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Abstract

The anomaly-based network intrusion detection systems (IDS) typically suffer from high false
alarm rate rendering them useless in practice as the subsequent analysis done by the network
operator is costly and can be done only for a small number of raised alarms. This thesis introduces
several novel anomaly detectors and develop techniques for their combination to achieve much
smaller false positive rates.

We propose an architecture of an IDS that uses a number of simple network anomaly detectors
that are able identify anomalies relevant to malicious network communication using the NetFlow
(CAMNEP IDS) or HTTP access log (Cisco Cognitive Threat Analytics — CTA) telemetry data.
We introduce several novel network anomaly detection techniques that enrich the ensemble of
the state-of-the-art network anomaly detection methods used in both detection systems. The
detectors are designed to use different anomaly detection algorithms applied to different subsets
of features to introduce diversity and detect wider range of malicious behaviors.

The outputs of the anomaly detectors are combined using two parallel aggregation func-
tions constructed in supervised and unsupervised manner. The unsupervised combination uses
a state-of-the-art method that is robust to presence of low accuracy detectors. The supervised
combination is created using a novel technique that finds a convex combination of outputs of
the anomaly detectors maximizing the accuracy in τ -quantile of the most anomalous samples.
An extensive experimental evaluation and comparison to prior art on real network data using
anomaly detectors of both CAMNEP and CTA intrusion detection systems shows that the pro-
posed method not only outperforms prior art, but is also more robust to noise in training data
labels, which is another important feature for deployment in practice.

Moreover, we propose to smooth the outputs of the ensembles by online Local Adaptive
Multivariate Smoothing (LAMS) to further reduce the amount of the false positives. LAMS
can reduce the number of false positives introduced by the anomaly detection by replacing the
anomaly detector’s output on a network event with an aggregate of its output on all similar
network events observed in the past. The arguments are supported by extensive experimental
evaluation involving ensembles of anomaly detectors of both CTA and CAMNEP intrusion
detection systems. We also describe an effective implementation of the proposed solution to
process large streams of non-stationary data.

Finally, the extensive experimental evaluation using real network data collected in a number
of corporate networks with a large number of labeled samples shows that each of these techniques
significantly improves the efficacy of the anomaly-based intrusion detection system.
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Chapter 1

Introduction

Computer network threats against critical enterprise computing infrastructures have become
increasingly sophisticated, targeted attacks are on the rise, and cybercriminals are launching
their campaigns through a variety of legitimate vectors such as web or email, which are harder
to identify. The increase in sophistication drives the need to deploy increasingly more sophis-
ticated defense solutions. An essential component of the defense is Intrusion Detection System
(IDS) [150] analyzing network traffic that crosses the defense perimeter looking for evidence
of ongoing malicious activities (network attacks). When such an activity is detected, an alarm
is raised and then analyzed by network administrator who determines the existence and scope
of the damage, repairs it and improves the defense infrastructure against future attacks. The
IDS systems are therefore typically used as a last line of defense, after policy enforcement sys-
tems (firewalls), proxies, intrusion prevention systems and other perimeter devices [117], and
are designed to detect the attacks that successfully breached the perimeter.

IDS can be categorized according to different criteria: by their location (on a host, a wired
network, or a wireless network), detection methodology (signature matching or anomaly detec-
tion), or capability (simple detection or active attack prevention) [150]. In the context of our
work, the most important criterion is the categorization by the detection methodology, which is
described in more detail below.

Signature matching techniques identify attacks by matching network packet (i.e. a unit of
data carried by the network) contents against specific attack signatures. These signatures are
created using already identified and well-described attack samples, which is time consuming
and can take from couple of hours up to several days, which gives attackers plenty of time
for their criminal activities. The biggest weakness of this solution is that it is detecting only
known attacks, which can be due to smart evasion techniques used by malware limiting. With
the growing proportion of encrypted traffic, use of self-modifying malware, and other evasion
techniques, the use of a detection technique tailored to catch predefined known set of attacks is
becoming increasingly irrelevant.

Anomaly-based detection tries to decrease the human work (e.g. manual creation of signatures)
by building a statistical model of a normal behavior and detect all deviations from it. This enables
to detect new, previously unknown attacks provided that their statistical behavior is different
from that of the normal traffic. While anomaly-based methods are attractive conceptually, they
have not been widely adopted. This is because they typically suffer from comparatively higher
false alarm rate (not every anomaly is related to the attack) rendering them useless in practice,
since network operator can analyze only few incidents per day [88, 87]. That is why the pattern
based IDS are still widely used even when they are not able to detect new types of attack nor
to find anomalous behavior of the network users.

This thesis focuses on the anomaly-based network intrusion detection systems analyzing the
network telemetry collected at the perimeter. The main goal is to introduce additional techniques
that would reduce the number of false alarms (false positives) to a level that makes the anomaly-
based intrusion detection systems applicable in practice. In the next sections, we first discuss
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the network anomaly detection in more detail and then motivate the use of combination of a
number of heterogeneous simple network anomaly detectors.

Network Anomaly Detection

The main assumption of the anomaly-based intrusion detection systems is that intruder’s behav-
ior is noticeably different from that of legitimate user and that many unauthorized actions are
detectable as statistical anomalies [116]. The anomaly is defined [76] as an observation which
deviates so much from other observations as to arouse suspicions that it was generated by a
different mechanism.

The anomaly detector can be seen as one class classifier (this thesis uses the terms detector
and classifier interchangeably) and categorized into two groups: adaptive and static, based on
the fact that they use or do not use some kind of normal user model continuously learned from
the data. Both groups are acting differently under different conditions. The static detectors are
typically exploiting some domain knowledge and use a small subset of features and thresholding
to search for the anomalies. The adaptive detectors, on the other hand, are maintaining models
of normal user behavior or normal network state and labeling the deviations from this model
as anomalous. The models of normal network behavior are generally unknown, differ widely
among the networks, and it is very difficult to develop an anomaly detector in the strictest
sense. Therefore, they typically utilize the assumption that most of the traffic on the network is
normal, and anomalies within are related to malicious activities [130]1.

In general, the anomaly detector can have two2 types of outputs represented by:

• Label (Hard decision) — each observed instance is given a normal or anomalous label, so there
is no information about the certainty of the guessed label. Since most of the anomaly detection
algorithms produce continuous value outputs, the common practice is to use thresholding to
transform the continuous values to normal/anomalous label.

• Score (Soft decision) — a continuous anomaly score is assigned to each observed instance.
The anomaly score (or degree of support) can be interpreted in various ways, the two most
common being confidence and estimate of the posterior probability of the instance being an
anomaly. The requirement of additional threshold parameter still holds, it is just moved to
another step of the detection process.

This thesis focuses solely on the score producing anomaly detectors. They provide more
information in form of their certainty of the current observation being anomalous. The certainty
can be utilized in following combination process to gain higher accuracy of the whole system
as motivated in the next section. Chapters 3 and 4 describe several novel network anomaly
detectors in more detail to illustrate their simplicity and various approaches taken in the process
of designing them.

Potential of Anomaly Detector Combination

It has been observed [75] that different classifier designs offer complementary information about
the attacks, which could be combined to improve the performance of detecting wider range of
intrusions. This thesis deals with the combination of multiple classifiers to gain higher accuracy
and reduce the number of false positives.

1 This assumption might not always hold, e.g. during botnet co-ordinated or DDoS attacks in which the number

of attackers is really high, the majority of the traffic can be malicious, but this scheme is typically able to detect
the beginning of such attacks which should be sufficient in the practice to identify the origins of the attack.
2 It should be noted that the general classifiers can also output Ranks. In that case, classifier ranks all the

observations in a queue with the observation at the top being the first choice. But this approach is not applicable

for the one-class classifiers, so we will not consider them.
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The multiple classifier systems are often practical and effective solutions for difficult pat-
tern recognition tasks and have been successfully applied in remote sensing domain, person
recognition, and medicine. In literature they can be found under various names, like combining
of multiple classifiers [90], decision combination [78], mixture of experts [85], classifier ensem-
bles [73], classifier fusion [94], consensus aggregation [57], dynamic classifier selection [61], hybrid
methods [37] and others. We will refer to this approach as detector combination or ensemble
system.

The strength of the ensemble systems comes from the concept called ”wisdom of crowd“
characterized by statement of Surowiecki [166]:

,,When our imperfect judgments are aggregated in the right way, our collective
intelligence is often excellent“.

This can be illustrated by one of the oldest and best-known combination strategies, the
majority vote. It is a basic, but still powerful combiner that constructs the final decision via
simple majority of the detectors outputs. The probability of making the correct decision with
the majority vote Pmaj depends on the probability of each detector providing the correct output
that is:

Pmaj(L) =

L∑
m=L/2+1

(
L

m

)
pm(1− p)L−m, (1.1)

where L is the number of detectors and p is their accuracy. The result, also known as the
Condorcet Jury Theorem, is as follows; if p > 0.5, then Pmaj(L) is monotonically increasing in
L and Pmaj(L) → 1 as L → ∞. If p < 0.5, then Pmaj(L) is monotonically decreasing in L and
Pmaj(L) → 0 as L → ∞. If p = 0.5, then Pmaj(L) = 0.5 for any L. This theorem highlights
the benefit of combining reasonable detectors (i.e., with an accuracy p > 0.5) over the use of a
single detector.

The usage of an ensemble of anomaly detectors in network intrusion detection systems is
motivated by the fact that there are many features that have to be considered by the detection
mechanism to detect the intrusions efficiently. It is very hard to take into account the domain
knowledge as a whole in the design of the detector. It is also very difficult for individual classifiers
to effectively process features that have very different semantic meanings [62]. More practical
approach is to use multiple detectors, where each of them is specialized in detecting several
types of anomalies using a small subset of features. In this way, the detection problem is divided
into several simple sub-problems, each of them can be decomposed and analyzed in more detail.
The specialized detectors are able to create more precise models of normal/anomalous behavior
in comparison to the one detector that is analyzing all the features at once. Additionally, the
individual anomaly detectors can be specialized in detection of some parts of the attack utilizing
the structural knowledge to achieve higher precision [142]. Thus the intrusion detection domain
can be seen as a union of different sub-domains, each with different properties of normal behavior
and different types of anomalies.

All the benefits of using combination of multiple detectors for the intrusion detection can be
summarized in following bullets:

• ensemble method takes advantage of the strong points of each individual detector to induce
a better final outcome [63, 179, 90],

• reduction of false positives,
• even when using simple and not effective detectors, the combination can make the result

strong [94],
• reduction of the complexity of the detectors – instead of having one really complex detector

based on high-dimensional feature vector we have a number of simple low-dimensional de-
tectors designed specially for some sub-domain that can process only the features that have
common semantic meaning, this allows us to incorporate more precise sub-domain knowledge
and model the normal/anomaly behaviors more precisely,
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• ensemble detector systems are more robust to fluctuations introduced by dynamic environ-
ments,

• it is harder for the attacker to manipulate ensemble of detectors that are running in parallel,
when compared to a single anomaly detector system [124, 147, 19].

Many researchers have demonstrated that the ensembles often outperform their base models
(the component models of the ensemble) if the base models perform well on positive examples and
tend to make errors on different examples [78, 168, 63, 154]. Therefore, the base detectors must
exhibit some level of diversity among themselves [94] to make the ensemble system effective. The
diversity can be achieved using different detection algorithms, training parameters or feature
subsets. But we have to emphasize that uncorrelated features do not guarantee uncorrelated
detectors outputs [62]. Typically, it is almost impossible to have an ensemble of statistically
independent detectors but as shown in many works [122, 120] the ensemble of detectors violating
this assumption outperformed the base detectors in various research fields.

This thesis proposes to use an ensemble of network anomaly detectors that are using various
anomaly detection approaches, applied to different subsets of network features to introduce
diversity in the ensemble.

1.1 Challenges in Network Anomaly Detection

Anomaly-based network intrusion detection systems face number of various problems that need
to be addressed by researchers before they can be widely deployed. These rather hard problems
include huge amount of data that needs to be analyzed, high false positive rates introduced
by the anomaly detection paradigm and the lack of representative training data. This section
discusses the individual problems influencing the choice of the solutions in this thesis in more
detail.

Huge volume of data

Network security is clearly a Big Data problem. Network hosts generate lots of data every day.
Essentially, one terabyte of data can be easily transfered over the perimeter of an enterprise
network in one day. Such a large volume practically prevents deep analysis of all the data, such
as deep packet inspection3.

Many researcher therefore focus on the analysis of an aggregated information of the net-
work communication in form of network traffic logs. But still the number of log records can
easily outreach 10 billions per day4, which requires the detection techniques to have very low
computational (linear O(n) or linearithmic O(n log n)) and space complexity.

High cost of false positives

The common problem of all anomaly-based detectors is the amount of false positives, i.e. a
normal or expected behavior that is identified as anomalous or malicious. Each false positive
costs scarce analyst time because he needs to do the deep analysis of the incident to disprove
the maliciousness which can take up to several days of work. Therefore many researchers have
been searching for a way to create more precise anomaly detectors and a lot of various false
positive reduction techniques have been introduced (see Section 2.3 for detailed review). The

3 Deep packet inspection examines both the header and data part of each transferred packet, searching for

protocol non-compliance, viruses, spam, intrusions, etc.
4 CTA detection engine introduced in Chapter 4 processes at the time of writing this thesis more than 10 billion

HTTP log records per day.
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goal of all these techniques is to find the effective trade-off between false positives and attack
detection accuracy (true positive rate).

Class imbalance

Since the anomalies are defined as rare instances in the data, it is natural that the distribution
of normal and anomalous class will be skewed. This implies that the supervised techniques used
in the field of network anomaly detection should be implemented via the cost-sensitive variation
of the classification problem.

Few or no labeled data for training and validation

Obtaining labeled data in security domains and in the field of network intrusion detection
especially can be difficult, time consuming, and expensive. Besides, labeled data frequently
contains errors in labels of different sorts, for example some alerts might be missed and labeled
as legitimate, or even worse, all samples of alerts of certain types might be missed and therefore
labeled as legitimate.

There are no high-quality labeled data [52] available for training or validation of the anomaly
detection systems. The creation of such a data is very difficult, expensive and time-consuming.
Although the anomaly term is well defined, the boundary between the normal and anomalous
behavior is not precise and the exact notion of anomaly is different for different application do-
mains and context dependent. Next, the a priory probabilities of the anomalies are environment
dependent.

Many researchers were trying to create labeled data for anomaly-based intrusion detection
systems training and validation. The most famous labeled dataset created by the DARPA and
the MIT Lincoln Laboratory group [72] has been largely criticized because the rare types of
behavior were not represented proportionately rendering the dataset unrealistic [104].

Since the real network datasets are rarely publicly available due to the privacy constraints put
on the network traffic some authors proposed to simulate the traffic [162]. However, it is really
difficult to reproduce the pattern of anomalous or normal behavior in a dynamic environment
such as computer network. It is also very difficult to create purely legitimate network traffic
data [144]. Modeling behavior of a normal network user is very hard task because even normal
user can switch between several distinct profiles of normal behavior.

Anomaly detectors are heterogeneous, with unknown characteristics, precision
and error function

The anomaly detectors have typically unknown characteristics that are determined by the cur-
rent deployment environment — each detector will act differently in different environments, the
same anomaly can be scored differently by different anomaly detectors, when performed in dif-
ferent environments. Moreover, the detection accuracy of an anomaly detector varies for various
types of anomalies. Detector that provides very good detection rate for one type of malicious
behavior may completely fail for another type. The accuracy is also affected by the learning
process of the detector and by the environment; the accuracy changes together with the changes
of the network characteristics (i.e. network characteristics will be completely different during
the day and at night). Some incidents can be efficiently detected only by one detector or by a
combination of a subset of the detectors.

The performance of the detector can be negatively influenced by the side-effects of the attack
itself. Adversary can even intentionally manipulate detectors learning process — anomaly should
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be a result of malicious action, but malicious adversaries often adapt themselves to make their
actions appear as normal [147].

1.2 Proposed IDS Architecture

The above concerns motivated the architecture of the IDS used in this thesis. In this section, we
will provide a brief overview of the architecture in order to be able to later present the specialized
techniques of the individual components in the context of the whole system. The architecture is
composed of four layers (see Fig. 1.1). Each consecutive layer is designed to reduce the number
of false positives introduced by the anomaly detection principle.

• The first layer uses a number of network anomaly detectors that are using various anomaly
detection methods, described in detail in Chapters 3 and 4, applied to different subsets of
network features to introduce diversity among them.

• The second layer consists of two parallel ensembles of the network anomaly detectors created
in both, unsupervised and supervised manner to provide good generalization and at the same
time boost the efficacy against the known malicious samples.

• The third layer contains several Local Adaptive Multivariate Smoothing (LAMS) models,
described in Chapter 6. These are designed to further reduce the number of false positives of
the whole detection system by smoothing the outputs of the ensembles over time and feature
space.

• The last layer then aggregates the results of individual models to construct the final output
in which each flow is assigned with one anomaly score.

An extended version of the proposed architecture was successfully adopted in two network
intrusion detection systems: CAMNEP and CTA. CAMNEP [141, 59] is a network anomaly
detection engine, developed at the Czech Technical University and Cognitive Security5, that
processes NetFlow [30] records exported by routers or other network traffic shaping devices.
Cognitive Threat Analytics (CTA) [29] engine, developed at Cisco Systems, analyzes HTTP
proxy logs (typically produced by web proxy servers located on a network perimeter) to detect
infected computers within the network. Although the proxy logs do not contain all the network
host traffic (only HTTP(s) requests), the information about each request is richer than the
NetFlow. Both the detection systems use similar architecture design that differs only in the
anomaly detectors and the features and metrics of the LAMS models. In both systems, the
output of the fourth layer is processed by following classification system [14, 53, 16, 15] that
selects the top anomalous flows as identified by the proposed anomaly detection engine, clusters
them into events and assigns labels and event severities using a set of supervised classifiers.
The network analyst is then provided with a list of labeled network incidents sorted by severity
which significantly reduces the amount of his work. The description of the classification system
is out of the scope of the proposed thesis.

1.2.1 Anomaly Detectors

In the first layer, the captured network traffic data is analyzed by a set of anomaly detectors. Each
detector works with a set of selected features that allows to identify the malicious behavior, rather
than random, non-malicious fluctuations. As said above, we don’t seek to build a single perfect
anomaly detector, but rather to design the algorithms (such as those described in Chapter 3
and 4) that can be applied on diverse subsets of traffic features in order to define a multitude of

5 Cognitive Security, a privately held, 28 person company headquartered in Prague, was acquired by the Cisco

Systems in 2013.
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Fig. 1.1: Proposed IDS architecture containing four layers. In the first layer the data is processed
by a number of simple network anomaly detectors. Next layer consists of two parallel ensembles
that reduce the error of the individual anomaly detectors via aggregation. The false positives
are even further reduced by the ensemble of LAMS models in the following layer. Finally, the
anomaly scores of the LAMS models are aggregated to produce the final scoring. Each layer
reduces the amount of false positives unaffecting the overall recall as visualized by the two
arrows.

heterogeneous anomaly detectors. Additionally, the individual anomaly detectors are using low
complexity algorithms enabling the near real-time analysis of huge amount of network data.

Each anomaly detector is defined by three components: the algorithm, traffic features, and
parameters. The algorithms presently used in CAMNEP or CTA are of two different categories:

• Statistical anomaly detectors are based on a direct application of statistical methods (such
as PCA) on a selected subset of traffic features. In our methodology, we typically identify
promising approach to statistical anomaly detection, test it on a large number of traffic feature
projections and select one or more combinations. The parameters are essentially used only to
fine-tune the process from the performance characteristics and their influence is minor.

• The knowledge based detectors use a different approach. The process of their creation is
not method-centric, but rather data-centric. The designer typically starts by noticing an
exploitable characteristics of network traffic and analyzes whether the characteristics are rel-
evant for the detection of a network attack. In the second stage, the designer identifies a set
of features that needs to be measured and selects the simplest possible detection algorithm
which is applied on the features. Parameters of the anomaly detector typically play an im-
portant role, and some of the methods may initially be based on thresholds or other baselines
identified in the design phase. The resulting anomaly detectors are then deployed and tested
on wide range of real network attacks captured in test datasets, prior to their deployment.

Both approaches to detector construction complement each other and help to achieve better
efficacy. The statistical detectors typically bring more positives in general — their application
discovers innovative attacks and unusual behaviors alike. By their nature, they tend to be sta-
ble with respect to intentional manipulation on a single host level. On the other hand, the
knowledge-based detectors embody a specific knowledge about one or more traffic characteris-
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tics as specified by the designer. They are frequently designed as a reaction to a new type of
anomalies identified by progressively introduced statistical detectors. In this case, they can bring
additional insight that helps the system to suppress some of the false positives introduced by
the statistical detectors, while leaving the true positives unaffected.

In this thesis we propose five novel network anomaly detection algorithms of both types
described in detail in Chapters 3 and 4. They use various anomaly detection principles as well
as network features extracted from either NetFlow of HTTP proxy logs. Each anomaly detection
method assigns an anomaly score to each network observation (NetFlow record or HTTP proxy
log record), denoted in further text as network flow6 or sample. Anomaly score specifies the
degree to which a flow is considered anomalous. Network incident analyst may choose either to
analyze the top few anomalies or use cut-off threshold to select all network flows exceeding the
threshold for further analysis.

1.2.2 Detector Ensemble

The high sensitivity (measured as recall) of the individual detectors is a crucial element of
any intrusion detection system. However, by design, no individual detector can achieve a high-
enough precision to be useful on its own. Therefore, many intrusion detection systems rely on
the ensemble approach [62, 154]. They use an ensemble of relatively simple and heterogeneous
detectors, where some of them can be specialized to a particular type of intrusions, whereas
others can be general anomaly detectors capable of detecting previously unseen attacks at the
expense of higher false alarm rates.

As discussed earlier, such a setup has multiple advantages, including faster processing of
the data stream, lower complexity of the detectors, simpler inclusion of the domain knowledge
into the system. Furthermore, the errors of individual detectors cancels out [41, 128] decreasing
the false positive rate in effect. Arithmetic mean or majority vote aggregation functions are
preferred if the individual classifiers have roughly the same accuracy [94]. This is not the case of
the proposed anomaly detection system because some of the detectors are specialized to detect
only some type of malicious behavior. For such a systems Evangelista [47] suggested to use
mean of mean and maximum scores of the scores assigned by the individual detectors within
the ensemble, as it should be more robust to presence of poor detectors without knowing which
ones are poor. This combination function (further called Evangelista aggregation) favors the
highest anomaly scores and reduces the effect of poor detectors (see Section 2.2.3 for detailed
description).

Additionally to the unsupervised Evangelista aggregation, we propose to use a parallel ag-
gregation (denoted on the Figure 1.1 as Acc@Top), created in the supervised manner using the
labeled data of currently known malicious samples to improve the recall of the whole system
on the known network attacks or malware. This, however, introduces new problem of how to
create such an ensemble. Although a vast prior art on the problem exists (see Section 2.2 for
detailed review), we believe that particularities of the security domain, namely the highly im-
balanced ratio of non-alarm and alarm samples in the data, lack of accurately labeled datasets,
and the need of extremely low false positive rates, call for a tailored solution which is presented
in Chapter 5.

1.2.3 LAMS Models

The amount of false positives of the ensembles can be further reduced using a Local Adaptive
Multivariate Smoothing (LAMS) models introduced in Chapter 6. The models smooth the out-

6 We will therefore refer to the individual detectors as flow-based anomaly detectors.
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puts of the ensembles simultaneously over time and feature space to have more robust estimate
of the true anomaly. This approach reduces the amount of unstructured false positives caused
by stochasticity of the network traffic (see Section 6.1 for definition).

There are multiple LAMS models defined using various subsets of network traffic features
exploiting again the properties of ensemble systems. The expectation is that errors of outputs of
different LAMS models will be uncorrelated and will, similarly to the anomaly detectors, cancel
out in the final aggregation phase.

1.2.4 Final Aggregation

In the final layer, the anomaly scores of each of the ensembles that are adjusted by the LAMS
models are first aggregated using the Evangelista aggregation function, motivated by the same
reasons as described in the detector ensembles in Section 1.2.2. The anomaly scores of the two
sources, Evangelista and Acc@Top ensembles are then aggregated into the final anomaly score
using maximum of the individual anomaly scores of each network flow.

1.3 Key Contributions

This thesis makes four main contributions in the field of flow-based network anomaly detection
published in international journals, peer-reviewed conferences and workshops.

• Development of new, more sensitive anomaly detection algorithms [67, 70, 66,
125, 59] (presented in Chapters 3 and 4). We propose five novel anomaly detection algorithms
that use both NetFlow and HTTP access logs to detect network anomalies that can be related
to malicious activities. Each anomaly detector is experimentally evaluated on a real network
data to prove its effectiveness in practice.

• Large margin aggregation [68] (Acc@Top described in Chapter 5) is a novel algorithm
for finding a convex combination of anomaly detectors maximizing accuracy at τ -quantile of
the returned samples, which is a scenario frequently appearing in the security field. Since the
labeled data is in our domain rarely perfect, an emphasis is put on evaluation, involving both
HTTP and NetFlow anomaly detectors, eight types of combination functions, 34 different
network captures containing more than 20 million samples of behavior under various types
of labeling noise.

• Local adaptive multivariate smoothing [69](described in Chapter 6) is a theoretically
sound method that is able to decrease the false alarm rate of anomaly-based intrusion de-
tection systems. The technique can reduce large portion of false positives introduced by the
anomaly detection by replacing the anomaly detector’s output on a network flow with an
aggregate of its output on all similar network flows observed in the past.
Structured and unstructured false positives are mathematically formulated and it is argued
why unstructured false positives are more difficult to white-list or remove. We prove under
mild assumptions that the proposed method reduces the amount of unstructured false posi-
tives caused by stochasticity of the network traffic. The arguments are supported by extensive
experimental evaluation on both CAMNEP and CTA anomaly detection engines.

• Network anomaly evaluation dataset [59] is a labeled dataset containing network traces
of 13 different scenarios of running malware from seven different families. The dataset is
captured from the Czech Technical University network, containing network traces of real
users together with unmodified, unrestricted malware samples ran inside number of virtual
machines. The published dataset is recognized by the community as one of the most valuable
datsets for evaluation of the network detection systems [106, 18, 182, 27].
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Since each of the proposed algorithms is specialized in detecting specific type of network
behavior, the description of the relevant subsets of the dataset is left for the individual
experimental sections throughout this thesis (the undivided description of the whole dataset
can be found in [59]). Additionally, some of the experiments presented in this thesis are using
labeled datasets that are not included in the publicly available set due to the legal issues.

1.4 Outline of the Thesis

This thesis is structured as follows:

Chapter 2 reviews related work in the field of network anomaly detection with emphasis on
the methods that are used in one of the proposed anomaly detection engines in Section 2.1.
Next, Section 2.2 reviews the ensemble systems in general as well as the specific techniques
used in the field of network anomaly detection. Finally, Section 2.3 reviews the state-of-the-
art in the field of false positive reduction of the network intrusion detection systems, relevant
to the approach proposed in Chapter 6.

Chapter 3 and Chapter 4 describe the CAMNEP and CTA detection engines that are able
to identify malicious network communication from NetFlow and HTTP access logs respec-
tively. We introduce several novel network anomaly detection techniques that enrich the
ensembles of the state-of-the-art network anomaly detection methods used in both the de-
tection systems. The detectors are constructed using both statistical and knowledge based
approaches and use subset of the network features to detect specific type of malicious behav-
ior. For this reason, each of the detectors has a specific settings of the experimental evaluation
that are together with the results presented with the description of the method.

Chapter 5 presents a robust ensemble construction technique, that is using the anomaly
detectors described in previous chapters to create an ensemble with much higher accuracy
on the labeled samples. The experimental evaluation of the proposed method show that it
outperforms the state-of-the-art methods for optimizing the accuracy at top.

Chapter 6 introduces Local Adaptive Multivariate Smoothing (LAMS) model that is using
smoothing of the anomaly scores to even further reduce the false positives of the whole
system. It is shown that the LAMS models reduce the amount of false positives caused by
the stochasticity of the network traffic.

Chapter 7 experimentally evaluates all parts of the system together and shows that each of
the additionally introduced layers heavily reduces the amount of false positives. The experi-
ments were conducted on large number of real network datasets containing more than 5,000
malicious samples to prove the effectiveness of the proposed techniques in practice.

Chapter 8 summarizes the contributions of this thesis and provides a list of publications and
patents of the author.
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Chapter 2

Background and State-of-the-Art

In the previous chapter, we introduced the network anomaly detection and motivated the use of
an ensemble of simple network anomaly detectors to create an intrusion detection system with
reduced amount of false positives. In this chapter, we review related work in the field of network
anomaly detection, multiple classifier systems and false positive reduction.

We start with a general overview of the existing network anomaly detection methods in
Section 2.1. Next, Section 2.2 reviews the prior art that deals with multiple classifiers systems
with a strong emphasis on the ensemble approach to the network anomaly detection. Finally,
Section 2.3 surveys existing approaches for further false positive reduction to cover the related
work of the LAMS models introduced in Chapter 6.

2.1 Network Anomaly Detection

A great deal of research effort has gone into developing anomaly detection systems since it was
proposed by Dorothy Denning in 1987 [38]. There are several survey papers [46, 121, 26] that
summarized number of various detection methods. Patcha et al. [121] categorized anomaly detec-
tion approaches using statistical or signal processing techniques (e.g., wavelets [10], Kalman fil-
ter [158]), concepts from the machine learning domain (e.g., PCA [95], Bayesian networks [161]),
or methods applied for data mining tasks (e.g., clustering [177]).

In this section, we focus only on the network anomaly detection methods related in some way
to CAMNEP or CTA systems or to one of the newly proposed anomaly detection algorithms
introduced in Chapters 3 and 4.

2.1.1 Lakhina Volume

The Principal Components Analysis (PCA) is a popular method in the network anomaly detec-
tion. The volume prediction algorithm presented by Lakhina et al. [95] uses the PCA algorithm
to build a model of traffic volumes from individual sources using the NetFlow information. The
observed traffic for each source IP address with a non-negligible volumes of traffic is defined as
a three dimensional vector: the number of flows, number of bytes and number of packets trans-
fered from the source IP address. The traffic model is defined as a dynamic and data-defined
transformation matrix that is applied to the current traffic vector. The transformation splits the
traffic into normal (i.e. modeled) and residual (i.e. anomalous). The method returns the residual
amount of flows, packets and bytes for each source IP address. These values define the context
(identical for all the flows from the given source). An anomaly is determined by transforming
the 3D context into a single value in the [0, 1] interval.
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2.1.2 Lakhina Entropy

The entropy prediction algorithm presented by [96] is based on the same PCA-based traffic
model as described in previous section, but uses different features. It aggregates the traffic from
the individual source IP addresses, but instead of traffic volumes, it predicts the entropies of
destination IP addresses, destination ports and source ports over the set of context flows for
each source. The context space is therefore three dimensional. An anomaly is determined as the
normalized sum of residual entropy over all three dimensions. The metric is simple: a function
measures the difference of residual entropies between the flows and aggregates their squares.

2.1.3 KGB

Pevný et al. [125] proposed method inspired by Lakhina’s detector that uses entropies of IP ad-
dresses and ports to model network host’s behavior. The main difference to the work of Lakhina
is in the aggregation. Lakhina aggregated flows on the level of peering links in the network,
while Pevný’s method models the individual hosts. This difference allowed finer resolution of
the attacks. Furthermore, Pevný reduced the complexity of the algorithm and amount of data
needed for training, which allows to perform detection on high-speed networks in near real-time
manner.

2.1.4 MINDS

The Minesota Intrusion Detection System (MINDS) [45] builds a context information for each
evaluated flow using the following features: the number of flows from the same source IP address
as the evaluated flow, the number of flows toward the same destination host, the number of flows
towards the same destination host from the same source port, and the number of flows from the
same source host towards the same destination port. CAMNEP system uses an extended version
of the original MINDS system, which also uses a secondary window defined by the number of
connections in order to address slow attacks. The anomaly value for a flow is based on its
distance to the normal sample. The metric defined in this four-dimensional context space uses
a logarithmic scale on each context dimension, and the marginal distances are combined using
the L2 distance. Finally, the variance-adjusted difference between the floating average of past
values and the evaluated flow on each of the four context dimensions is used to estimate the
anomaly score of the current flow.

2.1.5 Xu

In the algorithm proposed by Xu et al. [178], the context of each flow to be evaluated is created
with all the flows coming from the same source IP address. For each context group of flows, a
three-dimensional feature vector is built with the normalized entropy of the source ports, the
normalized entropy of the destination ports, and the normalized entropy of the destination IP
addresses. The anomalies are determined by a classification rules that divide the traffic into
normal and anomalous. The distance between the contexts of two flows is computed as the
difference between the three normalized entropies, combined using L2 distance. The implemen-
tation used in CAMNEP system of the algorithm is close to the original, which was further
expanded in [177], except for the introduction of new rules defining a horizontal port scan as
anomalous.
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2.1.6 TAPS

The TAPS method [160] is, contrary to the previous anomaly detectors, a knowledge based
detector designed to detect horizontal and vertical network scans (i.e. scanning for running hosts
and host’s open ports respectively). The algorithm considers only the traffic sources that created
at least one single-packet flow during a particular observation period. These preselected sources
are then classified using the following three features: number of destination IP addresses, number
of destination ports and the entropy of the flow size measured in number of packets. The anomaly
value of the source IP address is based on the ratio between the number of unique destination IP
addresses and destination ports. When this ratio exceeds a predetermined threshold the source
IP address is considered as a scan origin. The original method suffered of an unusually high
number of false positives. Therefore, in CAMNEP system, the method was extended by the flow
size entropy to achieve better results.

2.1.7 Detection Based on TCP Flags

Each packet transfered over the network has a TCP flag that indicates the current connection
state (see Section 3.1.1 for detailed description). Detection of malicious behavior using TCP
flags appears mainly in solutions that are using pattern matching approaches. Roesch [143]
developed SNORT rules, that include several TCP flag patterns, to detect malicious activities.
Similarly, Staniford et al. [161] used SNORT TCP flag rules to filter illegal flag combinations in
the packets.

Yoo [183] created finite state automata, in which the transitions are the individual TCP Flags
and the state represents the current state of the communication, with only one final state that
corresponds to the connection closure. The proposed system is able to detect invalid TCP flag
sequences, that are not accepted by the defined automata.

Mahoney et al. [105] estimated probabilities of various TCP packets header fields (including
TCP flags) using previously seen data. The anomaly detection is then based on the assumption
that the events that occur with probability p should have anomaly score of 1/p making the rare
occurrences anomalous.

All the presented solutions are using TCP flag information contained in individual packets
and won’t be able to process aggregated TCP flag information contained in the NetFlow. In
Section 3.1 we present a novel network anomaly detection method that is using the PCA to
detect malicious network traffic using the aggregated TCP flag information contained in the
NetFlow.

2.1.8 DGA Detection

The Domain Generating Algorithm (DGA) is a technique typically used by malware to search
for the Command and Control (C&C) servers by periodically generating a list of domains and
trying to contact them (detailed description of the DGA can be found in Section 3.3). The first
report on malware using the DGA was made by Stone-Gross et al. [34] in 2005 who reverse
engineered Torpig malware and found the DGA algorithm.

Antonakakis et al. [8] presented a method that leverages the idea that bots from the same
botnet generate similar non-existent domains (NXDomain) [12]. They were able to identify
and classify botnets using a combination of clustering and supervised learning. Similarly,
Guerid et al. [136] analyzed DNS traffic to identify and cluster various botnets according to
their NXDomain responses.
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Zhou et al. [190] leveraged the idea that every domain name in the domain group generated
by one botnet using DGA is often used for a short period of time and have similar life and
query style. They clustered all the requested domains according to the top level domain and IP.
Then the clusters were compared to see if there are some clusters with similar lifetime span and
similar visit time pattern that were then reported as malicious.

A number of researchers tried to use the fact that algorithmically generated domain names
have an alphanumeric distribution different from legitimate domain names, as observed by Mc-
Grath and Gupta [108]. Yadav et al. [180] used various metrics, such as Kullback–Leibler dis-
tance, Edit distance and Jaccard index, to identify patterns inherent to algorithmically generated
domains. Mae et al. [103] employed statistical learning techniques based on lexical features (do-
main name length, host name, number of dots in URL, etc.). However, these techniques are
ineffective against modern DGAs that use English dictionary words with slight modifications
like adding suffixes -able, -hood, -ment, -ship, etc.

The aforementioned methods use information contained in the DNS resolve packets, which
means that they need to have a access to a DNS server capable of logging all the requests or
capture all the packets between the users and DNS servers. We are not aware of a method that
uses only NetFlow information. Furthermore, techniques based on clustering of NXDomains
suffer from a great amount of false positives generated from common typos and misconfigured
applications, e.g. a common typo in google.com — let us say gooogle.com, can create a cluster
of all users that made the same typo that would be labeled as DGA malware.

In Section 3.3 we introduce a novel method for detecting hosts infected with DGA-based
malware that uses only the information contained in the NetFlow. The NetFlow does not contain
any information about the requested host name or any information about the DNS resolves, so
the above described methods are not applicable to the NetFlow data.

2.2 Ensemble Systems

This section reviews the available literature related to combining parallel classifiers or anomaly
detectors. Although we will mention some of the combination strategies for labeled (hard de-
cision) output detectors, we want to mainly address the combiners that work with continuous
valued detectors as they are the most relevant to the work proposed in this thesis.

During past two decades many methods to combine classifiers have been developed. They can
be divided into two general groups: methods for creating ensemble members and methods for
combining classifiers in ensembles.

The methods for creating ensemble members operate on classifiers and put more emphasis
on a development of the ensemble’s structure than the combination process itself [78, 85, 64].
The most popular representatives of this group are boosting and bagging algorithms which
both rely on the voting technique for the aggregation. Next, there are works introducing other
methods for building ensemble of classifiers such as Bayesian averaging, random forests, etc. We
do not consider these as relevant, since we focus on the combination of existing classifiers, not
on creating new ones. Furthermore, these techniques require a lot of labeled data for training,
and it is unrealistic to obtain enough labeled data in the network security field.

The second group of methods operates on classifiers’ outputs searching for the most effective
combination. There are two main approaches for combining classifiers in multiple classifier sys-
tems: ensemble and modular. The ensemble is commonly used for combining a set of redundant
classifiers. The redundancy occurs because each classifier provides a solution to the same task.
This is in contrast to the modular approach in which the task is decomposed into a number of
sub-tasks. Each module is concerned with finding a solution for one sub-task. To complete the
whole task, each component is expected to contribute.

The combination strategies can be categorized into three groups [94]: unsupervised, semi-
supervised, and supervised. The unsupervised combination strategies (also referred to as non-
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trainable) do not need any labeled data for their construction. The semi-supervised combination
strategies are trained using a mixture of unlabeled and small amount of labeled data. The
supervised combination strategies need larger amount of labeled data for training. The overview
of all the discussed methods together with their relevance to the defined groups can be found in
the Table 2.1.
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Arithmetic mean 2.2.1 X – – – X

Other nonparametric 2.2.2 X – – – X

Evangelista combination 2.2.3 X – – – X

Ordered weighted average 2.2.4 X – – – X

Weighted average 2.2.5 X – X x –

Voting methods 2.2.6 – X x x X

Hierarchical mixture of classifiers 2.2.7 X X X – –

Consensus theory 2.2.9 x X – – X

Bayes combination 2.2.10 X – X x –

Dynamic classifier selection 2.2.11 X X X x –

Dempster-Shafer combination 2.2.12 X X - - X

Table 2.1: Overview of the discussed combining methods and their categorization.

2.2.1 Arithmetic Mean

The simplest non-parametric combination strategy for the continuous-valued output detectors is
the average or arithmetic mean. Let Hm = {h1, . . . , hm} be a set of m detectors and the output
of hi for sample x is hi(x) ∈ R, then the average gives output H(x) as

H(x) =
1

m

m∑
i=1

hi(x). (2.1)

This approach does not need any other interventions, prior knowledge about the detectors
or the environment the ensemble system is running on. It is stable, although not always most
accurate combiner. Usage of this rule is based on the assumption that different detectors exhibit
similar accuracies and make uncorrelated errors. In that case the errors are averaged out. There
are many detailed studies that have shown simple averaging to be a very effective combination
function, particularly in large complex data sets [179]. Because of its simplicity and very good
accuracy [191] it is one of the most popular solutions for the unsupervised classifier combination
that can heavily reduce the error of the base classifiers when their errors are uncorrelated as
shown in the following theorem.

Theorem 1 If we assume that errors of individual detectors are uncorrelated and have zero
mean than the error of average of m detectors is smaller by factor m than the average error of
the individual detectors.

Proof. The output of each detector can be written as true value f(x) plus an error εi(x), i.e.

hi(x) = f(x) + εi(x), i = 1, . . . ,m.
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Then the mean squared error of hi can be written as

err(hi) =

∫
(hi(x)− f (x))

2
p(x)dx =

∫
εi(x)2p(x)dx

and the average error made by the base detectors is

err(h) =
1

m

m∑
i=1

∫
εi(x)2p(x)dx.

Similarly, the expected error of the ensemble that uses the arithmetic mean of the base detectors
can be derived as

err(H) =

∫ (
1

m

m∑
i=1

hi(x)− f(x)

)2

p(x)dx =
1

m2

∫ ( m∑
i=1

εi(x)

)2

p(x)dx.

The zero mean of the detector errors gives us∫
εi(x)p(x)dx = 0,∀i ∈ N.

From the assumption that errors of the base detectors are uncorrelated we get∫
εi(x)εj(x)p(x)dx = 0,∀i, j ∈ m, i 6= j.

Than the error of the ensemble

err(H) =
1

m2

∫ ( m∑
i=1

εi(x)

)2

p(x)dx =

1

m2

∫ ∑
i,j∈1..m
i≤j

(2− δij)εi(x)εj(x)p(x)dx =

1

m2

∫ m∑
i=1

εi(x)2p(x)dx =
1

m
err(h)

ut

However, it should be noted, that the above derived reduction of error is generally hard to
achieve as the assumption that the errors of the base detectors are uncorrelated is almost always
violated.

The first explicit use of an ensembles in anomaly detection [97] used the arithmetic mean
to aggregate results of a set of anomaly detectors. The method employed feature bagging to
create a diverse set of anomaly detectors and their outputs were fused either by the mean of
their anomaly scores, or by picking k most anomalous samples from each detector (breadth-first
strategy).

He et al. [77] developed a Subspace Outlier Ensemble using 1-dimensional subspaces (SOE1)
for mining anomalies in categorical data. Each subspace is modeled via simple histogram and
the final result is aggregated using product or sum of individual anomaly scores.

Similarly, Pevný [123] used histograms trained on a number of random projections. The final
anomaly is obtained using average of probability estimates of the individual projection vectors.
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2.2.2 Other Simple Non-parametric Combination Strategies

The other non-parametric combinations include minimum, maximum, median, trimmed mean
and geometric mean [91]. The minimum combination function is the most pessimistic choice
as the anomaly is raised only if it is supported by all the ensemble members. This results in
really small false positive rate but the ensemble will miss many positives that can be identified
only by one or a subset of the anomaly detectors. At the other extreme, the maximum function
will raise an anomaly if at least one detector raises an anomaly. The maximum will result in
an ensemble with high recall but usually low precision. The product rule is a good approach if
individual classifiers are independent. It fails if the anomalies are zero or very small. The median
seems like robust solution for the combination, but in ensemble of heterogeneous detectors with
various precisions for various classes can be, similarly to the simple average, really inefficient,
when there is only one precise detector for some class of anomalies.

Kuncheva [93] theoretically studied minimum, maximum, average, median and majority vote,
together with the single classifier. She gave formulas for the classification error of the presented
methods, assuming that the estimates are independent and identically distributed. She showed
that for normally distributed errors, the fusion methods had very similar performance, but, for
the uniformly distributed error, the methods differed significantly.

2.2.3 Evangelista Aggregation Function

Shanbhang et al. [154] experimentally compared several static combination functions, namely
mean, median, minimum, maximum, and mean of maximum and mean in the field of network
intrusion detection. According to their results, the mean of maximum and mean, proposed by
Evangelista [47], was the most effective as it was more robust to presence of poor detectors
without knowing which ones are poor.

This nonparametric function, hereinafter referred to as Evangelista aggregation function
HEvan, can be formally defined as

HEvan(x) =
1

2

(
1

m

m∑
i=1

hi(x) + max
j
hj(x)

)
, (2.2)

where Hm = {hi : X 7→ R}mi=1 is a set of m anomaly detectors.
The reason for good efficacy of this combining rule is that the max function selects opinion

of the most sensitive detector that produces the highest value of an anomaly at any particular
instance. Using the max function in conjunction with the arithmetic mean makes such a rule
robust in all cases.

Because of these properties the Evangelista aggregation is used in both CTA and CAMNEP
systems to aggregate the scores of the individual anomaly detectors forming one of the proposed
ensembles (see Section 1.2 for more details).

2.2.4 Ordered Weighted Average

Another simple approach that belongs to the unsupervised group of combination strategies is
the ordered weighted average [181, 24] (OWA). The ordered weighted average does not attach
specific coefficient to a classifier, but the outputs of the classifiers are first sorted in descending
order and then a weighted sum is calculated using the coefficient associated with the place in
the ordering. OWA operator HOWA is defined as
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HOWA
α (x) =

m∑
i=1

αihπ(i)(x), (2.3)

where π is the permutation of the indexes so that the hπ(j)(x) is the j-th largest value from
set of the classifiers’ outputs {h1(x), . . . , hm(x)} and (α1, . . . , αm) is a collection of weights
(
∑m
i=1 αi = 1 and αi ≥ 0,∀i) assigned to a position in the ordered list of anomaly scores. Thus

the fundamental aspect of these operators is the re-ordering step.
The ordered weighted average combination was successfully used in the CAMNEP [142] IDS

and we showed that there are OWA functions that outperform simple average, when applied to
ensemble of network anomaly detectors.

2.2.5 Weighted Average

The weighted average (WAVG) uses different weights assigned to different detectors to combine
the individual scores. This technique creates new non-trivial problem of choosing the weights,
which significantly influences the final performance. The ensemble system can consist of a very
large number of detectors making the search for best parameter settings even more difficult.

According to the number of weight parameters the WAVG aggregation functions can be
categorized into three groups [94].

• m weights – there is one weight per classifier. The weight of the i-th classifier is typically
based on its estimated error rate.

• c ×m weights – the weights are specific for combination of class and classifier. This allows
to have different sets of weights for different classes. Linear regression is the commonly used
procedure to derive weights for this model.

• c× c×m weights – the support for each class is obtained by a linear combination of supports
of all detectors for all classes. These can be organized in matrix forming a decision profile
and used as the intermediate feature space (class indifferent combiners). Decision profile and
class indifferent combiners are described in more detail in Section 2.2.8.

Since the anomaly detection is a binary classification problem, we focus mainly on the first
group, where only m weights are used. The weighted average of a set of m detectors Hm = {hi :
X 7→ R}mi=1 can be then formally defined as

Hα(x) =
1

m

m∑
i=1

αihi(x) = αTh(x), (2.4)

where the α = (α1, . . . , αm) are the weights assigned to individual detectors. Some of the prior
art requires the combination to be convex to have the aggregated score of the same scale as
the scores of the individual detectors. In that case two additional conditions for the weights,
1>α = 1 and αi ≥ 0, ∀i ∈ {1, . . . ,m}, need to be introduced.

Since the classifiers are typically not of the identical accuracy, it is reasonable to give higher
priority to the more accurate detector over the lower accuracy detector. Therefore, the weight
of each detector can be set to be proportional to its accuracy on a validation set. This approach,
called performance weighting [119], has been found to be marginally better than the arithmetic
mean [56, 4].

The benefits of taking into account detectors accuracies were further exploited in the work of
Ashfaq et al. [9], who developed Standard Deviation normalized Entropy of Accuracy weighted
scheme which uses entropy measure of the accuracy together with standard deviation in detec-
tion/false alarm rates.

A hybrid solution proposed in [115] relies on artificial samples generated uniformly at random.
The proposed Heterogeneous Detector Ensemble on Random Subspaces (HeDES) framework
for unsupervised generation anomaly detector ensemble trains several classifiers to separate the
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artificial samples from the provided true ones, and then weights of classifiers in the WAVG
combination are determined according to their accuracy on the artificial samples.

A necessary condition to combine heterogeneous anomaly detectors is similar range of their
outputs. This problem is tackled in [92] by using estimated cumulative distribution functions
of detectors’ output. The authors show that their approach outperforms other normalization
strategies including HeDES, maximum rank [97] or sigmoid mean [58]. The ensemble construc-
tion technique, proposed in Chapter 5, uses an adaptation of [92] as described in Section 5.1.

Similarly to HeDES the ENCORE [48] combining uses accuracies of detectors to estimate the
weights. ENCORE labels a sample as anomalous only if two currently most precise detectors
labeled the sample as anomalous and their difference in precisions is smaller than a predefined
threshold. This strategy was developed for the label output classifiers but can be easily adapted
to the continuous value output detectors.

In general, when using labeled data, the algorithms for learning the weights of the weighted
average do not differ much from general algorithms for supervised classification. But, for security
applications the algorithms should be designed to handle large disproportions between numbers
of samples in positive and negative classes, and achieve extremely low false positive rates. Such
algorithms are also needed in information retrieval (although the requirement on low positive
rates is not as strict).

One class of such an algorithms maximizes accuracy of ranking in top τ -quantile, which can
be viewed as prioritizing the malicious samples over the legitimate ones. These algorithms (op-
timizing for example Prec@k [107] or Normalized Discounted Cumulative Gain [170]) frequently
lead to non-convex optimization problems that are difficult to solve efficiently or lead to sub-
optimal solutions [98]. A notable exception is SVM-perf [84] method optimizing a convex upper
bound on the number of errors among the top k items, but still the training is computationally
intensive due to a large number of constraints of the quadratic program.

Another class of relevant algorithms like RankBoost [54] maximize area under Receiver Op-
erating Characteristic (AUC) [49], which is equivalent to optimizing ranking. There are also
methods that focus only at the top quantile of the returned samples. Infinite Push [133] and
Top Push [101] concentrate on the higher ranked negatives and try to push them down.

In this thesis we propose a novel method for optimizing the weights of the weighted average
of a set of heterogeneous network anomaly detectors, that optimizes the accuracy in the top τ -
quantile that outperforms the above reviewed methods. The detailed description together with
thorough evaluation can be found in Chapter 5.

2.2.6 Majority Vote

Majority vote is a combination scheme for a labeled output detectors and so we describe it only
briefly. There are three common majority schemes, unanimity, simple majority and plurality.
The unanimity will result in a decision only if all of the present classifiers will agree on the
same class. In simple majority approach more than 50% classifiers must agree with the labeling.
Plurality vote scheme will choose the label that most of the classifiers will agree on. There are
also several modifications to these schemes that introduce weights (weighted majority vote),
thresholding (threshold plurality vote) or other techniques described in [132].

Zhou et al. [188, 189] presented weighted majority voting based on diversity. This approach
assumes that ensemble with higher diversity results in greater improvements in detection per-
formance over the base anomaly detectors. They presented mutual information for measuring
the diversity among the base detectors. The authors apply this diversity-based weighted voting
scheme together with the joint boundary method which labels current sample as normal only if
all of the detectors labeled it as normal. Joint boundary combiner’s predictions of normal data
can be quite accurate but typically predictions of anomalies suffer from high false alarm rate.
Therefore, to decrease the false alarm rate, they applied weighted voting based on the diversity

19



measures only to the data records that are predicted as anomalies by the joint boundary method.
The authors showed that this approach outperforms the arithmetic mean and simple majority
voting.

Since the majority vote aggregation was designed for fusion of multi-class, labeled-output
classifiers, the information about the certainty of the base classifiers is not used. This typically
leads to a lower efficacy of the resulting ensemble.

2.2.7 Mixture of Experts

The mixture of experts [83] is a supervised learning technique based on the divide-and-conquer
principle. It uses several experts (classifiers) whose outputs are combined using the weighted
average. The weights are determined by a gating network that for each sample decides what
experts to use. It is typically trained using the expectation maximization (EM) algorithm. This
approach is particularly useful when different experts are trained on different parts of the feature
space, or when heterogeneous sets of features are available to be used for a data fusion problem.

Several mixture-of-experts models can be further combined to form a hierarchical mixture of
experts [85]. From the conceptual point of view, all experts are organized in tree-like structure.
Each leaf represents individual expert or expert network that for given input sample tries to
solve a local supervised learning problem. The outputs of one node are combined by the gating
function and the total output of the node is given by the convex combination as shown on
Figure 2.1.

The main disadvantage of this technique is the fact that it is not applicable for a high
dimensional data, as increase of the complexity of the tree-like architecture and associated
input space subdivision leads to the increased variance and numerical instability.

Expert Expert Expert Expert

Gate Gate

Gate

x x

x

x x x x

y

Fig. 2.1: An example hierarchical mixture of experts model with depth two and branching factor
of two.

2.2.8 Class-indifferent Combiners

The degrees of support (score values) for given input xk of each classifier of the ensemble hi
and each class ωj can be organized in matrix called decision template [94]. More formally, if we
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define the hi,j(xk) as the support that the classifier hi gives to the hypothesis that xk sample
comes from class ωj , the decision profile DP will be defined as

DP (xk) =


h1,1(xk) . . . h1,c(xk)

...
...

...

hL,1(xk)
... hL,c(xk)

 . (2.5)

Using the decision profile we can classify the combination methods into two groups [94]. The
combination methods that are using one column of the decision profile at a time are called
class-conscious, the examples of this group are the aforementioned simple and weighted average
functions, product and other statistics. Alternatively one can ignore the context of the decision
profile and treat the hi,j values as a features in new feature space, called intermediate feature
space. The combination of the results is made by another classifier that takes the features from
the intermediate feature space as an input. This type of combination methods is called class-
indifferent.

The class-indifferent approach is therefore building a second classification layer on top of the
ensemble of simple classifiers. One can even build a system that uses even more classification
layers, but it shall be noted that this kind of complexity increase has to be justified by similar
gain in the accuracy. Next, training of such a complex system is nontrivial problem. One of the
possible solutions for training is to use the Stacked generalization, described in following section,
where the combiner is trained on unseen data created by a cross-validation procedure.

2.2.8.1 Stacked Generalization

Stacked generalization is a technique to achieve the highest generalization accuracy [174]. The
idea is to first train an ensemble of classifiers using a bootstraped samples of the training data,
whose outputs are then used to create a meta-dataset. This dataset is then used to train a
meta-classifier that uses the predicted classifications by the classifiers instead of the original
input attributes. The target remains as in the original training set. The underlying idea is to
learn whether training data has been properly learned. For example, if a particular classifier
incorrectly learned a certain region of the feature space, and hence consistently misclassifies
instances coming from that region, then the meta-classifier may be able to learn this behavior,
and along with the learned behaviors of other classifiers, it can correct such improper training.
The same idea has been adapted in regression tasks, where is this approach called stacked
regression.

Manhem et al. [110] designed a model (called Troika) to address Stacking problems, namely,
the poor performance on the multi-class problems. Troika’s ensemble scheme, shown in Fig-
ure 2.2, may be used to combine any types of classifiers which were trained on any subgroup of
possible classes of a problem’s domain. Troika uses three layers of combining classifiers, rather
than one. The authors showed that Troika is on average better than using the best classifier
selected using cross-validation.

Zenko et al. [184] evaluated several methods for constructing ensembles of heterogeneous
classifiers that use stacking and showed that they can perform comparably to selecting the best
classifier. They also proposed a new stacking method that uses multi-response model trees at the
meta-level. They showed that it clearly outperforms existing stacking approaches and selecting
the best classifier from the ensemble by cross validation.

In the case of anomaly detection we have only one-class classifiers and thus the intermediate
feature space contains only one decision value from each detector. Furthermore, learning of such
a structure requires a lot of training data and the training process itself is very complex.
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Fig. 2.2: Architecture of stacked generalization method called Troika that has three layers of
combining classifiers; the Specialist classifiers combine the outputs of the base-classifiers, Meta-
classifiers combine the Specialist classifier outputs, and finally, the Super-classifier, combines all
Meta-classifier outputs. The Super-classifier is responsible for the output of Troika’s prediction.
The figure was borrowed from [110].

2.2.8.2 Decision Templates

Decision template [94] fusion rules are based on the idea to remember the most typical decision
profile, called decision template, for each classification class. These decision templates are then
compared with current decision profile using a similarity measure. The most similar detector
is chosen to label the current sample. The commonly used measures are squared Euclidean
distance and symmetric difference [94]. Therefore, the decision template can be also defined as
the nearest mean classifier in the intermediate feature space.

Giacinto et al. [62] introduced an ensemble system including three groups of classifiers that are
trained on three different subsets of features. Then, three simple fusion functions (i.e., majority
vote, average, and belief) are employed for aggregation. A subsequent work of the same authors
described an ensemble architecture including multiple one-class k-means classifiers [60]. Each
classifier is trained on a training subset containing a specific attack type belonging to a specific
attack class. The aggregation is based on the Decision Template.

2.2.9 Consensus Theory

The consensus theory [102] deals with the problem of finding an agreement among autonomous
entities such as peoples, autonomous software agents or computers in a network. This problem
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arises for example when multiple sensors observe the same object or control devices compute
the same response to a system behavior. Though they may be provided with different inputs,
the computing devices have to agree on the same output. The agreement is achieved using the
consensus rule that is typically derived to satisfy a set of desirable theoretical properties [17]. In
these rules the experts are typically assumed to be capable of assessing their own importance
and also the importance of the other participants.

Gao et al. [57] proposed unsupervised algorithm that is reaching consensus among multiple
base detectors to infer discriminative combination model different and not obtainable using
Bayesian model averaging or weighted voting. Method first joins the observation using the
detectors’s predictions so two clusters are created. They are defined by each of the base detectors,
one containing all the samples labeled as normal the other contain the samples labeled as
anomalous. The samples and clusters are represented in a graph where each cluster links to
all the samples it contains. The algorithm iteratively propagating information between clusters
and record nodes to maximize the consensus by promoting smoothness of label assignment over
the graph. The whole process is based on the idea that the detectors that agree with the other
detectors more often should be weighted higher in the voting. It is assumed that the detectors
can make mistakes, but their decisions should not be flipped. They expect that if a detector
labels a sample as anomalous with confidence 0.9 and normal with confidence 0.1 it is unlikely
to be the other way around. Authors also extended the algorithm to semi-supervised learning
and incremental learning cases. Finally, they showed that on three real network datasets, the
algorithm improves the overall accuracy by 20% when compared to the standalone detectors.

Volpato et al. [172] proposed multi-agent architecture for the network intrusion detection
systems. They developed several detection agents, each with its own model that is using various
features from the network traffic to detect anomalies. Each agent has its own trust model that
assesses the reliability of the agent. Authors propose novel cooperative negotiation protocol
between the detection agents. The protocol consists of several steps: first each of the agents
receives a sample qj and computes its offer pti. The pti(qi) ∈ [0, 1] represents the partial degree of
anomaly from the i-th agent. The detection agent sends its offer together with its trust level to
a mediator. The mediator computes a counter offer from the received offers and an agreement
at using an agreement function and sends it back to the detection agents. Each detection agent
calculates new offer pt+1

i by using a negotiation function Fi(p
t
i, a

t). The negotiation process
repeats until a global agreement is reached. The agreement function is weighted average of the
offered values, where the weights are trusts of the agents. The negotiation function expresses the
measure of disagreement among agents and is calculated as Fi(p

t
i, a

t) = pti + αi(a
t − pti), where

the αi represents the agreement coefficient which expresses the willingness of detection agent
i to propose its offer versus the counter offer from the mediator. The agreement coefficient αi
is computed as value of sigmoid shaped function of the trust value. Authors showed that the
proposed mechanism is stable and always reaches agreement.

The consensus techniques are for real-time processing of huge number of samples almost
always unusable. Evaluating several steps of the negotiations for each sample is very time de-
manding and too complex typically without corresponding accuracy gain.

2.2.10 Naive Bayes Combining

Bayesian approach to decision fusion computes probabilities of hypotheses using evidences pro-
vided by the individual classifiers. It computes the posterior probabilities using both prior and
conditional probabilities provided by the individual classifiers. This scheme assumes that the
classifiers are conditionally independent given the class. However, this assumption is nearly
always violated, in the case of parallel anomaly detectors severely. But it turns out that the
performance is quite robust, even in the case of correlated classifiers [186]. Drawbacks of this
approach are the need of a priori probabilities of the classes and the labeled data for training
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the confusion matrix that is typically used for the posteriori probability estimation. In addition,
Bayesian combination scheme does not provide any information about the quality of the com-
puted probability nor the existence of conflicting evidences that can influence Bayes decision
criteria.

Scot [151] proposed to use the Bayes rule to combine different intrusion detection methods
based on both anomaly detection and signature detection, so as to take into account both user
behaviors and attack patterns.

Corona et al. [33] designed several multiple classifier architectures for supervised and unsu-
pervised anomaly-based intrusion detection. They proposed to map outputs of used one-class
classifiers to probability density functions. In such a way, the outputs of different classifiers can
be aggregated using naive Bayes combination rule.

2.2.11 Dynamic Classifier Selection

The dynamic classifier selection (DCS) [94] selects for each sample one classifier that is more
likely to classify it correctly. This scheme is originally developed for the situation, where each of
the classifiers have knowledge about only a part of the feature space and is responsible for the
decisions in that part. Therefore, the overall precision can be at most as good as the precision
of the best classifier.

Giacinto et al. [65, 62, 63] showed that DCS is better in comparison to majority vote, average,
naive-Bayes and decision template when applied in the intrusion detection field. It exploits the
diversity among the detectors and negatively and positively correlated classifiers. The authors
stated that DCS is designed to approximate an ideal oracle, which, for each new pattern selects
the classifier that provides the correct label. This allows to effectively handle different accuracies
and pair-wise correlations exhibited by the individual classifiers.

The dynamic classifier selection approaches are in its basic version unusable for the anomaly
detectors ensemble, because some anomalies can be detected only by a mixture of the base
detectors and not only by one base detector. Furthermore, the standalone detectors have a very
large number of false positives that are not necessarily reduced by this approach.

The dynamic classifier selection was successfully used in the CAMNEP intrusion detection
system [142, 139]. To overcome the above drawbacks the CAMNEP system used the DCS method
to selects the best simple non-trainable combination function from static set of predefined func-
tions instead of selecting only one anomaly detector. The selected function was used to aggregate
the anomaly scores of a batch of data that contained samples from real network traffic from spe-
cific time interval (typically five minutes). This way, a different combination function could be
selected in each batch reacting to the current state of the network.

CAMNEP used more than 30 different static aggregation functions including simple average,
several weighted average functions (see Section 2.2.5) and few ordered weighted average func-
tions (described in Section 2.2.4). The best aggregation function was selected according to its
performance on a set of small artificially added labeled samples called challenges. These were
mixed in the input of the system so the detectors were not able to differentiate between the
simulated samples and the samples from the real network environment. There were challenges
containing both, legitimate and malicious behaviors so the performance could be calculated as

d =
x̄− ȳ
σx + σy

, (2.6)

where the ȳ is the average value and σy is the variance of the legitimate challenge anomaly scores
and the x̄ and σx values are the average and variance of the malicious challenge anomalies. The
aggregation function with largest d was selected to aggregate the anomaly scores assigned to the
data of the current batch.
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The experiments presented in [142] showed that the dynamic selection of the optimal ag-
gregation function can significantly reduce the number of false positives and that the targeted
insertion of challenges selected according to threat models can influence the system sensitivity
to reflect the risks associated with each attack type.

The main disadvantage of this approach is that it relies on the quality of the challenges.
Additionally, the challenges need to be regularly updated to reflect the current network threats.
This is similar to creating a signature for the signature-based intrusion detection systems. Next,
there are only 30 functions that can be used and they have to be adjusted whenever new base
anomaly detector is added or removed from the ensemble.

2.2.12 Dempster-Shafer Combination

The Dempster-Shafer (DS) combination rule takes its inspiration from the evidence combination
of Dempster-Shafer theory. It strongly emphasizes the agreement between multiple sources and
ignores all the conflicting evidence through a normalization factor. One of the computational
advantages of the DS framework is that priors and conditionals need not be specified, unlike the
Bayesian methods.

The DS theory uses exhaustive and mutually exclusive logical statements Θ about some
problem domain that are called propositions or hypotheses Ai, i = 1, . . . ,M . To each proposition
a belief value from [0, 1] is assigned, based on the presence of evidence e. The value of belief is
derived from basic probability assignment (BPA) m(Ai), which defines impact of each evidence
item on subsets of all propositions. For the BPA holds m(∅) = 0 and

∑
A⊆Θm(A) = 1. The

summary of m(B) for all subsets B ⊆ A becomes the total belief in A. More formally,

bel(A) =
∑
B⊆A

m(B). (2.7)

Two independent evidences expressed as two BPAs m1 and m2 can be combined using the joint
mas combination in following manner [153]:

m1,2(A) = (m1 ⊕m2)(A) =

{
0 A = ∅

1
1−K

∑
B

⋂
C=Am1(B)m2(C) A 6= ∅,

where the K =
∑
B

⋂
C=∅m1(B)m2(C) is the measure of the amount of conflict between two

BPAs.
In DS theory, BPA is the degree of the belief of truth induced by a certainty of evidence.

In multi-classifier combination the beliefs of truth for outputs from each individual classifier
can be evaluated by confidence values or the classifiers performance measure. Additionally,
Hakan et al. [6] showed that there is no need for the classifiers to be independent to be able to
use DS framework for the final combination.

Zhang et al. [185] proposed to compute the BPA using the true positive, false positive, true
negative and false negative ratios of individual classifiers. They used the Barnet’s method [13] to
compute the final BPA from all BPA of all classifiers. Finally, the class with the highest believe
value is used as the final decision of the ensemble.

The main disadvantage of the DS combination lies in its complexity. The task of finding all
pairs B and C such that B

⋂
C = A has an exponential time complexity which renders this

technique unusable for the online intrusion detection systems.
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2.3 False Positive Reduction

Since the amount of false positives represents the main drawback of the anomaly-based approach
to the network intrusion detection, many researchers focused on developing additional techniques
to reduce the amount of false positives introduced by the anomaly detection. The prior art uses
statistics [159], time series [171], and machine learning algorithms [126] to achieve this goal.
Generally, the methods can be categorized into two groups [112]:

• detection techniques focus on development of more accurate detection method with lower false
positive rate. They frequently rely on the data-mining techniques,

• alert processing techniques operate on the network alerts produced by existing intrusion de-
tection systems and identify the false positives to filter them out.

The following sections survey the existing research relevant to both the above defined groups
of false positive reduction methods.

2.3.1 Detection Techniques

Hooper [80] introduced an intelligent network quarantine channels technique to get additional
information about the suspected hosts. This information is further used to estimate the prob-
ability of a host being infected. Although, this technique provides additional information that
can reduce the amount of false alarms, it is not always allowed by the organization’s security
policy to perform any additional host checking.

Xiang et al. [176] proposed a multi-level hybrid classifier which combined the supervised tree
classifiers and unsupervised Bayesian clustering to detect intrusions. Performance of this new
approach showed to have high detection and low false alarm rates. They concluded that keeping
the false negative rate as low as possible while maintaining an acceptable level of false positive
rate is essential for IDS since the false alarm might bring inconvenience to the administrators.

Elshoush et al. [44] reviewed collaborative, intelligent intrusion detection system which is pro-
posed to include both misuse-based and anomaly-based methods. They provide backgrounds on
how to use alert correlation to reduce the false positive rate with different system architectures.
They suggested fuzzy logic, soft computing and other AI techniques, to be exploited to reduce
the rate of false alarms while keeping the detection rate high.

Lee et al. [99] developed a framework for fully unsupervised training and online anomaly
detection. In the framework, a self-organizing map that is seamlessly combined with K-means
clustering was transformed into an adaptive and dynamic algorithm suitable for real-time pro-
cessing. The performance evaluation of proposed approach showed that it could significantly
increase the detection rate while the false alarm rate remained low.

Bolzoni et al. [21] proposed to correlate anomalies in incoming and outgoing traffic as suc-
cessful attack should raise alarms in both directions.

2.3.2 Alert Processing Techniques

The alert processing techniques work with a notion of a network alert, which is a collection of
network flows, rather than with individual flows.

Pietraszek [126] created a classifier that is reducing the workload of the human analyst by
classifying the alerts into true positives and false positives. The knowledge of how to classify
an alert is learned adaptively by observing the analyst. Similarly, Tian et al. [167] used the
analyst feedback to generate custom-made filtering rules, that automatically discard similar
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alerts encountered in the future. However, the need of human interaction represent always a
bottleneck since the effectiveness of the IDS depends on the human analyst.

Fontugne et al. [52] constructed a graph based on the network traffic of each of the alerts.
The nodes in the graph represent the individual alerts and the edges with weights correspond
to the similarity between the alerts that is based on the containing network. The authors used
this technique to be able to filter out the uncorrelated alerts that are typically false positives.
The graph is used to cluster the anomaly detectors into communities. The communities are then
combined using correspondence analysis algorithm called SCANN [111].

Neural networks and fuzzy logic are used in Alshammari et al. [5]. This method requires a
lot of labeled alerts for the training in order to be able to reduce false positives.

In Morin et al. [113], Chronicles Formalism is used in order to justify alarm relationships. In
this way, alarms that do not seem to be part of an attack can be filtered out.

Viinikka and Debar [171] proposed to use Exponentially Weighted Moving Average (EWMA)
control charts of the flow of alerts to spot abnormalities. Their experimental results concern the
production of less and more qualitative alerts.

2.4 Chapter Summary

This chapter identified the wider body of literature to which the thesis contributes. We first
reviewed a number of network anomaly detection methods with a strong emphasis on the algo-
rithms relevant to the newly proposed detectors in Chapters 3 and 4. Since many researchers
focus on the ensemble learning when dealing with the network anomaly detection, in Section 2.2
we reviewed ensemble-based methods and their reported issues, from which we are motivated
to search for a better solution. Finally, Section 2.3 reviewed the state-of-the-art in the field of
false positive reduction of the intrusion detection systems which motivated the work introduced
in Chapter 6.
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Chapter 3

NetFlow Anomaly Detectors

The network anomaly detection algorithms introduced in this chapter are implemented as a
part of CAMNEP1 [141, 59] system. CAMNEP is an anomaly detection engine that uses only
general statistics about the network communication in form of NetFlow [30] data to detect
malicious network traffic. The NetFlow format was initially developed by Cisco Systems for IP
traffic information collecting. It was followed by the IPFIX [31] and both these formats became
standards for the industrial network monitoring.

Many network security researchers focus on the NetFlow data because it captures high level
statistics about the network communication which have been shown sufficient for detecting many
threats [11]. The NetFlow data is easy to obtain since it is supported by most of routers or other
network traffic shaping devices. Collecting the NetFlows introduces only small additional load for
the exporting devices allowing to process data from high speed backbone networks. Additionally,
the NetFlow data respects the privacy of the users, as they do not contain any information about
the content of the network traffic, making their exploitation easier from the legal standpoint.

The NetFlow data is structured in records, each record describes one flow. A flow is defined as
an unidirectional component of the network connection and contains all packets with the same
source IP, destination IP, source and destination port and protocol (TCP, UDP, ICMP, etc.).
NetFlow record is created when FIN packet2 is detected or predefined time interval elapsed. The
total number of packets, transfered bytes and bitwise OR of all TCP flags from all the transfered
packets are recored in each NetFlow. Complete list of NetFlow fields together with an example
of possible values is shown in Table 3.1.

The CAMNEP anomaly detection engine identifies anomalous traffic using a set of anomaly
detection algorithms. They work in two stages: (i) they extract meaningful features associated
with each flow (or group of flows), and (ii) they use the values of these features to assign an
anomaly score to each flow. The anomaly value may depend on the flow itself, on other flows in
the current context, and on the internal traffic model, which is based on the past traffic observed
on the network.

The CAMNEP contains number of detectors based on already published anomaly detection
methods. Some of them are based on Principal component analysis (Lakhina detectors [95, 96]
and KGB detectors [125] described in more detail in Sections 2.1.2,2.1.1,2.1.3), some detect
abrupt changes (MINDS [45] detector described in Section 2.1.4), and some even use fixed rules
(Xu [177] detector described in Section 2.1.5). Furthermore, there are detectors designed to
detect specific type of unwanted behavior like network scans (TAPS [160] detector described in
Section 2.1.6).

Below, we revisit three novel detectors proposed by the author. Since each of the detectors is
designed to detect a specific type of anomalous network behavior we present the experimental
evaluation on the detector specific behaviors together with the method description.

1 Cooperative Adaptive Mechanism for NEtwork Protection
2 The packet that has the FIN TCP flag set is used by the network host that wishes to terminate the ongoing

communication.
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Feature Example of values

start-time 1440870672

duration 5

protocol TCP
source ip 192.168.1.2

destination ip 208.80.154.224
source port 1604

destination port 443

TCP flags .AP.SF
type of service 0

number of packets 1201

number of bytes 1.8 M

Table 3.1: Example of one NetFlow record containing information about both communication
participants (source and destination IP and port), time of the communication, protocol, bitwise
OR of all TCP flags of the transfered packets, type of service (tos), number of packets and bytes
transferred.

3.1 TCP Flags Anomaly Detector

TCP flags anomaly detector focuses solely on the TCP traffic and uses the aggregated TCP
flags information contained in the NetFlow data to detect network attacks and other malicious
behavior. Similarly to Lakhina-based agents (described in detail in Sections 2.1.2,2.1.1,2.1.3) it
uses PCA to detect deviations from the normal behavior. This novel method is able to detect
flows with malicious flags combination (introduced in Section 3.1.2) and other types of attacks
with specific TCP flags signature deviating from that of the normal traffic.

3.1.1 Description of the TCP Flags

Since Transmission Control Protocol (TCP) is a stateful protocol, we can determine the purpose
of each packet. The TCP flags indicate different connection states or information about how the
packet should be handled. These states are encoded by nine binary flags shown in Table 3.2.

Flag Description

NS ECN-nonce concealment protection

CWR Congestion Window Reduced [134]
ECE ECN-Echo [134]

URG URGent data

ACK Valid ACKnowledge
PSH PuSH request

RST ReSeT the connection
SYN SYNchronize the sequence number
FIN FINal data - no more data from sender

Table 3.2: Table of all defined TCP flags together with their meaning.

A TCP connection is established when the initial handshake is complete, after which the
actual data exchange can start. The typical TCP connection progresses as follows:

1. Client sends a SYN packet with sequence number j.
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2. Server receives the SYN packet and sends its own SYN packet with a sequence number k.
At the same time it acknowledges the client’s SYN packet by sending an acknowledgment
(ACK) packet with a sequence number j + 1.

3. The client acknowledges the server’s SYN packet by sending an ACK packet with a sequence
number k + 1. At this point, the connection is established and the client can transmit data
to the server.

4. The client and server exchange data, each sending an acknowledgment with increased sequence
number when data is received.

5. The server closes the connection by transmitting a FIN packet with sequence number m.
6. The client acknowledges the FIN packet with an ACK whose sequence number is m + 1

(assuming no data transmitted). If d bytes of data is transmitted, then the sequence number
is m + 1 + d. The server may still send more data. The client closes the connection by
transmitting its own FIN packet with sequence number n.

7. Finally, the server transmits an ACK packet with sequence number n + 1. That terminates
the connection. Either party may initiate termination of the connection and the termination
may not be as graceful as shown above. The connection may be terminated at any time by
resetting it with a TCP RST packet.

The first three TCP flags in Table 3.2 (NS, CWR, and ECE) are not commonly seen in
“normal” transmissions or used in abuse situations. Although not ignored by the proposed
detection method we will skip those in the further text, since they are not important in order
to explain the approach.

3.1.2 TCP Flag Distributions During Malicious Actions

In this section we review the normal and abnormal TCP flag combinations and the flag charac-
teristics of several well known network attacks. First, we start with a description of the normal
TCP flags combinations:

• SYN, SYN ACK, and ACK are used during the three-way handshake which establishes a
TCP connection (as described in Section 3.1.1).

• Except for the initial SYN packet, every packet in a connection must have the ACK bit set.
• FIN ACK and ACK are used during the graceful teardown of an existing connection.
• PSH FIN ACK may also be seen at the beginning of a graceful teardown.
• RST or RST ACK can be used to immediately terminate an existing connection. Packets

during the conversation portion of the connection (after the three-way handshake but before
the teardown or termination) contain just an ACK by default. Optionally, they may also
contain PSH and/or URG.

This implies that most of the packets emitted by a normal host in the network should contain
ACK flag, followed by the PUSH. There should be significantly less SYN and FIN packets, since
users are sending more packets in the initialized connections than creating and closing them.
Furthermore, the most common teardown of a connection is done using the FIN packets and only
way how to start a connection is to use SYN packet, so normally, users should have the same
amount of FIN and SYN packets. These claims were experimentally verified and the distribution
of TCP flags of normally behaving user is shown in the Figure 3.1.

Packets with any other then above described flag combination can be classified as abnormal.
The abnormal combinations of the TCP flags usually occur during malicious activities. Here we
briefly introduce the most popular techniques:

• Scans are used by an attacker to find hosts with specific service (horizontal scan) or to find
all running services on specified host (vertical scan). These attacks are characterized by lot
of SYN/FIN packets from the attacker. Since the SYN/FIN is one of the well known TCP
flag illegal combinations and can be easily detected, the attackers are using other variants of
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SYN/FIN with additional flag set (SYN FIN PSH, SYN FIN RST, SYN FIN RST PSH) to
avoid the detection. Next, the attackers also use the SYN RST packets where the RST is used
instead of the FIN. SYN packet is sometimes also used, leaving the handshake unfinished.
The responses to this attack are typically SYN ACK when the service is available or SYN
RST when the port is filtered.

• Stealth connection is commonly used for fingerprinting — recognition of operation system
(OS). It is usually done by sending SYN packet, waiting for the response and answering
with RST packet. Since different OS implement the TCP protocol slightly differently, these
differences can be exploited to identify target OS. Moreover, the attacker can hide its identity,
because the OS does not log the connections that were not properly established (the ACK
packets were not exchanged).

• SYN Flood is a a type of Denial of Service (DoS) attack in which an attacker tries to consume
all the servers resources by initiating many connections, but not finishing the handshake
protocol. This is achieved by sending single SYN packet and not answering to ACK packets
leaving the server waiting. This attack can be characterized by many packets with the SYN
flag, and many responses with the SYN/ACK.

• Distributed Reflected DoS (DRDoS) attack is a stealth DoS attack. It is a technique in which
the attacker spoofs his IP address for victim’s to avoid identification. He sends SYN pack-
ets that are carrying the victim’s source IP to lot of hosts. Each host receives the spoofed
SYN packet and responses with SYN/ACK packet to the victim’s IP causing DoS/flood at-
tack. This way the attacker’s spoofed SYN packets are being ”reflected” of innocent hosts in
the network and for the administrators it looks like the hosts used for the ”reflection” are
performing a DDoS attack.

3.1.3 Detecting TCP Flag Anomalies

Anomaly detection method uses only TCP flag information contained in the NetFlow, which lim-
its the method exclusively to TCP communication (other protocols are skipped). The statistics
of TCP flags usage for every host are calculated from NetFlow records in each five–minute time
interval. This choice was made on the basis of related works [157, 187, 96] showing five–minute
intervals give the best performance.

The network is modeled by distribution of TCP flags of flows aggregated by source or des-
tination IP address. This means that we create two different models for source and destination
IP. Since the models differ only in the aggregation, they are explained in following text on the
aggregation with respect to source IP address. Next, this fact indicates that we can only identify
anomaly on the individual network host level and not the flow level, in other words, we are able
to label only anomalous IPs and not the anomalous NetFlows for each five–minute time window.
Figure 3.5 shows TCP flags usages during different behaviors of one source IP over five minutes.
As can be seen, various behaviors have diverse TCP flag signatures.

For the TCP flags modeling of each IP address, five consecutive time windows (time frame
of 25 minutes) gave us consistently the best results and it represents a good trade-off between
performance and computational complexity. Denoting quantities calculated at the time step t by
the same superscript, the behavior of one source IP is described by the following 45 dimensional
vector:

xt(sIP) =
{−−−−→
flagsτ (sIP )|τ ∈ {t− 4, . . . , t}

}
, (3.1)

where
−−−−→
flagsτ (sIP ) is 9-dimensional vector of normalized counts of individual TCP flags of all

flows from source IP sIP in time window τ . Thus, the vector xt(sIP) captures behavior of the
IP address during time steps t − 4, . . . , t, capturing the changes in TCP flags usage over that
period of time.
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Fig. 3.1: Normal user behavior
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Fig. 3.2: Horizontal scan
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Fig. 3.3: FastFlux malware
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Fig. 3.4: SPAMBot malware

Fig. 3.5: Histograms of usages of TCP flags of various behaviors of one network host.

Rationale behind this feature vectors is that feature vectors of TCP flags of different IP
addresses should be similar, thus correlated. Principal Component Analysis (PCA) can identify
low-dimensional sub-space where most of the traffic lies. IP addresses behaving differently will
have different feature vector, which is not going to be correlated and consequently, it will not
lie in the subspace of the normal traffic.

The model of the network is created as follows. The 45 dimensional feature vector (3.1)
detailing behavior of hosts at the time step t is calculated from data acquired at time steps
t − 4, . . . , t. Feature vectors of all IP addresses active during these time steps are arranged in
matrix Xt ∈ Rnx,d, where d is number of features (in our case d = 45) and nx is number
of active IP addresses. Each row of matrix Xt corresponds to feature vector of one active IP
address. The IP address is considered to be active, if it has at least 20 flows in at least one time
step t− 4, . . . , t. Features in time steps with less then 20 flows are set to zero. IP addresses with
less than 20 flows in all time steps are not used in the model. Anomalies for these flows are not
calculated because of the lack of the normal behavior.

Similarly to [125], the anomaly detection in the time step t, is done using a PCA on the
matrix from the previous step Xt−1 to build the model of the traffic, which is used to calculate
anomaly values (see Subsection 3.1.3.2) for every IP address active in time step t (each row of
matrix Xt). If the anomaly value of a given IP address exceeds the threshold, it is deemed as
being anomalous.

This approach allows us to detect two types of anomalies:

1. Since the model captures correlation of feature vectors across IP addresses, if there are some
with feature vectors uncorrelated with the majority (their behavior is very different), they
are detected as anomalous. By means of this mechanism, it is possible to identify anomalous
behavior of individual IP addresses.

2. Since the model used to detect anomalies at the time step t is derived from a traffic captured
at time steps t− 5, . . . , t− 1, abrupt changes of the behavior of large number of IP addresses
will be detected as anomalous, even though the behavior is correlated with the majority in
the time step t (but not with the majority in the time step t−1). This mechanism will detect
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the beginning of large-scale, possibly coordinated, attacks. As in the previous case, it also
permits to identify IP addresses participating in long and coordinated attacks.

In the rest of this section, we first briefly describe the PCA (Section 3.1.3.1) and then we
describe the calculation of anomaly values (Section 3.1.3.2).

3.1.3.1 Principal Component Analysis

The calculation of principal components pi starts by calculating the sample covariance matrix
W. Assuming vectors x ∈ X have zero mean ( 1

nx

∑nx
j=1 xj = 0), the sample covariance matrix

W is calculated as

W =
1

nx − 1

nx∑
j=1

xTj xj . (3.2)

The projection vectors pi and corresponding variances λi are eigenvectors and eigenvalues of the
covariance matrix W. A side note here is that eigenvalues λi corresponding to eigenvectors pi
are all real numbers, because the sample covariance matrix W is symmetric.

Depending on the level of correlation among the columns of X, the covariance matrix W does
not have to have a full rank, which expresses itself in eigenvalues having very low values. For
numerical stability, we discard all eigenvectors corresponding to eigenvalues smaller than 10−6.

3.1.3.2 Anomaly Detection Algorithm

To detect anomalies in the data we use variance on major and minor components, used for
example in [156]. Let’s assume that the PCA performed on a data set Xt−1 returns r components
{p1, . . . , pr} corresponding to eigenvalues λ1 > λ2 > . . . > λr ≥ 10−6. The components are
divided into two sets: one containing components {p1, . . . , ps} with high variances, and other
containing components with small variances {ps+1, . . . , pr}. This results in two variants of the
anomaly detection algorithm that use either the anomaly measure f(y) or f⊥(y) to assign
anomaly score to the vector y ∈ {Xt

j·|j ∈ {1, . . . , ntx}} using either the high or low variance
components as

f(y) =

s∑
i=1

(yT pi)
2

λ2
i

, (3.3)

f⊥(y) =

r∑
i=s+1

(yT pi)
2

λ2
i

. (3.4)

The anomaly detection algorithm at time step t works as follows:

1. From data acquired in time steps t−5, . . . , t−1 are used to construct matrix Xt−1. The rows
of the matrix corresponds to feature vectors (3.1) of IP addresses with at least one TCP flow
in one of the time steps t− 5, . . . , t− 1.

2. After the matrix Xt−1 is normalized to have zero mean, the co-variance matrix W is calculated
and the eigenvalue decomposition is performed.

3. The principal components {p1, . . . , pr} are divided into two sets: one containing compo-
nents {p1, . . . , ps} with high variances, and other containing components with small variances
{ps+1, . . . , pr}.

4. For every active IP address in the time step t, we calculate the feature vector 3.1 and one of
the anomaly measures defined in Equation (3.3) or (3.4).

The last thing we did not discussed is the number of components considered to be in the set
of high and low variances. We varied this parameter in our preliminary experiments and found
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value s = 1 to give consistently good results. This value is used in experiments presented in
Section 3.1.4.

3.1.4 Experimental Evaluation

We experimentally compare the TCP flags anomaly detectors with anomaly measures f (Equa-
tion (3.3), denoted in further text by F) and f⊥ (Equation (3.4), further referred to as FOG),
both with aggregation over source and destination IP (srcIP, dstIP) addresses (4 detectors in
total) with other existing anomaly detectors from the prior art described in detail in Section 2.1.
Namely, detector of Xu et al. [178] with aggregation over source IP addresses (further referred
as Xu-srcIP) and destination IP addresses (referred as Xu-dstIP), Lakhina et al. [96] detec-
tor with entropy features (further referred as Lakh-Entr) and traffic volume features (in tables
denoted as Lakh-Vol), Minesota Intrusion Detection System [45] (MINDS), the TAPS scan de-
tection method [160] and the anomaly detectors of Pevny et al. [125] (denoted as KGB-F-srcIP,
KGB-F-dstIP, KGB-FOG-srcIP, KGB-FOG-dstIP).

To compare these methods we have created the Receiver Operation Characteristics (ROC) of
each of the mentioned anomaly detection methods using several partially labeled datasets from
the real networks. Next, we have evaluated the ROC’s Area Under the Curve (AUC) to be able
to easily compare all the presented methods. Because we are interested only in the false positive
rates smaller than 1% of all the traffic, we computed the ROC’s AUC as an integral of the ROC
up to 1% of false positives threshold. This gives us good insight about the detector’s performance
for small false positive threshold, which is important to the field of network anomaly detection.

3.1.4.1 Experimental Settings

We have performed nine different experiments on six different networks. The datasets were
constructed using three different approaches:

• manually performed attacks — attacks that were designed and manually created by one of our
security experts to mimic some of the simple network attacks used by attackers (Experiments
3 and 4).

• VM infected by real malware [59] — usage of discovered malware binaries to infect virtual
machine and label all communication of this machine as malicious (Experiments 1 and 2).

• manually identified malware/attacks — malicious labels were created using the manual anal-
ysis of the network captures made by network security specialists (Experiment 5 to 9).

The latter two cases were further analyzed to check that they mainly use TCP communication
to be able to use them for the TCP Flag detectors evaluation.

Experiment 1 and Experiment 2 use the evaluation datasets published in [59] captured on
the Czech Technical University (CTU) network with more than 1 500 users and in average over
30 000 NetFlows per one 5-minute batch. Both experiments were using a real malware running
inside controlled virtual machine (VM)3 and cover the time of one day. In Experiment 1 only one
VM running Windows XP infected by Neeris malware was used, that generated a lot of traffic.
Experiment 2 contains ten different VMs infected by FastFlux botnet. The labels were created
so every NetFlow originating from the infected machine/s is labeled as Neeris and FastFlux src
and the replies are labeled as Neeris and FastFlux dst respectively. All the NetFlows that are
typically created by the idle Windows XP machine were labeled as normal — these typically
are Windows connection check, Windows Update checks, NTP checks, etc. For the normal label
we used the traffic going from several hosts performing normal activity during the attack —
several users that were using these hosts for browsing, sending mails, using instant messaging

3 The bandwidth of the connection was lowered to 150kb/s to avoid huge usage of the network.
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etc. Again, we have manually went through all the NetFlows from those host and label them as
legitimate.

Experiment 3 uses a dataset created with an artificial attack scenario that used one of the
host in the CTU network with open SSH port as victim of an attack, attacked from outside
the CTU network. In the first step of the scenario, we simulated the information gathering by
scanning part of the university network for an open SSH port. Next, we performed brute force
dictionary password cracking on the victim host. After 1000 trials we used the correct password
to simulate the successful break–in. Finally, we downloaded 0.5 GB to simulate data stealth.
Corresponding NetFlows in the captured dataset were manually labeled using the IP addresses,
ports and time information.

Similarly to Experiment 3, Experiment 4 contains artificial attack that was in this case not
created manually, but performed by a Rbot malware, controlled by our network specialist, that
we manually installed on one of the CTU network hosts. Since we had the full control over this
bot, we were able to perform two simple attacks to one of our victim outside the CTU network
— ICMP attack and SYN flood attack. We have labeled both using the IP addresses and time
information.

Experiments 5 to 9 contain NetFlows from various networks (each experiment represent dif-
ferent network) of various sizes and types. All the labels were created by manual inspection of
the NetFlows. We have been able to identify several malware families (virut [152], pushdo [3],
shiz [43], proxybot, ircbot), one regular vertical scan and one stealthy. All the malware families
were confirmed using publicly available information about the malware behavior. The legitimate
labels were created by labeling the most popular legitimate services (MS update service, google,
facebook, youtube, bing, etc.) found in the experimental datasets.

3.1.4.2 Experimental Results

Table 3.3 shows the comparison of all anomaly detectors mentioned in Section 3.1.4. Values are
AUC calculated up to the false-positive of 1% of all the traffic. The ”-” denotes the fact that
the detector did not set a anomaly value for the specific behavior. This could be caused by lack
of statistical data or the evaluated behavior is out of the scope of the detector (e.g. host that
uses only UDP protocol will not have an anomaly assigned by TCP Flags detectors, because it
can assign anomaly only when there is at least 20 TCP connections, see Section 3.1.3).

It is evident from the table that there is no single detector that would outperform others
in detection of all presented types of malicious behavior. This can be explained by the fact,
that each method utilizes different model of the network, uses different NetFlow features and
thus detects slightly different anomalies. But, we can see that the newly introduced detectors
outperform the prior art in most of the cases.

TAPS outperformed proposed detectors in the scan-like behaviors, which is not surprising
since TAPS was designed to detect scans and floods. The KGB detectors are able to detect dns
tunnels and some type of a scans, which is caused by the fact that these behaviors use number
of various ports, that heavily affects the analyzed entropies.

Surprisingly both Lakhina’s detectors are not able to cope with the proposed Flags detectors
nor the KGB detectors. This is interesting, since these methods are based on the PCA as well.
These results show that the selection of the features is crucial for the network anomaly detector’s
performance.

It is also interesting to observe, how detectors with different aggregations complement each
other. Detectors aggregating over source IPs detect anomalous requests, while detectors aggre-
gating over destination IPs detect the responses.
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Xu

dstIP
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Exp 1
Neeris dst 0.315 0.071 0.073 0.157 0 0 0 0.036 0 0.033 0 0.288 0.167 0
Neeris src 0.230 0.027 0.334 0.049 0 0 0.005 0.033 0 0 0.048 0 0 0.641

Exp 2
FastFlux dst 0.689 0.583 0.197 0.337 0 0.006 0 0.207 0 0.002 0.009 0.149 0.009 0.001
FastFlux src 0.170 0.216 0.380 0.140 0 0 0.004 0.004 0.002 0 0.009 0.005 0 0.006

Exp 3
SSH scan src 0.023 0.013 0.428 0.876 0.008 0 0.005 0.113 0 0 0.001 0 0.250 0.005
SSH scan dst 0.162 0.069 0 0.102 0 0 0.744 0 0.001 0 0 0.033 1 0
SSH cracking 0.181 0.006 0.279 0.571 0.002 0 0.003 0.186 0 0 0.109 0 0.250 0.005
Download dst - 0 - 0 - 0 - 0 - 0.668 - - -
Download src 0.967 - 0 - 0 - 0 - - - 0.834 - - -

Exp 4
syn flood src 0.027 0.211 0 0.612 0 0 0.242 0.574 0 0.572 0.427 0 - -
syn flood dst 0.391 0.106 0.430 0.303 0 0 0.474 0 0 0 0.426 1 0.002 0

Exp 5
virut dst 0 0.008 0 0.070 0 0.478 0 0.094 0.039 0.002 0.106 0.429 0.009 0.028
virut src 0.092 0.711 0.086 0.618 0 0 0.028 0 0 0 0.044 0 0 0.188

Exp 6
pushdo dst 0.477 0.177 0.409 0.363 0 0.001 0.006 0.010 0.008 0.271 0.004 0.025 0.010 0.002
pushdo src 0.016 0.824 0.247 0.716 0 0 0 0.009 0 0.005 0.004 0 0 0.105

Exp 7
port scan src 0.008 0 0.003 0.761 0.003 0 0.002 1 0 0 0 1 0.026 0.685
port scan dst 0.902 0.508 0.971 0.003 0 0.012 1 0 0.013 0.004 0.004 0.006 0 -

Exp 8
shiz dst 0 0.010 0 0.376 0.185 0 0.021 0 0.031 0.147 0.013 0.333 0.006 0.184
shiz src 0.006 0.010 0.043 0.175 0.008 0 0 0.009 0 0 0.054 - - 0

dnstunnel src 0 0.571 0 0.291 1 1 0 1 - - 0.378 - 0 -
dnstunnel dst 0 0 0 0 1 1 0 0.005 - - 0.380 - - -
proxybot dst 0.001 0.011 0 0.015 0 0.007 0 0.036 0.078 0.130 0 1 0.007 0.100
proxybot src 0 0 0 0 0.001 0 0 0 - - 0 - - 0.074

ircbot dst 0 0.020 0 0.255 0 0 0 0.076 0 0.057 0 0.750 0.008 0.128
ircbot src 0 0 0 0 0 0 0 0 - - 0 - - 0.781

Exp 9
port scan src 0.006 0.069 0.301 0.648 0 0 0 0.344 0 0 0.229 0.692 0 0
port scan dst 0.572 0.282 0.860 0.749 0 0 0 0.436 0 0 0.032 0.013 0 0

Table 3.3: Comparison table of the ROC AUCs on FP level of 1% of all the anomaly methods
on data acquired from various experiments.

3.2 Request-Response Anomaly Detector

The request-response anomaly detector is a representative of the knowledge based anomaly
detectors that is designed to detect reconnaissance attacks (various network scans) and ongoing
Denial of Service (DoS) attacks.

The network scans are used by attackers to probe the network systems for available services
to take an advantage of their security deficiencies. Network services using the TCP and UDP
Internet protocols can be accessed via special ports which are generally known (for example the
SSH service is by default assigned to the TCP port 22). Ports that are used by the services are
referred to as open, since it is possible to establish a connection with them, whereas unused
ports are referred to as closed; every attempt to connect with them will fail. The attacker can
therefore use a port scanning tool to find all open ports on one machine via probing all ports on
a particular IP address (vertical scan) or find machines in the network that provide a service of
interest by probing a specific port on all network IPs (horizontal scan).

Denial of Service (DoS) attack is an attempt to make a network service unavailable to its
intended users by flooding the service providing host (server) with huge number of request.
Since the server can only process a certain number of requests at once, the legitimate user’s
request wont be typically processed when the server is under the DoS attack. The Distributed
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Denial of Service (DDoS) attack uses more than one attack source, often thousands of unique
IP addresses.

Both the above described techniques result in large number of failed TCP requests. The
request-response anomaly detector uses this specific property to detect the attackers by match-
ing request-response pairs in order to identify requests without responses that represent failed
connections that are indicative of the ongoing attack. If the number of failed connections is
higher than normally observed amount over all hosts in the network an anomaly is raised.

Additionally to various scans and DoS/DDoS attacks, the detector is able to detect the C&C4

search of some malware families that perform the search by contacting a large number of raw IPs.
Since most of them are typically unavailable, the search results in a large number of unsuccessful
connections.

3.2.1 Request-Response Pair Matching

Pair matching of the NetFlow records is done based on the IP-port-protocol triple. First the
flows are sorted by time. Then the first flow is pulled from the list and the matching flow with
the same protocol but reverse source and destination IPs and ports is found by iterating over the
list. The two are declared to be a request-response pair and removed from the list. If a matching
pair is not found the flow is declared to be a request without a response and is also removed
from the list. The procedure repeats until the list is empty.

3.2.2 Network Model

The anomaly score is calculated using a simple model known as the Z-value test [1] (also known
as z-score, standard score or sigma score). Consider a set of 1-dimensional quantitative data
observations, denoted by x1, . . . , xn, with mean µ and standard deviation σ. The Z-value for the
data point xi is denoted by zi, and is defined as follows:

zi =
|xi − µ|

σ
. (3.5)

The Z-value test computes the number of standard deviations by which the data varies from
the mean. This definition of anomaly has an implicit assumption that the data is drawn from a
normal distribution.

Since we are interest in only large number of failed connection we restrict the Z-value to
right tail of the normal distribution. The anomaly score f of a particular network host i is then
defined as

f(xi) =

{
xi−µ
σ if xi > µ

0 otherwise,
(3.6)

where the mean µ and standard deviation are calculated using the number of failed connections
over all network hosts and xi is the number of failed connections of host i. The anomaly score
is calculated for each host in the network every five minutes using the latest five–minute batch
of the NetFlow data similarly to the Flags detection method (see Section 3.1.3).

4 Command and Control. See Section 3.3 for detailed description.
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3.2.3 Experimental Evaluation

Table 3.4 shows the AUC scores of several types of malicious behaviors: malware C&C search,
port scans and DoS attacks. All the datasets were captured on the Czech Technical University
network. The malware samples were generated using real malware running inside controlled
VM [59], the scan and flood attacks were performed by network security specialist attacking our
own servers (see Sections 3.1.4.1 for more details about the experimental settings).

The AUC scores show high detection quality for all three types of malicious behaviors. The
scan detection quality depends on how successful and extensive the scan is. Typically, a network
host has only few open ports and the rest is closed which means that the performed vertical
scan against such host, that is probing first 1024 ports, will receive responses only for a couple of
the requests while the most of the requests will be without responses leading to higher anomaly
score assigned by the proposed method. The horizontal scan, on the other hand, will have much
higher success rate as for the popular services (SSH, FTP, HTTP, etc.) there will be more hosts
in the scanned network that will respond to the requests, which eventually reduces the anomaly
score of the horizontal scan.

Dataset AUC value

Malware C&C search

Sirefef (src) 0.9648

Pushdo (src) 0.8481

Port scans

Vertical scan (src) 0.9893

Vertical scan (dst) 1.0000

Horizontal scan for SSH (src) 0.8873
Horizontal scan for SSH (src) 0.8996

DoS

ICMP attack (src) 0.9196
ICMP attack (dst) 0.9534

Distributed SYN flood (dst) 0.9533

Table 3.4: Results of the request response anomaly detector. AUC values are shown for various
types of malicious behaviors, that are known for generating unsuccessful connections.

3.3 Domain Generation Algorithm Detector

Domain Generation Algorithm (DGA) detector is designed to detect the malware-compromised
network hosts that are a part of a botnet. Botnets are the root cause of many malicious activities,
such as denial of service, spam distribution, click fraud, adware, distributed brute-forcing of
remote services, identity and data theft and many more. A typical botnet consists of a number of
malware-compromised machines, called bots, that are remotely controlled by a botmaster using a
command and control (C&C) channel. There are two main types of botnet C&C structures [35]:
peer-to-peer (P2P) and centralized.

In the P2P [145, 165] structure every node can serve as C&C server distributing commands
and updates in peer-to-peer manner. This makes the botnet more robust and resilient, hard to
identify and to take down. This approach is less popular because it is very hard to implement
and maintain. Additionally, the commands take a longer time to reach all the bots because of
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the latency introduced by the distributed botnet topology. Finally, each newly infected host has
to be provided with an initial list of bots to which it may connect.

The centralized structure [35] is the most popular due its simplicity. In this scenario, the bots
contact one predefined domain or IP address on which the C&C server is located. The disad-
vantage of this approach is that the C&C server represents a single point of failure. When taken
down, the botmaster loses control over the whole botnet. Network administrators use blacklists
of well-known C&C domains to block the communication at the firewall level. Furthermore,
Anti-virus companies and OS vendors are working hard to take down these C&C servers and
are successful in doing so.

To overcome the disadvantages of the centralized structure, modern malware uses various
techniques to hide its C&C server. One of these techniques is fast-flux [79], in which the C&C
server is hidden behind a number of proxies that are associated with one domain name and the
IP addresses are swapped in and out with extremely high frequency using domain name server
(DNS) changes. This way the bots communicate with the C&C using a number of ever changing
proxies.

Similarly, malware can use a domain generation algorithm (DGA), also referred to as domain
fluxing. In this scenario, the malware contacts a domain that was generated using a domain
generation algorithm with a specific seed in specific time intervals. Whenever the botmaster
wants to send a command to his botnet, he needs to register a new domain that he generated
using his own copy of DGA with the same seed as the botnet just before the botnet will try
to contact it. Botmasters are trying to expose their C&C servers for the minimum amount of
time. Domains are registered and DNS configurations are made just a few minutes before the
infected bot is supposed to query the domain, and the C&C servers are shut down and removed
immediately afterwards, so the whole process takes less than an hour. This renders the detection
mechanisms that rely solely on a static domain lists ineffective.

The DGA can be a simple algorithm that uses a seed and the current date and/or time to
generate alphanumeric combinations for a new domain. More sophisticated DGAs (e.g. Kraken
botnet [7]) can create English-language-like domains with properly matched syllables or combi-
nations of English dictionary words, which makes them undetectable by the means of domain
names analysis.

When such a malware is found, it has to be reverse engineered to uncover the underlying
domain generation algorithm in order to block all the generated domains on a firewall or reg-
ister them before the botmaster does. This task can be time-consuming and needs advanced
reverse engineering skills. Furthermore, attackers can make this even more difficult by alter-
ing the technique in a way that the DGA seed is based on the responses of popular sites like
google.com, baidu.com, answers.com (Conficker-C [129]) or even trending topics on twitter (Tor-
pig botnet [163]) that cannot be known in advance, rendering the filtering approach unusable.

The proposed DGA detection algorithm is based on the fact that each host is expected to
make a DNS query before contacting any IP, that was not previously visited by the host. Thus,
we monitor the amount of DNS requests of each host in the local network together with the
amount of unique IP addresses that it contacts. We then calculate the ratio ρ(a) for each host
a in the local network, defined as

ρ(a) =
δ(a)

π(a) + 1
, (3.7)

where δ(a) is the number of DNS requests and π(a) is the number of unique IP addresses
contacted by the host a. There is an addition of one in the denominator to avoid undefined
values of ρ(a) when the number of IPs contacted is zero.

It is important for the π(a) to be the number of unique IPs that communicated with host a
and a was an initiator of such communication. This allows us to detect DGA malware even if
it is running on a server which we would not be able to do if we did not know the initiator of
communication. Illustration of DGA-infected client and server machines is shown in Figure 3.6.
Since the NetFlows are unidirectional, we are using request-response identification described in
Section 3.3.1 to identify the initiator of each communication.
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Fig. 3.6: Illustration of DGA behavior. A normal user has a number of DNS requests proportional
to number of contacted IPs, whereas DGA on a user host has a high number of DNS queries
without contacting any new IPs. Finally, a server with DGA is contacted by a high number of
IPs from the network, but still the number of DNS requests it does is disproportional to the
number of IPs contacted by the server.

The ratio ρ(a) is typically low for ordinary hosts. A high value of ρ(a) is expected when a
host is running DGA. We found that the high value can also indicate a server under some type
of brute-force attack as the servers are typically logging all suspicious activities together with
the DNS resolve of the IP. An example may be an ssh server that for each unsuccessful login
attempt logs DNS resolved information of the client. This means that both DGA and some
brute-force activities can be detected using our approach.

Figure 3.7 shows the histogram of ρ(a) for all IPs from a part the Czech Technical University
(CTU) network. As can be seen the ratio follows normal distribution with heavy tail on the
right. Which supports our above mentioned assumption.
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Fig. 3.7: Histogram of log ρ(a) of all hosts that make at least one DNS request in Czech Technical
University network accumulated over several hours.

To detect the hosts infected by DGA malware we use a simple outlier detection technique,
described in Section 3.3.3, to identify hosts from the tail of the distribution, that represent
hosts with an unusually high ratio when compared to the majority of the hosts in the observed
network and mark them as anomalous.
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3.3.1 Request-response Identification

In order to be able to correctly calculate the amount of IP addresses that the host contacts
and differentiate them from IP addresses that the host is contacted by, we need to know which
flows are requests and which are responses. Contrary to the Request-response anomaly detector,
introduced in Section 3.2, we need to differentiate the request and response flow (only the pairing
is not sufficient).

Our request-response identification is done in two steps. Since the request has to be prior
to the response, we first find the request-response pairs based on IP-port-protocol triples the
same way as described in Section 3.2 and mark the NetFlow in a pair with smaller starting
time as request and the other as response. The unmatched NetFlows are marked as requests
without responses. This however suffers from unreliable timestamps generated by some network
probes which leads to random labeling of NetFlows as requests and responses. Typically, different
network probes have different error distributions of timestamps. Figure 3.8 shows the distribution
of timestamp differences for all request-response pairs where requests were made to port 80 for
a part of Czech Technical University network. We assume that all the communication to port
80 is with HTTP servers, which enables us to decide which flow is the request and which is
response. There is approximately a thousand hosts in the network and all the data capture is
done by a single software probe. Figure 3.9 shows the distribution of the same feature for a large
corporate network. The network has around 50 thousand hosts and the capture of NetFlows is
done by several routers and hardware probes around the network. Request-response pairs with
equal timestamps are not shown in the histogram.

In Figure 3.8 most of the timestamp differences are positive which is expected as the responses
should have greater timestamps than the requests. In Figure 3.9 the distribution is nearly sym-
metrical around zero which means that the request has 50 percent probability of having a smaller
timestamp than corresponding response.

It is evident that in the university network, the timestamp difference is a strong feature for
the request response identification while in the corporate network it leads to random result.
This can be due to the fact that the second network is considerably larger and has more than
one probe, which means that requests and responses can take different routes and potentially
be captured by different probes altogether. Additionally, the probes do not necessarily have
synchronized times between them. Even when running time synchronization services, like NTP,
the probes can have few to hundred milliseconds difference in time rendering this feature useless
in these setups.

Next section introduces a service detection technique that is used to improve the above
described method in the environments with high NetFlow timestamp errors. We assume that
in client-service communications all flows from client to the service are requests and flows from
service to client are responses. We therefore proceed to find all active services and mark NetFlows
that are involved in communication with them accordingly.
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Fig. 3.8: CTU network
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Fig. 3.9: Large corporate network

Fig. 3.10: Timestamps difference histogram.
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3.3.2 Service Detection

The service detection algorithm is based on the median of number of peers difference, described
in detail in Section 3.3.2.1. To define the peer, we first need to define an endpoint which is a
unique IP-port-protocol triple. The peer of an endpoint e is then defined as an endpoint that
communicates with e. The rationale behind the median number of peer difference is that the
endpoints representing a service will typically have many peers (many clients that are connecting
to that endpoint) and the client endpoints — peers of the service endpoint – will have a smaller
amount of peers (clients are typically using a different port for every request creating a unique
endpoint for communication with each server).

The services obtained from the peers difference rule are then filtered using two additional
heuristics, described in Sections 3.3.2.2 and 3.3.2.3, in order to lower the amount of false positives.

3.3.2.1 Median of Number of Peers Difference

First we calculate the number of peers that each endpoint communicates with. Then the median
difference in number of peers de between an endpoint e and all its peers is defined as

de = median{|Pe| − |Pi|}i∈Pe ,

where Pe and Pi are the sets of peers of endpoint e and i respectively.
Figure 3.11 shows a histogram of de values for CTU network over the time frame of 15 minutes.

Port numbers were used for labeling the endpoints as services or clients in the histogram. Even
though we used port numbers for labeling, we did not want to use them as a feature in the
algorithm, because many services run on higher ports and many clients (e.g. NTP) communicate
from lower ports. This is is also reflected in the histogram where most of the endpoints with
low ports and negative or zero values were either NTP, SNMP, etc. that communicate on lower
ports on both sides. The endpoints with high port number and positive de value were usually
legitimate services like HTTP on port 8080.
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Fig. 3.11: Median of number of peers difference histogram, 15 minutes aggregation.

The final decision if an endpoint e is a service is made by thresholding the de values. Services
are those endpoints whose median of number of peers difference is positive, the rest are considered
to be clients.
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3.3.2.2 Unsuccessful Connections

The median of number of peers difference is a strong feature, however, it can lead to some
false positives. One is when a scan from a fixed IP port is performed. In this scenario the
endpoint performing the scan has a high number of peers and would be classified as a service.
This endpoint can be differentiated from a service by the number of unsuccessful connections
originated from the endpoint fe. An ordinary service should have zero or a very low fe, while
fe for a scan will be usually high.

3.3.2.3 Communication Via Both TCP and UDP on Ports Higher Than 1023

A lot of P2P traffic is also caught by the service detector. This is because P2P often uses a fixed
port for communication and contacts a high number of hosts. Therefore, the number of peers
for an endpoint involved in P2P can be also really high.

However, P2P communications can be filtered out using a simple rule — communication on a
port higher than 1023 using both TCP and UDP protocols which is typical of peer to peer [89].

3.3.3 DGA Anomaly Detector

We expect the majority of the network connections to be legitimate, only a small amount of
traffic is expected to be malicious [130]. If we assume that the ratio ρ(a), defined in Equation 3.7,
of the legitimate behavior follows a normal distribution, we can use the Z-value [1], defined in
Section 3.2.2, to estimate the anomaly score. Since we are interested only in detection of hosts
that have more DNS requests than number of visited IPs, which corresponds to higher value
of ρ(a), we are restricting the Z-value to the right tail of the normal distribution. The left
tail represents behaviors in which the host contacts a lot of IPs without DNS queries, such as
horizontal scanning or P2P networks.

The anomaly detection algorithm first calculates the ratio ρ(a) given by Equation 3.7 for every
host on the local network. Then for each five-minute batch the mean and standard deviation of
the ρ(a) values of all hosts on the local network are estimated. The choice of the time interval
was made on the basis of the related works [157, 187] showing 5-minute intervals to give the
best performance.

Anomaly scores are obtained using a modified Z-value (see Section 3.2.2 for definition) as

f(x) =

{
x−µ
σ if x > µ

0 otherwise
,

where x is the value of the ratio for a given endpoint, µ and σ are the current model values.

3.3.4 DNS Server

DNS servers represent a family of false positives of the proposed DGA detector. For each DNS
request they get they make several DNS requests, to resolve the DNS record not present in their
cache. They therefore look anomalous from the standpoint of a DGA detector. We filter out
DNS resolvers using information from service detection defined in Section 3.3.2.
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3.3.5 Experimental Evaluation

3.3.5.1 Controlled Infection

In this section, the experimental evaluation uses NetFlow datasets created using deliberate
infection with Shiz malware [2] which is known for using the DGA algorithm. We infected a
clean Windows machine connected to the CTU network. The malware was run for several hours
on three different days and times to capture the various states of the network resulting in three
different experiments. Detection was conducted on the NetFlows generated from the traffic of
the whole university network. Collected NetFlows were labeled using the source IP addresses of
the infected hosts as malicious and the rest of the traffic was labeled as legitimate. The ROC
AUC, given in Table 3.5, show very high detection quality for each of the presented experiments
that represent the network in different states.

Day 1 2 3

AUC value 0.9733 0.9923 0.9989

Table 3.5: AUC scores of the proposed detection algorithm for the controlled infection scenario.

Figure 3.12 shows the distribution of anomaly values for one five-minute batch in which the
DNS anomaly detector identified traffic generated by Shiz. The traffic from Shiz is labeled red
in the histogram, based on the IP address of the machine in which it was running. Only the
outgoing traffic is labeled, as it is what we want to detect. Note that some of the background
traffic was also labeled as very anomalous. Manual inspection of those NetFlows revealed that the
traffic was originating from several IP addresses that really did show some DGA-like behavior.
For example, one of the cases was a mail server that performed reverse DNS resolution for every
client, resulting in hundreds of DNS requests every five minutes.
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Fig. 3.12: Anomaly values assigned to flows from the CTU network where Shiz malware was
run.
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3.3.5.2 Mixed — various host types

Another set of experiments was conducted using NetFlow records of the Shiz malware [2]. The
sample was run inside a virtual machine for 12 hours and packet captures (pcap) were created.
NetFlows were generated from the pcaps and then mixed into background traffic from the CTU
network. Three datasets were generated with the same background traffic, starting at the same
time. In the first dataset the malware traffic was mixed into a previously inactive IP address,
in the second dataset into an IP address of normally behaving network host and in the third
dataset into an HTTP server IP address. The AUC values are shown in Table 3.6.

The best results are for the previously inactive IP, with the highest AUC values. This is
because it does not have any other traffic except for DGA, therefore its ρ(a) ratio is high. The
host with the user has the lowest AUC. This is because the user is active, he contacts websites
and other servers, therefore his ρ(a) is lowered by the number of IPs he contacts. The HTTP
server’s AUC is somewhere in between. This is probably because the server also contacts some
IPs, possibly for time synchronization or updates. Its ρ(a) is not affected by the users of the
server, because we are able to differentiate between requests and responses. A version of the
DGA detector that did not make a distinction between requests and responses achieved the
AUC of 0.8229 on the same dataset.

Host type inactive host user server

AUC value 0.9811 0.9179 0.9432

Table 3.6: User-server comparison.

3.3.5.3 Mixed — various DGA malware families

In the last experiment we used ten malware samples of six different families. Again, all the
malware samples were run inside a virtual machine for 12 hours and pcaps were captured.
NetFlows were generated from the pcaps and mixed into background traffic from a large size
company with more than 50 000 users. The malicious traffic was mixed into the traffic of six
randomly selected active user IPs and six active servers. Each row of the Table 3.7 shows the
minimal and average AUC score over all six hosts of the same type for a specific malware
sample. As can be seen from the table the presented technique is able to detect various DGA
malware families with high precision when running on the user machine — the minimal AUC
is above 0.80 and the average AUC score above 0.89 for all the tested samples. The efficacy is
slightly worse for the server hosts, where the minimal AUC score is 0.70 for the Win32-AutoRun
malware sample and the average is above 0.86 for all the samples. We should also note that for
our experiments we assume that the original traffic that was not altered by mixing is legitimate
and does not contain any hosts infected by DGA performing malware. This is not necessarily
true, manual inspection of the false positive showed many hosts performing DGA like activities.
Unfortunately, due to lack of additional information, it was impossible to definitely prove or
disprove an actual infection by malware.

3.4 Chapter Summary

This chapter introduced CAMNEP, an anomaly detection system that uses NetFlow records to
detect malicious network communication. We have briefly introduced the existing anomaly de-
tection algorithms used in the CAMNEP system and proposed one statistical and two knowledge
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Host type Malware family mean(AUC) min(AUC)

Trojan-Generic 0.9926 0.9883

Variant-Kazy 0.9943 0.9943

Win32-AutoRun 0.9303 0.8650
Win32-AutoRun 0.9259 0.7974

User Win32-AutoRun 0.9279 0.8093
Win32-Waski-A 0.8894 0.8646

GameOverZeus 0.9837 0.9505

GameOverZeus 0.9907 0.9843
GameOverZeus 0.9830 0.9684

caphaw 0.9920 0.9824

Trojan-Generic 0.9687 0.9156
Variant-Kazy 0.9953 0.9953

Win32-AutoRun 0.8877 0.6966

Win32-AutoRun 0.9116 0.7703
Server Win32-AutoRun 0.8977 0.7325

Win32-Waski-A 0.8586 0.7478

GameOverZeus 0.9720 0.9355
GameOverZeus 0.9687 0.9175

GameOverZeus 0.9767 0.9554
caphaw 0.9588 0.8857

Table 3.7: AUC scores of the proposed method on various malware samples.

driven network anomaly detection techniques to enrich the existing detector ensemble. Each pro-
posed method was experimentally evaluated using a real network data to prove its effectiveness
in practice.
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Chapter 4

HTTP(S) Anomaly Detectors

Botnets are one of the most sophisticated and popular type of cybercrime today. They are the
root cause of most of the malicious activities in the computer networks, such as denial of service
attacks, spam sending, click frauds, adware, distributed brute-forcing of a remote service, identity
and data thefts and many more. A typical botnet consists of a number of malware-compromised
machines, called bots, that are remotely controlled by a botmaster using command and control
(C&C) channels. Exploitation of a machine starts with malware infection from malicious web
page, email attachment, etc. As soon as the malware infects a host, it usually tries to establish
a connection to one or more C&C servers to download updates, retrieve commands or send
private information obtained from the infected host. These callbacks to the C&C servers are
usually through the port 80 since it is a commonly open communication channel in the majority
of networks as there is only a small amount of networks that prevent its users from accessing
the web. The next generation firewalls that are common in present networks can detect if a
connection crossing by the port 80 is a standard HTTP connection or not (various tunnels
through port 80) and allow or block it accordingly. For this reason, the malware developers
are designing malware that is able to communicate via HTTP(s) protocol. They are mimicking
the normal HTTP behavior by using existing HTTP fields for malicious purposes to hide their
activities within noisy HTTP traffic, which makes the detection of those activities a challenging
task.

For these reasons we think that detection of malicious HTTP(s) requests deserves a tailored
solution. In this chapter we introduce several novel HTTP anomaly detectors that are currently
part of the Cisco Cognitive Threat Analytics (CTA) [29] security solution that analyzes HTTP
proxy logs (typically produced by proxy servers located on a network perimeter) to detect
infected computers within the network. Although the logs do not contain all host traffic (only the
HTTP(s) requests are recorded), the information is richer than the NetFlow as each log entry
(hereinafter referred to as HTTP flow or HTTP request) contains the following information
extracted from HTTP request: time of the request, source IP address, destination IP address,
username1, URL, MIME type, downloaded and uploaded bytes, User-Agent identifier, etc. The
complete list of all the features together with their possible values is shown in Table 4.1.

CTA contains more than 30 different anomaly detectors designed to detect various types of
anomalies using:

• empirical estimates of (conditional) probabilities such as probability that any user visit a
specific country P (country), specific user visiting a specific domain P (domain|user), a domain
is visited using a specific web browser P (User-Agent|second level domain), etc.,

• time series models that model user’s activity over time, detect sudden changes in the activity,
identify periodical requests, etc.,

1 This chapter uses the username to identify the network entity contrary to the previous chapter that uses the
source IP address. The IP address of a particular host may change over time, but the username is more reliable
as it always identifies the same network user allowing to create a long term models of his behavior. Therefore,

this chapter refers to the modeled network entity as a network user instead of the previously used network host.
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Feature Value example

x-timestamp-unix 1440870672

sc-http-status 200

sc-bytes 16671
cs-bytes 0

cs-uri-scheme https
cs-host en.wikipedia.org

cs-uri-port 1604

cs-uri-path /wiki/Anomaly detection
cs-uri-query

cs-username Martin Grill

x-elapsed-time 5
s-ip 208.80.154.224

c-ip 192.168.1.2

Content-Type text/html; charset=UTF-8
cs(Referer) https://www.google.com/

cs-method GET

cs(User-Agent) Mozilla/5.0 (Macintosh; Intel Mac OS X 10 10 5)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/44.0.2403.157 Safari/537.36

Table 4.1: Example of HTTP flow. This is one of the HTTP flow created during the download
of a wikipedia.org page. Each page download generates more HTTP flows since all the page
resources have to be downloaded. To render the page from the example the browser generated
additional 20 HTTP flows containing page styles, scripts, pictures, etc. In the example the
cs/sc prefixes denote the client to server and server to client communication respectively, so the
sc-bytes represent the amount of bytes downloaded by the client and cs-bytes the amount of
uploaded bytes to the server. The cs(Referer) field identifies the URL address of the webpage
that linked to the resource being currently requested. By checking the referrer, the new webpage
can see the origin of the request. The rest of the features is self-explanatory.

• HTTP(s) specific detectors use a domain knowledge to detect the anomalies. These include
domain name analysis (n-gram models), analysis of TLS [40] certificates of the HTTPs do-
mains, WHOIS [36] information analysis, etc..

Additionally to the existing HTTP(s) anomaly detectors this thesis proposes two new de-
tectors that are described in detail in the following sections. Similarly to the structure used in
Chapter 3 we present the experimental evaluation of each proposed detector together with the
algorithm description.

4.1 Long First Touch Anomaly Detector

First of the proposed HTTP anomaly detectors is designed to detect a specific type of C&C
communication that is carried over the HTTP protocol. It leverages a simple principle based on
the URL complexity to estimate the anomaly score of the individual HTTP requests.

As described above, the malware trying to exfiltrate data or communicate with the C&C
server typically tries to mimic normal HTTP requests to avoid being detected by the signature
matching detection systems. This can be done by encoding the transfered data in the URL string
(URL path and/or URL query). In that case the URL looks similar to the ones of legitimate
behavior (see Sections 4.1.3 and 4.1.2 for examples). However, this approach leads to HTTP
requests with longer URLs that cannot be directly related to any other legitimate activity of
the infected user.

In the legitimate scenario, the user that wishes to visit a specific website types the URL
into the address bar of his browser and hits enter. It is unlikely that he would type a long
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or complex URLs. We expect to see the longer URLs being reached only when an additional
resources of the requested site are downloaded or when the user follows a link on some webpage
such as in the results of a search engine. In both these cases the cs(Referer) HTTP header field
contains the originally requested site. Although the malware might also fill the cs(Referer) to
mimic the legitimate requests, the referred site is typically missing in the HTTP flows. There is
no need for the malware designers to visit other websites which would eventually increase the
chance of being detected because of larger network footprint. Additionally, as discussed earlier
(see Section 1.1), generating a set of flows that would simulate a legitimate user’s behavior is a
complex problem.

4.1.1 Possible URL Lengths

The minimal URL length is given by the fact that URL needs to contain the primary access
mechanism. Since we are considering HTTP/HTTPs flows only the mechanism can be either
http:// or https://. Additionally, there has to be a location specified, that in its final form
can contain only three characters, which gives us the theoretically minimal URL length of 10
characters (e.g. http://a.b).

The maximal length, on the other hand, is not limited. The HTTP protocol [50] does not
place any a priori limit on the length of a URL and the servers should be able to handle URL
of any resource they serve. But in practice, the extremely long URLs are very rare because they
will not work in most of the popular browsers and servers. For example, URLs with more than
2,083 characters will not work in the Microsoft Internet Explorer. Therefore seeing an URL with
more characters should raise a suspicion as it is not designed to be contacted by a web browser.

Figure 4.1 shows the distribution of URL lengths of more than 160 million URLs that have
been observed to be requested by more that 30,000 users over one week. As can be seen, the
majority of the URLs has less than 200 characters. There is only a really small amount of URLs
of length greater than 1,000 with a small peak around the length of 2,000.
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Fig. 4.1: Histogram of URL lengths of an HTTP flows captured in a corporate network with
more than 30,000 active users over one week.

51



4.1.2 Legitimate Long URLs

Typically, the number of characters of a normally behaving user is smaller than 100, but there
might be legitimate flows that have URL of much greater length that are summarized in the
following bullets:

• Requests for the additional resources of a web site. Web sites typically consist of a large
number of elements. Each element of the downloaded site (picture, javascript, font, css style,
etc.) needs to be requested via the HTTP so the browser can correctly render the whole site.
Therefore the original HTTP request issued by a user (e.g. http://google.com) is followed by
a number of HTTP requests that are sent automatically by the browsers. These request may
need to pass a number of parameters back to the server that can be encoded in the URL
resulting in really long URLs. However, these requests will have the Referer field set to the
original requested site (i.e. http://google.com). Therefore, the request that have the Referer
field set to an existing requested domain may be skipped by the Long first touch anomaly
detector.

• Notification checks. Some web pages have a mechanism that updates its content every pre-
defined time period (e.g. checking of new mail of the web-based email clients) that can also
due to a larger number of parameters result in a long URL. Such an HTTP requests do not
necessary have the Referer field filled, or it may point to a request that was issued a long
time ago.
The notification checks are also skipped by the proposed detector, using a long term memory
that contains all domains requested by the user in the past.

• Links sent by other means. These are the HTTP requests that result from user clicking on a
link that was received by other means (through email, instant messaging, etc.). In that case
the request can be of extensive length irrelevant to the other flows of the user. Since we are
not able to distinguish these cases from the malicious one, this type of behavior represents a
family of false positives of the proposed detection algorithm.

4.1.3 Malicious Long URL Example

DNS Changer [169] is an example of a malware that uses URL path and query to communicate
with the C&C server. It is a malware capable of stealing user and system information together
with being able to execute commands on the device. It bypasses Windows Powershell restrictions
to modify the DNS registry entries in Windows devices in order to replace the name servers on
the user’s machine. This results in the user accessing some sites to be redirected to a phising
sites2. After the successful infection, the malware informs the C&C about its state together with
information about the infected user an the current DNS registry settings. The HTTP request
sent to the C&C does not have the Referer field filled, but the URL has 1310 characters that
look like this:

http://big4u.org/u/?q=Gn3G2Z9sYR4z6XEiqz8Iue391IA347YihS6uDdcjAi-CAGitqNK7o HqKD4wD2Cf3iFrjJNNV

C68QduLgaADk-XEjgKaeiefjoeYhnQK8NIxqxwarvcX7Nzy8KdLR4wgGiLvTkSBV6W8vfyFtz0kby0c31SMXE7lgOGt7h1V8v

66V xbQ-mULrv2X jH dnioyTkarp-pvTvcRbraaGzrWcTcujS9X30CZeXljVllogXjxxV5OHaSzOOwv61udS7h2KFA8yLxjg-

wZl7ZmJtAGAcjz2DeNkswsHcX6v7-wtbehFVmAH6H2K3sNykOxfnTc2xz2dxrQfoBlq oC0JHyALeFey1uGuqp1ctpXWRvctRq

7uaPS2obaVHM4LSGy2diBTSDX-GTyZPmxIqOzGf8DYVF3CY4PcJWPxyfQZTUpSBFlBQmgTsmRM6eTbAYlGMd6S21dBtiRJQVW

YCwQ0LdzIX5dAVlfrMXCjzPeaHyp6G2Goo7rDDk0NX -3oOFOJvtDfxSOiCSaJ8DqUk4RVMjcDPtN0gOQhixAoqtejpFahsAeO

LVCD5PT 6BPrDl&c=AZc-E-xVB8zzHM8ItRK6dLwZXFfmW1wt3n2mgH1RK2RVbInVFZFFsHUZ jG TjgGnSALg6XZQz7k2tAs2

uu5mCs17BDW XiCHcRGu2pCUysfdbCubNk8D0pKqC23BEEmqvliSEYSleritZW91lIkFfG FVnJ5p-ncRQGaPHCQpuTqhbWxXG

sQeO2PdBlzK oCwSI2s864v9xkttqVxo8k8D1z1 unGui2FGRath1r-jGOSXYOxrnhzHwMH81RoIXh880mzyoiu14fRIdptoM

2 A fake website that tries to obtain sensitive information such as usernames, passwords, and credit card details
by masquerading as a legitimate site.

52



koq1S3jc237TyFU1hFsND-asnFZi9W69lptgYvXBBlNNNhiRxsyGFh4Wp0G9co1bvWqZaLlg4m3XrcfF59K0DvehW3TrjXtnd

t4kCbniPIIem-AswvOJ-8DnPCA7KBii1nye03cGTpsrvOUm1dqaxatY-NRdFN4lG9igtPws5xgXhPgKGX3WrNzK7i3WLcIv7c

28l7h 0C6fRwlYZwue7fcBB00a1Fg7XRkPT1Tcj5PpDfi Rryle6c04bPL-PwRZMaKTIY3knrgMuFMYEt2VshSuqVxiuuhIo4

SUu7VVInJq2NpW1GUa8IavWdCTcnCm49stcag6IkKtu4p6 nZgbs8oHKXc4AJVYd6yv9 Vjo4SF48h7tUS-596oqWK6fJvppsy

89tYuLuUsV4DgOiNhaOR&r=1702771575091654957

If we decode the above Base64 encoded query we can see that the HTTP request contains a
lot of private information that is being exfiltrated:

http://big4u.org/u/?q={"dns setter":{"activity type":16,"args":{"!":"6bf129378af2417c"},"bits":
{"file type":2,"job id":"3267496844249690321"},"build":160,"exception id":0,"hardware id":"2748707

171507313081","is admin":true,"major":1,"minor":0,"os id":603,"register date":"1456082605","regist

er dsrc":"1","report id":"1702771575091654957","service pack":0,"source id":"302","status":true,"s

uspect flags":0,"suspect group":"","suspect info":"","user time":1456064633,"version":16777376,"x6

4":true}}&c={"dns configuration":{"affiliate":"55","bits domains":"legco.info/u/;ough.info/u/;heat

o.info/u/;yelts.net/u/;deris.info/u/;big4u.org/u/;listcool.net/u/;listcool.info/u/;monoset.info/u

/","bits interval":6,"bits jobs":2,"bits timeout":90,"dns list":"82.163.143.171;82.163.142.173","n

et timeout":45,"pshell domains":"likerut.info/u/;theget.biz/u/;bootfun.info/u/;sportnew.net/u/;ukj

obmy.com/u/;moonas.info/u/;fasilmy.info/u/;paneljob.info/u/;usafun.info/u/;safesuns.info/u/","psh

ell interval":8,"pshell jobs":1,"report domains":"riyah.info;riyah.net;zambi.info;lenda.info;amous

.net","report ip":"185.17.184.11","retry limit":3,"retry period":10,"session id":"3153783903249204

410"}}&r=1702771575091654957
The exfiltrated data contains the version of the operating system including the registration

status, info about the installed updates, architecture and the rights that the malware was able
to obtain (in this case full administrator rights). Additionally, the info about the changed DNS
records is sent back to the C&C.

4.1.4 Long First Touch Anomaly Detection Method

The above analysis motivated the creation of the proposed Long first touch anomaly detector.
The detector assigns a non-zero anomaly score only if both the following conditions are met:

• the Referer is not valid (it is empty or nonexistent). If there is a valid Referer that points to
an URL that was visited by the user in the past it represents an additional resource of a web
page or an user clicking on a link on different site that generated the current request. Both
these legitimate cases may result in a long URLs that event though not directly typed by the
user, do not represent malicious behavior.

• the requested domain was not visited by the user in the past using a short URL (smaller
than 40 characters). All such domains are stored for each user using the Bloom filter data
structure [20] that allows to store huge amount of domain names that the user visits over
time. This filters out various status checks and updates of a sites that are opened in the
browser as their Referer is typically empty or cannot be found in the cached flows (only flows
from last five minutes are cached).

The anomaly score is then estimated using the length of the URL, as the longer URL are capable
of transferring more information, as

f(x) = 1− exp

(
− 1

λl(x)

)
, (4.1)

where the l(x) is the length (i.e. number of characters) of the URL of the flow x and λ is a
normalization parameter of the algorithm. The evaluation on real network data showed that
setting λ = 40 gave consistently good results.
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4.1.5 Experiments

We have evaluated the proposed detection algorithm using HTTP proxy logs collected in four
different corporate networks of various sizes ranging from 5,000 users up to 40,000 users. Using
a signature-based detection, we were able to identify five different malware families that are
known to exfiltrate information through the URL. All the signatures were either created by
a network intrusion detection analyst or acquired using publicly available signatures including
various domain blacklists and security blogs.

The identified malware families include:

• DNS Changer Trojan [169] is a malware capable of stealing sensitive user information that is
described in detail in Section 4.1.3.

• Kazy malware [155] has been associated with a variety of different criminal activities, including
keyloggers, phishing scams and data theft.

• Zeus malware is known for stealing sensitive user information by using a man-in-the-browser
web injection module. The module enables the malware to modify web pages on the client
side, modify transaction content, and insert additional transactions without the user knowing.

• Cutwail botnet [164] is a botnet mostly involved in sending spam e-mails. Some of the variants
are connecting to the C&C server via HTTP to receive instructions about the emails they
should send. After they are done with their task, the bots report back to the owner the exact
statistics on the number of emails that were delivered, and on which and how many errors
were reported. This is again done via encoding the information into the URL.

• Trojan.Bumat!rts [127] is typically hidden within legitimate executable files belonging to
other programs. A hacker may use Trojan.Bumat!rts to infiltrate an infected system and put
stored data at risk of being stolen.

The AUC scores, presented in Table 4.2, show high detection quality for all the identified
malware types. The only slightly worse efficacy was achieved for the Zeus malware, that uses
slightly shorter URLs than the other malware families.

Malware family AUC

DNS Changer Trojan 0.99

Kazy malware 0.97
Zeus malware 0.93

Cutwail botnet 0.97

Trojan.Bumat!rts 0.98

Table 4.2: Results of the Long first touch anomaly detector. The AUC scores are evaluated for
several types of malware that are known for exfiltrating private information using the URL.

4.2 User-Agent Discrepancy Detector

The User-Agent discrepancy detector uses User-Agent [50] HTTP request header field that
contains information about the user agent originating the request (i.e. application that created
and sent the request). The User-Agent is typically used for statistical purposes (statistics of the
overall usage of particular browser or operating system for accessing particular domain), the
tracing of protocol violations, and finally for the automated recognition of user agents for the
sake of tailoring responses to avoid particular user agent limitations3.

3 The usage of User-Agent field for recognizing of the user agent to know the limitations of that particular
application proved to be ineffective because of compatibility problems encountered each time a new version of
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Although it is not required, each HTTP request should include User-Agent field. The field
can contain multiple product tokens and comments identifying the agent and any subproducts
which form a significant part of the user agent. By convention, the product tokens are listed in
order of their significance for identifying the application.

Since the User-Agent string representing users browser is commonly user specific (we found
out that one exact User-Agent is on average used in the network only by two users) and also
typically created at runtime using version information of various parts of the operating system,
it is not an easy task to obtain the exact same User-Agent as the user normally uses. Because of
that, the malware creators are typically using either their own specific non-browser User-Agent
string or User-Agent string of one pre-selected browser, hardcoded in the malware binary. This
gives us the opportunity to detect such User-Agents that are discrepant with the ones that the
user of infected machine typically uses. The presented approach is not able to detect malware
that hijacks the User-Agent of the browser that the user is typically using. But we found out that
95% of evaluated malware samples were using hardcoded User-Agents in their HTTP requests.

Furthermore, the User-Agent string can be easily changed by the user. There is a number of
browser plugins that allow users to quickly change their User-Agent (these are recently heavily
used by user of Windows XP, that are spoofing their User-Agents to look like they use newer
version of Windows OS, because of the end of the support of Windows XP and lot of banks are
blocking those obsolete operating systems to access their on-line banking system). This could
cause a lot of false positives, because of the artificial changes of the User-Agents. But we found
out that the users are not switching the User-Agents frequently, when using those tools.

4.2.1 User-Agent Anomaly Detection

Malware-infected user that uses HTTP to communicate with the C&C server needs to create
the HTTP header in which the User-Agent field should be filled. The User-Agent, that is set by
the malware, can have one of the following forms:

1. Empty User-Agent field. Some of the malware is leaving the User-Agent unset to avoid
detection or simply because of the fault of the malware creator.
But, since the User-Agent field is not required and the specification [50] only says that the
User-Agent ”should” be filled, there are some legitimate applications that can also create
HTTP requests with the User-Agent field unset. The portion of such requests is really small
compared to others.

2. Specific. In this case the User-Agent is a non-browser (does not follow standard browser
pattern of the form Mozilla/X.X (additional information)). These can represent a bug
in the malware source code such as misspelled commonly used User-Agents, programming
language default User-Agents (we have encountered malware that used Visual Basic defaults)
or it can be set to a specific string on purpose to implement some functionality that identifies
the botnet (e.g. handshake for the server to handle malware requests differently than the ones
of normal users) or leak some information (e.g. information about the infected user that can
contain IP or other user identification, information about installed anti-virus applications,
etc.) or bogus string like HTMLGET 1.0 as used by IKEE.B botnet.
Again, some of the specific User-Agents may be used by legitimate applications. These are
various update clients, toolbars, RSS readers, etc. These User-Agents are typically used by
multiple machines in the network since there are more users that are using the same appli-
cation or more machines of the same type (e.g. printer of one manufacturer) with the same
default User-Agent

Internet Explorer was shipped. As a consequence, the logic around the User-Agent string has grown increasingly
complicated over the years. The introduction of Compatibility Modes has meant that the browser now has more

than one User-Agent string, and legacy extensibility of the string was deprecated after years of abuse.
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3. Spoofed. Malware sets HTTP User-Agent as the user-specific browser would do. This means
that the malware is able to detect which browser is used by the user and extract the User-
Agent from that particular browser. This is not a trivial task because the User-Agent is
typically constructed at runtime using various parts of the OS. In this case the proposed
method can not identify the malware based on User-Agent information alone, since the User-
Agent used by the malware would be aligned with the one the user typically uses. Another
approach is to hijack the browsers process to perform the request for the malware, in this case
the User-Agent will be also the same as the user is typically using. In this case the malware
is unrecognizable from the normal user when focusing only on the User-Agent field and the
proposed detection algorithm wont be able to detect this type of malicious requests.

4. Discrepant. Malware sets HTTP User-Agent to a constant string, representing a browser,
not matching the current computer environment. Since the hijacking of the browser is not a
trivial task, as described above, there is a number of malware that uses this approach to fill
the User-Agent field in the HTTP request. This approach is undetectable by the signature
matching techniques as the User-Agent is typically a legitimate one.

We propose three different anomaly detection approaches to detect malware that falls into
one of the categories: Empty, Specific or Discrepant. The malware that uses Spoofed User-Agent
cannot be detected using the User-Agent feature only, but as shown in Section 4.2.2.4 the spoofed
User-Agent is used only by less than 20% of malware.

Each of the anomaly detection algorithms described below first extracts user identifier, IP
address, visited domain and User-Agents string from the HTTP flow, then the User-Agent string
is assigned to group of empty, well-known browsers or unknown User-Agents. The browser and
non-browser recognition is done using UADetector library [146] which uses regexp matching
to recognize the well-known User-Agents. This library also provides the browser family type
(Internet Explorer, Firefox, Chrome, etc.) that is used by the Discrepancy detector. The rest of
the anomaly detection process differs for the three groups: unknown User-Agents are handled
by Unknown-Unused User-Agent detector, described in Section 4.2.1.2, anomalous User-Agents
of well known browsers are detected using User-Agent Discrepancy Detector described in Sec-
tion 4.2.1.3. Finally, the flows with missing User-Agent are evaluated using the No User-Agent
anomaly detector, described in Section 4.2.1.1.

4.2.1.1 No User-Agent Anomaly Detector

As stated above, the empty User-Agent in non-HTTPS request is created by applications that
simply do not fill this field. These are typically various update services or programs that are
requesting limited set of services from the Internet (e.g. weather updates, translations, news,
etc.). Using this we can simply model which domains are used by a larger set of users and label
domains that are visited by minority as anomalous as it is less likely that the majority of network
users would be infected with the same malware.

Therefore, in this case, we propose to model the usage of domains. For each domain we count
the number of unique visitors, creating a domain usage histogram. Each bin of the histogram
represents number of users of one particular domain d. The anomaly f is then equal to normalized
surprisal [118], that is computed as:

f(d) = −log(P (d))−H({h(y)}y∈D), (4.2)

where the D represents a set of all observed domains accessed with no User-Agent, H({h(y)}y∈D)
is the entropy of the bins and the P (d) is the probability of the domain d estimated using the
histogram as P (d) = d∑

y∈D h(y) .

56



4.2.1.2 Unknown Unused User-Agent Detector

The unknown, non-browser User-Agents typically represents special application that is using
HTTP for its communication. The reason for such behavior is that these applications can either
work with the web content or resources (RSS reader, Java, Adobe Flash, Weather toolbar, etc.)
or are similarly to the malware using a HTTP to avoid blocking of their communication on the
firewalls (Skype, Windows Update Service, etc.).

For the unknown, non-browser User-Agents we propose to model User-Agent frequency among
all the users. The detection algorithm start with the removal of version number and additional
information from User-Agent string to discard permissible differences in user node configura-
tions (i.e. Dropbox 2.4.3 (WinXp, x64) will become Dropbox). The key assumption is that
the frequency of each User-Agent string in this group over all network users is roughly compara-
ble for each string representing benign traffic. Thus we calculate the average frequency of each
User-Agent string among all network users and mark as anomalous those User-Agent strings
that are in the left tail of the distribution.

The final anomaly score is therefore calculated as follows:

f(x) =


0 if x ≤ τ1
h(x)−τ1
(τ2−τ1) if τ1 < x < τ2
1 if x ≥ τ2

,

where h(x) is number of occurrences of the User-Agent string x and τ1 and τ2 are thresholds,
set to 10 and 30 percentile of the distribution of the frequencies over all User-Agents.

4.2.1.3 User-Agent Discrepancy Detector

Detection of anomalous well-known, browser User-Agents is based on the fact that one user uses
only one version of a web browser on one machine. Almost no one has a two different versions
of the same browser — for some browsers it is not even possible.

The anomaly detection algorithm, that identifies discrepant User-Agents, works as follows.
We collect all the User-Agent strings for each user and browser family. Thus we know the exact
version of all the browsers that the user uses on his machine. If we find a User-Agent of the same
family that differs from the commonly used one, we first check if the user updated his browser
(version of some of the components increased and the user is using the newer User-Agent string
from now on) otherwise the User-Agent is labeled as malicious.

Additionally, there are several additional rules that solve some of the special cases like Internet
Explorer’s compatibility mode, that can change the versions of some components, version change
caused by usage of both the 32 and 64-bit versions of Internet Explorer on x64 machine, usage
of the chromeframe inside Internet Explorer, etc.

The anomaly detection algorithm models all the versions of all the browsers used by one user
using a histogram. Each bin in the histogram represents the number of occurrences of one of
the browser version string. The final anomaly is calculated as follows:

f(x) = 1− h(x)∑
i(h(i))

, (4.3)

where the h(x) is the number of occurrences of the User-Agent x.
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4.2.2 Experiments

The experiments were performed using the HTTP access logs collected over the period of 14
days from mid-size company with more than 6,000 active users, that generated over 700 million
flows.

4.2.2.1 No User-Agent Detector

We have manually analyzed portion of the HTTP requests with missing User-Agent field. Each
analyzed request was evaluated using various publicly available detection and reputation systems
and labeled as malicious or legitimate. Using this process we have labeled 1.5 million HTTP
flows as legitimate and 4.5 thousand as malicious from the total of 4 million, having 35% label
coverage.

Using this approach, we have been able to identify only one HTTP domain, that was reported
to communicate with a number of malware families. The domain was mainly used as a C&C
of a Trojan.Dropper malware. The AUC value for the No User-Agent detector on this malware
sample is shown in Table 4.3.

Malware AUC

Trojan.Dropper 0.97160

Table 4.3: AUC of the No User-Agent detector on one of the identified malware samples.

4.2.2.2 Unknown-Unused User-Agent Detector

Similarly to above, we have manually labeled all the HTTP requests with non-browser User-
Agents. From the total number of 42 million HTTP flows we have been able to identify 0.5
million malicious flows and label 39 million flows as legitimate resulting in 92% coverage.

All the malicious flows were generated by several users that were infected by malware of one
of the following families:

• H-worm [74] is a malware that tunnels information about the infected machine through the
User-Agent field. The User-Agent is of the form, ECAB5BF2<|> NCPD312722<|> vazquezp<|>

Microsoft Windows 7 Enterprise<|> underworld final<|>McAfee VirusScan Enter-

prise .<|>false, containing private information like username, installed antivirus, com-
puter id and main drive id.

• Win32/Sality.3 generates flows with User-Agent set to MyApplication 1.0. In this case the
malware creator used default setting of his development environment when implementing
the HTTP communication. This is a 11-years old malware used to send SPAM and perform
DDoS attacks that has been recently updated to run also on routers to spread itself among
the infected router’s users.

• Win32.QQPass uses User-Agent of the form GetWeb to access several subdomains of the
qq.com, a dynamic DNS service, that were all reported by number of web analyzers as mali-
cious.

• QQ hider is a malware that was unknown at the time of the experiment evaluation (no other
security solution was able to detect it). It again uses the qq.com service for contacting the
C&C server. User-Agent of this malware is set to QQ Bug Report Tool, but there is no
such an application provided by qq.com. Furthermore, it contacts the bugreportv2.qq.com
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subdomain, that is one of the regular dynamic DNS domains. Therefore, it seems that this is
really nice camouflage of some malware.

The Table 4.4 shows the evaluation results of the Unknown-Unused detector on the whole
dataset. As can be seen the detector performed very well on all the manually identified malware
samples, described above. The best detection performance achieved is for H-worm malware. This
is caused by the fact that the malware uses different User-Agent string for every user, so from the
Unknown-Unused detectors perspective these are the most anomalous User-Agents. The others
have slightly worse AUC value, because there were more users that were infected by the same
malware.

Malware AUC

H-worm 0.96996

Win32/Sality.3 0.95403
Win32.QQPass 0.94982

QQ hider 0.94950

Table 4.4: AUC of the Unknown Unused User-Agent detector on the manually labeled malware
samples.

4.2.2.3 User-Agent Discrepancy Detector

Since there is a great number of HTTP flows with a web browser-like User-Agents (more than
600 million flows with lot of them being unique), we were not able to manually analyze such a
portion of the data to have significant coverage that could be used for the evaluation. Instead of
the manual labeling of all the browser-like flows, we have just analyzed the ones, labeled by the
Discrepancy detector as the most anomalous and assumed the rest to be legitimate. For this we
have made an analysis of all flows that had anomaly value greater than 0.8. This way we can
correctly estimate the precision of the detector but ignore the recall.

We have successfully identified only two malicious users infected by malware of two different
families:

• Win32/Alman was using discrepant User-Agent of a form Mozilla/4.0 (compatible; MSIE

6.0; Windows NT 5.1; SV1) that is a common IE User-Agent.
• Trojan.Win32.Dropper.aa used Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;

.NET CLR 1.1.4322; .NET CLR 2.0.5072; .NET CLR 3.0.04506.30; InfoPath2) which
again is a legitimate User-Agent but in our case discrepant with the one the user was using.

Since we were able to identify only two malware families in the network, we have artificially
added one more to the weblog dataset. We have extracted the weblog from the network traffic
of the Flame/SkyWiper malware binary and mixed it into the data. The malware flows were
changed to have an IP and user identifier of one of the legitimate users from the network, that
uses MSIE of a version 6.0 on a Windows OS.

The Flame/SkyWiper was selected because of its analysis made by [82]. This malware
uses specific User-Agent that looks like: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; .NET CLR 1.1.2150). This User-Agent was artificially created, since the .NET of version
1.1.2150 was never released by Microsoft.

The Table 4.5 shows the AUC evaluation of the User-Agent discrepancy detector for the both
malware families, identified in the network and the simulated one, that was evaluated in another
round of the evaluation. Only the Trojan.Win32.Dropper.aa has a AUC value less than 0.9. This
was caused by the fact that this malware was sending a lot of requests from a user, that was
using the HTTP rarely, having comparable usage to the user’s legitimate User-Agent.
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Malware AUC

Win32/Alman 0.91564

Trojan.Win32.Dropper.aa 0.87745

Flame 0.94855

Table 4.5: AUC of the User-Agent Discrepancy detector on two real malware families identified
in the network traffic and one artificially added to the same background traffic.

4.2.2.4 User-Agent Usage by Malware Samples

To demonstrate usefulness of the proposed method we have analyzed a big portion of malware
from the Totalhash malware database. This publicly available database contains huge number
of malware samples together with a analysis made by their sandboxing solution. Since all the
malware is run inside specific sandbox using one OS with one default User-Agent (Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 2.0.50727)) it is easy to com-
pute simple statistic to know how various malware samples are setting the User-Agent.

We were able to acquire information about the behavior of 181 762 malware samples that were
using HTTP for the communication. From this number only 34 488 malware samples were using
a User-Agent aligned with the default User-Agent of the sandboxed OS. This is the upper bound,
since there can be malware samples, that are using hardcoded User-Agent aligned with the one
of the sandbox VM only by coincidence. 77 348 samples were using browser–like User-Agent,
discrepant with the default one. There were also 43 840 samples with empty User-Agent fields.
The remaining 26 086 were non-browser User-Agent strings. These were further investigated
to see if the malware is using popular non-browser User-Agents to reduce the probability of
detection. Surprisingly, only 5 samples were using Java User-Agents, 7 were using User-Agents
of Adobe Flash and only 8 used User-Agent of TeamViewer. Most of the User-Agents were of
the form Downloader X.XX, UniversalUserAgent(winHTTP), httpget, ABC, etc. The numerical
proportions of individual categories described above are illustrated on Figure 4.2.

Spoofed UA

19%

Discrepant UA

43%

Non-browser UA

14%
Empty UA

24%

Fig. 4.2: Proportions of various User-Agent categories observed on 181 762 malware samples
in the Totalhash database. Almost half of the observed samples were using discrepant browser
User-Agents. 24% of the malware samples were sending HTTP requests with empty User-Agent
field. There were only 19% samples with spoofed User-Agent. Finally, only 14% samples were
using Non-browser (unknown) User-Agents.

This proves presented approach to be usable in practice, since more than 81% of the malware
from the totalhash database, that use HTTP for communication would be detectable by one of
the proposed anomaly detection mechanism.

60



4.3 Chapter Summary

We have introduced the CTA detection engine that uses more than 30 various anomaly de-
tectors that are specialized in detecting anomalous HTTP(s) requests collected by the HTTP
proxies. Two novel knowledge driven detection methods were proposed and their efficacy was
experimentally evaluated using a real network data.
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Chapter 5

Large Margin Ensemble Optimization

This chapter introduces a novel supervised method to learn a combination of a number of
heterogeneous anomaly detectors, where some of them can be specialized to particular types
of malicious behavior, whereas others can be general anomaly detectors capable of detecting
previously unseen attacks at the expense of higher false alarm rates. Such a setup has multiple
advantages, including faster processing of the data stream, lower complexity of the detectors, and
simpler inclusion of domain knowledge into the system (see Chapter 1 for detailed discussion). It
can be argued that using a supervised method to learn the combination may bring the expense
of lower generalization, but according to our experience completely unsupervised approaches
rarely have false positive rate low enough to be usable in practice. Moreover, anomaly detectors
and their features are usually selected based on the experience of the designer, which is a kind
of proxy for labels and surely not guaranteed to be complete.

Although a vast prior art on the problem exists (see Section 2.2), we believe that peculiarities
of the security domain, namely a highly imbalanced ratio of non-alarm and alarm samples in the
data, lack of accurately labeled datasets, and the need of extremely low false positive rates, call
for a tailored solution. We propose a method of finding a convex combination of outputs of a fixed
set of anomaly detectors maximizing the number of true alarms in τ -fraction of most anomalous
flows and an experimental study of the effect of different types of label noise in the training
data on the accuracy of combinations obtained by different methods to better understand their
advantages and drawbacks.

If the proposed method requires labeled data, one can ask why not use them to train a
classifier and sidestep the use of anomaly detectors? The most important reason to favor their
use is that network traffic discussed in this chapter is very non-stationary and anomaly detectors
are good at coping with this aspect, as they can constantly update their models (see [123, 32, 23]
for a review).

This chapter is organized as follows: We first introduce a method for scaling the outputs of
anomaly detectors to guarantee scores of the same scale to be able to easily combine them.
Section 5.2 formally defines the combination problem and presents the proposed solution. The
experimental Section 5.3 compares the proposed solution with existing methods using sets of
anomaly detectors of both CAMNEP and CTA network intrusion detection systems.

5.1 Scaling Outputs of Anomaly Detectors

Generally, individual anomaly detectors need not generate anomaly scores of the same scale.
This causes problems during the combination process, since one or more detectors could be
inadvertently favored. Therefore, the anomaly scores generated by both the CAMNEP and CTA
anomaly detectors are normalized using the gaussian scaling proposed by Kriegel et al. [92]:
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h̃(x) = max

{
0, erf

(
h(x)− µh
σh
√

2

)}
, (5.1)

where the h̃(x) is the normalization of the anomaly score h(x) assigned to the flow x ∈ X by
anomaly detector h. The used Gaussian Error Function erf() is monotone and thus ranking
stable. The µh and σh are the mean and the standard deviation of the anomaly scores returned
by the anomaly detector h. These can be estimated from the data using µ̂h = E(h) and σ̂h =√
E(h2)− E(h)2 in single run or adaptively adjusted when running in an on-line scenario. This

transforms the anomaly scores of individual anomaly detectors into probability estimates, where
the probability of zero represent normal flow, aligned with the predictive model, whereas one
indicates highly anomalous flow. These are therefore directly comparable and can be aggregated
using a number of combination techniques [92].

5.2 Ensemble Construction Method

We assume that the network operator observers network flows (samples) from an unknown
distribution Po = πPa + (1 − π)Pb with Pa / Pb being distributions of malicious / background
samples and π ∈ [0, 1]. The network operator uses set of m anomaly detectors on samples
Hm = {hk : X 7→ [0, 1]}mk=1 (w.l.o.g. it is assumed that zero means the sample is legitimate
and one means the sample is malicious) and wishes to have a convex combination of anomaly
detectors α = (α1, . . . , αm) that would maximize the number of alarms in top τ quantile of the
distribution of the combined anomaly scores. For purposes of this chapter it is safe to assume that
each flow (sample) is described by m-dimensional vector (an output of m anomaly detectors),
which implies that distributions Po, Pa, and Pb are defined on the m-dimensional Euclidean
space.The requirements on detectors having their image in the interval [0, 1] and learning a
convex combination instead of a linear one are to improve interpretability of the results as
discussed in [92], but can be dropped.

With respect to the above, networks operator’s goal can be written as

arg min
α∈Rm

R(Hα) = Ex∼Pb
[
1(αTh(x) ≥ qα,τ )

]︸ ︷︷ ︸
Rfp(Hα)

+Ex∼Pa
[
1(αTh(x) < qα,τ )

]︸ ︷︷ ︸
Rfn(Hα)

, (5.2)

subject to

Hα(x) =
m∑
k=1

αkhk(x) = αTh(x),

1>α = 1,

αi ≥ 0, ∀i ∈ {1, . . . ,m},

(5.3)

where the first term in (5.2) is the false alarm rate, the second term is the false negative rate, and
finally qα,τ is a τ -quantile of observed distribution of ensemble’s output {αTh(x)|x ∈ Po}. The
minimized term (5.2) captures the accuracy of a particular convex combination in top τ -quantile
of its distribution, which is the goal.

In theory it would be sufficient if (5.2) minimizes either only false positive rateRfp or only false
negative rate Rfn, because each of them together with constraints (5.3) implies minimization of
the other. But the experiments suggest that including both terms increases the robustness with
respect to noise on labels, since the error and its gradient are estimated from larger number
of samples implying their better estimates. This is demonstrated in Section 5.3.4, where the
combination of anomaly detectors was found by optimizing either only false positive rate or only
false negative rate under constraints (5.3). The experiments have confirmed that optimizing the
proposed (5.2) is indeed more robust to error in labels, which are almost inevitable in security
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domains. In the rest of this section we show, how to find a good solution in practice using
adaptation of the method of Boyd et al. [22].

First, the true loss function (5.2) cannot be used in practice, since the true probability dis-
tributions Pa and Pb are not known. Therefore the expectations are replaced by their empirical
estimates calculated from some labeled data used for learning the weight vector α. Below the
S = Sa∪Sb denotes the set of available samples with Sb being the set of background (legitimate)
samples and Sa the set of malicious samples. The empirical estimate of (5.2) is therefore

R̂(Hα) =
1

|Sb|
∑
x∈Sb

1
[
αTh(x) ≥ q̂α,τ

]
+

1

|Sa|
∑
x∈Sa

1
[
αTh(x) < q̂α,τ

]
, (5.4)

where q̂α,τ is an empirical estimate of the true quantile qα,τ defined as

q̂α,τ = arg max
ω

1

|S|
∑
x∈S

[
1(αTh(x) ≤ ω)

]
≤ τ. (5.5)

Since the empirical loss function (5.4) is neither convex nor smooth, finding the optimal solution
is an NP-complete problem. A usual approach is to replace indicator function 1 with a convex
surrogate, for example an exponential used in this work1. This substitution leads to the following
optimization problem

arg min
α

1

|Sb|
∑
x∈Sb

exp
(
αTh(x)− q̂α,τ

)
+

1

|Sa|
∑
x∈Sa

exp
(
q̂α,τ − αTh(x)

)
(5.6)

subject to 1>α = 1,

αi ≥ 0, ∀i ∈ {1, . . . , l},
q̂α,τ is a τ -quantile defined in (5.5).

where the optimized term (further denoted as R̂exp(Hα)) is an upper bound of the empirical

loss function R̂(Hα) defined in Equation (5.4).
Nevertheless the last problem is still hard to solve, as it is not convex. Boyd et al. [22] showed

how to find a good solution in polynomial time using series of convex problems. However his
algorithm does not guarantee to find the global minimum, and the computational complexity
prevents it to be used on problems with millions of samples. We therefore propose to solve (5.6)
by a simple gradient algorithm summarized in Algorithm 1, which albeit not reaching the global
minimum performs well, according to our experiments. In each step the current solution αk is
updated by subtracting a small multiple of the gradient of (5.6), which is decreasing in each
step to ensure convergence. The αk is then truncated to satisfy the constraints, and finally the
estimate of the quantile q̂α,τ is updated. The algorithm may find sub-optimal solutions but the
experiments in Section 5.3 show that the found solutions are in most of the cases better than
the ones of the state-of-the-art methods.

The combination of detectors found by the above algorithm is optimized with respect to
the known malware, by which we understand the malware whose samples are present in the
training set and most of them are correctly labeled. We believe that it is very hard to draw any
conclusions about the accuracy of the algorithm on malware that has never been observed. If the
unknown malware is similar to the known one (e.g. using similar components or having similar
behavior), then it is likely that the above optimization will help. In order to get insight to this
phenomenon on real data, the experimental section compares accuracy of several algorithms on
training sets with errors on labels of different types. We believe this study will help to select the
right algorithms for practice.

1 The chosen convex surrogate does not have a significant impact on the solution and can be replaced by the
reader’s favorite choice, e.g. logistic, hinge, truncated square, etc.
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Data: Set of labeled samples x1, . . . , xl ∈ S,

set of anomaly detectors Hm
and δmin.

Result: weights α ∈ Rm
Start with equal weights α1 = 1/m;
repeat

Set qHα (τ) to be τ -quantile of the distribution of Hαk ;

Update the step size as γk = 1√
k

;

αk+1 = αk − γk ∂
∂α
R̂exp(Hαk );

until |R(Hαk )−R(Hαk−1
)| < δmin;

Algorithm 1: The algorithm used to solve the optimization problem (5.6).

5.3 Experimental Evaluation

The proposed combination technique was evaluated and compared to prior art using the anomaly
detectors of CAMNEP and CTA intrusion detection systems. The first one, described in Sec-
tion 5.3.2, uses NetFlow [30] records, while the second one, described in Section 5.3.3, uses logs
from HTTP proxy servers.

In this chapter we use a measures from information retrieval to compare the algorithms,
namely precision and recall. Assuming that malware samples have positive labels, precision is
the fraction of the number of malware samples classified as positive and the total number of
samples classified as positives, and recall is the fraction of malware samples classified as positives
and the total number of malware samples. To highlight that the detection threshold is set to
1% of the most anomalous samples, we abbreviate both measures as (Prec@1% ) and recall
(Rec@1% ). When evaluating the accuracy at top, the use of precision and recall is preferred
over the popular area under the Receiver Operating Characteristic curve (AUC ROC) [49],
because the latter compares the algorithms in areas which are outside the region of the interest
(top 1% anomalies).

The use of machine learning methods in security is frequently hindered by the lack of fully
labeled dataset. While samples labeled as malicious are most of the time connected to some ma-
licious behavior, it can frequently happen that some background samples are actually malicious,
but the labeling oracle (analyst) has failed to recognize them. Experiments described below aim
to simulate three types of noise in labels (and of course the noise-less case denoted as Non.)
to investigate their effect on the learning of the combination function. The types of considered
label noise are:

• Samples of all types of malicious activities are within the training data, but 50% of samples
of each activity type were not recognized as malicious by the oracle (human), and therefore
they are labeled as a background. This case is denoted below as anomaly label noise (ALN ).

• Samples of some (50%) types of malicious activities are completely missing in the training
data, but they are present in the testing data. Samples of remaining types of malicious
activities are present in the training set, but as in the previous case the labeling oracle did
not recognize 50% of their samples. This case is denoted as missing anomaly types (MAT ).

• Samples of all types of malicious activities are present in the training data, but the oracle did
not know 50% of types, and labeled them as background. On samples from remaining 50% of
types of malicious activities present in the training set the oracle again made a mistake and
has labeled them as background. This type of noise is further denoted as anomaly label noise
with type mislabeling (MLT ).

The testing set was always noiseless to allow for fair comparison and evaluate the effects.
Datasets for each intrusion detection engine are described in corresponding subsection. The

available data was split so that 50% of samples were used to learn the combination of anomaly
detectors and the rest for testing. This split has been repeated five times to account for the
variance of the estimate.
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5.3.1 Compared Algorithms

The experimental comparison involves four unsupervised combination rules (mean, max, rank
BFS [97], mean rank [97]), and four combination rules trained by supervised methods (SVM-
perf [84], TopPush [101], RankBoost [54], and the proposed method). All the methods are
described in detail in Section 2.2.

SVM-perf used L1-slack algorithm with constraint cache setting, so that 1% of positive ex-
amples was used as value of k for Prec@k. Regularization constant in TopPush was set to one.
The proposed method (Acc@Top) was set to optimize the accuracy in top 1% of most anomalous
samples, which means τ = 0.99.

Algorithms chosen for comparison enabled comparing unsupervised methods among them-
selves (repeating the experiment in [154]), relevant supervised methods among themselves, and
also the gain one can expect when using supervised methods even though the labels are not
perfect.

5.3.2 Evaluation on NetFlow Anomaly Detection

The NetFlow anomaly detection engine [141, 59], introduced in Chapter 3, processes NetFlow [30]
records exported by routers or other network traffic shaping devices. The anomaly detection
engine identifies anomalous traffic using an ensemble of anomaly detection algorithms. Some of
them are based on Principal component analysis [95, 96, 125], others detect abrupt changes in
the behavior [45] or even use fixed rules [177]. Furthermore, there are detectors designed to detect
specific type of unwanted behavior like network scans [160] or malware with domain generating
algorithm [67]. In total the NetFlow anomaly detection engine uses 16 anomaly detectors. Thus
the goal is to find a linear combination of these 16 anomaly detectors maximizing the accuracy
in top 1% quantile.

The evaluation used several datasets from a traffic captured on the network of Czech Technical
University (CTU) in Prague. The datasets and labels especially were created by three different
approaches: manual labeling, infecting virtual machines, and performing real attacks against our
computers within the network. In manual labeling, experienced network operator was able to
successfully identify malicious activities that generated almost 10% of the total number of the
flows (samples). In datasets with manually infected virtual machines2 all their connections were
labeled as malicious, whereas the rest was labeled as background. In the final dataset a network
specialist run several attacks against one computer in the network. The attack vector consisted
of a horizontal scan to discover open SSH ports, followed by SSH brute-force attack to break
the password, and finished by SSH login and data download simulating data theft.

Figure 5.1 shows precision-recall curves for eight compared algorithms. The graphs demon-
strate that the combination found by the proposed method (Acc@Top) most of the time dom-
inates all other methods and fixed combination rules. Notable exceptions are cases when some
types of malicious activities are completely missing in the training data (MAT) or they are
incorrectly labeled (MLT). In these cases unsupervised mean rank combination is better on the
lower recall part of the curve. This behavior suggests that different anomaly detectors detect
different types of malicious activities and the supervised combination has slightly overfitted. In
practical applications combining supervised and unsupervised combination rules should be used
to ensure good accuracy on known malicious activities and simultaneously some generalization
on unknown alerts, where the precision will be substantially smaller. Also notice that the pro-
posed algorithm is the most robust with respect to noise from all supervised ones. SVM-perf is
good in the noiseless case, but poor when noise of any kind is present. The TopPush is slightly
more robust, but still it performed poorly with noise of MAT and MLT types, both of which
are also the hardest cases. Unsupervised combination function mean rank performed the best

2 Neeris, FastFlux and RBot were used to infect the machines [59].
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Fig. 5.1: PR curve comparison of algorithms with different types of label noise (described in
Section 5.3) using the NetFlow anomaly detectors. Curves represent precision and recall values
for all possible thresholds. The threshold corresponding to the 1% quantile is marked on each
line with a filled circle.
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among unsupervised combination functions and it was surprisingly close to supervised ones at
low recall.

Prec@1% Rec@1%
Method Non. ALN MAT MLT Non. ALN MAT MLT

Mean 0.9 0.9 1.4 0.9 0.1 0.1 0.1 0.1
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

Maximum 19.8 19.8 25.4 19.8 71.8 71.8 69.6 71.8
(48.8%) (48.7%) (49.8%) (48.8%) (48.8%) (48.7%) (49.8%) (48.8%)

Mean rank 88.3 88.5 92.3 88.8 7.4 7.5 5.7 7.8
(1.4%) (1.5%) (1.4%) (1.5%) (1.4%) (1.5%) (1.4%) (1.5%)

Rank BFS 15.0 15.0 18.5 15.0 1.0 1.0 1.0 1.0
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

RankBoost 53.4 53.5 56.6 63.7 65.9 65.9 34.8 29.2
(16.6%) (16.6%) (9.8%) (7.3%) (16.6%) (16.6%) (9.8%) (7.3%)

TopPush 99.7 84.1 43.5 24.2 9.5 6.9 2.9 1.9
(1.3%) (1.3%) (1.4%) (1.7%) (1.3%) (1.3%) (1.4%) (1.7%)

SVM-perf 76.2 0.1 0.4 0.3 6.7 0.0 0.0 0.0
(1.2%) (1.0%) (1.0%) (1.0%) (1.2%) (1.0%) (1.0%) (1.0%)

Acc@Top 98.3 96.7 29.1 76.9 9.7 6.8 1.2 5.2
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

Table 5.1: Comparison of various combination techniques as applied to the NetFlow anomaly
detectors described in Section 5.3.2. Each column represents precision or recall in percent for
various types of noise defined at the beginning of Section 5.3. Best-scoring algorithm is boldfaced.
Small numbers in braces below rates show the fraction of samples returned in top 1% quantile
of anomaly scores. Technically this value should be equal to one, but if many samples have the
same value, the algorithm returns all of them, which can results to values significantly higher
than 1.0%.

Precision and recall in top 1% quantile are shown in Table 5.1. It shows that the presented
algorithm has the best or close to the best precision if we compare the supervised combination
rules. As discussed above, the unsupervised mean rank is better in the presence of severe noise.
The low recall of all algorithms except unsupervised maximum is caused by the high volume
of malicious activities which have amounted up to 10% of the total volume of the traffic. This
means that they cannot all fit into the top 1% quantile.

At the first sight RankBoost achieves the best recall of all algorithms, but a closer inspection
reveals that it returns 20% of samples as those that belong in top 1%. This highly undesired
behavior is caused by assigning the same score to multiple samples. The same phenomenon can
be observed in the case of Maximum aggregation function.

5.3.3 Evaluation on HTTP Network Anomaly Detection

Cisco Cognitive Threat Analytics (CTA) [29] engine, introduced in Chapter 4, analyzes HTTP
proxy logs (typically produced by proxy servers located on a network perimeter) to detect in-
fected computers within the network. Although the logs do not contain all host traffic (only
HTTP(S) requests), the information is richer than the NetFlow as each entry contains the
following information extracted from HTTP headers: time of the request, source IP address,
destination IP address, url, MIME type, downloaded and uploaded bytes, User-Agent identifier,
etc. CTA contains more than 30 different anomaly detectors detecting anomalies according to
empirical estimates of (conditional) probabilities such as P(country), P(domain|host), P(User-
Agent|second level domain), etc.), time series analyses (models of user activity over time, detec-
tion of sudden changes in activity, identification of periodical requests, etc.), and HTTP specific
detectors (e.g., discrepancy in HTTP User-Agent field [70]).

Evaluation data was collected from networks of 30 different companies of various sizes and
types with collection period ranging from six days to two weeks. The data contains more than
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seven billion HTTP connections, in which Cisco analysts identified 2 666 infected users with
825 different families of malware. In total the number of HTTP connections created by the
malware has reached more than 129 million. Malware connections usually represent less than
2% of the network total traffic, with a notable exception of networks with hosts infected by
ZeroAccess malware [175]. ZeroAccess creates many HTTP connections that can easily reach
20% of the volume of network traffic. The other most present malware families were: Cycbot,
QBot, SpyEye, BitCoinMiner, and Zbot. Malware connections were identified using multiple
approaches starting with an analysis of the most anomalous HTTP flows as reported by the
anomaly detection engine, malware reported by the individual network administrators, matching
blacklists and other public feeds or third-party software. The rest of the logs remain unlabeled,
though we are almost certain there are malware connections that have been missed.

Prec@1% Rec@1%
Method Non. ALN MAT MLT Non. ALN MAT MLT

Mean 17.9 18.4 22.0 17.1 7.6 7.8 6.2 7.3
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

Maximum 10.6 10.6 15.8 10.6 100.0 100.0 100.0 100.0
(20.0%) (19.9%) (20.9%) (19.9%) (20.0%) (19.9%) (20.9%) (19.9%)

Mean rank 0.6 0.5 0.9 0.5 0.2 0.2 0.2 0.2
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

Rank BFS 20.9 21.3 24.7 20.7 9.1 9.3 7.1 9.1
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

RankBoost 81.7 81.6 87.2 81.5 100.0 100.0 100.0 100.0
(2.6%) (2.6%) (3.8%) (2.6%) (2.6%) (2.6%) (3.8%) (2.6%)

TopPush 100.0 93.8 96.7 95.6 42.6 39.9 27.3 40.7
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

SVM-perf 2.9 0.0 0.0 0.0 1.3 0.0 0.0 0.0
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

Acc@Top 100.0 99.6 99.7 97.6 42.6 42.4 28.2 41.5
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

Table 5.2: Comparison of various combination techniques as applied to the HTTP anomaly
detectors described in Section 5.3.3. Best-scoring algorithm is boldfaced. Small numbers in braces
below rates show the fraction of samples returned in top 1% quantile of anomaly scores. Although
this value should be equal to one, if many samples share the same value, the algorithm returns
all of them, which can results to values significantly higher than 1.0%.

As before, we show PR-curves of all evaluated detector combinations and types of noise in
Figure 5.2. We observe that the proposed Acc@Top method outperforms all other techniques in
all cases of studied noise. Contrary to the above experiments with NetFlow analytic engine, noise
does not have significant impact on supervised methods. This indicates that malicious behaviors
of different types are similar in the space induced by the CTA HTTP(S) anomaly detectors. This
is probably caused by the fact that all labeled malicious behaviors were in some sense connected
to malware activity, for which CTA engine is designed. The curve of the Acc@Top suggest that
even if less or more samples than 1% are requested by the operator, the precision will remain
high in all scenarios. In contrast, the curve of the RankBoost method starts at high recall with
lower precision suggesting that almost all malicious samples and around 20% legitimate were
scored with the same maximal value. Also notice that the mean rank unsupervised combination
function, dominating in the previous section, was in this experimental scenario superseded by
simple mean.

Precision and recall at top 1% are shown in Table 5.2, and as in the previous section Rank-
Boost and maximum achieve the best recall. The causes are the same. RankBoost and maximum
have returned 2.6% and 20% of samples, respectively, which is far away from the required 1%.
This is again caused by assigning the same value to many samples. Contrary, the proposed
Acc@Top meets the 1% requirement with really high precision. Its seemingly low recall is par-
tially caused by the fraction of malicious samples being 2% of the total number of all samples.
This means that the best achievable recall while meeting the requirements on returning 1% of
the total number of sample is 50%.
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Fig. 5.2: PR curve comparison of various algorithms with various label noise using the HTTP
anomaly detectors. Again, threshold corresponding to the 1% quantile is marked on each line
with the dot.
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5.3.4 Optimizing Only False Positives or False Negatives

To demonstrate the advantage of minimizing both false positive and false negative rates in the
objective function R̂exp(Hα) (5.6), we have evaluated two additional variants of the objective

function with only the false negative part R̂fnexp (Acc@Top-FN ) and false positive part R̂fpexp

(Acc@Top-FP) using both NetFlow (Table 5.3) and CTA (Table 5.4) anomaly detection systems.
As can be seen in the Table 5.3, using only one part of the criteria results in highly decreased
efficacy in the NetFlow scenario. Additionally, the false positive variant (Acc@Top-FP) results
in all the samples having the same, zero value anomaly score. The results on the CTA anomaly
detection engine (Table 5.4) are slightly better, but still the proposed Acc@Top outperforms
both of the variants in all label noise scenarios.

Prec@1% Rec@1%
Method Non. ALN MAT MLT Non. ALN MAT MLT

Acc@Top 98.3 96.7 29.1 76.9 9.7 6.8 1.2 5.2
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

Acc@Top-FP 13.4 13.4 18.1 13.4 100 100 100 100
(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

Acc@Top-FN 0.1 0.1 15.7 21.7 0.0 0.0 0.7 1.6
(1.9%) (1.9%) (1.4%) (2.4%) (1.9%) (1.9%) (1.4%) (2.4%)

Table 5.3: Comparison of the three variants of the proposed criteria each creating an ensemble for
the NetFlow anomaly detection system. Small numbers in braces below rates show the fraction
of samples returned in top 1% quantile of anomaly scores. Although this value should be equal
to one, if many samples share the same value, the algorithm returns all of them, which can
results to values significantly higher than 1.0%.

Prec@1% Rec@1%
Method Non. ALN MAT MLT Non. ALN MAT MLT

Acc@Top 100 99.6 99.7 97.6 42.6 42.4 28.2 41.5
(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%)

Acc@Top-FP 98.1 1.2 52.7 0.6 41.7 11.2 19.3 25.4
(1.0%) (11.7%) (7.8%) (26.2%) (1.0%) (11.7%) (7.8%) (26.2%)

Acc@Top-FN 87.2 87.5 88.5 86.0 37.1 37.2 29.2 38.6
(1.0%) (1.0%) (1.2%) (1.1%) (1.0%) (1.0%) (1.2%) (1.1%)

Table 5.4: Similarly to above, the table presents a comparison of the three variants of the
proposed criteria using the CTA anomaly detection system.

5.4 Chapter Summary

We proposed a new algorithm for finding a convex combination of anomaly detectors maximizing
accuracy at τ -quantile of returned samples, which is a scenario frequently appearing in the
security field. The algorithm assumes labeled data, which is difficult to obtain and rarely perfect
in security domains. Therefore, an emphasis was put on the experimental study, involving two
different types of intrusion detection systems, eight types of combination functions, 34 different
network captures containing more than 20 million of samples of behavior of different algorithms
under different types of noise.

The experimental results showed that the proposed method is more accurate than prior art
in finding a good combination of detectors with high accuracy in returned samples. The results
also showed that supervised methods can easily overfit if some type of malicious behavior is
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completely missing in the training data or is incorrectly labeled (mistake of labeling oracle).
The severity of the overfitting depends on how much different types of malicious behavior are
similar to each other. The comparison of unsupervised combination functions did not have a
clear winner, since in one experimental setting mean rank was the best while in the second one
it was mean.
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Chapter 6

False Positive Reduction

This chapter focuses on additional reduction of false positives introduced by the anomaly-based
intrusion detection systems. Rehák [138] divides the false positives into two classes: unstructured
false positives are essentially a random noise caused by the stochasticity of the network traffic
and structured false positives are caused by a persistent but very different behavior of a small
number of network hosts, for example mail or DNS servers (the precise definition is left to
Section 6.1).

We propose a Local Adaptive Multivariate Smoothing (LAMS) method to decrease the rate
of unstructured false positives by smoothing anomaly values with respect to time. This causes
similar anomalies1 occurring at different times to receive similar anomaly score. The rate of struc-
tured false positives is either decreased or remains the same, which depends on circumstances
discussed in detail in Section 6.2. The method is inspired by the trust models [149, 148, 135, 25]
which are specialized knowledge structures designed to maintain information about the trust-
worthiness of a communication partners, either acquired from interactions, observed from the
interactions of others, or received from others by means of reputation mechanism [86]. The de-
sign of trust models emphasizes features such as fast learning, robustness in response to false
reputation information [81], and robustness with respect to environmental noise. Extended trust
models (ETM) introduced by Rehák et al. [140] enhance the original trust models with context
representations in order to reflect the context of trusting situation, putting it on par with the
identity of trusting parties. The paper [139] took the work further and placed the ETMs in the
context of network security problem and use them to aggregate the anomaly scores provided
by several network anomaly detectors. Each of the detectors had its own ETM model with a
feature space defined by identity and detector-specific context, serving mainly as a long term
memory of past anomalous events. The proposed LAMS model is an extension of the original
ETM model, described in [139]. Unlike its predecessor, it has been simplified by omitting the
fuzzy number representation of the anomaly value. Furthermore, we have discarded the identity,
focusing only on the context of the observed network events. These simplifications allowed us to
re-formulate the problem more concisely as LAMS, and generalize its application in context of
classification of a stream of events.

This chapter is organized as follows. The next section properly defines the classes of false
positives. Section 6.2 describes the proposed solution and mathematically proofs its correctness
under mild assumptions. The same section also discusses the modification to efficiently process
data-streams. Section 6.3 shows, how the method was deployed in both CTA and CAMNEP
intrusion detection systems, in both cases improving their accuracy.

1 Similarity can be arbitrary function k : X × X 7→ [0, 1].
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6.1 Classification of False Positives

Hereafter it is assumed that the network anomaly detection system (AD) observes a stream of
network flows (e.g., NetFlow [28], HTTP connections, etc.) produced by a set of hosts within the
network. Anomaly detection system maintains internal model(s) to assign a score in range [0, 1]
to each observed flow with zero indicating the normal flow and one indicating possible attack, as
it is assumed that malicious activities have statistical characteristics different from the normal
ones [38, 100, 45] making them rare. As mentioned in the introduction the anomaly detection
systems produce false alarms since an overwhelming majority of rare flows are not caused by
any attack. Rehak [138] divides these false positives into following two classes:

• Unstructured false positives are short-term anomalies distributed uniformly over all the net-
work hosts proportionally to the traffic volume. They are typically triggered by widespread,
uniformly distributed behaviors (such as web browsing) and we model them as white noise
(zero mean and finite variance) added to the anomaly detector’s output. Therefore, the ob-
served anomaly score yi of an flow xi is equal to

yi = g(xi) + ηi, (6.1)

where g(xi) is the true anomaly score on flow xi and ηi is the additive white noise. The ηi
therefore hides the true value g(xi).

• Structured false positives are caused by a (long-term) legitimate behaviors of a small number
of network hosts. These behaviors are different from the background, and because they are
found only at a very small portion of network hosts, they are reported as anomalies. Examples
are rare applications performing software update, regular calls of unusual network APIs, etc.
Since this type of false positive is typically limited to a small number of network hosts and
its behavior is very regular, it can be quickly identified and filtered out using white-lists.
Nevertheless, these white-lists are specific for a given network and are difficult to create
before deployment. We define the structured false positives to be generated by a mixture of
distributions

xsfp ∼
∑m
j=1 βjεj(xi)∑m

j=1 βj
, (6.2)

where εj represent structured false positive with weight βj . Each component εj has small
variance comparing to that of the unstructured false positives, but means of the components
are typically far from each other.

6.2 Proposed Method

The idea behind the proposed local adaptive multivariate smoothing (LAMS) method is to
replace the output of the anomaly detector by average anomaly score of similar flows observed
in the past, where the similarity between two flows is defined as Kh : X × X 7→ [0, 1] (further
also called context). This effectively smooths the output of the anomaly detector and therefore
reduces unstructured false positives. This smoothing can be mathematically formulated as

ĝnw(x) =

∑n
i=1Kh(x, xi)yi∑n
i=1Kh(x, xi)

, (6.3)

where {xi}ni=1 is the set of observed network flows, ĝnw(x) is the expected anomaly of flow x, and
{yi}ni=1 is the set of corresponding AD outputs. The space X on which it is defined can be arbi-

trary (e.g., space of all strings, graphs, etc.), but Gaussian kernel Kh(x, x′) = exp
(
−‖x−x

′‖2
h

)
on Euclidean space is the most common combination (h parameterizes the width of the kernel).
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Estimator (6.3) is known as a Nadaraya-Watson estimator [114, 173] which is a non-parametric
estimator of the conditional expectation of a random variable.

How does the above smoothing remove false positives according to the division introduced in
Section 6.1?

• Unstructured false positives are reduced by the Nadaraya-Watson estimator that performs
local averaging of the flows. Since the unstructured false positives are of the form yi =
g(xi) + ηi, it is proven by Devroye et al. [39] that it converges to the true value g(xi) under
fairly general assumptions. More formally, Devroye have shown

E|ĝnw(x)− g(x)| ≤ c√
nh
, (6.4)

assuming h is chosen in terms of n, with h → 0, nh → ∞ as n → ∞; c > 0 is a constant;
the kernel K is absolutely continuous and differentiable, with K ′ ∈ L1; g is differentiable and
the Var(yi) is bounded. Since we are using a Gaussian kernel and the anomaly scores yi are
bounded to [0, 1] the estimate converges to the underlying true anomaly score g(x) with a rate
of (nh)−1/2, when only unstructured false positives are present. However, setting the h → 0
requires infinite computation and memory resources, therefore we restrict the estimator to
fixed h.
The smoothing effect is shown in the Figure 6.1 where the left figure shows the input to
LAMS and right figure the output. It is apparent that the left figure is noisier, as points with
different colors are close to each other.

Fig. 6.1: Visualization of score provided by HTTP anomaly detection engine (described in Sec-
tion 6.3.2) without (left) and with (right) LAMS models in LAMS 3 context space (see Table 6.4
for details). Each point represents one HTTP request observed in the network, where its position
is defined by the context features (defined in Table 6.4) and the color denotes the anomaly score,
red being the most anomalous and blue the less. The larger the circle the more flows share the
same context position and anomaly score. The anomaly scores of the anomaly detection engine
are shown in the left figure. As can be seen there are regions of the context space where most
of the points have high anomaly scores and regions of low anomaly scores with additional noise.
The right figure shows the same points but the anomaly score is smoothed by the LAMS model
effectively reducing the unstructured false positives via smoothing.

• Structured false positives are long-term flows confined to subset of network hosts without
direct relationship to the background in the sense that AD’s output on them does not change
with the time. LAMS can remove them in following situations.
If LAMS’ similarity measure of alerts Kh is different from that used in the anomaly detector,
large number of flows with normal AD score can be similar to structured false positives, which
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decreases the scores output by LAMS on false positives. Example of this type of behavior can
be seen on the Figure 6.2, where we see that the amplitude of LAMS input is higher than
that of the output.
If LAMS aggregates outputs of the same anomaly detector deployed on many networks, struc-
tured false positives can be normal in other networks. Then, LAMS aggregation eliminates
the false positives by aggregating them with these normal activities.
In other situations, structured false positives are confined and there are no similar flows
receiving lower anomaly score. In this case LAMS fails to remove them, but does not increase
their number.
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Fig. 6.2: Anomaly score of the HTTP request to google web API in time. There are sudden
spikes in AD’s anomaly score (blue dashed line) that are reduced by the LAMS model (red solid
line).

6.2.1 Complexity Considerations

The complexity of the smoothing of AD’s output described by Equation (6.3) is linear with
respect to the number of observed flows. This, together with the fact that all observed flows need
to be stored, makes LAMS useless for practical deployment, since number of network flows can
be as high as millions per second. We therefore resort to common approach to approximate (6.3)
from values maintained in a set of pivots Φ = {φj}Jj=1, φj ∈ X as

ĝlams(x) =

∑J
j=1Kh(x, φj)ŷj∑J
j=1Kh(x, φj)

, (6.5)

where {ŷj}Jj=1 are estimates of ĝnw(φj) calculated according to (6.3). This reduces the com-
putational complexity of the estimate in arbitrary x to O(J), which is linear with the number
of pivots and independent of the number of observed alerts2. The same holds for space com-
plexity, because only positions φj of finite number of pivots and relevant estimates ŷk needs
to be kept. The set of pivots Φ is updated using the modified Leader-Follower algorithm [42],
where new pivot is added to the set Φ when a flow not similar to any pivot in Φ is received. The
update process is described in more detail in Section 6.2.2.Contrary to the standard definition of
Leader-Follower [42, 131] pivots are not allowed to move, because moving pivots towards areas
of higher density causes forgetting of rare flows, which we want to remember.

2 This statement holds only partially, since with increasing number of observed samples the number of pivots

will increase as well [137].
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6.2.2 Incremental Update of the LAMS Model

Keeping LAMS model up to date on data-streams requires maintaining estimates {ŷj}Jj=1 in

{φj}Jj=1 and alternatively adding new pivot if needed. Upon arrival of a new observation of a
network flow (yt, xt), estimates ŷj stored in pivots φj should be updated using the Equation (6.3)
as

ŷnew
j =

∑n
i=1Kh(φj , xi)yi +Kh(φj , xt)yt∑n
i=1Kh(φj , xi) +Kh(φj , xt)

. (6.6)

If we denote

wold
j =

n∑
i=1

Kh(φj , xi), (6.7)

ŷold
j =

∑n
i=1Kh(φj , xi)yi∑n
i=1Kh(φj , xi)

, (6.8)

the Equation (6.6) can be rewritten as

ŷnew
j =

wold
j ŷold

j +Kh(xt, φj)yt

wold
j +Kh(xt, φj)yt

. (6.9)

Therefore, for efficient incremental update of the model only ŷj and wj need to be stored in
each φj . The update can than be done using the following.

wnew
j = wold

j +Kh(xt, φj)yt, (6.10)

ŷnew
j =

1

wnew
j

[
wold
j ŷold

j +Kh(xt, φj)yt
]
, (6.11)

The above can be further simplified to update only pivots close to xt, which we define as pivots
with similarity Kh(xt, φj) greater than Kmin

h . This reduces the complexity of the update process,
because only limited number of nearest pivots needs to be updated with each new flow.

The update is outlined in Algorithm 2. First, a set of all pivots in ε(xi) in the Kh(xt, φj)
vicinity of a new flow (yt, xt) is found and their estimates ŷ are updated as defined in Equa-
tion (6.11). The γ parameter controls the distance (threshold on the similarity) upon which a
new pivot is created with φJ+1 = xt, ŷJ+1 = yt and wJ+1 = 1.

Data: Stream of flows (yi, xi), i = 1 . . .

Result: Set of pivots Φ = {φj = (xj , ŷj)}Jj=1

Start with an empty set Φ = ∅;
while there is a new flow (yi, xi) do

ε(xi) = {φk ∈ Φ |Kh(xi, φk) > Kmin
h };

for φk ∈ ε(xi) do
Update ŷk relevant to pivot φk using Equation (6.10) and (6.11);

end
Find the most similar pivot φN to the xi: φN := arg maxφ∈ΦKh(xi, φ);

if Kh(xi, φN ) < γ then
Create new pivot φJ+1 := xi;

wJ+1 := 1;

ŷJ+1 := yi;
Φ = Φ ∪ {φJ+1};

end

end

Algorithm 2: LAMS model update algorithm.
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The algorithm is controlled by several parameters allowing to trade high locality (precision)
for generalization and efficiency. The most important parameter is γ, which influences the total
number of pivots in LAMS and hence the cost of the algorithm. When this parameter is set to
maxx,x′∈X Kh(x, x′), the number of pivots is identical to the number of unique flows. Departing
from this extreme case the number of pivots decreases with decreasing its value with a possible
impact (both positive or negative) on the accuracy of estimates if local variations are strong.
An example of its effect is shown in Figure 6.3. The minimal update weight Kmin

h is not overly
important and it is there more for computational speed-up, as sample’s neighborhood are more
controlled by the similarity function Kh(x, x′).
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Fig. 6.3: The graph shows effects of γ parameter on the average AUC score (see Section 6.3 for
definition). Too large γ reduces effect of the smoothing causing smaller efficacy. On the other
hand, too small γ decreases model’s efficacy, since the model cannot capture local variations in
the flows.

6.2.3 Querying the LAMS Model

The query of the model follows the Equation (6.5) with the difference that the estimate is
computed only over similar pivots, controlled by the same parameter γ as used in the update.
Formally the estimate ŷt is calculated as

ŷt =

∑
φj∈ε(xt)Kh(xt, φj)yj∑
φj∈ε(xt)Kh(xt, φj)

, (6.12)

where ε(xt) = {φj ∈ Φ |Kh(xi, φk) > Kmin
h }. Restricting the estimate to be calculated from the

neighborhood ε(xt) is mainly to be consistent with the update procedure. In practice, Kmin
h is

so small that the effect of points outside ε(xt) on the points would be negligible.
When LAMS is deployed, it always performs an update before the query, which means that

there is always at least one pivot from which the estimate can be calculated.

6.2.4 LAMS Model Feature Selection

As in most machine learning algorithms the biggest influence on LAMS’s accuracy has the
selection of similarity measure and features defining it. The number of features that can be
extracted from network traffic flows can be high and defining the context with respect to all of
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them would lead to poor generalization — a phenomenon known as curse of dimensionality [55].
The usual approach is to reduce dimension by feature extraction algorithms [51] or by feature
selection. In experiment described in the next section we have chosen the latter approach.

The features should be selected such that malicious network flows are confined in a rather
limited part of the space covered by only few pivots. This guarantees that such model will improve
the accuracy, since if malicious flows fall into a specific region of the feature space the long term
anomaly estimate in this region will be consistently high. To select the features in practice, one
either has to have examples of network attacks and use feature selection algorithm [71], or use
a domain knowledge provided by an expert.

6.3 Experimental Evaluation

We have evaluated the effectiveness of on both CAMNEP and CTA detection systems. Both
use a ensemble of simple yet diverse anomaly detectors allowing to efficiently process large
data-streams while providing good detection accuracy.

The accuracy is measured by the area under Receiver Operating Characteristic (AUC) [49],
which is frequently used when the operating point of the detector is not known.3 AUC is equal
to the probability that the anomaly score of a randomly chosen malicious sample is higher than
a randomly chosen legitimate one. The AUC score one means that the detector is always correct,
zero means it is always wrong, and 0.5 means that its accuracy is equal to random guessing.

6.3.1 NetFlow Anomaly Detection

For the purpose of the LAMS model evaluation we use only the Evangelista aggregated output
of the 16 anomaly detectors of the CAMNEP [141, 59] anomaly detection engine described
in Chapter 3. The combined output is then used as an input in five different LAMS models
with different contexts. The rationale behind using more than one LAMS model is again the
ensemble principle, as the expectation is that errors of outputs of different LAMS models will
be uncorrelated and they will cancel out. Contexts (features) of individual models are shown in
Table 6.1 and they are named according to the publications which have used them in anomaly
detection. Since all features are real numbers, the similarity is defined using the Gaussian kernel
introduced in Section 6.2.

6.3.1.1 Dataset of NetFlow

To evaluate the effects of LAMS model on the NetFlow Anomaly detection engine we have
created several datasets from a traffic captured on the network of Czech Technical University
(CTU) in Prague. We have used three different approaches to create labels: manual labeling,
infecting virtual machines, and attacking our computers within the network by us.

Manual Labeling

A week long capture from the university contains 41 517 828 flows between 19 261 different
IP addresses. An experienced network operator has identified 10% as anomalous and 11% as
legitimate. The most prevalent malicious traffic was ssh scan (55%) followed by p2p traffic (36%),
horizontal scan (6.8%), and vertical scan (1.5%).

3 By an operating point it is understood an upper bound on false positives / false negatives or their costs.
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Name Context features

Xu-source [177] entropy of source ports for the source IP

entropy of destination ports for the source IP

number of destination IP addresses for the source IP

Xu-destination [177] entropy of source ports for the source IP
entropy of destination ports for the source IP

number of source IP addresses for the source IP

MINDS [45] number of flows originating from the source IP

number of flows originating from the destination IP

number of different destination ports for the source IP

Lakhina [95] number of flows originating from the source IP

number of packets transferred from the source IP
number of bytes transferred from the source IP

TAPS [160] number of different destination IPs of the source IP
number of unique ports of the source IP

entropy of packets size of the source IP

Table 6.1: Features defining similarity in NetFlow LAMS models.

Malware Infection

The second dataset was created by executing real malware inside controlled virtual machine
(VM)4[59]. VMs were infected using malicious binaries captured during 24 hours of their traffic
together with the traffic of the whole CTU network. The labels were created such that every
NetFlow originating from the infected machines was labeled as malicious, divided into requests
and responses according to the direction. NetFlows corresponding to normal traffic of Windows
XP operating system running on the VMs, such as connection check, Windows Update checks,
NTP checks, etc., were also labeled as normal.

In the first capture we have infected only one VM running Windows XP with Neeris [59]
malware that has generated a lot of traffic (malware generated on average three Netflows per
second). Second, we have infected ten different VMs by FastFlux botnet [59]. Finally, we have
infected ten VMs by rbot we could control, and instruct it to perform ICMP flood attack against
one of our servers.

Manual Attacks

Third dataset was created by network specialist attacking one computer with an open SSH port
inside the university network. She has started her attack by horizontal scan of university network
searching for a computer with an open SSH port. Then, she performed brute force cracking of
an ssh password with a help of dictionary of 1000 passwords with the last one being correct. She
has tried all passwords within 5-minute long window. Finally, she has downloaded 0.5 GB from
the attacked computer to simulate stealing the data. Corresponding NetFlows in the dataset
were labeled on the basis of known attacker and attacked IP addresses and ports and time of
the attack information.

4 The bandwidth of the connection was lowered to 150kb/s to prevent generating huge amount of traffic
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6.3.1.2 Experimental Results

Table 6.2 shows AUC scores of the anomaly detection engine after the first aggregation before us-
ing multiple LAMS models (denoted without LAMS), and after the second aggregation (denoted
with LAMS) on individual datasets and attacks described previously. The results reveals that
LAMS models improves the accuracy in detecting attack requests, but decreases the accuracy
of responses. To investigate this, we have plot in Figure 6.4 distribution of points corresponding
to flows related to the horizontal scan in the context defined by Lakhina’s entropy based fea-
tures. The figure confirms the assumption that requests are located in a very small and distinct
part of the space and therefore LAMS models can well estimate the anomaly score, whereas
responses are scattered all over the space mixed with other mostly legitimate traffic. According
to Table 6.1 Lakhina’s entropy features are calculated from a set of flows with the same source
IP address receiving the same entropy and also anomaly values. During horizontal scan, each
attacked network host will probably have only one response flow to the attack, which will be
well hidden among host’s own legitimate traffic. This causes (a) the responses to have different
entropies and locations in the space and (b) receiving low anomaly values. Contrary, requests
of the attack stands out, since they have the same source IP address and the same values of
entropies. Moreover, this entropy would be very different from that of other hosts in the net-
work leading to high anomaly. This explanation is supported by the fact that LAMS models do
not decrease anomaly values of response to attacks targeting a single host (e.g., vertical scan).
Finally note that it is important to detect at least one part of the attack, either the attack, or
the responds.

AUC

Manual labeling Without LAMS With LAMS

horizontal scan request 0.82 0.83
horizontal scan response 0.77 0.66

p2p request 0.87 0.91

p2p response 0.89 0.75
scan sql 1 1

scan sql response 0.92 0.91
ssh cracking request 0.80 0.83

ssh cracking response 0.84 0.71

vertical scan 1 1
vertical scan response 0.98 0.96

Malware infection

Neris bot 0.69 0.87

FastFlux botnet 0.81 0.88

RBot ICMP flood 0.91 0.94

Artificial Attack

SSH scan 0.93 1
SSH scan response 0.84 0.77

SSH cracking 0.83 0.83

SSH cracking response 0.77 0.78
Anomalous SSH download 0.95 0.97

Anomalous SSH download request 0.95 0.95

Table 6.2: Comparison of AUC Scores without and with LAMS model.

To demonstrate the decrease in false positive rate on structured false positives, we have used
the dataset described in Section 6.3.1.1 and analyzed the traffic identified as the most anomalous
traffic by the first part of the detection system (combined output of the anomaly detectors
without LAMS models). Within we have identified a legitimate traffic meeting the criteria of
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Fig. 6.4: Visualization of the anomaly scores assigned by the Lakhina LAMS model (see Ta-
ble 6.1) to the horizontal scan and corresponding responses contained in the manually labeled
dataset described in Section 6.3.1.1. Each point represent one scan request (cross) or scan re-
sponse (dot). The color corresponds to obtained anomaly score with red being the most anoma-
lous and blue being the least. Visualization of all the other LAMS models defined in Table 6.1
can be see in the Appendix in Figure A.5.

the structured false positives (being explainable and corresponding to rare flows). The complete
list is in Table 6.3 and includes responses of NTP servers, software licenses servers, downloads
from local data and database servers, etc. The decrease has been again measured by the AUC
score, where the false positives were treated as negative samples and all attacks identified in
the dataset 6.3.1.1 as positive samples. AUCs of identified structured false positives are shown
in Table 6.3. According to it LAMS models almost always reduces the false positive rate and
increases the accuracy of detection.

The above investigation of false positives also revealed some unstructured false positives
corresponding to excessive web and DNS traffic of some users, which anomaly detectors flagged
as suspicious. LAMS models have decreased their anomaly values as is shown in the second part
of the Table 6.3.

6.3.2 HTTP Anomaly Detection

Similarly to the CAMNEP system, we use 30 anomaly detectors of the Cisco Cognitive Threat
Analytics (CTA) [29] described in detail in Chapter 4, whose output is combined by Evangelista’s
fusion function to obtain one anomaly score value for each HTTP flow. This output is used as
an input to the second block with several LAMS models with context features listed in Table 6.4
and Gaussian similarity function defined in Section 6.2. Outputs of four LAMS models are again
combined by Evangelista’s fusion function to the final output.
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AUC
Structured false positive without LAMS with LAMS

NTP server response 0.98 0.99

ICQ servers 0.98 0.99
Google crawler 0.99 1

Local data server downloads 0.9 0.93
Local database server requests 0.98 0.98

Local database server responses 0.96 0.98

Local software license server 0.19 0.89
Subnetwork gateway requests 0.83 0.90

Subnetwork gateway responses 0.30 0.24

HTTP proxy requests 0.75 0.77
HTTP proxy responses 0.76 0.73

AUC

Unstructured false positive without LAMS with LAMS

DNS request 0.63 0.70
DNS response 0.45 0.71

Web browsing user 1 0.99 1
Web browsing user 2 0.99 0.99

Web browsing user 3 0.92 0.94

Gmail.com servers 0.98 0.99

Table 6.3: AUC Scores of structured and unstructured false positives in the dataset introduced
in Subsection 6.3.1.1 when LAMS models are used (right column) and not used (middle column).
Higher AUC is better.

Name Context features

LAMS 1 number of unique referrers of the visited domain

number of unique operating systems used to visit domain

number of unique MIME types hosted on the domain

LAMS 2 number of unique referrers of the visited domain

number of unique HTTP status responses of the visited domain
amount of bytes downloaded using the User-Agent

LAMS 3 number of unique User-Agents used to visit the domain

entropy of the MIME types hosted on the domain

number of unique referrers of the visited domain

LAMS 4 URL length

number of unique
number of unique operating systems used to visit domain

number of unique referrers of the visited domain

Table 6.4: Network communication features used by the HTTP LAMS models.
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6.3.2.1 Dataset of HTTP Proxy Logs

The database of HTTP flows was collected from networks of 30 different companies of various
sizes and types with collection period ranging from six days to two weeks. There are more than
seven billion HTTP flows in the database. A small team of security researchers has identified in
them 2 666 users infected with a malware of 825 various families that have generated in total
more than 129 millions HTTP flows. HTTP flows corresponding to malware requests represent
less than 2% of the total traffic of the individual networks except for few cases, where the
networks were infected by ZeroAccess malware [175]. ZeroAccess is very noisy, generating many
HTTP flows which has reached up to 21% of the total number of flows. The other malware
families worth to mention were: Cycbot, QBot, SpyEye, BitCoinMiner, Zbot and many others.
All the malware was identified using several approaches starting with an analysis of the most
anomalous HTTP flows as reported by the CTA, malware reported by the individual network
administrators, using blacklists and other public feeds or third-party software. The rest of the
unlabeled flows were considered to be legitimate traffic. We are aware that within them there
might be another proxy flows corresponding to malware traffic, but we are not aware about
any additional method providing the ground truth. Moreover since the most anomalous traffic
was always investigated for a malware HTTP flows, the most important part corresponding to
low false positive rate was always labeled. This labeling of the most anomalous part has been
done for the detection engine using only anomaly detection part and using both parts including
LAMS models.

6.3.3 Experimental Results

To demonstrate the advantage of LAMS models we have calculated AUC score on sub-datasets
with HTTP flows of each malware family considered as positives and all unlabeled HTTP flows
as negatives. Since there are 825 different malware families in the dataset the table showing the
AUC improvement would be huge. Therefore we have decided to show the effect of the LAMS
model in a figure. The Figure 6.5 shows a scatter plot where x-coordinate of each point is AUC
score of output of the first part of the detection engine using only anomaly detectors and the
y-coordinate is AUC score of the output of the second part with LAMS models. This means that
if the point is above the diagonal, LAMS models improve the detection accuracy and vice versa.
We can observe that LAMS models generally improve the accuracy of detection since majority
(75%) of the points is above the diagonal. Particularly noticeable are points within the green
rectangle that would not be detectable without LAMS models, but LAMS models significantly
increase their anomaly values.

Figures 6.6 and 6.7 show the distribution of anomaly scores of the anomaly detection engine
without (left) and with (right) LAMS models. We can see that outputs of an anomaly detection
engine without LAMS models on malware HTTP flows are more equally spread across the entire
range of values. Contrary, when the anomaly detection engine uses LAMS models, the scores of
malware’s HTTP flows are located in the most anomalous part of the distribution.

6.4 Chapter Summary

We presented a method designed to reduce false alarm rate of anomaly detection-based intrusion
detection systems. The technique smooths detectors’ output simultaneously over time and space,
which improves the estimate of true anomaly score.

We proved under mild assumptions that the method reduces unstructured false positives
caused by stochasticity of the network traffic. The method was evaluated using a large number
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Fig. 6.5: Scatter plot of the AUC scores when running the anomaly detection engine without and
with the LAMS model. Each point represent one malware sample and different colors denote
different malware families to illustrate variety of the samples. Points that are above the blue
line represent an AUC improvement when LAMS is used, whereas point below represent cases
where LAMS decreases the efficacy. As can be seen the LAMS model significantly improves the
AUC score of the samples with AUC smaller than 0.2, as depicted by the green bar in the figure.
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Fig. 6.6: Distributions of anomaly values of
HTTP proxy flows without LAMS models.
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Fig. 6.7: Distributions of anomaly values of
HTTP proxy flows with LAMS models.

of samples from two domains with diverse sets of anomaly detectors. The experiments showed
reduction of the unstructured false positives, while not having major negative effect in the
remaining cases.
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Chapter 7

Experimental Evaluation

This chapter experimentally evaluates all the layers of the proposed architecture of the anomaly-
based network intrusion detection systems as proposed in Section 1.2. We use both CAMNEP
and CTA detection engines to evaluate the efficacy improvements achieved in each of the pro-
posed layers.

The evaluation data was acquired on a number of diverse real enterprise networks of various
types and sizes to illustrate the efficacy of the system that can be achieved in practice.

The accuracy is measured by the area under Receiver Operating Characteristic (AUC) [49],
which is frequently used when the operating point of the detector is not known in advance. The
accuracy at top measures, used in Chapter 5, were discarded because of the poor performance of
the individual anomaly detectors whose performance is not measurable using these high precision
measures.

7.1 CTA

The Cognitive Threat Analytics (CTA) anomaly detection system uses 32 various HTTP-based
network anomaly detectors in the first layer as described in Chapter 4. The second layer contains
the Evangelista ensemble and the Acc@Top supervised ensemble created using the method
described in Chapter 5. Next, the anomaly scores of both the ensembles are adjusted using four
LAMS models as described in Chapter 6. The final anomaly score of each of the HTTP flow is
an aggregate of the outputs of the individual LAMS models as described in Section 1.2.

7.1.1 HTTP Proxy Logs Dataset

The evaluation data contains HTTP flows collected from 44 different enterprise networks of
various sizes ranging from 3,000 up to 60,000 users. In all the enterprises the data was collected
during 10 days resulting in dataset that contains more than six billion flows in total. This
evaluation dataset is different from the one described in Section 6.3.2.1 and Section 5.3.3, that
was collected during the years 2013 and 2014. The final evaluation uses data collected in 2016
in different enterprise networks.

Similarly to the dataset described in Section 6.3.2.1, a small team of network security analysts
was able to identify 19,218 users featuring some type of malicious behavior. The analysts used
number of publicly available blacklists, malware reports and blogs, third party-party software
or performed their own deep analysis to confirm the assigned labels that can be categorized into
three groups: malware, adware and PUA. Users infected with malware represent 12% of all the
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labels including ransomware1, banking trojans, data stealers, worms, etc.. Next, 67% of the labels
represent various families of adware2. Finally, 21% of the labels were related to a Potentially
Unwanted Applications (PUA). PUAs are applications that, while not necessarily malicious, are
generally considered unwanted in business networks as they may install adware, toolbars, or
contain other unsafe program features with unclear objectives. The rest of the unlabeled HTTP
flows were considered to be legitimate traffic. We are aware that within them there might be
more malicious HTTP flows, but we do not know about any additional method providing the
ground truth.

7.1.2 Experimental Results

To observe the effect of the learned combination function, we have evaluated two variants of
the CTA intrusion detection system denoted as Evangelista only and Evangelista & Acc@Top.
The first uses the Evangelista aggregated ensemble only, completely discarding the supervised
ensemble introduced in Chapter 5, whereas the second uses all the components of the architecture
as described in Section 1.2.

The supervised Acc@Top ensemble was constructed as described in Chapter 5 using the
training data as specified in Section 5.3.3. Therefore, the training and testing data contain
HTTP flows collected in different networks and time period with different labels. The telemetry
collection time difference between the training and testing data is more than two years allowing
us to evaluate the robustness of the system against shifts in the threat landscape.

Table 7.1 shows the mean and standard deviation of the AUC scores calculated over all mali-
cious samples and members of each layer for both the above described variants of the proposed
architecture. As can be seen the mean of the AUC score is gradually increasing with decreasing
standard deviation in each consecutive layer of both the architecture variants. However, the vari-
ant that contained the trained ensemble performed much better, according to generally higher
AUC scores with lower deviations.

AUC
Evangelista only Anomaly Ensemble LAMS Final

Malware 0.74 0.92 0.95 0.95
(±0.28) (±0.17) (±0.11) (±0.10)

Adware 0.70 0.85 0.90 0.91
(±0.26) (±0.22) (±0.13) (±0.12)

PUA 0.70 0.86 0.91 0.92
(±0.27) (±0.22) (±0.13) (±0.12)

Evangelista & Acc@Top

Malware 0.74 0.93 0.96 0.98
(±0.28) (±0.19) (±0.08) (±0.05)

Adware 0.70 0.90 0.91 0.92
(±0.26) (±0.14) (±0.10) (±0.09)

PUA 0.70 0.90 0.92 0.93
(±0.27) (±0.15) (±0.10) (±0.09)

Table 7.1: AUC improvements introduced by the individual layers of two variants of the archi-
tecture of the CTA intrusion detection system. The presented AUC score is a mean of the AUCs
of all malicious samples and the members of the individual layers. The number in brackets under
the mean AUC score is the standard deviation of the individual AUCs. The highest AUC score
in each row is boldfaced. The Evangelista only variant is missing the parallel Acc@Top ensemble
created using the supervised method introduced in Chapter 5 to evaluate its effect on the overall
efficacy of the detection system.

1 Malware that covertly encrypts user’s private data and demands a ransom payment to restore it.
2 Malicious applications that generate revenue for its author using advertisement.
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Fig. 7.1: Visualization of the AUC score for all 19,218 malicious samples. Each row of the matrix
represents one malicious sample. The matrix is horizontally split according to the system layers
into anomaly detectors, detector ensembles, LAMS models and final aggregation, each containing
columns that represent individual members of each layer. As can be seen there are 32 anomaly
detectors, two ensembles (Evangelista and Acc@Top) and eight LAMS models (four for each
ensemble). The cell color representing the AUC score (brighter is higher) show gradual increase
in the Ensemble and LAMS layers up to the final AUC scores in the last column.

Figure 7.1 shows a visualization of the above described experimental evaluation. There are
32 anomaly detectors in the first layer of the CTA system some of them are highly specialized in
detecting only specific anomalous behaviors (i.e. columns 14 to 25 with low AUC score for most
of the malicious samples) whereas the rest are more general anomaly detectors that perform
well on the majority of the malicious samples. However, there is no single anomaly detector
consistently better in detecting all threats than the rest, which supports the use of the ensemble
approach. In the next layer, the AUC scores of both the ensembles are more consistent. But still,
there are cases where the Acc@Top ensemble performs well but Evangelista fails and vice versa.
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This stretches the need of having both the ensembles implemented. Next layer containing eight
LAMS models further increases the AUC score up to the final aggregated score visualized in the
last column. The samples with low AUC score achieved by the final layer have consistently low
AUC in all the layers. These represent samples that are not detected by any anomaly detector
in the lowest layer and thus cannot be improved by the additional layers.

7.2 CAMNEP

The CAMNEP anomaly detection system uses 16 network anomaly detection algorithms de-
signed to detect network anomalies using the NetFlow data. The individual anomaly detectors,
described in more detail in Chapter 3, are aggregated using both Evangelista and Acc@Top.
The anomaly scores of both the ensembles are then smoothed using five LAMS models, defined
in Section 6.3.1, that are then again aggregated to obtain the final anomaly score.

Since we were not able to collect and generate labels for a new NetFlow dataset we have
decided to use the same dataset as described in Section 6.3.1.1. To evaluate the effect of the
supervised ensemble on the overall system efficacy, we have again evaluated the AUC scores
of the system containing only the Evangelista ensemble, completely discarding the Acc@Top
ensemble and the complete system.

Table 7.2 shows the AUC scores of the individual system layers for the variant containing
the Evangelista aggregation only. As can be seen the AUC score is gradually increasing with
decreasing standard deviation after each layer. There are several exceptions in the LAMS models
layer that improves the accuracy in detecting attack requests, but decreases the accuracy of
the responses. This is, as discussed in detail in Section 6.3.1.2, caused by the fact that the
attack responses are typically scattered over the LAMS feature space mixed with other mostly
legitimate traffic which results in reduced anomaly score. However, it should be noted that it is
important to detect at least one part of the attack, either the attack requests or the responses,
with the first being more informative.

To evaluate the effect of the supervised ensemble we have decided to use a leave-one-out
cross-validation approach. The AUC score of each of the malicious behaviors was evaluated
using the Evangelista ensemble and the Acc@Top ensemble trained on the remaining samples.
For the cases when both request and response of an attack are evaluated, we removed both
the request and response from the training data. This resulted in 11 separate evaluations with
different Acc@Top ensembles. Table 7.3 shows the AUCs of all the evaluations. As can be seen,
the system achieves higher AUC scores when compared to the Table 7.2. The only exception is
the p2p request and response. The p2p behavior is very different from the behavior of rest of
the malicious samples present in the dataset. Therefore the Acc@Top trained on a dataset that
missed these samples resulted in slightly worse efficacy of the whole system.
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AUC
Manual labeling Anomaly Ensemble LAMS Final

horizontal scan request 0.56 0.77 0.78 0.83
(±0.27) (±0.00) (±0.05) (±0.00)

horizontal scan response 0.54 0.77 0.64 0.66
(±0.28) (±0.00) (±0.16) (±0.00)

p2p request 0.55 0.87 0.88 0.91
(±0.26) (±0.00) (±0.08) (±0.00)

p2p response 0.56 0.89 0.79 0.75
(±0.28) (±0.00) (±0.13) (±0.00)

scan sql 0.64 1.00 0.97 1.00
(±0.41) (±0.00) (±0.07) (±0.00)

scan sql response 0.61 0.92 0.81 0.91
(±0.38) (±0.00) (±0.14) (±0.00)

ssh cracking request 0.53 0.80 0.63 0.83
(±0.35) (±0.00) (±0.14) (±0.00)

ssh cracking response 0.46 0.84 0.70 0.71
(±0.33) (±0.00) (±0.15) (±0.00)

vertical scan 0.74 1.00 1.00 1.00
(±0.30) (±0.00) (±0.00) (±0.00)

vertical scan response 0.61 0.98 0.88 0.96
(±0.35) (±0.00) (±0.09) (±0.00)

Malware infection

Neris bot 0.56 0.69 0.81 0.87
(±0.24) (±0.00) (±0.11) (±0.00)

FastFlux botnet 0.61 0.81 0.86 0.88
(±0.27) (±0.00) (±0.07) (±0.00)

RBot ICMP flood 0.52 0.91 0.91 0.94
(±0.32) (±0.00) (±0.03) (±0.00)

Artificial Attack

SSH scan 0.50 0.93 0.96 1.00
(±0.37) (±0.00) (±0.13) (±0.00)

SSH scan response 0.49 0.84 0.78 0.77
(±0.34) (±0.00) (±0.23) (±0.00)

SSH cracking 0.53 0.83 0.83 0.83
(±0.35) (±0.00) (±0.14) (±0.00)

SSH cracking response 0.46 0.77 0.75 0.78
(±0.33) (±0.00) (±0.15) (±0.00)

Anomalous SSH download request 0.68 0.95 0.89 0.97
(±0.36) (±0.00) (±0.20) (±0.00)

Anomalous SSH download response 0.61 0.95 0.63 0.95
(±0.37) (±0.00) (±0.49) (±0.00)

Table 7.2: AUCs of the individual layers in the case when only the Evangelista ensemble is
present. Similarly to Table 7.1, the presented AUC score is a mean of the AUCs of all the
members of the individual layers. The number in brackets under the mean AUC score is the
standard deviation of the individual AUCs. The standard deviation of the Ensemble and Final
layers are equal to zero for all the evaluated malicious behaviors as the layers contain only the
Evangelista aggregated ensemble. The highest AUC score in each row is boldfaced.
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AUC
Manual labeling Anomaly Ensemble LAMS Final

horizontal scan 0.56 0.85 0.83 0.88
(±0.27) (±0.09) (±0.07) (±0.00)

horizontal scan response 0.54 0.89 0.75 0.89
(±0.28) (±0.12) (±0.17) (±0.00)

p2p request 0.55 0.63 0.75 0.88
(±0.26) (±0.37) (±0.16) (±0.00)

p2p response 0.56 0.67 0.60 0.72
(±0.28) (±0.31) (±0.22) (±0.00)

scan sql 0.64 1.00 0.97 1.00
(±0.41) (±0.00) (±0.06) (±0.00)

scan sql response 0.61 0.96 0.86 0.98
(±0.38) (±0.05) (±0.13) (±0.00)

ssh cracking request 0.53 0.85 0.73 0.84
(±0.35) (±0.11) (±0.16) (±0.00)

ssh cracking response 0.46 0.82 0.64 0.65
(±0.33) (±0.15) (±0.20) (±0.00)

vertical scan 0.74 1.00 1.00 1.00
(±0.30) (±0.00) (±0.00) (±0.00)

vertical scan response 0.61 0.91 0.89 0.98
(±0.35) (±0.06) (±0.07) (±0.00)

Malware infection

Neris bot 0.56 0.73 0.84 0.92
(±0.24) (±0.09) (±0.15) (±0.00)

FastFlux botnet 0.61 0.84 0.86 0.93
(±0.27) (±0.02) (±0.05) (±0.00)

RBot ICMP flood 0.52 0.92 0.92 0.97
(±0.32) (±0.14) (±0.09) (±0.00)

Artificial Attack

SSH scan 0.50 1.00 0.95 1.00
(±0.37) (±0.00) (±0.11) (±0.00)

SSH scan response 0.49 1.00 0.89 1.00
(±0.34) (±0.00) (±0.12) (±0.00)

SSH cracking 0.53 1.00 0.80 0.98
(±0.35) (±0.00) (±0.27) (±0.00)

SSH cracking response 0.46 1.00 0.92 1.00
(±0.33) (±0.00) (±0.11) (±0.00)

Anomalous SSH download request 0.68 0.98 0.92 1.00
(±0.36) (±0.01) (±0.14) (±0.00)

Anomalous SSH download response 0.61 0.99 0.69 1.00
(±0.37) (±0.01) (±0.41) (±0.00)

Table 7.3: AUC improvements by the individual architectural layers in the case of both the
Evangelista and the Acc@Top ensembles are present. Similarly to Table 7.2, the presented AUC
score is a mean of the AUCs of all the members of the individual layers. The number in brackets
under the mean AUC score is the standard deviation of the individual AUCs. The highest AUC
score in each row is boldfaced.
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Chapter 8

Conclusions

The main goal of this thesis was to develop a set of techniques to reduce the amount of false
positives naturally present in an anomaly-based network intrusion detection system so it could be
applied in practice. In Section 1.2 we proposed an architecture of an intrusion detection system,
that consists of four layers. The first layer contains a number of simple network anomaly detectors
that are able to identify network anomalies related to a malicious behavior. Each consecutive
layer of the proposed IDS was designed to reduce the amount of false positives with small to
zero effect on the recall. The ensemble layer combines the outputs of the anomaly detectors by
constructing two ensembles, Evangelista and Acc@Top, to combine the good properties of both
unsupervised and supervised combination functions. Following layer of LAMS models adjusts
the anomaly scores by a long term estimates in several feature subspaces to reduce the amount
of false positives introduced by the stochasticity of the network traffic. Finally, last layer of
aggregation combines the outputs of individual LAMS models resulting in one final anomaly
score for each network flow.

The proposed solution was evaluated using a real network data containing huge number of
malicious behaviors of various types, severities and network footprint sizes. These included lot
of malware, adware, possibly unwanted applications, manually constructed attacks and many
more. In Chapter 7 we have shown that each added layer significantly improves the overall
detection efficacy of the system.

Additionally, the anomaly detectors presented in Chapter 4, the ensemble construction
method and the false positive reduction technique represent a critical components of two existing
intrusion detection systems CAMNEP and CTA [29]. The CTA is an on-line malware detection
security-as-a-service product delivered by Cisco Systems, which at the time of writing this thesis
daily analyzed more than 10 billion web requests generated by millions of users from a number of
large enterprise networks. The system finds daily tens of thousands network threats that evaded
previously installed security measures positioning the system as the last line of the network
defense. This proves the proposed techniques to be sufficient to be able to successfully deploy
an anomaly-based intrusion detection system for day-to-day security management of enterprise
networks of various types and sizes.

8.1 Main Thesis Achievements

In this section, we will summarize the contributions of this thesis to the state-of-the-art in
the field of network anomaly detection. This work improves the existing methods by introduc-
ing novel network anomaly detectors, large margin aggregation and local adaptive multivariate
smoothing methods all discussed in more detail in following sections.
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Novel Anomaly Detection Methods

We presented five novel network anomaly detectors that are using either NetFlow or HTTP
access log telemetry data to detect network anomalies related to malicious network behavior.

• TCP flags anomaly detector (Section 3.1) exploits spatial and temporal correlations of TCP
flag distribution of source and destination IP addresses. The model uses Principal Component
Analysis to model legitimate traffic in a low-dimensional space by removing aforementioned
correlations of TCP flags. By using the model, four versions of the anomaly detector were
presented, each version detecting different types of anomalies.

• Request-response anomaly detector (Section 3.2) detects various scans, DOS and some type
of malware using the request without response identification. This method has low computa-
tional complexity and can be easily used on high speed networks.

• DGA detector (Section 3.3) can effectively detect hosts compromised with DGA-performing
malware. The detector computes the ratio between the number of DNS requests and newly
visited IPs for every host in the local network. Deviations from the mean of these ratios are
labeled as anomalous and typically correspond to DGA-based malware.

• Long first touch detector (Section 4.1) is designed to detect malware that tries to mimic the
common HTTP requests to hide its communication with the C&C servers. Anomaly is raised
when there is an HTTP request with a very long URL that cannot be related to any current
user’s activity. Experiments shown that the method is able to detect several malware families
that are known for such a behavior.

• User-Agent discrepancy detector (Section 4.2) uses User-Agent information contained in the
HTTP requests to find the malware-infected hosts in the network. Malware’s User-Agents can
be browser-like, but in this case they are with high probability discrepant with the one that
the infected user actually uses, which is detectable by the proposed User-Agent Discrepancy
detector. Next, malware can use its own, specific User-Agent that can be detected by Unused
Unknown User-Agent detector. When malware does not fill the User-Agent field at all, we
can detect it using No User-Agent detector.

All the presented network anomaly detection techniques were experimentally evaluated using
real network data to prove their effectiveness in practice. We have shown that each of the
anomaly detectors is able to detect different type of anomalies that can be related to malicious
network behavior supporting the use of the ensemble approach.

Large Margin Aggregation

In Chapter 5 we proposed new algorithm for finding a convex combination of anomaly detectors
maximizing the accuracy at τ -quantile of returned samples. The algorithm assumes labeled data,
which is difficult to obtain and rarely perfect in the security domains. Therefore, an emphasis was
put on the experimental study, involving both CAMNEP and CTA intrusion detection systems,
eight types of combination functions, 34 different network captures containing more than 20
million samples of behaviors under different types of labeling noise. The experimental results
show that the proposed method is not only better than the state-of-the-art, but also more robust
with respect to various kinds of noise in labels we can expect in intrusion detection domains. The
results also shown that supervised methods can easily overfit if some type of malicious behavior
is completely missing in the training data or is incorrectly labeled (mistake of labeling oracle).
The severity of the overfitting depends on how much different types of malicious behavior are
similar to each other. This motivated us to use both supervised and unsupervised combination
functions in the proposed architecture.
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Local Adaptive Multivariate Smoothing

Chapter 6 categorizes the false positives of the anomaly-based intrusion detection systems into
two classes: unstructured and structured. While the structured can be easily filtered out using
white list, the unstructured false positive are much harder to eliminate.

We proposed to smooth the outputs of anomaly detectors by online Local Adaptive Multi-
variate Smoothing (LAMS) models to reduce the amount of unstructured false positives of the
anomaly-based intrusion detection systems. The technique smooths detectors output simultane-
ously over time and feature space, which improves the estimate of true anomaly score.

We proved under mild assumptions that the method reduces the amount of unstructured false
positives caused by stochasticity of the network traffic. This is also supported by an extensive
experimental evaluation involving both CTA and CAMNEP intrusion detection systems that use
a diverse set of network anomaly detectors applied to different network telemetry data. Finally,
we show how the proposed solution can be efficiently implemented to process large streams of
non-stationary data.
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2. Martin Grill, Tomáš Pevný, and Martin Rehák. Reducing false positives of network anomaly
detection by local adaptive multivariate smoothing. Journal of Computer and System Sci-
ences, Elsevier (In press), 2016. Impact factor 1.58. (70%)

3. Sebastian Garcia, Martin Grill, Jan Stiborek, Alejandro Zunino. An empirical comparison
of botnet detection methods. Computers & Security, Volume 45, September 2014, pages 100-
123. Impact factor 1.03. (30%)
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8. Martin Rehák, Michal Pěchouček, Martin Grill and Karel Bartoš. Trust Based Classifier
Combination for Network Anomaly Detection. In Proceedings of the 12th International Con-
ference on Cooperative Information Agents (CIA), pages 116–130, Springer Heidelberg, 2008.
(15%)
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3. Martin Rehák, Michal Pěchouček, Martin Grill, Jan Stiborek and Karel Bartoš. Game
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53. Vojtěch Franc, Michal Sofka, and Karel Bartoš. Learning detector of malicious network traffic from weak

labels. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages

85–99. Springer, 2015.
54. Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting algorithm for combining

preferences. The Journal of machine learning research, 4:933–969, 2003.
55. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1.

Springer series in statistics Springer, Berlin, 2001.

56. Giorgio Fumera and Fabio Roli. Performance analysis and comparison of linear combiners for classifier
fusion. In Proceedings of IAPR International Workshop on Statistical Pattern Recognition (SPR 2002),

pages 424–432. Springer, 2002.

57. Jing Gao, Wei Fan, Deepak Turaga, Olivier Verscheure, Xiaoqiao Meng, Lu Su, and Jiawei Han. Consensus
extraction from heterogeneous detectors to improve performance over network traffic anomaly detection.

In INFOCOM, 2011 Proceedings IEEE, pages 181–185. IEEE, 2011.

58. Jing Gao and Pang-Ning Tan. Converting output scores from outlier detection algorithms into probability
estimates. In Data Mining, 2006. ICDM’06. Sixth International Conference on, pages 212–221. IEEE,

2006.

59. Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An empirical comparison of botnet
detection methods. Computers & Security, 45:100–123, 2014.

60. Giorgio Giacinto, Roberto Perdisci, and Fabio Roli. Network intrusion detection by combining one-class
classifiers. In Image Analysis and Processing – ICIAP 2005, volume 3617 of Lecture Notes in Computer

Science, pages 58–65. Springer Berlin Heidelberg, 2005.

61. Giorgio Giacinto and Fabio Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern
Recognition, 34:1879–1881, 2001.

62. Giorgio Giacinto and Fabio Roli. Intrusion detection in computer networks by multiple classifier systems. In

In Proc. of the 16th International Conference on Pattern Recognition (ICPR), Volume 2, pages 390–393.
IEEE press, 2002.

63. Giorgio Giacinto, Fabio Roli, and Luca Didaci. Fusion of multiple classifiers for intrusion detection in

computer networks. Pattern Recogn. Lett., 24:1795–1803, 2003.
64. Giorgio Giacinto, Fabio Roli, and Giorgio Fumera. Design of effective multiple classifier systems by clustering

of classifiers. In Proc. of ICPR2000, 15th Int. Conference on Pattern Recognition, pages 3–8, 2000.

65. Giorgio Giacinto, Fabio Roli, and Giorgio Fumera. Selection of image classifiers. Electronics Letters, 36(5):1,
2000.

66. Martin Grill and Ivan Nikolaev. Detecting dga-based malicious software using network flow information,

February 4 2016. US Patent 20,160,036,836.
67. Martin Grill, Ivan Nikolaev, Veronica Valeros, and Martin Rehák. Detecting dga malware using netflow.

In 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pages 1304–1309,
May 2015.
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network anomaly detection. In Cooperative Information Agents XII, volume 5180 of Lecture Notes in

Computer Science, pages 116–130. Springer Berlin / Heidelberg, 2008.
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Appendix A

Visualizations of all LAMS models used in the
CAMNEP detection engine
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Fig. A.1: Xu-source
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Fig. A.4: TAPS

Fig. A.5: Additional visualization to the Figure 6.4 in Chapter 6 of the horizontal scan and corresponding

responses contained in the manually labeled dataset described in Section 6.3.1.1 in the context space of the
rest of the LAMS models defined in Table 6.1. Each point on the individual scatter plots represent one scan

request (cross) or scan response (dot). The color corresponds to obtained anomaly score with red being the most

anomalous and blue being the least. Since the MINDS model uses four features to define its context we have
used the Multidimensional scaling to be able to show the data in three dimensional plot (therefore there are no

axis labels). The figures show that similarly to the Lakhina model (Figure 6.4), Xu-source and TAPS models

have the responses spread across a region of low anomaly score and the requests limited in a small region of high
anomaly. For the Xu-destination the requests are spread in the context space but still maintaining high anomaly

score. For this particular behavior the MINDS model as the only one increases anomaly score of a part of the

responses and reduces the anomaly score of the requests.
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