
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 26, 2015

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Augmented Reality Game for Android

 Student: Uršuľa Žákovská

 Supervisor: Ing. Marek Žehra

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

The aim of the thesis is to design and implement a game using augmented reality (AR) on a mobile platform.

1. Perform a review of several games using AR on mobile platforms. Describe mainly the way how they use
AR.
2. Perform a review of tools for mobile platforms for development of applications with AR features. Choose
only those allowing Multiple Target Tracking.
3. Design your own game with AR features. The game must allow later extension to multiplayer mode with
more than 2 players.
4. Select implementation platform based on item 2 and implement a prototype of the game specified in
item 3. Part of the game can be played in offline single-player mode.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software engineering

Bachelor’s thesis

Augmented reality game for Android

Uršuľa Žákovská

Supervisor: Ing. Marek Žehra

17th May 2016

Acknowledgements

I would like to thank my supervisor Ing. Marek Žehra for all the suggestions
and support during the development process and writing of the thesis text.
Then I would like to thank my family for their care and support during my
study on CTU. Also, I want to thank CTU for giving me the opportunity to
go on an exchange program where I’ve gained the inspiration for this thesis.
Last but not least, big thank you to all anonymous contributors on the Unity
and Vuforia forum sites for sharing their solutions to known problems.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 17th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Uršuľa Žákovská. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Žákovská, Uršuľa. Augmented reality game for Android. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2016.

Abstrakt

Hlavním cílem této práce je analyzovat Rozšířenou realitu (AR) a její im-
plementaci na mobilních platformách. Byl proveden rozbor dvou hlavních
přístupů pro mobilní AR i revize současných řešení na trhu. Vzhledem k
tomu, že neexistuje jeden nástroj který by byl nejlepším řešením pro všechny
případy využití, byla taky provedena analýza nástrojů pro tvorbu mobilní
AR. Jako důkaz výsledků z předchozích analýz a příklad jejich praktického
využití, design mobilní hry s AR prvky byl navržen a její prototyp realizován s
Vuforia frameworkem [1] v herním enginu Unity [2]. Poté byl prototyp úspěšně
instalován na mobilním zařízení s operačním systémem Android a otestován
uživatelskými testy.

Klíčová slova Rozšířená realita, mobilní hra, Android, Unity, C#, Vuforia
UDT

ix

Abstract

The main goal of this thesis is to analyze Augmented reality (AR) and its im-
plementation on mobile platforms. Examination of the two main approaches
for mobile AR was conducted and a review of current market solutions was
performed. Because the single best solution for AR doesn’t exist, an exam-
ination of frameworks was conducted too. As a proof of the results from the
previous analysis and an example of their practical usage, an AR game was
designed and its prototype implemented with Vuforia [1] framework in Unity
[2] game engine. Then it was successfully installed onto the mobile device with
Android OS and evaluated by usability tests.

Keywords Augmented Reality, mobile game, Android, Unity, C#, Vuforia
UDT

x

Contents

Introduction 1
Goals and Motivation . 3

1 About AR 5
1.1 Real, Virtual and Augmented reality 5
1.2 Displaying AR . 7
1.3 3D Registration and Coordinate Systems 8
1.4 Sensor-based AR . 10
1.5 Computer vision-based AR . 12
1.6 Comparison . 17

2 Mobile AR applications 19
2.1 Few use cases of AR in mobile apps 19
2.2 Mobile AR games . 21

3 Mobile AR development 27
3.1 Tools for mobile AR . 27
3.2 Detailed comparison . 29

4 Design my own game 31
4.1 Recommended design concepts for CVB AR applications 31
4.2 Game system requirements . 32
4.3 Description of the game world 34
4.4 Use cases and their scenarios 38
4.5 Entities in the game mechanics 40
4.6 Scenes and UI screen flow . 42
4.7 My game design and 9PP . 42

5 Implementation 45
5.1 Selected tools and technology 45

xi

5.2 Unity . 46
5.3 Vuforia . 52

6 Usability Testing 55

Conclusion 57
Personal evaluation . 57

Bibliography 59

A Acronyms 65

B Screenshots and photos 67

C Contents of enclosed CD 71

xii

List of Figures

0.1 Augmented reality (Wikipedia) . 2
0.2 AR and HMD US patent holders (Envision IP 2015) 3
0.3 Installed Base of Mobile AR Apps (Tractica LLC. 2015) 3

1.1 There is endless number of different worlds in VR (author) 6
1.2 Mixed Reality in Virtual Continuum (author) 7
1.3 Most popular ways of displaying AR (author) 7
1.4 Different Coordinate Systems in 3D registration (author) 9
1.5 Perspective projection of a point (author) 10
1.6 Relation of different coordinate systems (author, based on original

from [18]) . 11
1.7 Paul Lawitzki’s algorithm for sensor fusion (author, based on the

original in [21]) . 12
1.8 Tracking pipeline for Computer vision-based AR (author) 13
1.9 Various 2D-Barcode markers used in industrial systems to carry

data, these four say "Bachelor thesis: Augmented reality game for
Android, 2016" (author) . 14

1.10 Frame (fiducial) markers can vary depending on the SDK (Vuforia,
ARToolKit) . 14

1.11 Process of image descriptors creation in Bag-of-Words model (author) 15
1.12 Regions of interest for flat, edge and corner area of an image (author) 16
1.13 SIFT: (a) part of the image with magnitude and orientation of its

gradients (b) keypoint descriptor created from neighbouring gradi-
ents (author, based on the original in [26]) 17

1.14 Corresponding features from image target in the databese to target
in the camera frame (used Harris corner detector for interest region
detector) (author) . 18

2.1 AR Defender 2 ([41]) . 23
2.2 Tilt Augmented Reality ([42]) . 23

xiii

2.3 AR Warriors (author) . 24
2.4 AR Invaders ([47]) . 25
2.5 Pokémon GO ([49]) . 26
2.6 mobile AR games ([40], [43], [44], [46], [48]) 26

4.1 Images of some nasty viruses from the game prototype (author) . . 34
4.2 Platform with 2, 3 or 6 AVUnits (bottom left, upper middle, bottom

right)(author) . 36
4.3 5 different types of members (from left to right: Base, Cleaner,

Scanner, Patch and Shield) from various color sets (author) 36
4.4 From left to right: Captain member (can use any equipment), de-

fence equipment (helmet, armor), offence equipment with straight
trajectory (gun, shurikens, laser glasses) and offence equipment
with arc trajectory (grenade, bomb) (author) 37

4.5 Entities in the menu stage of the game (in implementation it is
Menu scene) (author) . 41

4.6 Entities in the battle stage of the game (in implementation it is
Battle scene) (author) . 41

4.7 Scenes and UI screen flow (author) 42

5.1 Execution Order of Event Functions in Unity (author, based on
original from Unity Documentation [66]) 47

xiv

List of Tables

1.1 Comparison of common tracking technologies. 18

2.1 9 Pre-design patterns for AR mobile games [38] 22

3.1 Comparison of computer vision-based features in AR SDKs. 29
3.2 Recommended frameworks for different use case scenarios 30

4.1 My game design and 9 Pre-design patterns as a criteria of evaluation 43

xv

Introduction

People surround themselves with more and more technology starting from
television, notebooks to smartphones or smartwatches. In the past, we could
easily differentiate between real and virtual experience. Interaction in the
virtual world had no connection to our current physical world and vice versa.
But today almost everyone uses technology that combines both of these worlds.
We found a new way to interact with them by creating modified versions of
them and merging them into one.

AR (Augmented reality) means extending real world with computer gen-
erated elements to get more information or more immersive experience for the
user. Most of these elements are meant to enhance our vision, especially in
mobile AR. Mobile AR applications are greatly in demand because we take
our phones almost everywhere and we rely on them during everyday life. That
brings us countless situations where we can use an application with AR.

In fact, AR market grew significantly in the last years and already entered
all major industry fields. It is no longer only a tool for academic use or a project
for a big team of scientists. Nowadays it is heavily used in advertisement,
shopping & retail, arts & games, language translation, education, military,
medicine, cinematography, navigation, sport and many more.

There are a lot of companies that benefit from a very simple AR applica-
tion. For example The Sunshine Aquarium in Tokyo yielded a 152% boost in
ticket sales [4] based entirely as a result of the AR mobile application street
guide [3], in which little penguins show visitors the way to the aquarium. The
IKEA product catalog [5] mobile app that allows you to visualize furniture
inside your home is very well known, but there are a lot of other companies
that use this strategy. For example Mitsubishi Electric uses the AR based
mobile app [6] to let customers visualize air conditioning units in various loc-
ations of their homes and maintain them. Not only it is saving money (in this
case 2 million dollars) for printing costs because the product models can be
stored entirely on the device instead of a traditional paper catalog, but they
also recorded a 50 million dollar boost in sales in response to the success of

1

Introduction

the app [7].

Figure 0.1: Augmented reality (Wikipedia)

On the other hand, numerous companies invested millions of dollars into
the development of AR technology and equipment (e.g. Google Glass, Vuzix
M100, Epson Moverio BT-2000, Sulon Cortex, Meta SpaceGlasses, Samsung
Glass Gear, i2i iPal, Seebright, Sony SmartEyeGlass, LG GG Glass, Microsoft
MG Glass, castAR, Atheer One, vrAse [8]). Chart 0.2 made by Envision IP
[9] shows the biggest patent holders in AR in 2015. In comparison to today’s
situation, the chart is missing Apple, which acquired Germany-based Metaio
GmbH [10] in 2015, which owns over 170 patents worldwide with 25 issued in
the US.

Naturally, all this hype and advance in technology is forcing developers
to create software suitable for these new platforms. However for now, the
most popular AR mobile platforms remain Android and iOS. Both of them
have big base of users and there is abundance of software development tools
native or otherwise which can be used for AR development targeting these two
platforms. Tractica [11] in 2015 created a chart to demonstrate how rapidly
is the AR mobile market growing (picture 0.3). According to Tractica there
were 292 million actively used mobile AR apps in 2015 and this number is
supposed to grow to 2.2 billion by 2019, which represents approximately 76%

2

Goals and Motivation

Figure 0.2: AR and HMD US patent holders (Envision IP 2015)

Figure 0.3: Installed Base of Mobile AR Apps (Tractica LLC. 2015)

annual growth rate.

Goals and Motivation

Mobile AR is not a recent concept, it was here for many decades, but new
innovations introduced in the past few years (mentioned above) in combina-
tion with constant improvements in hardware are promising a good future for

3

Introduction

mobile AR developers. Also, an important factor is an increasing acceptance
by the general public, which means even more areas for AR implementation.

This thesis aims to analyze current situation in the AR technology, mobile
apps and development tools. It should explain in more detail what is possible
to do in today’s mobile applications and what tools are most suited for their
development. In the second part of this thesis, a design and implementation
of such application is done and the resulting prototype is tested.

4

Chapter 1

About AR

A lot of people tend to get confused between AR, VR (Virtual reality) and
CG (Computer Graphics) effects, especially when it comes to cinematography
because there is no shortage of sci-fi and fantasy movies which would feature
computer generated content. In this chapter they are defined both, VR and
AR, implicitly explaining what CG effects are not. Then a more detailed
explanation of mobile AR and what it consists of follows.

1.1 Real, Virtual and Augmented reality

What is the so called reality? Depending on the field, this could became a
very tricky question. Luckily we can take a non-philosophic approach and say
that we perceive reality through our senses, which are only electrical signals
produced by our nerve cells. Which means, that as soon as our brain starts to
consider a computer generated objects as part of our world, we shall take it as
a reality, but we can’t forget that it’s still only an illusion.

For this, we categorise computer generated reality as a virtual reality. We
come in contact with virtual worlds more often than we think. It’s starting
to get obvious that very soon we won’t do without it in areas like medicine,
architecture, education, product design and retailing. Just like in [15], which
says that VR "is a computer-generated environment that provides the user
with the illusion of being present in that situation. Virtual reality is produced
by providing feedback to our various senses: vision, hearing, movement and
sometimes smell. As the user moves or acts, the image seen will change along
with appropriate sound and movement." many people agreed on two main
characteristics differentiating VR from other computer generated products like
movies or pictures:

• It’s in 3D. Geometric objects in virtual environments have to have some
physical properties relative to their alternate world. However, they don’t

5

1. About AR

necessarily resemble our world, they can have abstract non-photorealistic
appearance too.

• Interactive real-time rendering. We are not only observers, but also
participants in the course of this VR world. Especially in immersive
VR this requires specific human-computer interfaces based e.g. on hand
gestures.

(a) Polygon style VR

(b) Open world VR (c) Indoors VR

Figure 1.1: There is endless number of different worlds in VR (author)

This bears a question: What shall we call it if it combines both, real and
virtual worlds? Answer to this was published in 1997 by Ronald Azuma in his
comprehensive survey on augmented reality [12]. He defines AR as any system
that has the following three characteristics:

• registered in 3D

• interactive in real time

• combines real and virtual

Depending on the ratio of real vs virtual content, researchers proposed di-
versity of theories and models. The most popular being Virtual Continuum
[13] created by Milgrim and Kishino in 1994. They categorize Augmented
Reality as a version of Mixed Reality, where the other side of the range is
called Augmnented Virtuality (picture 1.2).

6

1.2. Displaying AR

Figure 1.2: Mixed Reality in Virtual Continuum (author)

Important fact is, that majority of Mixed reality is targeting visual aug-
mentation. Mostly because it is our most dominant sense (we perceive up
to 80% of all impressions by means of our sight), but also because it is the
easiest one to enhance. That is why the rest of this thesis is focused solely on
enhancing visual perception omitting hearing and other senses.

1.2 Displaying AR

Current technology offers us two commonly used displaying methods.[18] First
one is called optical see-through technology (OST). This requires semi-transparent
screen. Digital content is projected on the screen, while the whole surround-
ing area is still visible (picture 1.3a). This moves merging of real and virtual
content to observers retina. Also our perception of real world is intact, which
lowers the probability of physiological side effects.

Second one is called video see-through technology (VST). Observer is not
able to watch real world directly, but only a video of it taken by the camera
and displayed on the screen. Which means that merging of the real and vir-
tual content is happening before the data is displayed on the screen (picture
1.3b). This can cause multiple complications including physiological ones for
the observer. Possible factors that can contribute to these undesirable side
effects, are narrow field of view of the camera, time lag, low update rate, poor
resolution and in case of stereo, a spatial stereo mismatch.

(a) Optical see-through (OST) (b) Video see-through (VST)

Figure 1.3: Most popular ways of displaying AR (author)

AR on mobile platforms is currently produced via VST and because this
thesis is focused on mobile AR, the rest of this thesis will consider only VST

7

1. About AR

technology, counting on the unwritten rule that all today’s smartphones have
build-in camera.

1.3 3D Registration and Coordinate Systems

Random overlaying of the computer generated data over the camera feed is not
enough. The device needs to know where it is in the world to offer us relevant
extra information about our position or objects in our immediate or distant
proximity. Ideal information format would include data about all six degrees
of freedom (6DOF) [20]: three variables (x, y, z) for position and three angles
(yaw, pitch, roll) for orientation. Many approaches exist for 3D registration
and to increase precision and stable results a lot of tracking algorithms can
be implemented as well, then it is not only relevant what happens in separate
frames, but information is handled on frame-to-frame basis.

Best registration approach depends on the environment and nature of the
augmented data. 7 basic approaches (mechanical, ultrasonic, magnetic, op-
tical, radio, inertial and GPS (global positioning systems)) exist in general
AR, but for the purpose of mobile AR, only 2 approaches are being realized.
Mostly because other approaches are not suitable for outdoors or they require
special equipment. These two approaches are called Sensor-based (section 1.4)
and Computer vision-based (section 1.5). More on them in their respective
sections.

Because everything is happening in 3D, it needs to have some rules to keep
things in order. This mostly concerns CVB (Computer vision-based) AR. All
virtual objects to be displayed on the screen are in the so called scene, in
hierarchical relationships to each other. The goal is to correctly position and
rotate virtual camera in the scene, so that it represents position and rotation
of the mobile device (or its physical camera) in the real world. If it is done
correctly, contents of video feed from physical camera are properly aligned
with contents of virtual camera renderings of virtual objects and the illusion
of coexistence of these two worlds is kept.

Most common way of extracting position and rotation of objects in the
scene is to use Euclidean Geometry and ECS (or shortly CS standing for
Euclidean Coordinate System). Scene itself has ECS called Global Coordinate
System or World Coordinate System (WCS). Virtual Camera itself has its
own Coordinate System (CCS) and the same goes for all virtual objects in
the scene, each has a separate Local Coordinate System (LCS) with origin
typically in the centre of itself. These Coordinate Systems are important e.g.
in parenting of an object.

Each object in the scene has certain position, rotation and scale, these
characteristics are all represented by values in object’s transformation mat-
rix. Because of the hierarchical relationships between objects in the scene,
transformation matrices don’t have values in reference to WCS, but they are

8

1.3. 3D Registration and Coordinate Systems

Figure 1.4: Different Coordinate Systems in 3D registration (author)

in reference to the LCS of their immediate parent. Which means that if Ob-
ject A is child of Object B, but object B doesn’t have any parent (except for
the scene itself), local transformation matrix of the object B is the same as
its global transformation matrix. On the other hand, global transformation
matrix of Object A is a result of its multiplication with its parent’s (Object
B’s) transformation matrix. With deeply nested objects the process is applied
recursively to each parent of a parent.

After repositioning virtual camera in the scene to represent physical camera
in real world and calculating global transformation matrix for each object in
the scene, it’s necessary to project these objects onto the camera frame and
then on the screen in Display Coordinate System (DCS). Projection matrix is
used for this conversion of 3D coordinates into 2D coordinates.

In the scenario where three-point perspective projection is used to project
point P with coordinates (x, y, z) onto point P’ (xp, yp, 0) on plane (z = 0)
from Center of Projection (COP), projection matrix should look like this [14]:

x′

y′

z′

1

 =


1 0 0 0
0 1 0 0
0 0 0 0
p q r 1



x
y
z
1

 =


x
y
0

px+ qy + rz + 1

 ≡


x
px+qy+rz+1

y
px+qy+rz+1

0
1


Values p, q and r are derived from the distance between individual values

of camera coordinates to P coordinates, e.g. in simplified situation where COP
is located on a positive part of Z axis at distance d from the origin (picture
1.5), while deriving xp there will be a substitution of −1

d for r. By considering
similar triangles, obtaining xp is as follows:

xp
d

=
x

d− z
=⇒ xp =

xd

d− z
=⇒ xp =

x

1− z
d

=
x

1 + zr

This is basically projecting Point P onto camera frame and it’s using ex-
trinsic parameters to do so, but it’s still missing part of the camera calibration

9

1. About AR

Figure 1.5: Perspective projection of a point (author)

process. This part of calibration is concerned with intrinsic parameters of the
projection matrix. Coordinates of P’ in the camera frame (not CCS) are usu-
ally not the same as coordinates of P’ on the screen of the display (DCS). Each
screen has specific unit range depending on the pixel resolution. If coordin-
ates of P’ on the screen are (xs, ys) in pixels, (sx, sy) is the effective physical
size of the pixel and (ox, oy) are the coordinates in pixel of the screen center,
then matrix for projection of point P’ from camera frame to screen frame is as
follows [19]:xsys

1

 =

− 1
sx

0 ox
0 − 1

sy
oy

0 0 1

x′y′
1


Above relationships are relying on the virtual camera being based on sim-

plified pinhole camera model.

1.4 Sensor-based AR

Nowadays, majority of famous applications which use AR such as Wikitude
World Browser [16] or Yelp Monocle [17] use sensor-based AR "generally re-
ferred to as a GPS plus inertial AR (or, sometimes, outdoor AR system).
Sensor-based AR uses the location sensor from a mobile as well as the orient-
ation sensor. Combining both the location and orientation sensors delivers the
global position of the user in the physical world." [18]. Sensor-based system is
ideal for browser applications, displaying simple (in a sense of computation)
information about objects, buildings or establishments in user’s location.

Actually GPS is only one example of common technology used for global
tracking in reference to earth coordinate system. It’s an American version of
global navigation satellite system (GNSS). Other versions are e.g. European
Galileo and Russian GLONASS, but GPS is the only one fully supported by
majority of mobile devices. Thanks to Assisted GPS (A-GPS) direct visibility
with at least four satellites is not necessary anymore. Support of a worldwide

10

1.4. Sensor-based AR

network of servers and base stations ensures signal broadcast in previously
unreachable areas like indoor environments or canyons. GPS by itself has an
accuracy between 10-15 meters, but with special preparations and equipment
its estimation can be accurate within centimeters. [20] Complications come in
place when data from GPS needs to be used with AR system that doesn’t have
its coordinates in reference to earth coordinate system but in ECS instead. In
that situation, conversion of latitude and longitude coordinates needs to be
done. One of the options is to convert data to an ECEF (Earth-Centered,
Earth-Fixed) format and to use an additional coordinate system, the ENU
(East-North-Up) coordinate system (picture 1.6). One of the disadvantages of
GPS registration is that if the movement of the device is too fast or too small,
position reported by the GPS module can cause a lag in the application due
to inaccurate or slower update.

Figure 1.6: Relation of different coordinate systems (author, based on original
from [18])

Inertial AR is composed from orientation sensors, which can give us very
precise tracking information about rotation and acceleration of the phone. In
the current generation of mobile devices three types of orientation sensors are
bulid-in [18]:

• accelerometers detect acceleration of a mobile device, it is also known
as g-force acceleration. Most common model is a multi-axis which re-
gisters acceleration in 3 axes: pitch, roll, tilt. They were the first inertial
sensors to be build into the mobile phones. They are very cheap, but
rather inaccurate.

• magnetometers can detect the earth’s magnetic field. Most of the time
they work as compass, measuring the magnetic field in three dimensions.
Analogicaly as in the case of a compass, the result gets easily corrupted
by magnetic or metallic objects in their close proximity.

• gyroscopes are more accurate in the beginning than accelerometers or
magnetometers, but their precision decreases with increasing time. They

11

1. About AR

measure angular velocity using the Coriolis Effect. They are a multi-axis
miniature mechanical system (MEMS) which uses vibrating mechanisms.

Different manufacturers produce different quality of these sensors. Lower qual-
ity often causes bad side effects of noise, drift or inaccuracy in the measured
data and forces application to move or rotate the virtual content without an
actual movement of the device. To improve this, a technique called sensor fu-
sion is used, where shortcomings of one sensor are (to certain degree) balanced
by results from other sensor. In the picture 1.7 you can see a diagram of Paul
Lawitzki’s algorithm [21] which is only one of many ways how data from these
sensors can be merged.

Figure 1.7: Paul Lawitzki’s algorithm for sensor fusion (author, based on the
original in [21])

1.5 Computer vision-based AR

Idea behind CVB AR is acquiring data and information about surrounding ob-
jects from the video stream taken by camera. It employs numerous algorithms
like edge, corner or blob detection to recognize objects in the received video
frame. Object that algorithms are looking for, is called target and it can be
represent by an image, object, group of images or by anything else that is dis-
tinguishable with camera. CVB 3D registration is more robust, but it takes a
toll on processing. The least computationally expensive targets are 2D image
markers with high contrast in color like QR codes and the most costly ones are
3D objects. Nevertheless the tracking pipeline is roughly the same, starting
with camera frame grabbing and ending with the final 6DOF pose. Picture 1.8
represents a tracking pipeline for markerless NFT (Natural Feature Tracking)
AR (more in subsection 1.5.2).

(A) First a new frame is acquired, then (B) reliable and strong features
must be detected in each new frame. Detected features are contained within
a small image patch with constant size, e.g. 8x8 pixels. (C) Afterwards,

12

1.5. Computer vision-based AR

Figure 1.8: Tracking pipeline for Computer vision-based AR (author)

those features have to be matched against a previously created feature data-
base holding reference features of the target to be tracked. Common matching
methods comparing values of pixels are Sum of Squared Differences (SSD) and
Sum of Absolute Differences (SAD). (D) Descriptors must be calculated for
all camera features used for matching. (E) If enough correspondences between
camera and database features can be found, then the associated 6DOF camera
pose may be calculated (or any other 3D registration model). (F) Typically
some feature correspondences are faulty and must be removed during the pose
determination. (G) The pose can be refined using additional feature corres-
pondences e.g. those found using the just extracted pose. (H) 6DOF pose
or other model is forwarded to the underlying system and whole pipeline will
restart for the next frame. Information from the previous camera frame, e.g.
the previous pose, can be used to improve tracking performance and accur-
acy in the frame-to-frame tracking. [22] View point variation, illumination,
occlusion, scale, deformation, background clutter and intra-class variation are
in general biggest problems that CVB algorithms need to face.

1.5.1 Marker based

In the past, it was of utmost importance to use computationally efficient al-
gorithms to maintain a constant frame rate at 30 Hz, which leaves only 33 ms
for all the computations each frame. Therefore, first image targets where as
simple and distinguishable as possible. Fiducial markers (also called Frame
markers) fit the description. They are usually defined in black and white or on
a grayscale level. Black and white markers are most feasible for detection with
bad lighting conditions. Process of recognizing a marker in captured camera
frame image is combination of simpler algorithms like edge or line detection,
starting with binarization of the frame image via thresholding, which is taking
advantage of high contrast in the marker image. This simplifies the process
of tracking pipeline. Template and 2D-Barcode markers are the two types
of markers used in this technique. 2D-Barcode marker also known as data
marker or ID marker, consists of black and white data cell holding information
about object of interest or landmarks. Good example of 2D-Barcode marker
is QR (Quick Response) code. [23] QR code is capable of encoding all types of
data: alphanumeric characters, Kanji (Japanese), Kana (Japanese), Hiragana
(Japanese), symbols, binary, and control codes. Its error correction ability

13

1. About AR

can restore data from a sample that is dirty or damaged on up to 30% of its
area. Together with other great features like readability from any direction,
this makes QR code a suitable candidate for industrial marking.

(a) QR (Quick Re-
sponse Code)

(b) Aztec Code
(public domain)

(c) Maxicode (US
Postal Service)

(d) Datamatrix (Mi-
croscan Systems)

Figure 1.9: Various 2D-Barcode markers used in industrial systems to carry
data, these four say "Bachelor thesis: Augmented reality game for Android,
2016" (author)

Frame markers used in prevailing AR SDKs (Software Development Kit)
are template markers usually customized to fit special user needs of that par-
ticular SDK. Template marker is black and white marker composed of a single
image inside a black block border. Insides of the border have specific design
to indicate ID of the marker. Some companies choose to make customizable
markers like Vuforia with their fixed set of 512 different IDs (picture 1.10a),
but some focus on the versatility like ARToolKit [25]. ARToolKit offers set of
markers with 3x3 matrix of squares, which yields 64 rotationally unique pat-
terns that are associated with predetermined identifiers (IDs) (picture 1.10a).
If 64 is not enough, the user can choose markers with 4x4, 5x5 or 6x6 matrices
and respectively 8192, 4194304 or 8589934592 IDs. They also have a combina-
tion of marker and markerless technique, when the insides of the black border
are completely designed by the user.

(a) Vuforia frame marker, ID 0 (b) ARToolKit frame marker

Figure 1.10: Frame (fiducial) markers can vary depending on the SDK
(Vuforia, ARToolKit)

14

1.5. Computer vision-based AR

1.5.2 Markerless

This method is very powerful. Not only target doesn’t have to have limiting
characteristics like black and white color or block border, but it also doesn’t
have to even be known beforehand, because the user can define the target
during game-play, although it is helpful if it follows certain rules like no re-
peating patterns, high contrast, no reflective surface, etc. In comparison to
marker-based approach it requires significantly more in terms of processing.
If the target is a 2D image, then it is also called Natural feature-based AR
(NFT). Each target needs to be first added to the database in form of a set of
feature descriptors.

Figure 1.11: Process of image descriptors creation in Bag-of-Words model
(author)

Best way how to describe this process is to use bag-of-words model (pic-
ture 1.11). First "interest regions" (regions with highest potential occurrence
of unique features) are detected, then they are described by feature descriptors,
descriptors are quantized into "visual words" and each target image is repres-
ented as a histogram of visual words.[26]

Most popular interest region detectors are [27]

• Harris detector

• Difference of Gaussians (DoG)

• Laplacian detector

• Scale Saliency

• Maximum stable extremal regions

Here is an explanation of Harris detector to demonstrate the work-flow of
interest region detectors. This algorithm is extracting corners from the target
image. Corners are useful, because they are rotationally invariant and they
have an explicit center point (picture 1.12).

First it calculates change of intensity E(u,v) (equation 1.1) for the shift
I(x,y) with window function of w(x,y), which has Gaussian layout for signi-
ficance of point value (equation 1.2). By deriving E(u,v) into a form with
matrix M (by using Taylor’s expansion and ignoring higher order items), it
can calculate a pair of eigenvalues (λ1, λ2) for M. Then it calculates corner
response R (equation 1.3) and based on fixed threshold it determines whether

15

1. About AR

Figure 1.12: Regions of interest for flat, edge and corner area of an image
(author)

it is a corner, or not. Repeating this for each point of the marker image, it
finds points with large R and picks local maxima from among them.

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2

=
∑
x,y

w(x, y)[Ixu+ Iyv +O(u2, v2)]2

∼= [u, v]M

[
u
v

]
(1.1)

w(x, y) = exp(−(x2 + y2)

2σ2
) (1.2)

R = λ1λ2 − k(λ1 + λ2)
2, 0.04 ≤ k ≤ 0.06 (1.3)

After selecting interest regions (interest points in case of Harris detector),
they need to be described by one of the descriptor formats. Most common
descriptors are [28]

• SIFT (Scale Invariant Feature Transform)

• Steerable filters

• Spin images

• PCA-SIFT

• Gradient Location and Orientation Histogram(GLOH)

• Shape context

• Geometric blur

For example the SIFT descriptor algorithm computes the gradient mag-
nitude and orientation at each image sample point in a region around the
keypoint location selected by the interest region detector in the previous step.

16

1.6. Comparison

Then they are weighted by a Gaussian window (indicated by the overlaid circle
in picture 1.13a). After that a orientation histograms are created (in the pic-
ture 1.13b only 2x2 descriptor array is computed from an 8x8 set of samples).
The most complex complete SIFT descriptor is created from 16x16 samples
and has 8 orientations for each 4x4 histogram array cell which means 128
dimensions. [26]

(a) Image gradients (b) 2x2 keypoint descriptor

Figure 1.13: SIFT: (a) part of the image with magnitude and orientation of its
gradients (b) keypoint descriptor created from neighbouring gradients (author,
based on the original in [26])

When application is running, matching of current descriptors extracted
from camera frame against all descriptors in the database by brute force is not
an option. Since for each frame usually 50-100 features have to be matched
against 5000 features in the database SIFT implementation uses a k-d Tree
together with a Best-Bin-First strategy to minimize the number of comparis-
ons. Matched features determine target’s position and rotation in the camera
frame (picture 1.14) and 3D registration begins.

1.6 Comparison

Obviously each method for 3D registration has its pros and cons. There isn’t
an ultimate solution and that is why developers have to first analyse which
approach is the most suitable for their issue’s domain. Because each approach
is lacking in some sense (image capturing capability, sensor information ac-
curacy, data availability on networks, energy consumption, computation costs,
sensitivity to lightning conditions, etc.), it is very common to combine 2 or 3
of them to achieve the desired results. In table 1.1 is a comparison of some
of these techniques for mobile platforms. [29] Range column represents size
of the region that can be tracked within. Setup column has amount of time
for instrumentation and calibration. Precision column shows granularity of
a single output position. Time column represents duration for which useful

17

1. About AR

Figure 1.14: Corresponding features from image target in the databese to
target in the camera frame (used Harris corner detector for interest region
detector) (author)

tracking data is returned (before it drifts too much) and Environment column
shows where the tracker can be used (indoors or outdoors).

Table 1.1: Comparison of common tracking technologies.

Technology Range(m) Setup(h) Precision(mm) Time(s) Env
Marker-based 10 0 10 ∞ in/out
Markerless 50 0-1 10 ∞ in/out
GPS ∞ 0 5000 ∞ out
WiFi 100 10 1000 ∞ in/out
Accelerometer 1000 0 100 100 in/out
Inertial 1 0 1 10 in/out

18

Chapter 2

Mobile AR applications

Before anyone begins to implement a new technology into their designs, they
need to make sure that it has its use in there. So the question would be what
can AR bring into mobile applications? Or even better question would be
what can only AR bring into mobile applications? In section 2.1 are current
successful applications that have a very clear answer to that question. There
are intentionally no AR games, first of all because I personally don’t consider
the ones on the market to be on the same level as the applications mentioned
there and secondly, because analysis on AR games is in the section 2.2. That
section is primarily focused on the question will user understand it? Because
everyone can have good idea, but that is rarely enough. Especially when there
is a new technology that is not very well known. Most people wouldn’t know
how to control the application, which means designers need to test and anti-
cipate their action or rely on established design patterns to make appropriate
adjustments in the user interface (UI).

2.1 Few use cases of AR in mobile apps

There are certain prevailing types among existing successful AR applications.
The following examples are trying to illustrate the most dominant trends. In
addition to these trends there is a continual interest in using AR in educational
applications, but they are usually more content oriented than concept oriented.

2.1.1 Augmented reality browser

Wouldn’t it be great if product could advertise itself? Imagine you are in the
DVD shop and there are 3 different movies that you are trying to choose from,
but you can’t decide. Wouldn’t it be just sweet if you could quickly check out
their trailer or read some critique? Of course you can search for them on the
Internet yourself, but that’s just tedious and majority of consumers wouldn’t
bother doing that. But what if you could just activate an app on your phone,

19

2. Mobile AR applications

aim the camera on the from page of the cover and get all the content related to
the movie? That certainly doesn’t sound like a big hassle, especially if the same
app worked not only for movie covers, but for other things too, like grocery
products, magazines, brochures, logos etc. Applications like this already exist.
Right now two most popular augmented reality browsers are Wikitude [16]
(on Android and iOS) and Layar [30] (on Android and iOS). They specialize
in AR presentation of campaigns, projects, promotions, games and personal
content. They can provide consumers with videos, animations, 3D models,
Facebook and “Buy Now” buttons. Usually their strongest suit is computer
vision-based AR, but they often integrate sensor-based AR as a secondary
source of information or they are all-together a mixture of AR browser with
crowd-sourced location guide.

2.1.2 Crowd-sourced location guide

Built on social media exposure and the need of marketing for small local busi-
nesses, a lot of applications can provide user with lists of restaurants, shops,
sigh-seeing spots and services with their according ratings & reviews just based
on user’s location (sensor-based AR). Naturally the biggest appreciation comes
from people who just moved in and are not familiar with their new environ-
ment or tourists, who are deliberately searching for fresh ideas to try. It is not
a surprise that credibility of the information displayed by these apps is quite
questionable, because of all the bad effects social media can have, but it can
also often prove itself more useful than any other certified guide book, which
unlike these apps can become outdated. Yelp [17] (on Android and iOS) and
Field Trip [31] (on Android and iOS) are just two examples of crowd-sourced
location guides.

2.1.3 Face recognition

Since the rise of social media a lot of people started to upgrade their profile
pictures with additional computer generated content like emoticons or so-called
stickers. It went even further and now its completely possible to make a video
calls wearing a virtual hat on your head or a moustache on your face. Mybrana
[32] (on Android and iOS) has such features and many more for real-time
picture editing, which can be then instantly shared by their social network.
It’s probably not necessary to mention that it is a computer vision-based AR
recognizing face patterns.

2.1.4 Text recognition

Anyone who ever travelled in a foreign country, where they use an unfamiliar
language, knows how frustrating it can be to translate signs and information
tables, especially when they use different writing system or alphabet set. That

20

2.2. Mobile AR games

is why, one of the best apps with computer vision-based text recognition is
Google translate [33] (on Android and iOS), which enhances user with a trans-
lation of that text.

2.1.5 Outdoor guides

Applications showing additional information about surrounding environment
or sky using sensor-based AR (sometimes supported by computer vision-based
AR). 3 great representatives of this type of AR applications are Theodolite
[34] (on iOS), Star Walk [35] (on Android and iOS) and Sun Seeker [36] (on
Android and iOS). Theodolite is a multi-functional viewfinder. It includes
compass, two-axis inclinometer, rangefinder, GPS, maps, tracker and many
more, which makes it a great app for any outdoor adventurer. Star Walk is
a fully packed encyclopedia about celestial bodies and their constellations. It
serves faithfully to any astronomy junkie or stargazing romanticist. Last but
not least Sun Seeker, is an app showing information about sun and daylight
sky. It has data about anything from solar paths, its hour intervals, its equinox,
winter and summer solstice paths to rise and set time. It is an ideal tool for
photographers, gardeners or architects.

2.1.6 Traffic navigation and alerts

Most people would separately buy a GPS navigation and permanently mounted
it in their vehicle, but nice thing about using a navigation app from phone is
that it can also incorporate other functions of the phone, e.g. camera. iOnRoad
Augmented Driving [37] (on Android and iOS) monitors objects in front of the
driver in real-time (computer vision-based AR), calculates the driver’s current
speed (sensor-based AR) and as the vehicle approaches, alerts (with an audio-
visual warning pop-ups) about a possible collision, allowing the driver to brake
in time.

2.2 Mobile AR games

Because at least part of the mobile AR games is from real world, the other
part, augmented part, is based on Reality-Based Interactions (RBI), so that it
can mix as seamlessly as possible. Publication [38] deals with design patterns
for RBI in mobile AR games. These design patterns leverage different embod-
ied skills (naïve physics, body awareness and skills, environmental awareness
and skills, social awareness and skills)[39]. Embodied skills are part of em-
bodied cognition, which is defined in [38] as "Embodied cognition posits that
our understanding and interpretation of the world around us is rooted in our,
often unconscious, experience of our bodies. Through bodily interactions with
the physical world, we develop “image schemas” that encode the structure and
relationships learned in these encounters. These schemas are then adapted

21

2. Mobile AR applications

and applied to future experiences through the cognitive process of “metaphor-
ical mapping.”" In this case, substitution for physical world would most likely
be mobile games without AR or board games in real life. Nevertheless in [38]
they derive 9 very comprehensive pre-patterns (9PP) for mobile AR games
(table 2.1), which should anyone designing an AR mobile game follow or at
least keep in mind.

Table 2.1: 9 Pre-design patterns for AR mobile games [38]

Title Meaning Embodied
skills

Device
metaphors

Using metaphor to suggest available player
actions

body a&s,
naïve physics

Control
mapping

Intuitive mapping between physical and di-
gital objects

body a&s,
naïve physics

Seamful
design

Making sense of and integrating the techno-
logical seams through game design

body a&s

World
Consistency

Whether the laws and rules in physical world
hold in digital world

naïve physics,
environmental
a&s

Landmarks Reinforcing the connection between digital-
physical space through landmarks

environmental
a&s

Personal
presence

The way that a player is represented in the
game decides how much they feel like living
in the digital game world

naïve physics,
environmental
a&s

Living
creatures

Game characters that are responsive to phys-
ical, social events that mimic behaviours of
living beings

body a&s,
social a&s

Body
constraints

Movement of one’s body position constrains
another player’s action

body a&s,
social a&s

Hidden
information

The information that can be hidden and par-
tially revealed can foster emergent social play

body a&s,
social a&s

The following 10 games demonstrate both, good and bad, application of
these 9 pre-patterns. They are roughly ordered in decreasing ratio of computer
vision-based AR vs sensor-based AR and they all have some unique features
either in the way they use AR or in their game-play and that is the reason
why they were chosen.

2.2.1 AR Basketball

Available on iOS [40]. Simple basketball game (picture 2.6a), where player
can throw a ball using swipe gestures. It requires player to print the image
target for computer vision-based AR beforehand. As said before, it is a simple

22

2.2. Mobile AR games

game, so once the player learns the best combination of settings it is almost
impossible to miss, but thanks to the well polished visual and sound effects
it’s still a good game for distraction. As far as 9PP go, World consistency,
Landmarks and Personal presence are very strongly integrated into the game-
play, because it seams as if the ball was always thrown from just below the
device (metaphor to throwing a ball in real life) and as it follows gravity rules,
it is aimed at a hoop, the only (except for the ball) computer generated object
in the game.

2.2.2 AR Defender 2

Figure 2.1: AR Defender 2 ([41])

Available on iOS [41]. This game
takes an old tower defence concept
to a new level. Game is playable in
a pure VR but player can toggle AR
whenever he desires. That sometimes
proves to be essential for the game-
play, especially when it is impossible
for the player to use the image target
because of bad lighting conditions or
a lack of image target. This game
has two modes, one for single player and the other one is for multiplayer via
WiFi connection up to 4 players. Control mapping from 9PP is integrated
through ray-casting e.g. when building and placing a new object in the scene.
Landmark is obviously the main tower that player is trying to protect and a
combination of Personal presence and Living creatures are 6 hero avatars, from
which can player choose one to play with. Also Seamful design is very well
managed through constant written feedback that informs player about what
is happening and what should be done if the image target is lost or found.

2.2.3 Tilt Augmented Reality

Figure 2.2: Tilt Augmented Reality
([42])

Available on Android [42] and game
requires an Android Wear smart-
watch as a target. This game needs
to be installed on both, smartphone
with Android and smartwatch with
Android. During the game-play
player has to tilt his wrist (with the
watch on) back and forth and up and
down to roll the sphere in the scene
to pick-up boxes without falling. It
is a unique version of Control mapping and it is implicitly relying on the range
of Body constraints and World consistency’s gravitation.

23

2. Mobile AR applications

2.2.4 Crayola Color Alive

Available on Android and iOS [43]. This is not a traditional game by itself.
First, children have to color in pictures in their physical coloring books, then
they can use this app to bring their drawings into life with AR by aiming their
device’s camera at the colored page. Computer vision-based algorithms recog-
nize which image design (black and white picture) was used in that particular
picture and then it extracts color and texture of individual regions to use it as
a texture for 3D models (picture 2.6b). These 3D models usually have some
animations, special effects or mini games added to them. This customization
of 3D model is one of the strongest representations of enhancing a relationship
with AR Living creatures (9PP).

2.2.5 AR Soccer

Available on iOS [44]. Once again simple concept but very well executed.
Player gets to choose between easy, medium or hard mode and then the game
can start (picture 2.6c). Device metaphors (from 9PP) deliver the experience
of kicking the ball with your foot just like in physical world except for the
gravitation, which is shifted to lead to the bottom of the screen instead of the
center of the Earth. Computer vision-based algorithms use edge detection to
differentiate the foot from the background that is why, it is recommended to
play it over a solid colored background, preferably white, otherwise it can feel
sort of glitched and unresponsive. In this case Personal presence is fulfilled to
the highest level because player is actually playing with and seeing his own
foot.

2.2.6 A.R. Warriors

Figure 2.3: AR Warriors (author)

Available on Android and iOS [45].
This is a computer vision-based AR
using a user defined image target
which means that player doesn’t need
to print anything, he just takes a
picture of the background when he
is prompted to do so by the game
and the Computer generated content
takes that target as a center of the
scene. For a more stable tracking this game uses also sensor-based AR namely
inertial sensors. Unfortunately that is the only interaction with AR that user
can get from this app because everything else is controlled through UI buttons.
Pleasant feature is that each Living creature (9PP) in the game has a unique
set of attacks, damage animations and special effects.

24

2.2. Mobile AR games

2.2.7 Paparazzi

Available on Android [46]. The goal of the game is to earn money by taking
paparazzi pictures of the main game character. As player gets closer and snaps
more pictures of this superstar, the character will become more and more angry
until finally, he "jumps" on the players phone to break the camera (picture
2.6d). Then the player needs to try to shake him off, otherwise the camera gets
"damaged". This game is a specimen of Seamful design (9PP). The transition
between computer vision-based AR (NFT of one dollar bill target or printed
image target) and sensor-based AR (accelerometer) is great plus player really
experiences a feeling of being attacked by the character.

2.2.8 AR Invaders

Figure 2.4: AR Invaders ([47])

Available on Android and iOS [47].
This game is using sensor-based AR
(inertial sensors), although it pre-
tends to use the computer vision-
based AR too but camera stream is
just used as a background image for
the game. It is a simple FPS (First
Person Shooter) with an alien forces
theme. It has two settings, one is
180◦ view, the other one is 360◦ view
and it is also possible to play it in
multiplayer mode. The Device metaphors (9PP) are very well represented
with 2D screen overlay of HUD (head-up display) with crosshair in the middle
and the buttons for shooting on the sides.

2.2.9 Ingress

Available on Android and iOS [48]. Ingress is a massively multiplayer online
sensor-based AR (GPS) game with players all around the world (picture 2.6e).
Playing this game is a good way to discover new places, hot spots and to
find inspiration to explore. The game has a complex science fiction story
with a continuous open narrative. Each player is an "agent" belonging to one
of the two factions "The Enlightened" or "The Resistance" that the player
base is divided into. These factions compete against each other by protecting
or destroying game objects (portals) and information. Each agent also has a
profile page which contains a wide variety of information, including the agent’s
name, current level, earned badges, completed missions and a long list of stats.
The most attractive part of the game is probably the ever-growing community
of players and events that are regularly done all around the world. Looking
at 9PP the most strikingly represented one is Landmarks followed by Personal
presence.

25

2. Mobile AR applications

2.2.10 Pokémon GO beta

Figure 2.5: Pokémon GO ([49])

In development [49], only closed Beta
testing available in some countries,
expected release for Android and iOS
in 2016. Long anticipated mobile AR
game from the same authors as the
successful Ingress game (about 30%
of the portals from Ingress have been
turned into Pokestops). This is ex-
pected to be a big hit when it comes
out thanks to the Pokémon franchise and hopefully it will increase general
awareness of mobile AR applications. For now it seems that it will use only
sensor-based AR (mainly GPS) and the camera stream will function only as a
background if the player decide to toggle AR on (it’s possible to stay visually
only in VR). From 9PP it soundly integrates Landmarks and Living creatures
interactions.

(a) AR Basket-
ball

(b) Crayola
Color Alive

(c) AR Soccer
(d) Paparazzi (e) Ingress

Figure 2.6: mobile AR games ([40], [43], [44], [46], [48])

26

Chapter 3

Mobile AR development

There isn’t an ultimate tool for AR applications. Depending on the context
of the application developer has to consider multiple approaches. In case of
simple content browsing functionality, an end-to-end branded app solutions like
Aurasma [50], Blippar [51], Layar [52], Wikitude [53] and many more are the
most convenient choice. For big number of AR content entries an AR content
management systems are usually necessary. Augment [54], Blippbuilder [55],
Layar Creator [56], Webcam Social Shopper [57] and others are web based
content platforms that offer managing and building geolocations, NFT targets
or 3D models for AR experiences.

However creating an AR game most of the time requires more functions
and bigger freedom for modifications. In the following section (3.1) there is a
selection of 6 tools that can all be used for both, Android and iOS platform
development. As mentioned before depending on the criteria for AR app this
set of tools could be different, this particular one is selected based on the
likeliness of being used for mobile AR game development, on the number of
available tutorials and community support and on the versatility of the features
they offer, in no particular order.

3.1 Tools for mobile AR

3.1.1 ARToolKit

ARToolKit [25] is an open source library (under dual-license: GPL, commer-
cial) for creation of AR applications. It was designed by Dr. Hirokazu Kato in
C language, ported to many different languages and platforms like Android,
Flash or Silverlight and is very widely used in augmented reality related pro-
jects.

27

3. Mobile AR development

3.1.2 Vuforia

Vuforia [1] is an AR software development kit and it enables AR developer
to create interactive AR applications supported by Qualcomm AR platform.
Vuforia can run on Android, iOS and Unity 3D platforms. Its computer vision
system has a lot of features including target tracking (marker, image, object,
text), virtual buttons, Smart TerrainTM and Extended Tracking. Target data-
base is stored either locally on the device or in the Cloud.

3.1.3 Mataio

Metaio [10] is an AR software development kit. It was acquired by Apple in
2015 which stopped taking new customers and so far there are only assump-
tions about Apple’s intentions with Metaio’s future but because of its spectrum
of features it earned its place in this selection. Metaio SDK supports among
others 2D and 3D target tracking, face detection, gesture detection, SLAM
and location tracking. It can be used to develop AR apps e.g. for Android,
iOS, Windows PC, Google Glass or using Unity. Target database is either
local or in the cloud.

3.1.4 D’Fusion

D’ Fusion [58] is a patent technology of Total Immersion to design and deploy
AR applications. It supports 2D and 3D target tracking, finger pointing and
face detection. It is suitable for deployment on various platforms including
Android and iOS. It is considered as one of the best SDK for fast recognition
on live video streams.

3.1.5 ARLab

ARLab [59] currently offers two AR SDKs for Android and iOS AR devel-
opment. With AR Browser SDK user can add and remove POIs (Point of
interest for GPS based AR) independently from the scene in real time, inter-
act with them and perform actions on them. Image Matching SDK supports
recognition and matching of any image targets without any connection to the
Internet for more than 1000 images loaded in pools of 50-60 images from local
resources or remote URLs. ARLab is also preparing to launch Image Tracking
SDK, Object Tracking SDK and Virtual Button SDK.

3.1.6 Catchoom

Catchoom’s CraftAR [60] offers native development of AR in SDKs for Android
and iOS platforms or plugins for Unity and Cordova. CraftAR supports storing
of image targets on both, cloud for very large collections and on-device for
hundreds of images (with no Internet connection required).

28

3.2. Detailed comparison

3.2 Detailed comparison

Each approach in AR requires specialized AR software. It can include toolkits,
SDKs, browsers for capturing and rendering content, etc. This detailed com-
parison is focused on computer vision-based AR because the difference in op-
timization and effectiveness of algorithms in this approach is often what makes
developers choose one over another. Sensor based AR applications on the other
hand are usually developed with libraries accessing device’s sensors in native
SDKs or it can be easily integrated with third-party tools.

Availability of few basic computer vision-based features in SDKs from 5
different companies is in the table 3.1 (all these SDKs have Free and Commer-
cial options except for D’Fusion which has only Commercial SDK version). If
the feature isn’t marked with "X" it means it wasn’t in the Free version or
listed in the offered features of Commercial version.

Table 3.1: Comparison of computer vision-based features in AR SDKs.

Vuforia Metaio D’Fusion ARLab Catchoom
Marker
based

X X X X X

NFT X X X only recog-
nition and
matching

X

3D
Object
tracking

Xwith op-
timization
for cylinder
and box

X X

Face
tracking

X X X

Visual
Search

Xup to 100
locally and
cloud

Xup to 100
locally and
cloud

Xup to
500 loc-
ally

X1000+
in pools of
50-60

Xup to
100 locally
and cloud

Content
API

Xwith
Vuforia
Cloud

XOpenGL
support,
in-house
3Drenderer

X

In 2014 a very comprehensive study [61] was done with AR frameworks
(ARToolKit, Vuforia, Metaio, D’Fusion, ARLab, Catchoom) on Android plat-
form displaying strong and weak points of each framework’s markerless detec-
tion. Similar research can be found for iOS platform in Master’s Thesis [62]
from 2012.

In [61] they were extensively testing markerless detection with different
environmental criteria (e.g. light intensity, visible target area, distance) and

29

3. Mobile AR development

target criteria (e.g. contrast ratio, size, aspect ratio) and reviewed available
performance optimization and additional usability (e.g. face tracking, text
detection, multiple target tracking, extended tracking). Then they proposed
use case scenarios for mobile AR applications and deduced recommendations
for the most suitable framework based on the measured data in previous tests
(table 3.2).

Table 3.2: Recommended frameworks for different use case scenarios

Scenario Framework
Interior Design App
indoors, various viewpoints and distances, occluding
objects, using more than one target for better place-
ment, extended tracking

Metaio, Vuforia

Magazine App
indoors, image grayscale, contrast, size, visibility, im-
ages printed on different materials, text detection

Metaio, Catchoom

Bus Shelter App
outdoors, sudden light changes, image distance,
deterioration, visibility, dynamic background, fast
moves

Vuforia, Catchoom

Supermarket Promotions App
outdoors, multiple target tracking, 2D or 3D target,
damaget target, need of flash

Vuforia, Metaio

Tourist Translator App
outdoors, text and background contrast, text dis-
tance, flickering, deterioration, text on different ma-
terials

Metaio, Vuforia

mCommerce App
outdoors, face recognition, stable tracking for fast
moves and changing in light intensity, switching to
front camera

D‘Fusion, Metaio

30

Chapter 4
Design my own game

For the purpose of this thesis I decided to design and implement a game in-
corporating computer vision-based AR. I mostly wanted to demonstrate how
real world 3D objects and computer generated 3D objects can coexist in one
small-scale scene and sensor-based AR is not really suitable for that. In ad-
dition CVB AR unlike GPS doesn’t require any connection which is desirable
because part of this game should be playable offline.

4.1 Recommended design concepts for CVB AR
applications

When it comes to CVB mobile AR or CVB handheld AR in general, there
are certain things which if considered carefully can facilitate UI interactions.
Some of them are results from the analysis (chapter 1.5) and some of them are
from mobile design concepts.

• Support one-hand interaction as much as possible

• Consider the natural viewing angle

• Make sure at least one tracking surface is in view or implement
counter-measures

• Do not tire players out physically unless that is the goal

• Do not encourage fast actions

Of course there is even more suggested design concepts in mobile UI, but one
that is strikingly different for AR UI is that users without any experience
with AR will most likely hold their devices in their right hand, (usually) the
dominant hand, to make sure of stable position of the device with good angle
and operate with left hand, which is the opposite from normal scenarios (hold
in the left hand and operate with right hand). This is especially important

31

4. Design my own game

for orientation of the screen because you want to prevent users from covering
their cameras with fingers.

4.2 Game system requirements

Even without story and context of the graphical content there are Functional
and Non-Functional requirements that arise for this mobile CVB AR game
with two modes: offline single player and online multiplayer mode. There
are also requirements covering expected feature of any more complex game
(e.g. data persistence, multilingualism). Requirements caused by story and
context of graphical content are in this case simply categorized in Functional
requirements under System for creation and deleting of game objects, Gameplay
mechanics and Minigame gameplay mechanics.

4.2.1 Functional requirements

Functional requirements define specific behavior or functions not in any par-
ticular order. They are marked compulsory or optional, depending on whether
they are required by the thesis assignment and also they are marked imple-
mented or not implemented, depending on whether they were implemented in
the prototype or not. If they are not implemented, prototype’s system design
is prepared for their future implementation without any radical changes.

RF1 compulsory, implemented
3D Registration and overlaying of computer generated content (3D ob-
jects)

RF2 optional, implemented
Active interaction with 3D Objects

RF3 compulsory, implemented
Gameplay location independent (both indoors and outdoors)

RF4 compulsory, implemented
Gameplay without WiFi connection

RF5 compulsory, not implemented
Gameplay with WiFi connection

RF6 compulsory, implemented
AI for offline mode (without WiFi)

RF7 compulsory, not implemented
Networking and match making server for multiplayer mode (with WiFi)

RF8 optional, implemented
Data persistence for continuous playing

32

4.2. Game system requirements

RF9 optional, implemented
Dynamic language selection

RF10 optional, implemented
Audio (music and sound effects) on/off

RF11 compulsory, implemented
System for creation and deleting of game objects

RF12 compulsory, implemented
Gameplay mechanics

RF13 optional, one implemented
Minigame gameplay mechanics

RF14 optional, not implemented
Connection to social networks

4.2.2 Non-Functional requirements

Non-Functional requirements specify criteria that can be used to judge the
operation of a system, rather than specific behaviors. They address e.g. usab-
ility, performance, supportability, etc. In this case most of them are specified
by Vuforia, which I’ve chosen as an AR framework based on analysis in section
3.2 (more on that in section 5.1).

RNF1 Portable to all Android devices (mobile, tablet) and their screen sizes

RNF2 Support for Android 4.0.3 Ice Cream Sandwich and higher

RNF3 OpenGL ES 2.0 on Android (with addition of Metal (iOS 8+) for possible
futute deployment on iOS)

RNF4 Back camera and good visibility and lighting conditions

RNF5 Support FBX format for 3D models with animations

RNF6 WiFi connection and data saving if connection fails

RNF7 Sustain at least standard minimum frame rate for smooth animations

RNF8 Response time kept at minimum

RNF9 Sufficient place in real world to play the game (enough space, stability,
etc.)

RNF10 Enough internal memory space for installation (roughly 60MB)

33

4. Design my own game

4.3 Description of the game world

Now follows a plain description of the game world and its background story
disregarding everything from technology used in the implementation to game
mechanics and concepts used to make this game playable.

4.3.1 Background story

I find the best explanation to be by potential promotional text because that
is also what people would read when considering installation of this game.

"Each mobile device is vulnerable to the world and its elements. Not every-
one realizes it, but this also applies to the digital world and when no one is
paying attention, small malicious creatures composed only from "ones" and
"zeros" attack at their full power...

Yes, I’m talking about viruses and other scoundrels. And yes, there are
applications that claim to be able to handle them, but none of them is as capable
as your AVUnit could be. Each member of the AVUnit is skilled at something
else and that is what makes them so effective. Not only that, but their teamwork
is excellent too because they often train against other AVUnits.

Get your own AVUnit today and you will never have to worry about tomor-
row again!"

It’s obvious that the goal of this game is to have as good AVUnit as possible
and to destroy viruses on your device. Player himself is gradually creating
his own team (or unit) of Antivirus warriors (that is why AVUnit). These
members of AVUnit are just like viruses (or really, anything else on the device)
just programs with particular code that requires some memory space (MEM).
At the beginning, player has only one member in his AVUnit and that is
AVUnit Captain. Caiptain is the only member of the unit that player can’t
get rid of and every new member is created by copying Captain’s code (which
again requires some MEM). Just like code in real life, code copied from the
Captain can be edited and that is how player acquires different types of AVUnit
member.

Figure 4.1: Images of some nasty viruses from the game prototype (author)

As stated before, the main purpose of AVUnit is to get rid of viruse which is
done in Minigames where AVUnit members clean memory, cpu or gpu and by
doing that, they release new resources of MEM, CPU and GPU respectively.
With more resources player can create more AVUnit members or equipment
for them. This equipment is especially helpful during battle simulations with

34

4.3. Description of the game world

other player’s AVUnits when AVUnit trains its teamwork. During these battle
simulations, all equipment (programs) have to use some CPU and GPU re-
sources to be able to run, which means that the player is limited by his CPU
and GPU resources. At the end of the simulation these resources are release
and can be used again for the next simulation.

Battle simulations naturally can’t take place in the device because that
could compromise the hardware (all the explosions and so on). That is why
they take place in real world (Augmented reality) away from sensitive hardware
and this also gives a chance for members from different AVUnits to meet.

The rules for battle simulations are as follows:

1. Number of AVUnits that can participate in a battle simulation is limited
to 2, 3 and 6 (picture 4.2)

2. Each AVUnit has to be represented by exactly n of its members (n is set
beforehand)

3. Each member can use only 4 pieces of equipment during one simulation
and occupy only one triangle (spot) on the battle platform

4. Members don’t have to relieve their identity (and they don’t) until they
are hit with some weapon by other AVUnit’s member

5. Members can pretend (and they do) that empty spots on their part of
the battle platform are in fact occupied until they are hit with some
weapon by other AVUnit’s member

6. AVUnit is declared defeated immediately after all n of its members are
defeated

In the basic simulation there is only platform (object) and participating
members from all AVUnits. But being it a simulation, no one can say what
number and types of obstacles can appear to test their skills. Of course after
something like that, every surviving member of an AVUnit gains some well-
deserved experience from this simulation and that helps him or her improve
their basic skills (defence, offence or error resistance). So how do you defeat an
AVUnit member? Easy, you have to cause more errors, in his or her program,
than they can handle (indicated by error resistance).

4.3.2 Characters and objects in the game

All in all there are only AVUnit members, equipment, viruses and battle plat-
form in this game world, but they have many variations. More important ones
are AVUnit members and equipment, so they are described in bigger detail.

35

4. Design my own game

Figure 4.2: Platform with 2, 3 or 6 AVUnits (bottom left, upper middle,
bottom right)(author)

4.3.2.1 AVUnit members

There is Captain (type) and 5 different types of members (picture 4.3), Base,
Cleaner, Scanner, Patch and Shield. Each member can level up after gaining
enough experience and gain new abilities specific for his, her or their type,
except for Base.

Figure 4.3: 5 different types of members (from left to right: Base, Cleaner,
Scanner, Patch and Shield) from various color sets (author)

Base is special, this type can still level up and improve its basic skills
(offence, defence, resistance), but it can’t gain new skills. On the other hand,
this type can use any equipment that is not meant only for Captain.

36

4.3. Description of the game world

Captain (picture 4.4) is the only one that can use any equipment, but
there can be only one member of this type and every time her code is copied,
it is represented by Base code. This code if edited can become a code of
Cleaner, Scanner, Patch or Shield. Cleaner is the most offensive type, Scan-
ner represent a true gadget type with a lot of knowledge, Shield is the most
defensive type and Patch type is a mysterious duo of small cheeky girls.

During the battle simulation, all members are represented by hexagons,
floating above the battle platform. Player’s own hexagons have an image of
member’s head on them, if there is any member residing in that spot.

4.3.2.2 Equipment

Weapons and other equipment can be created from MEM resources. It needs
CPU, GPU resources and a compatible AVUnit member to be used in the
battle. There are two main types of equipment: defence and offence (picture
4.4). Defence type of equipment boosts AVUnit member’s error resistance
while he or she attacks with offence equipment. Then again, there are two
types of offence equipment. One is aimed in a straight line in front of the
member and the other one is fired under 45 degrees angle resulting in arc
trajectory.

Figure 4.4: From left to right: Captain member (can use any equipment),
defence equipment (helmet, armor), offence equipment with straight traject-
ory (gun, shurikens, laser glasses) and offence equipment with arc trajectory
(grenade, bomb) (author)

37

4. Design my own game

4.4 Use cases and their scenarios

Use cases are made up of a set of possible sequences of interactions between
systems and user. They are related to a particular goal and they should cover
in their scenarios all Functional requirements. In diagram 4.7 it is possible to
see the flow of the UI screens related to the following scenarios.

UC1 Browsing collections (AVUnit members, acquired equipment,
available equipment)

1. tap mini icon with image of the category that is to be browsed

2. tap the browse (or create) button in the description board or tap
the main image to enter the particular category

3. if category is not empty, browse by taping on the arrows or main
image

UC2 Creating new equipment from the available equipment

1. tap mini icon with image of the available equipment category

2. tap the button in the description board or tap the main image to
enter the category

3. if category is not empty, browse by taping on the arrows or main
image until the desired equipment is found

4. tap the create button in the description board

5. question asking whether it really should be created will pop up if
there is enough resources, if there is not enough resources (MEM)
the statement of lacking resources will pop up

6. after its creation, this equipment will be automatically added into
acquired equipment category

UC3 Deleting acquired equipment or AVUnit member

1. tap mini icon with image of the category from which the object is
to be deleted

2. tap the button in the description board or tap the main image to
enter the category

3. if category is not empty, browse by taping on the arrows or main
image until the desired object is found

4. tap the delete button in the description board

5. question asking whether it really should be deleted will pop up

6. in case of acquired equipment, right after its deleted, it will be added
into available equipment category

38

4.4. Use cases and their scenarios

UC4 Creating new AVUnit member

1. tap mini icon with image of creating a new AVUnit member

2. tap the button in the description board or tap the main image to
enter

3. if there is no code copied yet, tap copy button, if there is enough
resources (MEM) a question whether it should be created or not
will pop up, if there is not enough resources a statement of it will
pop up

4. now this copy can be hired as a new Base type member or it can
be deleted to get back resources (MEM) or the code can be edited
to make a new type of the AVUnit member. To edit the code tap
edit code button and enter correct word deciphered from the cipher
that is displayed, if its correct the code will change and with it also
the type of the member. To add it into the AVUnit tap hire button
and enter the name for this member, then it will be added into
the AVUnit members category. To delete it tap delete button and
a question asking whether it really should be deleted will pop up.
After deleting or hiring the copy the spot will be free for another
copy of Captain’s code.

UC5 Cleaning MEM, CPU or GPU from viruses and earning MEM,
CPU and GPU resources

1. in the main menu tap the resources button

2. select member that should be doing the cleaning

3. tap the image of the resources you want to clean/earn (MEM, CPU,
GPU)

4. play minigame, after the minigame, depending on your score the
according resources will be added to resources counter in the left
upper corner in the menu

UC6 Enter battle simulation with AVUnit

1. in the main menu tap the battle button

2. select 3 different members for this battle and tap arrow to continue

3. for each member select their equipment and tap arrow to continue

4. tap offline or online button depending on which mode you want to
play (prototype has only offline mode), if it is online mode you will
also have to select how many AVUnits you want to play with (2,3
or 6 including yours)

5. select position for each member or leave the preset one, then tap
arrow to continue

39

4. Design my own game

6. if online mode was selected you will have to wait to get matched by
matching server or manually select your group match

UC7 3D registration after entering battle simulation

1. read instruction that are displayed after entering battle simulation
and tap ok button

2. aim camera under 90 degrees angle at a surface that is suitable to
be an image target for CVB AR (flat, high contrast, no reflection,
no repeating patterns, no symmetry, good lighting conditions) and
after the "x" mark is swapped for "X" tap the center image

UC8 Shooting in the battle simulation

1. tap on the hexagon with head image of the member you want to
attack with

2. pick the weapon

3. set rotation and power (if available)

4. fire

UC9 Change language

1. in the main menu tap the small icon in the bottom left corner with
cogwheel image on it

2. pick desired (and offered) language and tap set button

UC10 Turn sounds on and off

1. in the main menu tap the small icon in the bottom left corner with
sound image on it to toggle sounds on and off

4.5 Entities in the game mechanics

Normally design should stay coherent throughout the whole system, but in
this case it is useless to keep certain data during the battle stage of the game,
which are on the other hand essential while browsing the menu. And again,
if battle stage wasn’t so computationally demanding it would be completely
plausible to keep that data, but in this case I decided to divide the entities
into two groups. One is used in the menu stage (or scene) of the game and the
other one in the battle stage of the game. Therefore diagram 4.5 represents
basic entities and their relationships for menu stage of the game and diagram
4.6 in battle stage of the game. It is completely ignoring minigame entities
(e.g. card, virus) and relationships because they are not important for this
thesis and also all graphical entities that are used to display these entities (e.g.
images, texts, labels).

40

4.5. Entities in the game mechanics

Entities and relationships in the prototype implementation are little bit
simplified because not including the networking would leave some redundant
entities. That is why in the prototype instead of having separate Local Player
and AIPlayer, they are both included in the BattleController’s logic to keep
the unnecessary referencing as low as possible.

Figure 4.5: Entities in the menu stage of the game (in implementation it is
Menu scene) (author)

Figure 4.6: Entities in the battle stage of the game (in implementation it is
Battle scene) (author)

41

4. Design my own game

4.6 Scenes and UI screen flow

A diagram 4.7 is a representation of UI screens and looking from the imple-
mentation angle, which scene they belong to. All actions in the Use case section
4.4 are just different sequences of steps following arrows in this diagram.

Figure 4.7: Scenes and UI screen flow (author)

4.7 My game design and 9PP

Now in the table 4.1 it is possible to see how well this design follows or contra-
dicts each of the Pre-design patterns from section 2.2. It is also a high time to
sum up what AR brings into this game that wouldn’t be possible to achieve
without AR or with high difficulty.

First of all, it is easier for the player to observe physics mechanics because
he or she can rotate the target image or camera around the target image to
view the scene from different angle. Thanks to that, it is also possible to aim
with great precision because player can view the scene from the top of the
platform and if there is an obstacle, he or she can view the scene from the
side to see how high the obstacle is. Player can also inspect the graphics and
objects from a close distance, which is definitely a new experience if the author
put a lot of details that are not visible from normal distance on them.

42

4.7. My game design and 9PP

Table 4.1: My game design and 9 Pre-design patterns as a criteria of evaluation

Title Its representation in the design
Device
metaphors

Not particularly emphasized but some object metaphors
are used in aiming e.g. arrow to indicate the direction

Control
mapping

Raycasting for selection of a member on the platform to
shoot with

Seamful
design

Registration instructions and assurance of the image target
quality before its acquisition

World
Consistency

Physics system simulating real world physics laws

Landmarks Battle platform as the main landmark with set of subordin-
ate landmarks of hexagons representing potential AVUnit
members

Personal
presence

Player is detached and his or her presence is placed onto
avatar (AVUnit members)

Living
creatures

AVUnit members (creating, equipping, leveling up, bat-
tling with)

Body
constraints

Emphasis on no constraints

Hidden
information

Temporarily hidden position and identity of the AVUnit
members during the battle simulation

43

Chapter 5

Implementation

As mentioned multiple times before, implementation will be focusing only on
the offline part of the game, nevertheless, tools and technology should be
selected based on the whole proposed design so even the networking should be
taken into consideration while choosing the right set of tools.

5.1 Selected tools and technology

The idea of this game is that it should be heavy on graphics and use 3D models
with animations, not even mentioning physics system. Applications with these
requirements are quite difficult to make in the native development tools and are
often made in the specialized game engines. Of course with native development
tools you can achieve higher efficiency, but game engines usually have a lot of
optimized algorithms and design patterns that would take years to implement
and there is really no point in reinventing the wheel. Some of the most famous
3D game engines nowadays are Unreal, Unity, CryEngine, JMonkey, Panda3D,
Blender Game Engine and many more [63]. I have chosen Unity based on the
services it offers and its compatibility with AR frameworks analyzed in section
3.2, which (with exception of ARLab) are all fully compatible with Unity.
Unity is a game engine that deploys to a lot of platforms, but to build the
APK format for Android, Unity needs Android SDK installed on the computer.
More on Unity (Personal Edition, version 5.3) and how it works in section 5.2.

Also based on the evaluated use case scenarios in the table 3.2 in section 3.2,
I’ve decided to use Vuforia because the only higher scoring SDK is Metaio, but
since it was discontinued for now, it loses in the offered services and potential
future updates. Vuforia on the other hand, offers number of new features in
every release and besides Unity version, it also supports native Android and
iOS development. More on Vuforia (Unity plugin, version 5.5.9) in section 5.3.

There is a lot of 3D modeling software on the market, most of them
highly specialized for certain professions or industries like AutoCAD, Houdini,
ZBrush, Mudbox or SketchUp [64], but when it comes to simple universal 3D

45

5. Implementation

modelling software the race is won by Maya, 3ds Max, Cinema 4D or Blender
[65] from which only Blender isn’t under commercial license (it is under GNU
GPLv2+). Therefore I’ve chosen to use Blender (version 2.68) for creation of
all 3D objects, their animations and any 2D content rendered from 3D content.

As far as the 2D content goes I’ve been using Corel DRAW Graphics Suite
X5 for years now, so it was an easy choice although based on the complexity
of the 2D content (which is low) in this game, basically any 2D vector editor
with layer function would suffice.

Audio editing was done in the AudaCity (version 2.1.0), which is a free,
open source, cross-platform software for recording and editing sounds.

5.2 Unity

Important for this prototype is that Unity has its own physics system and
networking system that consists of game objects called GameObjects that
implement specific interfaces and has attached special codes called scripts to
them. These scripts, as soon as they are attached to the GameObject, become
components of this GameObject. In general the behavior of GameObjects
in project’s scene is controlled by the components that are attached to them.
Although Unity’s built-in components can be very versatile, most of the time it
is necessary to go beyond what they can provide and write custom scripts aka
components. Scripts (components) allow developers to trigger game events,
modify component’s properties over time or respond to user input. Unity
supports two programming languages natively:

• C# (the one I have used)

• UnityScript, a language designed specifically for use with Unity and mod-
elled after JavaScript

In addition to these, many other .NET languages can be used with Unity
if they can compile a compatible DLLs. To edit the scripts Unity offers its
MonoDevelop editor or with Unity 5 they offer Visual Studio as a first option
and MonoDevelop as a second one. A script is only a template and until it is
attached to a GameObject as its component, it isn’t executed at all.

By default any class in Unity is a child of MonoBehaviour class, which is
a base class for all new Unity scripts. In addition every GameObject has a
position, rotation and scale in space (whether 3D or 2D), and this is repres-
ented by the Transform component. To take advantage of the physics system
a RigidBody (or RigidBody2D for 2D) component needs to be attached to
the GameObject. For Networking a NetworkIdentity component has to be
attached to the networked objects and NetworkBehaviour used in networked
scripts.

46

5.2. Unity

In Unity scripting, there are a number of event functions that get executed
in a predetermined order as a script executes. In diagram 5.1 the execution or-
der is summarised and some ordering and repetition of event functions during a
script’s lifetime are described with a little bit more detail. The most commonly
used are Awake, OnEnable, Start, OnCollisionXXX, OnMouseXXX, Update,
OnDrawGizmos and OnGUI.

Figure 5.1: Execution Order of Event Functions in Unity (author, based on
original from Unity Documentation [66])

Because called function, runs until completion before returning, this ef-
fectively means that any action taking place in a function must happen within
a single frame update. If something needs to take place over several frames,
there are two main ways how to do it. First adding code to Update fuction
that executes the process on a frame-by-frame basis (like fading an image of
a member in AVUnit members category in code 5.1) and second often more
convenient is to use coroutines (like flipping an image in AVUnit members
category, code 5.2). A coroutine is like a function that has the ability to pause
execution and return control to Unity but then to continue where it left off on
the following frame.

47

5. Implementation

Code 5.1: Using Update function for process that takes place over more than
just one frame

1 pub l i c f l o a t minimum = 0.0 f ;
2 pub l i c f l o a t maximum = 1 f ;
3 pub l i c f l o a t fadeDurat ion = 1 .0 f ;
4 pr i va t e f l o a t startTime ;
5 . . .
6 void Update () {
7 . . .
8 i f (i sFadeOf f) { // image i s d i sappear ing
9 f l o a t t = (Time . time − startTime) / fadeDurat ion ;

10 image . c o l o r = new Color (1 f , 1 f , 1 f , Mathf . SmoothStep (maximum,
minimum , t)) ;

11 i f (image . c o l o r . a <= minimum){
12 i sFadeOf f = ! i sFadeOf f ; // d i sappeared and s t a r t s to appear
13 . . .

Code 5.2: Using coroutines for process that takes place over more than just
one frame

1 pub l i c c l a s s GUIMemberImageSwap : MonoBehaviour {
2 pub l i c Sp r i t eF l i pp e r f l i p p e r ;
3 pr i va t e f l o a t startTime ;
4 . . .
5 pub l i c void next () { // f l i p to the next image
6 . . .
7 i f (. . .
8 f l i p p e r . Fl ipImage () ; // stop co rout ine and s t a r t new one
9 startTime = Time . time ;

10 i s F l i p p i n g = true ;
11 . . .
12 }
13
14 // ∗∗∗∗∗ end o f the c l a s s and s t a r t o f another one ∗∗∗∗∗
15
16 pub l i c c l a s s Sp r i t eF l i pp e r : MonoBehaviour {
17 . . .
18 pub l i c void FlipImage () {
19 StopCoroutine (F l ip ()) ;
20 StartCorout ine (F l ip ()) ;
21 }
22 IEnumerator F l ip () { // co rout ine
23 f l o a t time = 0 f ;
24 whi le (time <= 1 f) {
25 f l o a t s c a l e = sca leCurve . Evaluate (time) ;
26 time += (Time . deltaTime / durat ion) ;
27
28 Vector3 l o c a l S c a l e = transform . l o c a l S c a l e ;
29 l o c a l S c a l e . x = s c a l e ;
30 trans form . l o c a l S c a l e = l o c a l S c a l e ;
31 y i e l d re turn new WaitForFixedUpdate () ; // p lace where

co rout ine pauses and re tu rn s c on t r o l to the Unity
32 }

48

5.2. Unity

33 }
34 }

5.2.1 UI system

Unity has its own UI system which if used right can correctly readjust, display
and operate on various screen ratios and sizes. Interactive UI objects are
linked to Events system. Input API (Application Programming Interface)
uses raycasting (converting screen coordinates to scene coordinates by casting
a straight line from pointer into the scene) to determine what the pointer (e.g.
finger on the device or mouse on the screen) is over. There are 3 provided
Raycasters in Unity that exist by default:

• Graphic Raycaster - Used for UI elements

• Physics 2D Raycaster - Used for 2D physics elements

• Physics Raycaster - Used for 3D physics elements

During the battle stage of the game player can select one of his members
by tapping on the screen where the augmented 3D object of his member is
rendered. That is realized in code by implementation of the Physics Raycaster.
In code 5.3 it is tested through Input API whether player tapped somewhere on
the screen and then the ray is queried against all GameObjects with Collider
component on them (the only ignored objects are objects on the IgnoreRaycast
layer).

Code 5.3: Physics Raycasting
1 . . .
2 RaycastHit rayHit ;
3 Ray ray ;
4 . . .
5 void Update () {
6 . . .
7 i f (isPickingMember) {
8 i f (Input . touchCount > 0) { // p layer touched sc r e en
9 Touch touch = Input . GetTouch (0) ;

10 i f (touch . phase == TouchPhase . Began) {
11 ray = Camera . main . ScreenPointToRay (touch . p o s i t i o n) ;
12 i f (Phys ics . Raycast (ray , out rayHit)) { // r e tu rn s i n f o

in rayHit about c o l l i s i o n s o f ray with other GameObjects
13 i f (rayHit . c o l l i d e r . gameObject . . .
14 . . .

5.2.2 Data persistence

Unity has excellent serialization which can serialize a whole class or List data
structure if its items are serializable. The game prototype loads and saves

49

5. Implementation

data as one instance of a PlayerData class that doesn’t inherit from MonoBe-
haviour (classes that doesn’t inherit from MonoBehaviour act as structures
and can have their own customized constructor which is not advised to use
with MonoBehaviour) into a "playerInfo.dat" file (code 5.4).

Code 5.4: Serialization and deserialization
1 [S e r i a l i z a b l e]
2 c l a s s PlayerData{
3 pub l i c f l o a t LVL;
4 pub l i c f l o a t MEM;
5 . . .
6 pub l i c L i s t<CMember> members ;
7 pub l i c L i s t<int> equipment ;
8 }
9

10 // ∗∗∗∗∗ end o f the c l a s s and s t a r t o f another one ∗∗∗∗∗
11
12 pub l i c c l a s s GameController : MonoBehaviour {
13 . . .
14 pub l i c void Save () {
15 BinaryFormatter bf = new BinaryFormatter () ;
16 Fi leStream f i l e = F i l e . Create (App l i ca t ion . pers i s tentDataPath + "

/ p l ay e r I n f o . dat") ;
17 PlayerData data = new PlayerData () ;
18 data .LVL = LVL;
19 . . .
20 data . equipment = equipment ;
21 bf . S e r i a l i z e (f i l e , data) ;
22 f i l e . Close () ;
23 }
24 pub l i c void Load () {
25 i f (F i l e . Ex i s t s (Appl i ca t ion . pers i s tentDataPath + "/ p l ay e r I n f o . dat

")) {
26 BinaryFormatter bf = new BinaryFormatter () ;
27 Fi leStream f i l e = F i l e . Open(Appl i ca t ion . pers i s tentDataPath + "

/ p l ay e r I n f o . dat" , FileMode . Open) ;
28 PlayerData data = (PlayerData) bf . D e s e r i a l i z e (f i l e) ;
29 f i l e . Close () ;
30
31 LVL = data .LVL;
32 . . .
33 equipment = data . equipment ;
34 } e l s e {
35 LVL = 0 ;
36 . . .
37 }
38 }

5.2.3 Multilingualism

All the info data in the prototype that is separable from the code is stored
into XML files. There is a special class that parses these files into lists (index

50

5.2. Unity

indicating the language) of dictionaries (or lists of lists of dictionaries). For
example, first you select language then you select type of member and then its
attribute (english/0 → Base/1 → "description"). This makes it easier to add
another language or member or equipment without the necessity of changing
the code and it can be done by anyone. Code 5.5 shows parsing of the file with
normal UI text.

Code 5.5: Parsing language data from XML files
1 pub l i c TextAsset d i c t i ona ry ;
2 pub l i c L i s t<Dict ionary<s t r i ng , s t r i ng >> languages = new List<

Dict ionary<s t r i ng , s t r i ng >>() ;
3 . . .
4 void Reader () {
5 Dict ionary<s t r i ng , s t r i ng > obj ;
6 XmlDocument xmlDoc = new XmlDocument () ;
7 xmlDoc . LoadXml(d i c t i ona ry . t ex t) ;
8 XmlNodeList l anguageL i s t = xmlDoc . GetElementsByTagName ("

language ") ;
9 f o r each (XmlNode languageValue in languageL i s t) {

10 XmlNodeList languageContent = languageValue . ChildNodes ;
11 obj = new Dict ionary<s t r i ng , s t r i ng >() ;
12 f o r each (XmlNode value in languageContent) {
13 switch (va lue .Name) {
14 case "name" : // d e s c r i p t o r s f o r a l l t ex t s t r i n g s
15 case " load ing " :
16 . . .
17 de f au l t :
18 Debug . Log (va lue .Name+" i s unused") ; break ;
19 }
20 }
21 l anguages .Add(obj) ;
22 }
23 }

5.2.4 Physics system

Shooting in the battle stage of the game prototype is done using Unity’s phys-
ics system which means attaching (Box/Sphere/Mesh/...) collider component
onto every GameObject that should be included in the collision detection and
attaching RigidBody component on the projectile GameObject (because it is
the one that is moving and should be influenced by gravity). Actual firing
of the projectile is the last part of sequence of commands securing right po-
sition and rotation of the projectile (code in 5.6). Detecting a collision with
another object ensures OnCollisionEnter function which is called immediately
after projectile hits anything with a collider.

Code 5.6: Firing a projectile
1 pub l i c Rigidbody p r o j e c t i l e ;
2 pub l i c Rigidbody p r o j e c t i l e 2 ;

51

5. Implementation

3 pub l i c Transform shotPos ;
4
5 pub l i c void SetShotPos () {
6 shotPos . r o t a t i on = Quaternion . i d e n t i t y ; // (0 , 0 , 0) WCS ro t a t i on
7 shotPos . p o s i t i o n = transform . po s i t i o n + new Vector3 (0 f , 0 .104 f

, 0) ;
8 }
9 pub l i c void ShootArc () { // shoot ing in an arc t r a j e c t o r y

10 shotPos . p o s i t i o n = transform . po s i t i o n + new Vector3 (0 f , 0 .104 f
, 0 .0192 f) ;

11 shotPos . Rotate (−45 ,0 ,0) ;
12 Rigidbody shot = In s t a n t i a t e (p r o j e c t i l e , shotPos . po s i t i on ,

shotPos . r o t a t i on) as Rigidbody ;
13 shot . AddForce (shotPos . forward ∗ Batt leGameControl ler .

c o n t r o l l e r . powerVal) ;
14 }

5.3 Vuforia

Unity Version of Vuforia is in form of a Unity package that has to be imported
into the project as any other package. After its import, a new folder will
appear in the file system inside Assets folder with all necessary basic scripts
and AR GameObjects that are shipped by Vuforia.

Vuforia scripts inside Unity are coded in C#. First important difference
in a scene with Vuforia GameObjects in comparison to classic Unity scene is
camera. Vuforia uses a special ARCamera which can be found in the imported
package and has to be used instead of normal camera GameObject. This will
allow Vuforia to stream live camera feed in the background of the scene and
also use it for 3D registration of the CVB AR target. ARCamera has multiple
modes and by default it doesn’t focus, but in the prototype it is set to have
auto-focus (code 5.7).

5.3.1 User Defined Target

A new feature in Vuforia called UDT (User Defined Target) relieves player
from downloading and printing the target image. Player creates the target
image on the fly instead. One camera frame gets selected as a target image
from which then NFT descriptors are extracted and saved into the database. I
have chosen this type of target to be used in the game prototype. I also allowed
extended tracking because only one target will be created and tracked for each
battle and it is likely to be a static target. Extended tracking utilizes features
of the environment to improve tracking performance and sustain tracking even
when the target is no longer in view.

UDT requires a GameObject UDTBuilder in the scene that takes care
of the building process while the AR target’s GameObject in the scene has
to have a component that actually decides when the image target is created

52

5.3. Vuforia

and with it also this target GameObject gets instantiated into the augmented
scene. Code 5.7 shows this component (in this case called SimpleUDTHandler)
which inherits from both MonoBeviour and IUserDefinedTargetEventHandler.
In the Start function it is possible to see the camera autofocus command
line. In the Update function only medium and high quality image targets are
allowed to be captured and when Player taps the image with "X" on the screen
the BuildNewTarget function will be called and the UDT creation process is
finished.

Code 5.7: UDTHandler component for the image target’s GameObject
1 us ing UnityEngine ;
2 us ing System . Co l l e c t i o n s ;
3 us ing System . Co l l e c t i o n s . Generic ;
4 us ing UnityEngine . UI ;
5 us ing Vufor ia ;
6
7 pub l i c c l a s s SimpleUDTHandler : MonoBehaviour ,

IUserDef inedTargetEventHandler {
8 pr i va t e UserDef inedTargetBui ld ingBehaviour

mTargetBuildingBehaviour ;
9 pr i va t e ObjectTracker mObjectTracker ;

10 pr i va t e DataSet mBuiltDataSet ;
11 pr i va t e bool mUdt In i t i a l i z ed = f a l s e ;
12 pr i va t e ImageTargetBui lder . FrameQuality mFrameQuality =

ImageTargetBui lder . FrameQuality .FRAME_QUALITY_NONE;
13 pub l i c ImageTargetBehaviour ImageTargetTemplate ;
14 pub l i c UnityEngine . UI . Image ta r g e t ;
15 pub l i c Button button ;
16 pub l i c Sp r i t e X;
17 pub l i c Sp r i t e OK;
18 pub l i c GameObject arms ;
19
20 void Star t () {
21 mTargetBuildingBehaviour = GetComponent<

UserDef inedTargetBui ld ingBehaviour >() ;
22 i f (mTargetBuildingBehaviour) {
23 mTargetBuildingBehaviour . RegisterEventHandler (t h i s) ;
24 }
25 CameraDevice . In s tance . SetFocusMode (CameraDevice . FocusMode .

FOCUS_MODE_CONTINUOUSAUTO) ; // s e t camera in auto focus mode
26 }
27 pub l i c void On In i t i a l i z e d () {
28 // look up the ImageTracker once and s t o r e a r e f e r e n c e
29 mObjectTracker = TrackerManager . In s tance . GetTracker<

ObjectTracker >() ;
30 f (mObjectTracker != nu l l) {
31 // c r ea t e a new datase t
32 mBuiltDataSet = mObjectTracker . CreateDataSet () ;
33 mObjectTracker . Act ivateDataSet (mBuiltDataSet) ;
34 // remember that the component has been i n i t i a l i z e d
35 mUdtIn i t i a l i z ed = true ;
36 }

53

5. Implementation

37 }
38 pub l i c void OnFrameQualityChanged (ImageTargetBui lder .

FrameQuality frameQual ity) {
39 mFrameQuality = frameQual ity ;
40 }
41 pub l i c void OnNewTrackableSource (TrackableSource

t rackab l eSource) {
42 // dea c t i v a t e s the datase t f i r s t
43 mObjectTracker . Deact ivateDataSet (mBuiltDataSet) ;
44 // des t roy the o l d e s t t a r g e t i f the datase t i s f u l l
45 i f (mBuiltDataSet . HasReachedTrackableLimit ()) {
46 IEnumerable<Trackable> t r a ckab l e s = mBuiltDataSet .

GetTrackables () ;
47 Trackable o l d e s t = nu l l ;
48 f o r each (Trackable t r a ckab l e in t r a ckab l e s)
49 i f (o l d e s t == nu l l | | t r a ckab l e . ID < o ld e s t . ID)
50 o l d e s t = t rackab l e ;
51 i f (o l d e s t != nu l l) {
52 mBuiltDataSet . Destroy (o lde s t , t rue) ;
53 }
54 }
55 // get p r ede f i ned t ra ckab l e (template) and i n s t a n t i a t e i t
56 ImageTargetBehaviour imageTargetCopy = (

ImageTargetBehaviour) I n s t a n t i a t e (ImageTargetTemplate) ;
57 // add the t r a ckab l e to the data s e t and a c t i v a t e i t
58 mBuiltDataSet . CreateTrackable (t rackab leSource ,

imageTargetCopy . gameObject) ;
59 // re−a c t i v a t e the datase t
60 mObjectTracker . Act ivateDataSet (mBuiltDataSet) ;
61 }
62 void Update () {
63 i f (mUdt In i t i a l i z ed && (mFrameQuality == ImageTargetBui lder

. FrameQuality .FRAME_QUALITY_HIGH | |
64 mFrameQuality == ImageTargetBui lder . FrameQuality .

FRAME_QUALITY_MEDIUM)) {
65 t a r g e t . s p r i t e = OK;
66 button . gameObject . SetAct ive (t rue) ;
67 } e l s e {
68 t a r g e t . s p r i t e = X;
69 button . gameObject . SetAct ive (f a l s e) ;
70 }
71 }
72 pub l i c void BuildNewTarget () { // bu i ld t a r g e t with i t s ob j e c t
73 s t r i n g newTargetName = "MyUserDefinedTarget" ;
74 mTargetBuildingBehaviour . BuildNewTarget (newTargetName ,

ImageTargetTemplate . GetSize () . x) ;
75 arms . GetComponent<ARSetPlatform >() . startTime = Time . time ;
76 }
77 }

54

Chapter 6

Usability Testing

After initial test (on Samsung Galaxy S3 (GT-i9300 with Android 4.3 and
8 Mpx camera) and 12 testing subjects with various mobile user experience),
it became obvious that this game shouldn’t and actually can’t target the whole
spectrum of users from beginners to expert users of mobile technology. If the
game would be divided into 2 parts, the Menu and the Battle part, then
difference in the performance of individual testing subjects in the Menu part
was nearly unnoticeable and the minigame was equally enjoyed (classic game
of pair matching) although no one was able to get to the last round. However
Augmented reality in the Battle part of the game caused less experienced users
(mostly older citizens) to panic and it often resulted into poor image target
quality (not taken under 90 degrees angle or with bad lighting etc) or them
constantly covering the camera lens with fingers or their hand. Still the test
wasn’t completely useless because it uncovered some shortcomings in the UI
of the Menu part and significant bug in the Battle part:

• unsuitable image icon for "Go back" action

• unintuitive action assigned to the main menu image

• mini icons design in the main menu wasn’t explicit enough

• selection of the members and equipment for battle wasn’t automatic
enough

• the set of members and their equipment doesn’t get updated after second
loading of the Battle scene in one session of the game

I deducted that the main problem with the Battle part of the game was lack of
feedback that would indicate for the less experienced users what is happening
and I added it into the list of changes.

For the second testing after fixing the problems in the prototype from initial
test, subjects that were chosen had medium or high mobile user experience to

55

6. Usability Testing

primarily test the Battle part of the game. Half of them got list of actions
that they were supposed to perform (use cases from section 4.4) and half of
them were left to do whatever they want in the game. Naturally the first half
performed better because the second half of testing subjects didn’t know at
first what is even possible to do.

In the first round they got a game with no setup where they had only
Captain type member and one gun, which means their actions were fairly
limited and completely excluded Battle part of the game. They all stated that
informative pop-up messages telling them that they don’t have enough MEM,
CPU, GPU or members, step-by-step navigated them into what they should
actually do, but they also said that it would be better if in the first run of the
game there would be a set of messages about what to do to get started.

In the second round they got a game with initial setup of 8 AVUnit mem-
bers, 10 pieces of equipment, 140 MEM, 120 CPU and 130 GPU resources.
Only 3 people out of 10 went to look at their members and equipment and
the rest of them went straight to the Battle part of the game where 9 of them
successfully defeated their AI opponent and one of them spend most of the
time testing the physics system, image tracking and recovery and in general
trying to break it until he got killed by his opponent. There were no visible
problems in the battle’s gameplay, but without an actual self-improving op-
ponent (which would be present if the networking was in the game) the battle
against a fairly predictable AI will most likely loose its charm after some time.

56

Conclusion

In this thesis I’ve made a detailed research on mobile AR. First, I’ve analysed
and compared each approach that can be taken while making a mobile AR
application, then I have searched for current solutions on the market and re-
viewed necessary tools for their development. With knowledge gained from this
research I’ve designed an AR game and implemented its prototype. The result
of this thesis is a working AR game for Android that fulfills the requirements
(allowing player to interact with computer generated content in AR world).

During implementation despite various initial tests with both Unity and
Vuforia separately, it proved to be quite tricky to combine them in one project.
For example, some design patterns used in minigame (pair matching) scene or
animations with events attached to them, couldn’t be used in the AR scene
and I had to experiment with alternative solutions.

This game prototype can be used as a core part for a game with networking
which would bring uniqueness into the gameplay and also increase competit-
iveness in players. Other future extensions could be more complex 3D models
with animations for AR part of the game, but that is rather limited by device
specifications and could prevent some users from being able to play this game.

This game wasn’t only about coding, but also required creation of 2D and
3D content which definitely forced me to learn and improve several of my
technical skills.

Personal evaluation

After spending a lot of time on various forum sites that deal with issues caused
by implementation of AR onto mobile platforms, I believe that unless the ap-
plication is flawlessly executed with seamless UI design, it will miss the under-
standing of its audience. There’s real potential for this kind of AR software,
but the trick has always been to develop an interface that will make sense in
such a rich sensual environment. General knowledge and experience with AR
is still very low and most people expect results like the ones in sci-fi movies or

57

Conclusion

performance as good as in VR. Having to develop a simple mobile AR game
myself made me appreciate the time and effort that developers have to put
into their development of AR graphics and algorithms.

58

Bibliography

[1] Vuforia [online]. PTC Inc. 2016, [cit. 2016-05-14]. Available at: http://
www.vuforia.com/

[2] Unity [online]. Unity Technologies 2016, [cit. 2016-05-14]. Available at:
https://unity3d.com/

[3] Penguin NAVI [online]. Sunshine Aquarium 2013, [cit. 2016-05-14]. Avail-
able at: https://www.youtube.com/watch?v=IK4-zPD_25U

[4] OSER A. Augmented Reality in Marketing: 5 Compelling Statist-
ics. pulse [online]. 2014, [cit. 2016-04-23]. Available at: https:
//www.linkedin.com/pulse/20141209155630-28910946-augmented-
reality-in-marketing-5-compelling-statistics

[5] IKEA 2016 Catalogue [online]. IKEA 2016, [cit. 2016-05-14]. Available at:
https://www.youtube.com/watch?v=xC6t2eEPkPc

[6] MeView Augmented Reality Maintenace Enterprise Application [online].
Mitsubishi Electric 2013, [cit. 2016-05-14]. Available at: https://
www.youtube.com/watch?v=Edi02M1nS8g

[7] Mitsubishi Electric, Cooling & Heating [online]. [cit. 2016-05-14]. Available
at: http://www.metaio.com/fileadmin/upload/documents/pdf/case-
study/A4-metaio_use_case-mitsubishi_meVIEW-AR.pdf

[8] David Murphy Augmented Reality Glasses: What You Can Buy Now
(or Soon) [online]. tomsguide [cit. 2016-05-14]. Available at: http://
www.tomsguide.com/us/best-ar-glasses,review-2804.html

[9] Envision IP [online]. Envision IP [cit. 2016-05-14]. Available at: http:
//www.envisionip.com/

[10] Metaio GmbH [online]. Apple Inc. 2016, [cit. 2016-05-14]. Available at:
https://www.metaio.com/

59

http://www.vuforia.com/
http://www.vuforia.com/
https://unity3d.com/
https://www.youtube.com/watch?v=IK4-zPD_25U
https://www.linkedin.com/pulse/20141209155630-28910946-augmented-reality-in-marketing-5-compelling-statistics
https://www.linkedin.com/pulse/20141209155630-28910946-augmented-reality-in-marketing-5-compelling-statistics
https://www.linkedin.com/pulse/20141209155630-28910946-augmented-reality-in-marketing-5-compelling-statistics
https://www.youtube.com/watch?v=xC6t2eEPkPc
https://www.youtube.com/watch?v=Edi02M1nS8g
https://www.youtube.com/watch?v=Edi02M1nS8g
http://www.metaio.com/fileadmin/upload/documents/pdf/case-study/A4-metaio_use_case-mitsubishi_meVIEW-AR.pdf
http://www.metaio.com/fileadmin/upload/documents/pdf/case-study/A4-metaio_use_case-mitsubishi_meVIEW-AR.pdf
http://www.tomsguide.com/us/best-ar-glasses,review-2804.html
http://www.tomsguide.com/us/best-ar-glasses,review-2804.html
http://www.envisionip.com/
http://www.envisionip.com/
https://www.metaio.com/

Bibliography

[11] Augmented Reality for Mobile Devices [online]. Tractica LLC. 2015, [cit.
2016-05-14]. Available at: https://www.tractica.com/newsroom/press-
releases/installed-base-of-mobile-augmented-reality-apps-to-
reach-2-2-billion-by-2019/

[12] AZUMA, Ronald. A Survey of Augmented Reality. Presence [online].
1997, 6(4), 355-385 [cit. 2016-04-14]. DOI: 10.1162/pres.1997.6.4.355. ISSN
10547460. Available at: http://web.b.ebscohost.com

[13] MILGRAM P., KISHINO F. A taxonomy of mixed reality visual dis-
plays. [online] IEICE TRANSACTIONS on Information and Systems, vol.
77, no. 12, 1994, pp. 1321-1329. [cit. 2016-05-14]. Available at: http://
cs.gmu.edu/~zduric/cs499/Readings/r76JBo-Milgram_IEICE_1994.pdf

[14] SOURIN, Alexei. COMPUTER GRAPHICS From a Small Formula to
Cyberworlds. 3. edition. Singapore: Pearson Education South Asia Pte
Ltd, 2012. ISBN 978-981-06-9234-6.

[15] BCS GLOSSARY WORKING PARTY. VIRTUAL REALITY. BCS
Glossary of Computing and ICT. 2013. ISBN 1780171501.

[16] Wikitude GmbH [online]. version 8.2.6 [cit. 2016-05-14]. Available at:
https://play.google.com/store/apps/details?id=com.wikitude

[17] Yelp [online]. Yelp Inc. [cit. 2016-05-14]. Available at: https://
play.google.com/store/apps/details?id=com.yelp.android

[18] GRUBERT, Jens. Augmented Reality for Android Application Devel-
opment. [online] 2013. ISBN 1782168559. [cit. 2016-05-14]. Available at:
http://site.ebrary.com/

[19] KEMAO, Qian. Imaging Geometry. NTU Singapore, CCE4003/CZ4003
Computer Vision, 2014.

[20] VAN KREVELEN D., POELMAN R. A Survey of Augmented Reality
Technologies. Applications and Limitations [online]. 2010, [cit. 2016-04-15].
Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.454.8190&rep=rep1&type=pdf

[21] LAWITZKI, Paul. Android Sensor Fusion Tutorial [online]. CodePro-
ject, 2014 [cit. 2016-05-14]. Available at: http://www.codeproject.com/
Articles/729759/Android-Sensor-Fusion-Tutorial

[22] SEAH, Hock Soon. Tracking for AR. NTU Singapore, CE/CZ4001 Virtual
and Augmented Reality, 2014.

60

https://www.tractica.com/newsroom/press-releases/installed-base-of-mobile-augmented-reality-apps-to-reach-2-2-billion-by-2019/
https://www.tractica.com/newsroom/press-releases/installed-base-of-mobile-augmented-reality-apps-to-reach-2-2-billion-by-2019/
https://www.tractica.com/newsroom/press-releases/installed-base-of-mobile-augmented-reality-apps-to-reach-2-2-billion-by-2019/
http://web.b.ebscohost.com
http://cs.gmu.edu/~zduric/cs499/Readings/r76JBo-Milgram_IEICE_1994.pdf
http://cs.gmu.edu/~zduric/cs499/Readings/r76JBo-Milgram_IEICE_1994.pdf
https://play.google.com/store/apps/details?id=com.wikitude
https://play.google.com/store/apps/details?id=com.yelp.android
https://play.google.com/store/apps/details?id=com.yelp.android
http://site.ebrary.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.8190&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.8190&rep=rep1&type=pdf
http://www.codeproject.com/Articles/729759/Android-Sensor-Fusion-Tutorial
http://www.codeproject.com/Articles/729759/Android-Sensor-Fusion-Tutorial

Bibliography

[23] KHAN, Akif. Rebirth of Augmented Reality - Enhancing Real-
ity via Smartphones. Bahria University Journal of Information
& Communication Technology [online]. 2015, vol. 8, no. 1, s.
110-121. ISSN 19994974. [cit. 2016-05-14]. Available at: http:
//search.proquest.com.ezproxy.techlib.cz/docview/1695973798?pq-
origsite=summon

[24] FIALA, M. ARTag, a Fiducial Marker System using Digital Techniques.
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05) [online], vol. 2/(2005), pp. 590-596 vol. 2. [cit.
2016-04-14]. DOI: 10.1109/CVPR.2005.74. ISSN 1063-6919. Available at:
http://ieeexplore.ieee.org

[25] ARToolKit [online]. ARToolKit [cit. 2016-05-14]. Available at: http://
artoolkit.org/

[26] XU, Dong. Object Recognition - Part II. NTU Singapore,
CCE4003/CZ4003 Computer Vision, 2014.

[27] MIKOLAJCZYK K., et al. A Comparison of Affine Region Detectors.
International Journal of Computer Vision. [online] 2005, vol. 65, no. 1, pp.
43-72. [cit. 2016-04-14]. DOI: 10.1007/s11263-005-3848-x. ISSN 1573-1405.
Available at: http://link.springer.com

[28] MIKOLAJCZYK K., SCHMID C. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine In-
telligence. 2005 [online], vol. 27, no. 10, pp. 1615-1630. [cit. 2016-04-
14]. DOI: 10.1109/TPAMI.2005.188. ISSN 0162-8828. Available at: http:
//ieeexplore.ieee.org

[29] CARMIGNIANI J., et al. Augmented reality technologies, systems and
applications. Multimedia Tools and Applications. [online] 2011, vol. 51, no.
1, pp. 341-377. [cit. 2016-04-14]. DOI: 10.1007/s11042-010-0660-6. ISSN
1573-7721. Available at: http://link.springer.com

[30] Layar [online]. Layar. version 8.5.0 [cit. 2016-05-14]. Available at: https:
//play.google.com/store/apps/details?id=com.layar&hl=sk

[31] Field Trip [online]. Niantic, Inc. version 2.0.9 [cit. 2016-05-14].
Available at: https://play.google.com/store/apps/details?id=
com.nianticproject.scout&hl=sk

[32] Mybrana, Fun Videos with AR FX [online]. Mybrana Network. version
1.52.0 [cit. 2016-05-14]. Available at: https://play.google.com/store/
apps/details?id=com.mybrana.mybrana3d&hl=sk

61

http://search.proquest.com.ezproxy.techlib.cz/docview/1695973798?pq-origsite=summon
http://search.proquest.com.ezproxy.techlib.cz/docview/1695973798?pq-origsite=summon
http://search.proquest.com.ezproxy.techlib.cz/docview/1695973798?pq-origsite=summon
http://ieeexplore.ieee.org
http://artoolkit.org/
http://artoolkit.org/
http://link.springer.com
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://link.springer.com
https://play.google.com/store/apps/details?id=com.layar&hl=sk
https://play.google.com/store/apps/details?id=com.layar&hl=sk
https://play.google.com/store/apps/details?id=com.nianticproject.scout&hl=sk
https://play.google.com/store/apps/details?id=com.nianticproject.scout&hl=sk
https://play.google.com/store/apps/details?id=com.mybrana.mybrana3d&hl=sk
https://play.google.com/store/apps/details?id=com.mybrana.mybrana3d&hl=sk

Bibliography

[33] Google Translate [online]. Google Inc. [cit. 2016-05-14]. Avail-
able at: https://play.google.com/store/apps/details?id=
com.google.android.apps.translate&hl=sk

[34] Theodolite [online]. Hunter Research and Technology, LLC. version
5.0 [cit. 2016-05-14]. Available at: https://itunes.apple.com/us/app/
theodolite/id339393884?mt=8

[35] Star Walk - Astronomy Guide [online]. Vito Technology. version 1.0.10.21
[cit. 2016-05-14]. Available at: https://play.google.com/store/apps/
details?id=com.vitotechnology.StarWalk

[36] Sun Seeker [online]. ozPDA. version 4.6.2 [cit. 2016-05-14].
Available at: https://play.google.com/store/apps/details?id=
com.ajnaware.sunseeker&hl=sk

[37] iOnRoad Augmented Driving Pro [online]. iOnRoad. version 2.0.1p
[cit. 2016-05-14]. Available at: https://play.google.com/store/apps/
details?id=com.picitup.iOnRoad.pro

[38] XU Y., et al. Pre-patterns for designing embodied interactions in hand-
held augmented reality games. IEEE International Symposium on Mixed
and Augmented Reality - Arts, Media, and Humanities. [online] 2011,
pp. 19. [cit. 2016-04-14]. DOI: 10.1109/ISMAR-AMH.2011.6093652. ISSN
2381-8360. Available at: http://ieeexplore.ieee.org

[39] JACOB R.J.K., et al. Reality-Based Interaction: A Framework for Post-
WIMP Interfaces. Proc. ACM CHI 2008 Human Factors in Computing
Systems Conference. [online] pp. 201-210, ACM Press (2008). [cit. 2016-04-
14]. Available at: http://www.cs.tufts.edu/~jacob/papers/chi08.pdf

[40] ARBasketball - Augmented Reality Basketball Game [online].
Augmented Pixels Inc. version 2.0.0 [cit. 2016-05-14]. Available
at: https://itunes.apple.com/us/app/arbasketball-augmented-
reality/id393333529?mt=8

[41] AR Defender 2 [online]. Bulkypix. version 1.3 [cit. 2016-05-14].
Available at: https://itunes.apple.com/us/app/ar-defender-2/
id559729773?mt=8

[42] Tilt - Augmented Reality [online]. 13 App Design. version 1.2.0 [cit. 2016-
05-14]. Available at: https://play.google.com/store/apps/details?id=
com.thirteen.tilt&hl=sk

[43] Crayola Color Alive [online]. DAQRI. version 1.8.0 [cit. 2016-05-
14]. Available at: https://play.google.com/store/apps/details?id=
com.DAQRI.crayola.coloralive&hl=sk

62

https://play.google.com/store/apps/details?id=com.google.android.apps.translate&hl=sk
https://play.google.com/store/apps/details?id=com.google.android.apps.translate&hl=sk
https://itunes.apple.com/us/app/theodolite/id339393884?mt=8
https://itunes.apple.com/us/app/theodolite/id339393884?mt=8
https://play.google.com/store/apps/details?id=com.vitotechnology.StarWalk
https://play.google.com/store/apps/details?id=com.vitotechnology.StarWalk
https://play.google.com/store/apps/details?id=com.ajnaware.sunseeker&hl=sk
https://play.google.com/store/apps/details?id=com.ajnaware.sunseeker&hl=sk
https://play.google.com/store/apps/details?id=com.picitup.iOnRoad.pro
https://play.google.com/store/apps/details?id=com.picitup.iOnRoad.pro
http://ieeexplore.ieee.org
http://www.cs.tufts.edu/~jacob/papers/chi08.pdf
https://itunes.apple.com/us/app/arbasketball-augmented-reality/id393333529?mt=8
https://itunes.apple.com/us/app/arbasketball-augmented-reality/id393333529?mt=8
https://itunes.apple.com/us/app/ar-defender-2/id559729773?mt=8
https://itunes.apple.com/us/app/ar-defender-2/id559729773?mt=8
https://play.google.com/store/apps/details?id=com.thirteen.tilt&hl=sk
https://play.google.com/store/apps/details?id=com.thirteen.tilt&hl=sk
https://play.google.com/store/apps/details?id=com.DAQRI.crayola.coloralive&hl=sk
https://play.google.com/store/apps/details?id=com.DAQRI.crayola.coloralive&hl=sk

Bibliography

[44] ARSoccer - Augmented Reality Soccer Game [online]. Laan Labs. ver-
sion 0.8 [cit. 2016-05-14]. Available at: https://itunes.apple.com/us/
app/arsoccer-augmented-reality/id381035151?mt=8

[45] A.R. Warriors [online]. aCrm Net S.r.l.. version 1.0 [cit. 2016-05-
14]. Available at: https://play.google.com/store/apps/details?id=
com.acrmnet.arwarriors&hl=sk

[46] Paparazzi - Augmented Reality [online]. Pixel Punch. version 1.3.1
[cit. 2016-05-14]. Available at: https://play.google.com/store/apps/
details?id=com.pixelpunch.paparazzi

[47] AR Invaders [online]. Soulbit7. version 1.0.1 [cit. 2016-05-14].
Available at: https://play.google.com/store/apps/details?id=
com.soulbit7.game.arinvaders&hl=sk

[48] Ingress [online]. Niantic, Inc. version 1.99.1 [cit. 2016-05-14].
Available at: https://play.google.com/store/apps/details?id=
com.nianticproject.ingress&hl=sk

[49] Pokémon GO [online]. Niantic, Inc. beta version [cit. 2016-05-14]. Avail-
able at: http://nianticlabs.com/blog/

[50] Aurasma [online]. Hewlett-Packard Development Company. L.P. [cit.
2016-05-14]. Available at: https://www.aurasma.com/

[51] Blippar [online]. Blippar [cit. 2016-05-14]. Available at: https://
blippar.com/en/

[52] Layar [online]. Blippar [cit. 2016-05-14]. Available at: https://
www.layar.com/

[53] Wikitude [online]. Wikitude GmbH [cit. 2016-05-14]. Available at: http:
//www.wikitude.com/

[54] Augment [online]. Augment [cit. 2016-05-14]. Available at: http://
www.augment.com/

[55] Blippbuilder [online]. BlippBuilder [cit. 2016-05-14]. Available at: https:
//blippar.com/en/solutions/self-service-solutions/

[56] Layar Creator [online]. Blippar [cit. 2016-05-14]. Available at: https:
//www.layar.com/accounts/login/?next=/creator/

[57] Webcam Social Shopper [online]. Zugara Inc. [cit. 2016-05-14]. Available
at: http://webcamsocialshopper.com/

63

https://itunes.apple.com/us/app/arsoccer-augmented-reality/id381035151?mt=8
https://itunes.apple.com/us/app/arsoccer-augmented-reality/id381035151?mt=8
https://play.google.com/store/apps/details?id=com.acrmnet.arwarriors&hl=sk
https://play.google.com/store/apps/details?id=com.acrmnet.arwarriors&hl=sk
https://play.google.com/store/apps/details?id=com.pixelpunch.paparazzi
https://play.google.com/store/apps/details?id=com.pixelpunch.paparazzi
https://play.google.com/store/apps/details?id=com.soulbit7.game.arinvaders&hl=sk
https://play.google.com/store/apps/details?id=com.soulbit7.game.arinvaders&hl=sk
https://play.google.com/store/apps/details?id=com.nianticproject.ingress&hl=sk
https://play.google.com/store/apps/details?id=com.nianticproject.ingress&hl=sk
http://nianticlabs.com/blog/
https://www.aurasma.com/
https://blippar.com/en/
https://blippar.com/en/
https://www.layar.com/
https://www.layar.com/
http://www.wikitude.com/
http://www.wikitude.com/
http://www.augment.com/
http://www.augment.com/
https://blippar.com/en/solutions/self-service-solutions/
https://blippar.com/en/solutions/self-service-solutions/
https://www.layar.com/accounts/login/?next=/creator/
https://www.layar.com/accounts/login/?next=/creator/
http://webcamsocialshopper.com/

Bibliography

[58] D’Fusion Studio [online]. Total Immersion. [cit. 2016-05-14]. Available
at: http://www.t-immersion.com/products/dfusion-suite/dfusion-
studio

[59] ARLab [online]. Augmented Reality Lab S.L. [cit. 2016-05-14]. Available
at: http://www.arlab.com/

[60] Catchoom CraftAR [online]. Catchoom [cit. 2016-05-14]. Available
at: http://catchoom.com/product/craftar/augmented-reality-and-
image-recognition/

[61] MARNEANU I., EBNER M., ROESSLER T.Evaluation of Augmented
Reality Frameworks for Android Development. International Journal of In-
teractive Mobile Technologies (iJIM). [online] 2014, vol. 8, no. 4, pp. 37-
44. [cit. 2016-04-15]. DOI: 10.3991/ijim.v8i4.3974. ISSN 18657923. Avail-
able at: http://online-journals.org/index.php/i-jim/article/view/
3974

[62] ROCKENSCHAUB Dominik. Entwicklung und anwendung einer system-
atischen vorgehensweise zur analyse marker basierter augmented reality
frameworks für mobile endgeräte.. Master’s thesis, Johannes Kepler Uni-
versität Linz, Linz, Austria, 2012.

[63] SLANT What are the best 3D game engines? [online]. Slant [cit. 2016-05-
14]. Available at: http://www.slant.co/topics/1495/~3d-game-engines

[64] MATTERHACKER Finding the Right 3D Modeling Software For
You [online]. MatterHacker posted 26-8-2015 [cit. 2016-05-14]. Available
at: https://www.matterhackers.com/articles/finding-the-right-
3d-modeling-software-for-you

[65] Blender [online]. Blender Foundation [cit. 2016-05-14]. Available at:
https://www.blender.org/

[66] Execution Order of Event Functions [online]. Unity Documenta-
tion [cit. 2016-05-14]. Available at: http://docs.unity3d.com/Manual/
ExecutionOrder.html

64

http://www.t-immersion.com/products/dfusion-suite/dfusion-studio
http://www.t-immersion.com/products/dfusion-suite/dfusion-studio
http://www.arlab.com/
http://catchoom.com/product/craftar/augmented-reality-and-image-recognition/
http://catchoom.com/product/craftar/augmented-reality-and-image-recognition/
http://online-journals.org/index.php/i-jim/article/view/3974
http://online-journals.org/index.php/i-jim/article/view/3974
http://www.slant.co/topics/1495/~3d-game-engines
https://www.matterhackers.com/articles/finding-the-right-3d-modeling-software-for-you
https://www.matterhackers.com/articles/finding-the-right-3d-modeling-software-for-you
https://www.blender.org/
http://docs.unity3d.com/Manual/ExecutionOrder.html
http://docs.unity3d.com/Manual/ExecutionOrder.html

Appendix A
Acronyms

6DOF Six Degrees Of Freedom

9PP 9 Pre-Patterns

A-GPS Assisted Global Positioning System

API Application Programming Interface

APK Android Application Package

AR Augmented Reality

CCS Camera Coordinate System

CG Computer Graphics

COP Center Of Projection

CPU Central Processing Unit resources

CTU Czech Technical University

CVB Computer vision-based

DCS Display Coordinate System

DDL Data Definition Language

DoG Difference of Gaussians

ECEF Earth-Centered, Earth-Fixed format

ECS or CS Euclidean Coordinate System

ENU East-North-Up format

GNSS Global Navigation Satellite System

65

A. Acronyms

GPS Global Positioning Systems

GPU Graphics Processing Unit resources

LCS Local Coordinate System

MEM Memory resources

MEMS Multi-axis Miniature Mechanical System

NFT Natural Feature Tracking

OS Operating System

OST Optical See-Through technology

POI Point Of Interest

QR code Quick Response code

RBI Reality-Based Interactions

SAD Sum Of Absolute Difference

SDK Software Development Kit

SIFT Scale Invariant Feature Transform

SSD Sum Of Squared Difference

UI User Interface

URL Uniform Resource Locator

VR Virtual Reality

VST Video See-Through technology

WCS World Coordinate System

XML eXtensible Markup Language

66

Appendix B

Screenshots and photos

(a) 3D registration (b) Running game

(c) Main menu (d) Change language

(e) Browsing AVUnit members category (f) Deleting AVUnit member

67

B. Screenshots and photos

(a) Browsing existing equipment category (b) Deleting existing equipment

(c) Coping Captain’s code (d) Copied and edited code

(e) Browsing available equipment cat-
egory (f) Creating equipment

(g) Minigame menu (h) Minigame: Pairs matching

68

(a) Pairs matching: Out of moves (b) Selecting members for battle

(c) Selecting equipment for battle (d) Selecting platform for battle

(e) Instructions for 3D registration (f) 3D registration

(g) Initial animation (h) Start of player’s turn

69

B. Screenshots and photos

(a) Selected member

(b) Selected weapon

(c) Reply about player’s action (d) Reply about opponent’s action

70

Appendix C

Contents of enclosed CD

README.txt........................ the file with CD contents description
src..the directory of source codes

apk directory with application in apk format
AVUnit..................................directory with Unity project

Assets................directory with materials used in the project
Scripts..............directory with scripts used in the project

thesis...............the directory of LATEX source codes of the thesis
text...the thesis text directory

thesis.pdf the thesis text in PDF format

71

	Introduction
	Goals and Motivation

	About AR
	Real, Virtual and Augmented reality
	Displaying AR
	3D Registration and Coordinate Systems
	Sensor-based AR
	Computer vision-based AR
	Comparison

	Mobile AR applications
	Few use cases of AR in mobile apps
	Mobile AR games

	Mobile AR development
	Tools for mobile AR
	Detailed comparison

	Design my own game
	Recommended design concepts for CVB AR applications
	Game system requirements
	Description of the game world
	Use cases and their scenarios
	Entities in the game mechanics
	Scenes and UI screen flow
	My game design and 9PP

	Implementation
	Selected tools and technology
	Unity
	Vuforia

	Usability Testing
	Conclusion
	Personal evaluation

	Bibliography
	Acronyms
	Screenshots and photos
	Contents of enclosed CD

