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Abstrakt 

Tento projekt se zabývá návrhem sektorové antény tvořené vlnovodem se štěrbinami. 

Sektorové antény mají vyzařovací diagram, který je široký v jedné rovině a úzký v rovině 

kolmé. V první části práce je analyzován vliv rozměrů štěrbiny na impedanci a rezonanční 

vlastnosti antén. Také je uvedeno porovnání mezi teorií a simulací. Jsou ověřeny vztahy 

tloušťky vlnovodu proti rezonanční vodivosti, šířky štěrbiny proti rezonanční vodivosti a 

délky štěrbiny proti rezonanční vodivosti. Druhá část práce se zabývá návrhovými vztahy 

s uvažováním vzájemných vazeb. Byly navrženy dvě antény s různou amplitudou pole a 

antény byly simulovány v CST Microwave Studio.  

Klíčová slova: štěrbinová anténa, sektorová anténa, anténní řada ve vlnovodu, impedance 

štěrbiny, návrh antén, vzájemná vazba 

 

 

Abstract  

This thesis deals with the design of sector slot array antenna. Sector antennas have a 

radiation pattern which is wide in one plane and narrow in the perpendicular one. In the 

first part of the thesis, the effect of the slot’s dimensions has been analyzed on the 

antenna’s impedance and resonant properties. Comparison between theory and 

simulations is presented. The influence of waveguide wall thickness, slot width and slot 

length on resonant conductance is shown. The second part deals with the design 

equations and procedure of the slot array antennas taking the mutual coupling into 

account. Two antennas have been designed with different radiation patterns and they 

were simulated in CST Microwave Studio. 

Keywords: slot antenna, sector antenna, waveguide antenna array, slot impedance, 

antenna design, mutual coupling  
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1. Introduction 
Slot antennas are popular microwave antennas typically used at frequencies from 300 

MHz to 24 GHz. They are widely used in radar navigation and as sector antennas in mobile 

communications. These antennas have omnidirectional radiation pattern and linear 

polarization. The main advantages of slot antennas are their simplicity, robustness and 

easy fabrication. Usually slots are used in arrays to form the desired radiation pattern and 

to increase the gain. The easiest way to make a slot antenna array is by cutting the slots 

out of the wall of a waveguide. In this case the waveguide works as a transmission line to 

feed the slots.  

The aim of this thesis is to analyze the radiation of a longitudinal slot in the broad wall of 

the waveguide and examine the effect of slot dimensions and offset on the impedance of 

the slot and compare it to the theory. Further goals are to analyze the design equations 

of the slot array and to implement the design procedure in MATLAB. With the 

implemented code two antennas have to be made each to satisfy a different criteria. 

The thesis is divided into nine main chapters. The first chapter is the introduction, it is 

followed by the theoretical overview, where some antenna parameters, waveguide 

theory and slot impedance are described. The third chapter contains the simulation 

results for different slot dimensions and offsets. In the fourth chapter a step-by-step guide 

is given to design a slot array antenna without considering the mutual coupling between 

the slots. Also two designed antennas and their parameters are shown in this chapter. In 

the fifth chapter the guide presented in chapter four is extended with the theory of 

mutual coupling between slots. The sixth chapter describes how the implemented 

MATLAB code works and the correct function of it is verified here. In the seventh chapter 

two antennas are presented which dimensions were calculated with the written code. The 

conclusion of the paper is in the eight chapter, which is followed by the list of the used 

sources in the last chapter. 
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2. Theory 

2.1. Antenna parameters 
An antenna is usually defined as the structure associated with the region of transition 

between a guided wave and a free-space wave or vice-versa. On transmission, an antenna 

accepts energy from a transmission line and radiates it into space, and on reception an 

antenna gathers energy from an incident wave and sends it down a transmission line [1]. 

In this chapter some of the main antenna parameters will be discussed. 

2.1.1. Directivity 
Directivity is a measure of ability of an antenna to concentrate radiated power in a 

particular direction. An antenna which radiates to each direction equally is an isotropic 

antenna and its directivity is equal to 1. For other antennas the directivity is the ratio of 

the radiation intensity in that particular direction to that of isotropic antenna [2]. 

 
𝐷(𝛩, 𝛷) =

𝑈(𝛩, 𝛷)

1
4𝜋 𝑃𝑟

 (1)  

where 𝑈(𝛩, 𝛷) is the radiation intensity in watts per steradian and 𝑃𝑟 is the total power 

radiated from the antenna: 

 

𝑃𝑟 = ∫ ∫ 𝑈(𝛩, 𝛷)𝑠𝑖𝑛𝛩 𝑑𝛩 𝑑𝛷

𝜋

0

2𝜋

0

 (2)  

2.1.2. Gain 
The gain of the antenna in a given direction is the amount of energy radiated in that 

particular direction compared to the energy an isotropic antenna would radiate in the 

same direction. The gain includes the power losses in the materials comprising the 

antenna and it is related to the directivity as follows: 

 𝐺(𝛩, 𝛷) = 𝜂𝐷(𝛩, 𝛷) (3)  
where 𝜂 is the efficiency of the antenna and can be calculated as 

 
𝜂 =

𝑃𝑟

𝑃0
 (4)  

𝑃0 is the power accepted by the antenna from the transmitter. 

2.1.3. Radiation pattern 
Radiation pattern is the normalized visualization of the variation of power radiated by an 

antenna as a function of direction. It usually consist of a main lobe, which is in the 

direction of the maximum gain, and several smaller side lobes. Radiation pattern is 

generally 3 dimensional, however usually only 2 dimensional cuts are used in polar or 

Cartesian coordinate system. The main parameters of a radiation pattern are shown in 

Figure 1. The most important parameters are the half power beam width (HPBW) and the 

side lobe level (SLL). 
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Figure 1. Radiation pattern 

 

2.1.4. Voltage standing wave ratio (VSWR) 
VSWR is a measure that numerically describes how well the impedance of the antenna is 

matched to the impedance of the transmission line [3]. Ideally the impedance of the 

antenna is matched with the impedance of the transmission line. However, perfect match 

is hard to achieve, therefore a small amount of energy is reflected back to the 

transmission line, and a standing wave is formed. VSWR is the ratio of the peak amplitude 

to the minimum amplitude of the standing wave. VSWR also can be calculated as follows: 

 
𝑉𝑆𝑊𝑅 =

1 + |𝛤|

1 − |𝛤|
 

(5)  

where 𝛤 is the reflection coefficient, which can be calculated from the impedance of the 

antenna 𝑍𝐴 and the impedance of the transmission line 𝑍𝑆: 

 
𝛤 =

𝑍𝐴 − 𝑍𝑆

𝑍𝐴 − 𝑍𝑆
 (6)  
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2.2. Rectangular waveguide 
A rectangular waveguide is a hollow metal pipe which is used as a transmission line 

connecting transmitters and receivers to antennas. They can carry high power levels while 

the signal attenuation is very low. Waveguides are typically filled with air, but any other 

dielectric material may be used. 

 

Figure 2. Rectangular waveguide [2] 

Waveguides can support two different types of electromagnetic waves also referred to 

them as modes: 

TE modes: Transverse electric modes are characterized by the fact that the electric field 

(E) is perpendicular to the direction of the propagation, so 𝐸𝑧 = 0 

TM modes: Transverse magnetic modes are characterized by the fact that the magnetic 

field (H) is perpendicular to the direction of the propagation and an electric field 

component is in the propagation direction, so 𝐻𝑧 = 0 

Waveguide theory often refers to these modes with m and n subscripts after them: 𝑇𝐸𝑚𝑛 

and 𝑇𝑀𝑚𝑛. m and n are always integers and they can take values from 0 or 1 to infinity. 

m indicates the number of half waves in the x direction and n is the number of half waves 

in the y direction. 

Each mode can only propagate in the waveguide above a specific frequency, therefore 

waveguides also work as a high pass filter. This frequency is the cutoff frequency and it 

can be calculated as [4]: 

 

𝑓𝑐 =  
𝑐

2√𝜇𝑟𝜀𝑟

√(
𝑚

𝑎
)

2

+ (
𝑛

𝑏
)

2

 (7)  

The dominant mode is the mode with the lowest cutoff frequency. Usually the 𝑇𝐸10 mode 

is the dominant and in case of an air filled waveguide the previous equation simplifies to 

 𝑓𝑐10 =  
𝑐

2𝑎
 (8)  

The cutoff wave number is 

 

𝑘𝑐 = √(
𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑏
)

2

 (9)  

and the phase propagation constant is  
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𝛽 =
2𝜋𝑓0

𝑐
√1 − (

𝑓𝑐

𝑓0
)

2

 (10)  

where 𝑓0 is the operating frequency. 

The wavelength of the wave in the guide is different from the wavelength in free space 

and it is given by: 

 
𝜆𝑔 =

𝜆0

√1 − (𝑓𝑐 𝑓0⁄ )2
 (11)  

It is also important to mention that the ratio of the TE field to the ratio of the TM field for 

a propagation mode at a particular frequency is the impedance of the waveguide. For TE 

modes 

 
𝑍𝑚𝑛

𝑇𝐸 =
𝑍0

√1 − (
𝑓𝑐
𝑓0

)
2

 
(12)  

for TM modes 

 

𝑍𝑚𝑛
𝑇𝐸 = 𝑍0√1 − (

𝑓𝑐

𝑓0
)

2

 (13)  

where 𝑍0 is the impedance of free space 

 
𝑍0 = √

𝜇

𝜀
 (14)  

 

Figure 3. Field and Source Distributions for TE10 mode [2] 

The normalized field components inside the waveguide for 𝑇𝐸10 mode can be calculated 

from the following equations: 

 𝐻𝑧 = 𝑗cos (
𝜋𝑥

𝑎
𝑒𝑗(𝜔𝑡−𝛽𝑧)) (15)  

 
𝐻𝑥 =

−𝛽

𝜋/𝑎
sin (

𝜋𝑥

𝑎
𝑒𝑗(𝜔𝑡−𝛽𝑧)) 

(16)  

 𝐸𝑦 =
𝜔𝜇

𝜋/𝑎
𝑠𝑖𝑛 (

𝜋𝑥

𝑎
𝑒𝑗(𝜔𝑡−𝛽𝑧)) (17)  
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2.3. Conductance of a single slot 
First Stevenson published a paper about the calculation of the conductance of a slot in 

the broad wall of a rectangular waveguide. He used the analogy of the slot array with the 

transmission line to derive his results, and assumed that the slot is self-resonant. The final 

equation he obtained is [5]: 

 𝐺

𝐺0
= 2.09

𝑎/𝑏

𝛽/𝑘
𝑐𝑜𝑠2 (

𝛽

𝑘

𝜋

2
) 𝑠𝑖𝑛2 (

𝜋𝑥

𝑎
) (18)  

where 𝐺 is the conductance of the slot and 𝐺0 is the characteristic conductance of the 

waveguide. The equation indicates that the normalized conductance of the slot is offset 

dependent. 

Later Elliott chosen a different approach to determine the impedance of a slot, he 

analyzed the slot array by the field method [6]. He realized that the normalized 

conductance is not just offset dependent, but also changes with the length of the slot. 

According to him the normalized conductance of a slot can be approximated by 

 
𝐺

𝐺0
=

73

𝑅𝑑
(

4
𝑎
𝑏

0.61𝜋
𝛽
𝑘

(𝑐𝑜𝑠(𝛽𝑙𝑟) − cos(𝑘𝑙𝑟))2𝑠𝑖𝑛2 (
𝜋𝑥

𝑎
)) (19)  

where 𝑅𝑑 is the self-resistance of the corresponding dipole and 𝑙𝑟 is the half slot length.  

For slot length 0.5𝜆0 the equations (18) and (19) give the same results, however for this 

length the slot is not resonant. As a dipole antenna should be shortened from half 

wavelength to make it resonant the same stands for a slot in a waveguide. According to 

[7] the resonant slot length is around 0.464𝜆0 for slot width 𝜆0/20 and waveguide wall 

thickness 1.27 mm. 
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3. Simulations 

3.1. Simulation details  
The influence of different slot parameters on normalized conductance has been analyzed. 

A standard R100 (WR90 according to EIA standard) waveguide has been chosen as the 

model of the simulation in CST Microwave Studio [8]. The recommended frequency band 

of this waveguide is from 8.2 GHz to 12.40 GHz, the working frequency was chosen to be 

at the center of this band 10.3 GHz. At this frequency the wavelength is 𝜆0 = 29.1 mm. 

The width (a=22.86 mm) and the height of (b=10.16 mm) of the waveguide remained 

unchanged during the simulations. The center of the slot is placed 𝜆𝑔/4  from the end wall 

of the waveguide. This way the end wall, which is short-circuit, appears as an open-circuit 

and does not affect the impedance of the slot. The waveguide is fed from 𝜆𝑔/2 distance 

from the middle of the slot, therefore the impedance of the slot is transformed to the 

same value in the Smith chart. The default values of the examined parameters are: 

thickness of the waveguide wall is set to be 0.5 mm, the slot width is 𝜆0/20=1.455 mm, 

which is according to [9] the optimal value, and the slot length is 0.464𝜆0 at the working 

frequency this means 13.5 mm. All simulations were carried out in CST. 

 

Figure 4.The model used in simulations 
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3.2. Influence of wall thickness 
First the thickness of the waveguide’s wall varied, including 1.27 mm which is the defined 

wall thickness of the R100 waveguide. For each thickness the normalized conductance has 

been calculated for offsets from 1 mm to 9 mm. Figure 5. shows the results compared to 

the theoretical curves from Stevenson and Elliott. 

 

Figure 5. The influence of wall thickness on normalized conductance 

Both equations have been derived for infinitely thin wall. The simulations confirm the 

theory, because in case of 0.5 mm wall thickness the simulated points are very close to 

the values calculated according to Stevenson’s equation. With thicker wall the normalized 

conductance rises, but the shape of the curve remains similar. If we multiply the equations 

from Stevenson and Elliott with the correct constant the resulted curves will fit the 

simulated values. 

With changing offset not only the conductance of the slot changes but the resonant 

frequency too. Although the difference is not so significant, only about 0.3 GHz between 

offsets 1 mm and 9 mm, we still have to keep it in mind and during antenna design modify 

the length of the slot accordingly. The thicker the wall of the waveguide the higher the 

working frequency of the slot, which means longer slot for a given frequency. 
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Figure 6. The influence of wall thickness on resonant frequency 

3.3. Influence of slot width 
Figures 7 and 8 show us the results of the simulations in which the width of the slot set to 

five different values. It is clearly seen that this dimension of the slot does not have a great 

influence on the conductance, for each width the results are nearly the same. It is also 

visible that the default slot width, which is 1.455 mm, is the closest to the theoretically 

calculated curves. Both for narrower and wider slots the conductance rises. From Figure 

8 it is clear that the greater the width of the slot the higher the working frequency, 

however the change is so small that the influence of the width is completely negligible 

and no mistake is made if the recommended 𝜆0/20 width is used. 
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Figure 7. The influence of slot width on normalized conductance 

 

Figure 8. The influence of slot width on resonant frequency 



17 
 

3.4. Influence of slot length 
The length of the slot is the main dimension which is used to tune the slot into resonance 

at a given frequency. Simulations show that with the length of the slot not only effects 

the resonant frequency but also the conductance of the slot. The lowest achievable 

conductance for each offset is for the slot length of 0.464𝜆0, which is in our case 13.5 mm. 

For this slot length the resonant frequency varies between 10.4 GHz and 10.8 GHz instead 

of the required 10.3 GHz, hence the slot should be longer to radiate at the desired 

frequency. 

 

Figure 9. The influence of slot length on normalized conductance 
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Figure 10. The influence of slot length on resonant frequency 

  



19 
 

4. Resonant slot array design 
To design a good working slot array antenna one must ensure that the slots are fed in 

phase. This is achieved by proper spacing between the slots. The distance between the 

centers of two slots should be 𝜆𝑔/2 and the slots should be alternating around the center 

line of the broad wall of the waveguide, as shown in Figure 11. If constant amplitude 

distribution is required all slots must have the same offset but half of them with negative 

sign, otherwise the radiation pattern of the array will be inclined.  

 

Figure 11. Resonant slot array [1] 

Assuming that the slots individually are designed correctly and they are resonant their 

admittance is purely real. This way the slots appear as parallel admittances and we can 

easily calculate the input admittance of the array by adding the admittances. If the slots 

are identical to each other in means of offset and length, their admittance is also identical, 

therefore the calculation of input admittance is simplified to a single multiplication: the 

admittance of a single slot multiplied by the number of slots. To ensure perfect impedance 

matching at the input the normalized slot admittances should add up to unity, thus each 

slot should have an admittance of 1/N [9]. The mutual impedance between slots is not 

taken into consideration to make the design procedure easier. 
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Figure 12. Circuit model of a slot array 

 

 𝑌𝑖𝑛𝑝𝑢𝑡 = 𝑁 ∗ 𝑌 (20)  

 

The design procedure of the slot antenna arrays were the following: 

1. The required number of slots is determined 

2. The normalized admittance of each slot is calculated 

3. For slot length 0.464𝜆0 the offset is calculated from the modified equation (18) 

or (19) 

4. Based on the simulated curves the length of the slot is tuned to resonance 

With this procedure two simple antennas were modeled and simulated: a 2 slotted and a 

4 slotted waveguide antenna. 

4.1. Two slot waveguide antenna 

 

Figure 13. Two slot waveguide antenna 
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In case of the two slot antenna the length of the slots is 14.3 mm and their offset from 

the center line of the waveguide is 3.19 mm. Figure 13 shows the 𝑠11 parameter of the 

antenna. At 10.3 GHz it is around -13 dB. The normalized conductance of the antenna is 

1.09, it differs from the required value 1 due to the mutual impedance of the two slots. 

 

Figure 14. s11 of the 2 slot waveguide antenna 

Figures 15, 16 and 17 show the radiation pattern of the antenna in 3D and in two 

perpendicular planes. The pattern is little inclined, not perfectly perpendicular to the 

slots. This is caused by the low number of the slots. Slot antenna arrays usually consist of 

more than two slots to shape the radiation pattern flat in one plane, however even for 

two slots the pattern starts to be sectorial. It is wide in one plane, the HPBW is 79.6 

degrees, while in the perpendicular plane the HPBW is 39.7 degrees. The maximal gain is 

9.5 dBi. 

 

Figure 15. Radiation pattern in 3D 
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Figure 16. Radiation pattern at theta=90° 

 

Figure 17. Radiation pattern at phi=90° 
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4.2. Four slot waveguide antenna 

 

Figure 18. Four slot waveguide antenna 

In case of the 4 slot waveguide antenna the slots are placed with 1.95 mm offset and their 

length is 14.26 mm. The resonant frequency is at 10.36 GHz and the return loss is only -

5.3 dB. This is caused by the mutual impedance of the slots which is not calculated into 

the overall impedance during the calculations. 

 

Figure 19. s11 of the 4 slot waveguide antenna 

The radiation pattern of the antenna is wide only in one plane. The HPBW in the main 

plane is 84 degrees, in the perpendicular plane 20.4 degrees. The side lobe level is -13.1 

dB, which can be improved by varying the voltage amplitude at the slots. Since the 

amplitude at the slots is controlled by offset, by changing the displacement we can shape 

the pattern to suppress the side lobes. The gain of this antenna 12.18 dBi, nearly 3 dB 

more than at the 2 slot array. This is correct because the number of slots has been 

doubled. 
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Figure 20. Radiation pattern in 3D 

 

 

Figure 21. Radiation pattern at theta=90° 



25 
 

 

Figure 22. Radiation pattern at phi=90° 

  



26 
 

5. Design equations and procedure 
The two design equations developed by Elliott in [6],[10],[11] can be written as 

 𝑌𝑛
𝑎

𝐺0
= 𝐾1𝑓𝑛 sin(𝑘𝑙𝑛)

𝑉𝑛
𝑠

𝑉𝑛
 (21)  

 

 𝑌𝑛
𝑎

𝐺0
=

𝐾2𝑓𝑛
2

𝑍𝑛
𝑎  (22)  

where the constants 𝐾1 and 𝐾2 are 

 

𝐾1 = −𝑗 [
8

𝜋2𝑍0𝐺0

𝑎 𝑏⁄

𝛽 𝑘⁄
]

1
2

 (23)  

 

 
𝐾2 = 292

𝑎
𝑏

0.61𝜋
𝛽
𝑘

 (24)  

and 𝑓𝑛 is 

 
𝑓𝑛 =

cos(𝛽𝑙𝑛) − cos(𝑘𝑙𝑛)

sin(𝑘𝑙𝑛)
sin (

𝜋𝑥𝑛

𝑎
) (25)  

 

In equation (22) 𝑍𝑛
𝑎 is the admittance of the n-th slot 

 𝑍𝑛
𝑎 = 𝑍𝑛𝑛 + 𝑍𝑛

𝑏 (26)  
 

and 𝑍𝑛
𝑏 is the mutual coupling term calculated as 

 
𝑍𝑛

𝑏 = ∑
𝑉𝑚

𝑠 sin(𝑘𝑙𝑚)

𝑉𝑛
𝑠 sin(𝑘𝑙𝑛)

𝑍𝑛𝑚 

𝑁

𝑚=1

   (27)  

 

 𝑍𝑛𝑛 = 𝑍𝑛 + 𝑍𝑛
𝐿  (28)  

 

Where 𝑍𝑛𝑛 is the self-impedance of the slot and 𝑍𝑛𝑚 is the mutual impedance of the n-

th and m-th slot. Due to the slot-dipole equivalency one can assume that instead of the 

slots there are dipoles with corresponding length and diameter. If this assumption is made 

the mutual impedance between slot n=1 and m=2 may be calculated as [12] 

 
𝑍21 =

𝑗𝑍0

4𝜋 sin(𝑘ℎ1) sin(𝑘ℎ2)
∫ 𝐹(𝑧)𝑑𝑧

ℎ2

−ℎ2

 (29)  

 

 
𝐹(𝑧) = [

𝑒−𝑗𝑘𝑅1

𝑅1
+

𝑒−𝑗𝑘𝑅2

𝑅2
− 2 cos(𝑘ℎ1)

𝑒−𝑗𝑘𝑅0

𝑅0
] sin(𝑘(ℎ2 − |𝑧|)) (30)  
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Where the used values are described in Figure 23. 

 

Figure 23. Parallel dipoles [12] 

Another assumption one can make is that the input admittance of a slot is the same 

whether all other slots are absent or short circuited. This permits writing equations (22) 

and (28) in form 

 
𝑍𝑛𝑛 =

𝐾2𝑓𝑛
2

𝑌𝑛/𝐺0
 (31)  

 

To use the previously listed design equations the relation 𝑌𝑛/𝐺0 versus slot length and 

offset has to be presented in a universal form. This may be done by poly-fitting the input 

data which can be obtained two ways: 

1) Constructing a series of waveguides with only one slot in each but with different 

offset. The offsets should vary from 0 to a/2. After 𝑌𝑛/𝐺0 has been measured for each 

waveguide the length of the slot should be changed from resonant length and the 

measurements should be repeated. It is sufficient to make measurements in the range 

0.95𝑙𝑟𝑒𝑠 ≤ 𝑙 ≤ 1.05𝑙𝑟𝑒𝑠  Constructing and measuring this amount of waveguides can be 

expensive and time-consuming but electromagnetic field simulators like CST may also be 

used to obtain the desired data. 

2) The alternative method is solving the equation for the electromagnetic field 

distribution in the waveguide either via the method of moments [13] or via FDTD [14]. In 

these cases a correction factor may have to be used to the wall thickness and the shape 

of the slot. 

Either method is used, the results should be the following functions: 

 ℎ(𝑦) = ℎ1(𝑦) + 𝑗ℎ2(𝑦) (32)  
 

 

ℎ1(𝑦) =

𝐺(𝑥, 𝑦)
𝐺0

𝑔(𝑥)
 

(33)  
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ℎ2(𝑦) =

𝐵(𝑥, 𝑦)
𝐺0

𝑔(𝑥)
 

(34)  

 

 
𝑦 =

𝑙

𝑙𝑟𝑒𝑠
 (35)  

 

 
𝑔(𝑥) =

𝐺𝑟

𝐺0

(𝑥, 𝑙𝑟) (36)  

 

 𝑣(𝑥) = 𝑘𝑙𝑟(𝑥) (37)  
 

 𝑌

𝐺0
= 𝑔(𝑥)ℎ(𝑦) (38)  

 

g(x) represents the conductance of the slot versus offset and the data is best fitted with a 

trigonometrical function, but higher order polynomial functions are also satisfying. v(x) 

gives us the resonant length versus offset. ℎ1(𝑦) is representing the ratio of slot 

conductance to resonant conductance and ℎ2(𝑦) gives us the ratio of susceptance to 

resonant conductance. Both functions are plotted versus 𝑦 = 𝑙 𝑙𝑟𝑒𝑠⁄  which makes the 

curves offset independent. First Stegen measured this data for slots in a WR90 waveguide 

at frequency 9.375 GHz and his results are presented in Figures 24. to 26. 

 

 

Figure 24. h1(y) and h2(y)-  Normalized Self admittance component for a longitudinal slot [2] 
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Figure 25. v(x)- Resonant length versus offset for a longitudinal slot [2] 

 

 

Figure 26. g(x)- Normalized resonant conductance versus offset for longitudinal slot [2] 
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With equations (32)-(37) one can rewrite (31) in form 

  

 
𝑍𝑛𝑛(𝑥𝑛, 𝑦𝑛) =

𝐾2𝑓𝑛
2(𝑥𝑛, 𝑦𝑛)

𝑔(𝑥𝑛)ℎ(𝑦𝑛)
 (39)  

and (25) as 

 

𝑓𝑛(𝑥𝑛, 𝑦𝑛) =
cos (

𝛽
𝑘

𝑦𝑛𝑣(𝑥𝑛)) − cos(𝑦𝑛𝑣(𝑥𝑛))

sin(𝑦𝑛𝑣(𝑥𝑛))
sin (

𝜋𝑥𝑛

𝑎
) (40)  

 

Before the design procedure can be started one has to specify the slot voltage values 𝑉𝑛
𝑠. 

As the slots are placed evenly at 𝜆𝑔/2 distances from each other, the mode voltage 𝑉𝑛 is 

the same for all slots, there is only an alternation in the sign. The slot voltage values can 

be calculated from the required radiation pattern specifications, for example if maximal 

gain is requested uniform 𝑉𝑛
𝑠 distribution should be used through the slots. However, if a 

specific pattern is needed with defined first null or bandwidth or side lobe level, than 𝑉𝑛
𝑠 

values must be calculated from the corresponding equation. A few examples are shown 

in Figure 27.  

 

Figure 27. Radiation pattern distributions [11] 

Now the design procedure can be started. The first thing to do is to calculate the initial 

offsets and slot lengths. This step could also be ignored and assumed that all slots are on 

the center line of the waveguide and have resonant length, but it is better to simple ignore 

the mutual coupling and calculate the slot dimensions as they were self-resonant. This 

way the first design equation takes the following form:  

 𝑔𝑛(𝑥)

𝑔𝑚(𝑥)
=

𝑓𝑛(𝑥𝑛, 𝑦𝑛)

𝑓𝑚(𝑥𝑚, 𝑦𝑚)

sin(𝑘𝑙𝑛)

sin(𝑘𝑙𝑚)

𝑉𝑛
𝑠 𝑉𝑛⁄

𝑉𝑚
𝑠 𝑉𝑚⁄

 (41)  
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and it will insure the desired slot voltage distribution. To have an input match (42) also 

has to be fulfilled. 

 
∑ 𝑔𝑛(𝑥)

𝑁

𝑛=1

= 1 (42)  

 

These equations will return the offset for all slots and the corresponding lengths can be 

found through function v(x). 

The next step is to compute the mutual impedance between all the slots and the mutual 

coupling term 𝑍𝑛
𝑏. Inspecting (22) one may realize that making 𝑌𝑛 𝐺0⁄  pure real is only 

possible if the denominator is also pure real. To achieve this it is necessary to tune the 

slot’s length from resonant length to make the slot’s self-reactance compensate the 

reactance added with mutual coupling.  

 𝑋𝑛𝑛 = −𝑋𝑛
𝑏 (43)  

 

 
𝐼𝑚 {

𝐾2𝑓𝑛
2(𝑥𝑛, 𝑙𝑛)

𝑌𝑛(𝑥𝑛, 𝑙𝑛) 𝐺0⁄
} = −𝐼𝑚{𝑍𝑛

𝑏} (44)  

 

The search for couplets 𝑥𝑛 and 𝑙𝑛 which satisfy equation (44) should be undertaken and 

it will be found that there are many possible solutions. This applies for all the slot in the 

waveguide. However, for a given couplet of 𝑥𝑛 and 𝑙𝑛 only one 𝑥𝑚 and 𝑙𝑚 will also satisfy 

the first design equation. To ensure that the right offsets and lengths have been selected 

the sum of active admittances must be unity, which means perfect impedance match. If 

this condition is not met, the procedure must be started over with a different 𝑥𝑛 and 𝑙𝑛. 

If the sum of admittances is smaller than 1, in the next step a couplet with larger offset 

should be chosen, if the sum is larger than 1 than in the next iteration a smaller offset 

should be selected. 

After the right offsets and lengths have been found the process from calculating the 

mutual impedances has to be iterated, because the new values can be used to compute 

an improved 𝑍𝑛
𝑏 from which a better offset and length combination can be found. The 

iterations should be continued until the difference between two steps is smaller than the 

defined tolerance. The process converges quickly, usually only a few iterations are 

needed. 

The radiation pattern of the slot array may be calculated as derived in [15],[16]: 

 
𝐹(Θ) = ∑ |

𝑉𝑛
𝑠

𝑉1
𝑠| 𝑔𝑛(Θ)AF(Θ)

𝑁

𝑛

 (45)  

where 𝑔𝑛(Θ) is the element factor of a slot, and it is derived by assuming an equivalent 

dipole with length l 

 
𝑔(Θ) =

cos(𝑘𝑙 𝑐𝑜𝑠(𝛩)) − cos (𝑘𝑙)

sin(𝛩)
  (46)  

and AF(Θ) is the array factor for the linear array with 𝑧𝑛 as the position of the n-th slot 

 AF(Θ) = 𝑒𝑗(𝑧𝑛𝑘 cos(Θ)) (47)  
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6. MATLAB code realization 
Based on the design procedure described in the previous chapter a MATLAB code has 

been written. To present how it works and to test its correctness a simple 4 slot array is 

designed, the same which is described in [2]. The requirements for this antenna were 

perfect input match and an array specification which is achieved with the slot voltage 

distribution ratio of 1:2:2:1, but obviously the code works for arbitrary number of slots 

and voltage distribution. 

For convenience a standard WR-90 waveguide is chosen and the working frequency of 

9.375 GHz, this way Stegen’s curves can be used [17]. These curves are the main input 

parameters and are loaded as two vectors each: one vector represents the x values of the 

curve and the second the y values. The polyfits to the curves are gain using the inbuilt fit 

function of MATLAB. For g(x) a sixth order polynomial fit is used because for lesser grade 

polynomial functions the results were completely off. The other curves are represented 

with a quadratic equation.  

Now we have to solve equations (41) and (42) simultaneously to get the initial offset 

values. To do this the function fsolve has been used. The input parameters for fsolve work 

also as the starting values, for which values this solver begins the calculation. 

Unfortunately the fitted curve expressions can’t be used as an input parameter, therefore 

first they are saved to a correspondingly named file, which are loaded later in the function. 

The two equations has to have the form of fun(x)=0, otherwise MATLAB is not able to 

solve them. Another interesting observation was made, this one regarding the slot voltage 

distribution. If the voltage distribution is uniform, which means all the offsets and length 

are the same, (41) becomes unusable as arbitrary offset will satisfy it. Therefore for 

uniform voltage distribution a different function is used, which is only based on equation 

(42). In both cases a vector of offsets is the returned results. Although all the values are 

positive, one will have to keep in mind that the slots have to alternate around the center 

line of the waveguide. The slot lengths are calculated from the offsets with function v(x). 

The starting offsets and the normalized slot lengths according to Elliott and the calculated 

ones are presented in Table 2.  Since the slot voltage distribution is symmetrical slot 1 and 

4 and slots 2 and 3 have same dimensions. 

  Elliott Calculated 

Slot Offset [mm] 2l/λ [-] Offset [mm] 2l/λ [-] 

1 2,0828 0,487 2,0946 0,4868 

2 4,5720 0,502 4,5654 0,5017 

3 4,5720 0,502 4,5654 0,5017 

4 2,0828 0,487 2,0946 0,4868 
Table 2. Starting lengths and offsets 

Both cases have been simulated in CST and the difference is presented in Figure 28. and 

29. As it can be seen the difference between the two cases is negligible. Surprisingly the 

antennas are better matched at frequency around 10.4 GHz which may be caused by the 

fact that the Stegen curves were measured for round cornered slots. There is no 

information presented in [17] about the exact roundness of the slots, therefore 

rectangular slots have been used during the simulations.  
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Figure 28. s11 parameter of antennas 

 

Figure 29. Radiation pattern at 9.375 GHz 

The radiation patterns are identical, but the whole pattern is inclined. The maximum is at 

Θ=85° which causes that the first side lobe around Θ=55° is partially part of the main lobe. 

The pattern is also asymmetrical as the side lobes at Θ=120° and at Θ=145° have a greater 

magnitude. The gain of the antennas is 12 dB and the side lobe level ratio is 13.1 dB. 

With the assumed starting lengths and offsets the mutual impedances may be calculated 

according to (29) and (30). These equations are already implemented in the 

Electromagnetic Waves and Antennas toolbox [12] as function imped originally for dipoles 

with length l and diameter a with side-by-side distance of d and collinear offset of b. 

However, as described before due to the slot-dipole equivalency it can be used for slots 
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too. It is worth mentioning that all inputs are in proportion to wavelength. The calculated 

𝑍𝑛𝑚 values are: 

  Elliott Calculated 

Z12 0,37-j8,39 0,3632-j8,3944 

Z13 1,49+j1,28 1,4858+j1,2793 

Z14 -0,67+j0,47 -0,6699+j0,4730 

Z23 -2,88-j7,81 -2,8448-j7,991 
Table 3. Mutual impedances 

From these values the initial mutual coupling term 𝑍𝑛
𝑏 for slots are computed as written 

in (27): 

 
𝑍1

𝑏 =
𝑉2

𝑠 sin(𝑘𝑙2)

𝑉1
𝑠 sin(𝑘𝑙1)

(𝑍12 + 𝑍13) +
𝑉1

𝑠 sin(𝑘𝑙1)

𝑉1
𝑠 sin(𝑘𝑙1)

𝑍14 = 3.0312 − 𝑗13.7692 

 

(48)  

 
𝑍2

𝑏 =
𝑉1

𝑠 sin(𝑘𝑙1)

𝑉2
𝑠 sin(𝑘𝑙2)

(𝑍13 + 𝑍12) +
𝑉2

𝑠 sin(𝑘𝑙2)

𝑉2
𝑠 sin(𝑘𝑙2)

𝑍23 = −1.9211 − 𝑗11.3537 

 

(49)  

Since the objective is to make 𝑌𝑛
𝑎/𝐺0 pure real we have to find the couplets of 𝑥1, 𝑦1 and 

𝑥2, 𝑦2 which satisfy (44) in form of 

 
𝐼𝑚 {

𝐾2𝑓1
2

𝑔(𝑥1)ℎ(𝑦1)
} = −𝐼𝑚{𝑍1

𝑏} = 13.7692 (50)  

 

 
𝐼𝑚 {

𝐾2𝑓2
2

𝑔(𝑥2)ℎ(𝑦2)
} = −𝐼𝑚{𝑍2

𝑏} = 11.3537 (51)  

 

and also satisfy the pattern restriction written as 

 𝑌2
𝑎 𝐺0⁄

𝑓2𝑉2
𝑠 sin(𝑦2𝑣(𝑥2))

=
𝑌1

𝑎 𝐺0⁄

𝑓1𝑉1
𝑠 sin(𝑦1𝑣(𝑥1))

 (52)  

 

and the couplets should also achieve perfect input admittance match 

 
∑

𝑌𝑛
𝑎

𝐺0

𝑁

𝑛=1

= 1 (53)  

Equations (50) through (53) are solved in MATLAB using a numeric solver function, namely 

vpasolve. First 𝑥1, 𝑦1 and 𝑥2, 𝑦2 values are calculated from (50) and (51) and checked if 

they satisfy (53). If not, new values are chosen as there are more possible solutions for 

both equations. If the perfect pair is found the written function also checks if the condition 

in (52) is met. Just as before if not the search for different values should be continued.  

The found result are presented in Table 4. The calculated values are nearly the same as 

Elliott’s offsets and lengths. As it can be seen the admittances  𝑌𝑛
𝑎/𝐺0 are pure real and 

they sum up to 0.9894, which is nearly a perfect match. Comparing the initial and the 

recalculated values shows that there is only a 1-1.5% change in the offsets and the lengths. 

The process could be iterated but the new values would be so close to the current one 

that it would not have any effect on the radiation pattern or on the impedance match. 
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  Elliott Calculated 

Slot Offsets [mm] 2l/λ [-] y [-] Y/G0 Offsets [mm] 2l/λ [-] y [-] Y/G0 

1 2,1844 0,4933 1,0125 0,0988 2,0711 0,4929 1,0126 0,0882 

2 4,4704 0,5058 1,0099 0,4010 4,5262 0,5064 1,0099 0,4065 

3 4,4704 0,5058 1,0099 0,4010 4,5262 0,5064 1,0099 0,4065 

4 2,1844 0,4933 1,0125 0,0988 2,0711 0,4929 1,0126 0,0882 
Table 4. Final offset and length values 

Figure 30. shows the 𝑠11 parameter of the improved antennas compared to the one with 

the initial parameters. As visible the calculation with mutual coupling has worsen 𝑠11 at 

the desired frequency and the best impedance match is still at 10.4 GHz. This may be 

caused by the inaccuracy of the used Stegen curves. 

 

Figure 30. s11 parameter of the antennas 

In Figure 31. the radiation patterns are compared with the theoretical curve. 

Unfortunately the improved values of offsets and lengths did not improve the radiation 

pattern of the antenna, it has even worsen the side lobe level ratio by 2dB. It is clearly 

visible that the simulated pattern is inclined by 5 degrees, the main lobe’s direction is at 

Θ=85° but according the theory the maximum should be at Θ=90°. Also the main lobe is 

much wider than the theoretically calculated, the first nulls have disappeared from the 

pattern as the main lobe and the first side lobes merged. 
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Figure 31. Radiation pattern of the antennas 

7. Designed antennas  
Using the MATLAB code two antennas have been designed, both at frequency 10.2 GHz. 

To ensure the accuracy of the antennas a series of simulations were carried out in CST at 

this frequency for various slot offset and length and from the results the four curves g(x), 

v(x), h1(x) and h2(x) have been reconstructed. These four curves were the main input data 

for the calculation. Both antenna arrays consist of 8 slots. 

7.1. Maximal gain antenna 
The first antenna was made with the intention to achieve the maximum gain possible, 

therefore the slot voltage is the same for each slot. The initial offset values were found to 

be 2.4154 mm and the corresponding slot length is 15.62 mm. With the calculation of 

mutual impedances the offsets and lengths have improved to the values presented in 

Table 5: 

Slot 1 2 3 4 5 6 7 8 

Offsets [mm] 2,4015 2,3866 2,3885 2,3893 2,3893 2,3885 2,3866 2,4015 

Length [mm] 15,721 15,827 15,813 15,807 15,807 15,813 15,827 15,721 
 Table 5. Slot dimensions of the maximal gain antenna 

Figure 32. perfectly illustrates the effect of the mutual coupling. Without it the s11 

parameter of the antenna at 10.2 GHz is 20 dB worse than in case when the mutual 

impedance of the slots was considered. Surprisingly the antenna is matched at 2 

frequencies, at the desired 10.2 GHz and also at 9.15 GHz.     
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Figure 32. s11 parameter of the maximal gain antenna 

 

Figure 33. Radiation pattern at 10.2 GHz 
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Figure 34. Radiation pattern at frequency 9.15 GHz 

The radiation pattern at 10.2 GHz is in good agreement with the theory. The gain of the 

antenna is 16 dB and the first side lobe is at 2.2 dB which results in a -13.8 dB side lobe 

level. As the theory predicted the radiation pattern is narrow in one plane, at constant Φ 

the half power beam width is only 8.4 degrees but it is 83.0 degrees wide in the other 

plane. The radiation pattern at 9.15 GHz is distorted, the main lobe is inclined by 10 

degrees and the biggest side lobe is only 6 dB below the level of the main lobe. It is also 

visible from Figure 33. that the mutual coupling has no major effect on the radiation 

pattern.  
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Figure 35. Radiation pattern at phi=90° 

 

7.2. Low side lobe level antenna 
The second simulated antenna was made with the intention to achieve the side lobe level 

of -20 dB. To do this the cosine aperture distribution has been selected from Figure 26. 

which in theory should result in a -23 dB SLL. The slot voltage distribution has been 

calculated as shown in Figure 36. The red crosses mark the position of the slot’s center 

and the corresponding slot voltage has been assigned to each slot. The resulting slot 

dimensions are presented in Table 6. 

Slot 1 2 3 4 5 6 7 8 

Offsets [mm] 1,8928 2,0179 2,7057 2,9142 2,9142 2,7057 2,0179 1,8928 

Length [mm] 15,556 15,570 15,664 15,698 15,698 15,664 15,570 15,556 
Table 6. Slot dimensions of the side lobe level antenna 
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Figure 36. Cosine slot voltage distribution 

 

Figure 37. s11 parameter of the side lobe level antenna 
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Figure 37. shows a the s11 parameter of the antenna. There is a perfect match at frequency 

10.2 GHz, but just as in the previous case the antenna is well matched at frequency 9.15 

GHz.   

The radiation pattern is compared with the theoretical pattern in Figure 38. The antenna 

has higher maximal gain with 15.91dB than predicted and lower SLL. The highest side lobe 

is -2.99 dB which results in a -18.9 dB side lobe level which is 1.1 dB shy of the requested 

value. The two antennas radiation pattern is compared in Figure 40. The two gains are 

nearly the same, but the side lobe suppression due to the used cosine voltage distribution 

is clearly visible. 

 

Figure 38. Radiation pattern of the side lobe level antenna 
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Figure 39. 3D radiation pattern of the side lobe level antenna 

 

 

Figure 40. Comparison of the radiation patterns 
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8. Conclusion 
The first goal of this thesis was to analyze the radiation of a longitudinal slot in the broad 

wall of the waveguide and examine the effect of slot dimensions and offset on the 

conductance of the slot and compare the simulated results to the theoretical equations. 

The second goal was to describe the design procedure of the waveguide slot array 

antennas and implement the procedure in MATLAB. Furthermore two antennas have 

been designed, one with maximal gain and the other with a defined side lobe level. 

Firstly, the effect of waveguide wall width was inspected. The results confirmed that the 

theoretical equations were derived for infinitely thin wall. For thin waveguide wall the 

simulated and calculated values show good agreement, but for thicker wall the equations 

have to be multiplied by an appropriate constant to match the simulated values. 

Secondly, the effect of slot width was observed. The simulations showed that this 

dimension has a negligible effect on the impedance of the slot and on the resonant 

frequency, therefore the recommended value can be used. 

Thirdly, the effect of slot length was analyzed. This parameter mainly influences the 

resonant frequency. Moreover from the results it is also visible that the impedance of the 

slot also changes with the length. 

A design guideline is presented, according to which two simple antennas were designed 

in CST Microwave studio. The smaller antenna’s radiation pattern is a little inclined and 

the main beam is wide in both planes. According to expectations the four slot antenna 

has higher gain and better sector-shaped radiation pattern, but the impedance matching 

is very poor due to the mutual coupling between slots. 

In the second half of the thesis the design equations have been described in detail. 

Moreover a step-by-step guide is presented on how to design a slot array antenna. The 

process starts with collecting the data for Stegen curves either from measurements or 

simulations or by using the method of moments. The second step involves choosing the 

number of slots and calculating the slot voltage distribution from the required radiation 

pattern. After this the initial slot offsets and lengths may be calculated which is followed 

by determining the mutual coupling between the slots. With the knowledge of these 

values the search for improved slot dimensions can be undertaken by detuning the slots 

from self-resonance to compensate the mutual coupling effect. This last two steps may 

be repeated until the difference between them is smaller than the matching tolerance. 

The described process has been implemented in MATLAB and it was tested on a small 4 

array slot antenna. The calculated slot dimension showed a good agreement with the 

values from Elliott, but due to the inaccurate Stegen curves the simulated results were 

distorted. 

In the final chapter two 8 slot array antennas have been designed and simulated. On the 

first one the effect of the mutual coupling is clearly shown as the improved slot dimension 

resulted in a 20dB better impedance match. The radiation patterns of the maximal gain 

antenna showed good agreement with the theory. The second antenna was intended to 

have a better side lobe level and a nearly 6 dB improvement was achieved due to the used 

slot voltage distribution.  
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