Additional Dithering

The cited works on the MP3 recognition showed that the PLP features demonstrated a
much slower decline in recognition rate as the bitrate decreased than the MFCCs. Also,
the addition of a small amount of noise has been found to greatly improve the performance
for MFCC features and the theoretical explanation of this phenomenon is given in [98].
The uniform dithering technique was applied at the feature extraction level and could be
considered similar to other normalization techniques. However, it is important to realize
that I always used a uniform dithering during feature extraction with R set to 1 in order
to avoid zeros in spectrum. The purpose of the following analysis was to extend these
results for the employed PLP features as well as to find the optimal value of R.

The results for additionally dithered features are summarized in Table 6.15. The ab-
solute WER difference between 160 kbps and 16 kbps was about 11%. The application
of additional dithering lowered the error rates by about 3% absolutely, although the op-
timal R values were not distributed as expected. My initial assumption was that the
optimal dithering value should have increased as the bitrate decreased. This hypothesis
was proved to be only partially true as the optimal R for 24 kbps was found to be 2 and
not in the range from 16 to 32 as the other results would indicate. However, the absolute
difference in WER for the best value R = 2 and R = 16 was only 1.5%. It could be con-
cluded that uniform dithering was able to bring addition improvement for PLP feature
and basic AMs.

Table 6.15: Results with mismatched AMs and increasing dithering value R

Dithering value R
2 4 8 16 32 64
160 kbps | 28.68 | 28.71 | 23.62 | 29.00 | 38.87 | 43.28
32 kbps | 30.64 | 30.70 | 30.80 | 26.59 | 31.03 | 43.05
24 kbps | 29.10 | 29.21 | 29.63 | 30.62 | 36.58 | 41.18
16 kbps | 36.53 | 37.22 | 37.40 | 41.57 | 35.20 | 48.56

6.5.3 Summary

Table 6.16 summarizes the most important results with mismatched conditions while
the conclusions of this part can be summarized as follows.

Table 6.16: Summary of results for basic AM in LVCSR with mismatched AM

Rate 160 kbps | 32 kbps | 24 kbps | 16 kbps
Base-line 26.35 29.38 31.45 38.86
Dithering 23.62 26.59 29.10 35.20

superv. CMLLR 19.77 20.45 20.22 20.7
superv. MAP 9.56 9.73 9.7 9.99

e The optimal values for segmentation values for matched condition included longer
frame-lengths and shorter frame-shifts. The proper values were found to be around
30/12.5 ms.

75



CHAPTER 6. COMPRESSED SPEECH RECOGNITION

e PLP features were naturally more robust against the degradation and the quality of
the acoustic models trained on compressed data deteriorated slowly with decreasing
bitrate for them. The difference between 160 kbps and 16 kbps AMs was only
7%. The application of CMVN proved to improve the performance significantly,
especially for shorter windows and shifts and lower compression rates. This finding
could be attributed to the fact that CMVN presented a simple solution to the
problem of increased dynamic and acceleration coefficients.

e The supervised adaptation proved to work very well. The results for unsupervised
adaptation were not as conclusive. The application of MAP proved to be impossible
due to the very high number of errors in the initial transcription. The CMLLR
proved to be much more robust but its setup had to be changed slightly as well
when the number of regression classes was lowered down to 4 from the initial 12 as
was the case for the supervised CMLLR.

e The optimal segmentation values for mismatched condition included longer frame-
lengths and longer frame-shifts. The proper values were found to be around 30/16 ms.
All further analyses made use of this setup as they were mainly concerned with mis-
matched conditions and made use of fMLLR adaptation.

e The application of AM adaptation was found to be crucial in the case of mismatched
training-evaluation. Although the bitrate specific AMs performed better than the
uncompressed AM on the compressed speech, the application of an AM adaptation
lowered the WERs to about 20% for CMLLR and 10% for MAP, regardless of
the bitrate. These results demonstrated that uncompressed AM could be used
for compressed speech recognition in the case of supervised adaptation and with a
proper front-end processing methods.

e The application of uniform dithering was found to be beneficial even for PLP features
as it resulted in about 3% absolute error rate reduction.

6.6 Advanced Front-end and AM optimization

The analysis presented in this section continued with the set trend from the previous
sections on evaluating the whole AM creation chain in terms of its robustness against MP3
compression in mismatched conditions. This time, however, the goal was to evaluate the
performance with current state-of-the-art acoustic modelling techniques and one specific
front-end compensation method for a GMM-HMM based system. Specifically, the section
concentrated on speaker adaptive training, AM adaptation, discriminative training and
uniform dithering as prominent means of compensating in the task of phoneme and LVCSR
recognition.

The reason to examine both the phoneme and LVCSR tasks was as follows. The
phoneme recognition task allowed a much greater insight into the errors made by the
decoder and hinted at the possible shortcomings of the used setup. It also enabled to
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examine the assumptions made earlier in the thesis about the effects of particular dis-
tortions (bandlimiting and spectral valleys) on particular phonetic units. In short, these
results were used mainly to get further knowledge of MP3 compression and its effects on
ASR. On the other hand, MP3 speech recognition was generally intended for applications
such as off-line transcription of recorded speech or indexing of audio archives and thus
the results from the LVCSR task were necessary for reference.

The signals came from the Czech SPEECON and TEMIC databases and the compres-
sion rates were selected with the intention of evaluating the performance of the system for
bitrates of 128 kbps, 64 kbps, 32 kbps, 28 kbps, 24 kbps, 20 kbps, 16 kbps and 12 kbps.
The PLP and MFCC features were computed using the CtuCopy with the 32/16 ms seg-
mentation. The CMN technique was applied in a speaker specific fashion and on static
features only. The frame-splicing step used 5 neighboring frames. In the first stage of the
experiments, the signals were dithered with uniformly distributed random values from the
< —1,1 > range. The effect of additional dithering for the test subset was studied in the
later stages, when the dithering value < —R, R > was gradually increased until the error
rate stopped dropping.

The AMs were trained on uncompressed speech using with an overall length of 72 hours.
The phoneme test subset contained 45 speakers and 8.5 hours of speech of varying content
and the recognition was performed using a bigram phoneme model. The LVCSR task was
evaluated on 2 hours of speech and a bigram LM with 340k vocabulary. The results
were evaluated by PER and PERR criteria. In addition, the recognized transcription
was remapped into three phonetic classes: voiced consonants, unvoiced consonants and
vowels, and the phone error rate contribution (PERC,) for a particular phonetic class
was computed.

6.6.1 Results for Phoneme Recognition

The initial study of the behaviour of PLP and MFCC features for MP3 speech recogni-
tion was performed with all previously-discussed AM refinement techniques, but without
any non-standard modifications to the feature extraction process. This analysis served as
the benchmark for the subsequent modification in the form of additional dithering and
its potential contribution.

Table 6.17 presents results for the PLP-based system. Significant differences in absolute
PER were observed between compressed and uncompressed data for initial baseline AMs
but implementation of each subsequent modelling technique decreased the PER. The
studied bitrates were selected to have a linear trend, but the achieved results identified
the 24 kbps bitrate as a breakpoint after which the error started to rise exponentially.
This conclusion held true for all levels of AM development.

Another point of interest was the reduction of error as a function of the employed
modelling technique. The fMLLR adaptation achieved the highest PERR for compressed
speech in general, and its gain rose with decreasing bitrate. On the other hand, the gain
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Table 6.17: PER for PLP and progressively refined AM

Baseline | LDA | SAT | SGMM | bMMI | MPE
RAW 17.9 16.1 | 12.3 10.2 7.2 7.2
128 kbps 18.8 17.1 | 13.5 10.8 7.9 7.8
64 kbps 18.9 17.1 | 13.6 11.0 8.2 8
32 kbps 19.3 17.3 | 13.2 11.0 8.2 8.1
28 kbps 19.6 17.7 | 13.5 11.3 8.6 8.2
24 kbps 20.7 18.7 | 14.1 11.9 9.3 8.6
20 kbps 23.9 21.1 | 15.5 12.9 10.5 10.1
16 kbps 36.2 304 | 18.6 15.5 13.3 13.1
12 kbps 62.5 529 | 26.8 22.2 20.2 19.8

of discriminative training was the highest for RAW data and decreased with decreasing
bitrate. This finding was consistent with the theoretical premise that discriminative
training fits the AM on the training set, but not necessarily on the testing set. In the case
of my experiment, the employed DTs optimized the AM for uncompressed signals and as
the bitrate decreased, so did the match between the training and evaluation signals. It
should be noted, however, that the overall PERRs computed between baseline and final
bMMI models were still in the (59%,67%) range. Another interesting thing was that the
MPE trained achieved marginally better results than bMMI models.

Table 6.18: PER for MFCC and progressively refined AM

Baseline | LDA | SAT | SGMM | bMMI | MPE
RAW 17.8 15.9 | 12.3 10.3 7.3 7.2
128 kbps 18.9 17.2 | 13.7 10.8 8.1 8.2
64 kbps 19.3 17.5 | 13.7 11 8.2 8.2
32 kbps 20.9 17.9 | 13.6 11.3 8.7 8.3
28 kbps 24.6 19.5 | 14.3 11.9 9.4 9.2
24 kbps 33.9 259 | 16.4 13.5 11.4 11.1
20 kbps 47.1 31.9 | 19.0 15.6 13.6 13.3
16 kbps 62.2 494 | 25.8 20.4 18.7 18.6
12 kbps 73.0 68.7 | 46.0 32.6 30.2 29.7

The same set of experiments for an MFCC-based system is summarized in Table 6.18.
The system behaved similarly and displayed the same trends as far as the contribution
of specific acoustic modelling techniques went. The PER displayed a tendency to rise
rapidly after passing the 24 kbps breakpoint and AM adaptation proved to be crucial
as it contributed the most to the overall PERR. The major difference was the overall
increase of error rate for compressed signals, which was much higher for MFCCs than for
PLPs. This finding lead to the conclusion that the MFCC features were not suitable for
low bitrate MP3 speech recognition.

A more detailed study of the nature of error confirmed the theoretical assumptions
about the compression distortions and their effect on particular phonemes. Figure 6.8
documents a decrease in PERC for voiced phonemes at the expense of unvoiced phones.
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While the reference PERC distribution for 128 kbps was dominated by the vowels, the
PERC for unvoiced consonants steadily increased up to 34.2% for 12 kbps. In fact, all
three studied classes contributed to the overall PER approximately equally for the lower
bitrates. This observation was particularly interesting if we looked at the absolute number
of phonemes for each phonetic class. The whole evaluation set contained 116 501 phonemes
altogether, 47 389 vowels (22.5% of the whole), 42 939 voiced consonants (40.6%) and
26 173 unvoiced consonants (36.9%). In fact, these numbers very closely matched the
distribution of PERC for 128 kbps bitrate. This observation proved that a "normal” ASR
system produces equally distributed phonetic errors across the studied classes. Later
experiments with partial contribution of each distortion showed that this negative effect
occurred due to the combined presence of both the bandwidth limitation and spectral
valleys.

a) PERC for PLP based system

| Il Unvoiced Cons. [ ]Voiced Cons. ] vowels ’ ‘

PERC [%]

b) PERC for MFCC based system

PERC [%]

128kbps 64kbps 32kbps 28kbps 24kbps 20kbps 16kbps 12kbps
Compression bitrate

Figure 6.8: PERC for PLP and MFCC features. The realative contribution to the total
PER is mapped for three phonetic groups: Unvoiced Consonants,
and Vowels.

Additional Dithering

All the previous analyses in this section used features without any further compensation.
Since the previous analyses showed the detrimental effect on higher frequency bands, it
was important to investigate the additional dithering method. The dithering value R was
gradually increased by a factor of 2. Table 6.19 and Table 6.20 present the best PER
together with the optimal R.

Additional dithering for PLP features, summarized in Table 6.19, yielded consistent
improvement for the lowest 12 kbps rate and some improvement for the 16 kbps rate. Its
application was particularly useful for baseline and LDA models, but the reduction for
more advanced AMs was only marginal and higher bitrates were mainly unaffected by the
method. In cases when the dithering value was too high, the additional noise degraded

79



CHAPTER 6. COMPRESSED SPEECH RECOGNITION

Table 6.19: PER for dithered PLP with diff. dithering value R

Baseline | LDA | SAT | SGMM | bMMI | MPE
128 kbps | 2/18.7 | 2/17.0 | 4/132 | 4/10.7 | 4/7.9 | 2/7.9
64 kbps | 2/18.8 | 2/17.1 | 2/13.2 | 4/10.8 | 4/8.0 | 2/8.0
32 kbps | 4/19.1 | 2/17.3 | 2/13.2 | 2/11.0 | 2/8.2 | 4/8.0
28 kbps | 4/19.4 | 4/17.7 | 4/13.5 | 4/11.2 | 4/8.6 | 2/8.4
24 kbps | 2/20.8 | 2/18.8 | 4/14.2 | 2/11.8 | 2/9.3 | 4/9.0
20 kbps | 4/23.5 | 2/21.0 | 4/15.6 | 2/12.9 | 2/10.5 | 4/10.1
16 kbps | 16/32.0 | 8/27.9 | 8/18.5 | 4/15.4 | 2/13.4 | 4/13.4
12 kbps | 32/44.7 | 32/39.4 | 16/24.9 | 8/21.2 | 4/19.8 | 6/19.4

Table 6.20: PER for dithered MFCC with diff. dithering value R

Baseline | LDA | SAT | SGMM | bMMI | MPE
128 kbps | 2/18.9 | 2/17.1 | 4/131 | 4/10.7 | 4/80 | 2/81
64 kbps | 2/18.8 | 2/17.3 | 4/13.2 | 4/10.9 | 4/8.2 | 2/8.2
32 kbps | 8/20.1 | 4/17.8 | 4/13.4 | 4/11.1 | 2/8.6 | 4/8.2
28 kbps | 8/21.6 | 4/18.6 | 8/13.9 | 8/11.5 | 8/9.1 | 6/8.7
24 kbps | 16/30.1 | 2/26.2 | 8/15.8 | 8/13.1 | 8/10.9 | 8/10.7
20 kbps | 16/34.7 | 8/30.0 | 8/17.7 | 8/14.8 | 8/12.8 | 8/12.6
16 kbps | 32/41.2 | 32/35.9 | 16/21.3 | 8/17.9 | 8/16.4 | 8/16.1
12 kbps | 64/49.9 | 64/45.5 | 16/29.0 | 16/24.2 | 16/23.0 | 12/22.4

the features further, which resulted in worse PER than for the undithered system. The
process of estimating the R value included several iterations of feature extraction and
decoding and thus consumed a lot of time and resources. When all of these factors were
taken into consideration, I came to the conclusion that the usage of additional dithering
couldn’t be advised for PLP features.

The next main point of interest was to investigate whether the dithered MFCCs can
match the PLPs. These experiments showed more convincing results as a positive PERR
was obtained for all bitrates and levels of AM refinement, as summarized in Table 6.20.
The generally observed trend was that the lower bitrates gained more from the additional
dithering than the higher bitrates. It should be noted however, that MFCCs still did not
manage to outperform the PLPs. The error rates were somewhere between the original

MFCCs and PLPs.

Since it was confirmed that additional dithering can improve the recognition with
MFCCs, the last analysis was focused on phonetic composition of the error. The initial
hypothesis was that the addition of relatively weak noise would compensate the spectra of
unvoiced phones, but the results showed that the error reduction was spread evenly among
phonetic classes or slightly towards the voiced phones. Figure 6.9 compares PERC for
dithered and undithered MFCCs at 16 kbps and 12 kbps as these were the only bitrates
which displayed a statistically relevant improvement. The values for the 12 kbps test sets
with and without dithering were basically the same, which indicated a uniform contribu-
tion. The error for dithered 12 kbps set was dominated by the unvoiced phonemes, but
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Figure 6.9: PERC for MFCC and dithered MFCC features. The contribution is eval-
uated for three phonetic groups: Unvoiced Consonants,
and Vowels.

the PERCs for original MFCCs were dominated by the vowels, which means that voiced
phones gained more than the unvoiced phonemes. Based on these results, it could be said
that the key principle of this method lied more in enhancing the features suitability for
statistical modelling and less in actual reconstruction of their spectral characteristics.

6.6.2 Results for LVCSR

The primary application of an MP3 recognizer is for the off-line transcription of com-
pressed speech and thus the following analyses will be focused on the LVCSR task. Ta-
bles 6.21 and Table 6.23 compare the LVCSR results for PLP/MFCC systems and Ta-
bles6.22 and 6.24 present to results for dithered MFCC and PLP based systems for the
LVCSR task. The observed trends of error rates corresponded with the conclusions ob-
served in the phoneme experiments. The error started to rise exponentially after passing
the 24 kbps threshold, and the AM adaptation was the main source of error reduction
for lower bitrates. The contribution of DT had a decreasing tendency. The advanced
acoustic modelling techniques displayed a trend of increasing relative gains as the bitrates
decreased, a result which was in contrast to phoneme recognition. This development
occurred most likely due to the usage of word level LM in combination with progres-
sively better AMs. The PLP features achieved better results than MFCC on average, and
marginally better than the dithered MFCC (dMFCC) features.

Another interesting thing to look at was the comparison of two DT methods: bMMI and
MPE. Figure 6.10 illustratively summarizes error rates for bMMI and MPE trained AMs in
both recognition tasks. The figures demonstrated the advantage of MPE training criteria,
which was especially pronounced at low bitrates. As a result, all further experiments
were conducted using this training method. Another interesting thing to note was that
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Table 6.21: WER for PLP system for progressively refined AM

Baseline | LDA | SAT | SGMM | bMMI | MPE

RAW 23.74 21.8 | 18.19 | 16.14 14.25 | 14.01
128 kbps 24.50 22.55 | 19.45 | 16.20 14.43 | 14.18
64 kbps 24.53 22.52 | 19.45 | 16.50 14.50 | 14.33
32 kbps 24.50 22.45 | 19.40 | 16.87 14.55 | 14.45
28 kbps 25.57 23.67 | 19.59 | 17.21 14.54 | 14.64
24 kbps 25.98 23.75 | 19.84 | 17.67 15.21 | 15.02
20 kbps 28.19 25.01 | 20.67 | 18.08 16.15 | 16.02
16 kbps 38.79 | 31.76 | 23.56 | 20.11 18.57 | 18.15
12 kbps 68.57 | 47.20 | 33.19 | 28.87 | 25.23 | 25.20

Table 6.22: WER for dithered PLP system for progressively refined AM

Baseline | LDA | SAT | SGMM | bMMI | MPE
128 kbps | 24.84 | 23.56 | 18.52 | 14.88 | 13.99 | 14.24
64k kbps | 24.60 | 23.28 | 18.22 | 14.87 | 14.00 | 14.27
32k kbps | 24.86 | 23.12 | 18.48 | 14.94 | 14.24 | 145
28k kbps | 25.38 | 23.32 | 1885 | 15.36 | 14.48 | 14.64
24k kbps | 26.17 | 24.82 | 1891 | 1598 | 14.88 | 15.07
20k kbps | 28.45 | 26.31 | 20.10 | 16.66 | 16.24 | 15.88
16k kbps | 37.67 | 32.51 | 22.91 | 1857 | 18.19 | 18.27
12k kbps | 61.38 | 54.93 | 31.66 | 26.66 | 24.57 | 24.04

Table 6.23: WER for MFCC system for progressively refined AM

Baseline | LDA | SAT | SGMM | bMMI | MPE

RAW 23.72 21.7 | 18.44 16 14.22 | 14.28
128 kbps 25.07 22.45 | 19.06 | 16.22 14.72 | 14.56
64 kbps 25.17 22511 19.09 | 16.41 14.79 | 14.68
32 kbps 25.13 2258 | 19.11 | 16.52 14.92 | 14.77
28 kbps 26.67 23.99 | 19.92 | 16.95 15.12 | 15.11
24 kbps 31.75 24.43 | 20.7 17.89 15.82 | 15.54
20 kbps 38.46 29.67 | 22.51 | 19.79 17.57 | 17.21
16 kbps 62.45 44.71 | 28.11 | 24.46 21.48 | 21.09
12 kbps 91.43 71.48 | 44.82 | 36.76 31.54 | 31.45

the absolute WER difference between MFCCs and PLPs increased with the decreasing
bitrate. In another words, MPE proved to be a more robust DT method than bMMI. This
finding corresponded with cited works which also demonstrated the superiority of MPE
training over bMMI training for distorted speech. And finally, Figure 6.11 illustratively
summarizes the contribution of using Uniform Dithering for the DT models. It can be
noticed that statistically important improvements were reached only for MFCC features
and lower bitrates.
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Table 6.24: WER for dithered MFCC system for progressively refined AM

Baseline | LDA | SAT | SGMM | bMMI | MPE
128 kbps | 24.85 | 22.55 | 18.75 | 16.32 | 14.25 | 14.18
64 kbps 26.03 | 22.67|18.89 | 16.64 | 14.38 | 14.31
32 kbps 25.056 | 22.85|19.01 17 14.78 | 14.69
28 kbps 26.01 |23.89|19.61| 17.64 | 15.06 | 15.18
24 kbps 31.77 | 25.01 | 20.32 | 18.23 15.5 | 15.34
20 kbps 36.69 | 28.11 | 21.71 19.7 16.84 | 16.5
16 kbps 48.83 | 34.56 | 25.17 | 22.42 19.47 | 19.13
12 kbps 70.03 414 | 34.75 | 30.1 26.41 | 26.5
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Figure 6.10: Error rates for the final DT models
6.6.3 Summary

The most important findings from these series of analyses can be summarized as follows.

e The evaluation runs documented that the usage of PLP features and application of
AM adaptation and DT could significantly reduce WER of the system. The bMMI
trained AMs performed at 14.24% on the reference test set, but the WER increased
to 18.57% for 16 kbps and 25.23% for 12 kbps rates. In comparison, the MFCC
system performed at 14.22%, 21.48% and 31.54% WER.

e MPE criteria function yielded slightly better results than bMMI which made it a
preferred DT method for all further experiments. Also, it was concluded that MPE
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Figure 6.11: The absolute contribution of dithered features for the final DT models

was more robust against MP3 distortions.

Adapting the AMs to the specific speaker and bitrate yielded the highest mean
improvement out of all the analyzed modelling techniques, and proved to be essential
for recognition of compressed speech. The gain of discriminative training diminished
with decreasing bitrate.

The phoneme-level recognition confirmed the theoretical hypothesis that the MP3
compression affected the unvoiced phonemes more significantly than the voiced
phonemes. The contribution of the unvoiced phonemes to the total phone error
rose from 21.6% for the reference test set to 34.2% for the 12 kbps set.

While the observed results justified the usage of additional dithering for the MFCC
features, the error rates for dithered MFCCs were still slightly higher than those
for PLPs. However, the main problem of this approach was the need to manu-
ally tune the dithering value to achieve the best results. The results of detailed
phoneme accuracy showed that the technique was not able to compensate the in-
troduced distortions and that the overall distribution of PER remained the same as

for undithered MFCCs.

It can be assumed that the advantage of PLPs originated from their design, which
emulates the behavior of the human hearing system much more closely. The Bark
filter bank attenuates the higher frequencies, and the cube root transforms the
intensity into perceived loudness. This particular knowledge is similarly, although
in much greater detail, exploited in the psychoacoustic model of the MP3 encoder.
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CHAPTER 7

SPECTRALLY SELECTIVE DITHERING

This chapter introduces the proposed compensation technique called Spectrally Se-
lective Dithering (SSD). The algorithm works at the front-end processing level before
any subsequent feature extraction and was designed to selectively compensate the effects
of spectral valleys. It was based on the principle of detecting the corrupted bands in
the frequency domain and adding a controlled amount of noise. Its contribution was
evaluated in both GMM-HMM and DNN-HMM systems for the Czech. The algorithm
was also evaluated for German and English languages to demonstrate that the discussed
problems and proposed solutions were applicable to other foreign languages. The results
demonstrated that SSD could bring further improvements over the analysed state-of-the-
art acoustic modelling setup from the previous chapter. The following analysis studied
the limits of middle and far distance microphone recognition for MP3 speech. The chapter
is concluded with the comparison of the proposed technique with the spectral bandwidth
replication algorithm designed for advanced audio coding, which is the successor of MP3.

7.1 Modelling of MP3 Distortions

Previous analyses have determined that lossy compression influences unvoiced phonemes
more strongly than voiced ones. In order to determine which signal degradation, band-
width limitation or spectral valleys is more detrimental to the overall performance, the
initial experiments were focused on estimating their partial contributions separately. The
uncompressed signals were filtered by a FIR low-pass filter at corresponding cut-off fre-
quencies, which were set for each bitrate according to values reported by LAME. The
coefficients for linear-phase LP FIR filters were estimated using the window method of a
sufficiently high order (p=>50) to ensure a steep attenuation above the cut-off frequency.
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On the other hand, the effects of spectral valleys was much harder to simulate without
introducing other compression artifacts at the same time. Another thing to consider was
whether the spectral valleys should reach into the higher frequency bands or not. The
approach used in this experiment allowed spectral valleys to distort only the lower parts
of the bandwidths, since I assumed that the upper parts would be wiped out by the LP
filter anyway. As a result, the signals were preprocessed as follows. The signals were
at first compressed/decompressed and then the upper bands were artificially added by
coping the higher bands from the uncompressed signals. This approach approximated the
situation when only the lower bands were compressed, while the upper bands retained
all their original information. The experiments were performed for Czech language only,
using both PLPs and MFCCs and GMM-HMM architecture using the common ASR
framework.

The described approach allowed me to quantify each degradations as if it affected only
the selected spectral parts. It should be noted however, that other compression artifacts
(pre-echo, birdie, etc.) might have also degraded the lower bands and thus affected the
results obtained for spectral valleys. Table 7.1 summarizes the obtained results in the
LVCSR task using the best performing system from previous chapter and provides an
overview of the used cut-off frequencies. It is important to realize that multiple bitarates
share the same f.,;; and thus the table contains less values for LP filtering. The obtained
results demonstrate that bandlimiting had only marginal effect on ASR as the absolute
WER difference between the 128 kbps and 12 kbps was within 1% for both features.
Second, it also shows that spectral valleys degraded the speech more significantly on
average, but their contribution to the overall degradation was also only marginal as well.
The sole exception was 12 kbps bitrate and MFCC features. The experimental protocol
for the following analysis was changed a little in order to validate the generally accepted
conclusions about the perceived quality of compressed signals.

Table 7.1: Partial contributions of LP filtering and spectral valleys in a LVCSR, task,

WER
BitRate [bps|] | 128k 32k 28k | 24k 20k | 16k 12k
feut 7200 Hz 5800 Hz 5600 Hz
PLP SV 14.16 14.28 14.45 | 14.22 14.43 | 14.96 16.68
Low-pass 14.22 14.34 14.54
MFCC SV 14.35 1491 14.89 | 14.94 15.56 | 16.18 19.7
Low-pass 14.15 14.45 14.86

Lets examine a different approach of estimating the contribution of spectral valleys. The
signals were at first compressed at the corresponding bitrates, but the cut-off frequency
was uniformly set at 8 kHz. There were two main reasons for this decision. First, it is
more natural for a user to simply compress audio and not worry about artificial bandwidth
extension /reconstruction. Second, I wanted to find out if by not limiting the bandwidth
of MP3 speech, I could improve the system’s performance. The primary argument for this
approach was that even if high-frequency information was heavily distorted, it was still
present and could therefore contribute to the overall performance. However, this proce-
dure is generally considered suboptimal and is advised against by the music community.
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The common sense advises that the available bandwidth needs to be limited, otherwise
it would introduce other unwanted artifacts. The argument against full-bandwidth MP3
was thus based on subjective listening tests and as such might not hold true for ASR.
Figure 7.1 shows the obtained error rates for full-band and limited MP3 speech. While
the MFCC features contributed from removing the heavily distorted HF bands for lower
bitrates, the situation was reversed for the PLP ones. The process did not affect signals
with higher bitrates in any significant way. However, full-band MFCCs still did not out-
perform PLPs in any setup, which leads to conclusion that LP filtering is beneficial for
MP3 ASR as well.
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Figure 7.1: Comparison of fullband and standard (LP-filtered) MP3

While the f.,; for the 12 kbps bitrate was around 5.6 kHz, the following experiments
went even further to demonstrate that current ASR systems are reasonably resistant to
bandwidth limitations. The used signals were recorded with a 16 kHz sampling frequency,
which meant that f,,.. = 8 kHz, but many real-life ASR applications run successfully
over a telephone channel, which limits the usable bandwidth down to 3.4 kHz. Therefore,
I decided to stop the experiments at the 4 kHz threshold. The achieved results are
summarized in Tab 7.2. The MFCC and PLP coeflicients showed very similar results for
the full-band signals. The error rate curves followed the same trend which approximated
an exponential function with a breakpoint around 6 kHz. The only difference was in the
rate of increase, which was steeper for the MFCC features. It could be concluded that the
substantial increase in WER for MP3 speech was not caused by low-pass filtering alone.

Table 7.2: WER for low-pass filtered speech

feut full | TkHz | 6kHz | 5kHz | 4kHz
MFCC | 14.6 | 14.7 | 15.1 | 16.5 | 19.5
PLP |143| 143 | 143 | 153 | 17.5
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Figure 7.2: Illustrative spectrograms for all the studied cases of degrading the speech
signal

To illustrate the effects of all analysed setups; LP filtered speech, normal MP3, full-band
MP3, and artificially replicated high frequency; Figure 7.2 plots sample spectrograms of
the same signal for each of these scenarios. Based on these series of experiments, I have
concluded that although the overall poor ASR performance on MP3 speech was caused
by a non-linear combination of both studied artifacts, the contribution of spectral valleys
was far more detrimental. As a result, I have decided to focus on compensating this
distortion as a primary way of improving the recognition results for MP3 speech.

7.2 Description of SSD

Following the nature of the distortion described in the previous section, along with al-
ready achieved results in this task, led to conclusion that the reconstruction of missing low
and middle frequency components was the key to robust MP3 speech recognition. Numer-
ous works on this topic have been published in the field of audio coding, i.e. [93, 95], but to
my knowledge, no of these algorithms have been tried in the field on ASR. Following the
research presented in these works, I decided to design an algorithm which could be easily
incorporated into the current parametrization schemes for MFCC and PLP features. In
order to combine all of these aspects, I decided to modify the uniform dithering technique
to dither only the selected frequency bands with automatically estimated amount of noise.

Figure 7.3 presents the full block scheme of the designed SSD algorithm. The principal
idea was to use to the LPC model to decompose the signal into the spectral envelope and
the residual signal (exc), detect the zero-energy bands in the residual signal and patch
them to get the compensated signal. To accomplish this goal, I had to designed two
separate blocks: the zero-bands detector and gain estimation/compensation block.
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Figure 7.3: Block diagram of the SSD compensation technique

The Zero-energy Band Detector block was composed of LPC coefficient estimation
block, an analysis filter with the frequency response 1/H(z), an FFT computation block,
a frequency filter bank with linear frequency axis and the criteria function estimation.
The Gain Estimation and Reconstruction block was composed of the gain estima-
tion, frequency domain compensation block, frequency domain multiplexor and the IFFT
block, a synthesis filter with the frequency response H(z) and finally the time-domain
reconstruction using the OLA method. Each of these block is described in greater detail
in the following text.

7.2.1 Zero-band detection

The analysis of coded speech showed that the discussed distortions effect both the
spectral envelope and the residual signal at the same time. Although these changes
were detectable in both spectral domains, I chose to base my detection algorithm on
the residual signal. The residual signal for AR process is a decorrelated signal with flat
spectral characteristics with a zero mean value. However, the actual values in the distorted
bands approximated a flat line whose trend could be approximated by a linear function
with gradient —0. It allowed me to employ a criteria function based on the smoothness
of the spectral curve and classify distorted bands using a fixed threshold. In the first step,
the input frame was weighted by the Hamming window and then inverse filtered with a
simple LPC filter with the frequency response 1/H(z) in order to remove the vocal tract
characteristics and to obtain the excitation signal. The order of the LPC filter was set to
10 and its frequency characteristics had the form of:

P )
14> agz="
k=1
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where £, was the power of the prediction error. The frame was then converted to log-
magnitude spectral domain where it was windowed once more to analyse each frequency
bands separately. The threshold was then applied to classify each band as either good
or corrupted. Let’s assume the frequency band b, which contains spectral components
f1 through f5, was extracted from the spectra of the excitation in a frame. The criteria
crit(b) used by the detector was computed as:

f2
crit(b) = | > (exc(f) — exc(f-1))2. (7.2)

f=hH

The decision function was then defined as:

| 0, crit(b) > Thr,
mask(b) = { 1, erit(b) < Thr, (7.3)

where Thr was a fixed threshold which was set as a constant for all bitrates. The threshold
value was estimated empirically and it was the only manually optimized variable in the
algorithm. The number of spectral components in a band was crucial for robust estima-
tion. If the band was too narrow, the detector returned too many false alarms. On the
other hand, if the band was too wide the location of zero-bands became inaccurate. The
experiments showed that a band containing 4 spectral bins gave a reasonably precise esti-
mation for 16 KHz sampled signals. Four spectral bins in a band equalled the frequency
resolution of 125 Hz. Another possibility was to use an overlapping frequency windowing
with a longer frame and shorted shift. However, I did not use this option.

7.2.2 (ain estimation and compensation

In the next step, the masking function was used to estimate the gain of added noise
and to patch the corrupted bands. The gain was estimated as a simple average from the
undistorted bands. This average was used to patch the excitation signal. The added noise
had uniform distribution with zero mean value and unit variance. We can then express
the compensated excitation ezc(b) as follows:

exc(b) + G x noise, mask(b) =1,

exe(b) = { exc(b), mask(b) = 0. (7:4)

The excitation signal was then put together in the multiplexer block and the compen-
sated frame was obtained through forward LPC filtering with the same coeflicients and
the impulse response H(z). The whole compensated signal was reconstructed using the
OLA method and a new set of features was extracted from the compensated signals.
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7.2.3 Analysis of SSD blocks

Figure 8.1 illustrates the estimated masks (ones or zeroes) from the same signal as the
spectrograms in Figure 7.2. It can be noted that the selected criteria function was not
only able to detect the suppressed bands accurately but did so only in the speech frames.
Both starting and ending parts of the recording which contained silence were correctly
classified as "good”. These attributes enhanced the selectivity of the algorithm as only
the speech frames were subject to subsequent compensation.

The lack of verifiable labels disallowed me to use the standard detection measures (true
positive, false positive, false positive, false negative) to evaluate the detection accuracy and
thus I had to rely on comparing the achieved values among bitrates. The evaluation of each
SSD blocks (Zero-band detector and Gain estimation) is summarized in Table 7.3. The
presented statistics were computed on Czech test dataset. The measure I used to evaluate
the Zero-band detector was based on counting the number of corrupted bands to the total
number of bands in a signal. In another words, I worked with timex frequency patches
in the estimated mask across the whole signal. If we consider the used segmentation
setup for feature extraction and the frequency resolution of the Zero-band detector, then
one band was defined as a patch of 16x 125 msx Hz dimension. I chose this measure in
order to account for different lengths of signals. The statistical values displayed an overall
upward trend in the average number of corrupted bands which was in accordance with
the initial assumption. Figure 8.3 also plots the histograms of the relative number of
corrupted bands in a signal.

Table 7.3: Percentage of corrupted bands and gain G in the evaluation corpora as esti-

mated by SSD

128k | 64k | 32k | 28k | 24k | 20k | 16k | 12k
Zero-bands | 4.37 4.43 | 6.17 | 7.88 | 13.09 | 15.76 | 19.72 | 25.09
(uto) (%] | +£1.18 | £1.23 | £1.84 | £2.44 | £3.93 | £4.63 | +£5.78 | £7.05
Gain 18.44+ | 18.40 | 17.96 | 17.74 | 17.49 | 17.21 | 16.95 | 16.69
pto [ +1.4 | £1.38 | £1.44 | £1.52 | £1.82 | £1.93 | £2.13 | £2.51

On the other hand, the gain values were estimated only from positively detected bands.
The estimated gains displayed an opposite trend as the average values were decreasing
rather than increasing. There are several possible explanation for this. First, the detector
misclassified the pauses in between the words as zero-bands. Second, the detector failed
to detect all occurring corrupted bands. Third, previous experiments have demonstrated
that MP3 effects unvoiced consonants much more than voiced phonemes and thus more
unvoiced speech segments were included. In all cases, the actual gain would be estimated
from a series of comparatively smaller values (pause vs. speech/ unvoiced vs. voiced) or
even a series of zeroes (zero-band) which would explain the downward trend. It is also
important to realize that these values were computed in log-magnitude spectral domain
and were not comparable to the dithering values R for uniform dithering. Figure 8.2
plots the histograms of estimated gains on a per frame basis. We can also notice that the
standard deviation is increasing in both cases.
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7.3 Evaluation of SSD performance

The performance of proposed SSD algorithm was evaluated and compared with the
method based on uniform dithering. Both dithering techniques were implemented either
at the level of the feature extraction tool (uniform dithering within CtuCopy tool) or sep-
arately in the MATLAB environment (Spectrally Selective Dithering). The algorithms
were evaluated for both GMM-HMM and DNN-GMM architectures. The experiments
were performed for Czech, English and German in order to demonstrate that the com-
pression degraded different languages in the same manner.

The Czech GMM-HMM system used the previously described common setup. Signals
for the English experiments were from the WSJ database [99]. I used the full 81-hour
train-si284 set plus the eval92 set as my test set. The data for German were taken from the
GLOBALPHONE database [100] and the training set contained 14.9 hours of speech. The
German results are presented on 1.5 hours of data from the eval set. The signals from all
databases were recorded in acoustically clear conditions with a 16 kHz sampling frequency
and 16 bit precision. This consistency in the sampling frequency and the bit-depth across
the languages allowed me to use the same number bins in a band for SSD.

The ditherings were applied at the feature extraction level before any other normal-
ization and transformation. The optimal value for uniform dithering was determined by
manually increasing the power of added noise until a minimal error rate was achieved.
The English AM contained 39 starting phone and the German AM was built for 41 mono-
phones. As for the discriminative training, I used only the MPE criteria as it showed
slightly better overall results in the previous analyses. The DNN-HMM hybrid system
was built upon 40 dimensional baseline features which were later speaker-adapted by
fMLLR. The transformation matrices were estimated during the SAT stage of GMM-
HMM training. The DNN topology consisted of an input layer with 440 units (for the
40-dimensional fMLLR features with the context of 5 frames with mean and variance
normalization), followed by 6 hidden layers with 2048 neurons per layer and the sigmoid
activation function. The process of building the DNN-HMM system began with the ini-
tialization of hidden layers that employed Restricted Boltzmann Machines and then added
the output layer. The process continued with frame cross-entropy training and ended with
sMBR sequence-discriminative training. More detailed information can be found in Kaldi
recipe sb [62].

For the English experiments, I used the trigram LM available in WSJ corpora [99]. The
German trigram LM was created using the Rapid Language Adaptation Toolkit [101]. The
complete information about the test sets and the LMs used is summarized in Table 7.4.

7.3.1 Results for Czech

The comparison analysis of matched and mismatched conditions is summarized in Ta-
ble 7.5, and there are several interesting things to see there. First of all, the advantage of
using matched training was clear only for bitrates lower than 24 kbps. for both PLPs and
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Table 7.4: Summary of used setups for different languages

AM LM
lang. | train | test | phn. | voc. | n-gram | OOV
CZ 72h 2h 44 | 340k 2 1.2
ENG | 8lh | 0.7h| 39 | 125k 3 1.8
GER | 14.9h | 1.5h | 41 38k 3 2.2

MFCCs. This observation is somewhat contrary to the my initial expectations. While the
absolute WER over mismatched conditions was within 1%, and had a decreasing tendency,
the higher bitrates still suffered from the process. This trend might have occurred due to
slightly more varying acoustic environment of used data. Second, the PLPs once again
outperformed the MFCCs and the absolute WER difference had an increasing tendency,
starting at 0.5% for 128 kbps and ending a 6.4% for 12 kbps.

Table 7.5: WER in matched & mismatched training for Czech, GMM system

MFCC PLP
match ‘ mismatch | match ‘ mismatch
RAW 14.6 - 14.2 -
128 kbps | 15.7 14.7 14.5 14.2
64 kbps 15.8 14.9 14.8 14.3
32 kbps 16.5 15.0 15.0 14.4
28 kbps 16.7 15.8 15.0 14.6
24 kbps 17.1 17.8 15.0 15.0
20 kbps 17.1 18.3 15.0 16.0
16 kbps 19.7 21.2 16.8 18.1
12 kbps 22.9 31.6 18.9 25.2

The previous section has summarized the results with a gradually improved AM using
the discussed training chain. Thus, in this section I present only the results with the final,
discriminative AM and evaluated only the option of dithering signals with either UD or
SSD. However, I also added the results for DT model without the fMLLR to demonstrate
its effect on the error rate. The acronyms for particular setups are listed below.

e GMM-SI - speaker-independent

e GMM-SD - speaker-dependent

e GMM-UD - speaker-dependent + UD compensation
e GMM-SSD - speaker-dependent + SSD compensation

The contribution of both discussed front-end compensation techniques is summarized in
Table 7.6. The results obtained with uniform dithering were ambiguous as I observed an
actual increase in WER for all rates aside from 20 kbps and 12 kbps. This behaviour, along
with the need to set the dithering value R properly, was the reason why the technique
is used rarely, if at all. However, it is important to realize that these conclusions were
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valid for the final MPE trained AMs as opposed to my previously discussed results from
Chapter 6 where I observed statistically significant improvements for weakly refined AMs.

Table 7.6: Comparison of UD and SSD for Czech GMM system

WER [%] WERR [%]

GMM-SI GMM-SD GMM-UD GMM-SSD | GMM-SSD
128 kbps | 18.20 14.29 14.24 14.18 0.7
64 kbps | 18.43 14.35 14.27 14.22 0.9
32 kbps | 18.70 14.45 14.5 14.25 1.4
28 kbps | 19.21 14.64 14.64 14.52 0.8
24 kbps | 19.87 15.02 15.07 14.97 0.3
20 kbps | 21.27 16.02 15.88 15.72 1.9
16 kbps | 25.19 18.15 18.27 17.83 1.8
12kbps | 34.73 25.20 24.04 23.35 7.3

The evaluations demonstrated that the proposed SSD algorithm was able to accurately
detect low-energy areas and estimate the amount of noise needed to compensate the dis-
tortion. The proposed SSD technique displayed an absolute WER reduction over baseline
system ranging from 0.05% for 24 kbps to 1.85% for 12 kbps. The second important
observation was that the SSD never increased the error rate. An absolute margin of
0.69% between uniform dithering and SSD was the highest for the lowest bitrate. Al-
though the presented improvements were relatively small, the nature of distortion have
lead me to the conclusion that potentially even greater error reductions could be achieved
by compensating SV with more advanced techniques.

Neural net based AMs have displayed a much greater robustness against adverse en-
vironmental conditions without any pre-processing than their GMM predecessors. This
feature has naturally raised a question whether the DNN-HMM system could still benefit
from any feature-level modification technique. To answer this question, I used the same
experimental protocol and similar acronyms as before, re-summarized for clarity in the
points bellow. The recognition results are summarized in Tab 7.7. Once again, SSD was
able to improve the recognition results. This conclusion proved to be true for all bitrates
aside from 20 kbps and also the average WERR was much higher than for the GMM-HMM
system. The UD once again failed to deliver a consistent improvement and for most cases
it even worsened the results. The highest absolute improvement of 1.87% was achieved
for 12 kbps. However, it is also important to notice that the DNN-HMM system achieved
worse results than the GMM-HMM system in general. The most likely reason why this
situation occurred was due to the fact that DNN systems are known to be data-hungry.
Failing to provide sufficient amount of data resulted in a system with higher error rates
than a comparable GMM system. Simply put, I lacked data to properly train the system.

e DNN-SI - speaker-independent

e DNN-SD - speaker-dependent

e DNN-UD - speaker-dependent + UD compensation
e DNN-SSD - speaker-dependent + SSD compensation
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Table 7.7: Comparison of UD and SSD for Czech DNN system

WER [%] WERR [%]

DNN-UD DNN-SD DNN-UD DNN-SSD | DNN-SSD
RAW 18.08 17.24 17.61 17.56 1.9
128 kbps | 19.5 17.77 17.87 16.94 46
64k bps | 19.95 17.8 18.03 17.00 45
32 kbps | 20.28 17.88 18.03 17.07 45
28 kbps |  20.89 18.05 18.26 17.19 48
24 kbps | 21.64 18.35 18.46 17.35 5.4
20 kbps | 2247  19.06 19.01 19.32 14
16 kbps |  26.69 21.46 21.25 20.71 3.6

12 kbps | 37.76 26.78 26.43 24.91 7

Figure 7.4 plots the results of GMM and DNN systems for all setups. The graphs
illustrate the advantages of using SSD compensated features for all studied bitrates and
architectures. The figures also illustrate the advantage of SSD over the simple UD and
show that speaker adaptation provided the major portion of improvement out of all studied
acoustic modelling techniques.

a) DNN-based system for Czech in mismatched MP3
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b) GMM-based system for Czech in mismatched MP3
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Figure 7.4: Comparison of GMM and DNN systems for Czech

7.3.2 Results for English & German

The results of matched and mismatched recognition for English and German languages
are summarized in Table 7.8, and there are several interesting things to see there. The
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English and German displayed the expected trend, where all the matched conditions
outperformed the mismatched ones for virtually all bitrates. For low bitrates especially,
the difference was significant, and the improvement of using matched AMs reached as
high as 49% relatively. The second notable trend was a relatively smaller degradation
of PLPs over MFCCs and a much slower increase in WER as a function of bitrate for
both features. Based on these result, it could be concluded that training bitrate-specific
AMs was potentially a viable option for these languages, since the overall improvements
in error rates were significant.

Table 7.8: WER in matched & mismatched training for English & German GMM sys-

tem
ENG GER
MFCC | PLP MFCC | PLP
match mismat. match mismat. | match mismat. match mismat.
RAW 8.5 - 8.3 - 18.7 - 18.8 -
128 kbps 8.7 10.0 8.7 9.4 18.9 18.8 18.8 19.1
64 kbps 8.8 10.4 8.5 9.3 19.1 19.1 18.8 19.1
32 kbps 8.7 10.9 8.7 9.8 19.2 194 19.1 19.5

28 kbps 8.7 11.6 8.7 10.1 19.9 19.9 19.0 19.9
24 kbps 9.3 12.3 8.9 11.0 20.2 23.0 19.3 20.5
20 kbps 9.7 13.3 9.1 11.7 21.0 26.2 20.1 21.7
16 kbps 11.1 16.4 9.9 13.8 22.7 33.1 22.8 254
12 kbps 11.5 22.6 10.4 17.1 26.6 46.0 23.3 42.6

The full results for mismatched system with the application of SSD are summarized in
Table 7.10 and Table 7.9. Tables use the same acronyms as for the Czech. The initial
error rates for RAW speech differed for each language. The large amount of training
data for English, along with its relatively simple grammatical structure, were the primary
reasons why it achieved the best WER of 8.3%. The results for German were significantly
worse, with WER of 18.8%. The results for German were more likely influenced by the
smaller amount of training data. Despite of this, the overall contribution of the dithering
techniques was clearly proven for all the studied languages and bitrates.

Table 7.9: Comparison of UD and SSD for German GMM system

WER [%] WERR [%]

GMM-SI GMM-SD GMM-UD GMM-SSD | GMM-SSD
RAW | 21.85 18.86 18.81 18.79 0.3
128 kbps | 22.13 19.10 19.13 18.85 1.3
64 kbps | 22.33 19.12 19.32 19.01 0.6
32 kbps | 22.68 19.56 19.64 19.21 1.8
28 kbps | 23.54 19.94 19.95 19.57 1.9
24 kbps | 24.48 20.53 20.69 20.05 2.3
20 kbps | 26.89 21.72 21.78 21.08 3
16 kbps | 33.61 25.45 25.66 24.83 2.5
12 kbps | 51.02 42.68 34.87 35.86 16
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Aside from a single case (German and 12 kbps), the SSD algorithm outperformed the
UD technique and DT models by a slight margin for all studied languages and bitrates.
The relative average improvement was highly language-specific, 12.5% for English, and
1.73% for German. On the other hand, the relative improvement of SSD over SA features
was more consistent. It reached at maximum 16% for German and 15.3% for English.
However, it is also interesting to note that the English contributed from SSD much more
on average than German did. Based on these results, it can be concluded that SSD
compensated features ertr more similar to non-compressed features and were a preferable
solution for MP3 recognition.

Table 7.10: Comparison of UD and SSD for English GMM system

WER [%] WERR [%]

GMM-SI GMM-SD GMM-UD GMM-SSD | GMM-SSD
RAW | 10.26 8.37 8.40 8.51 17
128 kbps | 11.60 9.49 9.51 8.32 12.3
64 kbps | 11.82 9.37 9.65 8.35 10.9
32 kbps | 11.95 9.89 9.67 8.39 15.1
28 kbps | 12.74 10.14 9.98 8.67 14.5
24 kbps | 1347 11.02 11.21 9.54 13.4
20 kbps | 14.23 11.70 11.70 10.04 14.1
16 kbps | 17.65 13.82 13.47 11.72 15.3
12 kbps | 25.16 17.12 16.39 15.47 9.6

Since the previous analyses with Czech DNNs have proved that 72 hours of data was
not sufficient to properly train the net, I excluded German from the next analysis and
focused solely on English. The comparison between matched and mismatched conditions
is shown in Table 7.11. The qualitative trends previously observed in GMM systems held
true for DNN as well. The matched training significantly outperformed the mismatched
training, starting at 0% for 128 kbps and ending at a relative 60.5% for 12 kbps. Another
comparison could be drawn against the matched GMM, where the overall difference be-
tween DNN and GMM systems was up to 2% and the neural nets proved to outperform
the GMM architecture. However, the absolute WER difference decreased with decreasing
bitrate (only 0.1% for 12 kbps), which led me to the conclusion that the constraints of
current MP3 recognition are dependent more on bitrate and less on the choice of ASR
architecture. This observation proved true for the mismatched system as well where the
speech compression process nearly quadrupled the error rate from 6.8% to 26.1%. In
comparison, the error rate for GMM dropped from 8.3% to 17.1%. In other words, the
clean-conditioned DNN outperformed the GMM, but the compressed GMM outperformed
the DNN. However, even this observation could be easily explained it we realize that GMM
is a generative model while DNN is a discriminative model.

Table 7.11: WER in matched & mismatched training for English, DNN architecture

RAW | 128k | 64k | 32k | 28k | 24k | 20k | 16k | 12k
match 6.8 7 7T | 72172376796 82 | 10.3
mismatch - 7 7174|7485 ] 92 |11.9| 26.11
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The final experiment involved the LVCSR task with the DNN system in mismatched
conditions and with compensated features. The fMLLR adaptation provided the major
portion of the improvement, by up to a relative 42%. The application of a feature com-
pensation technique, in the form of either UD or SSD, yielded mixed results. The former
often worsened the actual recognition score and the latter brought only marginal improve-
ments. The WERR for SSD reached 2.9% on average, and the only notable improvement
was observed for 12 kbps, at 10.27%. For comparison, the relative improvement of SDD
for the GMM system and English was 13%. Figure 7.6 plots the results of GMM and
DNN systems for all setups. The graphs illustrate the advantages of using neural nets for
all bitrates aside from the very lowest.

Table 7.12: Comparison of UD and SSD for English DNN architecture

WER [%] WERR [%]
bitrate | DNN-UD DNN-SD DNN-UD DNN-SSD | DNN-SSD
RAW 8.33 6.82 711 6.93 16

128 kbps | 9.06 7.07 7.28 6.84 3.3
64 kbps |  9.57 7.16 7.30 6.91 3.5
32 kbps | 9.75 7.44 7.58 7.25 2.6
28 kbps | 9.94 7.46 7.78 7.37 1.2
24 kbps | 12.81 8.56 9.60 8.49 0.8
20 kbps |  14.42 9.29 10.31 9.06 2.5
16 kbps | 20.70  11.94 13.22 12.00 0.5
12 kbps | 38.61 26.17  23.36 23.50 10.2
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Figure 7.5: Results for SSD-compensated features in GMM systems and all languages.
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a) DNN-based system for English in mismatched MP3
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b) GMM-based system for English in mismatched MP3
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Figure 7.6: Comparison of GMM and DNN systems for English

7.3.3 Summary

Figure 7.5 plots the results for SSD-compensated features. Although the baseline WERs
differed greatly, all languages displayed the same general trend. The breakpoint for the
exponential increase occurred around 24 kbps. Based on these results, it can be concluded
that MP3 compression was largely language-independent. The main conclusions from
these analyses can be summarized as follows.

e The MP3 compression introduced two main artifacts that degraded speech: low-pass
filtering and spectral valleys. The initial analysis evaluated their impacts separately
and showed that spectral valleys influenced ASR performance on a much greater
scale. Thus, the proposed algorithm focused on reducing the depth of these valleys.

e The results proved that the SSD technique could consistently outperform both
adapted features and uniform dithering at the same time. The selective dither-
ing method was particularly effective for GMM-based systems, where significant
reduction of WER values was observed for all languages and bitrates. The only ex-
ception was the 12 kbps German test set where the uniform dithering outperformed
SSD, albeit only by a small margin. Aside from this case, the results achieved with
the UD were inconclusive.

e The results with matched and mismatched training showed that using matched

AMs could bring considerable WERR. However, the main problem was the reliable
detection, mainly in cases where different or even multiple encoders were used.
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e A complete set of tests with DNN systems was performed for Czech and English
only as I had the most amount of data for them. The neural nets outperformed the
GMNDMs in general, but proved to be more sensitive to the quality of the input data
in the mismatched scenario and hence less successful in case of very low bitrates.
However, the results might have been influenced by the available amount of training
data. It is possible that with more training data, the DNNs would be more robust
even in these extreme situations. The contribution of SSD was proved only for
Czech while English displayed mixed results.

7.4 SSD for Distant Microphone MP3

The performed analyses with MP3 so far have been focused on a high quality input
audio recorded with a close-talk microphone. However, MP3 coding is often used to
compress signals from conference meetings or lectures which are recorded with a middle-
to-far distance microphones. The previous chapters have analysed the performance of
discussed AM techniques in similar scenarios and for two different environment (private
and public) and this section combines the two scenarios and explores the usability of
MP3 for middle-to-far distance microphone recognition. The analyses were performed
only for the signals from a clean environment since MP3 is unlikely to be used for car
recordings. A closer look revealed that this recognition tasks suffered from all discussed
distortions (additive/convolution noise, bandlimiting and spectral valleys). The ASR
used the previously described setup when the only difference was the application of ESS
in addition to the already described parametrization. Thus, the experiments included
results with and without the application of this algorithm. Its potential contribution was
also studied in conjunction with SSD. In case both techniques were used at the same time,
the signals were compensated with SSD at first and then with ESS.

7.4.1 Results for CS2 channel

The results for CS2 channel are summarized in Table 7.13 for the most important stages
of AM development. First, the direct comparison of CSO and CS2 channels showrf that
only the 12 kbps and 16 kbps bitates were severely affected by the choice of a microphone.
The absolute WER difference between CS0 and CS2 channels for 16/12 kbps was 2.53%
and 6.76% respectively. The margins for the higher bitrates were within 2% and decreasing
very slightly with a decreasing bitrate. However, even the highest bitrate still showed a
performance degradation of 1.7% over the CSO channel. Finally, MPE outperformed the
bMMI for all studied bitrates once again. Also, the total WERR between the baseline
and MPE level models reached 49.2% for 128 kbps and slowly increased up to 60% for
12 kbps. It has to be noted however, that the major portion of improvement was a
result of LDA+MLLT and SAT application. Table 7.14 summarizes the results for SSD
compensated signals. The application of the SSD brought a significant improvement (4.5%
for MPE) only for the lowest bitrate.
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Table 7.13: Results for MP3 for CS2 channel

128k | 64k | 32k | 28k | 24k | 20k 16k 12k
Baseline (SI) | 31.39 | 30.34 | 30.58 | 30.45 | 31.72 | 33.93 | 45.82 | 78.97
SAT (SA) | 25.82 | 24.52 | 24.69 | 24.83 | 25.68 | 26.71 | 30.23 | 42.56
MPE (SA) | 15.95 | 15.82 | 15.76 | 15.89 | 16.95 | 17.86 | 20.68 | 31.96

Table 7.14: Results for MP3 compensated with SSD for CS2 channel

128k | 64k | 32k | 28k | 24k | 20k | 16k 12k

Baseline (SI) 31.26 | 30.35 | 30.39 | 30.35 | 31.62 | 33.2 | 43.53 | 74.04
SAT (SA)+SSD | 25.41 | 24.34 | 24.59 | 24.64 | 25.55 | 26.49 | 29.32 | 36.87
MPE (SA)+SSD | 15.95 | 15.77 | 15.81 | 15.92 | 16.99 | 17.75 | 20.50 | 27.49

The previous results on far-microphone recognition for public environment confirmed
the advantage of using ESS in conjunction with the advanced AM for CS2 microphone.
The experimental setup of ESS remained the same as in the previous chapter and the
achieved results are summarized in Table 7.15. There are several interesting things to
note. The application of ESS did not bring any consistent improvement, regardless of the
bitrate. However, the absolute WER between standard and ESS compensated features
had a tendency to drop with decreasing bitrate. It reached 1.8% for 128 kbps rate but

only 0.25% for 12 kbps.

Table 7.15: Results for MP3 compensated with ESS for CS2 channel

128k | 64k | 32k | 28k | 24k | 20k 16k 12k
Baseline (SI) | 33.19 | 32.57 | 32.29 | 32.81 | 33.98 | 36.4 | 49.07 | 79.22
SAT (SA) | 25.82 | 24.52 | 24.69 | 24.83 | 25.68 | 26.71 | 30.23 | 42.56
MPE (SA) | 16.31 | 16.18 | 16.29 | 16.52 | 17.39 | 18.31 | 20.79 | 32.58

The last experiments included the application of both SSD and ESS algorithms. Due to
the nature of both algorithms, the ESS was applied after the speech wave was compressed
and compensated using the SSD. The achieved results are summarized in Table 7.16. It
can be noted that applying the SSD+ESS consistently worsened the error rates by about
1%, regardless of the bitrate. However, the results were still better than just for the sole
application of ESS. The performed experiments have proved that using the combination
of SSD+ESS did not bring any improvements a middle distance microphone.

Table 7.16: Results for MP3 compensated with ESS+SSD for CS2 channel

128k | 64k | 32k | 28k | 24k | 20k | 16k 12k

Baseline (SI) 33.08 | 32.27 | 32.16 | 32.82 | 33.72 | 35.8 | 46.95 | 78.75
SAT (SA)+SSD | 26.46 | 25.59 | 25.95 | 26.04 | 26.78 | 27.95 | 30.43 | 37.97
MPE (SA)+SSD | 16.41 | 16.12 | 16.30 | 16.63 | 17.32 | 18.26 | 20.64 | 28.57
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7.4.2 Results for CS3 channel

The final set of MP3 experiments involved using the CS3 channel and the results for the
standard features from CS3 channel are summarized in Table 7.17. The average increase
in absolute WER over the CS0O channel was much more significant this time and also
apparent for all bitrates. This trend was most prominent for baseline system were even
the highest bitrate. The absolute difference in mbox WER between the final MPE trained
CS0 and CS3 models increased from 22.17% for 128 kbps to 34.32% for 12 kbps. Also,
the total WERR between the baseline and MPE level models reached 34.4% for 128 kbps
but reached practically the same value of 36.8% for 12 kbps. This findings demonstrated
that the presence of additive and background noises had a non-linear degradation affect
on the MP3 compressed speech.

Table 7.17: Results for MP3 for CS3 channel

128k | 64k | 32k | 28k | 24k | 20k | 16k | 12k
Baseline (SI) | 56.37 | 56.07 | 56.03 | 56.29 | 57.13 | 59.13 | 68.58 | 91.24
SAT (SA) | 48.65 | 48.08 | 47.91 | 47.79 | 49.28 | 50.12 | 55.84 | 64.85
MPE (SA) | 36.35 | 36.15 | 36.17 | 36.73 | 38.26 | 40.67 | 46.61 | 57.67

Table 7.18: Results for MP3 compensated with SSD for CS3 channel

128k | 64k | 32k | 28k | 24k | 20k | 16k 12k

Baseline (SI) 56.17 | 55.96 | 56.11 | 56.19 | 57.19 | 58.62 | 67.01 | 87.62
SAT (SA)+SSD | 48.47 | 48.05 | 47.70 | 47.83 | 49.34 | 49.80 | 54.91 | 60.91
MPE (SA)+SSD | 36.21 | 35.91 | 36.16 | 36.81 | 38.18 | 40.22 | 45.60 | 53.54

The results for SSD compensated signals for CS3 channel are summarized in Table7.18.
The application of SSD compensation followed the same trend as for CS2 channel when
only the lowest bitrate displayed a significant error reduction of about 4%. The 16 kbps
rate also displayed a marginal improvement of 1.01% but the remaining bitrates were
mostly unaffected. This observation held true for all stages of AM refinement. The
analyses for CS3 channel with ESS compensated features are summarized in Table 7.19
and with SSD+ESS features in Table 7.20. The achieved results followed the trend already
observed for CS2 when the application of ESS increased the error rates even further. Also,
the combination of SSD and ESS proved to yield results which were much more similar
to sole application of SSD, although slightly worse. Thus, it could be concluded that the
application of ESS was not advised even for far-distance microphone compressed speech
speech.

Table 7.19: Results for MP3 compensated with ESS for CS3 channel

128k | 64k | 32k | 28k | 24k | 20k | 16k | 12k
Baseline (SI) | 57.16 | 56.99 | 56.96 | 57.07 | 58.07 | 59.58 | 71.52 | 94.91
SAT (SA) | 48.01 | 47.98 | 47.87 | 47.99 | 42.90 | 44.54 | 56.27 | 67.1
MPE (SA) | 36.36 | 35.97 | 36.43 | 36.53 | 36.67 | 37.98 | 47.35 | 60.15
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Table 7.20: Results for MP3 compensated with ESS+SSD for CS3 channel

128k | 64k | 32k | 28k | 24k | 20k | 16k 12k

Baseline (SI) 596.97 | 57 | 56.88 | 57.12 | 57.8 | 60.09 | 69.69 | 92.22
SAT (SA)+SSD | 48.04 | 48.03 | 47.63 | 48.07 | 49.02 | 50.36 | 55.23 | 62.74
MPE (SA)+SSD | 36.22 | 36.02 | 36.33 | 36.51 | 38.02 | 40.64 | 46.02 | 54.78

7.4.3 Summary

a) Resutls for MP3 recognition on CS2 channel for all compensation methods
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b) Resutls for MP3 recognition on CS3 channel for all compensation methods
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Figure 7.7: Results for best AMs on a) CS2 and b) CS3 channels

The results for the best AMs are illustrated in Figure 7.7. The main conclusions can
be summarized as follows.

e The overall error rate followed the trends previously observed for distant microphone
recognition, when a significant degradation was observed only for CS3 channel. The
results for CS2 channel were very similar to CS0O channel and only the 12 kbps
achieved noticeably worse WER.

e The relative improvement of the studied AM refinement techniques had an increas-
ing tendency with a decreasing bitrate. Also, it was noticeably higher for weakly
distorted CS2 channel than for strongly distorted CS3 channel.

e The application of SSD has improved the error rates only for 16 kbps and 12 kbps
bitrates. The sole application of ESS was found to be mostly ineffective in both
cases of CS2 and CS3 channels. The combination of ESS and SSD achieved nearly
identical results as sole SSD.
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7.5 SSD for Advanced Audio Coding

Advanced Audio Coding is the successor to the MP3 that is defined in MPEG-4 part
3 (ISO/IEC 14496-3). It it a popular, often even default, formant for efficient Internet
streaming in applications such as YouTube or Internet radios and podcasts. Perceptual
tests have demonstrated that AAC achieves greater audio quality in comparison with
MP3 for the same bitrate [78]. This improvement was achieved mainly by introducing a
special pre-processing algorithm called Spectral Band Replication (SBR) which has been
implemented to the standard AAC as the new high-efficiency AAC (HE-AAC) format. It
is primary intended for speech applications at low bitrates. The principle idea of SBR
is to replicate the LP filtered parts of speech using the middle and low frequency bands
and to apply a frequency dependent shaping function to modulate the spectral envelope
of replicated bands. HE-AAC v.1 profile has been developed for single channel audio
and uses SBR to enhance the perceived quality. On the other hand, HE-AAC v.2 has
been developed to improve the compression efficiency of stereo signals and uses SBR in
conjunction with Parametric Stereo. The primary goal of this section was to compare the
SSD algorithm with SBR even if both algorithms were designed for different purposes,
SBR compensates bandlimiting and SSD spectral valleys. The analyses were performed
with the same ASR system as the previous analyses with SSD. The FFmpeg tool was
used for both compression and decompression. I worked only with HE-AAC v.1 as all my
signal were recorded as single channel.

7.5.1 Results for AAC

Table 7.21 summarizes the results for AAC speech without the SBR and Table 7.22
summarizes the results for ”high-efficiency” AAC which employed SBR. First interesting
thing to note was that the achieved error rates are very similar to MP3 for all bitrates
aside from 12 kbps (19.72% vs. 25.2%). In fact, the overall improvement of using AAC
over MP3 was within 1% absolute for higher rates and the error rates started to rise
after passing the 24 kbps threshold, although more slowly. These observations supported
the assumption that the MP3 discussed degradations were also present in AAC speech.
This conclusion was somewhat expected as both algorithms made use of a psychacoustic
model and thus were expected to introduce the same artifacts. Second interesting thing
was that SBR application improved the results only for the baseline and LDA level AMs
and lowest bitrates. The final MPE trained AMs suffered from its application by about
5.36% on average. This findings was in direct contradiction with the conclusion made in
cited works which were drawn from perceptual evaluations. It has to be noted however
that the application of SBR is advised only for bitrates of 96 kbps and lower and thus
the performance drop observed for 128 kbps bitrate could be explained by it. However,
there is no other explanation for the performance drop for lower bitartes aside from the
fact that SBR processed speech was not suitable for ASR. Finally, even the application
of SSD worsened the results by 0.05% on average.
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Table 7.21: Results for AAC speech and SSD compensation

Adapted

Baseline | LDA | SAT | SGMM | MPE | MPE+SSD
128 kbps 27.58 26.93 | 21.95| 15.66 | 14.04 14.12
64 kbps 27.15 26.98 | 21.63 | 15.76 | 14.18 14.25
32 kbps 27.66 27.66 | 21.76 | 16.06 14.38 14.41
28 kbps 28.38 2788 | 21.83 | 16.44 | 14.24 14.27
24 kbps 28.35 28.15 | 22.13 | 16.58 | 14.49 14.56

20 kbps 29.60 28.67 | 22.21 | 17.17 15.03 15.02
16 kbps 32.81 32.43 | 25.21 | 19.47 17.1 17.28

12 kbps 38.84 36.33 | 26.70 | 22.44 19.72 19.65

Table 7.22: Results for high efficiency AAC speech

Adapted

Data Baseline | LDA | SAT | SGMM | MPE
128 kbp 31.46 29.09 | 24.16 | 22.46 | 20.06
64 kbps 31.46 29.09 | 24.16 | 22.46 | 20.06
32 kbps 31.30 29.02 | 24.02 | 22.72 | 20.06
28 kbps 31.30 29.19 | 24.08 | 23.00 | 20.61
24 kbps 31.87 29.40 | 24.18 | 23.20 | 20.51
20 kbps 32.81 30.00 | 24.39 | 23.49 | 20.87
16 kbps 33.83 31.36 | 25.34 | 23.86 | 21.17
12 kbps 38.24 34.11 | 28.02 | 26.44 | 23.80

7.5.2 Summary

The main conclusions regarding the AAC can be summarized as follows.

e The AAC formant achieved very similar results to MP3 aside from the lowest 12 kbps
rate, where AAC achieved much better error rates. However, the overall error rate
followed the same trend as it started to rise exponentially after passing the 24 kbps
threshold. Thus, we can conclude that both MP3 and AAC suffered from very
similar problems.

e The application of both compensation methods, SBR and SSD, did not bring any
significant improvement. The application of SBR was downright negative for the
final MPE trained models, regardless of used bitrate. An actual improvement was
observed only for Baseline and LDA level models for 16 kbps and 12 kbps rates.
The application of SSD had practically no effect as the average improvement was
only 0.05%.
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CONCLUSIONS

The goal of this thesis was to study robustness of ASR systems intended for strongly dis-
torted speech, more precisely distant microphone, car and MP3 compressed speech. The
thesis explored methods working at the level of signal preprocessing, feature extraction
and AM refinement. The study was conducted in the following way.

I studied the current state-of-the-art front-end processing and acoustic modelling
techniques for robust speech recognition and established two experimental ASR
frameworks based on the GMM-HMM and the DNN-HMM architectures. The clean
acoustic conditions were used to train a reference AM and to the obtain reference
results. These results were later used for comparison with the analysed adverse
conditions and for the mismatched recognition.

I analysed the real-life acoustic conditions of two public environments for distant
speech recognition and three noisy car environments. The constructed ASR sys-
tems were used to evaluate the performance of the studied techniques with small-
vocabulary and LVCSR tasks.

I analysed the artifacts introduced by MP3 compression using the constructed ASR
systems and evaluated the performance of the studied techniques. Also, the optimal
setup was determined with small-vocabulary and LVCSR tasks for MP3 recordings.

A novel compensation method was proposed and its contribution was evaluated with
both architectures for Czech, English and German languages. Following experiments
have proved that the proposed technique brings significant improvements for both
architectures.
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The most important conclusions can be summarized as follows. Regarding the distant
and car speech recognition, the performed analyses were focused on two public envi-
ronments and a noisy car environment with various microphone positions. The thesis
analysed the combination of feature normalization and ESS techniques and evaluated
their contribution for current GMM-HMM based systems. The performed experiments
proved that ESS could bring significant contributions for middle and far distance micro-
phones in situation with strong distortions. The highest WERR was observed for the AM
adaptation and the combination of UBM and SGMM. The MPE criteria proved to have
better generalization capabilities in the mismatched training and also proved to be more
robust against additive and convolution noises in matched training.

Regarding the MP3, the study was focused on determining the artifacts introduced
by the compression and analysing their effects on ASR. It was found that the low-pass
filtering had only marginally negative effect while spectral valleys degraded the ASR
performance more severely. It was also concluded that the total error rate was caused by
a non-linear combination of both artifacts occurring at the same time. The analysis also
showed that the spectral valleys could be detected in the spectral and log-spectral domain
as a series of near zero values. The PLP features were found to be much more robust than
MFCCs against the non-linear distortions introduced by the MP3. The application of AM
adaptation was found to be most beneficial if the non-compressed speech AM was used
for decoding the compressed speech. The experiments demonstrated that MP3 corrupted
unvoiced speech units more severely than the voiced units.

The thesis proposed a novel compensation method called Spectrally Selective Dithering
whose purpose was to compensate the effect of spectral valleys. The method was based
on detecting the corrupted frequency bands in the inverse filtered segments of speech
and adding a weighted amount of noise. The criteria function was based on the spectral
flatness and the gain of added noise was estimated as a simple average from clean bands.
The experiments proved that the proposed techniques could improve the performance
for both GMM-HMM and DNN-HMM systems for Czech language. The WERR of SSD
reached up to 7.3% for the GMM-HMM system and up to 7% for the DNN-HMM system
for Czech. The experiments with English and German languages proved that the MP3
compression degraded other languages equally. The proposed SSD algorithm brought up
to 15.3% and 10.2% WERR for the GMM-HMM and DNN-HMM systems respectively
for these languages. Finally, the SSD technique was compared against a perceptually-
motivated compensation technique called Spectral band replication, that was designed for
the AAC encoder. The SSD brought only marginal contribution for AAC speech but the
SBR technique was found to severely degrade the ASR performance.

The achieved results demonstrated that there is still a large room for improvements for
MP3 and other perceptual coding schemes. The initial study on SBR implemented in the
AAC format proved, that just a simple replication of low-pass filtered bands was not a
solution for improving the ASR performance for perceptually coded speech. The future
research should be aimed at explaining why this degradation occurred as this knowledge
could be utilize for improving the performance of SSD even further. A more comprehensive
study on newer audio coders and the already developed perception based compensation
methods is certainly other interesting area for future research.
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Figure 8.1: Illustrative masks estimated by the Zero-band detector block for a single
signal containing a whole sentence.
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