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1. INTRODUCTION 

Rising crude oil prices and limited amount of the sources force world to think about alternative 

energy sources like Solar, Wind and Bio gas or Bio fuel. Now a days, among this, solar energy 

is consider most effective and reliable renewable source of energy. But the same time the cost 

of energy production from solar as well as limit of sun light on some region of earth drive our 

vision to another source of energy. Bio fuel or Bio gas are the reliable source of energy in every 

region or country, though it is also the source of sun potential. Biogas production is a clean low 

carbon technology for efficient management and conversion of fermentable organic wastes into 

clean cheap & versatile fuel and bio/organic manure. It has the potential for leveraging 

sustainable livelihood development as well as tackling local and global land, air and water 

pollution. Biogas obtained by anaerobic digestion of field waste and other loose and leafy 

organic matters/ biomass wastes can be used as an energy source for various applications 

namely, cooking, heating, space cooling/ refrigeration, electricity generation and gaseous fuel 

for vehicular application [1].  

Biogas is a product of bio-methanation process when fermentable organic materials such as 

cattle dung, kitchens waste, poultry droppings, night soil wastes, agricultural wastes etc. are 

subjected to anaerobic digestion in the presence of methanogenic bacteria. This process is 

better as the digested slurry from biogas plants is available for its utilization as bio/organic 

manure in agriculture, horticulture and pisciculture as a substitute/supplement to chemical 

fertilizers. In contrast, when biomass is subjected to combustion/gasification process, it ends 

up in the destruction of biomass and only ash is left after extraction of energy. Therefore, the 

bio-methanation process of converting biomass into gaseous fuel is superior and a sustainable 

process that needs to be preferred for such biomass materials that can be processed in biogas 

plants. Biogas comprises of 60-65 vol.% methane, 35-40 vol.% carbon dioxide, 0.5-1.0 vol.% 

hydrogen sulphide, rests of water vapours etc. Biogas is non-toxic, colour less and flammable 

gas. It has an ignition temperature of 650-750 C. Its density is 1.214kg.m-3(assuming about 

60% Methane and 40% CO2). Its lower heating value is 20 MJ.m-3 (or 4700 kcal.). It is almost 

20% lighter than air. 

Biogas seems to be promising way how to transform agriculture and food wastes to valuable 

biofuel. I will therefore focus on its potential to be used as a prospective waste processing 

technology in India.  .The history of agriculture in India dates back to the Rig-Veda. Today, 

India ranks second worldwide in farm output. Agriculture and allied sectors like forestry and 



fisheries accounted for 13.7% of the GDP in 2013. Agriculture plays a vital role in the Indian 

economy. Over 70 per cent of the rural households depend on agriculture as their principal 

means of livelihood. India is implementing one of the World’s largest programme in renewable 

energy. The country ranks second in biogas utilization. Biogas can be generated and supplied 

round the clock in contrast to solar and wind, which are intermittent in nature. Biogas plants 

provide three in one solution of gaseous fuel generation, organic manure production and wet 

biomass waste disposal/management.  

Organic waste available in India can be technically used to generate biogas. As shown in table 

no.1 over 273.67 million crop residues from rice, wheat, sorghum, maize, pearl millet, barely, 

finger millet and so on are available each year in India. Annual production of wheat and rice 

during 1999-2000 was 71.8 million tonnes and 88.55 tonnes, respectively, which paved the 

way of generation of 256 million tonnes of straw, accounting of 70% of the total residues 

available in India. About 50 million tonnes of Fruits and Vegetable waste accumulate each 

year. A large portion of this biomass remain utilized and create a problem of disposal and leads 

to environment pollution. Besides, the bulky nature of organic residues, their low thermal 

efficiencies, and profuse release the smoke are the other major limitations. In recent years, a 

number of biogas have been developed to treating waste effectively, such as food industries, 

agriculture residues, market waste, garden waste and other biomass waste [2]. 

Crops 
Residue to economic 

scale ratio 

Residue Yield 

(*1000 tonnes) 

Rice 1.5 110495 

Wheat 1.5 82631 

Sorghum 1.5 12535 

Maize 1.5 11974 

Pearl Millet 1.5 6967 

Barely 1.5 2475 

Finger Millet 2 5351 

Sugar cane 0.1 22736 

Potato tuber 0.5 7867 

Ground nut 1.5 10598 

Total _ 273629 

Table 1 Estimate of the availability of some crops in India. 



2. LITERATURE RESEARCH 

 

Figure no. 2 1 Biogas Plant [5] 

Biogas typically refers to a mixture of different gases produced by the breakdown of organic 

matter in the absence of oxygen. Biogas can be produced from raw materials such as 

agricultural waste, manure, municipal waste, plant material, sewage, green waste or food waste. 

Biogas is a renewable energy source and in many cases exerts a very small carbon footprint. 

Disintegration of composites (such as dead biomass and particulate organic carbon) to 

polymeric constituents and subsequent enzymatic hydrolysis to soluble monomers are 

extracellular processes. Extracellular depolymerisation enzymes act on the pool of available 

organic material, dividing them into smaller molecular weight products. Disintegration is also 

a non‐biological process mediating the breakdown and solubilisation of complex organic 

material to soluble substrates. The products are complex composite particulates and polymeric 

carbohydrates, proteins and lipids, which than serve as substrate for the following process of 

hydrolysis. Other products of disintegration are inert particulate and inert soluble material 

(Batstone et al., 2002). 

The IWA Task Group included disintegration as the first process to allow diversity of 

applications, and to allow for lysis of biological sludge and complex organic material. The 

disintegration step was also included to represent the pool of composite organic material. This 

is especially important for waste‐activated and primary sludge digestion, where the 

disintegration step represent lysis of whole cells and separation of composites (Batstone et al., 

2002) [5]. 



There are a number of different plant types, but for the most common type – CSTR 

(Continuously Stirred Tank Reactors) – the biomass has to be vigorously agitated to avoid the 

formation of an impenetrable surface crust. 

The discovery of biogas can be first traced back to the 17th century when Van Helmot Noticed 

flickering lights beneath the surface of swamps and connected it to a flammable gad produced 

by decaying organic matter. In the scientific world, Volta noted as early as 1776 that biogas 

production in a function of the amount of decaying plant material and that the biogas is 

flammable under certain condition (Marchaim, 1992) [3]. 

The chemical composition of methane was established by Henry and Davy Dalton in 1810 via 

methane from coal mines. This was soon linked to the biogas Involved in Volta’s scientific 

discussion. By 1884, a student of Pasteur in France, Gayon, Had anaerobically produced biogas 

by suspending cattle manure in a water solution at 35C. AT that time he was able to obtain 

100 litters of biogas per meter cubed of manure (Machaim, 1992) [3]. 

Anaerobic digestion has been studied thoroughly. The discovery and separation of certain kinds 

of bacteria involved in the digestion process were begun as early as 1906 by Sohngen. By 

1920’s Buswell was able to track and record the movement and uses of nutrients such as 

nitrogen through the digestion process. Baker in the mid-20th century was able to isolate the 

perform biochemical studies on a large number of the bacteria involved in anaerobic digestion. 

Today there is a desire for development of large scale bio digesters in numerous applications. 

Four main reasons why bio digestion is being pursued currently are (Marchaim, 1992). 

 Improvement of sanitation for treatment of high organic solids, High nutrient and high 

biological wastes and waste waters. 

 Reduction in unpleasant aroma associated with animal waste. 

 Production of energy 

 Production of high quality fertilizer. 

 



 

 

Figure no. 2 2Anaerobic Molecular Process (Price and Cheremisinoff, 1981). 

 

 

 

 

Figure no. 2 3 anaerobic digestion stages (Marchaim, 1992). 

 

 

 

 



2.1 Overview of Anaerobic Digestion Process 

The anaerobic degradation pathway of organic matter is a multi-step process. This process is 

based on parallel and cross linked reactions and proceeds through five successive stages: (i) 

disintegration, (ii) hydrolysis, (iii) acidogenesis, (iv) Acetogenesis, and (v) methanogens. The 

anaerobic ecosystem is the result of complex interactions among microorganisms of several 

different species. The major functional groups of bacteria according to their metabolic reactions 

are: (i) fermentative bacteria, (ii) hydrogen‐producing acetogenic bacteria, (iii) hydrogen‐

consuming acetogenic bacteria, (iv) carbon dioxide‐reducing methanogens, and (v) aceticlastic 

methanogens (Henze, 2008) [4]. A schematic of the reaction steps is given below in Figure no. 

2.4 

 

 

Figure no. 2 4Composite particle material (Batstone et al., 2002). 

 



2.1.1 Hydrolysis 

In anaerobic digestion (AD) the term hydrolysis is used to describe degradation of a defined 

particulate or macromolecular substrate to its soluble monomers. For particulates, hydrolysis 

is merely a surface phenomenon, while the process is molecular for smaller macromolecules 

(biopolymers). During hydrolysis, proteins are hydrolysed to amino acids, polysaccharide to 

simple sugars and lipids to long chain fatty acids (LCFA) (Henze, 2008). This is performed by 

heterotrophic microorganisms that attached to particles, produce enzymes in the vicinity of the 

particle and benefit from soluble products released by the enzymatic reaction. Therefore, the 

microorganisms growing on the particle surface, rather than the enzyme produced, should be 

regarded as the effective catalyst (Batstone et al., 2002). Products from hydrolysis are readily 

accessible for acidogenic bacteria. 

Moreover the hydrolysis process is very sensitive to temperature and temperature fluctuations. 

Hydrolysis is generally considered to be the rate‐limiting step during AD of complex 

substrates. (Henze, 2008) investigations by Chandler et al., (1980) and Zeeman et al., (1996) 

showed that this is not because of lack of enzyme activity but more due to the availability of 

free accessible surface area of the particles and the overall structure of the solid substrate [6]. 

2.1.2 Acidogenesis 

Acidogenesis is generally defined as an anaerobic acid‐producing microbial process without 

an additional electron acceptor (Batstone et al., 2002). During acidogenesis, amino acids and 

simple sugars (products of hydrolysis), which are relatively small soluble compounds, are 

taken up by heterotrophic bacterial cells through the cell membrane and subsequently 

fermented or an aerobically oxidized (Henze, 2008). The degradation of LCFA is an oxidation 

reaction with an internal electron acceptor (H+) (Batstone et al., 2002). During fermentation, 

energy (ATP) is produced directly from an energy‐rich intermediate by substrate‐level 

phosphorilation (Madigan et al., 2006). Electron balancing is achieved either by substrate 

internal electron translocation (one part of the molecule fermented is oxidized while another 

part is reduced), or electrons are transferred to cytoplasmic electron acceptors (most often H+ 

or pyruvate). 

Characteristically, neutral compounds such as sugars and proteins are converted to acidic 

compounds like carboxylic acids (also known as Volatile Fatty Acids, VFA’s). Hence, 



fermentative organisms are usually designated as acidifying or acidogenic microorganisms, 

and the process is called acidogenesis (Henze, 2008). Table no. 2. lists several acidogenic 

reactions starting from sucrose and generating different amounts of VFA’s, HCO3, H2, and H+. 

From Table no. 2 it follows that the ∆G0’ of the less energetic acidogenic reactions with sucrose 

as the substrate strongly depends on the prevailing H2 concentrations. If H2 is effectively 

removed by H2 scavenging organisms such as methanogens, acetate will be the main end 

product (Henze, 2008) [3]. 

 

Reaction    ∆G0’ (kJ/mol) Eq. 

C12H22O11+ 9H2O → 4CH3COO‐ + 4HCO‐ 
3 + 8H+ + 8H2 ‐457.5 1.1 

C12H22O11 + 5H2O → 2CH3CH2CH2COO‐ + 4HCO‐ 
2 + 6H+ + 4H2 ‐554.1 1.2 

C12H22O11 + 3H2O → 2CH3COO‐ + 2CH3CH2COO‐ + 2HCO3
‐ + 6H++2H2 ‐610.5 1.3 

      

 

Table 2 Acidogenic reactions with sucrose as the substrate and the corresponding free 

energy change (∆G0’) at 25°C (Henze, 2008) 

Acidogenesis is the most rapid conversion step in the anaerobic food chain. The ∆G0’ of 

acidifying reactions is highest of all anaerobic conversions, resulting in ten to twentyfold 

higher bacterial growth rates, and fivefold higher bacterial yields and conversion rates 

compared to methanogens (Table no. 3) (Henze, 2008). This can be seen from the Table no. 3 

by comparing the parameters between acidogenesis and methanogens. Souring of the sludge 

solution occurs because the products of acidogenesis lower pH and they are produced faster 

than consumed (kinetic effect). 

 

 

 

 

 



Process Conversion rate Y KS µm 

 gCOD/gVSS.d gVSS/gCOD mgCOD/l 1/d 
     

Acidogenesis 13 0.15 200 2.00 

Methanogenesis 3 0.03 30 0.12 

Overall 2 0.03 ‐ 0.18 ‐ 0.12 
     

 

Table 3 Averaged kinetic properties of acidifiers and methanogens (Henze, 2008) 

 

The acidogenic conversion of amino acids generally follows the Stickland reaction, in which 

an amino acid is de‐ammonified by anaerobic oxidation yielding also VFA and H2, in 

conjunction with the reductive de‐ammonification of other amino acids consuming the 

produced H2. From both reactions NH3 is released and subsequently acts as a proton acceptor, 

thus this can balance the pH drop that would occur when acidic compounds are produced 

(Henze, 2008). 

 

2.1.3 Acetogenesis 

Acetogenic bacterial conversion of products derived from the fermentation process, other than 

acetate, are further converted to acetate, hydrogen gas and carbon dioxide. The most important 

acetogenic substrates are propionate and butyrate. But also lactate, ethanol, methanol and even 

H2 and CO2 are (homo) acetogenically converted to acetate as shown in Table no. 4 (Henze, 

2008). 

LCFAs are converted by specific acetogenic bacteria following the so‐called β‐oxidation in 

which acetate moieties are split from the aliphatic chain (Table no. 4) (Henze, 2008) [7]. 

 

 

 

 

 



 

 

Compound Reaction ∆G°(kJ/mole) Eq. 

    

Lactate CH3CHOHCOO‐ + 2H2O→CH3COO‐ + HCO3 ‐+ H+ + 2H2 ‐4.2 1.4 

Ethanol CH3CH2OH + H2O→CH3COO‐ + H+ + 2H2 +9.6 1.5 

Butyrate CH3CH2CH2COO‐ + 2H2O→2CH3COO‐ + H+ + 2H2 +48.1 1.6 

Propionate CH3CH2COO‐ + 3H2O→CH3COO‐ + HCO3 + H+ + 3H2 +76.1 1.7 

Methanol 4CH3OH + 2CO2→3CH3COOH + 2H2O ‐2.9 1.8 

Hydrogen‐CO2 2HCO3
‐ + 4H2 + H+ → CH3COO‐ + 4H2O ‐70.3 1.9 

Palmitate CH3‐(CH2)14‐COO‐ + 14H2O → 8CH3COO‐ + 7H+ + 14H2 +345.6 2.0 

    

 

Table 4 Stoichiometry and change of free energy (∆G°΄) for some acetogenic reactions at 

neutral pH and STP (Henze, 2008) 

 

The acetogenic bacteria are obligate hydrogen producers (H+ serve as internal electron 

acceptor during regeneration of intracellular electron carriers, like NADH) and their 

metabolism is thermodynamically inhibited by hydrogen, which immediately follows from 

the stoichiometric conversion reaction, such as propionate (Henze, 2008): 

 

 

 

∆G ∆G°   RTln 

Acetate   CO H 

1.1 

Propionate 

 

    

 

Acetogenic conversions have elucidated the required narrow associations between the H2‐ 

producing acetogenic bacteria and the H2‐consuming methanogenic bacteria, thereby resulting 

the H2 level in their environment (Henze, 2008). Syntrophy is a situation where two different 



organisms degrade the substance – and conserve energy doing it – that neither can degrade 

individually. Syntrophic reaction in AD is a secondary fermentation, in which acetogenic 

bacteria ferment the fermentation products of other anaerobes. The heart of syntrophic reaction 

is H2 production by one partner linked to H2 consumption by another. Syntrophy is also known 

as inter species H2 transfer (Madigan et al., 2006). Schematic diagram of syntrophic reaction 

is displayed in Figure no. 2.4 

 

 

 

 

Figure no. 2 5 Syntrophy: Inter species H2 transfer (Madigan et al., 2006) 

 

The thermodynamics of syntrophic acetogenesis and hydrogen – utilising methanogenic 

reactions are only possible in a narrow range of hydrogen or formate concentrations (and are 

also influenced to a lesser degree by other product and substrate concentrations). This is 

important for modelling, as the thermodynamic limitations largely determine the parameter for 

hydrogen inhibition, as well as half saturation coefficients and yields. The limitations are 

illustrated in Figure no. 2.5, which shows the thermodynamic yield (∆G΄) for methanogenesis 

and three anaerobic oxidation reactions. The shaded region indicates where methanogenesis 

and propionate oxidation are simultaneously possible (Batstone et al., 2002). Thus, there is an 

upper limit, set by the acetogens, and a lower limit set by the methanogens of syntrophic 

thermodynamically transfer of VFA’s to methane. The local hydrogen concentration must be 

kept within this so called “hydrogen window”, which is in between the partial pressures of 10‐

4 to 10‐6 bars, otherwise autotrophic methanogens or acetogens will be inhibited (Kommedal, 

2008). 



 

Figure no. 2 6 Free energy changes as a function of the H2 partial pressure (Batstone et 

al., 2002) 

 

2.1.4 Methanogenesis 

Methanogenic bacteria accomplish the final stage in the overall anaerobic conversion of 

organic matter to methane and carbon dioxide. During this fifth and last stage of AD of organic 

matter, a group of methanogenic archea both reduce carbon dioxide using hydrogen as electron 

donor (autotrophic methanogens) and de-carboxylate acetate to form CH4 and CO2 

(heterotrophic methanogens) [8]. It is only in this stage, when the influent COD is converted 

to a gaseous form that COD leaves the liquid phase of the reactor system (Henze, 2008). The 

most important precursor is acetate (70%), while the remaining 30% is formed from H2/CO2 

or formate (Angelidaki et al.). Methanogens are classified into two major groups: the acetate 

converting or aceticlastic methanogens and the hydrogen utilising or hydrogenotrophic 

methanogens (Table no.5). 

 

 

 

 



Functional step Reaction ∆G°΄ µmax Td KS Eq. 

  kJ/mole 1/d d mgCOD/l  
       

Acetotrophic       

Methanogenesis* CH3
‐COO‐ + H2O → CH4 + HCO3

‐ 
‐31 0.12a 5.8a 30a 

2.2 

   0.71b 1.0b 300b  

Hydrogenotrophic       

Methanogenesis CO2 + 4H2 → CH4 + 2H2O ‐131 2.85 0.2 0.06 2.3 

 

*Two different methanogenesis belonging to aMethanosarcina spec. and bMethanosaeta spec. 

Table no. 5 lists two types of aceticlastic methanogens with very different kinetic parameters. 

Table 5 Most important methanogenic reactions, the corresponding free energy change 

(∆G°΄) and some kinetic properties (Henze, 2008). 

 

 

 

 

Figure no. 2 7 Free energy changes as a function of the H2 partial pressure (Batstone et 

al., 2002) 



 

Table 6 Typical Composition of Biogas 

 

 

 

Figure no. 2 8 Schematic Diagram of Biodegradation Steps 



2.2  Process Parameters for Biogas Plant 

In order for a biogas process to be effective and productive, there are a number of parameters 

that have to be optimised. 

2.2.1 Anaerobic environment 

As mentioned earlier, the methanogens need an oxygen-free environment – they are obligatory 

anaerobic. A biogas reactor therefore has to be airtight. The small amount of oxygen dis-solved 

in the liquid/biomass fed to the plant is quickly used up by, for example, aerobic bacteria that 

must have oxygen, or by facultative anaerobic bacteria that can use oxygen for their respiration, 

if it is present [3]. 

2.2.2 Temperature 

The rate of biochemical processes generally increases with temperature. As a rule of thumb, 

the rate is doubled for every 10-degree rise in temperature within certain limits (Q10 = 2). This 

is also the case with the biogas process. In this situation there are, however, several types or 

strains of bacteria involved that have adapted to the different temperatures: 

Psychrophiles 0 – 20°C  

Mesophiles 15 – 45°C  

Thermophiles 40 – 65°C 

Common to the bacteria is that they are very sensitive to changes in temperature. This 

sensitivity increases with temperature. In practice, biogas plants are run at either a mesophilic 

level of around 37°C, where fluctuations of approx. ± 2°C are tolerated, or at a thermophilic 

level of around 52°C, where fluctuations of only approx. ± 0.5°C are tolerated [3]. 

 

 

 

 



2.2.3 Acidity (pH) 

The situation with regard to pH value is similar to that for temperature. Those microorganisms, 

which involved in the different stages of decomposition, require different pH value. The pH 

optimum for hydrolysis and acid-forming bacteria is in a range from 5.2 to 

6.3. They are not fully reliable on this, however, and are still capable of converting substrates 

at a slightly higher pH value. The only problem is that their activity is slightly reduced. In 

contrast, the pH value in the neutral range from 6.5 to 8 is absolutely essential for acetogenesis 

and methanogenesis. Thus, if the fermentation process occur in single digester, this pH range 

must be maintained. 

Regardless of whether process is single-stage or multi-stage, the pH value is established 

automatically in the system with help of alkaline and acid metabolic products formed in the 

course of anaerobic digestion. 

If too much organic matter is fed into the process within too short period of time, for example, 

or if methanogenesis is inhibited for some other reason, the acid metabolic products of 

acidogenesis will accumulate. Normally the pH value is established in the neutral range (6.5-

8) by the carbonate and ammonia buffer. If the system’s buffer capacity is exhausted, for 

example, if too many organic acid have built up, the pH value decreases [10]. This, in the same 

way, increase the inhibitory effect of hydrogen sulphide and propionic acid, to extent that 

process in the digester comes to halt within a very short space of time. With regard to process 

control, it must be known that because of its inertia although the pH value is of only limited 

use for controlling the plant, in view of its great importance it should always be measured. 

2.2.4 Substrate (feedstock) 

Codigestion of organic wastes is a technology that is increasingly being applied for 

simultaneous treatment of several solid and liquid organic wastes. The main advantages of this 

technology are improved methane yield because of the supply of additional nutrients from the 

codigestates and more efficient use of the equipment and cost‐sharing by the processing 

multiple waste stream in a single facility. Codigestion of organic wastes with municipal 

wastewater sludge can increase digester gas production and provide savings in the overall 

energy costs of plant operations (Alatriste‐Mondragon et al., 2006) [9]. 



 

Nearly all organic matter can be decomposed anaerobically, but the degree of decomposition 

can be increased in various ways. Lignin is, however, indigestible [11]. 

2.2.5 Dry matter content 

For bacteria to be able to degrade the material, the dry matter content must not be higher than 

around 50%. In a biogas plant, however, it should only be around 8-12%, if it is to remain 

liquid enough to be pumped [11]. A slightly higher level can be tolerated in special reactor 

types with a direct feed line. 

2.2.6 Carbon/nitrogen (C/N) ratio  

Just like any other organism, methanogens need a number of macro- and micronutrients in 

order to grow (see figure no. 2.9). The most important macronutrients are nitrogen (N), 

phosphorus (P) and potassium (K). Nitrogen is used by bacteria to produce proteins. The 

nitrogen content is often quoted in relation to carbon, as this gives an indication of whether 

there is sufficient nitrogen available for bacteria. Normally the C/N ratio should be less than 

30/1, as nitrogen otherwise becomes the limiting factor for bacterial growth. On the other hand, 

the nitrogen level should not be too high as this can then also inhibit the process [11]. 

 

Essential 
Optimum 
concentration  

micronutrients g/m3  

Barium (Ba) 0.05  

Iron (Fe) 0.2  

Calcium (Ca) 0.03  

Cobalt (Co) 0.005  

Magnesium (Mg) 0.02  

Molybdenum (Mo) 0.005  

Nickel (Ni) 0.01  

   

Figure no. 2 9 Essential micronutrients in the biogas process and approximate optimum 

concentration. 



2.2.7 Organic load 

The rate at which biomass is added to the reactor has to be adjusted to the growth rate of the 

methanogens and organic acids have to be re-moved at the rate at which they are produced. 

The normal load for a CSTR reactor is 2.3 kg COD/m3 reactor volume/day. If more biomass 

is added than the bacteria are able to degrade, the process will become acidic. The biomass 

also has to be fed to the reactor at an even rate and volume, preferably as a continuous feed. 

If the substrate has to be changed, this must be done gradually, so that bacteria can adapt to 

the new conditions [11]. 

2.2.8 Inhibition of the biogas process 

Inhibition means that a substance has a negative effect on bacteria without directly killing them. 

The process can be inhibited in many ways and the ways are often divided into endogenous 

and exogenous causes. Endogenous inhibition is due to conditions or material created during 

the process itself that under certain circumstances may inhibit the process, and exogenous 

inhibition is due to external conditions [11]. 

2.2.9 Nitrogen inhibition 

One of the most significant endogenous inhibitors is ammonia (NH3). Ammonia is created du-

ring the bacterial degradation of nitrogen-containing substances such as proteins. Nitrogen is 

essential for bacterial growth and ammonia is an important source of nitrogen. But ammonia 

at high concentrations is highly toxic to the bacteria [11]. 

In an aqueous solution ammonia is always found in an equilibrium with ammonium (NH4+). 

This equilibrium is determined by the acidity, pH and temperature of the environment and, as 

ammonium is not as toxic as ammonia, this equilibrium is important: 

NH4+    NH3 + H+ 
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Figure no. 2 10 Effect of pH and temperature on the balance between 

ammonium and toxic ammonia (NH4+/NH3). 

At a high pH, the equilibrium is shifted to the right, and the environment becomes more toxic 

to bacteria. Higher temperatures will also shift this equilibrium to the right. This is why a 

thermophilic biogas process – all other things being equal – is more sensitive than a mesophilic 

process to ammonia inhibition (see figure no.2.10). 

There will be a certain inhibition of the bacteria already at relatively low ammonia 

concentrations. But with a longer adaptation period, bacteria are able to adapt to a higher 

concentration. This is fortunate, because the biomasses typically used in biogas production, 



such as slurry, usually have an ammonia con-centration at the higher end of the scale. What the 

bacteria will have difficulties with is a sudden increase in the concentration, and a consistent 

and even input of biomass is therefore important for the process and even more so at higher 

temperatures. 

2.2.10 Acidification – organic acids 

Other important endogenous process inhibitors are the organic acids formed during the process. 

If these are not removed as soon as they are formed – which can happen during an overload – 

this can lead to an acidification of the process [11]. 

2.2.11 Antibiotics, etc. 

Among the exogenous causes, antibiotics and disinfection agents are obvious inhibitors of the 

process, because both – by definition – are toxic to and are used to kill microorganisms. Both 

substances are used in livestock production to treat sick animals and to keep animal houses and 

milking parlous clean and can therefore also be found in the slurry, but apparently only at 

concentrations so low that they do not have a negative impact on the biogas plant. A slow 

adaptation to these substances can also take place if the supply is fed in continuously [11]. 

Other substances such as heavy metals, salts and micronutrients can also inhibit the process at 

high concentrations (see figure no. 2.11). But as previously mentioned, some of them are 

essential for the process at low concentrations, in the same way that vitamins are for humans 

(see figure no. 2.12). 

 



 

Figure no. 2 11 Salts can both stimulate and inhibit the biogas process. When exactly 

inhibition starts depends on the salt concentration. Some salts have a directly toxic effect at 

high concentrations. 

 

 

 

 

 

 

 

 



Chemical/formula Inhibition level Toxicity level  

    

Ammonia, free, NH3 50-100 mg N/l 100-200 mg N/l  

Ammonia, total, 
NH4

++NH3 1,000-6,000 mg N/l 10,000 mg N/l (pH<7,5)  

Chloride, Cl- < 8,000 mg/l 10,000 mg/l  

Cyanide, CN- 2-20 mg/l 30 mg/l  

Formaldehyde, H2CO 100-400 mg/l 500-1,000 mg/l  

Phenol, C5H5OH 100-200 mg/l   

Chloroform, CHCl3 >1 mg/l (single dose) >50 mg/l (continuous feed)  

Hydrogen, H2 p(H2) ca. 10-4 atm.   

Copper, Cu+++ 10-250 mg/l   

Chrome, Cr+++ 50-100 mg/l 200-400 mg/l  

Nickel, Ni++ 100-200 mg/l 300-1,000 mg/l  

Sodium, Na+ 3,000-10,000 mg/l   

Calcium, Ca++ 8,000 mg/l   

Magnesium, Mg++ 3,000 mg/l   

Zink, Zn+ 350-1,000 mg/l   

Sulphate, SO4
- - 500-4,000 mg/l   

Sulphide, (as sulphur) 200 mg/l   

Hydrogen sulphide, H2S 250-1,000 mg/l   

    

    

 

Figure no. 2 12 selected inhibitors with values at which they are inhibiting and toxic. 

 



2.3 Biogas Plant Design 

There are a number of different types of biogas plants that can be used to treat different types 

of biomass, and each has its advantages and shortcomings. However, Danish farm and 

communal biogas plants only use the CSTR – continuously stirred tank reactor. 

The CSTR has the advantage that it can treat biomasses with a relatively high dry matter 

content. The biomass is fed into the reactor continuously or semi-continuously in regular 

batches. To make room for the new biomass in-put, some material has to be pumped out first, 

and due to the continuous stirring, this means that some of the recently added, fresh biomass is 

pumped out again too quickly and before it is fully decomposed, which is the greatest drawback 

with this type of reactor. 

In industry, so-called filter plants are some-times used such as those using UASB (Up flow 

Anaerobic Sludge Blanket), which can treat biomasses with a low dry matter content. The 

advantage of this type is that the (hydraulic) retention time (the time a given biomass stays in 

the reactor before it is pumped out again) is very short, often only a few hours or a couple of 

days, and that the reactor tank therefore does not need to be quite so large. This type can also 

take a relatively high COD load of 5-30 kg COD/m3/day. 

In the following, only the fully stirred plant type will be discussed, as this is the type most 

commonly used in Denmark for the decomposition of both agricultural residues and sewage 

sludge. 

In principle, both on-farm and communal plants have similar designs, but some parts will 

obviously be of different size depending on, for example, how much biomass they are meant 

to handle. In the following we describe a typical communal plant (see figure no. 2.13). The 

plant can be divided into a biomass system and a gas system [11]. 

 

 



 

 

Figure no. 2 13 Schematic diagram of a communal biogas plant. The animal manure 

enters the system in the reception tanks. It is then pumped to the reactor where the 

digestion and biogas production take place. 

 

 

2.3.1 Reception tank 

Typically a couple of reception tanks are used: One for slurry and manure and one for other 

types of biomass such as organic industrial waste. The purpose of the reception tank is to act 

as a buffer tank to ensure the plant will also run at weekends and during holidays. Different 

biomasses are moreover mixed in the reception tanks to ensure the biomass fed to the reactor 

is homogenous. Slurry reception tanks typically have sufficient storage capacity for seven days 

and are often covered concrete tanks. Reception tanks for industrial waste often have a larger 

capacity. The tanks are fully stirred to prevent the formation of layers, and in certain cases the 

reception tank for industrial waste is heated to ensure, for example, that the fatty part stays 

liquid. In the slurry reception tanks a large amount of sand and grit may settle out and that has 

to be removed from time to time. Some systems incorporate a mixer tank between the reception 

tanks and the reactor. The reception tanks can give off various odorous compounds. These can 

be extracted and cleaned with different air purification systems [11]. 

 

 

 

 



2.3.2 Biomass feeding pump 

A pump moves the biomass from the reception tank to the reactor tank. The pump can be 

immersed in the reception tank or sit in its own pump well. The pump often has an associated 

comminatory, which shreds the biomass. 

2.3.3 Reactor tank 

The reactor tank is a completely enclosed and insulated steel tank or a concrete tank covered 

by an airtight seal. The tank can be fitted with heating coils that warm the digesting biomass, 

or the heat supply can be external via a heat exchange system. The tank is equipped with a 

stirrer that can keep the entire volume fully agitated and thus prevent the formation of a surface 

crust. It is also equipped with an over-flow outlet, temperature and pressure gauges, etc. There 

is, finally, a high-pressure valve to ensure that the pressure does not become unacceptably high 

if the gas removal fails. At the top of the tank there is an outlet for the biogas produced. 

 

 

 

Figure no. 2 14Reactor citation 



The reactor tank typically has a volume of 10-20 times the daily input of biomass for a 

thermophilic process and 50 times the daily input for the mesophilic process. 

2.3.4 Effluent discharge pump 

A pump moves the digested biomass to a storage tank. In simple plants, and with a suitable 

arrangement of pipes and valves, one pump can take care of both the feeding and discharge. 

2.3.5 Digester storage tank 

The purpose of the storage tank (or secondary digester) is to act as a buffer tank before the 

digested biomass can be transported away to be finally stored in the farmer’s own storage tank 

or applied as fertiliser directly on farmland. 

The tank is usually covered, partly to pre-vent the entry of rainwater and partly to prevent the 

loss of ammonia. If there is a long retention time, there will additionally be a certain amount 

of gas produced from the storage tank as the biomass in a fully stirred reactor will never be 

completely digested. This gas can also be extracted and used. 

 

 

 

 

 

 

 

 

 

 

 

 



2.3.6 The gas system 

Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station 

to generate electricity and useful heat at the same time. Trigeneration or combined cooling, 

heat and power (CCHP) refers to the simultaneous generation of electricity and useful heating 

and cooling from the combustion of a fuel or a solar heat collector. 

Cogeneration is a thermodynamically efficient use of fuel. In separate production of electricity, 

some energy must be discarded as waste heat, but in cogeneration some of this thermal energy 

is put to use. All thermal power plants emit heat during electricity generation, which can be 

released into the natural environment through cooling towers, flue gas, or by other means. In 

contrast, CHP captures some or all of the by-product for heating, either very close to the plant, 

or—especially in Scandinavia and Eastern Europe—as hot water for district heating with 

temperatures ranging from approximately 80 to 130 °C. This is also called combined heat and 

power district heating (CHPDH). Small CHP plants are an example of decentralized energy. 

By-product heat at moderate temperatures (100–180 °C, 212–356 °F) can also be used in 

absorption refrigerators for cooling. 

The supply of high-temperature heat first drives a gas or steam turbine-powered generator and 

the resulting low-temperature waste heat is then used for water or space heating as described 

in cogeneration. At smaller scales (typically below 1 MW) a gas engine or diesel engine may 

be used. Trigeneration differs from cogeneration in that the waste heat is used for both heating 

and cooling, typically in an absorption refrigerator. CCHP systems can attain higher overall 

efficiencies than cogeneration or traditional power plants. In the United States, the application 

of trigeneration in buildings is called building cooling, heating and power (BCHP). Heating 

and cooling output may operate concurrently or alternately depending on need and system 

construction. 

Cogeneration was practiced in some of the earliest installations of electrical generation. Before 

central stations distributed power, industries generating their own power used exhaust steam 

for process heating. Large office and apartment buildings, hotels and stores commonly 

generated their own power and used waste steam for building heat. Due to the high cost of early 

purchased power, these CHP operations continued for many years after utility electricity 

became available [12]. 

 



Gas condensation 

The biogas produced in the reactor and secondary digester (if used) is extracted. The gas is 

warm and therefore contains a large amount of water vapour. When cooled, most of this water 

will condense out and can then be pumped back to the secondary digester [11]. 

Gas purification 

Besides methane and carbon dioxide, the gas also contains a smaller amount of hydrogen 

sulphide (H2S). The amount is proportional to the protein content of the biomass. The higher 

the protein level, the higher the H2S production. If the biogas is intended to be used in a 

combustion engine, the H2S-content has to be removed from the gas, as it is corrosive in 

combination with CO2 and water vapour. This can be done in a biological process, where the 

ability of sulphur bacteria to degrade hydrogen sulphide to pure sulphur or sulphuric acid is 

utilised. This sulphur in an aqueous solution is pumped to the secondary storage tank and 

therefore recycled to the field and crops. 

Gas storage 

In order to even out the gas production, most plants also have a gas store with capacities ranging 

from two to 24 hours of production. Bio-gas takes up a lot of space and it is rarely worth having 

a large storage capacity. 

Gas transmission 

At several plants the purified gas is subsequently pumped from 5-10 km in a gas transmission 

pipe to a local combined heat and power plant, where the biogas may replace natural gas. 

 

 

 

 

 

 



 

3. OBJECTIVES 

Most of research shows the production methods of biogas plant with different feed stocks. The 

aim of this research is about detail description of mass, energy balance and economic analysis 

of biogas plant in India. 

 To review of Biogas plant working principle with crops residue and beef manure in 

India. 

 To make critical literature research about utilization of biogas in the past and hammer 

milling of crops residue. 

 Based on literature research, a flow sheet of biogas plant. In the same way create the 

heat generation cycle of plant. 

 Create an excel file of mass and energy balance for plant based on flow sheet. 

 To perform the economical calculation of biogas plant which will include the detail 

calculation of total investment costs as well as operating costs and payback period. 

 To make Project time and schedule of biogas plant. 

 To get the approval of authorities, Environment impact and Location of plant. 

 

 

 

 

 

 

 

 

  



4. PRACTICAL PART 

As we discussed in previous chapter about the biogas plant Process parameters, Design and 

Balance sheet. In this topic we will discuss about the practical view of biogas plant and 

implementation of process in Industrial scale. To know the stream and its flow rate, first we 

should have to create the flow sheet of biogas plant including all the equipment, stream and 

material flow. The Important part is to manage input and output of the stream to the related 

equipment which help us to calculate the flow rate of material on the base of mass balance 

calculation.  

To identify the methods of the mass and energy balance, [13, 14] the author propose own mass 

and energy balanced flow sheet for Industrial scale biogas plant. For more detail see Appendix 

A. 

4.1 Design Calculation 

We are using three different crops, Rice straw, Wheat straw and Maize Straw with the beef 

manure for our biogas plant. According to our previous study we found that these crops 

availability are higher than any other crops in India and also available in most of the region. 

The cow is holy animal for Hindus and it is easy to excess the manure for our plant. Further, 

the reason to add beef manure in our plant is that we doesn’t need any extra pre-treatment of 

crops because it has lower % of DM content and has also good C-N ratio which maintain our 

limits between 20 to 35. 

To start the procedure of balances [11], first of all we will determine the general C-N ratio, % 

DM, oDM and biogas yield of crops and beef manure which you can see in the table no.7. The 

detail flow sheet of biogas plant is shown in figure no. 4.1.   

Crops C/N ratio 

Biogas Yield 

(M^3/Kg) DM [%.wt] ODM [%.wt] 

Rice Straw 42.43 0.55 to 0.62 25 to 50 70 to 95 

Wheat 

Straw 
80 0.2 to 0.5 86 89 to 94 

Maize 

Straw 
57.2 0.4 to 1 86 72 

Beef 

manure 
17 0.1 to 0.8 6 to 13 68 to 85 

 

Table 7 C/N ratio, Biogas Yield, %DM and oDM. 



4.2 Flow sheet Design 

 

 

Figure no. 4 1 Flow Sheet of biogas plant 

 



Moreover, in the first three stream are for Rice straw-1, Wheat Straw-2 and Maize Straw-3 

which flow to hammer mill (C-100) where they are disintegrate and transport to Homogeneous 

vessel by screw conveyor. The homogeneous vessel is connected by two more streams, water-

4 and beef manure-5. Water and beef manure are stored in vessel F-100 and F-102 respectively 

which are connected to Homogeneous vessel (M-104) by pump. In homogeneous vessel 

substrates mixed with 90% water as we mentioned above. After one day of storage the 

suspension are transferred to fermentation vessel (M-106) by screw pump (P-105) which is the 

heart of biogas plant. In fermentation vessel it takes 25 days for fermentation by calculation of 

Batch organic loading into mass flow rate of oDM, meanwhile the biogas is extracted from the 

top of the vessel to water vapour removal (H-201) where the gas is purified and unwanted 

matter and gas are removed from it which at the end send to burner and exhaust to atmosphere. 

The rest of the pure Ch4 and Co2 flows to the CHP Unit (Q-202) (Cogeneration Unit) which 

also called power generation unit. The methane is used as a fuel of power station and thermal 

energy is converted to mechanical energy. The electic efficiency of this unit is 40% in general. 

In CHP unit the flue gases are exhausted and the heat of this flue gases are also used to heat up 

a distribution tank (F-300) water. As you can see in the figure no.4.2 Stream no. 17 is connected 

to the CHP unit in which water is flowing, the water is passing through the CHP unit, heat up 

and collected in distribution tank. The output temperature of water form cogeneration unit is 

80C. A hot water from the Distribution tank are then transferred to heat exchanger E-303 and 

E-113 by pump P-301 and P-302 and rest will transfer to household uses. The unit E-303 

exchange a heat with stream no. 23 and 22 which are connected to jacket of fermentation vessel 

to maintain temperature of vessel. While unit E-113 for stream no. 9 and 10. 

 

 

 



 

Figure no. 4 2 CHP unit, Distribution tank and Biogas purification Unit 

 

After 50 day of fermentation the residual will transfer from M-106 to Screw separator (H-106) 

by screw pump (P-107), in which the water is separated from the residual and residual will 

transfer to “Residual of Fermentation” (F-110) where it stored for 14 days as amaximum and 

used for the fertilizer. The water from the Screw separator stored to Vessel (F-111), stream no-

9. Which then flow back to homogeneous vessel by stream no.10, these streams are also called 

a recirculation unit for water (Appendix A). 

 

4.3 Mass flow rate 

We are going to build the biogas plant to generate 1000kW electric power and we have the 

ratio of a mass flow rate of the crops and beef manure, from this data we can calculate the 



amount of mas flow rate in primary stream. We have power ‘Q’ which 1000kW, ηe = 40% and 

q_ch4 = 9.9 kWh.m-3 by given value we can calculate the mass flow rate of rice straw in stream 

no.1. To evaluate the mass flow rate of crops and beef manure we are using the following 

equation.  

Q = ηe* q_ch4*((Mr*Yr) + (Mw*Yw) + (Mm*Ym) + (Mb*Yb)) ……… (1) 

Q = ηe* q_ch4*((Mr*0.6) + (0.3Mr*0.4) + (0.45Mm*0.7) + (5.87Mr*0.7)) 

Q = ηe*q_ch4*(5.144Mr) 

Mr = 0.09 kg/s. 

By calculation, we know the ratio of mass flow rate of Wheat straw, Maize straw and beef 

manure with Rice straw. From the above result we can find the mass flow rate of feed stock of 

crops and beef manure which are shown in table no. 8. The ratio of the mass flow rate of crops 

with respect to Rice Straws are, Mw = 0.3Mr, Mm = 0.45Mr and Mb = 5.87Mr. 

 

 

Table 8 Mass balance of feed stock and their flow rate in DM and oDM. 

 

The first column shows the flow rate of ODM ton/day, following the biogas yield presence in 

crops and manure. The amount of Methane present in biogas is usually 60% by which we can 

evaluate the amount of methane in feed stocks. We can also evaluate the mass flow rate of feed 

stock by manner of oDM and DM which are also mentioned in the table no 8. 

 

As we know from the research that amount of water for feed stock is 90% wt. of solid 

substrates. This percentage is related to DM of solid substrates which means the amount of 

water for feeding is 2.6 kg/s but we are using recirculation for water and the amount of water 

Feed Stock 
ton 

ODM/day

biogas yield 

Nm3/kg ODM

CH4           

Nm3/h

oDM           

% wt.DM

DM                  

% wt.

mass flow ton 

/day

mass flow   

kg/s

mass flow ton 

DM /day

mass flow   

kg DM/s

Rice Straw 2.53 0.60 37.94 82.50 37.50 8.17 0.09 3.07 0.04

Wheat Straw 0.76 0.40 7.59 91.50 86.00 0.96 0.01 0.83 0.01

Maize Straw 1.14 0.70 19.92 72.00 86.00 1.84 0.02 1.58 0.02

Beef manure 14.85 0.50 185.57 76.50 17.00 114.15 1.32 19.41 0.22

Total 19.27 2.20 251.00 322.50 226.50 125.13 4.04 24.88 0.29



evaporate is 0.008 kg/s which means the primary input is 2.6 kg/s and later it would be 0.01 

kg/s. 

 We know the amount of mass flow rate in primary stream no. 1, 2, 3, 4 and 5 which are 

input of M-104, from it we can evaluate the value of output mass flow rate of stream 

no 6.  

 

m1 + m2 + m3 + m4 + m5 = m6 = 4.04kg/s 

 

 Stream no. 7 and 11 are output of fermentation vessel. On the base of methane 

volumetric flow rate from the previous study we can easily evaluate the mass flow rate 

of biogas flow in stream no. 11. By the basic mathematics subtracting stream no 11 

from the 6 which gave us value for the stream no. 7. Follow the detail calculation below, 

 

 ρ= 1.2 kg/m3,   methane 

V= 0.069 m3/s,    methane 

m11 = ρ*V,    Biogas 

m11 = 0.0828 kg/s   Biogas flow rate in stream 11 

 

 m7 = M6 – M11 

m7 = 3.95 kg/s. 

 

According to the flow sheet and design calculation stream 11 and 12 has biogas which flow 

with 0.0828 Kg/s while stream no 13, 14 and 24 has negligible amount of exhaust gas and it 

has flow rate near to 0 or 1kg/s respectively . Stream 15 represent the electricity (1000kW). 

Stream 16 is water output from the CHP unit and from the reference (CLASSIC APG 1000, 

motorgas.cz) we know the mass flow rate of water which is 12.68 Kg/s. see the detail of CHP 

unit in Appendix B. 

 

 The residual from the fermentation flow to the screw separator by screw pump and 

water and solids are separated to stream 9 and stream 8 respectively. The solids are flow 

to the residual fermentation tank by screw conveyor. The mass flow rate of stream 8 

and 9 are calculated below. 𝑚𝑐ℎ4 = 0.0828 Kg/s, 𝑚𝑝𝑟𝑖𝑚𝑎𝑟𝑦.𝑤 = 2.6Kg/s 

 

m8 = m6 - 𝑚𝑝𝑟𝑖𝑚𝑎𝑟𝑦.𝑤 -  𝑚𝑐ℎ4 



m8 = 4.04 – 0.0828 – 0.008 

m8 = 1.37 kg/s 

 

m9 = m7 - m8 

m9 = 2.58 kg/s 

 

 Stream 9 and stream 10 has same mass flow rate of water and the water flow back to 

the homogeneous vessel as we know it is the recirculation stream of system. Because 

of the recirculation of water we consider the stream 4 (m4) has the mass flow rate 

around 0.01 kg/s.  

 

 Stream 9 and 10 are the inlet and outlet of the heat exchanger E-113. By the mass 

balance equation... (2) Of heat exchanger we can find the mass flow rate of water in 

stream no. 19 and 20. 

 

Q2 = m9 x 𝐶𝑝𝑤𝑎𝑡𝑒𝑟  x (T9 – T10) = m19 x  𝐶𝑝𝑤𝑎𝑡𝑒𝑟 x (T19 – T20)… (2) 

 

 m19 = m9 x
(𝑇9 – 𝑇10) 

(𝑇19 – 𝑇20)
 

m19 = 2.33 kg/s. 

 

 In table no. 9, we can see the mass balance of all stream of biogas plant. 

 

 

 

 

 

 

 



Stream no.  
Mass Flow rate 

[Kg/s] 
 Medium 

1 0.09 substrates 

2 0.01 substrates 

3 0.02 substrates 

4 0.01 water 

5 1.32 substrates 

6 4.04 suspension 

7 3.95 suspension 

8 1.37 residual 

9 2.58 water 

10 2.58 water 

11 0.08 Biogas 

12 0.08 Biogas 

13 - Exhaust 

14 1.52 Exhaust 

15 - Electricity 

16 12.68 water 

17 3.63 water 

18 9.05 water 

19 2.33 water 

20 2.33 water 

21 1.31 water 

22 5.24 water 

23 5.24 water 

24 - gases 

 

Table 9 Mass Flow rate of all stream 

 

 

For more detail about mass balance see Appendix C. 

 

 

 

 

 

 



4.4 Energy Balance  

The Energy balance is also an important part for designing the Industrial scale biogas plant. In 

biogas plant we need to maintain the temperature of the stream as well as we are using CHP 

unit which is source of heat energy. We can use that heat for either industrial purpose or to 

household heating system. To use such kind of energy we need heat exchanger and the require 

capacity of it.  

The calculation of energy balance of a heat exchanger is based on mass balance, temperature 

difference in inlet and outlet of the stream and properties of fluid. 

 Fermentation Tank (M -106) 

From the literature research we know the organic batch loading (OBL) in the fermentation 

tank is 2.3KgoDM / m3.day. The mass flow rate of oDM/Day is given in table no.8. By the 

following equation we can evaluate the volume of fermentation. 𝑚𝑜𝐷𝑀 = 19271.04 

KgoDM/m3. 

Vf = 
1

𝑂𝐵𝐿
∗ 𝑚𝑜𝐷𝑀  

Vf = (1/2.3)*19271.04 

Vf = 8400 m3. 

t = Vf/365 = 8400/365 = 25 days 

 Heat Exchanger (E – 303) 

As we know from the research, the temperature of water at inlet is 35C (stream 22) and at 

outlet of vessel is 40C (stream 23). The outlet water from the jacket is stored in vessel F – 305 

and then send back to the fermentation jacket which is passing through the Heat exchanger E 

– 303, see in figure no.4.3. In other side of it, there is stream 21 which is connected to the 

distribution tank of water (F – 300).  The hot water from the CHP unit is stored in distribution 

tank and then pumped it to the stream 19 and 21 for heat exchange units [15].  



 

Figure no. 4 3 Heat Exchange E - 303 

 

It was found that energy loss is nearly 12.5 W/𝑚3. We have the volume and residence time of 

fermentation by which we can calculate the area of heat exchanger. We will take density of 

water because a content of water is 90% [16]. 

Q1 =Vf x 12.5 = m22 x 𝐶𝑝𝑤𝑎𝑡𝑒𝑟 x (T22 – T23) 

 m22 = 5.0 Kg/s. 

 

 

 



 

From the study, if we know the mass flow rate and temperature difference of heat exchanger 

[16] we can find out the overall heat transfer coefficient K which is 1800 W/𝑚2K. By following 

equation we can evaluate the surface area of heat exchanger. 

Q1 = m22 x 𝐶𝑝𝑤𝑎𝑡𝑒𝑟 x (T22 – T23) = k x S x ΔTln 

S = 
5 𝑥 4200 𝑥 5

1800 𝑥 10.82
 

S = 6𝑚2. 

 Heat Exchanger (E – 113) 

E – 113 heat exchanger is connected with the recirculation unit where the inlet temperature of 

heat exchanger is 20C and inlet temperature of vessel M – 104 is 38C. The temperature of 

water from the distribution tank is 80C which is going to supply by pump P – 302 to the heat 

exchanger. See the figure no. 4.4. 

 

 

 

Figure no. 4 4Heat Exchanger (E – 113) for recirculation unit. 

 

 

 

 



We know the mass flow rate, over all heat transfer coefficient and temperature difference by 

this data we can calculate or evaluate the surface area of E – 113. 

Q2 = m22 x 𝐶𝑝𝑤𝑎𝑡𝑒𝑟 x (T9 – T10) = k x S x ΔTln 

S = 
5 𝑥 4200 𝑥 18

1800 𝑥 18.98
 

S = 6𝑚2. 

See Appendix C for more information about energy balance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.5 Economic Analysis 

The previous chapter are concerning the area of engineering and developments where we 

evaluated the mass balance and energy balance. Now the question is how much money required 

or in project line way the budget required for the current project. Even if we know that 

production line is good and energy efficient economic analysis is important for the investor. 

This part is mainly constructed on the base of capital cost or investment cost and payback 

period. The payback period is partially depends on the capital cost and profit of the projects. 

Economic part also visualize us the amount of loan or credit needed for our budget or projects.  

The above cost is represent only cost of equipment it is also called ISBL (Inside Battery Limit) 

of projects. Based on this we can estimate the fixed capital cost of our project which consist of 

ISBL, OSBL, Engineering cost and contingency cost [18].  

Fixed Capital Cost = ISBL + OSBL +Engineering Cost + Contingency Cost 

 

4.5.1 Capital Investment cost 

The capital cost is estimated by the factorial method which has error 30%. Mass balance and 

energy balance give us the primary information of equipment size and key parameters which 

are mentioned in table no. 10. The factorial method of cost estimation help us for approx. price 

estimation of all equipment by the following equation [17].  

𝐶𝑒 = a + b x 𝑆𝑛 

In the above equation 𝐶𝑒 represent the cost while ‘a’ and ‘b’ are the parameters, ‘S’ represent 

the area or volume of equipment and ‘n’ is coefficient of parameter ‘S’. The cost estimation of 

equipment are as follow, 

 E – 303, E - 113 Heat Exchanger 

We know the mass flow rate, surface are and the temperature difference for heat exchanger by 

which we can find out the parameters of it and put the value in above equation. 

E – 303    𝐶303 = 1.1 + (850 x (60.4) 

𝐶303 = 1741.62 $ 



 

E – 113   𝐶113 = 1.1 + (850 x (60.4) 

𝐶113 = 1741.62 $ 

 

 F – 100 and F – 102 Conical Vessel 

We know the volume of vessels by the mass flow rate of water and beef manure in our stream. 

Use volume as a parameter ‘S’ and use the same equation and calculate the price  

F – 100   𝐶𝐹−100 = 5700 + (7000 x (10.7) 

𝐶𝐹−100 = 6400 $ 

 

F – 102    𝐶𝐹−102 = 5700 + (700 x (1150.7) 

𝐶𝐹−102 = 25090.84 $ 

 Fermentation Vessel M – 106 

Unfortunately, fermentation mixer is not tabled value, hence it is not the same calculations as 

e.g. for Heat Exchanger etc. However, the price estimate was based on literature search.  

Deublin and Steinhauser [3] say, that estimation of total investment cost could be calculated 

from the volume of fermenter for biogas plant, because nowadays practice has only this 

possibility. The estimated cost vary from 300 to 500 $.m-3 and based on this estimation 

recalculate the price for fermenter alone. Nevertheless, it was found 135 $.m-3 for fermenter 

price alone. 

𝐶𝑀−106 = 135 x 8400 

𝐶𝑀−106 = 1134000 $. 



Such a way was chosen, because fermenter varies from 30 % to 50 % of total capital cost for 

biogas plant. So, it is mean that calculation should be in deep enough to decrease the error of 

calculation.  

Moving from one apparatus to another, we are able to estimate the total capital cost. In the table 

below you could see all apparatuses with their prices.  

Some costs like: burner, biogas purification, screw pump etc. they were taken from real biogas 

plants in India, and they are in dollars. Unfortunately, it is not possible to calculate them 

directly using factorial method, thus they were signed as reference (ref.). 

Following table shows the estimated price of the all equipment in Dollars, Czech Koruna and 

Indian Rupee (Appendix D). 

 

Table 10 Price list of equipment or capital cost of equipment. 

 

 

 

Number Name Unit for Size a b n

Key 

parameter

s, S

Capital Cost 

[$]

B-203 Burner duty, MW ref. 9268

C-100 Hammer Mill ref. 68400 730 1 0.46 68736

E-303 Heat Excahnger area, m2 1.1 850 0.4 6 1742

E-113 Heat Excahnger area, m2 1.1 850 0.4 6 1742

F-100 Conical Vessel capacity,m3 5700 700 0.7 1 6400

F-102 Conical Vessel capacity,m3 5700 700 0.7 115 25090

F-305 Vessel capacity,m2 5700 700 0.7 900 87559

F-111 Vessel capacity,m3 5700 700 0.7 10 9208

F-110 Vessel capacity,m3 5700 700 0.7 2350 165968

F-300 Distribution tank capacity,m3 5700 700 0.7 1100 99905

G-200 Ventilation m3/h 4200 27 0.8 250 6437

H-108 Screw Seperator m3/h ref. 6660

H-201 Biogas Purification ref. ref. 30894

J-101 Shredded Screw Conveyour ref. ref. 6179

J-109 Screw Conveyour ref. ref. 4634

M-104 Homogeneous Vessel Volume, m3 $/m3 350 122500

M-106 Fermentation Vessel Volume, m3 $/m3 8400 1134000

P-304 Liquid Pump l/s 8000 240 0.9 11 10077

P-301 Liquid Pump l/s 8000 240 0.9 3 8645

P-302 Liquid Pump l/s 8000 240 0.9 3 8645

P-112 Liquid Pump l/s 8000 240 0.9 3 8645

P-103 Screw Pump ref. ref. 4000

P-105 Screw Pump ref. ref. 4000

P-107 Screw Pump ref. ref. 4000

Q-207 CHP kW $/kW 1000 1200000

Total 3034933

Mln. 3.035

80000

80000

1200

180000

600000

120000

90000

350

135

9000

80000



4.5.2 OSBL 

ISBL cost is the capital cost of equipment in, we can also evaluate this cost by the volume of 

fermentation into 500 $/𝑚3. The 40% of ISBL cost is consider as the OSBL cost. OSBL 

(Outside Battery Limits), or off-site costs, are still an important component of the plant cost, 

but deals with calculating costs associated with off-site developments that require the plant to 

run. For example, if water or electricity are being utilized from the main grid, and 

infrastructure needs to be expanded to accommodate the plant's addition to these systems, 

these costs are considered OSBL because they are not directly associated with elements 

between the input and output of the chemical plant [18]. 

OSBL cost = ISBL x 40% 

OSBL cost = 3034933.44 x 
40

100
 

OSBL cost = 1213973.38 $. 

 

4.5.3 Engineer cost  

Many of the steps involved in designing detailed equipment or structures onsite fall outside the 

scope of chemical process design. Rather than having the plant engineer do these designs 

anyway, a contractor is usually hired to do this design. The costs associated with generating a 

design, and in some cases all the way through finished fabrication and installation of equipment 

is filed under engineering costs. Depending on the size of the project and the amount contracted 

to the outside, engineering costs may include 30% of the ISBL and up to all of the OSBL, or 

only 10% of the ISBL. This cost depends largely on the size of the parent company, and 

whether or not it has in-house capability to do detailed design of the many different processes 

and equipment within a chemical plant [18]. We consider 10% of ISBL and OSBL. 

Engineering Cost = (ISBL + OSBL) x 10% 

Engineering Cost =(3034933.44 + 1213973.38 ) x 
10

100
 

Engineering Cost = 424890.68$ 

 



4.5.4 Contingency Cost 

Once costs are determined, if one could instantaneously construct the plant, then there would 

be no need for contingency charges. Contingency charges exist though because prices change, 

unanticipated costs arise, and other unexpected events can cause changes in costs. Contingency 

charges ensure that there is enough capital on hand to deal with these unexpected changes. 

Usually, contingency charges are billed to the parent organization, or of the design is done by 

a contractor to the contracting organization directly at the start of the project, rather than asking 

for increased funding mid-project. An absolute minimum for contingency charges is 10% of 

the ISBL and OSBL, with a more realistic value being closer to 40% [18]. We consider as a 

10% which is equal to Engineering Cost. 

 

Contingency Cost = Engineering Cost 

Contingency Cost = 424890.68 $ 

 

The total fixed capital cost = 5190342.44$  

For the payback period we will still consider the price in ‘$’. 

 

 

4.5.5 Payback Period 

After the calculation of fixed capital cost it is time to evaluate the payback period in short the 

cash flow back. That means in how many days or year we will get back the invested money 

from our project. This is the last part of economic analysis and also the interesting part for an 

investor. 

To find out the cash flow back, first of all we must have to evaluate the basic parameters of 

payback period calculations. The foremost parameter is annual production of electricity then 

selling price of it, we also have residual after the fermentation process which we can sell as a 



fertilizer raw material. The below table no. 11 show us the information about the above 

parameters [19]. See Appendix E for more detail. 

Parameter Unit Variant A 

Annual production of  Electricity kWh/year 87,60,000 

Selling price of Electricity $/kWh 0.15 

Selling price of residual $/ton 5.50 

Annual production of  residual ton/year 43,204.32 

 

Table 11 The Electricity production and residual production and their selling price 

Further, from the above table we can easily evaluate the total amount of money generate from 

the plant. Which is roughly 15, 51,624 $. The selling price is taken from the Government of 

Indian Electricity board and converted to dollars. To see the rest of parameters follow the table 

no. 12. Moreover, by the using above table data we are able to find out the payback period and 

its graph which you can see in figure no.4.5 and 4.6. 

Parameter Unit Variant A 

      

Profit $/year 15,51,624 

      

Operating costs excluding depreciation and interest payments $/year 5,58,744 

Direct operating costs $/year 4,47,868 

      Raw materials $/year 50,987 

      Personal costs of employees of the operation $/year 93,312 

      Supervision $/year 13,997 

      Maintenance costs $/year 2,54,934 

      Consumables $/year 25,493 

      Laboratory $/year 4,666 

      Reserve $/year 4,479 

   Indirect operating costs $/year 1,06,124 

      Insurance $/year 35,691 

      Corporate directions $/year 70,433 

   Distributional costs $/year 4,752 

      Transport $/year 4,752 

Table 12 Expense and Revenue. 

 



 

Figure no. 4 5 Payback Period of 0% discount cash flow 

 

 

 

Figure no. 4 6 Payback period [Project cash flow and Cumulative cash flow] 
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The figure no. 4.5 shows the cumulative cash flow with 0% discount graph which meant quite 

uncertainty in payback period while the figure no. 4.6 shows the project cash flow and 

Cumulative cash flow with 0 % discount. The project cash flow is only the expense of primary 

cost where Cumulative cash flow describe the outer expense for running plants. According to 

the figures, we can estimate that our cash is started to flow back after 8 years which mean we 

will started to earn profit after 9 years. 

In the figure no. 4.7 we consider 5% discount in our Cumulative cash flow of our project which 

show the uncertainty of project cash flow and discount cash flow. By adding 5%, the payback 

period time is deflecting from the 10 years. Follow, Appendix E for more information. 

 

Figure no. 4 7 5% discount cash flow. 

The obtained years could seem to be unfeasible, but we shouldn’t forget that the assumption is 

to take 100 % bank credit. In India, government usually giving subsidies to build biogas plant 

or other plants with processing different kinds of renewable energy sources, also subsidies for 

electricity profit. These subsidies could vary from 30 % to 60 % of total investment cost. The 

electricity profit, with subsidies (green electricity), could increase electricity price from 2 to 4 

times. Assuming subsidies of 50 % for total investment cost only, we can decrease the payback 

period from 10 years to 4 - 5 years. The figure no. 4.8 and 4.9 shows the graph of cash flow 

rate with 5% discount subsidy plant. 
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Figure no. 4 8 Subsidies plant Cumulative cash flow 

 

 

 

 

 

Figure no. 4 9 Subsidies plant Cumulative and Project cash flow. 
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4.6 Project Time Schedule 

For construction, Installation and implementation of project, we must need proper time 

schedule of Project which shows how much time is require for one particular task. Project 

schedule must be prepared very carefully, problem arrives when time between two tasks is 

overlapping and if there will be long gap between two schedules would be not good for 

investor. Here, we have Project time schedule of Biogas plant, where double arrow shows the 

critical path of project. By comparing with actual time required, we can find out the deviation 

between actual and predicted time schedule. According to the block diagram, Documentation 

and design approval take 3 months. Further, Finalization of construction vendor and delivery 

of construction material will available at site take almost same time as construction 

procurement, 3 months. After 10 month Irrection of structure and buildings, Installation and 

commissioning of equipment on structure and Handover will take almost another 14 months. 

In the nut shell we can concluded that almost 1year is required to start the production of 

Electricity. This plant have capability to run 24*7 per year, expect some maintenance or trouble 

in plants, where 3 shift per day is optimum and every shift have eight hour of work. Show in 

figure no. 4.10. 

 

Figure no. 4 10 Project Time ScheduleApproval Authority 



The authority approval is key of every Industries or plants, without it we cannot start or run it. 

There are different kind of Authentication need for the project such as, Ministry, state or city 

are primary, Pollution control board for legislation, Construction, Environment, land 

acquisition approval from government authorities, Design and layout approval from client, 

safety approval.  

4.7 Environments Impact  

Though this kind of plant is somehow hazardous as well as have impact on environment, but 

by taking safety of plant and treating the wastages, we can lower the overall damage of 

environment. Further, By-products of Bio gas production and carbon emission are persistent 

and bio accumulative. Formation of hazardous Bio organic by-products begins with the 

production of residual. Extremely large quantities, on the order of one million tons per year of 

bio organic wastes are generated in bio gas plant. 

4.8 Location of Plant  

The location of plant must be outside of main city or town, because of toxicities in air. It should 

be at location where we have more way of transportation as well as convenient availability of 

raw materials. The location proposed for India is Mehsana, Gujarat where the availability 

Resource and customer are good.  

 

 

 

 

 

 

 

 

 



5. CONCLUSION 

We accomplished the following part of Biogas plant during our work. 

 Based on literature research of biogas production in India we investigated the max 

amount of availability of crops and manure for our task. Table no. 1 Showed us the 

amount of crop residual produce in India and our selected (Rice straw, What Straw 

and Maize straw) crops has a highest availability in all region. 

 

 Literature search also shows that mechanical disintegration of Rice, wheat and maize 

straw in hammer mill have good potential for our plant while adding beef manure 

maintain C-N ratio to 25 of substrates which increase the bio gas yield up to 70%. 

 

 After examination of the basic available parameters, detail flow sheet were prepared 

and 1000 kW of electricity power was chosen for plant.  

 

 Mass and Energy balance were calculated for each stream, suitable machine and 

equipment were adopt for biogas plant. Description of process stream, machines and 

equipment disposition are indispensable part of flow sheet. 

 

 Energy optimization of plant was done by recovery of biogas combustion exhaust, 

water heating in CHP unit to need place in plant as well as for household uses and 

water recirculation unit to avoid external usage of water in plant as well as energy use 

for transport of water. 

 

 Calculation of machine and equipment parameters were done based on our plant 

requirement. By the following data, capital cost were estimated for each machine and 

equipment.  

 

 After evaluation of capital cost of the plant(ISBL), external cost calculation were done 

for fixed capital cost (OSBL, Engineering Cost and Contingency Cost) which were 

around 3.04 Million $. 

 



 Economic analysis were done by putting the fixed capital cost value in our calculation 

table and also selected require parameter for evaluating payback period for the biogas 

plant. 

 

 The primary payback period of biogas plant were 12 years without discount rate but 

by adding 5% discount rate for our safety we found out it as a 15 years which is not 

quit feasible for an Investor. 

 

 But as we know from the research that Indian Ministry of New and Renewable Energy 

organisation provide 50% subsidy on green energy production as well as also help us 

to improve the selling price of electricity, we can concluded that our payback period 

will be less than 7 years. 

 

 By the all information we can easily predict and describe the project time schedule 

for an Investor because it was an important information for them. Based on our 

estimation we can say that it will take nearly 1 year or 24 months for fully operation 

of biogas plant. 

 

 At the end, flow sheet of plant were done in Auto cad 2d while most of all calculation 

like mass balance, energy balance and economy analysis were performed in Microsoft 

Excel. 

  



6. SYMBOL 

Basic quantities 

 

Q  Power         kW 

ηe  Efficiency for electricity production in       - 

Cogeneration unit   

Q_ch4  Combustion Heat           𝑘𝑊ℎ.−3 

Mi  mass flow rate of I components     Kg/s 

Yi   yield of methane in i component         N𝑚3.t_T𝑆−1

  

  Density        kg/m3 

V  Volumetric flow rate       m3/s 

Vf  Volume of fermenter       m3. 

T  temperature        C 

𝐶𝑝  Specific Heat            (𝑘𝑔.𝐾)−1 

t   time         Second 

ΔTln  Logarithmic mean temperature     C 

S  Heat transfer surface       𝑚2 

K  Overall heat transfer coefficient         (𝑚2.𝐾)−1 

𝐶𝑒  Capital cost        $ 

a, b, n  Correlation factor       - 

l  litter         l 

ΔG  Free energy        KJ/mole 

R  Universal gas constant      J/K.mole 



 

Subscripts  

 

𝐴𝐷  Anaerobic digestion  

LCFA  Long chain fatty acid 

ATP  Adenosine triphosphate 

VFA  Volatile fatty acid 

𝐵𝑂𝐷   Biological oxygen demand  

𝐶𝐻4   Methane  

𝐶/𝑁    Carbon/Nitrogen  

𝐶𝑂𝐷    Chemical oxygen demand  

𝐶𝑆𝑇𝑅   Continuous stirred tank reactor  

𝐶𝑂2    Carbon dioxide  

𝑁𝑎𝑂𝐻   Sodium Hydroxide  

OBL   Organic Batch Loading 

𝑉𝑆    Volatile solids 

DM  Dry matter 

oDM  Organic Dry matter 
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