
L.S.

doc. Ing. Jan Janoušek, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 1, 2015

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Flow-Based Classification of Devices in Computer Networks

 Student: Zdeněk Kasner

 Supervisor: Ing. Tomáš Čejka

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2016/17

Instructions

Study principles of monitoring in computer networks based on traffic flows.
Study the Nemea system [1,2] for network traffic analysis.
Study suitable semi-supervised classification methods described in [3] to recognize different types of devices
that communicate over network infrastructure. A classification method should use information about
network flows that are generated by observed devices.
Design a software tool for the Nemea system that can help users to classify network devices according to
their network flows.
Implement the designed module.
Verify the functionality of the module with the use of a test dataset that will be provided by the supervisor.

References

[1] https://github.com/CESNET/Nemea
[2] V. Bartos, M. Zadnik, T. Cejka: "Nemea: Framework for stream-wise analysis of network traffic," CESNET
technical report 6/2013.
[3] Zhang, Jun, et al. "An effective network traffic classification method with unknown flow detection." IEEE
Transactions on Network and Service Management,  2013.





Czech Technical University in Prague

Faculty of Information Technology

Department of theoretical computer science

Bachelor’s thesis

Flow-Based Classification of Devices in
Computer Networks

Zdeněk Kasner

Supervisor: Ing. Tomáš Čejka

15th May 2016





Acknowledgements

I would like to express my gratitude to my supervisor Ing. Tomáš Čejka. He
continuously supported me throughout my thesis and provided me with many
useful remarks and suggestions. Special thanks goes to the members of the
Liberouter team for the experience I gained during the work on the project.

I would also like to thank my close friends and my girlfriend for helpful
advices, motivation and patience during my work. Furthermore, I would like
to sincerely thank my professors and school colleagues at FIT CTU for the
enjoyable experiences during my studies.

Finally, my deep gratitude goes to my family for their continued moral
support.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 15th May 2016 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Zdeněk Kasner. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kasner, Zdeněk. Flow-Based Classification of Devices in Computer Networks.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2016.



Abstract

This thesis deals with automatic recognition of types of devices communicating
over a network. Devices in computer networks generate traffic, which can be
captured as traffic flows. In my work, I have designed a method which uses
traffic flows to classify types of devices. This method consists of measuring
statistical properties of traffic flows and using the measured values as an input
for support vector machines, an algorithm of machine learning. The main part
of this work is focused on implementing this method in the form of a module
for the Network Measurements Analysis (NEMEA) system, a software for
network traffic analysis and anomaly detection.

Keywords classification of devices, supervised learning, support vector ma-
chines, network traffic flows, network analysis, NEMEA
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Abstrakt

Tato bakalářská práce se zabývá automatickým rozpoznáváním typů zařízení
komunikujících po síti. Zařízení v počítačových sítích generují provoz, který
lze zachytit v podobě síťových toků. Ve své práci jsem navrhl metodu, která
používá tyto síťové toky pro klasifikaci jednotlivých typů zařízení. Metoda
vychází z měření statistických vlastností síťových toků a využívá naměřených
hodnot jako vstup pro algoritmus strojového učení – metodu podpůrných vek-
torů (support vector machines). Hlavní část této práce popisuje implementaci
navržené metody v podobě modulu pro systém Network Measurements Ana-
lysis (NEMEA), software pro síťovou analýzu a detekci anomálií.

Klíčová slova klasifikace zařízení, učení s učitelem, metoda podpůrných
vektorů, toky v počítačových sítích, síťová analýza, NEMEA
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Introduction

Tools for network traffic analysis are widely used in network security and
administration. Analyzing anonymized network traffic helps to prevent the
attacks on the network, patch up network vulnerabilities and allocate sufficient
network capacity.

An important information which is missing in network monitoring is the
type of monitored device and its role in a network infrastructure (for instance
a personal computer (PC), a mail server, a router, etc.). This information
improves network awareness – it allows to understand the structure of a net-
work and helps to interpret ongoing changes. For instance, if a PC infected
by malware starts to send spam messages, it may be no longer be detected as
a client PC, but as a mail server instead.

The described background knowledge is usually not available and has to
be derived from the network traffic. However, the behavior of a particular
type of device may be influenced by many factors. Differences may be caused
by the specific device, the size of a network, the length of network monitoring,
etc. Therefore, it is not trivial to describe each type of device in the form of
a few simple rules.

The solution is to measure statistical properties of network traffic. Dif-
ferent types of devices may produce different network traffic patterns. If an
algorithm learns these patterns, it can classify unknown types of devices by
observing their network traffic. The described procedure can be performed
using methods of machine learning.

Goals

In this thesis, I deal with implementing a software tool which can classify
different types of devices in computer networks. The tool will be used as
a module in NEMEA, the system for network traffic analysis and anomaly
detection. The module will extract features from the network traffic generated
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Introduction

by observed devices. The features will serve as training data for machine
learning. Subsequently, a classifier will be used to predict types of devices.

The module can be used in various use-cases. For example, a network
administrator may want to get high-level information about devices on the
network that is not known to him yet. The idea is to launch the module
on the network to get information about devices by passively observing the
network traffic. If the administrator needs to know about ongoing changes on
the network, the module can help to track changes of devices automatically.

Furthermore, the module can be used in network security. For instance,
it can reveal the use of services that allow remote access for attackers (e.g.
trojans, backdoors) by tracking changes in the behavior of devices.

Finally, the module may also serve as a basis for other network analysis
modules in the NEMEA system.

Structure of the Thesis
The thesis is divided into five chapters. Chapter 1 provides an overview of
network traffic analysis and discusses the taxonomy of devices communicating
in computer networks. Chapter 2 presents machine learning styles, methods
of classification and algorithms. The main part of my work is described in
chapters 3 and 4. The design of the module and the method of classifying
devices is described in Chapter 3. The details of implementation of the module
can be found in Chapter 4. Finally, Chapter 5 concludes the results of the
work and evaluates the performance of the module.

2



Chapter 1
Network Traffic Analysis

This chapter provides an introduction to network traffic analysis. Current
practices in network monitoring are described. The text is focused on the
aspects of flow-based network monitoring. At the end of the chapter, possible
taxonomies of network devices are discussed in detail.

1.1 Network Monitoring

Collecting and analyzing anonymized traffic data can help network providers
to deal with several issues. In the area of network security, it allows to dis-
cover sources of attacks and protect weak points of the network. In network
administration, it allows to control whether users are using the permitted ser-
vices only and not exceeding their data limits. All of this has to be done with
respect to user privacy.

There are several approaches to monitoring of present-day networks. The
approaches are further described in this section. The description is inspired
by the document on best practices in network monitoring [1].

1.1.1 Packet Inspection

The first approach is based on inspecting packet contents. A packet is a basic
unit of data in network traffic. It consists of a header with control information
and payload with user data. There are tools which allow to capture and ana-
lyze the packets, e.g. the tools with a command line interface as tcpdump[2]
or with a graphical interface as Wireshark[3].

However, the amount of network traffic flowing through monitoring probes
in larger networks can be enormous. As reported in [4], on the backbone line
Prague – Brno in the academic network CESNET2, the average packet rate
varies around 600,000 packets per second. This volume of data would be
difficult to process with the present-day computational power. Therefore,
packet inspection is usually limited to local networks.

3



1. Network Traffic Analysis

1.1.2 Statistical Properties

The document [1] further describes another approach which is to collect and
analyze statistics describing network behavior. These statistics can be gathered
with a various level of detail depending on which particular kind of inform-
ation is needed. This mostly involves monitoring the status of key network
components, e.g. the value of Simple Network Management Protocol (SNMP)
counters at network interfaces. This approach is quite simple, but the data is
too aggregated to perform detailed network analysis.

1.1.3 Flow-Based Monitoring

Flow-based monitoring combines the advantages and drawbacks of both of
the previously mentioned approaches. In flow-based network monitoring, the
payload is removed and the packet headers are aggregated in entities called
traffic flows (or “flows”). For each flow, various statistics are measured, such
as the number of packets and bytes, the time of the start (or the end) of the
flow, Transmission Control Protocol (TCP) flags and more.

The traditional approach to data analysis in flow-based network monit-
oring involves storing flow data on a hard drive. The data is subsequently
analyzed at regular intervals. The document [1] suggests the NfSen collector
as an example of a typical publicly available collector for flow-based network
traffic analysis.

1.2 Traffic Flow

In general, a traffic flow is a sequence of packets sent from a source to a
destination. In this work, the definition by Y. Wang et al. [5] is used:

• Unidirectional flow (or flow) is a series of packets sharing the same
5-tuple consisting of source and destination Internet Protocol (IP) ad-
dresses, source and destination port numbers and the transport layer
protocol.

• Bidirectional flow (or biflow) is a pair of unidirectional flows using
the same transport layer protocol and going in the opposite directions
between the same source and destination IP addresses and ports.

With the level of abstraction provided by flows, storing and processing
large amount of data is avoided. At the same time, the information needed
for further network analysis is preserved. It also means that all the payload
data in the captured network traffic is discarded automatically and cannot be
used to identify users.

4



1.3. NEMEA Framework

1.3 NEMEA Framework

NEMEA is an open-source system for automated flow-based network analysis.
It is developed at CESNET a.l.e. by the research team Liberouter. The system
is designed to monitor networks with high traffic throughput. In contrast with
traditional approaches, it uses stream-wise flow processing. This approach
allows continuous and real-time traffic analysis and alert reporting without
any additional data storage. Principles and inner functionality of the system
are described in detail in the technical report [6].

The NEMEA system consists of separate building blocks called modules.
Modules communicate with each other through interfaces. The usual workflow
of a module is to receive a stream of data at its input interface, process it and
send another stream of data to its output interface. Each module is launched
as a separate process in the operating system. Therefore, it can be controlled
independently on other modules and use system resources on its own. Modules
can be assembled to create a more complex system.

Figure 1.1: Example of a more complex assembly of NEMEAmodules. Source:
the Liberouter website [7].

The core of the NEMEA system is the NEMEA framework. It offers an
interface for communication between the modules, a standard format of mes-
sages and an implementation of useful common functions and data structures.

1.3.1 TRAP

For communication, NEMEA modules use an Application Programming In-
terface (API) supplied by Traffic Analysis Platform (TRAP). TRAP is rep-
resented by a dynamic library called libtrap, which is linked by every NEMEA
module. It helps to abstract modules from the communication layer. libtrap
takes care of low-level objects and functions like buffering, (non-)blocking
send operation and sockets. It also provides modules with standard input and
output communication interfaces.

5



1. Network Traffic Analysis

1.3.2 UniRec Data Format

UniRec (Unified Record) is a format of messages used between NEMEA mod-
ules. It is similar to a C structure, but it provides more flexibility. The UniRec
format allows to create new message structures dynamically while preserving
memory and access time efficiency. This allows modules to exchange a very
large volume of various types of data.

Each UniRec record consists of several fields that can be static or dynamic.
The set of fields used by a module is called a template. The template of the
receiving module has to be equal or subset of the template of the sending
module.

1.3.3 Flow Records

A NEMEA module dealing with network analysis needs to process incoming
flow records. Using TRAP, this job is simplified to processing UniRec fields
defined in the template.

The usual template with information about a flow is listed in Table 1.1.
This set of fields directly implies which features can be utilized as the input
for machine learning methods.

Table 1.1: UniRec Fields of a flow record
Data Type Field Name Description
ipaddr SRC_IP Source address of a flow
ipaddr DST_IP Destination address of a flow
uint16 SRC_PORT Source transport-layer port
uint16 DST_PORT Destination transport-layer port
uint8 PROTOCOL L4 protocol (TCP, UDP, ICMP, etc.)
uint32 PACKETS Number of packets in a flow or in an in-

terval
uint64 BYTES Number of bytes in a flow or in an interval
time TIME_FIRST Timestamp of the first packet of a flow
time TIME_LAST Timestamp of the last packet of a flow
uint8 TCP_FLAGS TCP flags of a flow (logical OR over TCP

flags field of all packets)

1.4 Devices

This section addresses the taxonomy of network devices. The text introduces
the definition of a network device and discusses the ways to systematize their
types.
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1.4. Devices

1.4.1 Definition

The term network device is used as a synonym to a basic element which form
the network topology (a repeater, a switch, a router, etc.) [8], [9]. This defin-
ition can be useful for designing and maintaining the network infrastructure.

However, a different kind of definition is needed for this work. In network
traffic analysis, a network device is a source of network traffic. This can be
an endpoint of the network, as for instance a client PC, or a network element
such as a router (in special cases, e.g. using the Routing Information Protocol
(RIP)). In traffic flows, a source of network traffic is represented by an IP
address. To conclude, the network device (or a device) in this work is a source
of network traffic represented by an IP address.

1.4.2 Taxonomy

To my best knowledge, there is no existing suitable taxonomy of network
devices. Therefore, it is necessary to define it. The taxonomy should define
the possible labels of devices and the relation between them. Choosing the
appropriate taxonomy is important for selecting an appropriate method of
machine learning.

Hierarchical Structure A hierarchical structure offers a simple and com-
prehensible way to separate devices into classes. An example is shown in
Figure 1.2. For instance, if a network device is classified as File Transfer Pro-
tocol (FTP) server, it also belongs to the classes file server and server. If the
device cannot be classified to this extent (e.g. because of the lack of training
data for this particular class), it can be classified into one of the parent classes.

There are some disadvantages in using this approach. Due to the static
tree structure, a device cannot belong to the client class and the access point
class at the same time. However, this may be a valid and useful informa-
tion in certain situations. By imposing specific requirements, the hierarchical
structure also limits the range of available machine learning methods.

Flat Structure A more flexible structure can be achieved by making all
the classes equal. In this structure, each class is only a label assigned to the
device. A device can be assigned none, one or more labels at the same time.
In this case, multi-label classification can be used to classify devices.

An example is shown in Table 1.2. The matrix can be defined as follows.
Let S be a set of all labels, |S| = N . Each device is assigned a set of labels
S′ where S′ ⊆ S and |S′| ∈ {0, 1, . . . , N}. In the matrix, “1” is used to
indicate that the label in this column belongs to the subset S′ of this device,
“0” otherwise.

7



1. Network Traffic Analysis

Figure 1.2: Hierarchical structure of devices

Table 1.2: Example of labeled devices. Each columns is a label. “1” signalizes
the presence of a label, “0” otherwise.

SERVER CLIENT MAIL HTTP FTP
Device A 1 0 0 1 0
Device B 0 1 1 1 0
Device C 1 0 0 0 1
Device D 1 0 1 0 0

Since current devices are usually multifunctional, this approach is a better
approximation of reality. For this reason, this approach has been chosen in
this work.

8



Chapter 2
Machine Learning

This chapter provides a summary of present-day machine learning styles and
methods. Emphasis is put on the methods that can be used for classification
of devices.

2.1 Introduction

A common way of making a computer to do something (i.e. transform data,
interact with a user, compute results) involves explicit programming. In this
case, the set of instructions for the computer is a step-by-step procedure,
directly implying how to get the desired outcome. However, there are problems
that are too complex to be dealt with in this manner. This is the point where
machine learning takes place.

Machine learning can be viewed as “programming by example”. The al-
gorithms of machine learning are learning the patterns by observing the data
(induction) and using the gained knowledge to make predictions (deduction).
This process resembles closely the process of learning in human mind.

According to [10], “the art of machine learning is to reduce a range of fairly
disparate problems to a set of fairly narrow prototypes.” From the perspective
of device classification, there is no sense in defining a set of rules for each type
of device. Instead, the methods of machine learning can provide a model that
is abstract and generally applicable.

2.2 Learning Styles

Traditionally, there are two fundamentally different styles of machine learn-
ing – supervised and unsupervised learning. They differ both in the struc-
ture of input data and the desired outcome. There is also another category
called semi-supervised learning, which combines both previously mentioned

9



2. Machine Learning

approaches. Although it is not fundamentally different from the others, it is
mentioned by certain sources ([11], [12]) as one of the machine learning styles.

2.2.1 Supervised Learning

Supervised learning uses labeled training data made of pairs (xi, yi) where
each pair represents an instance and its value. The goal of supervised learning
is to learn the mapping from x to y. If values of y are taken from a finite set,
the task is called classification.

Figure 2.1: Supervised learning

2.2.2 Unsupervised Learning

The goal of unsupervised learning is to find interesting structures in the given
data. In other words, the algorithms either try to separate the data into
clusters or to infer the underlying structure (e.g. its statistical distribution).
Because the structure is usually not known in advance, it is more difficult to
evaluate the performance of a model.

Figure 2.2: Unsupervised learning

10



2.3. Classification Methods

2.2.3 Semi-Supervised Learning

Semi-supervised learning is trying to learn the mapping of x to y as well
as supervised learning. The difference is that the training dataset of semi-
supervised learning can also consist of unlabeled data. In this case, a spe-
cific assumption about the data has to be made. The article [12] suggests a
smoothness assumption: if two points in the training dataset are close, they
are more likely to share a label. With this assumption, unlabeled data can
help the classification. Semi-supervised learning may be useful in case there
is not enough labeled training data.

Figure 2.3: Semi-supervised learning

2.3 Classification Methods

Classification is the process of associating instances with labels. It can be
considered as a specific task of supervised learning. Training data for clas-
sification consists of a set of instances, each of them associated with a class
label. The training data is analyzed to construct a classifier which is able to
classify unseen instances.

Classification methods can be divided into two basic categories defined in
[13].

2.3.1 Single-Label Classification

Single-label classification is a common variant of the classification problem.
During the classification process, each instance is assigned a single label l from
the set of labels L, |L| > 1.

If |L| = 2, then the learning problem is called a binary classification prob-
lem. This problem can be solved e.g. by support vector machines (Section
2.4.4). If |L| > 2, then it is called a multi-class classification problem, which
can be handled e.g. by decision trees (Section 2.4.3).

11



2. Machine Learning

2.3.2 Multi-Label Classification

In multi-label classification, each example is associated with a set of labels
Y ⊆ L. Table 1.2 can be considered as an example of a multi-label dataset.

The article [13] describes various problem transformations which can be
used to solve this problem using the existing single-label methods:

1. discard all the multi-label instances from the multi-label data set

2. select one of the multiple labels of each multi-label instance and dis-
card the rest

3. consider each different set of labels that exists in the multi-label data
set as a single label

4. learn |L| binary classifiers Hl : X → {l,¬l}, one for each different
label l in L.

2.4 Algorithms

This section presents several supervised machine learning algorithms (selected
from [14]) that represent different approaches to supervised machine learning.
The text summarizes principles and aspects of these algorithms. All the al-
gorithms can be used for multi-label classification after an appropriate problem
transformation.

2.4.1 k-Nearest Neighbors

k-Nearest Neighbors (kNN) is an example of an instance-based learning al-
gorithm. The class of an unknown instance is determined as the most frequent
class of its k nearest neighbors in the training dataset. A distance metric (such
as the Euclidean distance) is used to find the nearest neighbors. For each un-
labeled instance, a set of the nearest neighbors has to be computed separately.
That implies that the classification time is asymptotically dependent on the
number of instances.

2.4.2 Naive Bayes

The simplest of the family of statistical learning algorithms is the Naive
Bayes classifier. Naive Bayes classifier computes the probability of each class
given a feature vector and selects the class with the largest probability. The
term naive is derived from an assumption of the strong independence between
the features (which is almost never satisfied in practice, therefore “naive”).
Nevertheless, with appropriate preprocessing, Naive Bayes can perform well
even in real-world situations, as described in [15].
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2.4.3 Decision Trees

Decision trees belong to the group of logic-based algorithms. The algorithm
uses a decision tree in order to classify an instance. The advantage of decision
trees is a simple and human readable visual representation of the predictive
model. Each node of a tree symbolizes a conditional split on the value of
one of the attributes, starting with the most significant attribute in the root.
Therefore, the path from the root to the leaf is exactly determined for each
instance by the values of its attributes. Finally, a leaf represents the target
class of the instance.

Figure 2.4: Decision tree example

2.4.4 Support Vector Machines

One of the most recent supervised learning methods is the support vector ma-
chine (SVM). The goal of SVM is to linearly separate the instances. Instances
with n features can be seen as points in n-dimensional space. SVM is trying to
find the optimal separating hyperplane between those points. An example
of a hyperplane is a line in the two-dimensional space.

In general, there may be many hyperplanes separating the data. However,
SVM is trying to maximize the margin of a hyperplane. The margin can be
computed as twice the distance between a hyperplane and the nearest data
point in the hyperspace (see Figure 2.5). This ensures that the hyperplane
is optimal (i.e. with the greatest distance from all the points) and therefore
generalizes well with unseen data. The SVM classifiers are always binary, as
the hyperplane always separates the space into exactly two semi-spaces.

Linear SVM can be defined as follows. If the training data is linearly
separable, then a pair (w, b), where w is termed the weight vector and b the
bias (or −b is termed the threshold), exists such that

wTxi + b ≥ 1 , for all xi ∈ P (2.1)
wTxi + b ≤ −1 , for all xi ∈ N (2.2)
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with the decision rule given by

fw,b(x) = sgn(wTx + b) (2.3)

m
ar
g
in

hyperplane

Figure 2.5: Optimal separating hyperplane with a margin in 2D space

2.5 Evaluation
Performance of a classifier can be evaluated in various ways. This section sums
up the metrics which are useful for this work – metrics for binary classification,
extension of these metrics into the multi-label environment and a technique
for evaluating a classifier known as cross validation.

2.5.1 Binary Classification Metrics

Two common metrics are suggested in [16] for measuring the classification
performance of binary classifiers: overall accuracy and F-measure.

• Overall accuracy is the ratio of the sum of all correctly classified
instances to the sum of all testing instances.

Accuracy = number of correctly classified instances
number of testing instances

This metric is used to measure the accuracy of a classifier on the whole
testing data.

• F-measure is calculated by

F-measure = 2 · precision · recall
precision + recall
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where precision is the ratio of correctly classified instances over all pre-
dicted instances in a class and recall is the ratio of correctly classified
instances over all instances belonging in a class. F-measure is used to
evaluate the per-class performance.

2.5.2 Multi-Label Classification Metrics

Performance evaluation in multi-label classification is more complicated than
in traditional single-label setting, as each example can be associated with mul-
tiple labels simultaneously. The sources [17] and [18] suggest several metrics
that can be used to evaluate binary metrics used for multi-label classification:

• Exact Match Ratio evaluates the fraction of correctly classified ex-
amples. Example is classified correctly only if the predicted label set is
identical to the ground-truth label set. It is a multi-label counterpart of
the overall accuracy metric.

• Macro Averaging calculates the mean of a chosen binary metric for
each label. Each label contributes to the result with equal weight, there-
fore this approach may highlight the performance of less frequent labels.

• Micro Averaging on the opposite calculates the chosen binary metric
only once, considering the results for each pair sample-label. Micro-
averaging may be preferred in multi-label settings, as the less frequent
labels have lower impact on the result.

2.5.3 Cross Validation

If a single dataset is used for both training and testing, the best result would
give a classifier which would learn the rules based on all the attributes of
each instance in the dataset. This classifier would be overfitting and not
generalizing well on unseen instances. As suggested in [19], a solution to this
problem is a procedure called cross validation (CV). In the basic approach,
called k-fold CV, the training set is split into k smaller sets. The following
procedure is followed for each of the k folds:

1. A classifier is trained using k − 1 of the folds as training data.

2. The resulting classifier is validated on the remaining part of the data.

The performance measure reported by k-fold CV is the average of the
values computed in the loop.
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2.6 Classification of Network Traffic
The state-of-the-art methods for classifying network traffic focus on the level
of individual traffic flows. These methods try to associate each flow with a
service (web browser, Skype, torrent, FTP, etc.). As described in [5], the tra-
ditional methods rely on the well-known and registered port lists maintained
by Internet Assigned Numbers Authority (IANA). Recently, there have also
been studies focusing on statistic-based classification methods. The survey
[20] summarizes some of the methods. These methods try to learn typical
characteristics of different classes of applications using machine learning.

To my best knowledge, there is no publication dealing with classification
of devices as the source of multiple services, as described in this thesis. The
concept of classifying devices is more abstract, although to a certain degree
it may overlap with classifying services. Similar methods can be used in both
cases, only in case of classifying devices, the features are aggregated for a
single IP address.
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Chapter 3
Design of the Module

In this chapter, the design of the module is proposed. First of all, the text
deals with receiving and processing traffic flows. Furthermore, classification
of devices is analyzed in more detail. The focus is put on designing an ap-
propriate technique of classification and choosing a suitable machine learning
algorithm. Several additional features are also introduced, including filtering
the IP addresses and training new labels. Finally, the overall workflow of the
module is concluded and illustrated in the summary.

3.1 Basic Functionality

The module requires only a minimum of user interaction in order to generate
the output. The basic processing is designed as automatic – a user only has
to launch the module and provide input data, i.e. traffic flows. The basic
functionality consists of several consecutive steps: receiving flows, processing
flows, classifying devices and producing an output.

3.1.1 Input

The module is integrated into the NEMEA system, which implies two basic
scenarios of the module deployment.

The first option is to process network traffic in real time. In this case,
network traffic is being sent to the NEMEA system. This can be done for
instance by duplicating the network traffic in a local network (as depicted in
Figure 3.1). For capturing network traffic, a NEMEA module flow_meter
can be used. Another possibility is to receive the data from a collector. In
both cases, flows are processed online – the only difference may be the volume
of incoming network traffic, which is usually much higher from the collector.

The other option is to process captured traffic flows stored in a file. This
can be useful for analyzing network traffic retrospectively. The most simple
case, in which the data is already in a comma-separated values (CSV) file
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Figure 3.1: Example of local network monitoring

compatible with the UniRec format, is shown in Figure 3.2. The NEMEA
module logreplay can be used for replaying stored traffic flows. In this case,
computational power is the most limiting factor, as the flows are replayed
immediately.

Figure 3.2: Assembly of modules used for analyzing stored traffic flows

3.1.2 Processing Flows

After a flow record is received by the module, the UniRec fields (listed in
Table 1.1) are extracted and processed. In this case, processing a flow means
updating values which are computed for each IP address. The flow itself is
discarded immediately after processing. As a consequence, the module should
be memory efficient even with a large volume of network traffic data.

An overview of values that are extracted from flows can be found below.
The values are updated individually for each IP address.

• peers – the number of distinct IP addresses which the device has inter-
acted with

• flows – the number of flows related to the device1

1The device is a source or a destination of the flow.
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• biflows – the number of biflows (i.e. flows in opposite directions cap-
tured within a defined time period) in which the device has been the
source of one of the flows in the pair and the destination of the other
one

• initiated biflows – the number of biflows in which the device has been
the source of the first flow in the pair

• packets – the number of packets in the flows related to the device

• time – the length of the flows related to the device

• protocol – the number of the flows related to the device using a TCP
protocol

• ports – the number of the flows related to the device using a particular
port (computed for each port individually)

3.1.3 Classification and Output

Once the flow processing is finished (or interrupted), output may be generated.
It should be emphasized that during the processing only statistical values are
computed – no labels are known yet. Therefore, generating output is a two-
step process. In order to get a result, devices have to be classified first. The
process of classification is described in more detail in Section 3.2. Following
are the various cases in which the classification is performed:

• A time interval has been specified by the user. Devices are classified
regularly within this interval.

• The main loop is interrupted, i.e. the process is terminated by the
system. Devices are classified unless a time interval has been specified.

• The signal SIGUSR1 is sent to the module. This allows to classify devices
at any moment during runtime without interrupting the module.

• An end-of-file (EOF) message is received at the input interface. This
occurs when the end of the file with stored flows is reached.

As soon as labels of devices are classified, results are printed and option-
ally exported. This allows the results to be further processed by the user or
another program. An example of an output of the module is shown in Section
4.6
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3.2 Classification of Devices

The main task of the module is to classify devices, i.e. to associate IP addresses
with labels. A device is described by a set of statistical values. This section
deals with the problem of transforming the statistical values to labels. More
specifically, it presents extracting relevant features, selecting the appropriate
machine learning algorithm and designing a suitable method of classification.

3.2.1 Feature Extraction

There are many statistical values that can be extracted from network traffic.
However, some of them do not describe the type of the device as well as
the others – they are less informative, or conversely redundant. This is why
feature extraction is important for device classification.

Feature extraction is a process of deriving new values from initial data.
The set of derived values (a feature vector) is designed to be more suitable
for prediction. Feature extraction can help to reduce the dimensionality of
a dataset and to reduce the noise in data. This may result in faster classi-
fication process and better performance. As discussed in [21], it is a matter
of judgment to decide which values should be derived. A decision is usually
based on the background knowledge of the problem.

The features selected for the feature vector are listed in Table 3.1. All the
features are based on the statistical values which were collected during the
flow processing. The features were designed in order to reduce the correlation
between their values and the length of network monitoring (i.e. the runtime
of the module).

3.2.2 Selection of Learning Style

As soon as the features are computed, the feature vector can be used as an
input for machine learning. In order to design a particular method suitable
for this case, one of the machine learning styles from Section 2.2 has to be
selected in the first place.

The nature of unsupervised learning is not suitable for classification. This
approach fundamentally does not use labeled data. It can only help to find
structures in the data which itself is not enough to describe a behavior of
devices.

Under certain circumstances, semi-supervised learning could be suitable
for device classification. Although there is a large volume of unlabeled traffic
data, there are not enough labeled instances which could be used for training.
This is the problem that semi-supervised learning is trying to deal with. In
the articles [5] and [16], semi-supervised learning is suggested for classification
of network traffic flows.
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Table 3.1: Values used as the input features for machine learning

Feature Description Count

Init Ratio Number of initialized biflows relative to the
number of biflows in total. Describes how
often the device started the communication.

1

Data Ratio Number of bytes transferred in source flows
relative to the number of transferred bytes
in total. Describes the proportion of data in
source traffic.

1

Packets/Flow Expected value and standard deviation of
packets per source / destination flow.

4

Time/Flow Expected value and standard deviation of
seconds per source / destination flow.

4

TCP Ratio Number of flows using TCP protocol relative
to the total number of flows.

1

Port Usage Relative usage of a port in proportion to the
total traffic. Features represent individual
well-known ports and registered ports ac-
cording to [22]. Usage of dynamic ports is
aggregated into a single feature.

49152

Total 49163

However, there are several major disadvantages in using semi-supervised
learning for device classification:

1. Using a complex approach as semi-supervised learning could deteriorate
the performance of the module in large networks.

2. The final number of device classes is not known in advance, so the best
number of clusters would have to be determined at first.

3. The article [16] deals with classification of individual flows. However,
in device classification, an instance is a set of multiple flows. As a
consequence, the suggested techniques as label propagation between cor-
related flows cannot be used.

On the contrary, supervised learning offers a variety of algorithms. Sum-
mary of the supervised learning algorithms [14] suggests that they are usually
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straightforward, scalable and applicable in different cases. This is why I de-
cided to use a single supervised learning algorithm for classification of devices
in my work.

3.2.3 Selection of Algorithm

Several supervised learning algorithms were listed in Section 2.4. I selected
support vector machines (SVM) as the most suitable algorithm for my
work. Following is a summary of advantages and disadvantages of this al-
gorithm, based on [14].

Advantages of SVM

• SVM are well suited to deal with learning tasks where the number of
features is large with respect to the number of training instances.

• The training optimization problem of the SVM necessarily reaches a
global minimum.

• Unlike Naive Bayes, SVM makes no assumption of the underlying dis-
tribution and therefore can fit complex data more readily.

• An open-source library LIBSVM (described in Section 4.1.2) provides
an implementation of support vector machines for many programming
languages including C/C++.

Disadvantages of SVM

• SVM methods produce only binary classifiers. This is not a problem
when using binary multi-label classification as described later.

• Results of some other algorithms, as for example the decision trees, may
be better visualized.

3.2.4 Selection of Classification Method

The system of labeling devices introduced in Section 1.4.2 implies the use
of multi-label classification. Multi-label classification allows to associate an
instance with more labels at once. Existing single-label algorithms, includ-
ing the SVM, can be used for multi-label classification after an appropriate
problem transformation.

The most common problem transformations are described in Section 2.3.2.
From these options, the transformation (4) is the only one that can be used
in the design of the module. The previous transformations either change the
dataset irreversibly (1, 2) or allow to use only the subsets of labels that were
present in a training dataset (3).
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The transformation (4) requires creating a set of binary classifiers. This
is a particularly suitable task for SVM, as SVM classifiers are binary. Each of
the classifiers is trained to classify a different label. During the classification
process, each of the classifiers is given a feature vector as an input. The output
of each classifier determines the presence or absence of the corresponding label.
The set of all present labels is considered as a final output for each device.
The process is depicted in Figure 3.3.

Figure 3.3: Multi-label classification method for labeling devices using a set
of binary classifiers. Each binary classifier determines the presence or absence
of a single label. The set of present labels is the resulting label set of an IP
address.
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3.3 Additional Functions

The module is equipped with several additional functions which extend its
capabilities. The functions include filtering IP addresses, learning from new
training data and recognizing reserved IP addresses.

3.3.1 Filtering

It is often desirable to track only a subset of devices. In a local network, for
example, it may be necessary to track only devices from this network – in
other words, to track IP addresses within a given subnet. Or, for checking an
individual IP address, it may be a waste of computational power to process
the results of all devices. These cases can be solved by filters.

A filter is a list of IP addresses which should be tracked. As described
in Section 3.1.2, statistical values of source and destination IP address are
updated after a flow is received. If a filter is specified, the rules are checked
before updating the values of each IP addresses. If the IP address is not
tracked, its values are not updated.

There is a module unirecfilter in the NEMEA system that is able to
filter flows. However, in this case this module cannot be used, as it always
sends a complete flow and cannot tell if one of the IP addresses (source or
destination) should not be tracked. Therefore, filtering is implemented as a
standalone function in the module.

3.3.2 Training

The module is equipped with a certain set of classifiers. Nevertheless, the set
can never encompass the entire range of all possible labels. There is a need to
train classifiers for new labels. Moreover, even the existing classifiers can be
made more accurate with additional training data. These two issues can be
solved by the ability of the module to learn.

In order to learn, the module can be launched in the training mode. In this
case, the user provides a set of IP addresses associated with labels. These IP
addresses are tracked in the network traffic and their features are computed
in the same way as in normal mode (i.e. when the training mode is not turned
on). However, in this case generating the output means storing the computed
features of tracked IP addresses.

The training phase begins when the processing is done. The collected data
is appended to the existing training data. With this ensemble, entirely new
classifiers are constructed for each label. These classifiers are used the next
time the module is launched in normal mode.
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3.3.3 Reserved IP Addresses

There are certain IP addresses which should serve a specific purpose in a
network. These IP addresses are standardized in Request For Comments
(RFC) 6890 [23]. An example may be the IP address 255.255.255.255 used
for broadcast.

It is trivial to label these IP addresses manually, but it would require
additional effort to classify them. Due to this, the module uses the predefined
list of reserved IP addresses. If any of these IP addresses is encountered, it is
not classified, but automatically associated with the defined label.

Table 3.2 summarizes the IP addresses recognized by the module. These
IP addresses were selected from the IPv4 Special-Purpose Address Registry
by IANA [24].

Table 3.2: List of reserved IP addresses recognized by the module

0.0.0.0/8 BROADCAST-CURRENT
127.0.0.0/8 LOOPBACK
169.254.0.0/16 LINK-LOCAL
192.31.196.0/24 AS112-V4
192.52.193.0/24 AMT
192.88.99.0/24 6TO4-RELAY-ANYCAST
192.175.48.0/24 AS112-NAMESERVER
198.18.0.0/15 BENCHMARK
198.51.100.0/24 DOC-TEST-NET-2
203.0.113.0/24 DOC-TEST-NET-3
255.255.255.255/32 BROADCAST

3.4 Summary
The output of the module are IP addresses associated with labels. In order
to generate this output, the module computes statistical properties of the
network traffic generated by each IP address. From these statistical properties,
features describing the behavior of devices are extracted and provided as the
input for trained SVM classifiers. The output is the set of all positive outputs
of these classifiers.

The module is also capable of filtering IP addresses, training new classifiers,
improving the existing classifiers and using predefined rules for reserved IP
addresses.

The workflow of the module is illustrated in Figure 3.4.
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Figure 3.4: Workflow of the module
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Chapter 4
Implementation

The chapter describes the details of the implementation of the module. It
contains the description of the tools, environment and data structures used
by the module. Furthermore, the specific data transformations needed for
correct classification are explained. The output and the parameters of the
module are presented at the end of the chapter.

4.1 Tools and Environment

This section presents the environment in which the module operates and tools
used during the development of the module.

4.1.1 Programming Languages

The module is implemented in C programming language. Its efficiency and
performance allows to process even very large volume of network traffic in
real time. In the NEMEA system, C is a standard language in the modules
analyzing the network flows.

For classification, the module uses the LIBSVM library. The core of
LIBSVM implemented in a C/C++, additional tools are implemented in Py-
thon. A Bourne Again Shell (Bash) script is used for the procedure of training.
All described languages are supported in the NEMEA system.

4.1.2 LIBSVM

LIBSVM is an open-source implementation of support vector machines. It is
an integrated software offering a wide range options for support vector train-
ing and classification. LIBSVM provides interfaces for many programming
languages including C/C++. Alternatively, the binaries of LIBSVM can be
run as an executable. According to [25], LIBSVM is currently one of the most
widely used SVM software.
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Feature Vectors Feature vectors are the input of LIBSVM. Feature vectors
in LIBSVM use a sparse form, which means that each feature is explicitly
encoded as a pair index:value, where index is a fixed index of the feature
and value is a real number expressing its value. This allows to leave out zero-
valued features. An approach like this helps to save memory in case there
are many possible features, but only a small fraction of them is usually in a
vector. For example, a typical device uses only a few ports over a period of
time. In a sparse vector, only the usage of those ports have to be stored.

Training data requires feature vectors associated with labels. A label is
a single integer which precedes the features. An example of a labeled sparse
feature vector is in Listing 4.1

Listing 4.1: Feature vector with a label
0 1:0.363636 2:0.0150914 3:0.867685 4:0.999114 5:0.972717

6:0.999996 7:0.0136355 8:0.0159502 9:0.0136355
10:0.0152047 11:1 477:0.991483 599:0.266161

Models For classification, LIBSVM uses classifiers called models. A model
is a file created during training. It contains the support vectors for the clas-
sification problem. Support vectors are the points describing a hyperplane
which separates data in two semi-spaces – one for the presence and one for
the absence of the current label. Support vectors are encoded in the sparse
form in the same way as feature vectors.

Interface The C interface of LIBSVM is available directly through header
file svm.h. The function for classification takes two arguments: an existing
SVM model and an array of svm_nodes. The array represents a feature vector.
The function returns a double which for binary classification is either +1 or
−1 (i.e. a positive or negative prediction).

Kernel LIBSVM uses a function called kernel which maps training vectors
into a higher dimensional space. This helps to solve the optimization problem
even in cases the data are not linearly separable. There are four available
kernels in LIBSVM – linear, polynomial, radial basis function (RBF) and
sigmoid (all of them are further described in [26]). The recommended option
is the RBF kernel, which I also utilized in my work.

There are two parameters for an RBF kernel: C and γ. It is not known
what values of C and γ are best for a given problem. To find an approximation
of these parameters, LIBSVM offers a Python script tools/grid.py which
does a “grid-search” of these parameters. The implementation is described in
more detail in [26]. In my work, I use this script to approximate the parameters
C and γ for each model.
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Multi-Label Classification LIBSVM provides a way to perform a multi-
label classification using a binary approach described in Section 3.2.4. For
each label, a binary-class problem is built so that feature vectors associated
with the label are in one class and the rest are in another class. In the input
data, multiple labels are separated by commas.

The implementation of training and evaluation for multi-label classification
is provided by the Python script tools/binary.py. I made several modific-
ations to the script which is used by the module. The modified script stores
all the individual models and does not perform evaluation immediately after
training.

Training Training is performed in order to create the models. Although
the interface for training is available in the header file svm.h, I decided to use
the scripts tools/binary.py (multi-label classification) and tools/grid.py
(heuristic search for C and γ parameters of RBF kernel), which use executable
files of LIBSVM.

4.1.3 Software Tools

Other software tools used in the project include the following:

• The module uses the GNU Build System [27], also known as Autotools,
for building the project and managing the dependencies.

• The project is versioned using the version control system Git [28]. The
source code of the project is in a private Git repository hosted on the
servers of CESNET.

• The README file of the module is using the Markdown markup language
[29].

4.2 Data Structures

The module should be able to process a large amount of data. It is thus
important to choose appropriate data structures in order to achieve high per-
formance.

4.2.1 Statistics

The statistical values for each IP address are stored in a C structure. As the
number of distinct IP addresses in the network traffic can be very large, it is
essential to work with the structures effectively. The module often performs
the following tasks:
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1. find the statistics of a given IP address

2. insert a new IP address

3. iterate through ordered IP addresses

B+ tree is a suitable data structure for these operations. The asymptotic
complexity of finding or inserting the item in the B+ tree is O(logmn), where
m is the maximal number of children per node and n is the total number of
elements in the tree. The operation of finding next element has complexity
O(1) and iterating through n elements O(n).

For the module, I used the implementation of B+ tree provided the NE-
MEA system. The implementation is described in detail in the Bachelor’s
thesis by Zdeněk Rosa [30].

To give an example, lets assume that traffic flows between IP addresses
listed in Table 4.1 have been captured.

Table 4.1: Example of network traffic

index source destination
0 14.254.210.80 114.254.157.26
1 14.254.210.80 76.19.167.217
2 74.170.217.201 147.184.148.239
3 76.19.167.217 14.254.210.80
4 14.254.210.80 76.19.167.217
5 14.254.210.80 73.105.16.163

Accordingly, the B+ tree illustrated in Figure 4.1 is created. The degree
m is set to 4.

Figure 4.1: Illustration of a B+ tree which is created after the traffic between
IP addresses in Table 4.1 is processed. The structures are only illustrative.
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4.2.2 Ports

Usage of ports is tracked for each device. Since a device typically uses only a
small fraction of the port range, the ports are stored in a linked list, which
helps to save the memory.

The linked list is not sorted during the processing, thus the complexity
of finding or inserting a port is O(n). This is not a problem as the absolute
number of used ports of each device is very small (according to [31], over 99%
addresses use less then 50 destination ports). After the processing is done,
the values are sorted, scaled and used in a feature vector.

4.2.3 Models

Classifiers in LIBSVM are called models. A model for each label is con-
structed during training. All the existing models are stored in the folder
./libsvm/models/. This folder also contains the file models.list, which
lists all the models. In this file, each model is described by the pair id:label,
where id represents its identifier in training data (and the name of the file
with the model) and label describes the type of device associated with the
model.

An example of the content of a file models.list is shown in Listing 4.2.
The file is used by the module to load the existing models.

Listing 4.2: Example of the content of a file models.list

0: SERVER
1: CLIENT
2: HTTP
3: FILE
4: MAIL
5: NTP
6: SIP

4.2.4 Filter

A filter is a file containing a list of IP addresses which should be tracked. Each
line contains a single IP address or a subnet in the format IP_ADDRESS[/MASK],
where the mask is optional. An example of a filter is illustrated in Listing 4.3.

Listing 4.3: Example of the content of a file with filter. Each line contains a
tracked IP address.

77.75.78.48
124.1.2.83
192.168.1.0/24
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4.2.5 Training

When the processing is finished and the training mode is turned on, training
data is automatically exported. The module immediately asks for launching
a Bash script train.sh. This script appends the training data to the exist-
ing dataset and launches the script tools/binary.py, which creates binary
classifiers from the new dataset. The script train.sh can be also launched
manually by the user.

Training rules describe the label(s) associated with IP addresses in training
data. Each line of file with training rules is in the format IP_ADDRESS[/MASK]
LABEL_1,...,LABEL_N. Listing 4.4 contains an example of training rules.

Listing 4.4: Example of the content of a file with training rules. Each line
contains a rule for a single IP address/subnet.

216.58.214.238 SERVER ,HTTP
77.75.79.53 SERVER ,HTTP ,FILE
195.113.144.245 SERVER ,SIP
10.0.0.0/8 CLIENT

4.2.6 Reserved IP Addresses

Reserved IP addresses are listed in the file models.list. Each reserved IP ad-
dress has the notation @IP_ADDRESS[/MASK]:LABEL. An example is illustrated
in Listing 4.5.

Listing 4.5: Example of a list of reserved IP addresses. The IP addresses are
listed in the file models.list

@0 .0.0.0/8: BROADCAST - CURRENT
@127 .0.0.0/8: LOOPBACK
@169 .254.0.0/16: LINK -LOCAL
@255 .255.255.255/32: BROADCAST

4.3 Scaling

According to the guide [26], data scaling is important in order to achieve
good classification results with SVM. It prevents attributes in greater numeric
ranges from dominating those in smaller numeric ranges. It also helps to avoid
numerical difficulties during the calculation.

The guide proposes to scale each feature to the range [−1,+1] or [0, 1]. As
all the features used in this work are defined as nonnegative, the features are
scaled by the module to the range [0, 1].
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4.3. Scaling

A simple scaling method is provided by the LIBSVM library. The method
is given by the following formula:

x′ = x−min(x)
max(x)−min(x) (4.1)

where x is an original value and x′ is the normalized value.
This scaling method has been used by the module at first. However, it

turned out that it has several disadvantages:

• Values of min(x) and max(x) are not known in advance for some features.
For example, the range of packets/flow in the training dataset may differ
significantly from the range of this value in real world data. Therefore,
the actual range after scaling can be greater than [0, 1].

• A scaling factor – min(x) and max(x) of training data – has to be cal-
culated and stored for each feature during training.

• This linear scaling does not reflect the nonlinear nature of certain fea-
tures.

These disadvantages can be solved by using a function whose range of
values is between [0, 1]. An example is a hyperbolic tangent function tanh(x).
This function reflects the fact that lower values have more impact on a result
than higher values.
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Figure 4.2: Function tanh(x) used to scale features

I concluded that the best approach is to split the designed features (listed
in Table 3.1) into two groups:

1. Init Ratio, Data Ratio

No scaling is needed for these features. Their scale is linear and their
range is already between [0, 1].
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2. Packets/Flow, Time/Flow, TCP Ratio, Port Usage
Scaled by the function tanh(ax), where a is a constant and x is the value.
The constant a is used to increase the variance of scaled values (a has
been empirically selected as 3 for Port Usage and 1

100 for the rest of the
features).

4.4 Training Data
In order to create some models, the module has been trained with samples
of network traffic. The network traffic of specific types of devices has been
acquired in two ways:

• I used the service Shodan.io [32], a search engine for Internet-connected
devices. This engine is capable of finding the IP addresses of specific
types of devices. Subsequently, my supervisor extracted network traffic
of these IP addresses which has been captured by the monitoring probes
in the network CESNET2 on 18/02/2016. I processed the network traffic
to extract features which has been used for training data. The network
traffic has been discarded after processing.

• The network traffic of clients connected to a local network has been used
for training data. The network is described later in Section 5.1.2.

Table 4.2 summarizes the labels retrieved from the training data. The
traffic has been sampled to get more training instances (an instance is calcu-
lated from the network traffic of a single device over a time period). There
are total 443 instances in training data. Some devices and instances account
for multiple labels.

Table 4.2: Summary of labels in training data. Id is the index of the model
in training data.

Id Label Devices Instances
0 SERVER 17 254
1 CLIENT 22 187
2 HTTP 12 156
3 FTP 2 35
4 MAIL 4 57
5 NTP 4 55
6 SIP 1 25
7 DNS 1 15
8 RDP 1 2
9 SSH 2 12
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4.5 Parameters
The module takes parameters listed in Table 4.3. These parameters allow
users to use all the functions of the module and to set additional options.

Table 4.3: Command line parameters of the module

Short Long Description

-a --accumulate Do not discard statistics after each output.

-f --filter Process only IP addresses (or subnets) specified
in file given as parameter.

-F --file Save results to file in JSON format.

-l --list List existing models and exit.

-m --minutes Period after which the results are computed (de-
fault is 0 = at the end of stream).

-p --peers Classify only devices with equal or greater num-
ber of peers.

-t --train Run in the training mode. Training rules are in
file given as parameter.

4.6 Output
The module provides only a basic output – pairs of IP addresses and their
labels. Although there are other statistics that can be displayed for each
device, they are out of the scope of the module.

The output can be generated in two forms:

• CSV format
An output in CSV format is printed by default to standard output.
The CSV format is two-column and tab-separated. An example of this
output is shown in Listing 4.6.

• JSON format
A output can be optionally exported into a file in JSON format. A
device is represented as a JSON object, a single output is represented as
a JSON array, all the outputs are aggregated in a parent JSON array.
An example of this output is shown in Listing 4.7.
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Listing 4.6: Example of default output of the module in CSV format
ip_address labels
66.189.174.146 CLIENT
76.241.17.159 SERVER
92.155.236.218 SERVER ,MAIL
107.41.42.63 SERVER ,MAIL
128.135.183.34 SERVER ,HTTP
140.231.116.196 SERVER ,HTTP ,FTP
145.22.147.241 SERVER ,HTTP

Listing 4.7: Example of output of the module in JSON format
[[{

"ip" : "66.189.174.146" ,
" labels " : [" CLIENT "]

},
{

"ip" : "76.241.17.159" ,
" labels " : [" SERVER "]

},
{

"ip" : "92.155.236.218" ,
" labels " : [" SERVER "," MAIL "]

},
{

"ip" : "107.41.42.63" ,
" labels " : [" SERVER "," MAIL "]

},
{

"ip" : "128.135.183.34" ,
" labels " : [" SERVER "," HTTP "]

},
{

"ip" : "140.231.116.196" ,
" labels " : [" SERVER "," HTTP "," FTP "]

},
{

"ip" : "145.22.147.241" ,
" labels " : [" SERVER "," HTTP "]

}]]
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Chapter 5
Evaluation

This chapter evaluates the results of the implemented module. It includes
evaluation of the performance and the memory efficiency of the module, fol-
lowed by the accuracy of classification of devices. All the tests in this chapter
have been done on GNU/Linux distribution using a computer with 2.3GHz
Intel Core i3-2348M processor and 4GB of system memory.

5.1 Dynamic Program Analysis

The module has been tested by the Valgrind [33] framework. The Valgrind
package includes several debugging and profiling tools for dynamic analysis.
From those tools, Memcheck has been used for memory management and
Massif for heap profiling. For visualization of the results, I used the graphing
utility Gnuplot [34] and the application for graphing Massif output Massif-
Visualizer [35].

5.1.1 Memory Management

Possible memory leaks in the module have been checked using Memcheck with
parameters --leak-check=full and --show-leak-kinds=all. The output
of Valgrind is listed in Listing C.1. The testing involved running the module
with different parameters and input data. All the leaks in the module have
been fixed immediately during the development.

The testing have also revealed a memory leak which originates from the
used LIBSVM library. It accounts for 72 kB of reachable memory once al-
located after the module is started. I have reported this minor fault to the
authors of the LIBSVM library.
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5. Evaluation

5.1.2 Performance and Heap Usage

Large-Scale Network

The performance of module should be sufficient even for a large volume of net-
work traffic. For this reason, I have tested the performance and memory usage
of the module using the dataset collected-records-tcp-nix2-card1.ipfix.
This dataset of size 383.9 MB contains 3,687,313 flows collected on 15/02/2016
by a monitoring probe in the network CESNET2. The file has been converted
from Internet Protocol Flow Information Export (IPFIX) to CSV format.

Figure 5.1 shows dependence of performance of the module on the number
of stored IP addresses. The performance is measured in processed flows per
second. The module has been launched with default parameters, therefore, it
has been processing all the network traffic without any filtering. In this case,
the performance depends mainly on the number of elements in the of the B+
tree used for storing the information about individual IP addresses.
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Figure 5.1: Dependence of performance of the module on number of stored IP
addresses

The heap memory used by the module also depends primarily on the num-
ber of stored IP addresses. The memory usage is illustrated in Figure C.1.
During the testing, the final number of 265,834 distinct IP addresses accounted
for 528.5MB of used heap memory. For the processing part, this memory is
allocated mostly for the statistical values of IP addresses, additional memory
is required for computed feature vectors in the classification part. After the
classification is done, the memory is freed.

It is worth noting that the case above serves primarily as a benchmark. In
the more practical use-case, a user would set a filter for specific IP addresses
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or subnets. If the amount of the tracked IP addresses in the network traffic
is far lower than the total number of IP addresses, the performance of the
module is approximately constant, as only the statistical values of tracked IP
addresses are stored in the memory.

Local Network

The module has also been tested with local network traffic. The dataset for
this purpose has been captured at the university in a local network created
for the experiment. The network has been set up according to Figure 3.1.
From 18/01/2016 to 23/02/2016, all the traffic flows in the network have been
captured in a file. The file of size 214.7MB contains 1,711,848 flows generated
by local devices. The file has been used as the dataset for the testing. All the
subjects which have connected to the network agreed with processing their
network traffic.

The experiment traced the heap consumption with the local network data-
set. The module has been launched with parameter -m 360, which caused
generating the output every 6 hours. The results are illustrated in Figure C.2.
Most of the memory used up by the module is allocated by underlying TRAP
library. The peaks of memory allocated by the module are not significant and
the memory is freed regularly after generating the output.

5.2 Classification of Devices
Classification accuracy of the classifier has been tested on the training data-
set described in Section 4.4. A custom version of CV has been used for the
evaluation. The process below is described in Algorithm 1.

Training dataset has been split randomly into 10 equally-sized chunks for
10-fold CV. For each iteration of CV, a set of binary classifiers have been cre-
ated. Each of these binary classifiers has been evaluated using Exact match
ratio and F-measure. All the values of Exact match ratio have been averaged,
all the values of F-measure have been microaveraged and macroaveraged. Fi-
nally, all the 10 results have been averaged to get the final results.

The results of the CV are listed in Table 5.1. The average Exact match
ratio is 97.50%, microaverage F-measure 99.04% and macroaverage F-measure
78.95%.

In real-world environment, usability of the module does not depend only
on the classifier, but on the training dataset, too. At this moment, the dataset
of the module contains only a basic set of labels. However, even this dataset
may be sufficient for intended use-cases. It should also be highlighted that
the dataset can be extended with more data samples.
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Algorithm 1 Evaluation of classification accuracy
1: function Cross_validation
2: n← 10 . number of folds
3: T ← n equally-sized chunks of training dataset
4: L← labels in T
5: for i← 1, n do

6: Dtrain ←
(

n⋃
j=1

T [j]
)
\ T [i] . training dataset

7: Dtest ← T [i] . testing dataset
8: for each l ∈ L do
9: find optimal parameters C and γ
10: M ← train_model(Dtrain, l, C, γ)
11: p← test_model(Dtest, l) . results of prediction
12: em_ratio← Exact match ratio of p
13: f_measure← F-measure of p
14: end for
15: E ← average of em_ratio for all labels
16: Amicro ← micro average f_measure for all labels
17: Amacro ← macro average f_measure for all labels
18: end for
19: Res← average of all E, Amicro, Amacro

20: end function

Table 5.1: Results of CV for the training dataset. Index is the number of
iteration of CV. The last line contains the average of results from all the 10
iterations.

Index Exact Match R. Microavg. F-m. Macroavg. F-m.
1 100.00 % 100.00 % 80.00 %
2 100.00 % 100.00 % 80.00 %
3 95.45 % 98.64 % 76.00 %
4 97.72 % 99.35 % 80.00 %
5 97.72 % 99.35 % 99.23 %
6 97.72 % 98.76 % 84.66 %
7 95.45 % 98.85 % 87.46 %
8 97.72 % 98.59 % 59.52 %
9 93.18 % 96.89 % 72.65 %
10 100.00 % 100.00 % 70.00 %

Avg. 97.50 % 99.04 % 78.95 %
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Conclusion

My task was to design and implement a method to recognize different types
of network devices. This text has described the process of development of the
module for classification of devices.

My research consisted of two parts. In the first part, I have dealt with the
principles of network monitoring. During my collaboration with CESNET, I
have contributed to the NEMEA system. This allowed me to gain a lot of
experience in the field of network traffic analysis. In the second part, I have
studied methods and algorithms of machine learning. Furthermore, I have
become familiar with the state-of-the-art in classification of traffic flows.

In the analytical part, I have designed a method which can associate IP
addresses with labels. The method is based on computing features from the
traffic flows and using them as an input for machine learning. I selected SVM
as a suitable machine learning algorithm. I have also described how to use
SVM for multi-label classification.

Subsequently, I have created a module for the NEMEA system which im-
plements the designed method. I used the service Shodan.io to find network
traffic of real devices for the training dataset. I have evaluated the perform-
ance of the module on network traffic captured at both large-scale and local
networks. I have also tested the classification accuracy of the module on the
training dataset using the 10-fold CV.

The module is ready to be used in various use-cases. Network administrat-
ors can get an overview about devices on the network by passively observing
network traffic. The module can track the ongoing changes on the network.
Finally, the output of the module may be also valuable for detecting suspicious
behavior of devices.

Future Work
All the tasks in my assignment have been fulfilled. I will now focus on deploy-
ing the module to the public Github repository of the NEMEA system.
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Conclusion

There are other opportunities to improve the current state of the module.
The module should be tested with real-time network traffic. The number of la-
bels recognized by the module and the classification accuracy can be increased
using more network traffic samples. There is a possibility to experiment with
a different set of features measured from the network traffic. Furthermore,
the module should be extended to support IPv6 addresses or to aggregate
information about devices with multiple IP addresses.
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Appendix A
Acronyms

AMT Automatic Multicast Tunneling

API Application Programming Interface

Bash Bourne Again Shell

CIFS Common Internet File System

CSV Comma-Separated Values

CTU Czech Technical University

CV Cross Validation

DNS Domain Name System

EOF End-Of-File

FIT Faculty of Information Technology

FTP File Transfer Protocol

GNU GNU’s Not Unix!

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IP Internet Protocol

IPFIX IP Flow Information Export

JSON JavaScript Object Notation

kNN k-Nearest Neighbors
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LDAP Lightweight Directory Access Protocol

NEMEA Network Measurements Analysis

NFS Network File System

NTP Network Time Protocol

PC Personal Computer

RBF Radial Basis Function

RDP Remote Desktop Protocol

RFC Request For Comments

RIP Routing Information Protocol

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

SQL Structured Query Language

SSH Secure Shell

SVM Support Vector Machines

TCP Transmission Control Protocol

TRAP Traffic Analysis Platform

UDP User Datagram Protocol

UniRec Unified Record
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Appendix B
Installation Manual

The recommended system for installing the module for classification of devices
and the NEMEA framework is CentOS/7.

B.1 Dependencies

For installation of the module for classification of devices and the NEMEA
framework, following libraries are needed:

• gcc

• gcc-c++

• libtool

• libxml2-devel

• libxml2-utils

• make

• pkg-config

This command can be used for installing the libraries:

sudo yum install -y gcc gcc-c++ libtool libxml2-devel make pkg-config

B.2 Installation

Source codes can be found on the attached DVD. To install the module from
the attached source codes, copy the src/ directory from the DVD to your
home directory.
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1. Install the NEMEA Framework
Use the following instructions to install the NEMEA framework from
the source codes:
tar -xvf src/dist/nemea-framework-2.0.0.tar.gz
cd nemea-framework-2.0.0/
./configure --prefix=/usr/ --libdir=/usr/lib64 \
--bindir=/usr/bin/nemea
make
sudo make install

2. Install the module
After you have successfully installed the NEMEA framework, move back
to your home directory. Then use the following instructions to configure
and build the module:
tar -xvf src/dist/device_classifier-1.0.0.tar.gz
cd device_classifier-1.0.0/
./configure --prefix=/usr/ --libdir=/usr/lib64 \
--bindir=/usr/bin/nemea
make

B.3 Module Usage
The file README.md in the module root directory contains the instructions for
using the module.

Example

This is an example of using the module to analyze captured network traffic.

1. Build the module logreplay using the instructions above. The module
is attached in the tarball src/dist/logreplay-1.0.0.tar.gz

2. Extract the sample dataset data/local-network-fit-nemea.tar.gz.

3. Run logreplay to replay first 100,000 flows from the sample dataset.
./logreplay -i "u:test" -f local-network-fit-nemea.csv \
-c 100000 &

4. Use device_classifier to label IP addresses in the dataset.
./device_classifier -i "u:localhost:test"
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Appendix C
Figures

Listing C.1: Output of Memcheck for the module. All the memory allocated
by the module is freed properly. The only reachable block is allocated by the
LIBSVM library.
==14379== HEAP SUMMARY :
==14379== in use at exit: 72 ,704 bytes in 1 blocks
==14379== total heap usage : 27 ,257 allocs , 27 ,256 frees , 9 ,370 ,827

bytes allocated
==14379==
==14379== 72 ,704 bytes in 1 blocks are still reachable in loss record 1

of 1
==14379== at 0 x4C2AB80 : malloc (in /usr/lib/ valgrind /

vgpreload_memcheck -amd64 - linux .so)
==14379== by 0 x55E72AF : ??? (in /usr/lib/x86_64 -linux -gnu/ libstdc ++.

so .6.0.21)
==14379== by 0 x4010139 : call_init .part .0 (dl -init.c:78)
==14379== by 0 x4010222 : call_init (dl -init.c:36)
==14379== by 0 x4010222 : _dl_init (dl -init.c :126)
==14379== by 0 x4001309 : ??? (in /lib/x86_64 -linux -gnu/ld -2.19. so)
==14379== by 0x2: ???
==14379== by 0 xFFF000216 : ???
==14379== by 0 xFFF000233 : ???
==14379== by 0 xFFF000236 : ???
==14379==
==14379== LEAK SUMMARY :
==14379== definitely lost: 0 bytes in 0 blocks
==14379== indirectly lost: 0 bytes in 0 blocks
==14379== possibly lost: 0 bytes in 0 blocks
==14379== still reachable : 72 ,704 bytes in 1 blocks
==14379== suppressed : 0 bytes in 0 blocks
==14379==
==14379== For counts of detected and suppressed errors , rerun with: -v
==14379== ERROR SUMMARY : 0 errors from 0 contexts ( suppressed : 0 from 0)
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C. Figures
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Figure C.1: Output of the Massif for the large-scale network dataset. All the
IP addresses in the dataset are tracked. The memory is allocated primarily
by the function c_b_tree_plus_insert from the implementation of B+ tree.
B+ tree is used to store information about IP addresses.
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Figure C.2: Output of the Massif for the local network dataset. The memory
is freed every 360 minutes. Most of the memory is used by the function
create_tcpip_sender_ifc from the underlying interface of TRAP library.
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Appendix D
Contents of DVD

data
local-network-fit.tar.gz.........................sample dataset

doc
doc.tar.gz...................archive with generated documentation

readme.txt.........................file with DVD contents description
src

dist ..................................... tarballs with source codes
thesis ................. directory of LATEX source codes of the thesis

img.......................................thesis figures directory
text

thesis.pdf...................................thesis in PDF format
thesis.ps......................................thesis in PS format
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