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Abstract
In this thesis a comprehensive frame-
work for solving long-term combined
heat and power (CHP) operations
planning problems is developed. The
framework has two main parts - the
first is a modelling framework which
allows for modelling arbitrary CHP
plants and is aimed at the formu-
lation of an optimization problem
for CHP production and trade plan-
ning. The second is a solution algo-
rithm which exploits the knowledge
of the problem structure so that the
problem is solved more efficiently.

There exist very powerful state-
of-the-art general-purpose solvers
for mixed-integer linear program-
ming (MILP) problems, such as
Gurobi. However, even these solvers
fail to find a feasible solution within
reasonable time for production plan-
ning problems of large dimensions.
An idea followed in this thesis is
to achieve reasonable computation
times of large problems by employing
the knowledge of the special problem
structure.

For this purpose, a cus-
tomized branch and bound (B&B)
algorithm is proposed. The algo-
rithm exploits the knowledge of
the block-diagonal problem sub-
structure, to obtain tight bounds.
The bounds are much tighter than
bounds produced by solving a linear
relaxation of the solved MILP
problem, which is the way of bound
computation commonly used within
general-purpose implementations

of B&B. Besides an enhanced hori-
zon cutting algorithm is developed,
with the purpose of providing
high-quality feasible solutions for
the customized B&B algorithm.

Efficiency of the proposed algo-
rithm was evaluated based on 64 test
cases using real-world data of three
existing CHP plants. The perfor-
mance of the proposed algorithm was
compared to plain Gurobi usage. In
most cases the proposed algorithm
finds a certificate of near-optimality
sooner than plain Gurobi does. More
importantly, the proposed algorithm
was able to find good feasible solu-
tions for problems, for which Gurobi
fails to find any feasible solution
within the specified time limit.

Keywords: MILP, optimization,
operations planning, CHP,
Lagrangian relaxation,
branch-and-bound, heuristics
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Abstrakt
V této práci je představen komplexní
framework pro modelování kogene-
račních tepláren a pro plánování je-
jich provozu a obchodu. Framework
lze rozdělit do dvou částí. Tou první
je metodika modelování kogenerač-
ních tepláren, která umožňuje postih-
nout libovolnou teplárnu. Model tep-
lárny je poté využit k formulaci opti-
malizační úlohy pomocí smíšeného ce-
ločíselného lineárního programování
(mixed-integer linear programming -
MILP). Druhou částí je algoritmus
pro řešení těchto úloh, který využívá
naší znalosti problému a který si do-
káže poradit i s velkými instancemi
tohoto problému.

Pro řešení obecných MILP úloh
lze použít velice výkonných solverů.
Ani ty nejvýkonnější solvery (jako
je např. Gurobi) si však neporadí s
velkými instancemi úlohy plánování
provozu a obchodu tepláren. V této
práci je navržen způsob, jak pomocí
znalosti úlohy (struktury optimali-
začního problému) zajistit řešitelnost
těchto velkých úloh.

Je navržen algorithmus založen na
metodě větví a mezí, který dokáže
využít znalosti struktury úlohy k zís-
kání těsnějších mezí. Kromě toho
je navržen heuristický algoritmus,
který dokáže relativně rychle gene-
rovat dobrá řešení. Tyto algoritmy
spolupracují a dohromady tvoří algo-
ritmus schopný řešit i velké instance
úlohy.

Účinnost navrženého algoritmu
byla vyhodnocena na základě 64 tes-

tovacíh úloh, které využívají sku-
tečná data tří existujících tepláren.
Navržený algoritmus byl porovnán
s prostým použitím solveru Gurobi.
Ve většině případů náš algoritmus na-
lezl dostatečně kvalitní řešení rychleji
než Gurobi. Co je důležitější, náš al-
goritmus dokázal nalézt dobrá řešení
i v případech, ve kterých Gurobi v da-
ném časovém limitu nedokázalo najít
žadné řešení.

Klíčová slova: MILP,
optimalizace, plánování provozu,
kogenerace, teplárny, Lagrangeova
relaxace, metoda větví a mezí,
heuristika
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Chapter 1
Introduction

The main task of district heating plants with combined heat and power (CHP)
production is to supply districts with heat. Additionally, these plants often
supply industrial processes with hot water and/or steam. For this purpose
plants comprise various technological equipment, such as boilers, turbines or
heat exchangers. The operation of these components must be carefully planned
to ensure profitability of the production. Besides, a large portion of the plant’s
revenues comes from trading co-generated electricity on power markets. However,
it is not possible to simply co-generate as much electricity as possible. The
electricity must be traded in a form of so called power products, which have
specified delivery patterns. Finding an optimal combination of products to trade
along with a plan of technological operations is a challenging problem.

Due to the complexity of this planning problem a decision support tool is
necessary. The purpose of such a tool is to provide a user with a comprehensive
plan of plant’s operations including instructions on how to operate the techno-
logical equipment (boilers, turbines, heat exchanges etc.) and which electrical
power products to buy and which to sell. The objective of this planning is to
maximize the profit of a plant. An outline of the functionality of such a decision
support tool is in Figure 1.1.

This thesis aims at providing a framework for such a decision support tool,
comprising. efficient modelling technique for CHP plant processes and trading on energy

markets,. a methodology for formulating an optimization problem based on the model,. a solution algorithm for long-term planning problems which would provide
good solutions within reasonable time.

1



1. Introduction....................................
The main features of the framework are the following:. generality of the modelling framework enabling rapid prototyping of CHP

plant models,. trading electricity in the form of arbitrarily definable power products (such
as daily base-load, or weekly peak load),. usability of the solution technique for short-term as well as long-term
horizons.

The more precise specifications of the goals of this thesis will follow after a
brief introduction to the problem of CHP production and trade planning.

Estimated heat demand 
and heat prices

A decision support tool for CHP plant 
production and trade planning

(maximizing profit)

Fuel (coal, gas,..) prices

Tradeable electrical power
product specifications

Electricity prices

Production plan
On/off and operation states of 
boilers, turbines, heat 
exchangers etc.

Trade plan
Suggestions, which power 
products and what amounts of 
it to trade.

Figure 1.1: Basic scheme of CHP production and trade planning.

1.1 Operations planning of a CHP plant

This work is aimed at medium-sized or large CHP district heating plants
employing a thermodynamic cycle with nominal combined heat and electricity
power output of tens of megawatts and more - see Figure 1.2 for an example

2



......................... 1.1. Operations planning of a CHP plant

of a medium-size steam cycle. The thermodynamic cycle consists of a number
of components, e.g. turbines (TG1, TG2), boilers (B1, B2), heat exchangers
(HE1-5) etc. An optimization problem dealing with operations planning of the
components over a given time period is formulated. For the purpose of the
optimization problem formulation the optimization horizon is discretized into a
number of time samples. The usual sampling period is one hour.

Boiler

(coal)

Boiler

(NG)

Feed w. tank

Aux

replenishment

district heating water

Auxiliary steam cons.

B1 B2
Condenser

PRCS1

PRCS2

PRS

D

HE1

HE2

HE3
HE4

HE5

high-pressure steam
medium-pressure steam
condensate
cold water
hot water

TG1 G

TG2 G

Deareator

PRCS - pressure reduction and cooling station
PRS - pressure reduction station
HE - heat exchanger
TG - turbine generator

Figure 1.2: Example of a combined heat and power thermodynamic cycle.

The sought plan of operations must include:. on/off states u(t) of components in each time sample t,. operation states x(t) of the components, i.e. the actual physical quantities
in the thermodynamic cycle, such as mass flows,. contracted volume pPRODi(t) of each power product PRODi (see sec-
tion 1.1.1 for details on power products),. fuel consumption qIN (t),. start-ups sU (t) and shut-downs sD(t) of components,. positive deviation dP (t) and negative deviation dN (t) of the supplied elec-
trical power from the contracted power.

3



1. Introduction....................................
This plan is to be derived respecting the technological constraints:. operation limits of components - lower and upper bounds,.minimal number of time periods of continuous operation and a minimal
number of consecutive time periods of being shut-down, i.e. minimum up
and down times (MUDT),. limits on rates of transitions from one operation state to another, i.e.
ramping limits (RL).

Another set of constraints arise from power product definitions. Introduction
to this topic follows in the next section. There can also exist plant-specific
constraints, such as those representing rules for obtaining CHP subsidies, or
those modelling the provision of ancillary services.

1.1.1 Power products

A power product is basically a delivery of electrical power over a specified period
of time - a delivery period. Besides, each power product has defined. how the power being delivered may change during the delivery period -

usually it should be of a constant value or zero,. in which hours of the delivery period the power should be delivered, i.e. in
which hours the delivered power is not zero.

In other words, in selected hours of the delivery period a constant power
should be delivered and zero power in the other hours.

The very basic power product is the daily base load. Within this product
a constant power should be delivered during a whole day. If a plant sells a
daily base product in the volume of 10MW, it is obliged to be delivering exactly
10MW in all the hours of the day, i.e. 240MWh of energy is to be delivered
in total. Any deviation of the power delivery from the contracted 10MW is
penalized. See Figure 1.3 for an example of a daily-base product. The figures
pPRODi(t), pPRODiMIN (t) and pPRODiMAX (t) represent an example of a contracted value
in hour t, a lower bound to the contracted value and an upper bound to the
contracted value in a respective order.

The required delivery of power may also not be continuous. The typical exam-
ples of such products are daily peak-load (its delivery pattern is in Figure 1.4)
and daily off-peak (Figure 1.5). By contracting these products in the volume
of 10MW the plant makes a commitment that exactly 10MW will be delivered

4



......................... 1.1. Operations planning of a CHP plant
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Figure 1.3: Definition of a generic daily base load product (an example of a
feasible value of contracted volume in blue)
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Figure 1.4: Definition of a generic daily peak load product (an example of a
feasible value of contracted volume in blue)
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Figure 1.5: Definition of a generic daily peak off-peak product (an example of a
feasible value of contracted volume in blue)
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1. Introduction....................................
during the delivery hours, i.e hours 8, 9, ..., 19 in the case of daily peak-load and
1, 2..., 7, 20, ..24 in the case of off-peak. In the other hours no power is to be
delivered1.

Analogously, the products with delivery lengths of a week, month, quarter or
even a year may be defined with continuous or not continuous delivery. The
proposed framework allows user to define power products with different delivery
lengths (days, weeks etc.) and delivery patterns (defining in which hours non-
zero power delivery is required). In all cases, the power being delivered within a
product is not allowed to change in its delivery hours (in the other hours the
power delivered in the context of the product has to be zero).

A district heating plant can provide a constant (and possibly not continuous)
electrical power supply when operated in a condensation regime (i.e. some
of the produced heat is wasted in a cooling tower). However, in this regime
the utilization of cogeneration principles is limited and the overall efficiency of
the plant drops. It is more efficient to trade more products at the same time
and form a more convenient pattern of electrical power delivery this way. In a
simple case three products may be considered for trading - daily base-load, daily
peak-load and daily off-peak. In Figure 1.6 an example on how a combination
of these products may be traded is shown. Besides, it is also usually possible
to trade a product with the delivery period of one hour on a spot market. It
is therefore possible to adjust medium- or long-term plans with short-term
planning considering prices on spot markets.

1.1.2 Objective of operations planning

The operators of CHP plants aim their decisions at profit maximization, i.e. the
objective of the operations planning optimization problem is the maximization
of revenues from contracted power products lowered by expenses on fuel, CO2
allowances, start-up and shut-down costs of components and penalty for deviation
from demanded power output (1.1).

profit = revenues from heat + revenues from electricity
− fuel costs− allowances cost

− deviation cost− other variable costs (1.1)

1In non-working days, all the hours are off-peak.

6



......................... 1.1. Operations planning of a CHP plant

1.1.3 Operations planning problem representation

In this thesis CHP production and trade planning is formulated as an optimiza-
tion problem (MILP), where u are binary variables. The reasons for choosing
the mixed-integer linear programming representation include the. size of the problem of long-term optimization which requires a trade-off

between model accuracy and computational performance,. availability of very powerful general-purpose mixed-integer linear program-
ming (MILP) solvers which evolve rapidly and are able to take advantage
of current trends in parallelism,. required versatility, i.e. plant-specific constraints must be easily repre-
sentable,. suitability for automated model generation and for rapid model prototyping,. conclusions of the survey of methods used in literature which are mostly
based on MILP.

max
x,u

cTx + fTu

Ax + Bu ≤ b (MILP)
u ∈ {0, 1}

The drawback of the MILP approach is the requirement for linearity of
constraints and the objective function. This drawback can be mitigated by
approximating non-linearities by using the binary variables. I.e. non-linear
functions may be approximated by piece-wise linear functions.

1.1.4 Remarks on problem complexity

Mixed integer linear programming problems are NP-hard, which follows from
their combinatorial nature. For instance, having 100 binary variables, the
number of all possible combinations is 2100. If all the possibilities were to
be evaluated, with one evaluation per nanosecond it would take about 40
trillion years. The CHP operations planning problems have about 100 of binary
variables per hour of the optimization horizon. This corresponds to more than
74 thousands binary variables in the case of monthly optimization. The number

7



1. Introduction....................................
of binary variables is one of the most important parameters affecting the time
required to solve the problem. It would therefore be beneficial to reduce the
number of binary variables if possible.

One possibility to reduce the number of binary variables is to use a longer
sampling period, e.g. to 8 hours. However, with such a coarse sampling, it
becomes harder to handle faster plant dynamics such as minimum-up-and-down
times. Also, this way peak values of heat demand and other input data are cut
off. Hence, it the resulting plan may not be applicable in reality.

Another way of reducing the number of variables is to select typical days of
the planning horizon and compute only these days. Transitions between these
days must also be present in a model to encompass at least some of the plant’s
dynamics. This approach has several drawbacks. The first is that it is again
hard to transform a solution obtained for typical days into a solution applicable
in reality. This is for the same reasons as in the case of a prolonged sampling
period. Also the reduced problem has less degrees of freedom than a full problem
and hence a solution quality tends to be low. Finally, considering that heat
demand and other input data change rapidly within a planning horizon, rather
many typical days must be used. For instance, in the case of weekly planning,
at least 3 days must be included - two working days and one non-working day -
in order to correctly model the transitions between working and non-working
day. Hence, the reduction of variables is not very extensive and the drawbacks
of this method outweigh its merits.

Computing all the hours or not, the number of combinations is huge, so
an algorithm is required, which would be able to identify a subset of the
combinations, which could not contain the optimal solution. These combinations
may then be discarded without their explicit evaluation. Usually techniques
based on branch and bound (B&B) algorithm are used for solving MILP problems.
Solvers - software packages such as Gurobi, CPLEX or SCIP - are actually
extremely efficient implementations of an algorithm based on B&B. However,
not even these solvers are powerful enough for very large MILP problems.

The number of variables and constraints is not the only parameter affecting
the time required to solve the problem. It is actually very problem-specific, i.e.
dependent on the problem structure. If we had a knowledge of the problem
structure, and this structure happened to be somehow convenient, we could
utilize this knowledge in creating even more efficient algorithms than a general-
purpose B&B is.

The complexity of CHP operations planning problems (the number of variables
and constraints exceeds 1 million in some cases) is often beyond capabilities of
even the most powerful solvers. In some cases, solvers are unable to find a good

8



.................................1.2. Goals of this thesis

solution (or any) in a reasonable time.
A solution time can be considered as reasonable, if it is not prohibitive for

an efficient usage of such a tool. This clearly depends on a user and the task
being solved. However, users typically wish to compute several variants of a
planning task. Hence, the time of two hours can be viewed as an upper bound
to a non-prohibitive solution time.

In this thesis, we propose an algorithm based on B&B, which is able to exploit
our knowledge of the problem structure, i.e. its block-diagonal sub-structure.
Performance requirements for the the proposed algorithm are discussed in the
next section.

1.2 Goals of this thesis

In this thesis a comprehensive framework for solving long-term CHP operations
planning problems is developed. The framework has two main parts - the first
is a modelling framework which allows for modelling arbitrary CHP plants and
formulation of a MILP optimization problem. The second is a solution algorithm
which exploits the knowledge of the problem structure so that the problem is
solved more efficiently.

The goal of this thesis to is propose a framework, which would meet the
following requirements:. The framework must be usable for various CHP plants, i.e. it must handle

all the peculiarities of different plants.. The algorithm must provide an estimation on proximity of the current best
known solution to the optimal one, i.e. its optimality gap.. The solution algorithm must be capable of finding good solutions (within
1% gap) of long-term planning problems in reasonable time (under two
hours).

The algorithm must also be tested on various real-world scenarios.

1.3 Means used to achieve the goals

This section contains a brief summary of methodology used to achieve the stated
goals.

Some problem instances are simply too big for current solvers. Hence a
decomposition technique solving many smaller sub-problems is required. The

9



1. Introduction....................................
solutions of these sub-problems are then used for creating a solution valid with
respect to the original problem. The decomposition technique we use within
our algorithm is Lagrangian relaxation (LR). The block-diagonal sub-structure
is exploited so that after relaxing a small portion of constraints, the remaining
problem is separable into independent sub-problems.

LR is used within a B&B algorithm. It provides tight bounds at nodes. The
bounds obtained by solving LR are usually much tighter than the bounds from
linear relaxations. This way the number of combinations that must be evaluated
is reduced. Parallelization is used extensively in solving the relaxations and
branching.

The solutions obtained from LR are rarely valid with respect to the original
problem. A heuristics based on problem decomposition providing feasible
solutions was therefore developed. In most cases, it provides solutions which are
no more than 1% worse than the optimum. However, the heuristics does not
provide any certificate of (near-)optimality. This certificate is therefore provided
by the B&B algorithm.

The algorithm was implemented in Matlab and solver Gurobi was used for
solving the relaxations.

1.4 Thesis organization

The rest of this thesis is organized as follows. State-of-the-art analysis describing
approaches commonly used for CHP planning problems (and similar) is presented
first in Chapter 2. In Chapter 3 the general modelling framework is explained
on an example of a medium-size district heating plant (in Figure 1.2). The
solution algorithm is introduced next, in Chapter 4. Then in Chapter 5 the
performance of the algorithm is evaluated on a series of test cases. This thesis
then concludes with final summary.

10



Chapter 2
State-of-the-Art

We started the literature review by searching for an algorithm readily applicable
to CHP operations planning problem. We anticipated to find a number of
different approaches that we could compare and choose one according to its
versatility, robustness, speed and memory requirements. However, our main
findings were:.Mostly only short-term planning problems were dealt with, using a plain

general MILP solver.. In the cases, in which medium-term or long-term planning was addressed,
a relaxation of the original problem was solved, mostly by dividing it into
smaller independent sub-problems. A result obtained by this method is
generally not valid with respect to the original problem.. Also a usage of LR was reported. However, there are issues with LR that
will be discussed further in the text.. In literature the algorithms tend to be tailored to a specific problem instance
(e.g. a specific CHP plant). We require better versatility of the algorithm
that would allow us to use it for different plants.

It should be noted that we did not restrict the literature review solely to the
works dealing with CHP production planning. There are other relevant problem
classes, such as unit commitment problem. Methods developed for these classes
could represent at least a good source of inspiration.

In the following sections we will go through the works that we believe are the
most important contributions.

11



2. State-of-the-Art ..................................
The surveyed works can be divided into two groups according to their topic:.Modelling techniques and frameworks for CHP plants,.Optimization techniques that can be used for CHP operations planning

problem.

A model is a prerequisite for a formulation of an optimization problem.
However, different optimization techniques require different modelling approaches
and pose different restrictions upon these approaches. E.g. in order to be able
to use MILP solvers a MILP representation of the problem is required. So
the choice of a modelling paradigm is tightly connected to the choice of an
optimization technique. The task of this review can then be distilled into:. Finding an optimization technique capable of solving long-term CHP plan-

ning problems and. allowing for such a modelling technique that would facilitate sufficiently
precise modelling of CHP plants.

The first part of this review answers the question what is a sufficiently precise
model. The second part then presents results of our search for an optimization
technique able to solve the long-term CHP planning problems.

2.1 Modelling techniques and frameworks

In order to formulate the operations planning optimization problem a model of
processes that take place in a CHP plant is required. In literature two basic
approaches for CHP plant modelling were used. black-box approaches using data interpolation [Fer+04] or defining operating

regions of whole CHP plants [RL07b] or of individual components [TBW05;
MSG13a; Bis+14a],. first-principles approaches employing balance equations [YDOJK08; CTG05a;
Agu+07; SA10; Cho+10; VG+11].

The main advantage of the first-principles approach is its generalization
capability. This means that the model can capture even the operational states
of a CHP plant that are not available in historical data. An optimization tool
using this model can therefore offer solutions that may have not been considered
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.............................. 2.2. Optimization techniques

before. On the other hand a black-box model can credibly propose only solutions
that are included in the historical data it was identified from.

This drawback of black box models can be handled (e.g. in the case of
incomplete historical data) by employing a first principle model. This model
is used to fill the gaps in data needed for regression analysis by performing
simulations [Tou+11].

In literature the first-principles modelling of CHP plants was usually addressed
in a different scope than district heating - most frequently in the context of
process integration problems of utility systems1 [Agu+07; VG+11] emphasizing
comprehensiveness and complexity of thermodynamic cycle models more than
is necessary in our case. These complicated non-linear models are used for
formulation of rather small optimization problems - single-period or multi-
period optimization problems without time-coupling constraints. That is why
computation times remained acceptable in these cases.

First-principle models of small industrial cogeneration plants for operations
planning were developed in [YDOJK08; CTG05a; TBW05], where non-linear
(higher-order polynomial) descriptions of condensing turbines were used. In
these cases, no complicating constraints on components operation, such as
ramping limits or minimum up add down times, were modelled. These papers
also address electricity trading. The produced electricity is sold regardless on
its volumes (within a bilateral agreement) and no special delivery pattern is
required. Yet, many CHP plants are either forced to participate on the trading
with power products (have no favourable bilateral agreements) or they recognize
a good market opportunity in it. As far as we know a model of electricity trading
of CHP plants in the form of standardized power products was first described
in our paper [DH12].

2.2 Optimization techniques

The long-term CHP planning represents a computationally very intensive task
due to the combinatorial nature of mathematical programming problems con-
taining integer variables. In current practice long-term CHP planning problems
are handled by heuristic approaches, such as horizon cutting [DH12], [TBW05].
The optimization horizon is divided into convenient time periods which are
then solved in a sequence with the last sample of each period representing an
initial condition for the next period. It should be noted that the division into

1Process integration problems of utility systems is a problem of designing the systems,
considering various criteria (efficiency, environmental issues etc.) .
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2. State-of-the-Art ..................................
subproblems is done by relaxing some of the constraints. Hence, the solution
to the divided problem is not generally valid with respect to the original one.
Another issue with this approach is the lack of foresight when solving the time
periods sequentially. This may result in poor solution quality. Also, handling
long-term power products, such as yearly base-load, is problematic, not to
mention that this method can not provide any information on proximity of the
provided solution to the optimal one.

Available heuristic methods include relax-and-fix heuristics by [KC12] for-
malizing the horizon cutting of [DH12] and [TBW05] and extending it with a
simple backtracking for the case, in which the procedure leads to an infeasible
subproblem. Also, LP-fix heuristics deciding the values of integer variables
based on the solution of linear programming relaxation is proposed by the same
authors [KC12]. Metaheuristics were also applied to CHP operations planning,
e.g. enhanced immune algorithm [CTG05b], harmony search algorithm [VFB07]
or tabu search [KC12].

Heuristic and metaheuristic methods do not provide any information on
proximity to the optimal solution, i.e. no certificate of (near-) optimality is
available. The information on quality of provided solution is, however, one of
the goals of this thesis. Nevertheless, heuristic methods may be very useful for
generating feasible solutions for other algorithms, such as B&B.

Among deterministic methods used for handling large-scale CHP planning
problems LR represents definitely the most frequently used approach in lit-
erature, e.g. [TBW05; RLL08; EGU16]. Two main issues with this method
have been reported. Most importantly it is the convergence issue reported for
instance by [RL07a] and [Wan+95]. To improve the convergence property an
augmented version of LR is often used instead. However, augmentation prohibits
decomposition of the relaxed problem into sub-problems which cancels out the
main advantage of LR for our cause. Moreover, LR used for non-convex problems
inherently produces an infeasible solution. Solution of a MILP obtained by
LR thus require post-processing, which is not a straightforward procedure and
requires a dedicated heuristic algorithm.

These issues with LR are, however, of lesser importance when LR is used
within B&B for providing bounds instead of linear programming relaxation
(LPR). Yet, another pitfalls emerge. Solving LR is usually much more expensive
than solving LPR. Moreover, the simplex method for solving LPR is very
efficient at reoptimizing after branching or generation of valid inequalities. Such
techniques for LR are not available [Fra05].

An interesting approach combining metaheuristics with a deterministic method
is presented by [RVP14]. The authors propose using heuristic or metaheuristic
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..................................... 2.3. Summary

approaches to speed up convergence of a unit commitment problem formulated
as MILP. A unit commitment problem is an optimization problem similar to
CHP production planning problem. It deals with deciding which power generator
units must be committed/decommited in order to satisfy demand over a planning
horizon. The production of generator units is constrained in a similar way as
the operation of plant equipment within CHP production planning problem
(minimum up and down time constraints, ramping limits etc.). The proposed
cooperation of a heuristics with a deterministic MILP solver represents a viable
and interesting way of providing estimation on proximity of a heuristic solution
to the optimum. A similar methodology combining heuristic and deterministic
algorithms is employed also in this thesis.

2.3 Summary

Considering the reviewed literature, we prefer a first-principle model as there
may not be enough data available to perform a comprehensive regression analysis.
Of course the data available should be used for tuning up the first principles
model. Also, in literature the models of CHP plants usually include non-linear
terms. Solution techniques for solving generally non-linear problems exist, but
are far less powerful than the techniques for (mixed-integer) linear problems.
Nevertheless, the non-linear terms can be sufficiently approximated by piece-wise
linear (PWL) functions resulting in a mixed-binary linear model.

The literature survey suggests that there is no solution technique readily avail-
able, that would handle unrelaxed long-term CHP planning. Long-term problem
instances are simply too big even for state-of-the-art general purpose MILP
solvers. Some kind of problem decomposition must take place. The most
common decomposition paradigm - LR - suffers from convergence issues and
invalidity of the resulting solution. But it can be used as a bound generator
for a customized B&B algorithm. Besides an heuristic may be employed for
generating feasible solutions. Hence, the algorithm proposed in this thesis will be
based on a customized B&B algorithm cooperating with a heuristic for obtaining
feasible solutions.
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Chapter 3
Framework for modelling CHP plant
operations

In this chapter a framework for the modelling of CHP plants operations is
introduced. This framework was developed with the emphasis on generality, i.e.
the framework must be usable for various CHP plants. The framework provides
means of mathematical description of typical technologies used in CHP plants,
such as turbines, boilers, heat exchangers etc. Besides it allows to model the
trade with electrical power products. If a CHP plant employs an uncommon
technology or perhaps modelling of some plant-specific constraints is required,
the framework has to be extended. However, the framework is designed so that
only minor or no extensions should be required, when modelling a new CHP
plant.

The purpose of the model is its usage within a formulation of a MILP
optimization problem. Therefore all the terms in equalities and inequalities are
linear with continuous or binary variables. These equalities and inequalities then
form the constraints of the optimization problem. In the end of this chapter an
objective function is defined, which completes the definition of the optimization
problem.

The bottom-up and first-principle is used for the modelling of CHP plants.
As mass flow and energy transfer rates are the values of interest, mass rate
and energy rate balance equations represent a convenient way of modelling the
thermodynamic cycles of CHP plants. This way the system can also be broken
up into a set of connected components which conforms the modelling approach
of an object-oriented modelling language.

The model is defined in discrete time with sampling period of 1 hour. This
sampling period has been chosen according to the needs of customers as the
electricity is typically traded with the granularity of 1 hour. Hence in order to
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3. Framework for modelling CHP plant operations....................
work with power product definitions properly, the sampling period cannot be
longer than 1 hour. Also, for the purpose of planning the granularity of 1 hour
is sufficient as the faster dynamics is not of interest in the view of operations
plans.

In the following paragraphs the modelling framework is presented on the
example of a medium-size district heating plant in Figure 1.2. The topology
is taken from a real plant in the Czech Republic with rated power outputs
of 50MW in heat and 40MW in electricity. The plant also provides steam of
defined parameters for an industrial consumer.

3.1 Generalized component of the
thermodynamic cycle

In accordance to the need of generality of the modelling framework a generalized
component is defined. Its definition conforms the utilization of the component
within MILP optimization problem formulation. The generalized component
can then be used to model any component of a thermodynamic cycle. Such
model will then be implicitly suitable for MILP problem formulation.

A component of the thermodynamic cycle is generally a system with several
inlets and several exits through which, in time t, fluid (steam or water) flows with
mass flow rates mi(t) and me(t) respectively. Generally the parameters of fluid
are given by enthalpies hi(t) and he(t). The energy transfer rates accompanying
mass flows are then qi(t) = mi(t)hi(t) and qe(t) = me(t)he(t). According to the
conservation principles, mass rate balance (3.1a) and energy rate balance (3.1b)
of a general component (Figure 3.1) must hold.

∑
i

mi(t) =
∑
e

me(t), ∀t (3.1a)

qIN (t) +
∑
i

qi(t) = qOUT (t) +
∑
e

qe(t) (3.1b)

The terms qIN (t) and qOUT (t) represent rates at which energy is being
transferred in and out of the component not accompanying mass flow.

In most cases the enthalpies h(t) in energy rate balance equations can be
considered as constants H as they are either given by the construction of com-
ponents (boiler outputs, extractions of turbines, condensers, pressure reduction
stations etc.) or their dependency on mass flow rates is negligible. The energy
rate balance equations can then be defined as (3.2).
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mI1(t), HI1 mE1(t), HE1
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qE1(t)

qE2(t)

qE3(t)

qIN(t)

qOUT(t)

mI2(t), HI2

mIn(t), HIn

Figure 3.1: Generalized component.

qIN (t) +
∑
i

mi(t)Hi = qOUT (t) +
∑
e

me(t)He (3.2)

If the dependency of steam (condensate) parameters on mass flow rates
through a component cannot be neglected (e.g. in the case of condensing
turbine), it is modelled using PWL functions. With one of the enthalpies being
considerably dependent on mass flow through the component it is possible to
model the non-linear dependence qe(t) = me(t)he(t) as (3.3) - see Figure 3.2 for
an example with four characteristic points (i.e. three linear segments). Naturally,
it is possible to define any dependence in the model this way.

qe(t) =
∑
k

Qe,kλk, me(t) =
∑
k

Me,kλk, (3.3a)

0 ≤ λk ≤ 1, ∀k (3.3b)
{λ0, λ1, λ2, ...} is SOS2 (3.3c)

Note that labelling some set of variables as special ordered set of type 2
(SOS2) is actually only another formulation of an ordered set of variables in
which only two adjacent can be non-zero, see for example [Tom88]. This set can
alternatively be defined manually using binary variables. However, some solvers
can treat SOS2 sets more efficiently than the definitions using binary variables.
The number of SOS2 and binary variables determines the combinatorial space
which has to be searched through by the used solver. It is therefore always the
trade-off between model accuracy and computational complexity.
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M0 M1 M2 M3

Q0

Q1

Q2

Q3

q

mMx

Qx
Qx=λ1Q1+λ2Q2

Mx=λ1M1+λ2M2

λ1+λ2=1
λ0,λ3=0

Figure 3.2: Example of a PWL function.

3.2 Modelling components of thermodynamic
cycle

In the following paragraphs the generalized component (3.1) will be utilized
in the modelling of the thermodynamic cycle in Figure 1.2 by first modelling
individual components and then interconnecting them into the complete cycle.
By using the generalized component, suitability of all the models within MILP
optimization problem will be guaranteed. The values of parameters of models,
such as steam enthalpies, are obtained from measurements (of temperatures,
pressures etc.) or from specifications of components. If necessary, regression
analysis of historical data is used to obtain the values.

3.2.1 Extraction-condensing turbine

The extraction-condensing turbine TG1 has inlet flow I, exit flow E and two
extractions X1 and X2. The parameters of inlet steam are assumed to be
constant. The pressure at the exit of the turbine is considered to be dependent
on mass flow. The rate of useful energy qTG1

OUT (t) that can be converted to
electrical power is therefore non-linearly dependent on the mass flow rate
through the last stage of the turbine (the thermal efficiency of the turbine is not
constant) which is modelled by a PWL approximation. The model of turbine
TG1 can then be defined as (3.4) using (3.1), (3.2) and (3.3).
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.................... 3.2. Modelling components of thermodynamic cycle

mTG1
I (t) = mTG1

X1 (t) +mTG1
X2 (t) +mTG1

E (t), ∀t (3.4a)
qTG1
I (t) = qTG1

OUT (t) + qTG1
X1 (t) + qTG1

X2 (t) + qTG1
E (t), ∀t (3.4b)

qTG1
I (t) = mTG1

I (t)HTG1
I , ∀t (3.4c)

qTG1
X1 (t) = mTG1

X1 (t)HTG1
X1 , ∀t (3.4d)

qTG1
X2 (t) = mTG1

X2 (t)HTG1
X2 , ∀t (3.4e)

qTG1
E (t) = λTG1

0 (t)QTG1
E,0 + λTG1

1 (t)QTG1
E,1 + λTG1

2 (t)QTG1
E,2 , ∀t (3.4f)

mTG1
E (t) = λTG1

0 (t)MTG1
E,0 + λTG1

1 (t)MTG1
E,1 + λTG1

2 (t)MTG1
E,2 , ∀t (3.4g)

Note that the PWL function describing energy transfer rate accompanying the
outlet mass flow rate E has three characteristic points

{
MTG1
E,0 ,MTG1

E,1 ,MTG1
E,2

}
and

{
QTG1
E,0 , Q

TG1
E,1 , Q

TG1
E,2

}
(i.e. two linear segments).

Next, the heat rate qTG1
OUT is being converted to mechanical and then electrical

power pTG1
OUT by the turbine with constant efficiency coefficient ηTG1 (generator

losses). Note that the coefficient ηTG1 may also be modelled as PWL function
of mass flow rates if necessary.

pTG1
OUT (t) = ηTG1qTG1

OUT (t), ∀t (3.5)

3.2.2 Backpressure turbine

In the case of backpressure turbine TG2 the approximation using constant
enthalpies is sufficient (with the maximal error compared to measurements of
1.5% in the case of the plant considered in Figure 1.2).

mTG2
I (t) = mTG2

E (t), ∀t (3.6a)
mTG2
I (t)HTG2

I = qTG2
OUT (t) +mTG2

E (t)HTG2
E , ∀t (3.6b)

pTG2
OUT (t) = ηTG2qTG2

OUT (t), ∀t (3.6c)

3.2.3 Boiler

The boiler B1 with feed-water flow mB1
I and exit flow of superheated steam

mB1
E is modelled with (3.7). It is assumed that the parameters of feed-water
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Figure 3.3: Fuel consumption characteristics of the boiler B1

and produced steam are constant. Based on historical data, it has been found
necessary to model the dependence of heat rate being transferred to water
qB1
IN on the fuel (coal) consumption rate qB1

F (fuel consumption characteristics)
using PWL function with four characteristic points

{
QB1
F,0, Q

B1
F,1, Q

B1
F,2, Q

B1
F,3

}
and{

QB1
IN,0, Q

B1
IN,1, Q

B1
IN,2, Q

B1
IN,3

}
, see Figure 3.3.

mB1
I (t) = mB1

E (t) (3.7a)
mB1
I (t)HB1

I + qB1
IN = mB1

E (t)HB1
E , ∀t (3.7b)

qB1
F (t) =

∑
i

λB1
i (t)QB1

F,i (3.7c)

qB1
IN (t) =

∑
i

λB1
i (t)QB1

IN,i (3.7d)

The other boilers are modelled analogously.

3.2.4 Heat exchanger

In the heat exchangers in Figure 1.2 energy is transferred into district heating
water or boiler feed-water by condensation of the steam passing through. The
condensate exits the heat exchanger with approximately the temperature of
saturated steam and the enthalpy of condensate can therefore be considered
constant. According to [Kap+09], a steam-heated heat exchanger can be
modelled with (3.8).

qHEOUT (t) = mHE
S (t)

(
HHE
I −HHE

E

)
, ∀t (3.8a)

qHEOUT (t) = mHE
W (t)CW (TH − TC) , ∀t (3.8b)
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.................... 3.2. Modelling components of thermodynamic cycle

In practice, an independent control system is used to control the values of
return water temperature TC , hot water temperature TH and mass flow rate
of heated water mHE

W . The control system secures the supply of heat into the
district heating network, i.e. it ensures that the equation (3.8b) holds. The
operations planning therefore needs only to satisfy the heat demand in terms of
energy supplied in steam from the turbine (3.8a).

It should be noted that the proposed model of heat exchanger describes a
special case of heat exchanger - the steam-water heat exchanger. Water-to-
water heat exchangers may also be used in district heating plants for some
technological purposes. However, their operation usually does not directly
affect steam production and operation of turbines. Their operation is therefore
transparent for the optimization problem. Besides, the parameters of passing
fluids are typically controlled by an independent control system. If necessary
(e.g. special constraints apply), they may be modelled using linear or PWL
balance equations (3.1).

3.2.5 Pressure reduction and cooling station

In a pressure reduction and cooling station (PRCS) the parameters of its inlet
steam are changed by injecting cooling water with flow mPRCS

CW into the steam
flow mPRCS

I and by steam expansion. A PRCS can then be modelled by (3.9).

mPRCS
I (t) +mPRCS

CW (t) = mPRCS
E (t), ∀t (3.9a)

mPRCS
I (t)HPRCS

I +mPRCS
CW (t)HPRCS

CW = mPRCS
E (t)HPRCS

E , ∀t (3.9b)

3.2.6 Pressure reduction station

In a pressure reduction station (PRS) the steam is not cooled by water injection
and only expansion occurs, therefore the whole process is isoenthalpic and it is
sufficient to define (3.10).

mPRS
I (t) = mPRS

E (t), ∀t (3.10)

Although the model (3.10) is trivial it is usually necessary to formulate, as
there may be upper and lower bounds on flows or other constraints defined.

3.2.7 Condenser

The model of the condenser C is analogous to the model of heat exchanger (3.8).

23



3. Framework for modelling CHP plant operations....................
3.2.8 Deareator

A deareator may be viewed as a heat exchanger with mixed streams. For the
purpose of the optimization problem only mass and energy rate balances are of
interest and therefore a deareator is modelled by (3.11). The indices CW and
B denote cooling water for PRCSs and feed-water for boilers respectively.∑

i

mD
i (t) = mD

B (t) +mD
CW (t), ∀t (3.11a)∑

i

mD
i (t)HD

i = mD
B (t)HD

B +mD
CW (t)HD

CW , ∀t (3.11b)

3.3 Interconnection of components into closed
steam cycle

The interconnection of the individual components in Fig. 1.2 into the closed
thermodynamic cycle can be implemented using a nodal component (3.12) which
is a special case of the generalized component (3.1) with no energy transferred
in or out of the component. If the nodal component is employed to model a
pipe junction or a steam header all the steam enthalpies are of the same values.

∑
i

mJ
i (t) =

∑
e

mJ
e (t), ∀t (3.12)

3.4 Modelling constraints on operation of
components

Steam cycle components have lower and upper bounds (LB and UB respectively)
on mass flow and energy rates. Also the case when a component is shut-down
needs to be modelled. For this purpose a binary variable uc(t) is defined
representing on/off state of a component c in time sample t. The mass flow rate
of a component can then be constrained using (3.13).

M c
p,MINu

c(t) ≤ mc
p(t) ≤M c

p,MAXu
c(t), ∀t (3.13)

To avoid its unnecessary start-ups and shutdowns, the operation of a compo-
nent may also be restricted in a minimal number of time periods of continuous

24



...................3.4. Modelling constraints on operation of components

operation and a minimal number of consecutive time periods of being shut-
down, i.e. minimum up and down times (MUDT) TU and TD formulated by
equations (3.14), this formulation is adopted from [HOO09].

t∑
i=t−T c

U +1
scU (i) ≤ uc(t), ∀t > T cU (3.14a)

t∑
i=t−T c

D+1
scD(i) ≤ 1− uc(t), ∀t > T cD (3.14b)

The variables scU (t) and scD(t) used in (3.14) represent start-ups and shutdowns
of a component. The variable scU (t) takes on value of 1 if the component c
is started-up in time sample t and 0 otherwise. The variable scD(t) takes on
value of 1 if the component is shutdown in sample t and 0 otherwise. These
values are defined by equations and inequalities (3.15). Since uc(t) is a binary
variable, the inequalities (3.15b) guarantee that either scU (t) is non-zero or scD(t)
is, but not both. Then if in the current sample the component is shut-down
(uc(t) = 0) it follows from (3.15a) and (3.15c) that the value of scD(t) is 1 only
if the component was in operation in the previous sample (scD(t) = uc(t− 1)).
Similarly if uc(t) = 1 then scU (t) = 1 − uc(t − 1) and scU (t) = 1 if and only if
uc(t) = 1 and uc(t − 1) = 0. If both uc(t) and uc(t − 1) are zero then also
both scU (t) and scD(t) have to be zero. The advantage of this formulation is
that variables scU (t) and scD(t) implicitly take binary values even if defined as
continuous variables. These variables are used for formulation of minimum up
and down times, ramping limits and for computation of start-up and shutdown
costs (by multiplying their values with costs per start-up/shutdown) in the
objective function.

scU (t)− scD(t) = uc(t)− uc(t− 1), ∀t > 0 (3.15a)
scU (t) ≤ uc(t), scD(t) ≤ 1− uc(t), ∀t (3.15b)

0 ≤ scU (t) ≤ 1, 0 ≤ scD(t) ≤ 1, ∀t > 0 (3.15c)

Another technical limitations of many components, especially of boilers and
turbines, which have to be taken into consideration, are the ramping limits
(RL) reflecting the dynamics which cannot be neglected. E.g. if maximal
change in heat transfer rate of a boiler qBIN between two adjacent time samples
is RBU in up-direction and RBD in down-direction, then these restrictions may
be modelled using equations (3.16), where RBSU and RBSD represent maximal
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3. Framework for modelling CHP plant operations....................
allowable increase of qBIN from off-state and decrease to off-state respectively.
This description was adopted from [CA06].

qBIN (t)− qBIN (t− 1) ≤ RBUuB(t− 1) +RBSUs
B
U (t)+

+QBIN,MAX(1− uB(t)), ∀t > 0
(3.16a)

qBIN (t− 1)− qBIN (t) ≤ RBDuB(t) +RBSDs
B
D(t)+

+QBIN,MAX(1− uB(t− 1)), ∀t > 0
(3.16b)

3.5 Model of trading on power markets

One of the important features of the presented optimization problem is its ability
to consider the trading on power markets with standardized power products.
The topic of power products was introduced in Section 1.1.1. The proposed
framework supports power products with different delivery lengths (days, weeks
etc.) and delivery patterns (defining in which hours non-zero power delivery is
required). The power products can be modelled with (3.17).

pPRODi(t) =
{
pPRODiV OL t ∈ delivery hours
0 otherwise (3.17a)

PPRODiMIN (t)uPRODi ≤ pPRODi(t) ≤ PPRODiMAX (t)uPRODi, ∀i (3.17b)

In (3.17) the variable pPRODiV OL is the contracted volume of the product PRODi
binding together values of pPRODi(t) in the time samples corresponding to the
delivery hours (hours in which the required power to be delivered within the
product PRODi is non-zero). The binary variable uPRODi then defines whether
the product is contracted or not.

3.6 Modelling constraints on production

Finally, constraints resulting from heat demand and electricity trading have to be
formulated. The electricity production of turbines pTGi(t) in the thermodynamic
cycle should match the electricity demand defined by contracted power products
pPRODj(t) in each time sample t. This is expressed by Eq. (3.18), where the terms
dN and dP stand for shortage and surplus of power generation respectively (both
are non-negative variables). The term pAC defines auxiliary power consumption
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.................. 3.7. Using the model to formulate optimization problem

of the plant which is usually a function of on/off states of components, such as
boilers.

∑
i

pTGi(t) + dN (t) =
∑
j

pPRODj(t) + pAC(t) + dP (t), ∀t (3.18)

In contrast to the electricity supply, the heat demand QREQ(t) has to be
satisfied without deviation, the constraint is therefore defined as (3.19), where∑
i q
HEi
OUT (t) is heat transferred from the thermodynamic cycle into district

network by heat exchangers.

∑
i

qHEiOUT (t) = QREQ(t), ∀t (3.19)

3.7 Using the model to formulate optimization
problem

An optimization problem consists of an objective function which is minimized
or maximized subject to a set of constraints. The constraints of the CHP
operations planning optimization problem have been formulated in the sections
above. What remains to be defined in order to complete the formulation is an
objective function.

The operators of CHP plants aim their decisions at profit maximization,
i.e. the maximization of revenues from contracted power products lowered by
expenses on fuel, CO2 allowances, start-up and shutdown costs of components
and penalty for deviation of actual power output from the contracted power
output. With the introduced models, variables and constraints, the objective of
the optimization problem can be defined as (3.20), where QREQ is the thermal
energy supplied to the district with revenues RQ per unit of energy, pPRODi is
supplied electrical energy in the form of product i with revenues RPRODiP per
unit, qbF is fuel consumption of boiler b with costs CF per unit of fuel and costs
CALW per CO2 allowance, CcSU and CcSD are costs per start-up and shutdown of
a component c. Finally, CDEV N and CDEV P are prices for negative and positive
deviation.
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3. Framework for modelling CHP plant operations....................

max
pP RODi, qb

F UEL, s
c
U , s

c
D, dN , dP

J =

∑
t

(revenues from heat︷ ︸︸ ︷
RQ(t)QREQ(t) +

revenues from el.products︷ ︸︸ ︷∑
i

RPRODiP (t)pPRODi(t)

−

fuel costs︷ ︸︸ ︷∑
b

(CF (t) + CALW (t))qbF (t)

−

start-up and shutdown costs︷ ︸︸ ︷∑
c

CcSU (t)scU (t) + CcSD(t)scD(t)

− (CDEV N (t)dN (t) + CDEV P (t)dP (t))︸ ︷︷ ︸
deviation penalty

)
(3.20)

Although, the revenues from heat are given by the heat demand, which has to
be satisfied, the constant term is included in the objective so that the objective
value then directly represents the profit of the plant.

28



Chapter 4
Algorithm for solving the optimization
problem

The algorithm proposed in this thesis is based on the knowledge that most of
the constraints are specific for a single hour, i.e. all the variables within these
constraints describe the operation of a CHP plant in the same hour. Mass
balance equations (3.1) represent an example of these single-hour constrains.

If all the constraints had this property, we would simply decompose the
optimization problem into hourly sub-problems and solve these simple problems
individually. Unfortunately, this is not the case. There is another group of
constraints which makes the solving process more complicated, hence this group
is called the complicating (or coupling) constraints. These constraints comprise
variables describing operation of a plant in different hours. The typical example of
complicating constraints are the minimum up and down time constraints (3.14).

The presence of the complicating constraints prevents us to decompose the
problem and solve it easily as a number of relatively small independent sub-
problems. We can omit the complicating constraints. However, the solution
obtained this way would be invalid with respect to the original problem and
would have a better value of the objective function than has the real optimum,
i.e. it would represent a bound (an upper bound for maximization problems) on
the objective value.

In this chapter we will explain how to utilize the structure of the optimization
problem for getting good feasible solutions and proving that these solutions are
really close to the optimum. First, we will introduce the matrix representation of
the problem, which is more convenient for the description of algorithms and will
then be utilized by the following sections. Then in Chapter 4.2 the general B&B
algorithm will be described. After that the proposed algorithm is outlined and
its main components are described. The next section will deal with an algorithm
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4. Algorithm for solving the optimization problem ....................
with the purpose of providing good feasible solutions. Section 4.5 will present
an algorithm providing certificates of (near-)optimality for the found solutions.
Finally, in Section 4.6 implementation details are provided.

4.1 Matrix representation of the optimization
problem

The optimization problem consisting of the objective function (3.20) and the set
of constraints (equalities and inequalities) defined in Chapter 3 can be written
in a compact way as (MILP).

max
x,u

cTx + fTu

Ax + Bu ≤ b (MILP)
Cx + Du ≤ d

u ∈ {0, 1}

In this formulation x represents a vector of continuous variables, e.g. mass
flows, energy flows etc., and u is a vector of binary variables (on/off states).
The constraints Ax + Bu ≤ b are the complicating constraints (coupling
sub-problems together) and Cx + Du ≤ d are sub-problem constraints, i.e.
constraints which can be rewritten in the following form:

C1x1 + D1u1 ≤d1

C2x2 + D2u2 ≤d2

. . .
CNxN + DNuN ≤dN ,

where N is the number of sub-problem constraints. The block diagonal
structure of the sub-problem constraints can be exploited by formulating a
relaxation (simplification) of the original problem (LR(λ)). In this relaxation
the coupling constraints are replaced by terms in the objective function penalizing
their violation.
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.........................4.2. General branch-and-bound algorithm

max
x,u

cTx + fTu + λ
T (b−Ax−Bu)

Cx + Du ≤ d (LR(λ))
u ∈ {0, 1}

The most important property of (LR(λ)) is that its (optimal) objective value
for any positive value of the λ multipliers is always greater or equal to the
(optimal) objective value of (MILP). This property of (LR(λ)) directly follows
from the duality theory. Every solution to (LR(λ)) hence represents an upper
bound to the optimal value of (MILP).

Another way of obtaining bounds to the optimal solution of (MILP) is using
its linear relaxation (LPR). This relaxation consists in replacing the integrality
constraints u ∈ {0, 1} with u ∈ 〈0, 1〉.

max
x,u

cTx + fTu

Ax + Bu ≤ b (LPR)
Cx + Du ≤ d

u ∈ 〈0, 1〉

It should be noted that the purpose of these relaxations lies solely in providing
good bounds to the optimal objective value. The other important property of
these relaxations is that they are relatively easily solvable, comparing to the
original problem.

Except for some rare cases, solutions of these relaxations are never valid
with respect to the original problem. However, these relaxations will be used
in the algorithm for obtaining good feasible solutions and also within the
customized B&B algorithm developed for providing information on how these
solutions are good in reality.

4.2 General branch-and-bound algorithm

The general branch and bound algorithm is based on splitting the solution
space (4.1) of a MILP1 problem into two disjoint subspaces S0 = S ∩ {ui = 0}

1Please note that in this case the MILP problem contains only binary variables and no
general integer variables - these problems are also denoted as mixed-binary linear programming
(MBLP).
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4. Algorithm for solving the optimization problem ....................
and S1 = S ∩ {ui = 1}, where i is an index of a binary variable selected by a
heuristics. This heuristics tries to find a sequence of variables ui promising the
fastest convergence towards as tight bound as possible.

S = {x ∈ Rn,u ∈ Zp : Ax + Bu ≤ b,Cx + Du ≤ d} (4.1)

The space S represents a solution set of the root node of a B&B tree. The
subspaces S0 and S1 then represent solution sets of the first level nodes. These
subspaces are again split to S00 = S ∩{ui = 0}∩{uj = 0}, S01 = S ∩{ui = 0}∩
{uj = 1}, S10 = S ∩ {ui = 1} ∩ {uj = 0} and S11 = S ∩ {ui = 1} ∩ {uj = 1},
creating descendants to nodes S0 and S1. This way the splitting continues until:. all the binary variables are fixed,. the solution of a relaxation satisfies u ∈ Zp,. a node and its corresponding branch (all the descendant nodes) can be

pruned, i.e. the bound provided by relaxation for this node is worse than
the best known solution.

The resulting B&B tree looks like the following example.
S

S0

S00

S000

...
...

S001

...
...

S01

...
...

S1

S10

...
...

S11

...
...

The idea behind the B&B algorithm is that by using the bounds obtained
from relaxations, an otherwise huge tree is reduced and only a small fraction
of nodes is worth evaluation. Usually a linear relaxation with the solution
space (4.2) is solved at each node. As soon as a feasible solution is known the
pruning may begin.

P = {x ∈ Rn,u ∈ Rp : Ax + Bu ≤ b,Cx + Du ≤ d} (4.2)
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.......................... 4.3. Outline of the proposed algorithm

Solutions are generally obtained by. heuristic algorithms which are usually able to find a very good feasible
solution much sooner than by searching the tree,. reaching a leaf of the tree, i.e. after all the binary variables are fixed or the
solution of a relaxation satisfies integrality constraints.

Clearly it is crucial to have a good feasible solution as soon as possible, in
order to quickly reduce the solution space worth evaluation.

4.3 Outline of the proposed algorithm

The algorithm proposed in this thesis consists of two subalgorithms. The purpose
of the first algorithm is to provide good feasible solutions. This algorithm is a
heuristic and does not provide any estimation on how good the provided solutions
actually are. However, to meet the second goal of this thesis (see Section 1.2) the
estimation on proximity of solutions to optimum is required. For this purpose the
second algorithm is introduced, which provides the certificate of near-optimality
for known solutions. This second subalgorithm is a customized B&B algorithm
using the proposed heuristics for obtaining good feasible solutions. Figure. 4.1
shows an outline of the overall algorithm.

solutions

Lagrangian
multipliers

The proposed algorithm 
– a combination of two cooperating subalgorithms

Customized B&B algorithm 
– an algorithm providing 

certificate of near-
optimality

Enhanced horizon cutting 
algorithm

– an algorithm providing 
good feasible solutions

Figure 4.1: Outline of the algorithm proposed for CHP production and trade
planning problem.
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4. Algorithm for solving the optimization problem ....................
The two sub-algorithms cooperate and form the following algorithm:..1. Start enhanced horizon cutting (EHC) algorithm with an initial set of

Lagrangian multipliers λ - see sections 4.1 and 4.5 for details...2. Start the customized B&B algorithm to run in parallel...3. Perform one iteration of the customized B&B (i.e. branch a B&B node)...4. Retrieve new feasible solutions provided by EHC algorithm and hand these
over to the customized B&B algorithm...5. Check whether EHC algorithm is finished. If it is, restart it with the current
values of Lagrangian multipliers to run in parallel...6. If there are any solutions and a certificate of (near-)optimality for the best
known solution is found, end algorithms and return the solution...7. Continue with step 3.

The algorithms will be explained in detail in Sections 4.4 and 4.5.

4.4 Algorithm providing good feasible solutions

Commonly used approach to handle very large CHP operations planning problem
instances is horizon cutting [DH12], [TBW05] and [KC12]. The optimization
horizon is divided into convenient time periods which are then solved in a
sequence with the last sample of each period representing an initial condition for
the next period. In the following text, this approach will be denoted as a basic
horizon cutting (BHC) algorithm.

Within the BHC algorithm, the optimization problem is not decomposed
in the fashion of (LR(λ)). Instead, it is formulated as a sequence of smaller
optimization problems - segments - representing overlapping time periods of the
optimization horizon. See Figure 4.2 for illustration. These segments are then
connected by fixing the overlapping part to the values obtained by solving a
previous segment.

The main difference to the (LR(λ)) decomposition approach is in the way how
the linking constraints are handled. In the case of (LR(λ)) these are omitted and
their violation is penalized in the objective function. With the BHC approach,
the linking constraints are not omitted, but formulated in a different way. For
instance consider a problem with planning horizon of 24h being divided into 8h
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Segment 1
from hour 1
to hour 24

Segment 2
from hour 25
to hour 48

.  .  .
Segment 3

from hour 49
to hour 72

Segment N
from hour 24(N-1)+1

to hour 24N

Overlaps of segments

Step 1 Step 2 Step 3 Step N

Figure 4.2: Outline of the basic horizon cutting algorithm with the segment length
of 24h.

segments and a turbine having 24h minimum up time. In (LR(λ)) the minimum
up time constraint is omitted and its violation is penalized. In the case of BHC
this constraint is divided into three 8h minimum up constraints, one for each
segment. Properly using the overlapping parts of segments we may even enforce
the 24h minimum up time constraint.

Hence, the main advantage of the BHC approach is that when a solution is
found, it is feasible with respect to the original problem (if the connection of
segments is done carefully).

There are, however, also some issues:.With power products spanning more than one segment, the BHC may
easily fail as the power production decided in a former segment may not be
feasible in the latter.. The solution quality is greatly affected by the decisions made in the segment
computed first as these are made without considerations of any future time
periods. The solution may therefore sub-optimal.. If a segment is infeasible (with respect to its initial condition) it is hard
or impossible to track what was the cause of infeasibility. Hence if the
infeasibility occurs the algorithm fails.

4.4.1 Enhancement of horizon cutting

We propose a novel EHC algorithm with the purpose to overcome the afore-
mentioned issues of BHC. In the following sections the enhancements will be
presented and explained.
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Compute (the first)

Segment 1
(from hour 1
to hour 24)

. . .
Compute (the last)

Segment N
(from hour 24(N-1)+1

to hour 24N)

Compute

Segment 2
(from hour 25
to hour 48)

Compute

Segment 3
(from hour 49
to hour 72)

Segment 1 
variables fixed to 
computed values

Segment 1 
variables fixed to 
computed values

Segment 2 
variables fixed to 
computed values

Variables of
segments 3 – N 

dropped

Step 1 Step 2 Step 3 Step N

Variables of
segments 4 – N 

dropped

Variables of
segments 2 – N 

dropped

Segment 1 variables
fixed to computed

values

Segment 2 variables
fixed to computed

values

No variables dropped

Segment 3 variables
fixed to computed

values

Segment N-1 variables
fixed to computed

values

.
 .

 .

Figure 4.3: Outline of EHC algorithm with the segment length of 24h and the
segment sequence starting at segment 1 and ending at the last segment N.

At each step of EHC algorithm, a sub-problem based on problem (MILP).
In the sub-problem some of the variables of (MILP) are fixed and some are
omitted, using a concept of variables dropping which will be explained further
in the text. These sub-problems are then solved in a specified sequence. The
outline of the algorithm is in Figure 4.3. In this figure a sequence starting at
segment 1 and ending at the last segment N is chosen. However, the order of
segments in the sequence can be chosen arbitrarily, which will be utilized in the
next section, dealing with a parallel computation of several different sequences.
See Figure 4.4 for example.
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Compute (the first)

Segment 3
(from hour 49
to hour 72)

Compute

Segment 4
(from hour 73
to hour 96)

Compute

Segment 2
(from hour 25
to hour 48)

Segment 3 
variables fixed to 
computed values

Segment 3 
variables fixed to 
computed values

Segment 4 
variables fixed to 
computed values

Variables of
segments 1 and 2 

dropped

Step 1 Step 2 Step 3

Variables of
segment 1 
dropped

Variables of
segments 1, 2 and 

4 dropped

Compute (the last)

Segment 1
(from hour 1
to hour 24)

Segment 3 
variables fixed to 
computed values

Segment 4 
variables fixed to 
computed values

Step 4

No variables
dropped

Segment 2 
variables fixed to 
computed values

Figure 4.4: Outline of EHC algorithm with the segment length of 24h and the
segment sequence {3, 4, 2, 1}.

Dropping variables

In order to handle power products spanning more than one segment another
approach for dividing the problem into segments must be employed. We introduce
the concept of variables dropping. Instead of formulating smaller overlapping
problems representing the segments, a currently computed segment is formulated
first by fixing all the variables of already computed segments and dropping all
the variables of following segments. E.g. the first segment is formulated by
dropping all the variables belonging to other segments (no variables are fixed as
no segments were computed yet).

When a variable is dropped from the optimization problem, it is removed
from all the constraints while preserving validity of the constraints2. To preserve
the validity of a constraint the variable being dropped is fixed to its lower or
upper bound, depending on the sign of its coefficient and sense of the constraint.

2The validity means, that all the possible solutions to the original problem satisfy the
constraint.
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4. Algorithm for solving the optimization problem ....................
It should be noted that to drop a variable from an equality, this equality must
be transformed into two inequalities.

The advantage of dropping variables over simply omitting constraints can be
illustrated using the minimum up time constraint (4.3a). When the variable
sU (t−2) is dropped the resulting constraint is (4.3b), where sLBU (t−2) represents
a lower bound to sU (t−2) and its value is 0. The resulting constraint is definitely
tighter that no constraint at all.

sU (t− 2) + sU (t− 1) + sU (t) ≤ u(t) (4.3a)
sU (t− 1) + sU (t) ≤ u(t)− sLBU (t− 2) −→ sU (t− 1) + sU (t) ≤ u(t) (4.3b)

max
y

gTy

Fy ≤ h (MILP(y))
yi ∈ {0, 1} ∀i ∈ I

Let’s consider having the optimization problem (MILP) written in a simpler
way as (MILP(y)), not distinguishing between binary and continuous variables
and between coupling constraints and the decomposable part of the problem.
After fixing all the variables belonging to the already computed segments a and
dropping all the variables of not yet computed segments n except the variables
of the segment being currently computed c, the resulting optimization problem
can be described with (4.4), where the variables yc represent the variables of
the currently computed segment, matrix Fc is the corresponding part of the
matrix F and vector gc is the corresponding part of the objective function. The
values ȳa are the solution to already computed segments. The matrices F+

n

and F−n are the positive and negative parts of matrix Fn (i.e. F+
n + F−n = Fn)

representing the part of F belonging to the not yet computed segments. Finally
the values yLBn and yUBn are the lower and upper bounds to the variables of the
not yet computed segments.

max
yc

gTc yc (4.4a)

Fcyc ≤ h− Faȳa − F+
nyLBn − F−nyUBn (4.4b)

yi ∈ {0, 1} ∀i ∈ I (4.4c)
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...................... 4.4. Algorithm providing good feasible solutions

There are several features of (4.4) that should be noted:. All the sub-problem constraints of the segment c are contained within (4.4)
in their unchanged form (these constraints do not contain any variables of
segments other than c).. The sub-problem constraints belonging to other segments than c are simply
discarded as these do not contain the variables yc. The same is true for
coupling constraints which do not contain any of yc variables.. The number of variables is relatively small comparing to (MILP(y)) (de-
pending on the number of segments). Also the number of constraints is
small, depending on the number of coupling constraints.. The order in which the segments (4.4) are solved can be chosen arbitrarily.. It may be infeasible due to the fixation of ya. In such a case a procedure
called redispatch is employed.

Solving multiple segment sequences in parallel

As was already mentioned, when using BHC, the solution quality is greatly
affected by the decisions made in the segment computed first. To handle this
issue, we exploit the fact that, utilizing the concept of dropping variables, the
segments can be computed in an arbitrary order. The order corresponding to
the best possible solution quality is, however, not known. Hence we propose to
perform several computations with different segment sequences. The advantage
of performing several computations (with different segment sequences) is that
the possibility of failure of finding a feasible solution is smaller than in the case of
a single computation (say with the the first segment being the starting segment).
Hence, we employ a parallel computation of several sequences, each starting at
different segments. With the parallelization the computation time required to
finish all the sequences remains reasonable (no more than several times the time
required by BHC, depending on the number of processors available).

Redispatch

An infeasibility of a segment may occur, i.e. the particular values of variables
of already computed segments ya may yield the segment infeasible. To cope
with this event a redispatch of already computed continuous variables yc

a is
performed, while the values of already computed binary yb

a variables remain
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4. Algorithm for solving the optimization problem ....................
fixed. The resulting redispatch optimization problem (4.5) thus contains several
times more variables than (4.4), but the number of binary variables remains
the same. Hence solving the redispatch is computationally expensive but still
tractable as it does not contain more binary variables than (4.4). Preserving the
fixations of binary variables helps keeping the tractability of the optimization
problem, however, also brings a possibility (according to our experience small)
of redispatch failure.

max
yc

gcaTyca + gTc yc (4.5a)

Fcayca + Fcyc ≤ h− Fbaȳba − F+
nyLBn − F−nyUBn (4.5b)

yi ∈ {0, 1} ∀i ∈ I (4.5c)

In other words, when infeasibility occurs, all the computed values of continuous
variables are discarded and recomputed along with the current segment. Be-
cause (4.5) may be quite a big problem with respect to continuous variables,
the redispatch should be performed as seldom as possible. As tight bounds to
variables yLB, yUB as possible can reduce the number of redispatches.

Tightening bounds of variables

Tightening bounds represents one of the core presolving techniques for MILP
optimization problems [Mah10]. MILP solvers perform presolve before the B&B
algorithm is started (less extensive presolve is also performed at nodes of the B&B
algorithm). The purpose of the presolve is twofold:. To reduce the size of the optimization problem with respect to the number

of variables and constraints. It can considerably reduce the amounts of
data to be processed, allowing to speed-up the algebraic operations.. To tighten the difference between spaces of feasible continuous and of
feasible integer solutions. This is crucial for efficiency of the B&B algorithm
as it is greatly dependent on the tightness of the linear relaxation.

Tightening a bound lj ≤ yj ≤ uj means that a lower bound l̂j higher than lj
is sought and an upper bound ûj lower than uj is sought. This is performed
observing that constraints (4.6) of the optimization problem (MILP(y)) with
bounds Li and Bi defined as (4.7) yield another bound for a variable k with the
coefficient aik 6= 0. If the coefficient aik is positive, then the constraint yields an
upper bound ûik on variable yk using (4.9). The negative coefficient aik then
yields a lower bound l̂ik using (4.8).
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...................... 4.4. Algorithm providing good feasible solutions

Ui ≤
∑

aijyij ≤ bi ≤ Li (4.6)

Li =
∑

j:aij>0
aijlj +

∑
j:aij<0

aijuj (4.7a)

Ui =
∑

j:aij>0
aijuj +

∑
j:aij<0

aijlj (4.7b)

l̂ik = bi − Li + aikuk
aik

(4.8)

ûik = bi − Li + aiklk
aik

(4.9)

If any of the inferred bounds l̂ik (ûik) is better than the current bound lk
(uk) then the bound may be improved. The new bounds l̂k and ûk are therefore
obtained from (4.10).

l̂k =
{

max l̂ik if max l̂ik > lk

lk otherwise
(4.10a)

ûk =
{

min ûik if min ûik < uk

uk otherwise
(4.10b)

Clearly, the tightening can be (and is) performed iteratively. If any of the
variable bounds improve, the constraint bounds (4.7) can be updated accordingly
and may yield another variables bound improvements.

In the case of solving the optimization problem using a plain general-purpose
solver, it is not necessary to attempt to improve variables bounds as this is
what the solver does at the presolve phase (among other problem improvements
and reductions). However, when decomposing the problem into sub-problems,
it is important to do this tightening before the decomposition as after the
decomposition some important information is lost (sub-problems do not contain
all the constraints).

Within EHC it is important to perform the tightening before the variables
are dropped (4.4). It is, however, important to do the tightening considering
fixation of binaries only as these fixations are final, the fixations of continuous
variables may be recomputed by solving redispatch (4.5).
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4. Algorithm for solving the optimization problem ....................
Generally, tightening is very important in the case of solving a decomposed

problem especially after some of the binary variables have already been fixed as
the tightening may yield another variables fixations (among sub-problems).

It should also be noted that when an upper bound of a binary variable drops
below the value of 1, this variable can be safely fixed to the value 0, and vice
versa.

Window

Another way of reducing the number of necessary redispatches is to consider
future segments while computing the current segment. This means including
some of the otherwise dropped variables into the optimization problem (4.4).
Typically we include the variables (and constraints) of several segments following
the currently computed segment. The binary variables of the added segments
are relaxed to continuous variables with their values restricted into interval
〈0; 1〉. We denote this approach as a window and it is illustrated by Figure 4.5.
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Figure 4.5: Outline of EHC algorithm with the segment length of 24h, window
length 1 and the segment sequence {3, 4, 2, 1}.
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The foresight that a window brings, positively affects also a solution quality.
However, longer windows have a negative impact on the computation times
(a window of the same size as the remaining number of segments corresponds to
the redispatch).

Penalizing relaxed constraints in the objective function

When Lagrangian multipliers λ of (LR(λ)) providing a tight bound for (MILP)
are known, these multipliers can be used to improve the efficiency of EHC. The
objective function of (4.4) is modified by the penalization of the violation of
constraints (in their unrelaxed form) which are relaxed in (4.4), i.e. for which
Fbaȳba + F+

nyLBn + F−nyUBn 6= 0.
However, when EHC is started, no Lagrangian multipliers are known, yet.

These will be known after several iterations of Lagrangian relaxation (of the B&B
root node), the procedure that will be described in the following chapter. Hence,
as EHC and B&B algorithms run in parallel, after the first run of EHC is
finished, the EHC is restarted using the best known multipliers. In some cases
this leads to better solutions and reduces chance of failing to find a feasible
solution.

Parametrization

There are three parameters affecting the speed of the algorithm, the solution
quality and the possibility of a failure. The optimal settings of these parameters
may differ among CHP plants.

Computation sequences. The order in which the segments will be computed
can be chosen arbitrarily, hence the number of all possible sequences is very
large, it is n!. According to our experience, sequences of adjacent segments work
well - beginning from a starting segment to the end of the planning horizon.
When the end is reached, it is continued from the segment before the starting
segment to the first segment. Example of such a sequence is in Figure 4.6. Also
the starting segments of sequences are chosen so that the sequences are different
to each other as possible.

Length of segments. The lowest possible segment length is the length of one
hour, which corresponds to the sampling period. However, it is more efficient to
compute larger segments. This has two reasons. The first is that the state-of-the-
art solvers usually can easily handle the problems with the segment lengths from
8 hours to 48 hours. In some cases, it is much faster to compute a segment with
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Compute (the first)
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to hour 48)

Step 1 Step 2 Step 3

Compute (the last)

Segment 1
(from hour 1
to hour 24)

Step 4

Figure 4.6: Example of a computed segment sequence, first computing segments
3 to 4 and then continuing with segments 2 to 1.

length of 24 hours than to compute 24 single hour segments. This is because of
the overhead of the solver.

The second and the more important reason is that by using longer segments,
the number of coupling constraints decreases (some of the constraints coupling
together 2 different hours would fall into a single segment now). A typical
dependences of a relative number of coupling constraints on segment length
are in Figure 4.7. The figure shows this dependence for three different models
(plants). The number of coupling constraints has great impact on the quality
of solutions produced by the algorithm. It also decreases the probability of
the algorithm’s failure. Considering the three cases in Figure 4.7, the segment
lengths of 24 hours seem as a viable option for all the three models. However,
a segment of this length must also be easily computable, otherwise a shorter
segment should be chosen.

Window length. In the cases of problems with rather smaller spaces of
feasible solutions, it may be hard to find a feasible solution. Hence, if the EHC
fails to find a solution with the current setting of window, the window length is
increased and the algorithm is restarted.

Algorithm for providing feasible solutions

A single run of EHC, i.e. a run with a defined starting segment (and other
parameters), is summarized in the following paragraphs...1. Let s be the index of the starting segment. Create a list S of sub-problem

indices ordered in the following manner:

S = [s, s+ 1, s+ 2, ..., N, s− 1, s− 2, ..., 1] ,

where N is the number of sub-problems. Let i be the index of the set S
pointing at the currently solved segment. Initialize i to the value 1.
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Figure 4.7: Typical dependence of a relative number of coupling constraints on
segment length...2. Fix the variables of sub-problems S1 to Si−1 to the already computed values

(if any). Tighten the bounds of variables with respect to the values of binary
variables...3. Penalize the violation of the constraints containing variables of sub-problems
Si+1 to SN in the objective function (if multipliers are known)...4. Drop variables of sub-problems Si+w+1 to SN from the optimization prob-
lem, where w is window length...5. Relax binary variables of Si+1 to Si+w to continuous variables with bounds
〈0, 1〉...6. Compute the resulting optimization problem...7. If the problem is infeasible unfix the values of continuous variables of S1 to
Si−1 and recompute...8. If the problem remains infeasible, stop the algorithm and return no solution...9. If i == N , stop the algorithm and return the solution. Else increment the
value of i and continue with the step 2.
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4. Algorithm for solving the optimization problem ....................
4.5 Providing certificate of near-optimality

The operators using the decision support tool for CHP operations planning
usually want to know how good is the solution provided by the tool. The best
measure of a solution quality is to compare it against the optimal solution3. To
do this, the optimal solution must be known (or at least its objective value) and
a certificate of optimality must be provided. This can be relatively easy found
in the case of linear and convex optimization problems. In the case of non-linear
optimization problems (such as MILP problems) it is not simple (or even not
possible) to provide the certificate.

In the case of MILP optimization problems, such as (MILP(y)), it is possible to
find an upper bound to the optimal objective function σ∗ by solving a relaxation
of the problem. The main property of a valid relaxation is that its solution
space contains the complete solution space of the original problem, i.e. all the
solutions which are feasible for the original problem are also feasible for the
relaxed problem. As the objective functions of the relaxation and the original
problem are the same, the optimal objective value of the relaxation σUB must
always be better or equal to the optimum of the original problem σ∗.

The goal is to find a relaxation for which the value σUB is as close to σ∗ as
possible. The value of σUB then represents an estimate to σ∗ which can be used
to obtain an estimate on proximity of a solution to the optimum. Having the
objective value of the currently best known solution to the original problem
σLB, the estimate on proximity to optimum can be described as (4.11). See
Figure 4.8 for illustration.

∆σ = σUB − σLB

‖σLB‖
(4.11)

This value represents a so-called gap of the current incumbent (the currently
best known solutions) and is usually expressed in percentage as ∆σ% = 100∆σ.
Reaching zero (or sufficiently small) gap then certifies the optimality of the
incumbent.

The most simple relaxation of MILP is linear relaxation (LPR) which is used
within a general B&B algorithm to facilitate pruning of the B&B tree.

We customized the general B&B for the purpose of solving CHP operations
planning. This customization lies above all in the way how bounds are com-
puted and how branching variables are selected. Besides, the customized B&B

3Alternatively, it can be compared to a reference solution, e.g. a solution that would be
derived by the operators themselves, not having the decision support tool at hand.
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Objective 
value

LB UBOptimum
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The best known solution A solution to relaxation

Figure 4.8: An illustration explaining the concept of optimality gap.

utilize EHC as a heuristic for obtaining feasible solutions. The following sections
introduce these concepts.

4.5.1 Customized B&B algorithm for CHP operations
planning

The algorithm proposed in this thesis is based on the framework of the gene-
ral B&B while a bounding function and a branching rule are tailored for the
purpose of CHP operations planning, using the knowledge of the problem struc-
ture, i.e. its block diagonal sub-structure. Also, the knowledge on what types of
constraints usually form the set of coupling constraints is used for selecting an
efficient branching variables selection. The properties of the customized B&B
algorithm are described in the following paragraphs.

Bound computation

We propose to compute two types of bounds by solving two different relaxations.
The first bound can be computed quickly but is generally not so tight as the
second, computation of which is more time-consuming.

The first bound is based on solving a linear relaxation (LPR). Actually
the full (LPR) is solved only in the root node. This is because even (LPR)
can be quite hard to solve as it contains all the constraints and variables
of (MILP) except for the integrality constraints. Hence, in other nodes the
relaxation (LPR(λ)) is solved, with λ being the best (i.e. providing the tightest
bound) Lagrangian multipliers inherited from the parent node, where these were
obtained by solving LR. Solving (LPR(λ)) is inexpensive as it splits into small
independent linear sub-problems.
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4. Algorithm for solving the optimization problem ....................

max
x,u

cTx + fTu + λ
T (b−Ax−Bu)

Cx + Du ≤ d (LPR(λ))
u ∈ 〈0, 1〉

The purpose of this relaxation is to check whether the node can be pruned
without solving the full (LR(λ)). Also a possible infeasibility of the node can
be discovered. Especially in lower levels of the B&B tree the bounds obtained
by solving (LPR(λ)) are tight enough to prune most nodes on their basis.

As was already indicated, a tighter bound can be obtained by solving (LR(λ)).
Ideally we would find the particular λ for which the optimal objective value
of (LR(λ)) is the smallest, and hence the tightest, possible, i.e. solving (LR). In
the root node we start with the dual values to solution of (LPR). The algorithm
then continues by iteratively improving the coefficients λ.

min
λ

max
x,u

cTx + fTu + λ
T (b−Ax−Bu)

Cx + Du ≤ d (LR)
u ∈ {0, 1}

λ ≥ 0

It can take quite long time for the LR to converge to the best λ. Hence, we
perform only several iterations of LR and when the convergence slows down it
is interrupted and the lowest objective value of (LR(λ)) is used as a bound in
the current node. The corresponding multipliers λ are then used as the starting
ones in descendant nodes.

Non-negativity of λ. Only non-negative values of λ can produce a bound
to (MILP). This condition follows from the duality theory. The reason is
that violation of constraints Ax + Bu ≤ b is penalized. If a constraint i of
Ax+Bu ≤ b is violated, i.e. aixi+biui > bi, the term bi−aixi−biui is negative
and therefore with positive λi it decreases the objective value of (LR(λ)) and
thus penalizes the violation. If any λi was negative then actually the satisfying
of the constraint would be penalized and the optimal objective value of (LR(λ))
would not represent bound to (MILP).
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Improving λ. The question is how to improve the coefficients λ, i.e. how to
find new coefficients λi+1 which would provide a better bound than the current
coefficients λi. There exist at least three well known approaches for finding
λi+1:. sub-gradient method,. cutting plane method. and bundle method.

These three methods will be described in the following paragraphs, their
advantages and drawbacks are discussed and finally one of these methods is
chosen.

Sub-gradient method. This method is often used for its simplicity. In the
following text, this method will be outlined. See [Lem01] for more detailed
description.

The method is based on the well known gradient descent method, which
uses a gradient denoting the steepest descent direction to find a local minimum
of smooth functions. However, the objective function of (LR) is not smooth,
and therefore not differentiable everywhere. Actually, it is not differentiable
in the vertices of the polyhedron S = {x ∈ Rn,u ∈ Zp : Cx + Du ≤ d}. Since
the optimal solution (x∗i ,u∗i ) lies at a vertex of S the gradient descent method
cannot be used.

Instead a sub-gradient method is used. There is no unique gradient at
vertices of S, however, there is an infinite number of sub-gradients. A sub-
gradient is a plane touching S at (x∗i ,u∗i ) and everywhere else either touching
or below the graph of S. One of the sub-gradients is (4.12), i.e. the violation of
relaxed constraints (the more violated a constraint is the higher value of the
corresponding λj must be).

g(x∗i ,u∗i ) = b−Ax∗i −Bu∗i (4.12)

The new value of multipliers λi+1 are then computed with (4.13),

λi+1 = max (0,λi + sig(x∗i ,u∗i )) (4.13)

where si is the step with computed with

si =
ai
(
JD(λi)− JLB

)
‖gi‖2

(4.14)

49



4. Algorithm for solving the optimization problem ....................
where JD(λi) is the optimal objective value of (LR) for λi, JLB is the objective

value of the currently best known solution and ai is a scalar within 〈0, 2〉, the
value of which usually starts at 2 and is halved every time an iteration does not
result in an improvement of the bound.

The main advantages of this approach is its straightforward implementation
and that the computation of λi+1 is inexpensive. However the convergence
properties of the sub-gradient algorithm are typically not good.

Cutting planes. The cutting plane method (see [Lem01]) is based on an idea
of iteratively building an estimation of the Lagrangian dual (LR). With each
iteration the accuracy of the estimation is improved by adding a new cutting
plane based on a solution (x∗i ,u∗i ) obtained by solving (LR(λ)) for the current
value λ. The estimation can be expressed in the form (LRe),

min
z,λ

z

z ≥ cTxi + fTui + λ(b−Axi −Bui), i ∈ P ⊂ S (LRe)
λ ≥ 0

where P is a subset of extreme points of polyhedron (4.15). The subset P is
built by solving (LR(λ)) for different values of λ.

S = {x ∈ Rn,u ∈ Zp : Ax + Bu ≤ b} (4.15)
It can be shown that (LRe) is equivalent to (LR) if the set P contains all

the vertices of S. This condition is sufficient but not necessary. Even if some
of the vertices are omitted, the estimation (LRe) can have the same objective
value as (LR). This is true if for all the not included vertices (xk,uk) holds that
z > cTxk + fTuk + λ∗(b−Axk −Buk). Hence it is not necessary to enumerate
all the vertices in order to obtain a good estimate on (LR).

The Lagrangian dual (LR) is a minimization problem, hence its relaxation (LRe)
is an underestimation of (LR). Since the problem (LR(λ)) is a restricted version
of (LR) (the variables λ are fixed to a value obtained from (LRe)), zk ≤ σk
must hold, where zk and σk are the objective values to (LRe) and (LR(λ))
respectively. Actually if zk ≥ σk then the optimal dual values λ have been
found, otherwise zk < σk, yielding the cut (4.16).

z ≥ cTxk + fTuk + λ(b−Axk −Buk) (4.16)
There are three main drawbacks of the cutting plane method. First, the

problem (LRe) must be solved at every iteration to obtain new values of mul-
tipliers λ. The number of variables of this problem is equal to the number of
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constraints Ax +Bu ≤ b. The number of constraints of (LRe) is the number of
currently known vertices of the polyhedron S, which corresponds to the count
of iterations so far. Although the problem is not huge (at least in the first
iterations), it is still much more computation than in the case of the sub-gradient
method. However, according to our experience, solving (LRe) takes no more
than a fraction of the time needed to compute (LR(λ)), hence this issue is not
prohibitive.

Second, the cutting plain method is known to suffer from instability. According
to [DA12], it may make large steps away from the optimum even (or in fact
especially) when the current solution is close.

Besides, (LRe) may be unbounded. In this case an artificial constraints have
to be added, bounding the problem. However, until (LRe) becomes bounded,
it does not yield a good bound (the value of bound depends on the bounding
constraint).

These drawbacks are overcome by the bundle method which introduces a
regularization term into the objective value of (LRe).

Bundle method. The bundle method is based on the cutting plains method
(see [Lem01]). To avoid the instability, a regularizing quadratic term is intro-
duced, i.e. the optimization problem (RLRe) is solved, instead of (LRe). The
purpose of the regularization term is to prevent the algorithm from making large
steps in λ. Please note that the problem (RLRe) is always bounded.

min
z,λ

z + 1
2τ
∥∥∥λ− λ̂

∥∥∥2

z ≥ cTxi + fTui + λT (b−Axi −Bui), i ∈ Pk ⊂ S (RLRe)
λ ≥ 0

In (RLRe) the vector λ̂ is so called stability centre, which corresponds to the
currently best known vector λ, i.e. the last vector λk which provided a solution
to (LR(λ)) with a smaller objective value JD(λk) comparing to the best known
ĴD(λ) in the iteration k. The iteration in which JD(λk) < ĴD(λ̂)− ε for ε ≥ 0
is usually called a descent step. The current ĴD(λ̂) is then updated to the value
JD(λk) and λ̂ is updated with λk. If JD(λk) ≥ ĴD(λ̂) − ε then the iteration
is called a null step in which the stability centre remains the same and the
estimation (RLRe) is improved using (xk,uk).

The parameter τ has a considerable impact on the convergence of the bundle
method. The value of parameter τ can be derived by a line search, which would
require to compute many trial problems (LR(λ)), which is not feasible in our
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case. We have the best experience with formula (4.17) from [MA07], where
τk+1 = 1

ψ .

ψ = − 2
τk

[
JD(λk)− ĴD(λ̂)
zk − ĴD(λ̂)

− 1
]

(4.17)

The main drawback of the bundle method is that in some cases many null steps
have to be taken before the estimation (RLRe) is accurate enough for producing
a descent step. According to our experience, it is usually very problem-specific
whether the bundle method converges quickly or slowly. However, comparing to
the sub-gradient method, the bundle method performs better in every case.

Solving sub-MILP at nodes. As branching proceeds the number of binary
variables in the descendant nodes decreases. When tightening of bounds of
variables takes place, it decreases quickly. Hence, when this number drops to
a defined value (say several-times the number of binaries in a sub-problem),
we propose to compute the remaining (sub-MILP) instead of its linear and
Lagrangian relaxations, hoping that the it would yield a good bound faster than
further branching.

max
x,u

cTx + fTu

Ax + Bu ≤ b (sub-MILP)
Cx + Du ≤ d

u ∈ {0, 1}
ui = vi, ∀i ∈ I

In (sub-MILP) the set I contains all the indices of the variables which were
fixed due to the branching (including the variables that were fixed by the
tightening). The values vi are then the values to which the variables ui were
fixed.

Another merit of solving (sub-MILP) can be finding a new feasible solution
(hopefully incumbent).

Branching variables selection

We utilize our knowledge of the problem structure (more specifically the know-
ledge of the typical types of constraints) to propose an efficient strategy for
branching variables selection. Many of the coupling constraints Ax + Bu ≤ b
are so-called clique inequalities (4.18). Note that uk ∈ {0, 1} ∀k ∈ I ∩ J .
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∑
i∈I

ui −
∑
j∈J

uj ≤ 1− |J | (4.18)

The main property of clique inequalities is that after fixing one variable ui to
1 or uj to 0, the constraint yields values for the remaining variables uk∈I = 0
and us∈J = 1 for k 6= i and s 6= j. This can be viewed as fixing the whole clique.
It should be noted that fixing variables ui to 0 or uj to 1 does not result in
fixing the clique.

This property can be used within a branching scheme. The main idea is that
the more variables are fixed at branching the tighter the bound. Hence we
propose the following branching variable selection rule.

Let Cp and Cn be the collections of cliques which will be fixed after fixing a
variable uk to 1 and 0 respectively. The number of variables Np

k constrained by
the cliques Cp can provide an estimate on how many binary variables will be
fixed after fixing the variable uk to 1. A number Nn

k can also be obtained for
fixing uk to 0. The variable uk is selected such that uk maximizes (4.19).

max
∀k

(
wk ·min

{
Np
k , N

n
k

})
(4.19)

The weights wk are computed so that the binaries uk which are far from
integrality in the solution to (LPR) were preferred. Hence wk = 0.5− |ûk − 0.5|,
where ûk is the value of uk in the current solution to (LPR).

Branching more than one variable at once. To utilize the strength of
parallelization it is convenient to branch according to several variables at once, so
that the relaxations can be computed in parallel. To fully utilize the computation
capabilities of the used computer, the number of branching variables should be
equal to the number of processors (or a little bit higher as some of the relaxations
may be solved faster than other). Hence the usual number of branching variables
in the case of eight-core processor is 3.

Tightening at nodes

The procedure of bounds tightening was already described in the section 4.4.1.
Here we add an explanation, why is the tightening at branching important.
The capabilities of current commercial MILP solvers in the field of problem
presolving are amazing. We do not aim at beating the solvers in this area.
However, within the customized B&B algorithm we never solve the whole MILP
(except for (sub-MILP) problems). We solve relaxations, i.e. (LPR) and (LR(λ)).
The solver never knows the original MILP problem and therefore miss valuable
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information (such as the integrality of variables u in the case of (LPR)) that
would facilitate the tightening.

When creating relaxations the problem should already be presolved, i.e. the
bounds of the variables tightened. If we wanted to use the solver presolve
capabilities, the solver would have to provide information on how the model
was presolved, not only the presolved model itself, as some information on the
presolve could not be recovered on the basis of the presolved model only.

For example, the presolve procedure usually remove many variables either
by fixing them to a value or by aggregation xi = ∑

j∈J ajxj . Generally the
information on fixations and aggregations cannot be recovered from the presolved
model. However, the solvers usually do not provide these information and solving
the presolved model instead of the original one is out of question, because the
aggregations usually destroy the convenient sub-structure of the problem - most
importantly the portion of the coupling constraints is much higher than before
and the sub-problems are thus much less self-contained.

There exists a solver allowing to retrieve the presolve information. It is the
free solver SCIP [Ach09]. The presolve is almost as efficient as in the case of
the commercial solver Gurobi, however, it is still quite time consuming. It is
therefore not practical to use this presolve at every node. For this purpose we
implemented our own presolver, that does not remove so many variables as
SCIP would, but it requires less time than the SCIP presolver does.

The fast tightening using our presolver is performed at every node and also
when a new lower or upper bound is available. Knowing bounds JLB and JUB
the constraints (4.20) can be formulated.

JLB ≤ cTx + fTu ≤ JUB (4.20)

Tightening can be performed based on these constraints, possibly improving
the bounds of variables.
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Customized B&B algorithm

The proposed custom B&B algorithm can be summarized as follows...0. Initialize the algorithm...a. Create a set of nodes N ∈ {root} and the set of known solutions
S ∈ {∅}...b. Presolve the root node...c. Compute full (LPR) and define the best known multipliers λ̂ with the
value set to the optimal dual values to (LPR)...d. If the root is infeasible, end the algorithm...1. Fetch new feasible solutions from EHC, which is running in parallel...2. Remove the nodes from N for which upper bound (UB) is less than the

current lower bound (LB)...3. Select the node with the highest UB from N and remove it from N ...4. If the gap between UB of the selected node and the current LB is less than
the defined target gap (e.g. 1%), end the algorithm...5. Update UB of the selected node...a. If the number of binary variables is less than a defined sub-MILP

boundary, compute (sub-MILP).
(i) If the (sub-MILP) yields a feasible solution, add it to S...b. Compute a defined number of iterations of (LR) or until it converges.
(i) Start the algorithm with the multipliers λ̂.
(ii) If the problem (LR) yields a feasible solution, add it to S.
(iii) If better multipliers λ̄ than λ̂ were found, set λ̂ = λ̄...6. If infeasibility is detected continue with the step 1...7. Select k branching variables...8. Create 2k child nodes and add them to N ...9. For each node do:..a. Fix the branching variables to their values.
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4. Algorithm for solving the optimization problem ......................b. Tighten bounds of variables...c. Compute preliminary bound by solving (LPR(λ)) using λ̂...d. If child is infeasible, remove it from N ...e. If the preliminary bound is worse than LB, remove the node from N ....10. Continue with step 1.

4.6 Remarks on implementation

A prototype implementation of the proposed algorithm was created. The main
properties of the implementation are:. The algorithm is implemented in Matlab (version 2015b).. It uses the SCIP presolver (version 3.2.1) written in C++ through a .NET

wrapper.. The commercial solver Gurobi (version 6.5) is used for solving the relax-
ations.. The implementation employs parallelization when branching, comput-
ing (LR) and computing (LPR(λ)).. The algorithm is scalable with respect to the problem size, i.e. the size of
a solvable problem is given by the number of processors and the memory
available.
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Chapter 5
Test cases

In this chapter the efficiency of the proposed algorithm (the customized B&B
algorithm in conjunction with EHC) is evaluated by comparing it to the plain
usage of the state-of-the-art general purpose solver Gurobi.

The algorithm will be tested on three sets of scenarios, each set corresponding
to one real-world CHP plant. These scenarios reflect real planning tasks solved
by the CHP plants. The plants are denoted as CHP A, CHP B and CHP C for
the purpose of this thesis. We can not include the real names of the plants for
confidentiality reasons.

The three CHP plants differ in parameters, such as the nominal output or the
number of components. Also, each plant has a different power product portfolio.
These properties of the plants affect the size of the resulting optimization
problems, i.e the number of variables and constraints.

The main parameters of the three CHP plants are summarized in Table 5.1.
Beside the technical parameters the table contains also the information on the
number of variables and constraints per 1 hour of the planning horizon. These
numbers illustrate the complexity of the planning tasks - the largest problems
have around 1 million variables (from which more than 100 thousands are binary
variables).
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CHP A CHP B CHP C

Heat power output [MW] 50 200 300
Electricity power output [MW] 40 220 120
Condensing steam turbines nr. 1 2 2
Back-pressure steam turbines nr. 1 0 0
Boilers nr. 2 6 6
Heat exchangers nr. 2 7 7
Binary variables per 1h nr. 75 99 124
Continuous variables per 1h nr. 454 277 1102
Constraints per 1h nr. 1360 1183 3537

Table 5.1: Properties of the plants considered in test cases.

Each set of scenarios contains several instances of the problem differing
in horizon lengths and in the input data, such as the requirement for heat
production or the prices of fuel and electricity. For example, the test cases with
the horizon length of one month, i.e. 672, 720 or 744 hours, are based on the
input data from different months of a year. Definitions of the scenario sets are
in Table. 5.2. Finally, we would like to emphasize that the data used for creating
the scenarios are real data of the years 2011-2013.

Set
Planning horizon 

length
Number of 

hours
Number of test 
cases in the set

weekly 168 10
monthly 672 - 744 10
quarterly 2160 - 2208 4

weekly 168 10
monthly 672 - 744 10

weekly 168 10
monthly 672 - 744 10

CHP A

CHP B

CHP C

Scenario sets

Table 5.2: Definitions of scenario sets.
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.................................. 5.1. Test case results

The tests were performed on a computer with the following hardware configu-
ration:

. Processor Intel(R) Xeon(R) CPU E5-1650 @ 3.20GHz, 6 Cores, 12 Logical
Processors,

. Installed Physical Memory (RAM) 32,0 GB.

5.1 Test case results

In this section results of the test cases will be presented and discussed. The
proposed algorithm is compared against plain usage of Gurobi, which according
to the benchmarks [Ben] is the most efficient MILP solver. By the proposed
algorithm we mean a combination of customized B&B algorithm and EHC,
working in cooperation in parallel. This cooperation was described and explained
in Chapter 4. Gurobi was also used for relaxations and sub-problems within the
proposed algorithm.

Both algorithms (the proposed algorithm and plain Gurobi) were given a task
to find a solution with the gap 1%, i.e. a solution with the certificate that it is
not more than 1% worse than the optimum. Also, algorithms should reach the
solution within two hours.

The algorithms will be compared on the basis of three figures:

. Runtime required to reach the 1% gap. The runtime is limited by the value
of 7200s (2 hours).

. Reached optimality gaps, i.e. worst-case estimation on the distance of the
best found solution to the optimum.

.Objective values of the best found solution.

The last figure is included because the gap is only a worst case estimate.
Hence a solution with the gap of exactly 1% provided by the customized B&B
may actually be better than another solution provided by Gurobi with gap 0.1%
(and vice versa).
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5. Test cases.....................................

Test
case

1 421 332 � 430 911 44 � 54 0,83% �0,02%
2 438 935 � 447 046 7 � 61 0,87% �0,01%
3 481 496 � 492 230 8 � 62 0,92% �0,00%
4 407 805 � 414 726 21 � 52 0,81% �0,08%
5 431 092 � 440 328 9 � 75 0,93% �0,03%
6 416 829 � 428 362 14 � 59 0,98% �0,05%
7 425 530 � 436 694 9 � 47 1,00% �0,02%
8 461 826 � 473 095 7 � 41 0,95% �0,01%
9 455 414 � 466 132 11 � 46 0,82% �0,02%
10 459 999 � 465 979 10 � 60 0,70% �0,03%

��

�

Green arrows denote the testcases in which for a particular figure the proposed algorithm performed better 

than plain Gurobi.

Yellow arrows denote the testcases in which for a particular figure the proposed algorithm performed about 

equal as plain Gurobi.

Test case results for CHP A, weekly planning problems (168h)
Objective value [-] Runtime [s] Reached gap [%]

algorithm algorithm algorithmGurobi Proposed Gurobi GurobiProposed Proposed

Table 5.3: Test case results of weekly planning for CHP A.

5.1.1 Test case results for CHP A

Tables 5.3, 5.4 and 5.5 contain results for the plant CHP A. Considering the
parameters of plants in Table 5.1, the optimization problems associated with
plant CHP A should be easier than the task of the other two plants. This
was confirmed with the results. Even quarterly planning problems could be
computed within a reasonable time.

In the tables, the arrows indicate whether the proposed algorithm performed
better (a green arrow), worse (a red arrow) or similarly (a yellow arrow),
comparing to plain Gurobi. In the case of the objective value the higher value
the better (hence an arrow up is green and an arrow down is red). For the other
figures - runtime and gap - lower values are the better (hence the arrow down is
green).

A yellow horizontal arrow denotes a test case for which the corresponding
figure has about the same value for both the algorithms. The objective values
are considered about the same if their value does not differ in more than 0.1%.
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.................................. 5.1. Test case results

Similarly the gaps with the difference of 0.1% and less are considered about
the same. Finally, two runtimes differing in less than 5 minutes are denoted as
about the same.

We can see that the proposed algorithm performed better in all the test cases
with monthly (Table 5.4) and quarterly (Table 5.5) planning problems. The
average speed-up comparing to Gurobi was 45% and 59% respectively. I.e. the
proposed algorithm required about a half the time to find a solution with gap
1%.

Apart from runtimes, the proposed algorithm outperformed the plain Gurobi
in the terms of reached gaps and objective values. This was especially true
in the case of quarterly planning, in which the proposed algorithm provided
significantly better solutions (and gaps) in much shorter time, than Gurobi did.

Test
case

1 2 340 038 � 2 330 728 529 � 209 0,57% � 0,11%
2 2 365 659 � 2 373 692 404 � 263 0,59% � 0,08%
3 2 384 427 � 2 385 550 448 � 313 0,58% � 0,14%
4 2 395 089 � 2 401 392 455 � 228 0,58% � 0,08%
5 2 348 486 � 2 399 710 524 � 270 0,93% � 0,13%
6 2 367 917 � 2 418 628 466 � 264 0,93% � 0,15%
7 2 441 342 � 2 439 379 442 � 277 0,55% � 0,13%
8 2 410 763 � 2 417 831 594 � 236 0,60% � 0,08%
9 2 392 232 � 2 405 074 490 � 277 0,59% � 0,03%
10 2 353 480 � 2 408 051 496 � 307 0,96% � 0,12%

��

�

�

Green arrows denote the testcases in which for a particular figure the proposed algorithm performed better than 

plain Gurobi.

Yellow arrows denote the testcases in which for a particular figure the proposed algorithm performed about equal 

as plain Gurobi.

Red arrows denote the testcases in which for a particular figure the proposed algorithm performed worse than plain 

Gurobi.

Test case results for CHP A, monthly planning problems (672h-744h)
Objective value [-] Runtime [s] Reached gap [%]

algorithm algorithmGurobi Proposed Gurobi Proposed Proposed
algorithmGurobi

Table 5.4: Test case results of monthly planning for CHP A.

Gurobi outperforms the proposed algorithm in the case of weekly planning
problems (Table 5.3). The reason is that these problems are easily solvable
by plain Gurobi. On the other hand the proposed algorithm has a noticeable
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5. Test cases.....................................
overhead which is not proportional to the problem size. Hence, it is better suited
for larger problem instances. This is actually what the proposed algorithm is
designed for - to enable solving large problem instances.

Test
case

1 5 082 002 � 5 085 562 7200 � 1324 1,03% � 0,32%
2 5 211 059 � 5 275 536 2347 � 931 0,98% � 0,01%
3 5 175 574 � 5 275 427 2174 � 1313 0,98% � 0,18%
4 5 097 858 � 5 143 637 2729 � 1189 0,93% � 0,32%

��

�

Green arrows denote the testcases in which for a particular figure the proposed algorithm performed better than 

plain Gurobi.

Yellow arrows denote the testcases in which for a particular figure the proposed algorithm performed about equal as 

plain Gurobi.

Gurobi

Test case results for CHP A, quarterly planning problems (2160h-2184h)
Objective value [-] Runtime [s] Reached gap [%]

algorithm algorithmGurobi Proposed Gurobi Proposed Proposed
algorithm

Table 5.5: Test case results of quarterly planning for CHP A.
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Test
case

1 89 154 � 89 160 128 � 104 0,39% � 0,50%
2 137 435 � 137 421 492 � 143 0,39% � 0,22%
3 147 485 � 147 463 506 � 164 0,82% � 0,46%
4 128 730 � 128 732 1044 � 130 0,81% � 0,54%
5 117 271 � 117 196 199 � 148 0,41% � 0,58%
6 133 696 � 133 768 491 � 141 0,37% � 0,57%
7 125 457 � 125 487 338 � 196 0,39% � 0,59%
8 119 349 � 119 361 641 � 192 0,99% � 0,61%
9 102 547 � 102 438 513 � 197 0,55% � 0,31%
10 68 812 � 68 738 818 � 261 0,89% � 0,93%

��

�

��

Green arrows denote the testcases in which for a particular figure the proposed algorithm performed better than 

plain Gurobi.

Yellow arrows denote the testcases in which for a particular figure the proposed algorithm performed about equal 

as plain Gurobi.

Red arrows denote the testcases in which for a particular figure the proposed algorithm performed worse than plain 

Gurobi.

Test case results for CHP B, weekly planning problems (168h)
Objective value [-] Runtime [s] Reached gap [%]

algorithm algorithmGurobi Proposed Gurobi Proposed Gurobi Proposed
algorithm

Table 5.6: Test case results of weekly planning for CHP B.

5.1.2 Test case results for CHP B

The tables 5.6 and 5.7 show the results for weekly and monthly planning problems
of CHP B. Considering the weekly planning problems the average speed-up is
58%. There are several red arrows in Table 5.6, denoting that in some cases
Gurobi found a better solution or provided a better gap. However, it should be
noted, that the proposed algorithm always satisfied the requirements of 1% gap
and maximal runtime of 2 hours. And it always provided solutions within the
required gap faster than Gurobi.

The performance in the case of monthly problems is worse - 21% slow-down
on average. However, only once Gurobi outperformed the proposed algorithm by
more than 5 minutes of runtime. In the most cases both algorithms performed
about the same, even in terms of objective values and gaps.

The figures in Table 5.7 divide the test cases into two groups. The first group,
months 4 - 8, can be seen as easy problems as all these were solved within 12
minutes by either algorithms. This can be explained by the fact, that the CHP
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5. Test cases.....................................
operations planning in the months with lower heat production is typically easier
than in the other months. The reason for this phenomenon arise from the fact
that in these months the technology operates with a considerable slack - the
plant is dimensioned for a higher power output. In these test cases the solution
time of the proposed algorithm was actually never worse by more than 6 minutes,
comparing to Gurobi.

The second group - the months 1, 2, 3, 9 and 10 - may be declared as hard
problems. For these months the proposed algorithm never performed worse than
Gurobi, i.e. it has always found solutions within 1% gap in better or about the
same time.

Test
case

1 568 566 � 568 714 2001 � 562 0,38% � 0,20%
2 518 244 � 502 312 4813 � 4576 0,42% � 0,37%
3 339 907 � 343 340 7200 � 7200 7,25% � 0,00%
4 214 520 � 214 520 554 � 599 0,00% � 0,00%
5 214 573 � 214 573 283 � 532 0,00% � 0,49%
6 214 651 � 214 651 369 � 627 0,00% � 0,40%
7 214 625 � 214 625 474 � 613 0,00% � 0,00%
8 214 642 � 214 642 409 � 720 0,00% � 0,74%
9 193 165 � 214 628 7200 � 7200 30,25% � 12,00%
10 479 160 � 473 387 7108 � 7200 0,85% � 1,00%

��

�

��

Green arrows denote the testcases in which for a particular figure the proposed algorithm performed better than 

plain Gurobi.

Yellow arrows denote the testcases in which for a particular figure the proposed algorithm performed about equal 

as plain Gurobi.

Red arrows denote the testcases in which for a particular figure the proposed algorithm performed worse than plain 

Gurobi.

Test case results for CHP B, monthly planning problems (672h-744h)
Objective value [-] Runtime [s] Reached gap [%]

algorithm algorithmGurobi Proposed Gurobi Proposed Gurobi Proposed
algorithm

Table 5.7: Test case results of monthly planning for CHP B.
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Test
case

1 988 723 � 988 750 2241 � 1972 0,73% � 0,55%
2 907 239 � 907 225 4652 � 4720 0,56% � 0,73%
3 889 013 � 907 156 7200 � 7200 2,96% � 1,09%
4 942 884 � 945 721 7200 � 1830 1,29% � 1,00%
5 976 403 � 1 006 601 7200 � 7200 4,38% � 1,40%
6 1 007 041 � 1 005 137 1804 � 282 0,99% � 1,00%
7 922 596 � 936 646 7200 � 5145 1,93% � 0,04%
8 912 782 � 922 002 7200 � 225 1,64% � 0,68%
9 999 746 � 1 004 146 2576 � 2440 0,89% � 0,46%
10 896 642 � 905 699 7200 � 2591 1,32% � 0,69%

��

�

��

Green arrows denote the testcases in which for a particular figure the proposed algorithm performed better than 

plain Gurobi.

Yellow arrows denote the testcases in which for a particular figure the proposed algorithm performed about equal 

as plain Gurobi.

Red arrows denote the testcases in which for a particular figure the proposed algorithm performed worse than plain 

Gurobi.

Test case results for CHP C, weekly planning problems (168h)
Objective value [-] Runtime [s] Reached gap [%]

algorithm algorithmGurobi Proposed Gurobi Proposed Gurobi Proposed
algorithm

Table 5.8: Test case results of weekly planning for CHP C.

5.1.3 Test case results for CHP C

Finally, the tables 5.8 and 5.9 present the results for CHP C. Both weekly and
monthly problems were hard to solve by either of algorithms.

For weekly planning problems, Gurobi was able to finish within 2 hours only
in 4 cases, while the proposed algorithm in 8 test cases. Both algorithms were
able to find a feasible solution within two hours, while the solution quality was
always considerably better in the case of the proposed algorithm.

Gurobi was unable to find any solution within the time-limit for any of the
monthly planning problems (Table 5.9). On the contrary, the proposed algorithm
was able to find a solution every time and in many cases even a very good
one. Actually, such huge planning problems like monthly CHP C planning
represent our motivation for proposing an algorithm based on the knowledge of
the problem structure. The test case results in Table 5.9 show that the proposed
algorithm can tackle even these huge planning problems.
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Test
case

1 - � 4 110 021 7200 � 7200 - � 1,12%
2 - � 4 114 622 7200 � 4766 - � 0,89%
3 - � 3 151 892 7200 � 7200 - � 3,82%
4 - � 926 544 7200 � 7200 - � 6,20%
5 - � 637 336 7200 � 7200 - � 4,00%
6 - � 639 232 7200 � 7200 - � 3,20%
7 - � 642 789 7200 � 7200 - � 3,02%
8 - � 616 840 7200 � 4881 - � 0,93%
9 - � 906 396 7200 � 7200 - � 16,70%
10 - � 2 171 410 7200 � 7200 - � 6,42%

��

�

Green arrows denote the testcases in which for a particular figure the proposed algorithm performed better 

than plain Gurobi.

Yellow arrows denote the testcases in which for a particular figure the proposed algorithm performed about 

equal as plain Gurobi.

Test case results for CHP C, monthly planning problems (672h-744h)
Objective value [-] Runtime [s] Reached gap [%]

algorithm algorithmGurobi Proposed Gurobi Proposed Gurobi Proposed
algorithm

Table 5.9: Test case results of monthly planning for CHP C.

5.1.4 Test case result summary

The summary of test results is in table 5.10. The planning problems can be
divided into two groups. The first group contains problems that can be viewed
as easy as these are always solved within 20 minutes by either of algorithms.
The other problems can be denoted as hard.

The proposed algorithm outperforms or equals Gurobi with respect to runtime
in 63 of 64 both easy and hard problems. In the case of hard problems, the
proposed algorithm outperforms or equals Gurobi in all the 29 hard test cases
with the average improvement in runtime of 45%. Table 5.10 also shows that
the proposed algorithm tend to offer better solutions for both problem classes
with respect to objective values as well as gaps.

The benefit of the proposed algorithm is most evident in the case of the
hardest scenario set - monthly planning problems of CHP C. Although, in many
cases the proposed algorithm did not find a 1% gap solution within the time-limit
of two hours, it was always able to find a very good solution. On the contrary,
Gurobi failed to find any solution in any of these test cases.
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Easy problems Hard problems
Count 35 29
Mean improvement in objective value [-] 7 658 16 637
Mean improvement in objective value [%] 0,81% 1,18%
Occurances of better or about equal 
objective [-]

32 26

Occurances of worse objective [-] 3 3
Mean improvement in gap [%]1 0,47% 1,61%
Mean runtime improvement [min] 2 36
Occurances of shorter or about equal 
runtime [-]

34 29

Occurances of worse runtime [-] 1 0
1 It is the mean value of differences between gaps provided by Gurobi and gaps provided by 
  the proposed algorithm.

Table 5.10: Test results summary.

Considering the easy test cases, Gurobi outperforms the proposed algorithm
in the runtime, however, the runtimes never differ in more than 6 minutes,
which can, from a user’s perspective, be seen as negligible. And we should
again emphasize that the propose algorithm is intended for tackling the hard
problems.
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Chapter 6
Conclusions

In this thesis a framework for modelling combined heat and power (CHP) plants
and for formulating CHP production and trade planning optimization problems
is proposed together with an efficient solving algorithm. The main requirements
for the framework as defined in Section 1.2 are..1. usability of the framework for various plants,..2. knowledge of the gap, i.e the estimation on proximity to the optimal

solution,..3. capability of finding good solutions (within 1% gap) of long-term planning
problems in reasonable time (under two hours).

Considering the first requirement, we proposed a general modelling framework,
which was successfully used for three different plants. We believe that the frame-
work is general enough to cover all the possible peculiarities of different CHP
plants. The mixed-integer linear programming (MILP) formulation allows to
model even non-linear terms and therefore non-linear behaviour of plant’s ther-
modynamic cycle components can easily be approximated by piece-wise linear
functions, when necessary.

We developed a solution technique combining a heuristic approach for find-
ing feasible solutions, denoted as enhanced horizon cutting (EHC), with a
customized branch and bound (B&B) providing estimation on proximity of
a solution to the optimal one. The knowledge of the gap was the second
requirement. We performed 64 tests using real-world data of three existing CHP
plants and we compared the proposed algorithm to plain Gurobi usage. Both
approaches were set up with the time-limit of 2 hours and the gap requirement of
1%. In most cases the proposed algorithm finds the certificate of near-optimality
sooner than plain Gurobi does.
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6. Conclusions ....................................
The third requirement stated that the solution algorithm must be able to

provide a solution within 1% gap in reasonable time. The reasonable time was
quantified as 2 hours. The proposed algorithm was able to reach this requirement
in most cases - in 51 of 64 cases. After 2 hours, the gap was still higher than
1% in 13 cases. The reason is that in 7 of the 13 cases the problem was simply
too large and only several B&B nodes could be evaluated within the given time.
In the remaining 6 cases neither the EHC heuristics nor the customized B&B
was able to find a solution within the gap of 1%.

Plain Gurobi approach failed to provide a 1% gap solution within the time
limit in 18 cases. More importantly, in 10 cases, Gurobi was not able to find
any solution at all within the time limit, while the proposed algorithm always
found a solution and usually a very good one (around 5% gap on average). This
ability of finding good feasible solutions for problems, which are too hard for
Gurobi, can also be viewed as the main merit of the proposed algorithm.

Besides, the proposed algorithm provides better solutions on average and in
the case of hard problems it is faster than Gurobi.

6.1 Contributions of the thesis

This section summarizes the main contributions of this thesis:..1. A comprehensive modelling framework was introduced. It is aimed at for-
mulation of optimization problems for CHP production and trade planning.
The framework is general enough to cover the needs of various CHP plants...2. The framework also supports the modelling of electricity trading...3. A heuristic algorithm, denoted as EHC, capable of quickly finding good
solutions of the optimization problems was developed...4. A customized B&B algorithm exploiting the knowledge of the convenient
block-diagonal problem structure was provided in order to obtain certificates
of (near-)optimality...5. A combination of the customized B&B algorithm with EHC algorithm is
able to solve planning problems of dimensions which are not tractable for
currently used approaches...6. The modelling framework, EHC and the customized B&B algorithm were
tested on a real-world, real-data case study consisting of 64 test cases. The
tests confirmed the efficiency of the algorithms.
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6.2 Future work

Finally we include a list of possible enhancements of the algorithm which could
increase its efficiency.. Ability to update the solutions of relaxations (LPR) and (LR(λ)) (such as

state-of-the-art solvers do) after branching instead of recomputing it from
scratch could considerably reduce computation times..Other heuristics providing feasible solutions should be incorporated.. A heuristics able to project an infeasible solution obtained from (LR(λ))
onto the feasible solution space, could represent an efficient source of good
feasible solutions (if the relaxation is tight).
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Appendix A
Glossary

B&B branch and bound. vi, 7, 8, 11–13, 27–29, 34, 36, 39, 40, 42, 45, 47,
49–51, 57, 58

BHC basic horizon cutting. 29, 30, 33

CHP combined heat and power. iv, vi, vii, 1–3, 5–12, 15, 23–25, 29, 37–39, 49,
53, 57, 58

EHC enhanced horizon cutting. vii, 28–32, 35–39, 47, 49, 50, 57, 58

LB lower bound. 47

LPR linear programming relaxation. 12

LR Lagrangian relaxation. 8, 9, 12, 40

MBLP mixed-binary linear programming. 27

MILP mixed-integer linear programming. 6, 7, 9, 10, 12, 15–17, 27, 34, 38, 39,
45, 50, 57

PRCS pressure reduction and cooling station. 20

PRS pressure reduction station. 20

PWL piece-wise linear. 12, 17–19

SOS2 special ordered set of type 2. 17

UB upper bound. 47
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Appendix B
Nomenclature

ηc Mechanical efficiency of component c [-]

CcSD Cost per shutdown of component c [e]

CcSU Cost per start-up of component c [e]

CW Specific heat capacity of water [Jkg−1K−1]

CALW CO2 allowances cost per unit of fuel [e/MWh]

CDEV N Cost per unit of negative deviation from contracted power output
[e/MW]

CDEV P Cost per unit of positive deviation from contracted power output
[e/MW]

CF Cost per unit of fuel [e/MWh]

dN (t) Shortage of power generation compared to the contracted value in time
sample t [MW]

dP (t) Surplus of power generation compared to the contracted value in time
sample t [MW]

Hc
p Constant enthalpy of steam flow mc

p(t) [MWh/t]

hcp(t) Variable enthalpy of steam flow mc
p(t) [MWh/t]

J Objective value - overall profit during optimization horizon [e]

mc
p(t) Mass flow rate through inlet or exit pipe p of component c in time sample

t [t/h]
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M c
p,k Characteristic value ofmc

p(t) defining a linear segment of a PWL function[t/h]

M c
p,MAX Upper bound for mc

p(t) [t/h]

M c
p,MIN Lower bound for mc

p(t) [t/h]

pcOUT (t) Electrical power output from conversion of heat rate qcOUT (t) [MW]

pPRODi(t) Delivered power in the form of power product PRODi in time sample
t [MW]

PPRODiMAX Upper bound for delivered power in the form of power product PRODi
in time sample t [MW]

PPRODiMIN Lower bound for delivered power in the form of power product PRODi
in time sample t [MW]

pPRODiV OL Contracted volume of power product PRODi [MW]

qcp(t) Energy transfer rate accompanying mass flow mc
p(t) [MW]

QcIN,k Characteristic value of qcIN (t) defining a linear segment of a PWL
function [MW]

QcIN,MAX Upper bound on heat transfer rate into a component not accompany-
ing mass flow [MW]

QcIN,MIN Lower bound on heat transfer rate into a component not accompanying
mass flow [MW]

qcIN (t) Rate at which energy is being transferred in the component c not accom-
panying mass flow [MW]

QcOUT,k Characteristic value of qcOUT (t) defining a linear segment of a PWL
function [MW]

qcOUT (t) Rate at which energy is being transferred out of the component c not
accompanying mass flow [MW]

Qcp,k Characteristic value of qcp(t) defining a linear segment of a PWL function[MW]

qbF (t) Fuel consumption rate of boiler b in time sample t [MW]

QREQ(t) Heat demand in time sample t [MW]
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RcD Ramp-down rate limit for power output of component c per time sample
[MW]

RcU Ramp-up rate limit for power output of component c per time sample
[MW]

RcSD Ramp-down rate limit for power output of component c from on state
per time sample [MW]

RcSU Ramp-up rate limit for power output of component c from off state per
time sample [MW]

RPRODiP Revenues per supplied unit of electrical energy in the form of product
PRODi [e/MWh]

RQ Revenues per unit of delivered heat [e/MWh]

scD(t) Shutdown of component c in time sample t [-]

scU (t) Start-up of component c in time samplet [-]

T cD Minimal number of consecutive time samples of being shutdown [-]

T cU Minimal number of time samples of continuous operation [-]

TC Temperature of water returning from district heating network [K]

TH Temperature of hot water which flows to district heating network [K]

uc(t) On/off state of component c in time sample t [-]

uPRODi Binary variable defining whether PRODi is contracted [-]
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