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Abstract

This thesis covers basic LR parsing algorithms. We describe bottom-up and
shift-reduce parsing methods in general, and then we focus on LR parsing.
We go into more detail with two algorithms—LR(0) and SLR(1). Suitable
algorithms and data structures are presented and implemented into the Auto-
mata library. We also explore existing solutions and the Automata library
itself.

Keywords parsing, bottom-up parsing, shift-reduce parsing, LR parsing,
SLR parser
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Abstrakt

Předmětem této práce jsou základńı LR parsovaćı algoritmy. Práce v úvodu
popisuje obecně bottom-up a shift-reduce parsováńı. Dále se zaměřuje na
LR parsováńı, specificky LR(0) a SLR(1) parsery. Práce obsahuje návrh
potřebných datových struktur a algoritmů pro implementaci těchto parser̊u.
Jsou prozkoumána existuj́ıćı řešeńı, a přidán základńı popis Automatové kni-
hovny. Práce je součást́ı projektu Automatová knihovna.

Kĺıčová slova parsováńı, bottom-up parsováńı, shift-reduce parsováńı, LR
parsováńı, SLR parser

viii



Contents

Introduction 1

1 Theory 3

1.1 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Deterministic finite automaton . . . . . . . . . . . . . . . . . . 6

2 Bottom-up parsing 9

2.1 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Shift-reduce parser . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 LR parsing 13

3.1 Action table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Goto table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Parsing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 LR(0) parsing 17

4.1 LR(0) item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 LR(0) closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Augmented grammar . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 LR(0) automaton . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 SLR(1) parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Analysis 25

5.1 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Automata library . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Implementation 29

6.1 Enumeration LRAction . . . . . . . . . . . . . . . . . . . . . . 29

ix



6.2 Type definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Class LRParser . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Class LR0Parser . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.5 Class SLR1ParseTable . . . . . . . . . . . . . . . . . . . . . . . 31
6.6 Class LR0ItemsLabel . . . . . . . . . . . . . . . . . . . . . . . . 32
6.7 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Conclusion 33

Bibliography 35

A List of used abbreviations 37

B Contents of enclosed memory card 39

x



List of Figures

1.1 Parse tree for the expression grammar and sentential form id+ id. 6
1.2 Example of a deterministic finite automaton. . . . . . . . . . . . . 7

3.1 LR parser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 LR(0) automaton for the expression grammar. . . . . . . . . . . . 20

xi





List of Tables

2.1 State of the shift-reduce parser after a successful parse. . . . . . . 10
2.2 Shift-reduce parse of a string (id + id) from the expression grammar. 11

3.1 Action table for the expression grammar. . . . . . . . . . . . . . . 15
3.2 Goto table for the expression grammar. . . . . . . . . . . . . . . . 16

xiii





Introduction

Parsing (syntax analysis) is one of the most crucial tasks solved in computing.
It has wide range of usages—from processing programming languages, struc-
tured text such as XML, structured binary data, to DNA pattern recognition
and many more.

Parsing algorithms can be split into two categories: top-down and bottom-
up. Names of these two methods are referring to parse trees, but it is easier
to explain the parsing process using formal grammars. In top-down method,
we start with the initial symbol of a grammar, and apply production rules
until we produce the input string. On the other hand, in bottom-up method
we start with the input string, and replace right-hand sides of the production
rules by the nonterminals inside the string, until we reduce it to the start
symbol.

This thesis focuses on LR parsing. LR parsers are deterministic bottom-
up parsers, which produce a correct parse in linear time, due to the fact that
they don’t do any guessing or backtracking. LR parsers read input from left to
right, construct a rightmost derivation in reverse, and they can detect syntax
errors as soon as possible.

The objective of this thesis is to describe selected algorithms, and to im-
plement them into the Automata library. Two algorithms, LR(0) and SLR(1),
have been selected, since they are the foundation of almost all other powerful
LR parsing methods.
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Chapter 1

Theory

1.1 Strings

Definition 1.1.1. Alphabet is a finite set of elements (called symbols).

Example 1.1.1. Set {0, 1} is an alphabet consisting of two symbols.

Definition 1.1.2. String is a finite sequence of symbols belonging to the
alphabet.

Instead of denoting the strings using the sequence notation, we will just
append the symbols to each other.

Example 1.1.2. The string (α0, α1, α2, α3) will be written as α0α1α2α3.

Example 1.1.3. 0, 01 and 01101 are examples of strings over alphabet {0, 1}.

Definition 1.1.3. The number of symbols in the sequence is called length of
the string, and for an arbitrary string w, the length will be denoted |w|.

Definition 1.1.4. An empty sequence of symbols is also a string, called empty
string. It will be denoted using symbol ε.

Definition 1.1.5. Let x = (x0, x1, . . . , xn−1, xn) and y = (y0, y1, . . . , ym−1, ym)
be strings. String z = (x0, x1, . . . , xn−1, xn, y0, y1, . . . , ym−1, ym) is called the
concatenation of strings x and y, and will be denoted xy.

Example 1.1.4. String 01101 is a concatenation of strings 01 and 101.

Definition 1.1.6. Language is a set of strings over an alphabet.

Example 1.1.5. Set {0, 01, 01101} is a language over the alphabet {0, 1}.
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1. Theory

1.2 Grammars

Definition 1.2.1. Grammar is a quadruple consisting of following elements:

1. Finite set of nonterminal symbols (often denoted N).

2. Finite set of terminal symbols (often denoted Σ).

3.
Finite set of production rules of the form α→ β
where α ∈ (N ∪ Σ)∗N(N ∪ Σ)∗ and β ∈ (N ∪ Σ)∗ (often denoted P ).

4. Start symbol which belongs to N (often denoted S).

It is common to write the rules for the same left-hand side on one line,
separating right-hand sides using the pipe symbol “|”.

Example 1.2.1. Production rules A → α, A → β, A → γ could be written
as A→ α | β | γ.

1.2.1 Context-free grammar

Definition 1.2.2. Context-free grammar is a grammar where all the produc-
tion rules are in format A → α (A is a single nonterminal symbol and α is a
string of nonterminal and/or terminal symbols).

Example 1.2.2 (Expression grammar). An example of context-free grammar
is expression grammar, which is used to generate arithmetic expressions with
parentheses, addition, and multiplication. Most of the examples in this work
use this grammar.

Let EG = ({E, T, F}, {+, ∗, (, ), id}, P, E).

P = {
E → E + T | T,
T → T ∗ F | F,
F → (E) | id,
}

1.2.2 Derivations

Definition 1.2.3. A derivation of a string for a grammar is a sequence of
production rule applications that transforms the start symbol into the string.
We denote the derivation using the =⇒ operator. So A =⇒ B means “A derives
B”. We will be also using A

∗
=⇒ B which means “A derives B in zero or more

steps”.
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1.2. Grammars

Definition 1.2.4. In leftmost derivation, we always replace the leftmost
nonterminal when applying the rules. We denote leftmost derivation using
the operator =⇒

lm
in this work.

Definition 1.2.5. In rightmost derivation, we replace the rightmost nonter-
minal when applying the rules. We denote rightmost derivation using the
operator =⇒

rm
.

Definition 1.2.6. A sentential form is any string that can be derived from
the start symbol (even the start symbol itself).

Definition 1.2.7. If S
∗

=⇒
lm

α (S is a start symbol of grammar G), we say that

α is a left-sentential form of G.

Definition 1.2.8. If S
∗

=⇒
rm

β (S is a start symbol of grammar G), we say that

β is a right-sentential form of G.

Definition 1.2.9. A context-free grammar is called ambiguous, if it contains
multiple leftmost derivations for a single sentential form.

Definition 1.2.10. Let G = (N, Σ, P, S) be a context-free grammar and

A ∈ N . If there exists derivation A
∗

=⇒ Aα, α ∈ (N ∪ T )∗, nonterminal A is
said to be left recursive.

Definition 1.2.11. Grammar G is left recursive if it contains at least one left
recursive nonterminal.

Definition 1.2.12. Production rule from a context-free grammar is left re-
cursive if the right-hand side starts with the same nonterminal as the left-hand
side. If the production rule is in form A→ Aα, α ∈ (N ∪T )∗, the production
rule is said to be directly left recursive.

Definition 1.2.13. Grammar is said to be indirectly left recursive, if it is
possible, starting from any nonterminal A, to derive in two or more steps a
string whose leftmost symbol is A.

1.2.3 Parse tree

Parse tree is used to describe a production rules applied to get a certain
sentential form. Unlike the derivation, a parse tree does not state the order
of applications.

Definition 1.2.14. Parse tree for a context-free grammar G is a rooted tree
where the root is labeled by the start symbol ofG, internal nodes are labeled by
the nonterminals of G, and leaves are labeled by the terminals of G. Children
of an internal node E have to be in order of symbols of a right-hand side of
some arbitrary production rule with left-hand side E.

5



1. Theory

The concatenation of leaf nodes in the preorder traversal gives us the
sentential form represented by the tree. For an unambiguous grammar, there
is exactly one parse tree for each sentential form.

Example 1.2.3. Example of a parse tree for the expression grammar and
sentential form id+ id is shown in Figure 1.1.

E

E

T

F

id

+ T

F

id

Figure 1.1: Parse tree for the expression grammar and sentential form id+ id.

1.3 Deterministic finite automaton

Definition 1.3.1. Deterministic finite automaton is a quintuple consisting of
following elements:

1. Finite set of states (often denoted Q).

2. The alphabet (often denoted Σ).

3. A transition function Q× Σ→ Q (often denoted δ).

4. Start (initial) state which belongs to Q (often denoted q0).

5. A set of final (accepting) states which is a subset of Q (often denoted
F ).

Example 1.3.1. We usually describe a deterministic finite automaton using
a diagram. Let Z be a deterministic finite automaton.

Z = ({a, b, c, d}, {0, 1}, δ, a, {d}).
δ is defined by following equations:

δ(a, 0) = b, δ(a, 1) = a

δ(b, 0) = b, δ(b, 1) = c

δ(c, 0) = d, δ(c, 1) = a

δ(d, 0) = d, δ(d, 1) = d

Figure 1.2 shows how the diagram for Z would look like.
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1.3. Deterministic finite automaton

a b c d

0,1

0

0

0

1

1

1

Figure 1.2: Example of a deterministic finite automaton [1].
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Chapter 2

Bottom-up parsing

A bottom-up parse methods work by constructing a parse tree from the leaves
up, which means we work backward and apply production rules in reverse. In
this method we search in the input string until right-hand side of a production
rule is recognized, and then the that substring is replaced by the left-hand side
of the production rule. As the result, we should reduce the whole string to the
start symbol of the grammar. This is the opposite of the top-down parsing,
where you derive from the start symbol until you reach the input string.
In general, bottom-up parsing algorithms are more powerful than top-down
algorithms, which is not surprising since their construction is more complex.

2.1 Reductions

Example 2.1.1. As an example of reductions, we will show a reduction of a
string id + (id ∗ id) from the expression grammar to the start symbol. The
sequence of these reductions could be following:

id + (id ∗ id), id + (F ∗ id), id + (T ∗ id), id + (T ∗ F ), id + (T ),
id + (E), id + F, id + T, F + T, T + T, E + T, E

First we reduce the second id to F using the production rule F → id, then F
is reduced to T using the production rule T → F , rightmost id is then reduced
to F , T ∗ F is then reduced to T using the production rule T → T ∗ F , and
so on.

Notice that in some steps we had a choice of multiple reductions, and
selecting the right one is the problem we have to solve. Some algorithms like
GLR [2] will fork the parsing procedure, and try all possible solutions, but
these algorithms will not be discussed in this work.

“By definition, a reduction is the reverse of a step in a derivation (recall
that in a derivation, a nonterminal in a sentential form is replaced by the
body of one of its productions). The goal of bottom-up parsing is therefore
to construct a derivation in reverse.” [3, p. 235]
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2. Bottom-up parsing

Considering this, the reductions in Example 2.1.1 were representation of
following derivation in reverse:

E =⇒ E + T =⇒ T + T =⇒ F + T =⇒ id + T =⇒ id + F =⇒ id + (E) =⇒
id + (T ) =⇒ id + (T ∗ F ) =⇒ id + (T ∗ id) =⇒ id + (F ∗ id) =⇒ id + (id ∗ id)

A handle is a substring in the input string, which is found on a right-hand
side of some rule, so it can be reduced. For this to be a handle, the reduction
must be a step in the reverse rightmost derivation.

Definition 2.1.1. Let S be a start symbol of grammar G. If S
∗

=⇒
rm

γBw =⇒
rm

γβw, then β is a handle of γβw [3, p. 235].

We use handles to construct the rightmost derivation in reverse. Let’s
say we have input string w, and we want to construct following derivation in
reverse.

S = γ0 =⇒
rm

γ1 =⇒
rm

. . . =⇒
rm

γn−1 =⇒
rm

γn = w

To construct the rightmost derivation in reverse, we just find the handle
of γn and reduce it, then we find the handle of γn−1 and reduce it, and so on,
until we have reduced the string to the start symbol S.

2.2 Shift-reduce parser

Shift-reduce parser consists of the same two data structures as LL(1) [4] parser:
stack and the input string. We either shift symbols onto the stack (simultan-
eously removing them from the input string), or we reduce (pop) them from
the stack, hence the name shift-reduce. We look for the handles on the top of
the stack. We will denote both bottom of the stack and the end of the input
string using the symbol “$”. Sometimes we will refer to the “input string”
just as the “input”. The parse is successful when the entire input string has
been shifted onto the stack and reduced to the start symbol of the grammar [5,
p. 25]. The state of the shift-reduce parser after a successful parse of a string
from grammar G = (N, Σ, P, S) is shown in Table 2.1.

Table 2.1: State of the shift-reduce parser after a successful parse.

Stack Input Action
$S $ Accept

Example 2.2.1. Let w = (id + id) be a string from the expression grammar.
The list of shift-reduce actions with current parser state is shown in Table 2.2.

The sequence of reduce actions forms the rightmost derivation in reverse.

10



2.3. Conflicts

Table 2.2: Shift-reduce parse of a string (id + id) from the expression gram-
mar.

Stack Input Action
$ (id + id)$ Shift
$( id + id)$ Shift
$(id + id)$ Reduce F → id
$(F + id)$ Reduce T → F
$(T + id)$ Reduce E → T
$(E + id)$ Shift
$(E + id)$ Shift
$(E + id )$ Reduce F → id
$(E + F )$ Reduce T → F
$(E + T )$ Reduce E → E + T
$(E )$ Shift
$(E) $ Reduce F → (E)
$F $ Reduce T → F
$T $ Reduce E → T
$E $ Accept

2.3 Conflicts

When a shift-reduce parser tries to parse using a grammar it cannot handle,
the result will be either a reduce/reduce conflict or a shift/reduce conflict.
Reduce/reduce conflict occurs when the parser is unable to decide which pro-
duction rule use to reduce, and shift/reduce conflict occurs when the compiler
is unable to decide whether to shift or reduce. The various shift-reduce al-
gorithms differ in the way in which they handle these conflicts.

11





Chapter 3

LR parsing

LR is an initialism—L states that we read the input from left to right and
R states that we construct a rightmost derivation in reverse. LR parsers are
deterministic bottom-up parsers, and produce a correct parse in linear time.
Another useful property of LR parser is that it can detect syntax errors as
soon as possible. Names of LR algorithms are usually followed by a number
in parenthesis, which states how many symbols ahead are we looking when
constructing the parser. The lookahead symbols help us resolve the shift-
reduce conflicts.

Unlike LL(1) parsers, LR parsers are really hard to write by hand. There
are many parser generators that help us with building a LR parser, and I
described a couple of them in Chapter 5, Section 5.1. The goal of this work
is to implement a LR parser in the Automata library.

The LR parser consists of input, action and goto tables, stack, and output.
The only part where the various LR methods differentiate are the contents
of action and goto tables. The stack consists of states, instead of symbols
(compared to the general shift-reduce parser). In SLR(1), the stack consists of
states of the LR(0) automaton, and it is similar for more powerful algorithms
like LALR(1) and LR(1).

Example 3.0.1. An example of LR parser is shown in Figure 3.1. The parser
has already seen the input 0110, and there are states (I1, I3, I5, I1) on the
stack (from bottom to top).

3.1 Action table

Action table is indexed by state and a terminal symbol (including the end-of-
input character $), and there are 4 possible types of entries (corresponding to
the actions of shift-reduce parser):

13



3. LR parsing

Universal LR 
parsing

algorithm

$Input

Stack Output

I3

I5

$

I1
Action
table

Goto
table

I1

0 01 1 1 0 1 00

Figure 3.1: LR parser.

• Shift[s] Symbol is shifted from the input string, but we actually push
state s representing the terminal symbol onto the stack, instead of the
symbol itself, as we did with shift-reduce parsers.

• Reduce[A → α] We pop |α| states from the stack, and then push
Goto[stack.top(), A] (defined in Section 3.2) onto the stack.

• Accept The string was parsed successfully.

• Error The parser encounters an error and halts. We might want to
trigger some kind of recovery procedure. Error action is usually denoted
as no value in the corresponding cell.

An entry from the action table will be denoted Action[state, terminal].

Example 3.1.1. The action table for the expression grammar is shown in
Table 3.1. For the sake of simplicity, we will be referring to the states using
assigned number identifiers. Start state is denoted 0, the other identifiers can
be assigned arbitrarily. We will also assign numbers to the rules, so Reduce[i]
means “reduce by rule i from the following list”.

0. E → E + T

1. E → T

2. T → T ∗ F

3. T → F

4. F → (E)

5. F → id

14



3.2. Goto table

Table 3.1: Action table for the expression grammar.

+ ∗ ( ) id $

0 Shift[11] Shift[6]

1 Shift[11] Shift[6]

2 Shift[11] Shift[6]

3 Reduce[2] Reduce[2] Reduce[2] Reduce[2]

4 Reduce[1] Shift[2] Reduce[1] Reduce[1]

5 Shift[1] Accept

6 Reduce[5] Reduce[5] Reduce[5] Reduce[5]

7 Shift[1] Shift[10]

8 Reduce[3] Reduce[3] Reduce[3] Reduce[3]

9 Reduce[0] Shift[2] Reduce[0] Reduce[0]

10 Reduce[4] Reduce[4] Reduce[4] Reduce[4]

11 Shift[11] Shift[6]

3.2 Goto table

The second table the LR parser uses is the goto table. The goto table is
indexed by state and a nonterminal symbol, and it is used to decide which
state will be pushed onto the stack after a reduction. When we reduce by
arbitrary rule A → α, we pop |α| symbols from the stack, and look in goto
table where state is the new top of the stack, and nonterminal is A. Then we
proceed to push the result onto the stack (or report error). An entry from the
goto table will be denoted Goto[state, nonterminal].

Example 3.2.1. The goto table for the expression grammar is shown in
Table 3.2. We will be using the same notation for states as we used in Ex-
ample 3.1.1.

3.3 Parsing algorithm

The LR parsing algorithm is the same for all LR parsing methods (I will
be sometimes referring to it as the “universal LR parsing algorithm”), only
the contents of action and goto tables differ. This algorithm is described in
Algorithm 3.1.

15



3. LR parsing

Table 3.2: Goto table for the expression grammar.

E T F

0 5 4 8

1 9 8

2 3

3

4

5

6

7

8

9

10

11 7 4 8

Name: parseLR
Input : a c t i on tab le , goto tab le , input s t r i n g

push s t a r t s t a t e onto the s tack
l et c be the f i r s t input symbol

repeat f o r e v e r
switch Action [ s tack . top ( ) , c ]

case S h i f t [ s ]
push s onto the s tack
c i s now the next input symbol

case Reduce [A→ α ]
pop |α| i tems from stack
push Goto [ s tack . top ( ) , A] onto the s tack

case Accept
ha l t the parse with s u c c e s s f u l r e s u l t

case Error
ha l t the parse with e r r o r r e s u l t

Algorithm 3.1: Universal LR parsing algorithm
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Chapter 4

LR(0) parsing

The first LR method we will look at is LR(0). The zero in parentheses states
that we have have no lookahead information while creating the parsing auto-
maton/tables. LR(0) parsers use a deterministic finite automaton for finding
the handle (called LR(0) automaton). I will show in this chapter how to
construct and use this automaton.

4.1 LR(0) item

LR(0) item is the elementary building block of LR(0) parser, which we will
be using extensively throughout this whole chapter.

Definition 4.1.1. LR(0) item is a pair of production rule and a position in the
right-hand side of the production rule, where 0 ≤ position ≤ |right-hand side|
must hold.

LR(0) items in this text will be denoted as the production rule with a ·
representing the position in the right-hand side of the production rule.

Example 4.1.1. LR(0) item (A→ αBβ, 1) will be denoted as A→ α ·Bβ

Informally, the position states how much of the right-hand side of the
production rule we have already seen. Everything to the left of the · is on the
stack. Symbol to the right is expected to be read from the input next. If the
· is at the end of the production rule, it means we have the whole right-hand
side of that production rule on the stack, and we can reduce it. I will be
omitting the classifier LR(0) when it is obvious we are talking about LR(0)
items.

We represent the state of the LR(0) automaton by the set of these LR(0)
items.
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4. LR(0) parsing

Name: getLR0Closure
Input : Context−f r e e grammar G, s e t o f LR(0) items I
Output : s e t o f LR(0) items I ’

I ’ ← I

do
for each item A→ α ·Bβ in I ’ (B i s nonterminal )

for each product ion r u l e B→ γ o f G
I ’ ← I ’ ∪ {B→·γ}

while new items were added to I ’ in t h i s i t e r a t i o n

Algorithm 4.1: LR(0) closure [3, p. 245]

4.2 LR(0) closure

When the · is in the in front of a nonterminal in the LR(0) item, it means we
expect to read next whichever symbol the nonterminal can be derived to. To
complete the state, we will add all of the possible rules that can be used to
derive that nonterminal. We will call this operation LR(0) closure, and it is
formally defined by Algorithm 4.1. When talking about LR(0) closure on the
LR(0) items, I might omit the classifier LR(0).

Example 4.2.1. Let’s say we have a set of LR(0) items I = {E → ·T} from
the expression grammar. The LR(0) closure of I would look like this:

{E → ·T, T → ·T ∗ F, T → ·F, F → ·(E), F → ·id}

Definition 4.2.1. Kernel items are all LR(0) items whose position is not
zero. One exception is the initial item of the augmented grammar S′ → ·S,
which is also a kernel item.

4.3 Augmented grammar

Definition 4.3.1. Let G be a context-free grammar, G = (N, Σ, P, S).
Grammar G′ = (N ∪ {S′}, Σ, P ∪ {S′ → S}, S′), where S′ /∈ N ∪ Σ, is
called the augmented grammar of G.

The reason for this augmentation is to tell the parser when to accept the
input. We should only accept the input when we are ready to reduce by the
new initial production rule.
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4.4. LR(0) automaton

Example 4.3.1. The augmented grammar EG′ of the expression grammar
would be:

EG′ = ({E′, E, T, F}, {+, ∗, (, ), id}, P ′, E′)
P ′ = {
E′ → E,

E → E + T | T,
T → T ∗ F | F,
F → (E) | id,
}

4.4 LR(0) automaton

States of the LR(0) automaton are uniquely defined by their set of LR(0)
items.

4.4.1 Initial state

Initial state consists simply of the closure of the new initial item from the
augmented grammar S′ → ·S. What this means is that we haven’t read any
input yet, and there are no other states on the stack, but the initial state.

4.4.2 Transitions and next states

To figure out the transitions to the next state, we will look at every item,
and whenever the position is smaller than the size of right-hand side (the · is
not in the rightmost position of the right-hand side), we will look to the next
symbol, and add transition over that symbol. The next state will contain that
LR(0) item with position increased by one. If there is multiple items with
the same symbol on the next position, we will merge them all into one state.
These will be the kernel items of the next state, and we will call the closure on
them, for the state to be complete. The algorithm for generating next state
for certain LR(0) items and symbol is shown in Algorithm 4.2.

Example 4.4.1. LR(0) automaton for the expression grammar is shown in
Figure 4.1. I0 is the start state. Notice that I0 contains only one kernel item,
E′ → ·E, and the rest is generated by the closure function.

Algorithm for creating the LR(0) automaton is formally defined in Al-
gorithm 4.3, and it was inspired by [3, p. 246], but they work with a canonical
collection of sets of LR(0) items, instead of an automaton.
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4. LR(0) parsing
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Figure 4.1: LR(0) automaton for the expression grammar [3, p. 244].
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4.5. SLR(1) parsing

Name: getLR0NextStateItems
Input : LR(0) items currentItems

symbol over
context−f r e e grammar G

Output : LR(0) items nextItems

l et G’ ← (N ′, Σ′, P ′, S′ ) be the augmented grammar o f G

for every item p in currentItems
i f p i s in form A→ α ·, α ∈ (N ′ ∪ Σ′)∗

cont inue

l et p be in form A→ α · over β, α ∈ (N ′ ∪ Σ′)∗, β ∈ (N ′ ∪ Σ′)∗

add A→ α over · β to nextItems

nextItems ← getLR0Closure (nextItems)

Algorithm 4.2: LR(0) next state generator

4.5 SLR(1) parsing

SLR(1) stands for Simple LR(1), and since we have one symbol of lookahead,
it is more powerful than LR(0). This means that while creating the parsing
tables, we can look at one symbol ahead to make decision whether to shift or
reduce, and by what production rule to reduce by. SLR(1) parser can parse
all grammars the LR(0) can. It is important to notice that the lookahead is
used while creating the parsing tables, not while parsing the input string.

Compared to other LR algorithms, SLR(1) parsers can parse all grammar
the LR(0) parser can, and “SLR(1) parsers are intermediate in power between
LR(0) and LALR(1). Since SLR(1) parsers have the same size as LALR(1)
parsers but are considerably less powerful, LALR(1) parsers are generally
preferred.” [6].

Informally, when the SLR(1) parser encounters the possibility to reduce
by production rule A→ α (α is a string), it looks at the next input symbol. If
the symbol could follow after A (using the Follow sets [4] from LL(1) parser),
the parser does the reduction.

SLR(1) uses the LR(0) automaton for efficient creation of the action and
goto tables.

4.5.1 Action table

Algorithm for creating the SLR(1) action table is described in Algorithm 4.4.
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4. LR(0) parsing

Name: getLR0Automaton
Input : Context−f r e e grammar G
Output : LR(0) automaton A← (Q, Σ, δ, q0, F )

l et G’ ← (N ′, Σ′, P ′, S′ ) be the augmented grammar o f G
l et S be s t a r t symbol o f G

i n i t i a l S t a t e ← getLR0Closure ({S ’ → · S} , G’ )

Q ← { i n i t i a l S t a t e }
Σ ← N ′ ∪ Σ′ ∪ {$}
q0 ← i n i t i a l S t a t e

queue . push ( i n i t i a l S t a t e )
while queue i s not empty

C← queue . pop ( )

for every symbol s ∈ N ′ ∪ Σ′

nextState ← getLR0NextStateItems (C, s , G)

i f ( nextState i s not empty )
i f ( nextState i s not in A)
Q← Q ∪ { nextState }
queue . push ( nextState )

δ(C, s ) ← nextState

Algorithm 4.3: LR(0) automaton construction

4.5.2 Goto table

Algorithm for creating SLR(1) goto table is fairly easy. For every transition
from state Ic to In over nonterminal A in the corresponding LR(0) automaton,
we setGoto[Ic, A] = In. This algorithm is formally described in Algorithm 4.5.
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4.5. SLR(1) parsing

Name: getSLR1ActionTable
Input : Context−f r e e grammar G
Output : SLR(1) ac t i on t a b l e

l et G’ ← (N ′, Σ′, P ′, S′ ) be the augmented grammar o f G
l et A← (Q, Σ, δ, q0, F ) be the LR(0) automaton o f G

for every s t a t e q in Q
for every LR(0) item I in q

i f I i s in format A→ α·
i f A i s S ’

Action [ I , A] ← Accept
e l s e

for every symbol f in Follow (A)
Action [ I , f ] ← Reduce [A→ α· ]

e l s e i f I i s in format A→ α · aβ (a ∈ Σ′)
i f δ(I, a) i s not empty

Action [ I , a ] ← S h i f t [ δ(I, a) ]

Algorithm 4.4: SLR(1) action table construction

Name: getSLR1GotoTable
Input : Context−f r e e grammar G
Output : SLR(1) goto t ab l e

l et G’ ← (N ′, Σ′, P ′, S′ ) be the augmented grammar o f G
l et A← (Q, Σ, δ, q0, F ) be the LR(0) automaton o f G

for every s t a t e q in Q
for every nonterminal A in N’

i f δ(I, A) i s not empty
Goto [ I , A] ← δ(I, A)

Algorithm 4.5: SLR(1) goto table construction
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Chapter 5

Analysis

5.1 Existing solutions

There are no direct competitors, since LR(0) and SLR(1) are both fairly weak
parsing techniques, but there is a lot of solutions using other LR, or even some
custom parsing algorithms.

5.1.1 ANTLR

ANTLR [7] stands for ANother Tool for Language Recognition and it is
“a powerful parser generator for reading, processing, executing, or translating
structured text or binary files. It is widely used to build languages, tools, and
frameworks. From a grammar, ANTLR generates a parser that can build and
walk parse trees.” [7]

ANTLR uses custom ALL(*) [8] parsing algorithm, which is an extension
of LL(*) algorithm, and it analyzes the grammar on-the-fly, instead of do-
ing a static analysis. ANTLR can parse all grammars with the exception of
grammars containing indirect left recursion.

5.1.2 Yacc

Yacc [9] stands for Yet Another Compiler-Compiler and it accepts LALR(1)
grammars with disambiguating rules. Yacc was very popular, and often dis-
tributed by default with Unix systems.

5.1.3 Bison

GNU Bison [10] (Bison for short) is a parser generator (compiler-compiler)
which was written as a replacement for Yacc. It works with context-free gram-
mars, and generates either LALR(1) or GLR parser. Support for IELR(1) [11]
and LR(1) parser is in experimental stage. Bison is compatible with Yacc in
a way that it accepts grammar definitions in the Yacc format.
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5. Analysis

5.1.4 LRSTAR

LRSTAR is a C++ parser generator. In the past, LRSTAR supported mul-
tiple parsing algorithms (LALR(1), canonical LR(1), minimal LR(1) and non-
deterministic LR(k)). Since version 7.0, only minimal LR(k) is supported,
as it has the best properties (fast and small) and as Paul Mann (author of
LRSTAR) says, “too many choices can get confusing” [12].

5.1.5 Hyacc

Hyacc [13] (stands for Hawaii Yacc) is a parser generator which supports
LR(1), LALR(1) and LR(0) parsing methods. It is interesting because of the
support of the LR(0) parsing method, which is a part of this work, and is not
usually supported by parser generators.

5.2 Automata library

The Automata library is a collection of multiple binaries and dynamic libraries.
It is written in C++11, and the binaries are following the Unix ideology—each
one does a single operation, and they can be chained using Unix pipes. They
communicate with each other using a custom XML protocol [14], but lately we
have been thinking about replacing it with a binary one, since the XML one
is not the best fit. The Automata library contains mostly data structures and
algorithms for working with strings, grammars, regular expressions, automata,
and graphs.

The Automata library was created as a part of Martin Žák’s bachelor’s
thesis [14], and it was later extended by Jan Veselý [15], Tomáš Pecka [16],
Štěpán Plachý [17] and David Rosca [18] in their respective bachelor’s theses.
The Automata library is under active development, lead by Ing. Jan Trávńıček.

There are eight dynamic libraries: libalib2algo.so, libalib2common.so, lib-
alib2data.so, libalib2elgo.so, libalib2measurepp.so, libalib2raw.so, libalib2std.so,
and libalib2str.so.

In past, the Automata library contained only implementation of LL(1)
parsing [4], which is not very strong, therefore we decided to implement some
more powerful LR parsing algorithms. My work will neither change nor add
any binaries. I will add types to libalib2data.so and implement algorithms in
libalib2algo.so.

I used multiple data structures and algorithms already implemented in the
Automata library. I used classes for representing symbols (alphabet::Symbol),
context-free grammars (grammar::CFG), and deterministic finite automata
(automaton::DFA). I also used overloads for generating XML representation
of LR(0) items, since the set of LR(0) items is implemented using only the
standard containers and primitive types. I used the label::LabelBase class as
a base class for my own label, used to represent the set of LR(0) items in
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5.2. Automata library

the automaton::State. The last thing I used was the algorithm for generating
Follow sets [4].

27





Chapter 6

Implementation

The implementation is divided into three type definitions, one enumeration,
and four classes. The type definitions and the enumeration are part of the
libalib2data.so dynamic library, and the classes are a part of the libalib2algo.so
dynamic library. All of these structures reside in the grammar::parsing name-
space.

6.1 Enumeration LRAction

Enumeration LRAction is used in LRActionTable to represent the three shift-
reduce actions—Shift, Reduce, and Accept.

6.2 Type definitions

It is usual in the Automata library not to have data encapsulated in classes,
but rather work directly with raw containers and primitives. Since nested
data type definitions can get very long, it is better to make a type definition
using the C++ typedef declaration. There are three type definitions I added
to the Automata library—LR0Items, LRActionTable, and LRGotoTable.

LR0Items represents a set of LR(0) items. It was inspired by how set
of production rules is represented inside the Automata library, I just added
the position needed for LR(0) items. LRActionTable, as the name suggests,
represents an action table used in LR parsing. The underlying data structure
is a map, which has a pair of state and symbol as a key (representing the row
and column key respectively), and pair of LRAction and variant as a value.
Contents of the variant depend on the value of LRAction:

• If the LRAction is Shift, it contains the state to be pushed onto the
stack.
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6. Implementation

• If the LRAction is Reduce, it contains the production rule to reduce by.
We pop |right-hand side| items off the stack. What will be pushed onto
the stack is decided by the left-hand side, current top of the stack, and
the goto table.

• If the LRAction is Accept, contents of the variant are undefined, since
we don’t need to use them.

In Algorithm 3.1, error state is considered to be an independent action,
but to save memory, we represent the error simply by the absence of the entry
in the table.

LRGotoTable represents a goto table used in LR parsing, and it has similar
structure as the LRActionTable. The underlying data structure is also a
map and the key is also the same. The only part where LRGotoTable and
LRActionTable differ is the value, where LRGotoTable has only a single state.

The type definitions for action and goto tables follow the earlier pseudo-
codes as closely as possible, but if needed, they could be easily optimized for
memory usage. We don’t actually need to save the states as a whole, but
we could assign them numbers, and identify them by those numbers, which
would save a lot of memory. The LR0Items could be optimized similarly—we
could assign numbers to the rules in the grammar, and save just the position
and number identifier for each item. Although for this to be time efficient, it
might be needed to change how rules are stored in grammar::CFG.

6.3 Class LRParser

Class LRParser contains three functions which are universal to all LR parsing
methods.

6.3.1 Function getEndOfInputSymbol

This function is used to generate unique end-of-input symbol for given context-
free grammar. It starts with symbol $, which is used in examples throughout
this work, and if the symbol is already in the terminal/nonterminal alphabet
of the grammar, it transforms it until it is unique.

6.3.2 Function getAugmentedGrammar

This is an implementation of algorithm described in Definition 4.3.1. To en-
sure the uniqueness of the new start symbol in the original grammar, we use
the alphabet::Symbol::next() method to transform the start symbol until it is
unique.
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6.4. Class LR0Parser

6.3.3 Function parse

This is universal parsing function for all LR methods as described in Al-
gorithm 3.1. One change to the pseudocode is that we don’t treat error state
as an independent LRAction, but we check for the absence of value in the
table. The function returns true if the string is parsable by the provided
action and goto tables, and false otherwise.

In the future, it might be desirable to change the return value to a list of
shift-reduce actions, or to pass a callback which will be called on every LR
action. The current implementation is general enough to be suitable for these
changes.

6.4 Class LR0Parser

6.4.1 Function getClosure

Function getClosure is an implementation of the Algorithm 4.1.

6.4.2 Function getNextStateItems

This function is an implementation of the Algorithm 4.2.

6.4.3 Function getAutomaton

This is an implementation of Algorithm 4.3. It could be optimized for memory
usage, by saving only the kernel items. The rest can be generated lazily using
the LR(0) closure function.

6.5 Class SLR1ParseTable

6.5.1 Function getActionTable

This function is an implementation of the Algorithm 4.4. Exception is thrown
when provided grammar is not parsable by SLR(1) grammar. It uses LR(0)
automaton to efficiently build the action table. This function also needs to
generate a LL(1) Follow set [4], which is already implemented in the Automata
library.

6.5.2 Function getGotoTable

This function is an implementation of the Algorithm 4.5.
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6. Implementation

6.6 Class LR0ItemsLabel

This class is a wrapper for LR0Items, used to label the states of the LR(0)
automaton.

6.7 Testing

Testing was done using a series of unit tests. I tested the correctness of LR(0)
automaton and correctness of action and goto tables. Using the generated
parsing tables, I tested the universal LR parsing algorithm against series of
both valid and invalid strings.
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Conclusion

I thoroughly studied LR parsing in general, and LR(0) and SLR(1) parsing
algorithms. I also did some research on more advanced algorithms like LL(*),
LALR(1), LR(1), and GLR, so I could compare them, see the advantages and
disadvantages, and understand their usage in other implementations of parser
generators.

I implemented utility functions for augmenting a context-free grammar to
our needs, generating closure of LR(0) items, function for generating the set
of LR(0) items for the next state, and the algorithm for generating LR(0)
automaton from a context-free grammar. The LR(0) automaton is used to
generate SLR(1) action and goto parsing tables. Last algorithm I implemented
is the universal LR parser, which accepts action table, goto table, and input
string, and states if the string is parsable using those tables. The code is easily
extensible, so if we decide later that we want to return the whole sequence of
shift-reduce actions, it won’t be a problem.

Last part of my work was testing, which was done using a series of unit
tests covering all the implemented algorithms.

These algorithms can be used in the future as a foundation for more power-
ful algorithms like LALR(1) and LR(1).
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Appendix A

List of used abbreviations

ANTLR Another Tool for Language Recognition

CFG Context-Free Grammar

DFA Deterministic Finite Automaton

GLR Generalized LR

GNU GNU is a recursive acronym for “GNU’s Not Unix!”

IELR Inadequacy Elimination LR

LL First L states that we read the input from left to right and the
second L states that we perform a leftmost derivation

LR L states that we read the input from left to right and R states
that we construct a rightmost derivation in reverse

LALR Look-Ahead LR

SLR Simple LR

XML Extensible Markup Language

Yacc Yet Another Compiler-Compiler
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Appendix B

Contents of enclosed memory
card

readme.txt..............description of the contents of this memory card
source

automata-library..............source code of the Automata library
thesis..............................LATEX source code of this thesis

text

thesis.pdf...........................this thesis in the PDF format
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