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Abstract 
 

 
 

The thesis deals with a dual-function solar collector, which would perform the function of 

heating the air during the winter and heating up the water during the summer. In order to 

achieve a reasonably priced collector, the design approach is motivated by the utilization of 

components that are commercially available. The collector is based on fin-tube water-air heat 

exchanger, which is normally produced for air handling units. Several design options were 

analysed using manual calculations and CFD simulations. A number of models were created 

and simulated in ANSYS Fluent software to study the performance of both the water and air 

side of the collector. The analysis included fluid flow with heat transfer by conduction, 

convection and radiation, including solar load calculations. Satisfactory results were obtained 

for the air side, the model for the water side did not work properly. Conclusions were made 

regarding the influence of fin spacing on pressure losses and radiative heat losses and 

regarding the surface selectivity with respect to solar radiation. 
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1. INTRODUCTION 

A growing demand for energy, the security of supply of fossil fuels and the international 

agreements to mitigate climate change are key issues of the modern society. These 

developments have drastically increased the necessity of large scale implementation of 

renewable energy technologies over the past two decennia and will continue to do so in the 

near future.  

Energy consumed in buildings accounts for approximately 30–40 % of the global energy 

consumption. Some major consumptions are lighting, ventilating, space heating/cooling, and 

water heating. Heat generation and electricity generation have a negative impact on the 

environment and represent a major human contribution to global climate change. 

 

Over the past four decades, solar thermal systems have gained wide spread applications in 

building sector globally. By the end of 2010, the solar thermal collector capacity in operation 

worldwide equalled 195.8 GWth (‘th’ stands for ‘thermal’). According to the data issued by 

International Energy Agency, by 2020, the EU will be expected to reach a total operational 

solar thermal capacity of around 102 GW. 

To fight against the worldwide deteriorating energy wastage and pollution problems, much 

effort in the building sector has been on promoting solar energy utilization. To this, the 

applications of solar thermal technology – with passive space heating and water heating as 

the two major approaches – have been highly successful. 

 

Among the solar thermal technology, the flat-plate solar collectors have been widely used as 

air heaters or water heaters. In modern day houses, high quality insulation is used thus the 

major energy losses are ventilation losses. The solar air heaters have been used to compensate 

for the losses by ventilation. In order to increase the annual application of solar energy, a 

dual-function solar collector is being designed and simulated in this thesis. This collector can 

generate not only hot water for domestic purposes during summer but also be used for 

compensating the ventilation losses in winter. Such integrated design makes it more cost-

effective than those conventional systems solely for solar air heating. 
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The thesis deals with the design of a dual-function (water and air) solar thermal collector. 

Some aspects of the fluid flow and heat transfer in different parts of the collector are 

investigated using manual calculations and CFD simulations. ANSYS Fluent is used as the 

simulation software.  

 

The collector design is based on the idea to utilize components which are being commercially 

produced in order to make the new product as cheap as possible. After studying the design of 

solar collectors and heat exchangers available on the market, a design similar to the fin-tube 

heat exchanger was selected. A number of model variants were prepared and simulated in 

ANSYS Fluent. The simulations incorporated heat transfer by conduction, convection and 

radiation, including solar load calculations for selected summer and winter days at a location 

in Prague, Czech Republic. 
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2. BACKGROUND AND LITERATURE REVIEW 

 

A hybrid solar collector is a device that utilizes incident solar radiation to obtain clean energy 

in more than one way for a wide usage. In a hybrid solar collector, energy is converted into 

thermal energy using two different fluids or solar thermal collector and photovoltaics 

working together in different combinations on converting solar radiation into thermal and 

electrical energy. Such integrated design makes it more cost-effective than those conventional 

systems solely for solar water heating or passive space heating or electricity generation. 

These designs can be classified into  

 Photovoltaic/Thermal collectors. 

 Air and water thermal collector. 

 Triple function photovoltaic/thermal solar collector. 

     

 

2.1 Photovoltaic/thermal hybrid solar collectors 

 

A photovoltaic/thermal hybrid solar system (or PVT system for simplicity) is a combination 

of photovoltaic (PV) and solar thermal components/systems which produce both electricity 

and heat from one integrated component or system. In other words, PV is used as (part of) the 

thermal absorber. There are alternative approaches in PVT integration. Among many others, 

there can be selections among air, water or evaporative collectors, 

monocrystalline/polycrystalline/amorphous silicon (c-Si/pc-Si/ a-Si) or thin-film solar cells, 

flat-plate or concentrator types, glazed or unglazed panels, natural or forced fluid flow, 

standalone or building-integrated features, etc. Accordingly, available installations are 

ranging from PVT air and/or water pre-heating system to hot water supply through PV 
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integrated heat pump, and to actively-cooled PV concentrator through the use of economical 

reflectors. (Chow, 2009) 

 

                   

  

 

Figure 1 : Basic construction of PV/T collectors (Chow, 2009) 

Figure 2 : Different construction of air PV/T collectors (Chow, 
2009) 
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2.2 Air and water thermal collector 

 

It is modified from the conventional flat-plate collector by broadening the air gap between the 

absorber plate and the glass cover on top. The absorber is usually a sheet of high-thermal 

conductivity metal with tubes or ducts either integrated or attached. The absorber plates can 

be unfilled or wavy or finned to create air turbulence that helps the heat to pass from the plate 

to the air. Two vents are added to it, one for the inlet of cold air and the other for the outlet of 

the heated air. All this is packed in an insulated box which provides structure and sealing and 

reduces heat loss from the back or sides of the collector.  

 

Figure 3 : Different construction of water PV/T collectors. (Chow, 2009) 
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This system not only performs passive space heating in cold winter or crop drying in harvest 

season, but also as a water heating collector(Wei,2016). The problem of water-freezing in 

winter can be solved and also solar air heaters are relatively limited in their thermal 

performance due to the low density, volumetric heat capacity and heat conductivity of air. 

There has been many research work done on air collectors or only on water solar thermal 

collectors. But there is very less work seen on dual purpose solar collector (DPSC). However, 

conventional solar air collectors have the inherent disadvantage of low thermal efficiency. 

Such integrated design makes it more cost-effective than those conventional systems solely 

for solar water heating or passive space heating. The efficiency achieved by using the dual 

purpose (DPS) solar heating system is about 3 to 5 % higher compared to that of a single purpose 

solar water system (Qahtan, 2015).  

 

In experimental study of the performance of the dual purpose solar collector (Saleh, 2014). A 

flat plate dual solar collector with dimensions (120×80×15) cm was used for heating the test 

space with dimensions (2×2×2.5) m. It was concluded from their work, that the DPSC could 

be used as a heat exchanger for space heating at night. Air and water temperature difference 

of dual solar collector increased when solar radiation increased. The effectiveness of water 

circuit is greater than air circuit effectiveness in air-water heat exchanger. Using dual flat 

plate solar collector as heat exchanger will reduce cost and time. 

Figure 4 : General design of DPSC (Assari, 2009) 
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For increasing the efficiency of the DPSC, simulation studies on porous medium integrated 

dual purpose solar collector was performed (Venu, 2013). A CFD simulation study was 

undertaken to investigate the integration of a porous matrix to dual purpose collectors. The 

porous matrix is incorporated below the absorber plate of the collector to improve the thermal 

performance of the overall system. The total thermal efficiency of the modified collector is 

found to vary from 34.60 % to 46.03 % over inlet water temperature range of 30°C to 90°C. 

 

              

                     

This modified DPSC is thermally more efficient in terms of air heating efficiency and the 

water heating efficiency has not declined significantly. This owes to the presence of porous 

media insert which increases the heat transfer area with air. 

 

Building-integrated dual-function solar collector here proposed is able to provide passive 

space heating in cold winter, and water heating in warm seasons (Jie, 2011). In this study, 

evaluations were made on this modified collector system for the warm period operation under 

the water heating mode with natural circulation of flow. The results show that when working 

in the water heating mode, the system performs well in providing services hot water in the 

warm seasons without bringing in summer overheating problem. 

Figure 5:  Schematic of the proposed Dual Purpose Solar Collector (Venu, 2013) 
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In energy and exergy analysis of DPSC (Jafari, 2011), the method of ε − NTU is used. 

Analysis is performed for triangle channels. Parameters like the air flow rate and water inlet 

temperature are studied. Results are shown that DPSC has better energy and exergy 

efficiency than single collector. In addition, the triangle passage with water inlet temperature 

of 60˚C has shown better exergy and energy efficiency. Results indicated that air section of 

DPSC increases heat delivery and efficiency of collector significantly at higher water inlet 

temperature. Exergy analysis indicated that air part can increase exergy efficiency of DPSC. 

Figure 6 : Illustrative diagrams of the building-integrated dual-function solar collector system showing: (a) the 
water heating circuit and (b) the passive space heating (sectional view). 
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An experimental and theoretical investigation of dual purpose solar collector indicated that 

high temperature and high performance can be obtained using dual purpose solar collector 

(DPSC) compared to single water or air collector (Assari, 2009). A mathematical model 

based on effectiveness method has been developed for the investigation of thermal 

performance of DPSC. In the collector two fluids (water and air) flow simultaneously. 

 

 

Three different kinds of channels were used to enhance the performance of collector, such as: 

rectangular fin, triangular fin and without fin. 

 

Figure 7 : Schematic of DPSC (Assari, 2009) 

Figure 8 : Three kinds of air channels, (a) no fin, (b) with straight fin, (c) with triangular fin. (Assari, 2009) 
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It was concluded (Assari, 2009), in DPSC important parameters in heat delivery are: heat 

transfer coefficient between fluids, tubes and channels, heat transfer surface area, rate of 

fluids, fluid inlet temperature and solar radiation. The air section in DPSC absorbs a part of 

energy that water cannot deliver. In DPSC, like liquid collector heat delivery decreases with 

the increase of water inlet temperature whereas correspondingly heat delivery by air 

increases. Values of heat exchange effectiveness for straight fin are better than triangular fin. 

Hence, heat delivery in this situation is higher. 

 

Experimental and theoretical study of the efficiency of a modified dual-function solar 

collector (Jinwei, 2011). The dual-function collector is modified from the conventional  

 

 

                    

Figure 9 : Fig. The structure of the modified dual-function collector (Jinwei, 2011) 
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A copper tube is welded at the bottom of each L-shape aluminium fin. The fins of total 13 are 

arranged side by side within the gap between the cover glass and the back plate. Hence the 

gap is divided by the fins into up and down channels where the air flows through in the 

working mode of air heating, similarly as in a double-flow solar air collector. 

The experiment results show that the collector can increase the temperature of 100 litre water 

by more than 30˚C after absorbing solar radiation for a whole day. The daily efficiency in 

water heating mode reached 50 %. While in air heating mode, the daily mean and 

instantaneous efficiency reached 52 % and 55 %, respectively. The study shows that in air 

heating, although the efficiency increases with the flow rate, the temperature of the outlet air 

decreases with the flow rate. The L-shape fins in the dual-function collector have proved to 

have positive effect on the efficiency in air heating mode from the theoretic results. 

 

2.3 Triple function photovoltaic/thermal solar collector 
 

Photovoltaic/thermal (PV/T) solar collectors can provide electric power and thermal energy 

simultaneously. Either PV/T water collectors or PV/T air collectors can be left unused in 

some seasons because of the freezing problem of water and seasonal demand of hot air. Such 

kind of collectors have just been designed and very less research work has been published till 

now on these collectors. 

In experimental investigation of tri-functional photovoltaic/thermal solar collector (Jie, 2014) 

a novel design of tri-functional PV/T solar collector was proposed. The collector can work in 

PV/water-heating mode or PV/air heating mode according to the seasonal requirements. 

Experiments were conducted in different working modes under variable conditions to 

evaluate the performance of collector.  
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. 

                                     

The results show that the daily thermal efficiency achieved 46.0 % with the electrical 

efficiency of 10.2 % in PV/air-heating mode. The temperature increase of air reached 20˚C 

with the flow rate of 0.033 kg/s on a sunny day. The instantaneously thermal efficiency at 

zero reduced temperature were 37.4 % and 44.3 % as the air flow rate was 0.026 kg/s and 

0.032 kg/s respectively. In PV/water-heating mode, the thermal efficiency of the collector 

was 56.6 % at zero reduced temperature, and the daily thermal efficiency of the system was 

around 36.0 %. Compared with solar collectors presented by other authors, the tri-functional 

PV/T collector is able to operate efficiently in various conditions. 

 

As a result of this literature survey, it was concluded that the hybrid collectors does hold an 

upper hand over the conventional solar collectors in many ways, with each kind of collector 

having its own advantages and disadvantages. 

 

The air and water thermal collectors were much more cost efficient when compared to the 

thermal/PV collector or the triple function solar collectors and also the current conventional 

Figure 10 : Schematic of the tri-functional PV/T collector 
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solar collectors can be easily replaced with these dual-function solar collectors without 

making much changes to the installation setup. It also showed the ability to use dual-function 

solar collector to compensate for the heat losses by ventilation during the winter season. The 

performance of the air side of the model is significantly affected by the air channel shape, 

thus the focus was on improving the efficiency by changing the air flow pattern. So this 

research work is focused on introducing rectangular fins above the absorber plate.  
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3. CONCEPT FOR THE CURRENT DESIGN 

 

The design for the dual function solar collector introduced in the thesis is similar to the fin 

tube   heat exchanger. The idea here was to keep the collector price as low as possible by 

using the designs and components already available on the market. The model would be 

placed vertically with the air inlet being at the bottom and outlet at top. The water through the 

pipes would be horizontal passing through the fins. 

 

 

                                                          Figure 11 : Basic structure of collector 

                                               .  

 

                                                 

 

Figure 12 : Overall dimensions 
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The air flow and water flow were decided and inferred from the current designs in the  

market (Matuska, 2016). The overall dimensions were decided to be (2000 x 1000 x 40) mm. 

Air flow: 80-160 m3/h. So in the model the average air flow of 120 m3/h was used. 

Water flow: 40-100 l/h. In this model the average water flow of 70 l/h was used. 

The model of fin tube heat exchanger by Lloyd coils was studied (www.lloydcoils.eu) and it 

was decided to keep the dimensions and the material of the proposed model similar to the 

already available ones. 

Aluminium was selected for the fin material and Copper for pipes. 

The fin height was kept constant at 40 mm and two geometries with fin spacing of 4.32 mm 

and 1.41 mm were constructed. The Copper pipes had dimensions of 7.94 x 0.28 mm and the 

spacing between the pipes was kept constant at 100 mm. 

By performing the necessary calculations, a laminar flow of air through the gaps and also the 

flow of water through the pipes was observed. 

Figure 13 : Production capabilities by Lloyd coils (www.lloydcoils.eu) 

http://www.lloydcoils.eu/
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3.1 Air inlet design  

 

The model should have uniform air flow throughout the collector area, so to achieve that a 

slot diffuser had to be placed at the inlet side of the collector. For this purpose, TROX, 

VSD15 type slot diffuser was selected.       

                                     

 Nominal lengths from 600 to 1500 mm, 1 slot. 

 Volume flow rate range 7 – 30 (l/s)/m or 25 – 108 (m³/h)/m. 

 Diffuser face made of extruded aluminium sections. 

 For variable and constant volume flows. 

 Suitable for continuous linear arrangement. 

 Individually adjustable air control elements to meet individual local requirements. 

As the width is 70 mm, it would fit in the inlet side of the air. The diffuser with 1 m nominal 

length is selected. 

Figure 14 : Air inlet (slot diffuser) construction 

Figure 15 : Slot diffuser dimensions 



27 
 

4. PRINCIPLES OF CFD 

 

CFD techniques are used in many areas of engineering where fluid behaviour is the main 

element. Computational fluid dynamics (CFD) is concerned with the efficient numerical 

solution of the partial differential equations that describe fluid dynamics. Applied numerical 

analysis includes the solution of linear algebraic equations, ordinary and partial differential 

equations. Modelling of physical processes consist of the fluid flow and heat transfer. The use 

of general-purpose computer codes comprises commercial computational fluid dynamics 

software.  

All CFD codes contain three main elements:   

(1) A pre-processor which is used to input the problem geometry, generate the grid and define 

the flow parameters and the boundary conditions to the code.   

(2) A flow solver which is used to solve the governing equations of the flow subject to the 

conditions provided. There are four different methods used as a flow solver:  

     (i) Finite difference method 

    (ii) Finite element method 

    (iii) Finite volume method 

    (iv) The spectral method.   

(3) A post-processor which is used to display the data and show the results in graphical and 

easy to read format. 
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For the finite-volume approach the integral form of the governing equations of heat and mass 

transfer processes are applied to the control volume of the cells, which make up the 

discretizational (computational) model of a continuous physical domain of the specific 

physical system under investigations. Normally the value at the centre of a cell is stored and 

the values at the faces are interpolated to give the values across the boundaries. It is also 

possible to obtain similar equations for the conservation of momentum and energy for each 

cell. From these equations it is then possible to create a set of simultaneous equations where 

either the value in the cell is equal to a boundary condition and/or a combination of the 

properties according to the discrete equations. Eventually, there would be a number of 

simultaneous equations equal to the number of independent discrete variables. These can be 

represented as a large matrix of algebraic equations which the computer then solves. 

 

4.1 Flow Calculation 

 

The flow is governed by the continuity equation, the energy equation and Navier-Stokes 

momentum equations. Transport of mass, energy and momentum occur through convective 

flow and diffusion of molecules and turbulent eddies.  

The momentum balance, also known as the Navier-Stokes equations, follows Newton’s 

second law: The change in momentum in all directions equals the sum of forces acting in 

those directions. There are two different kinds of forces acting on a finite volume element, 

surface forces and body forces. Surface forces include pressure and viscous forces and body 

forces include gravity, centrifugal and electro-magnetic forces.  

The continuity equation is difficult to solve numerically. In CFD programs, the continuity 

equation is often combined with momentum equation to form Poisson equation.                                                                         
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Energy is present in many forms in flow i.e. as kinetic energy due to the mass and velocity of 

the fluid, as thermal energy, and as chemically bounded energy. Thus the total energy can be 

defined as the sum of all these energies.  

The coupling between energy equations and momentum equations is very weak for 

incompressible flows, thus equations for kinetic and thermal energies can be written 

separately. The chemical energy is not included because there was no species transport 

involved in this project.  

 

4.2 Radiation model 

In the model Radiation surface to surface (S2S) model has been used. ANSYS FLUENT's 

S2S radiation model assumes the surfaces to be grey and diffuse. Heat radiation is the process 

by which energy, in the form of electromagnetic radiation, is emitted by a heated surface in 

all directions and travels directly to its point of absorption at the speed of light; thermal 

radiation does not require an intervening medium to carry it. 

Emissivity and absorptivity of a grey surface are independent of the wavelength. Also, by 

Kirchhoff’s law, the emissivity equals the absorptivity (ϵ = α). For a diffuse surface, the 

reflectivity is independent of the outgoing (or incoming) directions. 

Also, as stated earlier, for applications of interest, the exchange of radiative energy between 

surfaces is virtually unaffected by the medium that separates them. Thus, according to the 

grey-body model, if a certain amount of radiant energy (E) is incident on a surface, a fraction 

(ΨE) is reflected, a fraction (αE) is absorbed, and a fraction (τE) is transmitted. Since for 

most applications the surfaces in question are opaque to thermal radiation (in the infrared 

spectrum), the surfaces can be considered opaque. The transmissivity, therefore, can be 

http://www.britannica.com/science/electromagnetic-radiation
http://www.britannica.com/science/absorption-physics
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neglected. It follows, from the conservation of energy, that α + Ψ = 1,                              

since α = ϵ (emissivity), and Ψ = 1 - ϵ. 

 

4.3 Solar Load Model 

ANSYS FLUENT provides a solar load model that can be used to calculate radiation effects 

from the sun's rays that enter a computational domain. The ray tracing approach is a highly 

efficient and practical means of applying solar loads as heat sources in the energy equations. 

It includes a solar calculator utility that can be used to construct the sun's location in the sky 

for a given time-of-day, date, and position. Solar load is available in the 3D solver only, and 

can be used to model steady and unsteady flows. It will allow the solar transmission through 

all glazed surfaces to be determined over the course of a day, allowing important decisions to 

be made before undertaking any flow studies. 

The solar load model's ray tracing algorithm can be used to predict the direct illumination 

energy source that results from incident solar radiation. It takes a beam that is modelled using 

the sun position vector and illumination parameters, applies it to any or all wall or inlet/outlet 

boundary zones that you specify, performs a face-by-face shading analysis to determine well-

defined shadows on all boundary faces and interior walls, and computes the heat flux on the 

boundary faces that results from the incident radiation. 

The resulting heat flux that is computed by the solar ray tracing algorithm is coupled to 

the ANSYS FLUENT calculation via a source term in the energy equation. The sun position 

vector and solar intensity is computed from the solar calculator. Direct and diffuse irradiation 

parameters can also be specified using a user-defined function. 

Solar ray tracing presents less computational overhead than discrete ordinates, as it calculates 

the solar loads once at the beginning of a steady-state simulation. However, it uses some 
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simplifying assumptions to do so. It does not calculate the emission from surfaces, and the 

reflecting component of the incident load is distributed uniformly across all participating 

surfaces rather than retained locally at the surfaces reflected to. 

4.4 Solar Calculator 

ANSYS FLUENT provides a solar calculator that can be used to compute solar beam 

direction and irradiation for a given time, date, and position. These values can be used as 

inputs to the solar ray tracing algorithm or as semi-transparent wall boundary. 

Inputs/Outputs 

Inputs needed for the solar calculator are: 

 global position (latitude, longitude, time zone) 

 starting date and time 

 mesh orientation 

 solar irradiation method 

 sunshine factor 

The following values are computed by the solar calculator and are displayed in the console 

whenever the solar calculator is used: 

 sun direction vector 

 sunshine fraction 

 direct normal solar irradiation at earth's surface 

 diffuse solar irradiation - vertical and horizontal surface 

 ground reflected (diffuse) solar irradiation - vertical surface 
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5. MANUAL CALCULATIONS 

 

This chapter deals with the calculation of radiation heat transfer losses in the collector and the 

pressure losses which occurs along the fins. A pattern was derived showing the dependency 

of radiation losses and pressure losses on the spacing between the fins. 

 

5.1 Heat loss by Radiation 

 

The focus was on a single channel, enclosed system with fins on two side and with glass at   

top and the absorber plate at the bottom. 

 

Only one single channel of the rectangular fins was taken into consideration. The radiation 

losses through this one channel was calculated. In the radiation analysis of an enclosure, 

either the temperature or the net rate of heat transfer has to be given for each of the surfaces 

to obtain a unique solution for the parameters of the enclosure. In this method we have 

taken into account the temperatures of all the surfaces in the enclosure. 

Figure 16 : The structure of the modified dual-function collector with absorber plate at bottom 
and rectangular fins. (www.electronics-cooling.com) 
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                            𝜎𝑇𝑖
4 = 𝐽𝑖 +  

1−𝜀𝑖

𝜀𝑖
(∑ 𝐹𝑖−𝑗(𝐽𝑖

𝑁
𝑗=1 − 𝐽𝑗)                                                       (5.1) 

           σ – Stefan Boltzmann constant (5.670367×10−8 W m−2 K−4) 

          Ti  - Surface temperatures (K) 

          Ji – Radiosities (W/m2) 

          ε – Emissivity (-) 

          Fi-j – View factor (-) 

              

In this figure the surface 1 is the absorber plate and surfaces 2 and 3 are the rectangular fins. 

The surface 4 is the glass top. There is a very small air gap between the glass top (4) and the 

fin structure (2 and 3). This air gap can be neglected and the system can be considered to be an 

enclosed system of surfaces. 

To use the equation (1), we need to know the view factor 𝐹𝑖−𝑗  of all the four surfaces towards             

each other. 

Figure 17 : The 2-D structure of a single channel 
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Surfaces 1 and 2 are long plates of unequal widths and with one common edge and at an 

angle of 90˚ to each other. 

 

The view factor of surface 1 to surface 2 is 𝐹1−2 

                                              𝐹1−2 =
1

2
(1 +

ℎ

𝑤
−  √1 +  (

ℎ

𝑤
)

2

)                                                (5.2) 

Here we have the height of the fins as constant which is 40 mm. 

The conservation of energy principle states that the entire radiation leaving any surface i of 

an enclosure be intercepted by the surfaces of the enclosure. Therefore, the sum of the view 

factors from surface i of an enclosure to all surfaces of the enclosure, including to itself, must 

equal unity. This is call summation rule for an enclosure and is expressed as  

                                                   ∑ 𝐹𝑖−𝑗
𝑁
𝑗=1 = 1                 (5.3) 

So in this case, 

                                           𝐹1−1 +  𝐹1−2 + 𝐹1−3 + 𝐹1−4 = 1                                               (5.4) 

 

Here,  𝐹1−1 = 0 as the surface is plane. And the enclosure is symmetrical, we also know 

that  𝐹1−2 =  𝐹1−3.  Thus 

                                             𝐹1−4 = 1 − (𝐹1−2 + 𝐹1−3)                                                       (5.5) 

From this relation we can find the dependency of 𝐹1−4 on the width (w) i.e the gap between 

the two fins. 

Figure 18 : Surfaces 1 and 2 with a common edge 
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In this case we have kept the height of the fins constant to 40mm. 

To use equation (5.1) we also need to calculate the view factor for surface 2 to surface 4.  

 

 

                                                   𝐹2−3 =   √1 +  (
𝑤

ℎ
)

2

−  
𝑤

ℎ
                                                  (5.6) 

As we have decided to keep the height of the rectangular fins constant, we just keep varying 

the width between the fins from 0.5 mm to 20 mm.  
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Figure 19 : F14 vs h/w 

Figure 20 : The surfaces 2 and 3. 
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Again to use equation (5.1), we need to know the view factor of all the surfaces and from the 

above calculations we know F2-3 and F1-4. As these four surfaces form a closed system and is 

symmetrical about the vertical and horizontal axis. So we can come to these relations 

F1-2 = F1-3 = F4-2 = F4-3                                                                                                         (5.7a) 

F1-4 = F4-1              (5.7b) 

F2-1 = F3-1 = F2-4 = F3-4              (5.7c) 

F2-3 = F3-2              (5.7d) 

F2-4 = F3-4.              (5.7e) 

Now we have all the requirements to find the amount of radiation leaving the channel from 

the top surface. For this calculation, the emissivities of the surfaces were taken as, surfaces 1, 

2 and 3 are all made from aluminium with ε1= ε2= ε3 = 0.1 and the emissivity of top surface is 

ε = 0.9. From this we form the system of equations, 

                                             

 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

F 2
3

h/w

F23 vs h/w

Figure 21 : Graph for F23 vs h/w 
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                                             𝜎𝑇𝑖
4 = 𝐽𝑖 +  

1−𝜀𝑖

𝜀𝑖
(∑ 𝐹𝑖−𝑗(𝐽𝑖

𝑁
𝑗=1 − 𝐽𝑗)                                      (5.8a) 

 

                         𝜎𝑇1
4 = 𝐽1 +  

1−𝜀1

𝜀1
(𝐹12(𝐽1 − 𝐽2) + 𝐹13(𝐽1 − 𝐽2) +  𝐹14(𝐽1 − 𝐽2) )                 (5.8b) 

 

                         𝜎𝑇2
4 = 𝐽2 +  

1−𝜀2

𝜀2
(𝐹21(𝐽2 − 𝐽1) + 𝐹23(𝐽2 − 𝐽3) +  𝐹24(𝐽2 − 𝐽4))                  (5.8c) 

                     

                       𝜎𝑇3
4 = 𝐽3 +  

1−𝜀3

𝜀3
(𝐹31(𝐽3 − 𝐽1) + 𝐹32(𝐽3 − 𝐽2) +  𝐹34(𝐽3 − 𝐽4))                 (5.8d)   

 

                         𝜎𝑇4
4 = 𝐽4 +  

1−𝜀4

𝜀4
(𝐹41(𝐽4 − 𝐽1) + 𝐹42(𝐽4 − 𝐽2) +  𝐹43(𝐽4 − 𝐽3))                  (5.8e) 

 

We have four unknown radiosities (J), so we use the matrix method to find out the four 

values. After obtaining the four radiosities, the system is represented using the circuit 

diagram below  

 

 

Figure 22 : Heat radiation circuit. 
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In the above diagram we know the value of all the resistances,  

R1 =
1−𝜀1

𝐴1𝜀1
,         R2 =

1−𝜀2

𝐴2𝜀2
,         R3 =

1−𝜀3

𝐴3𝜀3
,        R4 = 

1−𝜀4

𝐴4𝜀4
                                    (5.9a) 

R12 = 
1

𝐴1𝐹12
,  R13 = 

1

𝐴1𝐹13
,  R14 = 

1

𝐴1𝐹14
                                                               (5.9b) 

R24 = 
1

𝐴2𝐹24
, R23 = 

1

𝐴2𝐹23
                                                                                    (5.9c) 

R34 = 
1

𝐴3𝐹34
                                                                                                       (5.9d) 

Using these resistances and the radiosity values we can find the amount of heat being 

removed from one channel through the top surface, thus we can find out the total heat being 

lost by radiation from the collector.  

 

5.2 Pressure loss across the collector 

 

In this section the pressure loss along the solar collector fins has been calculated. A slot 

diffuser was used on one side of the collector to have an even flow throughout the collector. 

The method presented here has been explained in the electronics cooling magazine. This 

method assumes that the air flow rate is given, either in terms of the average velocity, V, 

between the fins or a volumetric flow rate, G.  
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The pressure drop across the heat sink ΔP, is given by 

                          𝛥𝑃 = (𝐾𝑐 + 4. 𝑓𝑎𝑝𝑝.
𝐿

𝐷ℎ
 +Ke).ρ. 

𝑉2

2
                                                         (5.10)                               

All the variables in the above equation are explained below 

The hydraulic diameter, Dh, is approximately equal to (2 x w) where w is the gap between the 

fins given by 

                                                  𝑤 =  
𝑊−𝑁𝑓𝑖𝑛.  𝑡𝑓

𝑁𝑓𝑖𝑛−1
                                                                 (5.11) 

 

The coefficients Kc and Ke represent the pressure losses due to the sudden contraction and 

expansion of the flow entering and leaving the flow channels between the fins. These 

coefficients may be determined using 

                                                   𝐾𝑐 = 0.42. (1 −  Ω2)                                                      (5.12) 

 

                                                                     𝐾𝑒 = (1 −  Ω2)2                                                     (5.13) 

                                                                    Ω = 1 −  
𝑡𝑓.𝑁𝑓𝑖𝑛

𝑊
                                                      (5.14) 

 

Figure 23 : Rectangular Fin structure 
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The average velocity for use in the main equation is related to the volumetric air flow rate, by 

                                                   𝑉 =  
𝐺

𝑁𝑓𝑖𝑛.𝑤 .ℎ 
                                                (5.15) 

 

The apparent friction factor, for hydro dynamically developing laminar flow is related to the 

friction factor, f, and may be calculated from 

                                                       𝑓𝑎𝑝𝑝 =  
[(

3.44

√𝐿∗ )
2

+ ( 𝑓.𝑅𝑒)2]1/2

𝑅𝑒
                               (5.16) 

 

Where L* is given by 

                                                                𝐿∗ =  
𝐿

𝐷ℎ
⁄

𝑅𝑒
                                                       (5.17) 

 

and the Reynolds number, Re, is given by  

                                                      𝑅𝑒 =  
𝜌.𝑉 .𝐷ℎ

µ
                                                 (5.18) 

The friction factor for fully developed laminar flow used in Equation (5.16) is a function of 

both the aspect ratio λ = (w/ h), of the heat sink flow channels and the Reynolds number as 

given by 

   𝑓 = ( 24 − 32.527. 𝜆 + 46.271. 𝜆2 − 40.829. 𝜆3 + 22.954. 𝜆4 − 6.089. 𝜆5)/𝑅𝑒    (5.19) 
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6. CFD MODEL 

 
This section describes the CFD process for this investigation. There were investigated two 

models of the collector, in the first one the air side of the collector and in the second one the 

water side of the collector was simulated. The first two subchapters (Sections 6.1 and 6.2) cover 

geometry and meshing process and the final subchapter (Section 6.3) covers the boundary 

conditions for the model.  

 

6.1 Modelling 

A section of the collector geometry is made in the design modeller. 

 

 6.1.1 Air side geometry 

To simulate the air side of the collector, full length of the air flow was designed to study the 

entire air flow pattern, which is 2m (entire length of a fin) while along the breadth the small 

section that is 5 fins were drawn. As the geometry of the fins is repetitive, we have 

considered only 5 fins with the outer two fins imagined as the outer boundary of the collector. 

 

                                                                                

Figure 24: Collector with wide gap (4.32 mm) 
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                                                       Figure 25 : Collector with narrow gap (1.41 mm) 

 

 

 

 

 

                                 Figure 27 : Detail View of the inlet, top glass cover and base absorber plate. 

Figure 26 : Front View of the fins and the pipe (both collector) 
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                                               Table 6.1: Solar Collector geometry details for air side 

 Wide Gap (4.32 mm) Narrow Gap (1.41 mm) 

Total Length 2000 mm 1000 mm 

Total Width 17.78 mm 300 mm 

Pipe Diameter 7.94 x 0.28 mm 7.94 x 0.28 mm 

Fin Thickness 0.1 mm 0.1 mm 

No. fins 5 5 

No. of air channels 4 4 

No. of pipes 20 20 

 

 

 

6.1.2 Water Side Geometry 
 

For simulating the water side of the collector, the entire flow of the water was designed i.e. 

the full geometry of 3 pipes. So it includes all the fins. 

   

 

Figure 28 : Collector with wide gap 
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                       Table 6.2 Solar Collector geometry details for water side 

 Wide Gap (4.32 mm) Narrow Gap (1.41 mm) 

Total Length 1000 1000 

Total Width 300 300 

Pipe Diameter: 7.94 x 0.28 7.94 x 0.28 

Fin Thickness 0.1 mm 0.1 mm 

No. fins: 662 226 

No. of air channels: 661 225 

No. of pipes 3 3 

 

 

 

 

Figure 29 : Inlet, Glass top and Fins of collector. 
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6.2 Meshing 

 

A hexahedral mesh was created in all the models. Hex (or quad) meshes generally work better 

(i.e., more accurate) for wall-bounded flows since we can maintain orthogonal grids in the wall-

normal direction. This is a consequence of the better accuracy of the hex elements since the 

angle between faces can be kept close to 90-degrees.  

Aside from "numerical" efficiency, there is also a "computational" efficiency factor. Structured 

grids with hex or quad meshes (either regular or curvilinear) can be implemented a bit easier 

and usually execute quite a bit faster than algorithms that support unstructured (usually with 

tets but can be a blend of tets, prisms, and hexs). This is because of the implicit topology of the 

structured grid.  

 

6.2.1 Meshing for air side model 

 

In the air model meshing we have achieved a very fine mesh around the pipes as the air flow 

would become complicated around the pipes and in the area between the pipes the air flow 

would again develop a laminar flow. So we have kept the hex mesh coarse and long. 
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Figure 30 : Meshing details of air side model. 

Figure 31 : Mesh model in Fluent. 
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A similar mesh model was made for both the air side model with fin gaps 4.32 mm and 1.41 

mm. 

                                          Table 6.3 Mesh Details for air side geometry 

 Wide gap (4.32 mm) Narrow gap (1.41 mm) 

Nodes 871596 815744 

Elements 596791 550284 

 

 

6.2.2 Meshing for water model 

 

In this model, the main focus was to analyse the flow of water in the pipes and the air flow 

between the gaps was secondary. So a fine mesh was made inside the pipes and a coarser mesh 

was made between the fins. 

                                        Table 6.4 Mesh Details for water side geometry 

 Wide gap (4.32 mm) Narrow gap (1.41 mm) 

Nodes 1360593 1830544 

Elements 1322100 1804411 
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Figure 32 : Mesh Model for water side model 

Figure 33 : Mesh Model in Fluent. 
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6.3 Boundary Conditions 

As 4 models had been created 

 Air model with 4.32 mm fin gap 

Air model with 1.41 mm fin gap 

 

 Water model with 4.32 fin gap 

Water model with 1.41 mm gap. 

 

 

6.3.1 Air side model boundary conditions 

   

 For all the air models, 

 The volumetric air flow is between 80-160 m3/h. The average value of 120 m3/h was 

taken for calculation.  

 The velocity of air in each gap was found out to be 0.853545 m/s for wide gap 

collector and 0.8927742 m/s for narrow gap collector. 

 The base of the collector was considered as adiabatic and was taking part in shell 

conduction. The thickness was 0.5 mm and it took part in the solar ray tracing and 

also in the view factor calculation. 

 The outer two fins were assigned the properties like the exterior of the collector, they 

were adiabatic and also participated in the solar ray tracing and view factor 

calculation. 

 The interior fins had fluid region on both the sides, so it was assigned as a two sided 

wall and the coupled thermal boundary condition was applied. It also took part in 

solar ray tracing and view factor calculation. 

 Inlet was velocity inlet. 

 Outlet was pressure outlet. 

 The pipe wall was also coupled as it had fluid region on both the sides. 

 The glass cover of the surface was taking part in convection and radiation both so it 

was assigned mixed thermal boundary condition.  

1. The heat transfer coefficient was calculated using the Mc Adams formula 

     Hc = 5.3 + 3.6*v    (v is the wind velocity in m/s.) 
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2. Free Stream Temperature is the external air temperature. 

3. External Radiation Temperature was the average temperature of the air and the 

effective sky temperature. 

4. The glass properties of absorptivity, transmissivity and internal and external 

emissivity were selected using the “BERKELEY LAB WINDOW v7.4.8.0 

Glazing System Thermal and Optical Properties” 

5. As the water flow would be stopped, it was assumed as solid type of material 

with water thermal properties inside the pipes. 

6. The shell conduction was enabled for the wall type boundary conditions. If 

shell conduction is enabled, the shell cell temperature will be stored in the 

"inner" surface. If there is no shell conduction, then the "outer" surface stores 

the face temperature of the wall while the "inner" surface stores the evaluated 

value of the boundary condition specified by the user. 

 

6.3.2 Water side model  

 

For all the water model 

 The water flow rate was between 40-100 m3/h. So the average of 70m3/h was taken 

into calculation. 

 The velocity of 0.0257 m/s was calculated inside the pipes. 

All the boundary conditions were taken as same for the air model. Here the only difference 

was the water was not assumed to be solid and its flow inside the pipe was calculated. 

 

All the models were simulated with selective and non-selective coatings. 

For Non-selective coating, the emissivity for the absorber plate, fins and pipe surface were 

taken as 0.9. 

For surfaces with selective coating of the surfaces, the internal emissivity was 0.1 and the       

αvis =0.9 (absorptivity for direct visible) and αir = 0.1 (absorptivity for infrared) was assumed. 

As the models were simulated for two days of the year, 21-June and 21-December and for 

every hour from 0900 to 1600 hours. The following data for Praha-Ruzyne was taken. 
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Location: N 500 06’ E 140 17’ 

Date: 21-12-2015  

                                                Table 6.4 Climate data for winter 

Time Tdry bulb Tsky Wwind Text rad Hc,ext 

Hours 0C 0C m/s 0C (W/m2K) 

9 -7.5 -26.1 3.8 -16.8 18.8 

10 -5.0 -23.6 4.2 -14.3 20.4 

11 -2.6 -22.5 4.2 -12.5 20.4 

12 -1.4 -20.0 3.7 -10.7 18.4 

13 -1.1 -17.1 3.7 -9.0 18.4 

14 -1.6 -16.2 3.8 -8.9 18.8 

15 -2.9 -16.1 3.2 -9.5 16.6 

16 -4.2 -17.2 3.0 -10.7 15.9 

 

 

Location: N 500 06’ E 140 17’ 

Date: 21-06-2015  

                                                Table 6.4 Climate data for summer 

Time Tdry bulb Tsky Wwind Text rad Hc,ext 

Hours 0C 0C m/s 0C (W/m2k) 

9 18.8 10.6 5.4 14.7 24.6 

10 19.6 11.3 5.9 15.5 26.5 

11 21.1 12 5.7 16.5 25.8 

12 23.1 13 5 18.1 23.1 

13 24.2 15 4.2 19.6 20.4 

14 24.7 16.2 3.7 20.4 18.6 

15 25.1 16 3.3 20.5 17 

16 25.6 15 3 20.3 16.1 

 

The weather data were obtained from TRNSYS simulation software. 
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7. RESULTS 

 

After a considerable amount of iterations in Fluent, the following results were obtained. 

 

 7.1 Air side model (4.32 mm) for summer conditions 

 

                 Table 7.1 Results for wide gap (4.32mm) for summer conditions. 

Time Tdry bulb Toutlet ∆T 

Hours 0C 0C 0C 

9 18.8 24.3 5.5 

10 19.6 28.3 8.6 

11 21.0 32.6 11.6 

12 23.0 36.9 13.8 

13 24.2 37.8 13.6 

14 24.7 34.4 9.7 

15 25.1 31.7 6.6 

16 25.5 28.8 3.3 

                                          

 

As it could be seen that the temperature rise is maximum of around 14 0C was achieved at 12 

noon. 
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Figure 34 : Rise in air temperatures vs time (21st June) 
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7.2 Air side model (4.32 mm) for winter    

         

                               Table 7.2 Air model for wide gap collector for winter 

 

 

 

 

 

 

 

 

 

 

 

It was seen that the temperature rise is maximum around 20 0C at 12 noon. It was also                                       

observed that the collector without the selective coating gave higher temperature rise thus 

provided better results. 

 

 

  Non-Selective Selective 

    

Time Tdry bulb ∆T ∆T 

Hours 0C 0C 0C 

9 -7.5 6.6 6.3 

10 -5 14.1 13.6 

11 -2.6 18.4 17.8 

12 -1.4 22.3 20.9 

13 -1.1 18.9 18.4 

14 -1.6 14.8 14.2 

15 -2.8 7.1 7.1 
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Figure 35 : Temperature rise vs hours (21st December) for wide gap 
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7.3 Air side model (1.41 mm) for winter       

   

            Table 7.3 Air side model for Narrow gap collector for winter conditions 

                                                                           Non-selective       Selective 

Time Tdry bulb ∆T ∆T 

Hours 0C 0C 0C 

9 -7.5 6.1 6.2 

10 -5 8.5 14.3 

11 -2.6 10.7 18.1 

12 -1.4 19.1 19.1 

13 -1.1 18.5 18.4 

14 -1.6 14.9 14.9 

15 -2.9 6.9 6.9 

 

 

                       

In the narrow gap collectors, the selective and non-selective models gave similar results 

expect at 10:00 and 11:00 hours. 
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Figure 36 : Temperature rise vs hours (21st December) for narrow gap 
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Figure 38 : Velocity (m/s) profile near the outlet of the collector. 

Figure 37 : Overall velocity (m/s) profile for air. 

Figure 39 : Temperature (K) profile over the fins 
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7.4 Water side model 

 

For water side collector, good results could not be reached. The solution for the model was 

not converging and the temperature of the water at the outlet of the pipes was same as the 

inlet temperature.  

It was suggested that the geometry made for this model in the design modeler was not 

suitable, as the fins were made without the thickness and this thickness was represented by 

so-called shell conduction in Fluent. The heat could not transfer by conduction from fins to 

the water in pipes because of the small contact area between the fins and the pipe which is 

about 0.1 mm wide ring. Thus no final and definite results could be obtained from this part of 

the model.  

 

7.5 Radiation gains and losses for winter conditions 
 

As per calculation in chapter 5, the net radiation losses from the collector were found out and 

from the CFD fluent simulation we were able to calculate the net radiation gains. 

 

                             Table 7.4 Radiation gains and losses with selective coating 

Time Gain -Wide Gap Gain-Narrow gap Loss-Wide gap Loss-Narrow Gap 

hours  (Watts)  (Watts)   (Watts)   (Watts)  

9 444 445 27 78 

10 937 994 39 114 

11 1162 1243 48 138 

12 1608 1551 52 140 

13 1201 1224 45 130 

14 944 995 37 113 

15 402 463 24 69 
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                           Figure 40 : Gains and losses for collectors with selective coating on 21stDecember 

 

 

                          Table 7.5 Radiation gains and losses with non-selective coating 

Time Gain Wide Gap Gain Narrow gap Loss Wide gap Loss-Narrow Gap 

hours  (Watts)  (Watts)  (Watts)  (Watts) 

9 444 445 31 89 

10 937 994 44 130 

11 1162 1243 55 157 

12 1608 1551 60 159 

13 1201 1224 52 148 

14 944 995 42 124 

15 402 463 28 79 
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                       Figure 41 : Gains and losses for collectors with non-selective coating 21stDecember 

 

7.6 Pressure loss across the air side. 

 

From chapter 5 results, we could trace the graph of pressure drop versus the gap between the 

fins by keeping all other parameters constant. 

                                                         

From the above graph it can be seen that the pressure loss across the fins becomes almost 

constant after a certain gap between the fins.  
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      Figure 42 : Pressure drop along fins vs space between fins 
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7.7 Radiation losses through the fins. 

 

Using the calculations in chapter 5, we were able to find out the radiation heat loss from a 

single air channel and this result was used to calculate the radiation loss through the entire 

collector.  

 

On varying the width between the fins also changes the number of channels in the solar 

collector. The graph below depicts the total heat radiated from all the fins in the collector. It 

can be seen as the width between the fins is increased the radiation losses are increasing. 

 

 

                                                          Figure 44 : Radiation loss vs fin spacing. 
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               Figure 43 : Radiation heat loss from single air channel. 
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8. CONCLUSION 

 

The aim of the thesis was to support the design of a dual-function solar collector by the 

analysis of fluid flow and heat transfer based on manual calculations and CFD simulations. It 

was decided to study two geometries of the collector, for the air side and for the water side of 

the model. Each model had fins with two spacing options. Every model was planned to be 

simulated with selective and non-selective coating. 

ANSYS Fluent with the S2S radiation model and the Solar load model was used for the 

simulation of all the variants. The model for the air side geometry was simulated for summer 

and winter condition and showed reasonable results and the idea to replace the expensive 

selective coating using the fins was also verified by comparing the results from simulation of 

the models. 

The results from the water side of the model could not to be achieved. The solution for the 

model was not converging and the temperature of the water at the outlet of the pipes was 

same as the inlet temperature. This suggests that the geometry made for this model in the 

design modeler was not suitable as the fins were made without the thickness and this 

thickness was represented by so-called shell conduction in Fluent. The heat could not be 

transferred from fins to the water in pipes because of the small contact area between the fins 

and the pipe which is about 0.1 mm wide ring. Whereas in the actual manufacturing process 

of fin tube heat exchanger, the pipe is pressed through a neck moulded from the fin material 

increasing the contact area, thus increasing the amount of heat conducted to the water through 

the pipe. It was also observed that the combination of laminar flow of water in the pipes and 

turbulent flow of air between the fins driven by buoyant forces was somewhat difficult for the 

Fluent solver, generating strange flow patterns inside of the pipes and therefore not reaching 

convergence at all.  

On comparing the results of wide gap collector with selective and non-selective coating, it 

was analysed that the outlet air temperature hardly varied, in fact the results of collector with 

non-selective coating were better than the collector with selective coating except for one 

hour. Thus the idea of not using the selective coating and reducing the heat loss by long wave 

radiation by using the fins with small spacing looks to be promising. 
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On comparing the results of wide gap and narrow gap, again the wide gap collector had 

slightly higher outlet air temperature. This would be because of lower radiation losses from 

wide gap collector. Thus the result obtained from the manual calculation coincided with the 

simulation results. As the gap between the fins decreases, the number of channels in the 

collector is increased, so despite of radiation losses being less from a single narrow gap, the 

total radiation losses from the collector is higher. The wide gap collector has lesser number of 

fins and lesser weight. Thus saving up on the cost of material and also saving up on not using 

the selective coating. 

It can be suggested that the wide gap collector had pretty good results even without the use of 

the selective coating. The use of this expensive selective coating can be avoided and also the 

wide gap fins compared to the narrow gap can save up on a lot of material used and reduce a 

considerable amount of weight of the collector. Also the construction of this collector is 

similar to the fin tube heat exchangers available in the market, thus the manufacturing of this 

collector could be done using the currently available processes. 

These hybrid collectors can be used throughout the year compared to the currently available 

and installed single purpose collectors. They can be used for domestic hot water preparation 

in the summer, can be used in combination with heat pumps and for ventilation in the winter. 

It can be recommended that in any future CFD investigation of the water side model, rather 

than using the shell conduction approach, a geometry with thicknesses for the fin and pipes 

should be prepared. The contact surface area between the fins and the pipes should be higher 

resembling the designs which are available in the market.   
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