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Abstrakt

Tato diplomová práce se zabývá určováním otěru explantovaných acetabulárních kom-
ponent totálních náhrad kyčelního kloubu (jamek). Jejím cílem je vyvinutí metody,
která umožní naskenování povrchu explantovaných jamek, a vyvinutí algoritmu, který
z naskenovaných dat vyhodnotí otěr. V rámci pilotní studie bylo naskenováno několik
explantovaných jamek a získaná data byla analyzována vyvinutým algoritmem. Algorit-
mus je interaktivně řízen pomocí GUI programu. Vyvinutá metoda určování otěru bude
použita v následném výzkumu zaměřeném na prodloužení životnosti náhrad.

Klíčová slova Lineární otěr, Objemový otěr, Náhrada kyčelního kloubu, Analýza dat,
Optický SMS, Matlab GUI, UHMWPE, Biotribologie, Artroplastika

Abstract

This thesis deals with wear estimation of explanted acetabular components of total hip
joint replacements (cups). Its aim is to develop the method, which is capable of scanning
the surface of explanted cups, and to develop the algorithm, which is capable of estimating
the wear from scanned data. Within the pilot study, several explanted cups were scanned
and reached data was analyzed by the developed algorithm. The algorithm is interactively
controlled by GUI program. Developed method of wear estimation is going to be used in
upcoming research that will focus on extending the lifetime of replacements.

Keywords Linear wear, Volumetric wear, Hip joint replacement, Data Analysis, Optical
CMM, Matlab GUI, UHMWPE, Biotribology, Arthroplasty
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Introduction

Total hip joint replacements manage to improve the quality of patients’ lives. However,
their lifetime is not unlimited. In the years 2003 to 2009, there was performed 74 987
surgeries of hip joint replacement in the Czech Republic. Almost 19% of these surgeries
were re-surgeries. Re-surgeries are expensive and dangerous for the patients. Therefore,
it is worth to decrease the number of re-surgeries and extend the lifetime of total hip joint
replacements. Currently, the lifetime of total hip joint replacements is approximately
10 to 15 years. Failure of total hip joint replacements can be caused by many reasons.
For example, total hip joint replacement can fail because of biological reasons (such as
infection), mechanical damage, etc. However, mentioned reasons cause only 27% of all
failure cases. Wear is responsible for most of the failures. Wear causes 73% of all cases
of total hip joint replacements failure. [1]

The failure caused by wear is a mixture of mechanical, biological and chemical issues.
Wear particles in joint’s neighbourhood cause body reaction which removes not only wear
particles but adjacent bone tissue as well. Accordingly, hip joint replacement is slowly
released from its stable position. After few years, the hip joint replacement is released as
much as it does not fulfill its function anymore. The principle of the wear is not properly
known so far. There is a large number of factors influencing wear. Surely, the friction
between femoral head and acetabular component is a significant factor. However, the size
of released wear particles is important as well because the body reacts differently to wear
particles of various size. [2]

Combination of materials of femoral head and acetabular component is crucial factor
of wear. There are two types of contacts called Hard on hard and Hard on soft. Hard on
hard contact is formed by metal or ceramics. This type of contact is still used but because
of its specific unwanted impacts, the number of its usage is quite low. In most of the cases
Hard on soft contact is used. It is a contact between metal or ceramics (femoral head)
and plastics (acetabular liner). UHMWPE or PEEK are the plastics which are used the
most often. [3]

Current research is focused on material development which would decrease the wear
growth. Accordingly, the lifetime of total hip joint replacements would be increased too.
The Laboratory of Biomechanics, CTU in Prague, is involved in this type of research
within project called The study of new materials used as articulation surface of joint
replacement (ID No. NV15-31269A). For purposes of this project, there is the need for
wear quantification. As plastics liner is much softer than the femoral head, significant wear
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Introduction

can be observed just within acetabular liner in cases of Hard on soft contact. Therefore,
we focus on wear quantification of acetabular components of hip joint replacements. We
consider wear of femoral head as negligible within Hard on soft contact.

The aim of this thesis is wear quantification of explanted acetabular com-
ponents of hip joint replacements (cups).

Figure 0.1: Total hip joint replacement (http://goo.gl/8G06eM)

2
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Chapter 1
Wear estimation - State of the art

Wear estimation contains the investigation of material loss caused by friction. We are
interested in:

• Volumetric wear - the number of cubic millimeters of released material

• Linear wear - the number of millimeters of lost material at individual spots of acet-
abular hip joint replacement; wear distribution

• Concentration of released particles in joint’s neighbourhood - the number of pieces
of wear particles per 1 cubic millimeter of surrounding space

• Morphology of released wear particles - their size and shape

Volumetric wear and linear wear are worth to know for evaluating the resistance of the
materials against wear and logically, the better wear resistance is, the longer lifetime of
whole replacement can be expected in wear point of view. Concentration and morphology
of released particles are important too because various combinations of materials of femoral
head and acetabular component release different sizes and shapes of wear particles. There
can be a large concentration of tiny nanoparticles or low concentration of relatively large
particles. In that case, the numbers of volumetric and linear wear could be similar but the
body’s response could be way different. Accordingly, the investigation of concentration
and morphology is very important for wear evaluation but it is no longer going to be part
of this thesis. We can read more about concentration and morphology of wear particles
at e.g. Ladron, et al., 2012 [3]. Within the thesis, we are going to focus on estimation of
volumetric and linear wear. [3]

1.1 In vivo methods

The radiographic measurements are used for total hip joint replacements with UHMWPE
acetabular components inside humans’ bodies. Several methods are used but all of them
contain two steps - RTG screening of hip joint replacement; and estimation of penetration
of femoral head into acetabular cup. All radiographic techniques are limited by the RTG
image resolution so the results gained will never be very accurate. Unfortunately, it is
not supposed to evaluate wear distribution from RTG images. Only maximal linear wear

3



1. Wear estimation - State of the art

can be estimated and based on its value, calculation of volumetric wear can be performed.
Moreover, it is not supposed to distinguish wear and plastic deformation or creep. [3]

Figure 1.1: RTG image of total hip joint replacement (http://goo.gl/IKlXeS)

For evaluation of maximal linear wear, the following techniques are used:

Livermore technique (Fig. 1.2) [4]: ”On the prerevision radiograph, a transparent
overlay of concentric circles is used to determine the femoral head center of rotation
(FH COR). A compass is used to determine the minimum distance between the FH
COR and the acetabular shell outer diameter (OD). The line between the FH COR
and the acetabular OD is defined as the line of maximum wear. The postoperative
radiograph is measured in the same manner along the line of maximum wear. The
difference in the polyethylene thickness between the postoperative and prerevision
radiographs is the amount of linear wear.”

Computer Livermore technique [4]: ”This techniques uses the computer/digitizer to
determine the FH COR, the acetabular OD, and the distance between the 2 for
the postoperative and prerevision radiographs. For each radiograph, 3 points are
digitized along the FH silouhette and the outer surface of the acetabular shell. The
computer calculates the best-fit circles (with their CORs) for FH and the acetabular
shell. The changes in the CORs for the FH and the acetabular shell can be used to
measure wear, by calculating the minimum distance between 2 circles (w) using the
following equation: w = r1−r2− [(y2−y1)2−(x2−x1)2]1/2, where w is the minimum
polyethylene thickness, and (x1, y1); r1 and (x2, y2); r2 are the COR coordinates and

4

http://goo.gl/IKlXeS


1.1. In vivo methods

radii for the acetabular shell and FH. The minimum distance is calculated for the
postoperative (wpostop) and prerevision (wprerev) radiographs. The linear wear is
calculated as the change in the polyethylene thickness (wpostop − wprerev).”

Uniradiographic technique [4]: ”This technique requires only a prerevision radio-
graph, and the measurements do not need to be corrected for radiographic magnific-
ation. The narrowest measurement in weight-bearing area between the FH OD and
the acetabular OD is subtracted from the widest measurement in the non–weight-
bearing zone. The difference between the 2 distances is divided by 2 and gives the
calculated linear wear.”

Duoradigraphic technique [4]: ”The narrowest measurement in the weight-bearing
zone between the FH OD and the acetabular OD is determined on the prerevision
radiograph. The distance between the FH OD and the acetabular OD in the same
zone is measured on the postoperative radiograph. The difference in the distances
represents the linear wear when corrected for magnification factors.”

Figure 1.2: Livermore & Dorr wear measurement technique [4]

Tangential technique [4]: ”Using the face of the acetabular shell as the reference, a
tangential line to the superior aspect of the FH is drawn as well as to the superior
aspect of the acetabular shell (ie, each line is a tangent to the respective circle,
and it is perpendicular to the line that crosses the face of the acetabulum at its
widest margin). The distance between the 2 tangential lines is calculated for the
postoperative and the prerevision radiographs. The change in distance between
these 2 lines, after correcting for magnification, is calculated as the linear wear.”

Dorr technique (Fig. 1.2) [4]: ”This technique requires only the prerevision radiograph.
The acetabular face reference line is drawn on the radiograph. Along the acetabular
reference line, the distance between the superior aspect of the FH and the superior
aspect of the acetabulum (SS′) is measured. The distance along the line between the
inferior aspect of the FH and the inferior aspect of the acetabulum (II ′) is measured.

5



1. Wear estimation - State of the art

Linear wear is calculated based on the formula: Linear wear = (II ′−SS′)/2, after
distances have been corrected for magnification.”

Since we know maximal linear wear d, its position β and radius of FH R (Fig. 1.3)
we are able to calculate volumetric wear V . Sophisticated calculations are presented by
Košak, et al., 2003 [5]. Standard mathematical model estimates volumetric wear according
to the formula: V = π ·R2 ·d. Modified mathematical model derived by Košak, et al., 2003
[5] considers position of maximal linear wear β and estimates volumetric wear according
to the formula: V = π ·R2 · d · (1 + sin β)/2.

Figure 1.3: Definition of variables for volumetric wear calculation [5]

Figure 1.4: Error of volumetric wear calculation

The derivation is based on the formula: V =
∫

(R′ − R) · dS where R′ is the distance
between center of FH before shift and selected point on worn surface; and dS is the
infinitesimal surface area element of FH before shift. However, the derivation neglects a

6



1.2. In vitro methods

fact which is significant for the result. This fact is well visible from the Fig 1.4. Let’s
consider the green-blue area at the left side of Fig. 1.4 as a general gray area from the
Fig. 1.3. Derived calculation of volumetric wear neglects blue areas which cause an error.
For clearer illustrative purposes, only the 2D problem is visualized. In 3D space, the blue
volume would occupy a larger percentage of volume symbolizing real volumetric wear than
the percentage which the blue area occupies in shown 2D picture. The larger the maximal
linear wear d is, the larger the error arises due to the described neglect. This fact explains
one of the sources of the difference between results gained by this type of calculation and
results gained by accurate in vitro fluid displacement method (mentioned below).

1.2 In vitro methods

The worn samples for in vitro methods of wear estimation could be obtained from two
sources. The first source is constituted by real explanted cups. The second source is
constituted by samples worn in simulators of motion. Machines for wear simulations are
based on the movement of a softer pin (typically UHMWPE) on a harder disc (typically
metal). Therefore, these machines are usually called pin-on-disc. Pin-on-disc machines
are either unidirectional - pin is allowed to move in one direction, or multidirectional - pin
is allowed to move in more than one direction. Testing within unidirectional simulations
does not correspond with in vivo situation and its results are unsatisfied. Multidirectional
joint simulators provide wider possibilities for wear simulations. Usually, the kinematics
and kinetics are controlled by computers and also real replacements can be used instead of
pins and discs. It is supposed to simulate real movement and loading of joint replacements.
[3]

For wear estimation of either real explanted cups or laboratory samples, several meth-
ods are used:

Gravimetric method [3]: Weight loss of material can be observed. This measurement
provides the information of volumetric wear but the information of how much the
material soaks up the surrounding liquids must be known. This fact has a signi-
ficant influence on result accuracy. Linear wear is not supposed to investigate by
gravimetric method. On the other hand, this is the only method which is supposed
to distinguish wear and plastic deformation or creep. Gravimetric method is used
wider for the wear estimation of laboratory samples than for the wear estimation of
real cup explants. Usually, real cup explants were not weighted before surgery and
moreover their weight is influenced by soaked body fluid.

Fluid displacement method [3]: Volumetric wear can be measured by filling the cup
(or sample) by water (or any other fluid), and observing the volume of used fluid.
This method is very accurate but it is not supposed to distinguish wear and plastic
deformation or creep. Unfortunately, linear wear is not supposed to measure by this
method either.

Surface 3D scanning [3]: Another option for wear estimation is the 3D scanning of
the surface and following surface analysis in appropriate software. Nowadays, very
accurate surface measurement is supposed to reach within modern 3D CMM. After-
ward, volumetric wear is calculated but it is not supposed to distinguish wear and
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1. Wear estimation - State of the art

plastic deformation or creep. However, the surface 3D scanning is the only method
providing visualization of wear distribution. The accuracy of the results depends
on the accuracy of measured data by scanner and correctness of software evaluating
procedure.
The Laboratory of Biotribology within Department of Mechanics, Biomechanics and
Mechatronics, FME, CTU in Prague, owns very accurate 3D scanner (more about
this 3D scanner in section 3.1 on page 11). Accordingly, we are choosing the surface
3D scanning as the wear estimation method we will apply in this thesis. We will
measure surface by mentioned 3D scanner and analyze measured data in created
evaluating program.
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Chapter 2
Thesis aims

Acetabular cup wear is the principal factor limiting the lifetime of total hip replacement.
Common wear estimation methods rely mostly on the analysis of radiograms. The accur-
acy of radiographic methods is limited by RTG image resolution. These methods estimate
maximum linear wear and do not provide wear distribution. A large number of explanted
cups available in clinical practice would allow application of precise methods of surface
measurement. The main aim of this thesis is to develop the method of wear
analysis of explanted acetabular cups based on accurate surface measurement.

Subsequently, specific aims are to:

• Develop casting method of cup explants

• Develop algorithm for wear evaluation

• Create Matlab GUI program

• Verify casting method of cup explants

• Verify algorithm for wear evaluation

• Study series of explanted cups in a pilot study
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Chapter 3
Data measurement

For successful wear estimation of cup explants, we are challenging two main steps - data
measurement; and data analysis. This chapter deals with the measurement of worn cup
surfaces. We will use optical 3D CMM by RedLux Ltd. (Fig. 3.1) which is very accurate
3D scanner placed in The Laboratory of Biotribology within Department of Mechanics,
Biomechanics and Mechatronics, FME, CTU in Prague. The aim is to measure coordinates
of point cloud which discretely describes the worn surface of explanted cup.

3.1 Surface 3D scanning
Tuke, et al., 2010 [6] describe measuring principle of optical 3D CMM by RedLux Ltd.
by following sentences: ”The RedLux Artificial Hip Profiler (RedLux Ltd., Southampton,
UK) is optical 3D CMM which combines the high resolution with the high coverage, while
using an automated, non-contact sensor for increased speed of measurement. It is capable
of scanning the surface of spherical objects. Unlike other optical instruments, it can scan
the whole bearing surface of an artificial hip joint in a single measurement taking only
a few minutes. The instrument is a 4-axis optical CMM, as shown in the Fig. 3.2. It
consists of two linear and two rotary axes, all of which utilise air bearings to achieve
superior accuracy of motion. The two rotary stages carry the head or cup and the linear
axes carry the sensor. All axes utilise optical encoders and linear or brushless motors.
The sensor allows the measurement of artificial heads as well as cups. It is a point sensor,
based on the chromatically encoded confocal measurement. With this sensor, the lens
error commonly known as chromatic aberration is used to measure the distance to an
object. The axial position of the focal point of an uncorrected lens depends on the colour
(wavelength) of the light to be focussed. In the visible spectral region, the focal distance
for blue light is shortest while it is longest for red light. The focal points of the other
colours are located in between. Depending on the distance of the target from the focusing
lens, light of just a very small wavelength region λ1 is focused on the target’s surface (Fig,
3.3). The focusing lens is also used to receive the backscattered light from the target’s
surface and to focus it into an optical fibre and later a spectrometer. The wavelength scale
of the spectrometer is calibrated versus the distance to the scattering surface, giving the
required output signal. By combining the sensor signal with the knowledge over the exact
position of all 4 stages, a 3D representation of the surface can be created in computer’s
memory. Once these data are available, they can be processed and analysed. For a typical
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3. Data measurement

Figure 3.1: Optical 3D CMM by RedLux Ltd. (http://goo.gl/veqx5V)

50mm diameter head, 40 000 points are measured, while for the corresponding cup 30 000
points are taken. For detailed investigations, over one million data points are available.
To achieve better accuracy, the system is located on a vibration isolation table.”

Figure 3.2: Workspace of RedLux Artificial Hip Profiler [6]
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3.1. Surface 3D scanning

Figure 3.3: Chromatically encoded confocal measurement method [6]

The accuracy of resulting cloud of points is given by resolution of 2 linear axes, res-
olution of 2 rotary axes and resolution of the probe. The resolution of each linear axis is
100nm, the resolution of each rotary axis is 10” and the resolution of the probe is 20nm.
Throughout all performed measurements, we have been measuring point cloud with dens-
ity 720 points per one rotation of the measured sample in vertical plane and within every
single rotation the measured sample was turned by 0.5° in horizontal plane.

Figure 3.4: Output file of RedLux Artificial Hip Profiler - coordinates of point cloud

Optical 3D CMM by RedLux Ltd. is capable of measuring whole surfaces of unworn
cups. However, we cannot say so for worn cup surfaces. Practical experience from the
laboratory showed that as the wear exceeds the certain value, the probe is no longer
capable of measuring area surrounding the cup edge. It is given by that the measuring of
convex surfaces contains certain disadvantages, as shown on the top of Fig. 3.5. The worn
cup rotates around its rotary axis and the probe is in its appropriate position - 4.5mm
from the measured surface (0.3mm measuring range); and the deviation angle between
radiated optic stream from the probe and bounced one from the measured surface stays
lower than 30° because the optic stream must be bounced back from the measured surface
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3. Data measurement

to the probe. If the probe is measuring the area surrounding the edge, then the probe
has very tiny space for movements. In that case, unexpected fold or relatively large
radius deviation could cause the need for additional movements; so there is a risk of the
probe crashing with the opposite side of the cup. Another restriction is that the probe is
capable of measuring only cups with the diameter larger than 28 mm. Some of the cups
are manufactured with the diameter lower than 28mm though. If we measure the cup
with such a small diameter close to the edge and the deviation angle of bounced optic
stream shall remain lower than 30°, then there is also a risk of the probe crashing with
the opposite side of the cup.

Measuring of concave surfaces does not indicate problems mentioned above (bottom
of the Fig. 3.5). The probe has enough of space for all necessary extra movements so
we are capable of measuring whole worn surfaces or surfaces with small diameter easily.
Therefore, we decided to cast the explanted cups and measure the casts.

Figure 3.5: The need for cast

3.2 Casting method

Casts of cup explants made for the surface 3D scanning have to fulfill these criterion
aligned in the order of their importance:

• Sufficient elasticity - to enable casts easy removal from the cup when the cup surface
is worn in such a way that the cast has to be squeezed for removal.
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3.2. Casting method

• Negligible volumetric change - to avoid an error of the volumetric and linear wear

• Excellent surface reconstruction - to avoid incorrect visualization of wear distribution

• ’User-friendly’ behavior - to avoid toxic compounds, etc.

We were experimenting with four types of casting materials. In the end, we chose
Addition Cure Moulding Rubber MM242 as the material we are going to use because this
material fulfilled all our requirements more than sufficiently:

Resin - Dentacryl (http://goo.gl/pJExBo) 8

7 Sufficient elasticity - It is not capable of removing resin cast from the cup as
worn as mentioned above. Resin is too hard and cannot be squeezed.

7 Negligible volumetric change - According to the Fig. 6.2 on page 62, volumetric
shrinkage of resin cast is 1.335%. This value is not good enough for our purposes.

3 Excellent surface reconstruction - According to the Fig. 6.3 on page 62, the
Weighted standard deviation of radius sdw of the resin cast is 0.007168mm
which is close enough to the Weighted standard deviation of radius sdw of the
original cup 0.007025mm.

7 ’User-friendly’ behavior - During the mixing of two components, a very un-
pleasant odour is released. This odour can cause a headache to the worker.

• Casting procedure - Two components are mixed together (according to given
volume fraction). Afterward, the cup is filled by arisen mixture. In the end,
bubbles of the air (caused by mixing) are sucked out of the cast by vacuum
machine and the cast is let to harden.

Gypsum 8

7 Sufficient elasticity - It is not capable of removing gypsum cast from the cup
as worn as mentioned above. Gypsum is too hard and cannot be squeezed.

3 Negligible volumetric change - According to the Fig. 6.2 on page 62, volumetric
expansion of gypsum cast is 0.028%. This value is good enough for our purposes.

3 Excellent surface reconstruction - According to the Fig. 6.3 on page 62, the
Weighted standard deviation of radius sdw of the gypsum cast is 0.007553mm
which is close enough to the Weighted standard deviation of radius sdw of the
original cup 0.007025mm.

3 ’User-friendly’ behavior - No harmful effects of gypsum were observed.
• Casting procedure - Gypsum powder is mixed with water. These two compon-

ents are stirred as long as smooth fluid solution arise. In this moment, the cup
is filled by arisen solution and the cast is let to harden.

Wax 8

7 Sufficient elasticity - It is not capable of removing wax cast from the cup as
worn as mentioned above. Wax is too soft and relatively small press avoids
plastic deformation.
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3. Data measurement

7 Negligible volumetric change - According to the Fig. 6.2 on page 62, volumetric
shrinkage of wax cast is 2.264%. This value is not good enough for our purposes.

7 Excellent surface reconstruction - According to the Fig. 6.3 on page 62, the
Weighted standard deviation of radius sdw of the wax cast is 0.017730mm which
is not close enough to the Weighted standard deviation of radius sdw of the
original cup 0.007025mm.

3 ’User-friendly’ behavior - No harmful effects of wax were observed.
• Casting procedure - Wax is melt on the cooker. When the wax is in liquid

phase the cup is filled by dissolved wax and the cast is let to cool down and
harden.

Silicone - Addition Cure Moulding Rubber MM242 (https://goo.gl/TZJDZd) 4

3 Sufficient elasticity - It is capable of removing silicone cast from the cup as
worn as mentioned above because it is easy to squeeze this cast and elastic
deformation is not exceeded during the squeezing.

3 Negligible volumetric change - According to the Fig. 6.2 on page 62, volumetric
shrinkage of silicone cast is 0.104%. This value is good enough for our purposes.

3 Excellent surface reconstruction - According to the Fig. 6.3 on page 62, the
Weighted standard deviation of radius sdw of the silicone cast is 0.007091mm
which is close enough to the Weighted standard deviation of radius sdw of the
original cup 0.007025mm. Besides, every fold on the original surface seems to
be preserved on the cast surface too - obvious from the casts of worn surfaces.

3 ’User-friendly’ behavior - No harmful effects of silicone were observed.
• Casting procedure - Two components are mixed together (according to given

mass fraction). Afterward, the cup is filled by arisen mixture. In the end,
bubbles of the air (caused by mixing) are sucked out of the cast by vacuum
machine and the cast is let to harden.

There are special casting materials on the market which would fulfill our criterion even
better than Addition Cure Moulding Rubber MM242 but their price exceeds our financial
limit. However, features of Addition Cure Moulding Rubber MM242 are very close to those
special casting materials.

Special Matlab script was created for verification of casting methods. We were
interested in how much the final results of wear estimation are influenced by casts. The
Matlab script is contained on enclosed CD as attachment called D - Verification of casting
method. The calculation of this Matlab script is based on derivations presented in chapter
4 beginning on page 19. Firstly, measured data is transformed (based on subsection 4.2.2
on page 28), then the data is interpolated (based on subsection 4.2.3 on page 32) and
afterward the volume V of the cast is calculated (according to Eq. 4.10) as:

Vi = r3
i

3 ·∆ ·
[
cos

(
ξi −

∆
2

)
− cos

(
ξi + ∆

2

)]
(3.1)

V =
n∑
i=1

Vi (3.2)
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3.2. Casting method

where Vi is the volume of pyramid represented by individual interpolated point i, ri is the
distance between the origin of the coordinate system and point i, ∆ is the Interpolation
step (subsection 4.1.2 on page 25) and ξi is the spherical coordinate of point i (subsection
4.1.1 on page 19). Volume change Θj is calculated as:

Θj = Vj − Vcup
Vcup

· 100 (3.3)

where j = cup, resin, gypsum,wax, silicone. Weighted average of radius Rw is given as:

Rw =

n∑
i=1

ri ·Bi
n∑
i=1

Bi

(3.4)

where Bi is area represented by individual interpolated point i (according to Eg. 4.8):

Bi = r2
i ·∆ ·

[
cos

(
ξi −

∆
2

)
− cos

(
ξi + ∆

2

)]
(3.5)

Weighted standard deviation of radius sdw is given by formula:

sdw =

√√√√√√√√
n∑
i=1

Bi · (ri −Rw)2

(n′−1)·
n∑

i=1
Bi

n′

(3.6)

where n′ is the number of non-zero weights.
Results of the verification of casting methods are presented in section 6.1 on page 61.

According to those results, we can make the conclusion that the inaccuracy injected into
the final results by chosen Addition Cure Moulding Rubber MM242 cast is acceptable for
our purposes.
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Chapter 4
Data analysis

Measured data gained from the 3D scanner must be analyzed. The aim is to calculate
and visualize changes of geometry which arose after implantation. The main properties
considered are Volumetric wear U and Linear wear u. Volumetric wear U gives the inform-
ation of how many cubic millimeters of material has been lost throughout the cup. This
output is a scalar value. While Linear wear u defines how many millimeters of material
has disappeared at each point of cup surface. It is a matrix (discrete surface description)
expressed as a map similar to FEM results (points in 3D space are colored according
to fourth variable value). These are the necessary info needed and any additional info
acquired is a bonus.

The crucial decision was to choose a suitable software for the realization of the analysis.
Matlab developed by The MathWorks, Inc. seems to be a very good choice. Especially
with the utilization of its GUI mode, an interactive program could be written for quick
and easy analysis of many cup samples.

For these reasons, the idea is to create Matlab GUI program which is supposed
to upload measured data, to let the user set calculation parameters interactively and to
calculate and visualize outputs.

4.1 Sphere - Mathematical background

If we are interested in wear characteristics we have to know how the surface looked before
implantation and compare the current surface with the old one. That is quite a difficult
issue because explanted cups are usually more than 10 years old and nobody made any
measurements of these cups before surgery. However, the active geometry of acetabular
replacements (inner surface which is in touch with the femoral head replacement and where
the wear occurs) is produced as a hemisphere. In this sense, the calculation can be based
on mathematical knowledge of the sphere. This approach makes upcoming work easier.
The advantage of a simple mathematical description of original geometry is really wide.
If we assume the original (reference) surface was spherical then it is enough to estimate
its center and radius.

4.1.1 Coordinate Systems

There are three coordinate systems which are important to define:
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4. Data analysis

• Cartesian coordinate system

• Spherical coordinate system

• Pole coordinate system

Initial data we receive from 3D scanner are Cartesian coordinates (x, y, z) of in-
dividual surface points (Fig. 3.4 on page 13). Cartesian coordinates generally visualize
undistorted 3D geometry. In the Cartesian coordinate system we use (Fig. 4.1), the origin
is set at the center point of the hemisphere and the x axis passes through the top (the
top means the pole from the Fig. 4.4). Since Cartesian coordinates are not much suitable
for some mathematical operations, we define the following two coordinate systems where
various calculations will be made.

Figure 4.1: Position of the cup in the Cartesian coordinate system [7]

Spherical coordinates (r, ξ, θ) will be needed for the upcoming analysis. Their
definition is shown in the Fig. 4.3. We have to determine permitted intervals for angles
of Spherical coordinates. Their values were chosen ξ ∈ 〈0, π〉, θ ∈ (−π, π〉 which covers
whole surface of sphere. The advantage of this system is that one of its axis (or variables)
symbolizes sphere radius r. If we want to observe Linear wear u (deviation from original
radius) this coordinate system is suitable for us. However it is not enough. There is
also disadvantage of this coordinate system which is visible in the Fig. 4.4. The pole is
not point anymore at Spherical coordinates system and hemisphere surface was sectioned
along one of the parallels. This fact is unacceptable for us because it interrupts continuity
of sphere surface. For upcoming interpolating and smoothing processes we need to keep
sphere surface continuous (regardless if it is distorted or not).

Therefore, we must make one more step and define Pole coordinates (r, s1, s2)
according to Fig. 4.3. The simplest way how to imagine these coordinates is shown in the
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4.1. Sphere - Mathematical background

Fig. 4.2 where 2D map of Antarctica is visualized. The South Pole is the only undistorted
place of the Southern Hemisphere surface (the distortion increases as we move away from
the South Pole) but its area is continuous everywhere. That is a very interesting feature
for us since the addition of a third axis (radius r) Linear wear u can be observed and the
projected cup surface is continuous (Fig. 4.4).

Figure 4.2: Map of Antarctica (http://goo.gl/Hxc5mM)

Transformation relations between chosen coordinate systems must be defined. There
is no direct relation between Cartesian and Pole coordinates. The sphere is transformed
from Cartesian coordinates to Spherical ones and back. Or it is transformed from Spherical
coordinates to Pole ones and back. Accordingly in total we have four relations which
manage to express our data in three coordinate systems, regardless which system is the
initial one. Transformations are derived according to coordinates definition shown in the
Fig. 4.3. As visible in the Eq. 4.3 and Eq. 4.4, the constant R is used, R ∈ R>0, and its
value, a representative radius of the sphere, is chosen.

A hemisphere expressed at Cartesian coordinate system is transformed into rectangle
at Spherical coordinates system while it creates circle at Pole coordinate system. This is
well visible in the Fig. 4.4.

21

http://goo.gl/Hxc5mM


4. Data analysis

Figure 4.3: Definition of Spherical coordinates in Cartesian and Pole c.s.

T1. Cartesian c.s. (x, y, z) → Spherical c.s. (r, ξ, θ)

r =
√
x2 + y2 + z2

ξ = arccos
(
x

r

)

θ = arctan
(
y

z

)
if z ≥ 0

+π if z < 0 ∧ y ≥ 0
−π if z < 0 ∧ y < 0

(4.1)

T2. Spherical c.s. (r, ξ, θ) → Cartesian c.s.(x, y, z)

x = r · cos ξ
y = r · sin ξ · sin θ
z = r · sin ξ · cos θ

(4.2)

T3. Spherical c.s. (r, ξ, θ) → Pole c.s. (r, s1, s2)

r = r

s1 = R · ξ · cos θ
s2 = R · ξ · sin θ

(4.3)

T4. Pole c.s. (r, s1, s2) → Spherical c.s. (r, ξ, θ)

r = r

ξ =

√
s2

1 + s2
2

R

θ = arctan
(
s2
s1

)
if s1 ≥ 0

+π if s1 < 0 ∧ s2 ≥ 0
−π if s1 < 0 ∧ s2 < 0

(4.4)
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4.1. Sphere - Mathematical background

Figure 4.4: Hemisphere visualized at various coordinate systems
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4. Data analysis

Listing 4.1: Cup_analysis.m - Transformations between coordinate systems

937 % TRANSFORMS X,Y,Z DATA TO SPHERICAL COORDINATES

938 function [r,theta,xi] = x_z_y__r_theta_xi(x,y,z)

939
940 r = sqrt (x.^2+y.^2+z.^2);

941
942 xi = acos(x./r);

943
944 size_y = size(y); theta(1:size_y(1,1),1:size_y(1,2)) = NaN;

945 log = (z >= 0);

946 theta(log) = atan(y(log)./z(log));

947 log = (y >= 0) & (z <0);

948 theta(log) = atan(y(log)./z(log)) + pi;

949 log = (y < 0) & (z < 0);

950 theta(log) = atan(y(log)./z(log)) − pi;

951 theta(isnan(theta)) = 0; % for cases when atan(0/0)

952
953
954 % TRANSFORMS SPHERICAL COORDINATES TO X,Y,Z DATA

955 function [x,y,z] = r_theta_xi__x_y_z(r,theta,xi)

956
957 x = r.*cos(xi);

958 y = r.*sin(xi).*sin(theta);

959 z = r.*sin(xi).*cos(theta);

960
961
962 % TRANSFORMS SPHERICAL COORDINATES TO POLE COORDINATES

963 function [s1,s2] = Radius_theta_xi__s1_s2(Radius,theta,xi)

964
965 s1 = xi*Radius.*cos(theta);

966 s2 = xi*Radius.*sin(theta);

967
968
969 % TRANSFORMS POLE COORDINATES TO SPHERICAL COORDINATES

970 function [theta,xi] = Radius_s1_s2__theta_xi(Radius,s1,s2)

971
972 size_s1 = size(s1); theta(1:size_s1(1,1),1:size_s1(1,2)) = NaN;

973 log = (s1 >= 0);

974 theta(log) = atan(s2(log)./s1(log));

975 log = (s1 < 0) & (s2 >= 0);

976 theta(log) = atan(s2(log)./s1(log)) + pi;

977 log = (s1 < 0) & (s2 < 0);

978 theta(log) = atan(s2(log)./s1(log)) − pi;

979 theta(isnan(theta)) = 0; % for cases when atan(0/0)

980
981 xi = sqrt(s1.^2 + s2.^2)/Radius;
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4.1. Sphere - Mathematical background

4.1.2 Surface Area & Volume

Point cloud, that we receive from 3D scanner, provides discrete description of the cup
surface. Scattered data have to be interpolated. We need an aligned net of points where
each point represents certain local area of sphere surface. We shall calculate value of
this local area for the following wear calculations. Therefore, sphere surface is divided by
meridians and parallels (given by θ and ξ - Spherical coordinates) as shown in Fig. 4.5,
where also infinitesimal pyramid element is depicted for illustrative purposes.

Figure 4.5: Meridians and parallels [7] & Sphere element

Infinitesimal surface area element dB is derived as

dB = r2 · sin ξ · dξ · dθ (4.5)

Local surface area Bl represented by certain interpolated point is finite area element
where interpolated point occurs in the middle of this area and area borders are given by
Interpolation step ∆. Interpolation step ∆ defines density of the net. In our case,
Interpolation step ∆ was chosen same for both directions. It means ξ = 0 : ∆ : ξmax and
θ = −π + ∆ : ∆ : π is the sense of interpolation we are going to use. Then local surface
area is determined as

Bl =
∫∫

Bl

dB (4.6)
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Bl = r2 ·
ξ+ ∆

2∫
ξ−∆

2

sin ξ · dξ ·
θ+ ∆

2∫
θ−∆

2

dθ (4.7)

Bl = r2 ·∆ ·
[
cos

(
ξ − ∆

2

)
− cos

(
ξ + ∆

2

)]
(4.8)

For calculation of the Local volume Vl given by the pyramid, whose base is defined
by the Local surface area Bl and apex is defined by sphere center point, we are going to
use the following formula for volume of a pyramid V = AB · hB

3 (where AB is base area
and hB is base height) applied onto our case

Vl = Bl ·
r

3 (4.9)

Vl = r3

3 ·∆ ·
[
cos

(
ξ − ∆

2

)
− cos

(
ξ + ∆

2

)]
(4.10)

4.2 Calculation procedure

Figure 4.6: Calculation Flow chart
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4.2. Calculation procedure

Data Analysis realized in created Matlab GUI program is presented in this section.
First step of the calculation procedure is uploading the measured data into Matlab. Af-
terward, the data is adjusted to the correct position as required for following calculations.
Before estimation of reference geometry starts, the data have to be interpolated and
smoothed. When measured data and reference sphere are in correct position against each
other, the data are re-interpolated and re-smoothed again. In this situation program has
all required inputs to calculate and visualize outputs. Let’s see how calculation flows step
by step in details.

4.2.1 Data uploading

Figure 4.7: Data uploading

Measured data are obtained in a form of text file (.xyz format) from 3D scanner. This
file contains Cartesian coordinates of point cloud describing the cup surface, as shown in
the Fig 3.4 on page 13. The file is imported into Matlab and saved as a variable. Measured
data are marked as ’A data’ in the Flow chart (Fig. 4.7).

Listing 4.2: Cup_analysis.m - Data uploading
90 % FILE UPLOADING

91 [filename, pathname] = uigetfile({'*.xyz'},'File Selector');

92 fullpathname = strcat(pathname, filename);

93 X = importdata(fullpathname); % data loading
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4.2.2 Data transformation

Figure 4.8: Data transformation

’A data’ are measured in a Cartesian coordinate system determined by a 3D scanner.
We need to have them in correct position according to the definition in the Fig. 4.1 on
page 20. Therefore, data transformation is included in the calculation.

We have to find the center point of fitted sphere into point cloud and move the origin of
the coordinate system to that center point. Therefore, we use Matlab function sphereFit,
based on Least Square Method (LSQ). More about this function is mentioned in subsection
4.2.12 on page 53. Its outputs are center point coordinates and value of radius of fitted
sphere. Matlab realization is shown on lines from 95 to 101 in the Lis. 4.3.

Data rotation where the top of the cup (the pole from the Fig. 4.4) is directed along
the x axis follows. The following derivation is inspired by Valášek, et al., 2004 [8]. Let’s
denote current coordinate system by number ’1’ and the new one, in which we want to
express the data, by number ’2’. Coordinate system ’1’ is characterized by its unit vectors

i1 =

 1
0
0

 , j1 =

 0
1
0

 , k1 =

 0
0
1

 (4.11)

Position of coordinate system ’2’ against coordinate system ’1’ is expressed by unit vectors
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of coordinate system ’2’ expressed in coordinate system ’1’

1i2 =

 cosαx
cosβx
cos γx

 , 1j2 =

 cosαy
cosβy
cos γy

 , 1k2 =

 cosαz
cosβz
cos γz

 (4.12)

where we used directional angles α, β, γ which occurs between these unit vectors and axes
of coordinate system ’1’. There is angle αx between vector i2 and axis x1, βx between
vector i2 and axis y1 and γx between vector i2 and axis z1. In the same sense angles
αy, βy, γy are defined against j2 and angles αz, βz, γz are defined against k2. We are able
to transform point P from coordinate system ’2’ to coordinate system ’1’ as xP1

yP1
zP1

 =

 cosαx cosαy cosαz
cosβx cosβy cosβz
cos γx cos γy cos γz


 xP2
yP2
zP2

 (4.13)

and as
P1 = S12P2 (4.14)

where S12 is matrix of directional cosines

S12 =

 cosαx cosαy cosαz
cosβx cosβy cosβz
cos γx cos γy cos γz

 =
[

1i2 1j2
1k2

]
(4.15)

However, our case is that we need to transform points from coordinate system ’1’ to
coordinate system ’2’

P2 = S−1
12 P1 (4.16)

We can also write
P2 = ST

12P1 (4.17)

because ST
12 = S−1

12 , proven as

ST
12S12 =

 1iT2
1jT

2
1kT

2

 [ 1i2 1j2
1k2

]
=

 1iT2 1i2 1iT2 1j2
1iT2 1k2

1jT
2

1i2 1jT
2

1j2
1jT

2
1k2

1kT
2

1i2 1kT
2

1j2
1kT

2
1k2


=

 1 0 0
0 1 0
0 0 1

 = S−1
12 S12

(4.18)

Equation 4.17 provides easy rotation of coordinate systems. To realize the rotation
we have to determine unit vectors 1i2, 1j2 and 1k2 to fill matrix S12, according to Eq.
4.15. Required orientation of coordinate system ’2’ is described in the subsection 4.1.1
beginning on page 19. We are going to use already calculated fitted sphere and estimate
vector m oriented from its center point (origin of c.s.) to its pole (Fig. 4.4 on page 23).
Direction of vector m will become x axis of coordinate system ’2’. To do so, measured
data are aligned into fitted sphere surface. This is realized from line 104 to line 107 in
Lis. 4.3. Then, vector m is estimated as

m =
[
xmax+xmin

2
ymax+ymin

2
zmax+zmin

2

]
(4.19)
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Length of vector m is
lm =

√
x2
m + y2

m + z2
m (4.20)

Afterward, desired unit vector 1i2 is calculated as

1i2 = m
lm

(4.21)

Alignment of measured data into fitted sphere is necessary in order to avoid deviations
from fitted radius that would cause deflection of the desired direction. The direction of
the remaining axes is not important as long as all unit vectors create orthonormal basis.
Cross product of two vectors gives a perpendicular vector against both initial vectors. We
use this and calculate unit vector 1j2 with only condition that it must be perpendicular
to unit vector 1i2

1j2 = i1 × 1i2
‖i1 × 1i2‖

(4.22)

Then, unit vectors 1i2,1 j2,
1 k2 creates orthonormal basis of coordinate system ’2’ if

1k2 = 1i2 × 1j2 (4.23)

Data rotation is realized from line 109 to line 126 in Lis. 4.3.
Transformed data are marked as ’B data’ in calculation Flow chart (Fig. 4.8). Their

Cartesian coordinates are transformed to Spherical and Pole coordinates, according to Eq.
4.1 and Eq. 4.3. This process is shown in Lis. 4.4 and Lis. 4.1.

Figure 4.9: Visualization of data transformation
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Listing 4.3: Cup_analysis.m - Data transformation
95 % DATA SPHERE FITTING

96 [Center,Radius] = sphereFit(X);

97
98 % DATA TRANSLATION

99 x = X(:,1)−Center(1);
100 y = X(:,2)−Center(2);
101 z = X(:,3)−Center(3); clear X

102
103 xa=x; ya=y; za=z; % save of data a

104 [r,theta,xi] = x_z_y__r_theta_xi(x,y,z); % spherical coordinates

105 % align fitted radius to all data

106 r(:,:) = Radius;

107 [x,y,z] = r_theta_xi__x_y_z(r,theta,xi);

108
109 % DATA ROTATION ALGORITHM

110
111 % x axis vector of new coordinate system

112 middle = [(max(x)+min(x))/2 (max(y)+min(y))/2 (max(z)+min(z))/2];

113 l = sqrt(middle(1)^2+middle(2)^2+middle(3)^2);

114
115 % unit vectors of new coordinate system axes

116 i2 = middle/l;

117 j2 = cross([1 0 0],i2); l = sqrt(j2(1)^2+j2(2)^2+j2(3)^2); j2 = j2/l;

118 k2 = cross(i2,j2);

119
120 S = [i2(1) j2(1) k2(1) % transformation matrix

121 i2(2) j2(2) k2(2)

122 i2(3) j2(3) k2(3)];

123
124 xb = S(1,1)*xa + S(2,1)*ya + S(3,1)*za; % [x y z]' = S'*[x1 y1 z1]'

125 yb = S(1,2)*xa + S(2,2)*ya + S(3,2)*za;

126 zb = S(1,3)*xa + S(2,3)*ya + S(3,3)*za;

Listing 4.4: Cup_analysis.m - Save of ’B data’
406 x=xb; y=yb; z=zb; % save of data b

407
408 [r,theta,xi] = x_z_y__r_theta_xi(x,y,z);

409 theta_b = theta; xi_b = xi; r_b =r; % save of data b (spherical coordinates)

410
411 [s1,s2] = Radius_theta_xi__s1_s2(Radius,theta,xi);

412 s1b=s1; s2b=s2; % save of data b (pole coordinates)
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4.2.3 Data interpolation

Figure 4.10: Data interpolation

Point cloud of measured cup shall be interpolated by meridians and parallels as de-
scribed in subsection 4.1.2 on page 25. However it is not possible to do so in Cartesian
coordinate system because from top view (observation from infinite point of x axis) some
point could be hidden behind another. Deviations from reference radius could cause this
problem. We use Pole coordinate system to interpolate measured surface where every
measured point is always visible from top view.

scatteredInterpolant function was used for realization of interpolation in Matlab. More
about this function is mentioned in subsection 4.2.12 on page 53. Interpolation is made
four times within the whole calculation. ’B data’ are interpolated to ’C data’ (Lis. 4.5).
E data’ are interpolated to ’F data’ (Fig. 4.11). Also interpolation procedure is part of
smoothing algorithm (C→D and F→G), as obvious from Lis. 4.6.

Listing 4.5: Cup_analysis.m - Data interpolation - B→C
418 % INTERPOLATION OF b DATA VIA scatteredInterpolant FUNCTION

419 F = scatteredInterpolant(s1b,s2b,r_b,'natural','nearest');

420 xii = 0:step:max(xi_b);

421 thetai = −pi+step:step:pi;
422 [xi,theta]=meshgrid(xii,thetai);
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423 [s1,s2] = Radius_theta_xi__s1_s2(Radius,theta,xi);

424 % save of data c (pole coordinates)

425 s1cd = s1; s2cd = s2;

426 r_c = F(s1cd,s2cd); r=r_c;

427
428 % save of data c (spherical coordinates)

429 [theta,xi] = Radius_s1_s2__theta_xi(Radius,s1,s2);

430 theta_cd = theta; xi_cd =xi;

431
432 % save of data c

433 [x,y,z] = r_theta_xi__x_y_z(r,theta,xi);

434 xc=x; yc=y; zc=z;

Figure 4.11: Data interpolation - E→F
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4.2.4 Data smoothing

Figure 4.12: Data smoothing

Interpolated data have to be smoothed to avoid impurities that appeared on cup
surface during measurement or to smooth scratches and other deviations not caused by
wear. However, we cannot use the Cartesian coordinate system due to the same reason as
data interpolation must use Pole coordinate system (previous subsection 4.2.3). Therefore,
the Pole coordinate system is used to smooth data.

gridfit function was used for realization of smoothing in Matlab. More about this
function is mentioned in subsection 4.2.12 on page 53. Smoothing is made twice within
the whole calculation. ’C data’ are smoothed to ’D data’ (Lis. 4.6). ’F data’ are smoothed
to ’G data’ (Fig. 4.13).

Listing 4.6: Cup_analysis.m - Data smoothing - C→D
436 % SMOOTHING OF DATA c TO DATA d

437 xnodes = min(s1cd(:)):0.5*step*Radius:max(s1cd(:)); ynodes = min(s2cd(:))

:0.5*step*Radius:max(s2cd(:));

438 x = s1cd; y = s2cd; z = r_c;

439 subst = str2double(get(handles.edit6,'String')); % sets chosen smoothing

parameter

440 [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes);

441 G = scatteredInterpolant(xgrid(:),ygrid(:),zgrid(:),'natural','nearest');

442
443 % save of data d
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444 r_d = G(s1cd,s2cd);

445 r = r_d;

446 [x,y,z] = r_theta_xi__x_y_z(r,theta,xi);

447 xd=x; yd=y; zd=z;

Figure 4.13: Data smoothing - F→G

4.2.5 Reference sphere estimation

Estimation of reference sphere is a crucial part of the whole calculation because wear
parameters are derived by reference sphere. We are looking for Reference radius Rref and
coordinates of reference sphere center [xs, ys, zs].

Position of acetabular component of hip joint replacement (cup) in body and dominant
loading result in wear just in a certain area of the cup surface while the rest of the cup
surface is in its original state. We are going to focus on this part of original surface. We
will try to identify it and align reference sphere on it. That is the major idea of reference
geometry estimation. Identification of original surface uses international standard ISO
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4. Data analysis

Figure 4.14: Reference sphere estimation

7206-2:1996(E) called Implants for surgery - Partial and total hip joint prostheses [9].
In the part dealing with plastics acetabular components, the standard says that “The
spherical socket shall have a diameter equal to the nominal diameter within a tolerance
of +0.1 mm to +0.3 mm at the temperature of 20 ◦C ± 2 ◦C (i.e. it shall be oversized
within the given tolerance).” Accordingly, we know values of tolerance boundaries Rmin
and Rmax from the standard. The task now is to find a center point of nominal sphere
whose tolerance boundaries contain the largest value of original surface in between each
other, as shown in Fig. 4.15.

A local method of static optimization is used for the estimation of center
point. Optimization parameters are Cartesian coordinates of center point [xs, ys, zs]. The
aim of optimization process is maximization of objective function Bredi

which is the value
of Sample (cup) surface inside tolerance boundaries (given by Eq 4.26 and Eq. 4.27).

max (Bred(xs, ys, zs)) (4.24)

We are able to roughly identify the original unworn area on the cup explant by simple
eye look. Therefore, GUI enables the user to constrain the unworn area - to reduce cup
area which is going to be included in this part of the calculation. It is worth to use this
constriction to avoid wrong convergence of local method of static optimization and to
reduce calculation time.

Firstly, we have to find a suitable initial center point for static optimization. To do
so, we calculate local radius of every point (’D data’) of surface specified in GUI. Locality
is given by Angle of locality, which is specified by the user in the created GUI program.
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Angle of locality defines the surrounding points of the investigated point involved in the
calculation of the local radius of investigated point. It is the maximal permitted angle
between two vectors (first vector - given by coordinates of investigated point, second
vector - given by coordinates of some other certain point). If the angle between these two
vectors is lower than Angle of locality, the certain point is involved into the local radius
calculation of the investigated point. This angle is calculated by scalar product of these
two vectors (lines 1015 to 1017 in Lis. 4.7). When we know all the points included in the
local radius calculation of investigated point, we apply sphereFit LSQ method for fitting
sphere into selected ’D data’ (more about sphereFit in subsection 4.2.12 on page 53). If
the value of fitted radius is between tolerance boundaries Rmin and Rmax we investigate
the value of Sample surface inside tolerance boundaries Bred (center point of nominal
sphere moved to center point calculated by sphereFit). This value is stored and compared
with values of Sample surface inside tolerance boundaries Bred of other points whose local
radius fulfilled tolerance criterion. Center point (calculated bysphereFit) of the point
whose Sample surface inside tolerance boundaries Bred is the largest one, becomes initial
point for static optimization. Calculation of initial point is visible in lines 1011 to 1045 in
Lis. 4.7.

Figure 4.15: Tolerance boundaries

Static optimization is visible in lines 1052 to 1140 in Lis. 4.7. It is a local method of
static optimization, so once it finds a maximum of objective function the calculation is ter-
minated. The idea of this optimization method is to move center point of nominal sphere
and observe how the value of Sample surface inside tolerance boundaries Bred is changing.
Local method of static optimization applied here works very simply. In each iteration
it takes center point of nominal sphere and moves it by the value of optimization step
(specified in created GUI program by the user) to six directions (+x,−x,+y,−y,+z,−z,
according to coordinate system). Then it chooses the largest value of Sample surfaces
inside tolerance boundaries Bred, gained by the movements, and compares it with cur-
rent value of Sample surface inside tolerance boundaries Bred. Current Sample surface
inside tolerance boundaries Bred is replaced by the new one if the new one is larger than
the current one. In that case, current center point of nominal sphere is also replaced by
the new one (current center point of nominal sphere is moved by value of optimization
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step in the direction where the largest Sample surface inside tolerance boundaries Bred
appeared). Within the first iteration where the value of Sample surface inside tolerance
boundaries Bred does not increase, calculation is terminated and the last center point of
nominal sphere becomes reference sphere center point [xs, ys, zs].

When center point [xs, ys, zs] and Sample surface inside tolerance boundaries Bred are
known, we can calculate Reference radius Rref as weighted average. We consider
only Sample surface inside tolerance boundaries Bred given by points i (’D data’) where
i = 1, 2, ..., n. Weighted average is then given as

Rref =

n∑
i=1

ri ·Bredi

Bred
(4.25)

where ri is distance between center point and point i. Area represented by point i is
calculated according to Eq. 4.8 as

Bredi
= R2

LSQ ·∆ ·
[
cos

(
ξDi −

∆
2

)
− cos

(
ξDi + ∆

2

)]
(4.26)

where radius RLSQ is calculated by LSQ method within data transformation (subsec-
tion 4.2.2 on page 28) and ∆ is Interpolation step (subsection 4.1.2 on page 25). Sample
surface inside tolerance boundaries Bred is then given as

Bred =
n∑
i=1

Bredi
(4.27)

Listing 4.7: Cup_analysis.m - Reference sphere estimation
984 % ESTIMATION OF REFERENCE GEOMETRY

985 function [xs,ys,zs,R_ref,annoucement] = LocalRadius_fcn_Optimition(xd,yd,zd,

r_d,step,Radius,xi_cd,locality_angle,r_max,r_min,krok,xi_min,xi_max,

theta_min,theta_max,theta_cd)

986
987 xCut = xd; yCut = yd; zCut = zd; % data stored for eventual Cut off method

988
989 B = (Radius^2)*step.*(cos(xi_cd−step/2)−cos(xi_cd+step/2)); % [mm^2] area

matrix

990
991 % DECIDES WHICH DATA ARE APPROPRIATE FOR CALCULATION ACCORDING TO THETA_MIN,

THETA_MAX; XI_MIN, XI_MAX

992 if theta_min < theta_max

993 log_cropped_theta = (theta_cd >= theta_min*pi/180) & (theta_cd <=

theta_max*pi/180);

994 else

995 log_cropped_theta = (theta_cd >= theta_min*pi/180) | (theta_cd <=

theta_max*pi/180);

996 end

997 xd = xd(log_cropped_theta);

998 yd = yd(log_cropped_theta);

999 zd = zd(log_cropped_theta);
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1000 r_d = r_d(log_cropped_theta);

1001 B = B(log_cropped_theta);

1002 xi_cd = xi_cd(log_cropped_theta);

1003
1004 log_cropped_xi = (xi_cd >= xi_min*pi/180) & (xi_cd <= xi_max*pi/180);

1005 xd = xd(log_cropped_xi);

1006 yd = yd(log_cropped_xi);

1007 zd = zd(log_cropped_xi);

1008 r_d = r_d(log_cropped_xi);

1009 B = B(log_cropped_xi);

1010
1011 B_red = −1; % initial indicator

1012 i_end = size(r_d);

1013 for i = 1:i_end(1)

1014
1015 % CHOOSE DATA FOR SPHERE FIT LSQ METHOD ACCORDING TO ANGLE OF LOCALITY

1016 dot_uv = xd*xd(i) + yd*yd(i) + zd*zd(i);

1017 alpha = acos(dot_uv./(r_d*r_d(i)));

1018 log = locality_angle>=alpha;

1019 X(:,1) = xd(log); X(:,2) = yd(log); X(:,3) = zd(log);

1020
1021 [Center,Radius] = sphereFit(X);

1022 clear X

1023
1024 % IS REALIZED IF CALCULATED RADIUS SUITS INTO TOLERANCE

1025 if (Radius>=r_min) && (Radius<=r_max)

1026
1027 xn = xd − Center(1); yn = yd − Center(2); zn = zd − Center(3);

1028 r = (xn.^2 + yn.^2 + zn.^2).^0.5;

1029
1030 log2 = (r >= r_min) & (r <= r_max);

1031 compare = sum(B(log2));

1032
1033 % IS THE AREA CONTAINED BETWEEN TWO SPHERES (R_min AND R_MAX

RADIUSES) LARGER THAN THE PREVIOUS ONE?

1034 if compare > B_red

1035
1036 % IF YES...LAST VALUES ARE OVERWRITTEN BY THE CURRENT ONES

1037 B_red = compare;

1038 R_ref = sum(r(log2).*B(log2))/B_red;

1039 xs = Center(1);

1040 ys = Center(2);

1041 zs = Center(3);

1042
1043 end

1044 end

1045 end
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1046
1047 % DECIDES IF ANY INVESTIGATED POINT FULFILLED CONDITIONS

1048 if B_red == −1 % if not, then CutOff fcn is applied

1049 disp('No original surface found => CutOff method applied');

1050 annoucement= 'CutOff method applied.';

1051 [xs,ys,zs,R_ref] = CutOff_fcn(xCut,yCut,zCut,r_max,r_min);

1052 else % if yes, then static optimization is applied

1053 disp('LocalRadius method and upcoming Optimization applied');

1054 annoucement= 'LocalRadius method and Optimization applied.';

1055 i = 0;

1056 while 1 % moves center point of reference geometry in 6 directions and

investigates if the situation is better somewhere

1057
1058 % +x

1059 x_xpos = xd−xs −krok; y_xpos = yd−ys; z_xpos = zd−zs;
1060 r_xpos = (x_xpos.^2 + y_xpos.^2 + z_xpos.^2).^0.5;

1061
1062 log1 = (r_xpos >= r_min) & (r_xpos <= r_max);

1063 B_xpos = sum(B(log1));

1064
1065 % −x
1066 x_xneg = xd−xs +krok; y_xneg = yd−ys; z_xneg = zd−zs;
1067 r_xneg = (x_xneg.^2 + y_xneg.^2 + z_xneg.^2).^0.5;

1068
1069 log2 = (r_xneg >= r_min) & (r_xneg <= r_max);

1070 B_xneg = sum(B(log2));

1071
1072 % +y

1073 x_ypos = xd−xs; y_ypos = yd−ys −krok; z_ypos = zd−zs;
1074 r_ypos = (x_ypos.^2 + y_ypos.^2 + z_ypos.^2).^0.5;

1075
1076 log3 = (r_ypos >= r_min) & (r_ypos <= r_max);

1077 B_ypos = sum(B(log3));

1078
1079 % −y
1080 x_yneg = xd−xs; y_yneg = yd−ys +krok; z_yneg = zd−zs;
1081 r_yneg = (x_yneg.^2 + y_yneg.^2 + z_yneg.^2).^0.5;

1082
1083 log4 = (r_yneg >= r_min) & (r_yneg <= r_max);

1084 B_yneg = sum(B(log4));

1085
1086 % +z

1087 x_zpos = xd−xs; y_zpos = yd−ys; z_zpos = zd−zs −krok
;

1088 r_zpos = (x_zpos.^2 + y_zpos.^2 + z_zpos.^2).^0.5;

1089
1090 log5 = (r_zpos >= r_min) & (r_zpos <= r_max);
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1091 B_zpos = sum(B(log5));

1092
1093 % −z
1094 x_zneg = xd−xs; y_zneg = yd−ys; z_zneg = zd−zs +krok

;

1095 r_zneg = (x_zneg.^2 + y_zneg.^2 + z_zneg.^2).^0.5;

1096
1097 log6 = (r_zneg >= r_min) & (r_zneg <= r_max);

1098 B_zneg = sum(B(log6));

1099
1100
1101 A1 = [B_red, B_xneg,B_ypos,B_yneg,B_zpos,B_zneg];

1102 A2 = [B_red,B_xpos, B_ypos,B_yneg,B_zpos,B_zneg];

1103 A3 = [B_red,B_xpos,B_xneg, B_yneg,B_zpos,B_zneg];

1104 A4 = [B_red,B_xpos,B_xneg,B_ypos, B_zpos,B_zneg];

1105 A5 = [B_red,B_xpos,B_xneg,B_ypos,B_yneg, B_zneg];

1106 A6 = [B_red,B_xpos,B_xneg,B_ypos,B_yneg,B_zpos ];

1107
1108
1109 % if it is better somewhere, then last center point is overwritten by

the new one and new reference radius is calculated

1110 if B_xpos > max(A1)

1111 xs = xs + krok;

1112 B_red = B_xpos;

1113 R_ref = sum(r_xpos(log1).*B(log1))/B_red;

1114 elseif B_xneg > max(A2)

1115 xs = xs − krok;

1116 B_red = B_xneg;

1117 R_ref = sum(r_xneg(log2).*B(log2))/B_red;

1118 elseif B_ypos > max(A3)

1119 ys = ys + krok;

1120 B_red = B_ypos;

1121 R_ref = sum(r_ypos(log3).*B(log3))/B_red;

1122 elseif B_yneg > max(A4)

1123 ys = ys − krok;

1124 B_red = B_yneg;

1125 R_ref = sum(r_yneg(log4).*B(log4))/B_red;

1126 elseif B_zpos > max(A5)

1127 zs = zs + krok;

1128 B_red = B_zpos;

1129 R_ref = sum(r_zpos(log5).*B(log5))/B_red;

1130 elseif B_zneg > max(A6)

1131 zs = zs − krok;

1132 B_red = B_zneg;

1133 R_ref = sum(r_zneg(log6).*B(log6))/B_red;

1134 else % if not, static optimization is terminated

1135 break
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1136 end

1137 i = i+1;

1138 end

1139 NumberOfIterations = i

1140 end

Eventually, it is possible that no original surface is identified on cup surface (no local
radius fulfills the tolerance criterion). In that case, calculation switches to standby
method of reference geometry estimation.

This method does not focus on original cup surface. It is based on cutting off the max-
imal values of deviations from fitted sphere calculated by sphereFit (more about sphereFit
in subsection 4.2.12 on page 53). This method consists of 7 iterations. In each iteration
sphereFit fits sphere into Cartesian coordinates of the ’D data’ left and translates these
’D data’ by the value of gained center points’ coordinates of fitted sphere. Afterwards,
20% of points with largest distance from the origin are deleted. That is the end of the
iteration. After 7 cycles there is about 21% of all ’D data’ left. Values of center points
coordinates calculated by sphereFit are stored. After all the cycles they are summarized
and the summarization represents center point of reference sphere [xs, ys, zs].

Reference radius Rref is then given as

Rref = rmax + rmin
2 (4.28)

where r mean distances between calculated center point and individual ’D data’ points
left after 7 iterations.

However this method does not provide as accurate results as we would like to obtain.
It is recommended to modify calculation parameters in created GUI program and repeat
the calculation.

Listing 4.8: Cup_analysis.m - Standby method of reference sphere estimation
1144 % ESTIMATION OF REFERENCE GEOMETRY (IN CASE WHEN LOCAL RADIUS METHOD DID NOT

SUCCEED)

1145 function [xs,ys,zs,R_ref] = CutOff_fcn(xCut,yCut,zCut,r_max,r_min)

1146
1147 Cx = reshape(xCut,[],1); Cy = reshape(yCut,[],1); Cz = reshape(zCut,[],1);

1148 X(:,1) = Cx; X(:,2) = Cy; X(:,3) = Cz;

1149
1150 xs = 0; ys = 0; zs = 0;

1151
1152 for i=1:7 % 7 cycles ... from 100% data to approximately 21%

1153
1154 [Center] = sphereFit(X);

1155
1156 X(:,1) = X(:,1)−Center(1);
1157 X(:,2) = X(:,2)−Center(2);
1158 X(:,3) = X(:,3)−Center(3);
1159
1160 r = (X(:,1).^2 + X(:,2).^2+ X(:,3).^2).^0.5;
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1161 r_sort = sort(r,'descend'); size_r_sort = size(r_sort);

1162 r_crit = r_sort(round(0.2*size_r_sort(1,1)),1); % EACH CYCLE CUTS OFF

20% OF MAXIMAL VALUES

1163
1164 x = X(:,1); y = X(:,2); z = X(:,3); clear X

1165
1166 log = r > r_crit;

1167 x(log) = NaN; y(log) = NaN; z(log) = NaN; r(log) = NaN;

1168
1169 x = x(~isnan(x)); X(:,1) = x;

1170 y = y(~isnan(y)); X(:,2) = y;

1171 z = z(~isnan(z)); X(:,3) = z;

1172
1173 xs = xs + Center(1); ys = ys + Center(2); zs = zs + Center(3);

1174 end

1175 R_ref = (r_max+r_min)/2;

4.2.6 Positioning of measured surface against reference sphere

Figure 4.16: Positioning of measured surface against reference sphere

’B data’ are going to be positioned against reference sphere whose center point is
given by [xs, ys, zs] in Cartesian coordinate system in which ’B data’ are expressed. We
are going to translate origin of coordinate system into center point [xs, ys, zs]. ’B data’
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are collectively translated by the value of [xs, ys, zs]. We reach ’E data’ of each individual
point i as

xEi = xBi − xs, yEi = yBi − ys, zEi = zBi − zs (4.29)
’E data’ are re-interpolated and re-smoothed again as described in subsection 4.2.3 on

page 32 and in subsection 4.2.4 on page 34. Thereafter we have all the required data to
calculate and visualize outputs.

Listing 4.9: Cup_analysis.m - Positioning of measured surface against reference sphere
461 % save of data e

462 xe = xb − xs; x = xe;

463 ye = yb − ys; y = ye;

464 ze = zb − zs; z = ze;

465
466 % save of data e (spherical coordinates)

467 [r,theta,xi] = x_z_y__r_theta_xi(x,y,z);

468 theta_e = theta; xi_e = xi; r_e =r;

469
470 % save of data e (pole coordinates)

471 Radius = R_ref;

472 [s1,s2] = Radius_theta_xi__s1_s2(Radius,theta,xi);

473 s1e=s1; s2e=s2;

4.2.7 Maximal measured angle α

Maximal measured angle α is the angle between x axis and hem of measured surface (Fig.
4.17). Value of angle α is very useful for evaluating the results. The larger the Maximal
measured angle α is, the more valuable the results we obtain from the whole calculation
because we are interested in wear parameters of whole explanted cup, not just a certain
section of it. Therefore, this angle was involved in final outputs of whole calculation.
Maximal measured angle α is chosen as ξmax of all ’E data’ (Spherical coordinates).

Figure 4.17: Definition of Maximal measured angle α and Measured area A
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4.2. Calculation procedure

Figure 4.18: Maximal measured angle α

Listing 4.10: Cup_analysis.m - Maximal measured angle α
531 alfa = max(xi_e)*180/pi; assignin('base','alfa',alfa) % [deg]

4.2.8 Measured area A

Measured area A is part of the reference sphere area which was measured by 3D scanner,
as shown in the Fig. 4.17 on page 44. We are able to calculate its value due to interpolation
of measured point cloud. We know the value of local area Bi represented by each individual
point i of ’F data’. Within knowledge of Eq. 4.8 we can write

Bi = R2
ref ·∆ ·

[
cos

(
ξFi −

∆
2

)
− cos

(
ξFi + ∆

2

)]
(4.30)

where Rref is Reference radius (gained from Eq. 4.25 or Eq. 4.28 ), ∆ is Interpolation
step (subsection 4.1.2 on page 25). Measured area A is then calculated as

A =
n∑
i=1

Bi (4.31)

Listing 4.11: Cup_analysis.m - Measured area A
522 B = (R_ref^2)*step.*(cos(xi_fg−step/2)−cos(xi_fg+step/2)); A = sum(B(:));

assignin('base','A',A) % [mm^2] area matrix
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4. Data analysis

Figure 4.19: Measured area A

4.2.9 Volumetric wear U

Volumetric wear U is the volume of material which has been lost during the years. Ac-
cording to Eq. 4.10, we calculate Volumetric wear U by following sequence of equations

Vrefi
=
R3
ref

3 ·∆ ·
[
cos

(
ξFi −

∆
2

)
− cos

(
ξFi + ∆

2

)]
(4.32)

VFi =
r3
Fi

3 ·∆ ·
[
cos

(
ξFi −

∆
2

)
− cos

(
ξFi + ∆

2

)]
(4.33)

Ui = VFi − Vrefi
, ∀Ui<0: Ui=0 (4.34)

U =
n∑
i=1

Ui (4.35)

where Rref is Reference radius (gained from Eq. 4.25 or Eq. 4.28), ∆ is Interpolation
step (subsection 4.1.2 on page 25). There is also condition that any Local volumetric wear
Ui of individual point i (’F data’) cannot be lower than 0 because we assume no plastic
deformation nor creep.

Volumetric wear U is (together with visualization of wear) a major output of the whole
calculation. Its value is important to know because the amount of released material into
joint neighbourhood has huge influence on the lifetime of the total hip replacement.
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Figure 4.20: Volumetric wear U

Listing 4.12: Cup_analysis.m - Volumetric wear U
524 % VOLUMETRIC WEAR CALCULATION

525 V_ref = (1/3)*(R_ref^3)*step.*(cos(xi_fg−step/2)−cos(xi_fg+step/2));
526 V_f = (1/3)*(r_f .^3)*step.*(cos(xi_fg−step/2)−cos(xi_fg+step/2));
527 logV = V_f<V_ref; V_ref(logV) = 0; V_f(logV) = 0; % assumed no plastic

deformation nor creep

528 U_matrix = V_f − V_ref; U = sum(U_matrix(:)); assignin('base','U',U); % [mm

^3] volumetric wear

4.2.10 Average linear wear uav
Another output we decided to calculate, is Average linear wear uav. It is given by

uav = U

A
(4.36)

where U is Volumetric wear and A is Measured area.
Not all cups were produced by the same nominal sphere diameter and not all explanted

cups were measured by the same Maximal measured angle α and the same Measured area
A. In that case, we cannot compare values of volumetric wear U between each other.
Advantage of Average linear wear uav is that its value is comparable with other Average
linear wear uav values of all measured and analyzed cups. Basically Average linear wear
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4. Data analysis

Figure 4.21: Average linear wear uav

uav means how many cubic millimeters of material has been lost per 1 square millimeter
of reference surface.

Listing 4.13: Cup_analysis.m - Average linear wear uav
530 u_av = U/A; assignin('base','u_av',u_av) % [mm = mm^3/mm^2]

4.2.11 Visualization of Linear wear u

Visualization of Linear wear u is a very interesting tool for evaluating the results. It
visualizes a scatter of the wear on explanted cup surface in details. All individual points
i of the surface are colored according to their value of Linear wear ui.

ui = ri −Rref (4.37)

where Rref is Reference radius (gained from Eq. 4.25 or Eq. 4.28) and ri is a distance
between the origin of coordinate system and individual point i. Distance ri is changeable
from the value rGi (smoothed surface) to the value rFi (rough surface). User can change
this value in the created GUI program (slider called Smoothing ratio) thus control the
smoothness of the surface. There can be some peaks of Linear wear u on the surface
caused by plastic deformation or impurities instead of wear and they can extend scale
range as much as wear issues important for evaluating could be barely visible. Other
possibility provided by created GUI program is the setting of scale range. User can set
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4.2. Calculation procedure

Figure 4.22: Linear wear u

maximum of Linear wear umax and minimum of Linear wear umin thus more details can
be observed at focused area. Described visualization of Linear wear u is called Wear map.
Another interesting way of visualization is called Wear isolines. The difference of these
two ways of visualization is that Wear isolines do not color all the points i but the surface
is represented by colored contours (isolines) where every single contour represents one
certain value of Linear wear u. Wear isolines could be also smoothed or their scale range
could be changed in the same way as it is possible to do so with Wear map. Every possible
cases of the visualization of Linear wear u are presented in the Fig. 4.23.

Listing 4.14: Cup_analysis.m - Scale of Linear wear u
1208 % DRAWS THE SCALE

1209 function scale(R,R_ref,n)

1210
1211 delete(get(gca,'Children'))

1212 hold off

1213 for i = 1:n

1214 b = rectangle('Position',[0,max(R(:))−R_ref−(max(R(:)) − min(R(:)))*i/n

,2*(max(R(:)) − min(R(:)))/n,(max(R(:)) − min(R(:)))/n],'FaceColor'

,[cos(pi*0.5*i/n)^2 sin(pi*i/n) sin(pi*0.5*i/n)^2]);

1215 hold on

1216 end

1217
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1218 axis equal

1219 xlim([0 (max(R(:)) − min(R(:)))*2/n]); ylim([min(R(:))−R_ref max(R(:))−R_ref
]); xlabel('u [mm]')

1220 set(get(b,'parent'),'ytick',[min(R(:))−R_ref,max(R(:))−R_ref−(max(R(:)) −
min(R(:)))*0.9,max(R(:))−R_ref−(max(R(:)) − min(R(:)))*0.8, ...

1221 max(R(:))−R_ref−(max(R(:)) − min(R(:)))*0.7,max(R(:))−R_ref−(max(R(:)) − min

(R(:)))*0.6,max(R(:))−R_ref−(max(R(:)) − min(R(:)))*0.5, ...

1222 max(R(:))−R_ref−(max(R(:)) − min(R(:)))*0.4,max(R(:))−R_ref−(max(R(:)) − min

(R(:)))*0.3,max(R(:))−R_ref−(max(R(:)) − min(R(:)))*0.2, ...

1223 max(R(:))−R_ref−(max(R(:)) − min(R(:)))*0.1,max(R(:))−R_ref],'XTick',[]);

Figure 4.23: Visualization of Linear wear u - examples
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Listing 4.15: Cup_analysis.m - Wear map
1178 % COLORS THE SURFACE ACCORDING TO ITS REFERENCE RADIUS DEVIATION

1179 function wear_map(R,xg,yg,zg,n,xs,ys,zs,look1,Rw)

1180
1181 delete(get(gca,'Children'))

1182 xw = reshape(xg,[],1); yw = reshape(yg,[],1); zw = reshape(zg,[],1);Rw =

reshape(Rw,[],1);

1183
1184 % FIRSTLY IT SHOWS POINTS OUT OF SCALE RANGE

1185 log1 = Rw > max(R(:));

1186 log2 = Rw < min(R(:));

1187 plot3(yw(log1)+ys,zw(log1)+zs,xw(log1)+xs,'MarkerSize',15,'Marker','.','

LineStyle','none','Color',[0.9 0.9 0.9])

1188 hold on

1189 plot3(yw(log2)+ys,zw(log2)+zs,xw(log2)+xs,'MarkerSize',15,'Marker','.','

LineStyle','none','Color',[0.8 0.8 0.8])

1190
1191 % COLOURS POINTS

1192 for i = 1:n

1193 log = (Rw <= max(R(:)) − (max(R(:)) − min(R(:)))*(i−1)/n) & (Rw >= max(R

(:)) − (max(R(:)) − min(R(:)))*i/n) ;

1194 plot3(yw(log)+ys,zw(log)+zs,xw(log)+xs,'MarkerSize',15,'Marker','.',

'LineStyle','none','Color',[cos(pi*0.5*i/n)^2 sin(pi*i/n) sin(pi

*0.5*i/n)^2])

1195
1196 Rw(log) = NaN; Rw = Rw(~isnan(Rw)); % removes already colored points

to reduce time of calculation

1197 xw(log) = NaN; xw = xw(~isnan(xw));

1198 yw(log) = NaN; yw = yw(~isnan(yw));

1199 zw(log) = NaN; zw = zw(~isnan(zw));

1200 end

1201
1202 plot3(0,0,0,'Marker','none','LineStyle','none')

1203 axis equal, grid on; view(look1)

1204 xlabel('y [mm]');ylabel('z [mm]');zlabel('x [mm]');

1205 hold off

Listing 4.16: Cup_analysis.m - Wear isolines
1226 % DRAWS THE ISOLINES ON THE SURFACE ACCORDING TO ITS REFERENCE RADIUS

DEVIATION

1227 function wear_isolines(R, theta_fg, xi_fg,n,xs,ys,zs,look2,Rw)

1228
1229 C = contour3(xi_fg,theta_fg,Rw,n); hold off % isolines out of scale range

1230 Rw(Rw<min(R(:))) = min(R(:)) − (max(R(:))−min(R(:)))/n; Rw(Rw>max(R(:))) =

max(R(:)) + (max(R(:))−min(R(:)))/n;
1231
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4. Data analysis

1232 D = contour3(xi_fg,theta_fg,Rw,n+2);hold off % isolines into scale range

1233 delete(get(gca,'Children'))

1234
1235 sizeC = size(C);

1236 c = 1; % counter

1237
1238 while c < sizeC(1,2) % isolines out of scale range

1239
1240 xi = C(1,c+1:c+C(2,c))';

1241 theta = C(2,c+1:c+C(2,c))';

1242 r = ones(C(2,c),1)*C(1,c);

1243
1244 [x,y,z] = r_theta_xi__x_y_z(r,theta,xi);

1245
1246 if r(1,1) > max(R(:))

1247 plot3(y+ys,z+zs,x+xs,'Color',[0.9 0.9 0.9])

1248 hold on

1249 elseif r(1,1) < min(R(:))

1250 plot3(y+ys,z+zs,x+xs,'Color',[0.8 0.8 0.8])

1251 hold on

1252 end

1253
1254 c = c + C(2,c) + 1;

1255
1256 end

1257
1258 sizeC = size(D);

1259 c = 1; % counter

1260 while c < sizeC(1,2) % isolines into scale range

1261
1262 xi = D(1,c+1:c+D(2,c))';

1263 theta = D(2,c+1:c+D(2,c))';

1264 r = ones(D(2,c),1)*D(1,c);

1265
1266 [x,y,z] = r_theta_xi__x_y_z(r,theta,xi);

1267
1268 if r(1,1) > max(R(:))

1269
1270 elseif r(1,1) < min(R(:))

1271
1272 else

1273 i=1;

1274 log = (r(1,1) <= max(R(:)) − (max(R(:)) − min(R(:)))*(i−1)/n) & (r

(1,1) >= max(R(:)) − (max(R(:)) − min(R(:)))*i/n) ;

1275 while log == 0

1276 log = (r(1,1) <= max(R(:)) − (max(R(:)) − min(R(:)))*(i−1)/n) &

(r(1,1) >= max(R(:)) − (max(R(:)) − min(R(:)))*i/n) ;

52



4.2. Calculation procedure

1277 i=i+1;

1278 end

1279
1280 plot3(y+ys,z+zs,x+xs,'Color',[cos(pi*0.5*(i−1)/n)^2 sin(pi*(i−1)/n)

sin(pi*0.5*(i−1)/n)^2])
1281 hold on

1282 end

1283
1284 c = c + D(2,c) + 1;

1285
1286 end

1287 plot3(0,0,0,'Marker','none','LineStyle','none')

1288 axis equal, grid on,view(look2)

1289 xlabel('y [mm]');ylabel('z [mm]');zlabel('x [mm]'); hold off

4.2.12 Used Matlab functions

In this subsection we can find clarification of fourMatlab functions that were used through-
out the calculation and their principle has not been explained yet. They are significant
for the whole calculation because they directly influence or convert data.

sphereFit This function is used within Data transformation (subsection 4.2.2 on page 28)
and Estimation of reference geometry (subsection 4.2.5 on page 35). sphereFit is not
included in a basicMatlab package but it was downloaded from File Exchange section
on official website of MathWorks, Inc. Its author is Alan Jennings (University of
Dayton). sphereFit fits a sphere to a data point cloud (xi, yi, zi). sphereFit requires
inputs in the form of n × 3 matrix of Cartesian data and its outputs are center
point’s Cartesian coordinates of the fitted sphere [xc, yc, zc] and radius of the fitted
sphere r. sphereFit minimizes

n∑
i=1

[
(xi − xc)2 + (yi − yc)2 + (zi − zc)2 − r2

]2
(4.38)

The least squared equations are used to re-create this problem into matrix equation
[3× 3] · [1× 3] = [1× 3]. sphereFit does not require a large arc or many data points.
It assumes points are not singular (co-planar).
Source: http://goo.gl/PfJ7mN

scatteredInterpolant This function is used within Data interpolation (subsection 4.2.3
on page 32). scatteredInterpolant is included in a basic Matlab package. scatteredIn-
terpolant performs interpolation on a 2-D or 3-D set of points that have no structure
among their relative locations (scattered data set). For example, we can pass a set
of s1B , s2B points and values rB (’B data’ Pole coordinates) to scatteredInterpolant,
and it returns a surface of the form rB = F (s1B , s2B ). This surface always passes
through the sample values at the point locations. We can evaluate this surface at
query point s1C , s2C , to produce an interpolated value rC (’C data’ Pole coordinates).
Matlab provides several interpolation methods for scatteredInterpolant function. In
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4. Data analysis

our case ’natural’ method was used. This method provides C1 continuity all around
the interpolated surface except at sample points. Since required net of points can
overlap the scattered data set, an extrapolation method was specified to ’nearest’.
This method evaluates to the value of the nearest neighbor on the boundary.
Source: http://goo.gl/yimtCG

gridfit This function is used within Data smoothing (subsection 4.2.4 on page 34)). gridfit
is not included in a basic Matlab package but it was downloaded from File Exchange
section on official website of MathWorks, Inc. Its author is John D’Errico. gridfit
is supposed to replace a scattered data by a smooth lattice of points. It does not
always interpolate all supplied data. Its goal is a smooth surface that approximates
the initial data, and allows to control the amount of smoothing. Required inputs are
scattered data x, y, z and xnodes, ynodes - vectors defining the nodes in the grid in the
independent variables x, y. The outputs are xgrid, ygrid - matrices defining the lattice
of points; and zgrid - matrix assigning third dimension to the lattice points. gridfit
principle is explained in the text documents attached to gridfitdir.zip file available to
download from File Exchange section on official website of MathWorks, Inc. These
text documents describes the ideas behind gridfit.
Source: http://goo.gl/sAogyE

contour3 This function is used within Wear isolines plotting (Lis. 4.16). contour3
is included in a basic Matlab package. contour3 creates a 3-D contour plot of a
surface defined on a rectangular grid. Our inputs are rF , ξF , θF (’F data’ Spherical
coordinates) and outputs are the points which create individual contours (isolines).
Afterward, these isolines are tranformed to Cartesian coordinates and visualized in
the 3D plot.
Source: http://goo.gl/gKzZiY
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Chapter 5
Pilot study

Developed wear estimation method was tested within pilot study. We received several real
cup explants from Motol University Hospital (Prague, Czech Republic). All of those cups
failed due to wear. Photos of those cup explants and their casts are visible in this chapter
but the same photos with higher resolution are saved in the attachment C - Pilot study.
This attachment is part of enclosed CD. The results of pilot study are shown in section
6.3, page 67.

Bottom right part (d) of each Figure 5.1-5.5 shows the settings of the calculation in
Matlab GUI program. These settings directly influence the results so it is always necessary
to present the results together with the calculation settings. More info about calculation
settings is presented on enclosed CD (attachment B - Cup Analysis GUIDELINE.pdf ).

Table 5.1: Explanted cups for pilot study

Sample no. 1 2 3 4 5

ID code 2015/7/125 2015/7/139 2015/7/141 2015/7/151 2015/7/152

Patient Name 1 Name 2 Name 3 Name 4 Name 5

Sex female female male female female

Year of birth 1955 1948 1944 1978 1967

Cup material UHMWPE UHMWPE UHMWPE UHMWPE UHMWPE

Nominal
radius [mm]

14 14 14 14 14

Date of
implantation

1/1997 1/2002 1/2000 1/2001 1/2000

Date of
explantation

7/2015 12/2014 12/2014 10/2015 9/2015

Lifetime
[years]

18.6 13.0 15.0 14.8 15.8

Figure 5.1 5.2 5.3 5.4 5.5
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Figure 5.1: Sample no. 1 - (a-b) Cup. (c) Cast. (d) Matlab GUI calculation settings
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Figure 5.2: Sample no. 2 - (a-b) Cup. (c) Cast. (d) Matlab GUI calculation settings
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Figure 5.3: Sample no. 3 - (a-b) Cup. (c) Cast. (d) Matlab GUI calculation settings
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Figure 5.4: Sample no. 4 - (a-b) Cup. (c) Cast. (d) Matlab GUI calculation settings
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5. Pilot study

Figure 5.5: Sample no. 5 - (a-b) Cup. (c) Cast. (d) Matlab GUI calculation settings
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Chapter 6
Results

This chapter consists of results of casting method verification, results of algorithm verific-
ation and results of pilot study. The verification of casting method is described in section
3.2 beginning on page 14. This verification is realized by Matlab script which is contained
on enclosed CD as attachment called D - Verification of casting method. Attachment A
- Cup Analysis (Matlab GUI) from enclosed CD contains created Matlab GUI program -
the desired program described within chapter 4 beginning on page 19. Verification of the
algorithm applied in this program is realized by calculation of worn surface whose wear
we are able to calculate analytically. The results calculated by the program (attachment
E - Verificatiion of algorithm from enclosed CD) are compared against the actual results
calculated analytically. The results of the pilot study are presented afterward. For full
understanding of the results displayed by Matlab GUI program, read attachment B - Cup
Analysis GUIDELINE.pdf from enclosed CD.

6.1 Verification of casting method
The cup we used for verification of casting method was a new unworn cup with nominal
radius 14mm, made of UHMWPE. We chose unworn cup because optical 3D CMM by
RedLux Ltd. is capable of measuring directly the surface of this cup so this surface can be
compared with measured surfaces of casts. For the verification, all the data was cropped
to the value of Maximal measured angle α = 70° in Matlab script.

Figure 6.1: New unworn UHMWPE cup and its casts
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Figure 6.2: Evaluation of volumetric change

Figure 6.3: Evaluation of surface reconstruction
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6.2. Verification of algorithm for wear estimation

6.2 Verification of algorithm for wear estimation
For verification of the created algorithm (realized in Matlab GUI program), we simulate
ellipsoidal wear, according to Fig. 6.4. As an original unworn cups, we consider plastic
cups with nominal radius 14mm, made in accordance with international standard ISO
7206-2:1996(E) [9].

Figure 6.4: Simulated ellipsoidal wear

Imaginary measured data of the cups worn as mentioned above was generated in Mat-
lab. Afterward, that data was saved into text file (.xyz format). This text file was uploaded
into createdMatlab GUI program and calculation was executed. In this section, we are de-
noting the results of algorithm calculation as kalgorithm where k = U,A, α,Rref , umax, umin.
Unlike the actual results calculated analytically are denoted as kactual. The actual results
calculated analytically are given as:

• Uactual = 1
3 · π · r

2 · (c− r)

• Aactual = 2 · π · r2 · (1− cosαactual)

• αactual = 90°

• Rrefactual
= 14.1mm

• umax = c− r

• umin = 0mm

The results of the algorithm are presented in the Fig. 6.5, Fig. 6.6 and Fig. 6.6. For
comparison of the results calculated by the algorithm and analytically, we assess Percent
error δk as:

δk = 100 ·
∣∣∣∣1− kalgorithm

kactual

∣∣∣∣ (6.1)
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Figure 6.5: Results of case a) c=14.1mm
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6.2. Verification of algorithm for wear estimation

Figure 6.6: Results of case b) c=16mm
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6. Results

Figure 6.7: Results of case c) c=18mm
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6.3. Results of pilot study

Table 6.1: Comparison between actual results and results calculated by the algorithm

a) c=14.1mm U [mm3] A[mm2] α[°] Rref [mm] umax[mm] umin[mm]

Actual 0 1249.160 90 14.1 0 0

Algorithm 0.007 1251.879 90.000 14.100 0.000 0.000

δ [%] NaN 0.218 0.000 0.000 NaN NaN

b) c=16mm U [mm3] A[mm2] α[°] Rref [mm] umax[mm] umin[mm]

Actual 395.567 1249.160 90 14.1 1.9 0

Algorithm 402.998 1249.164 89.866 14.115 1.888 -0.030

δ [%] 1.879 0.000 0.149 0.106 0.632 NaN

c) c=18mm U [mm3] A[mm2] α[°] Rref [mm] umax[mm] umin[mm]

Actual 811.954 1249.160 90 14.1 3.9 0

Algorithm 821.518 1247.674 89.912 14.107 3.902 -0.021

δ [%] 1.178 0.119 0.098 0.050 0.051 NaN

6.3 Results of pilot study
The results of the pilot study, which is presented in chapter 5 on page 55, are shown in
this section. The casts of explanted cups within the pilot study were measured by 3D
scanner and resulting .xyz files with measured data were analyzed by created Matlab GUI
program (attachment A - Cup Analysis (Matlab GUI) on enclosed CD). The outputs of
these analyses were saved into .mat files. All the files (.xyz files with the measured data
and .mat files with the results) are saved within attachment C - Pilot study on enclosed
CD.

Table 6.2: Numerical results of pilot study

Sample no. 1 2 3 4 5

U [mm3] 899.9 1142.9 1394.5 1814.3 2148.5

A[mm2] 1223.1 1229.5 1229.1 1207.7 1195.7

uav[mm] 0.736 0.929 1.135 1.502 1.797

α[°] 88.849 89.220 89.233 88.141 87.697

Rref [mm] 14.091 14.097 14.094 14.097 14.090

umax[mm] 3.317 3.453 4.183 3.674 4.152

umin[mm] -0.774 -0.112 -0.056 -0.064 -0.043
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Figure 6.8: Sample no. 1 - Outputs table and wear map (top view)
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6.3. Results of pilot study

Figure 6.9: Sample no. 1 - Wear map and wear isolines (side views)
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6. Results

Figure 6.10: Sample no. 1 - Sample surface inside tolerance boundaries Bred
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6.3. Results of pilot study

Figure 6.11: Sample no. 2 - Outputs table and wear map (top view)
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Figure 6.12: Sample no. 2 - Wear map and wear isolines (side views)
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6.3. Results of pilot study

Figure 6.13: Sample no. 2 - Sample surface inside tolerance boundaries Bred
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Figure 6.14: Sample no. 3 - Outputs table and wear map (top view)
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Figure 6.15: Sample no. 3 - Wear map and wear isolines (side views)
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Figure 6.16: Sample no. 3 - Sample surface inside tolerance boundaries Bred
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6.3. Results of pilot study

Figure 6.17: Sample no. 4 - Outputs table and wear map (top view)
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Figure 6.18: Sample no. 4 - Wear map and wear isolines (side views)
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6.3. Results of pilot study

Figure 6.19: Sample no. 4 - Sample surface inside tolerance boundaries Bred
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Figure 6.20: Sample no. 5 - Outputs table and wear map (top view)
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6.3. Results of pilot study

Figure 6.21: Sample no. 5 - Wear map and wear isolines (side views)
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Figure 6.22: Sample no. 5 - Sample surface inside tolerance boundaries Bred
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Chapter 7
Discussion

Optical 3D CMM by RedLux Ltd. offers very auspicious opportunity of pretty accurate
in vitro wear estimation of cup explants. In accordance with this knowledge, we were
facing the task to develop the transformation of the raw measured data into final valuable
wear results. In addition, the experience from the laboratory showed that mentioned 3D
scanner is not capable of measuring directly the worn surfaces of explanted cups so we
were forced to develop a casting method and measure the surfaces of the casts. Matlab
GUI program was created to analyze the raw data of measured surfaces. The accuracy of
the results is influenced by several factors:

• Data measuring - surface 3D scanning

– Sample surface is measured discretely. We measure coordinates of just a cer-
tain number of an infinite number of points which occur on measured surface.
Therefore, we have to estimate the coordinates of the unmeasured points which
logically brings an error. The error is as lower as denser the cloud of measured
points is. We have been measuring point cloud with density 720 points per one
rotation of the measured sample in the vertical plane and within every single
rotation, the measured sample was turned by 0.5° in the horizontal plane. This
density is enough to describe the measured surface sufficiently. Accordingly,
the error caused by this factor is not significant for our results.

– Probe resolution is not absolutely accurate. The resolution of the probe is 20nm
which is more than sufficient for our purposes.

– Movements of axes of the 3D scanner are not absolutely accurate. The resol-
ution of each linear axis is 100nm, the resolution of each rotary axis is 10”.
These numbers are also more than sufficient for our purposes.

– Casts geometry is not identical with the geometry of cup the explants.
This factor could potentially be a significant source of inaccuracies of the results
so it was very important to develop appropriate casting method. In the end, we
chose silicone - Addition Cure Moulding Rubber MM242 as a casting material.
The difference between the measured data of the cast and measured data of
the cup surface was evaluated in section 6.1 on page 61. According to Fig. 6.2,
the Volume change Θ of the silicone cast is 0.104%. According to Fig. 6.3, the
Weighted standard deviation of radius sdw of the silicone cast is 0.007091mm;
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7. Discussion

the Weighted standard deviation of radius sdw of the original cup surface is
0.007025mm. After this evaluation, we found silicone - Addition Cure Moulding
Rubber MM242 as sufficient casting material for our purposes. Nevertheless,
there is a certain potential to eliminate this factor more. Either to find a better
casting material or to take into account correction of this factor within data
analysis.

• Data analysis - Matlab GUI program

– Measured surface is interpolated. Due to a discrete description of measured
surface, we have to interpolate measured data. Matlab function scatteredIn-
terpolant is used for the realization of the interpolation. Since the cloud of
measured points is pretty dense, scatteredInterpolant works without any prob-
lems. This factor is not significant for the results if Interpolation step ∆ is small
enough. The value of Interpolation step ∆ is set by the user within GUI and
its suggested value is 0.25°. Of course, lower value is better for the results but
the calculation time increases enormously in that case. Besides, the density of
interpolated net shall be similar to the density of measured data so this aspect
must be taken into account during setting of Interpolation step ∆ in GUI.

– Original unworn cup surface is assumed as a perfect sphere. We do not take
into account the inaccuracies given by manufacturing technology. We could do
it if the cups were measured before implantation. However, it did not happen
so we consider sphere as a reference geometry. The significance of this factor
is complicated to evaluate. Nevertheless, since the volumetric wear reaches the
values about thousand of cubic millimeters, which explanted cups after 15 years
normally do, the significance of this factor is very low.

– Reference sphere estimation. This factor is the crucial one. The position
of the reference geometry has a significant influence on the results. Our way of
estimation of reference sphere is based on identification of part of original un-
worn geometry. We try to find the original geometry manufactured according
to international standard ISO 7206-2:1996(E) [9] and to set the reference geo-
metry in accordance with this original part. This method seems to work well.
The evaluation of correctness of reference geometry estimation must be made
by the user though. GUI enables to specify the area which is going to be used
for identification of reference geometry to avoid bad converge of the estimating
method so the user can influence the estimation of reference geometry directly.

– Volumetric wear calculation simplifies surface of investigated worn cup. This
factor is related to interpolation problem. The surface is represented by a
certain number of interpolated points and each point represents a certain local
area of measured surface given by Interpolation step ∆. Within the calculation
of volumetric wear, we consider the linear wear has the same value within the
whole local area - the value of linear wear right in the interpolated point. Since
the values of linear wear of surrounding points in the local area are different,
this simplification is a source of inaccuracy. However, when the Interpolation
step ∆ is small enough, this factor is not significant for the results.
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• Results provide the information about the change of geometry. They do not distin-
guish wear from plastic deformation or creep though.

– The evaluator has to determine the influence of the plastic deformation or creep
for the results. The influence can vary case by case.

Verification of the algorithm for wear estimation was published in section 6.2 beginning
on page 63. According to Tab. 6.1, the results are very satisfying. Three simulated wear
cases were analyzed by created Matlab GUI program and the results provided by the
program were compared to the actual results calculated analytically. The highest Percent
error δ of Volumetric wear U was found 1.879%; the highest Percent error δ of Measured
area A was found 0.218%; the highest Percent error δ of Maximal measured angle α was
found 0.149%; the highest Percent error δ of Reference radius Rref was found 0.106%; and
the highest Percent δ error of maximal Linear wear umax was found 0.622%. According to
those numbers, we can notice that Volumetric wear U is more sensitive for the mentioned
sources if inaccuracies than the rest of calculated parameters.

Furthermore, the developed wear estimation method was tested within the pilot study.
Five real cup explants were cast, their casts were measured by optical 3D CMM by RedLux
Ltd. and measured data was analyzed by created Matlab GUI program. The results of
the pilot study are published in section 6.3 beginning on page 67. Tab. 6.2 shows the
numerical results of the pilot study, while Fig. 6.8 - 6.22 visualize wear distribution. The
calculated values of Volumetric wear U varies between 899.9 - 2148.5mm3; the calculated
values of Average linear wear uav varies between 0.736 - 1.797mm. Unfortunately, we
have no info about patients’ weights so it is tough to make some conclusions. However,
it is interesting that the lifetime of sample no. 1, whose value of Average linear wear
uav is the lowest one, is the longest one - 18.6 years. The calculated values of maximal
Linear wear umax varies between 3.317 - 4.152mm; and the calculated values of minimal
Linear wear umin varies between -0.744 - -0.043mm. The values of maximal and minimal
Linear wear umax and umin are usually influenced by various issues which are not related
to wear. Those issues can be scratches arisen during explantation and damages of similar
character. We can easily notice a pliers prints on each of the samples of the pilot study.
It is caused by that the doctors use pliers for removal the cup from human body so it
has nothing to do with wear but the wear results are obviously influenced by those pliers
prints. The evaluator has to take it into account and evaluate each sample individually
with his knowledge and experience. Nevertheless, created Matlab GUI enables certain
possibility to distinguish wear and issues like these. It enables to smooth the surface so
the user can visualize the wear distribution eliminated by sharp peaks, which usually are
caused by the issues mentioned above.
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Conclusion

Since The Laboratory of Biomechanics, CTU in Prague, is involved in the project called
The study of new materials used as articulation surface of joint replacement (ID No.
NV15-31269A), the need for wear quantification arose. On that account, the method
of wear analysis of explanted acetabular cups based on accurate surface meas-
urement was developed.

For successful surface measurement, it was necessary to develop casting method of cup
explants. Several materials were tested as a casting material. The differences between
casting surfaces and the surface of the original cup were evaluated. In the end, Silicone -
Addition Cure Moulding Rubber MM242 was chosen as the casting material, which fulfills
all our requirements.

The measured data is analyzed at created Matlab GUI program, which is able to cal-
culate and visualize wear parameters. This program was verified by data of worn cup
surfaces, whose wear parameters we are able to calculate analytically. The comparison
between the results by Matlab GUI program and the actual results calculated analytic-
ally showed very satisfying similarity. Afterward, the samples of real cup explants were
analyzed by created Matlab GUI program within the pilot study.

This thesis introduces a very powerful tool for wear quantification and visualization.
Within the created Matlab GUI program, we are capable of analyzing a relatively large
number of measured surfaces very easily and quickly.
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Appendix A
Nomenclature

note: Listed symbols can be indexed in various ways throughout whole thesis. Indexes
specify local utilization of the symbols, whereas general definition of the symbols is men-
tioned here.

Symbol Units Description Definition

Coordinate systems 4.1.1
(x, y, z) m,m,m Cartesian coordinates Figure 4.1
(r, ξ, θ) m,rad,rad Spherical coordinates Figure 4.3
(r, s1, s2) m,m,m Polar coordinates Figure 4.3

Surface area & Volume 4.1.2
∆ rad Interpolation step
B m2 Surface area
V m3 Volume

Data transformation 4.2.2
S Matrix of directional cosines
i, j,k m Unit vectors of the axes of a Cartesian c. s.

Reference sphere 4.2.5
Bred m2 Sample surface inside tolerance boundaries Figure 4.15
Rmax, Rmin m Tolerance boundaries Figure 4.15
Rref m Reference radius
[xs, ys, zs] m Coordinates of reference sphere center point Figure 4.15

Calculation outputs 4.2.7 - 4.2.11
α ° Maximal measured angle Figure 4.17
A m2 Measured area Figure 4.17
U m3 Volumetric wear
u m Linear wear
uav m Average linear wear

Verification of casting method 3.2
Θ % Volume change
Rw m Weighted average of radius
sdw m Weighted standard deviation of radius

Verification of algorithm 6.2
δ % Percent error
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Appendix B
Acronyms

CD Compact disc

CMM Coordinate measuring machine

CTU Czech Technical University

FEM Finite element method

FME Faculty of Mechanical Engineering

GUI Graphical user interface

NaN Not-a-Number

PEEK Polyether ether ketone

RTG Radioisotope thermoelectric generator

UHMWPE Ultra-high-molecular-weight polyethylene
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Appendix C
Contents of enclosed CD

MT_Mervart_2016.pdf
Attachments

A - Cup Analysis (Matlab GUI)
B - Cup Analysis GUIDELINE.pdf
C - Pilot study
D - Verification of casting method
E - Verification of algorithm
F - Downloaded Matlab functions
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