
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague December 19, 2015

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Android Mobile Application for Analysis of Cosmetic Products Composition

 Student: Oleksandra Liutova

 Supervisor: Ing. Dana Vynikarová, Ph.D.

 Study Programme: Informatics

 Study Branch: Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

The aim of the thesis is to analyse, design, and implement a mobile application for analysis of chemical
composition of cosmetic products. The main function of the application is to warn the user about possible
dangerous or unhealthy substances. A cosmetic product composition can be specified in several ways - by
scanning the product´s bar code, by typing the product´s name, or by typing the product´s chemical
composition. The application then finds the product in a private database and provides information about
chemical substances contained in the product and their evaluation.
- Make an analysis of existing applications for analysis of cosmetic products composition.
- Make an analysis of user requirements for such an application.
- Select technologies for its implementation.
- Based on the analysis, design an Android application and implement it using the selected technologies.
- Test and document your application.
- Assess the benefits of your application.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Android Mobile Application for Analysis of

Cosmetic Products Composition

Oleksandra Liutova

Supervisor: Ing. Dana Vynikarová, Ph.D.

15th May 2016

Acknowledgements

I want to thank everyone who helped me work on this thesis, especially my
supervisor Ing. Dana Vynikarová, Ph.D. for her guidance and helpful advice,
and my parents for supporting me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 15th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Oleksandra Liutova. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Liutova, Oleksandra. Android Mobile Application for Analysis of Cosmetic
Products Composition. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2016.

Abstract

This bachelor thesis describes a process of design and implementation of an An-
droid application for analysis of cosmetic products composition. The main
goal of this application is to help user with choosing high quality cosmetic
products, suitable for him, by providing information about healthiness of in-
dividual products and substances in their composition. The work contains
analysis of present state of this problem. Within several chapters the pro-
cess of application development is gradually described: analysis, design and
implementation. I have succeeded in creating a prototype of this application
with basic functions like searching for product by scanning its barcode or
by name, searching for particular substances in composition, displaying com-
plete information about products and compositions and warning user about al-
lergens. Based on the testing phase, there are possibilities of further develop-
ment described in the last chapter.

Keywords Android application, cosmetic products composition, barcode
scanning, user interface, database, multiple languages

ix

Abstrakt

Tato bakalářská práce popisuje proces návrhu a implementace Android ap-
likace pro analýzu složeńı kosmetických produkt̊u. Hlavńı ćıl této aplikace je
usnadnit uživateli výběr kvalitńı kosmetiky, vhodné př́ımo pro něj, na základě
poskytnutých informaćı o zdravotńıch rizićıch produktu a jeho složeńı. Práce
obsahuje analýzu současných řešeńı tohoto problému. V několika daľśıch
kapitolách je postupně popsán proces vývoje aplikace: analýza, návrh, a im-
plementace. Úspěšně byla dokončena tvorba prototypu aplikace se základńı
funkcionalitou. V prototypu je umožněno hledáńı produktu oskenováńım
jeho čárového kódu nebo podle jména, dále vyhledáváńı konkrétńıch látek
ve složeńı, zobrazeńı kompletńı informace o produktu a kompletńı informace
o jeho složeńı. V neposledńı řadě aplikace dokáže zobrazit uživateli varováńı
o alergenech ve složeńı výrobku. V posledńı části je určeno, jakým směrem,
v návaznosti na testováńı, by se mohl ř́ıdit budoućı vývoj.

Kĺıčová slova Android aplikace, složeńı kosmetických př́ıpravk̊u, čtečka
čárových kód̊u, uživatelské prostřed́ı, databáze, podpora v́ıce jazyk̊u

x

Contents

Introduction 1

Aim of Bachelor thesis 3

1 Analysis 5

1.1 Target users group . 5

1.2 Analysis of existing solutions 5

1.3 Requirements analysis . 8

1.4 Use case modeling . 10

2 Design 13

2.1 Choosing technologies . 13

2.2 Database model . 17

2.3 UI design . 18

3 Implementation 25

3.1 Packages structure . 25

3.2 RecyclerView . 26

3.3 Asynchronous operations . 28

3.4 Multiple languages . 30

3.5 Database . 30

4 Testing 35

4.1 Performing operations with application 35

4.2 Questionnaire . 38

4.3 Summary . 38

5 Future improvements 39

5.1 Data . 39

5.2 Improving speed . 39

xi

5.3 First launch guide . 39
5.4 Products comparison . 39
5.5 More available languages . 40
5.6 Users’ evaluation of products 40

Conclusion 41

Bibliography 43

A Application’s screenshots 45

B Material for testing 49

C Contents of enclosed CD 51

xii

List of Figures

1.2 Healthy Living screenshots[1] . 6
1.3 GoodGuide screenshots[2] . 7
1.4 Think Dirty screenshots[3] . 8
1.1 Target users groups Venn diagram 12

2.1 Android market share[4] . 20
2.2 Database model . 21
2.3 Home wireframes . 22
2.4 Other wireframes . 23

3.1 Packages structure . 34

A.1 Screenshots of home screen and barcode scan screen 45
A.2 Screenshots of product screen and substance description dialogue . 46
A.3 Screenshots of composition screen and report error dialogue 47
A.4 Screenshots of product search screen and allergens screen 48

B.1 Barcodes of products present in database 49

xiii

List of Tables

1.1 Functionality coverage by use cases 12

2.1 Server and mobile storage comparison 17

xv

Introduction

The number of smartphone users has been growing extremely fast in the last
few years. Most of us are used to smartphones helping us in our daily life:
we use them for communication, planning, searching for information, etc.
I believe the result application of this bachelor thesis has the potential to
make its contribution to improving our lives as well.

Nowadays consumer awareness of cosmetic ingredients is growing and people
are more and more interested in products’ impact on their organism. Being
one of those people, I often find myself in a situation when I need to buy some
cosmetic or hygiene products, and I have to go through composition of differ-
ent offered items, searching for unhealthy substances or things I am allergic
to. While shopping for personal care products, it’s very hard to choose those
products, that are of the highest quality and are actually beneficial for our
organism and effective. It’s not easy to understand the meaning and impact
behind a product’s composition for a person who is not a chemist, pharmacist
or another professional in this area. The situation is even worse for those
people, who are allergic to certain substances. Often one substance can have
around 20 different names, so the allergic person has to look through composi-
tion, looking for any name of a huge number of his allergens’ names. I realized,
that all of these inconveniences can be resolved by creating a special mobile
application, and that is why I have chosen it as the topic of my Bachelor
thesis.

The first chapter of this document - ”Analysis” - contains analysis of ex-
isting solutions of this problem, requirements analysis and use-case modeling.
In chapter ”Design”, where I present application design, such as choosing
technologies, database model and user interface design. After design phase,
a prototype with basic application functionality was implemented, which is
described in chapter ”Implementation”. This prototype has been properly
tested, and results of testing phase is presented in next chapter - ”Testing”.
The last chapter - ”Future improvements” - is based on testing phase and
presents possible future improvements of application.

1

Aim of Bachelor thesis

The aim of this Bachelor thesis is to create a prototype of an application for
analysis of cosmetic products composition. User will be able to find a product
he is interested in by scanning it’s barcode or inserting its name and see if the
product contains any harmful substances or allergens. If the product is not
present in the database yet, it will be also possible to provide it’s composition
and see it’s evaluation. A special function of this application will enable user
to add a list of substances he is allergic to. This way, when some product
contains any of those substances, the application will warn him.

3

Chapter 1

Analysis

1.1 Target users group

Since the application provides user with evaluation of products’ composition
and gives detailed information on it, the main target users group contains
basically everybody, who is interested in quality of cosmetics he/she uses.
Functionality of warning about allergens defines another target group: people,
who are allergic or sensitive to some substances. These two groups are depicted
in a Venn diagram in picture 1.1.

1.2 Analysis of existing solutions

In this section I will present the results of performed analysis of existing
solutions. Below there are descriptions of three applications, that have similar
functionality to the one I design in this Bachelor thesis.

1.2.1 Healthy Living

Application Healthy Living offers the following functionality: scanning product’s
barcode, search product by name, favorites, history and others.[1] It has its
own of evaluating product’s healthiness. Healthy Living is based on two data-
bases: Skin Deep, which provides information about personal care products,
and Food Scores, that contains information about food.

5

1. Analysis

Figure 1.2: Healthy Living screenshots[1]

Advantages:

• As you can see in picture 1.2, Healthy Living has nice-looking and intu-
itive user interface.

• User can browse through different products according to their categories.

Disadvantages:

• According to users’ reviews on Google Play, the application’s database
does not contain enough data to be actually useful.

• Does not offer an option of entering substances manually in case the
product is not present in database.

• Items with substances’ names in composition are not clickable - there is
no description of how substances effect human organism.

• Does not have a functionality of allergens’ detection.

• Offers a shortened history of search of only last five products.

1.2.2 GoodGuide

Application GoodGuide claims to offer similar functionality.[2] According to
description of application on Google Play, their database contains information
about over 170 000 products. However, it’s last update took place on March

6

1.2. Analysis of existing solutions

5, 2012, and I have not succeeded in getting it to work on any of 5 different
Android devices. As you can see on last screenshot of picture 1.3, application
kept displaying message ”Network Error. Tap to Reload” and did not succeed
in connecting to the internet. The first two screenshots were taken from
application’s page on Google Play and display what application should look
like.

Figure 1.3: GoodGuide screenshots[2]

1.2.3 Think Dirty

Think Dirty is a project worth mentioning in this chapter. As described on
their official webpage, ”Think Dirty R© app is the easiest way to learn about
the potentially toxic ingredients in your cosmetics and personal care products.
Just scan the product barcode and Think Dirty will give you easy-to-understand
info on the product, its ingredients, and shop cleaner options!”[3] Think Dirty
claims to have information about over 350 000 products of over 3 200 brands.
Unfortunately, their application is not yet available for public use, so I didn’t
have the opportunity to test it. At picture 1.4 you can see what the applica-
tion is going to look like.

7

1. Analysis

Figure 1.4: Think Dirty screenshots[3]

1.2.4 Summary

In conclusion, out of three applications with similar functionality, described in
this chapter, only Healthy Living is actually available for public use. And this
application leaves a lot of space for improvements. This shows how yet unex-
plored the market of personal care awareness is. It is also worth mentioning,
that none of presented solutions is oriented on Czech market.

1.3 Requirements analysis

1.3.1 Functional requirements

F1 Search in products The application will implement search of product in
the database: it will request certain information from server and receive
it back.

F2 Search in substances The application will be able to search in sub-
stances and retrieve information about it.

F3 Scan barcode The application will enable scanning product’s barcode
in order to find it in database.

F4 Display product information The application will display recieved
product information to the user.

8

1.3. Requirements analysis

F5 Display composition information The application will display received
information for each substance in composition.

F6 Display history of search The application will be able to display the
history of user’s search in products and enable moving to any product
by clicking on it.

F7 Add/remove product from favourites The application will enable user
to add any product to favourites or remove it, and later access all of his
favourite products.

F8 Edit list of user’s allergens The application will enable user to add
and edit a list of substances he is allergic to.

F9 Allergens detection While displaying composition, the application will
highlight all the substances, that user is allergic to.

F10 Reporting error The user will be able to report any kind of error he
detected in application. These reports will be stored on server and
resolved later.

F11 Change app language The user will be able to change language, in
which information in application is displayed.

1.3.2 Nonfunctional requirements

N1 Synchronization with server The application must be able to retrieve
actual data from server.

N2 Supporting different languages Application’s architecture will sup-
port different languages on both client and server side. That means,
it will display information in language chosen by user, and it will also
request information in this language from server.

N3 Simple and intuitive design The application’s design must be simple
and intuitive.

N4 High level of supportability on mobile devices Minimum 70% of mo-
bile devices should be able to run this application.

9

1. Analysis

1.4 Use case modeling

1.4.1 Use cases and their scenarios

UC1 Search product by scanning its barcode

1. In main menu user clicks Scan Barcode.

2. Application opens photo camera with barcode scanner.

3. User focuses camera on barcode of his product.

4. Application detects barcode, processes it and directs user to layout
with information about the product.

UC2 Search product by entering its name

1. In main menu user clicks Search by Product Name.

2. Application opens layout with EditText field.

3. User starts entering his product’s name.

4. Application shows tips for products’ names.

5. User clicks on the tip with his product’s name.

6. Application directs user to layout with information about the product.

UC3 Search composition information by entering each substance’s name

1. In main menu user clicks Type Composition.

2. Application opens layout with EditText field, an Add button for
adding new fields and a Continue button.

3. User enters first substance’s name using tips from application.

4. User clicks on Add button.

5. Application adds a new EditText field.

6. In this way user enters all needed substances and clicks on Continue
button.

7. Application directs user to layout with information about entered
composition.

UC4 Add product to favourites

1. In product layout user clicks on an empty star next to product’s
picture.

2. The star gets golden and application displays a notification ”Added
to favourites”.

10

1.4. Use case modeling

UC5 Find a product in history of search

1. User opens the navigation drawer and selects History.

2. Application directs user to layout with a list of products’ names
with corresponding timestamps.

3. User clicks on the product he was looking for.

4. Application directs user to layout with information about the product.

UC6 Edit list of allergens

1. User opens the navigation drawer and selects My allergens.

2. Application directs user to layout with a list of user’s allergens he
entered before, an Add button for adding new fields and a Save
button.

3. User clicks on a cross next to one of allergens.

4. Application removes that allergen.

5. User clicks on Add button.

6. Application adds a new EditText field.

7. User enters allergen’s name using tips from application and clicks
Save.

8. Application displays a notification ”Saved”.

UC7 Report error

1. In product layout user clicks on button Report error.

2. Application displays a Dialog Fragment with a Spinner for choosing
error type, EditText for error description and buttons Cancel and
Send.

3. User selects error type, enters description and clicks on button
Send.

4. Application displays a notification ”Error report sent”.

UC8 Change application language

1. User opens the navigation drawer and selects Settings.

2. Application directs user to layout with a Spinner for choosing lan-
guage.

3. User chooses different language.

4. Application changes the language - all visible labels get changed.

1.4.2 Functionality coverage by use cases

As you can see in table 1.1, all of functional requirements are covered by use
cases.

11

1. Analysis

Figure 1.1: Target users groups Venn diagram

Table 1.1: Functionality coverage by use cases

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

UC1 X X X X X X
UC2 X X X X X
UC3 X X X
UC4 X
UC5 X
UC6 X
UC7 X
UC8 X

12

Chapter 2

Design

2.1 Choosing technologies

2.1.1 Android

Nowadays there is a relatively big number of different mobile platforms. I de-
cided on creating an application for Android platform, because, as you can
see in picture 2.1 it is the most popular mobile operating system today, and
it is used by over 80% of smartphone users. I set Minimum SDK to API 14:
Android 4.0 (IceCreamSandwich). This means, that 97.4% of android devices
that are active on Google Play Store will be able to run it. Therefore, in
general, over 77% of smartphone users would have access to this application,
and that would fulfill the supportability requirement.

2.1.2 Android Studio

Android studio is a modern standard for developing Android applications. It is
maintained by Google and is based on popular IDE(Integrated development
environment) IntelliJ IDEA. Android studio provides a lot of features, for
example code templates, Lint tools for analyzing code, WYSIWYG(acronym
for ”What you see is what you get”) editor for layout design and so on. Gradle
is provided in Android studio by Android Plugin for Gradle. Using simple
commands in Gradle file allows to customize and configure build process.
This is an advantage for creating multiple versions of one app within the same
project.

Here are the main debug tools of Android Studio:

• Inline debugging,

• CPU monitor,

• Memory monitor,

13

2. Design

• Code inspections.

Android Studio also enables using annotations. This powerful feature helps
to optimize debugging and develop more advanced code. For example a user
can define parameter of some function with annotation @NonNull and if he
calls this function, Android Studio will warn him in case there is a possibility
of null parameter.

2.1.3 Parse

The Parse platform provides a complete backend solution for mobile
applications.[5] I have decided to use it for creating database for a few reasons:

1. Parse provides very intuitive API for different platforms, including An-
droid.

2. It is an objective database, which means that no mapping between SQL
tables and Java objects is necessary. This makes working with such a
database much easier.

3. Parse provides free and reliable access to their server under condition of
retrieving at maximum 1000 objects at a time. For current project, this
is a neglectable limitation.

2.1.4 Realm

”Realm is a mobile database: a replacement for SQLite & Core Data.”[6]
I have decided to use it for implementing mobile database for the following
reasons:

1. Realm provides very intuitive API.

2. It is an objective database, which means that no mapping between SQL
tables and Java objects is necessary.

3. Realm is a developing technology, currently having no limits or charge
for using it.

2.1.5 Butterknife

Butterknife[7] is a useful tool for programming in Android. It provides a
functionality of binding objects: ButterKnife connects all of the views with
IDs in layout with Java code. First I had to call ButterKnife.bind(...) function
and then use ButterKnife annotation @BindView(ID), where ID has to be
unique in the whole layout.

14

2.1. Choosing technologies

In an example below you can see a comparison of code, that has the same
functionality, but the first is written in Android, and the second uses But-
terknife. As you can see, Butterknife helps to keep code more clear and
understandable.

Android without ButterKnife:

TextView mTextView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main_activity);

mTextView = (TextView) findViewById(R.id.text);

mTextView.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

Toast.makeText(this, "Clicked!", Toast.LENGTH_SHORT).show();

}

});

}

Android with ButterKnife:

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main_activity);

ButterKnife.bind(this)

}

@OnClick(R.id.text)

public void onClickButton(){

Toast.makeText(this, "Clicked!", Toast.LENGTH_SHORT).show();

}

15

2. Design

2.1.6 Barcode scanner

Nowadays there is a wide variety of barcode scanners available for free usage.
I have chosen to use ZXing (”Zebra Crossing”) library for barcode scanning, as
it is easy to integrate into project, it doesn’t take too much space, it has very
intuitive interface and I was completely satisfied with its quality of scanning
barcodes.

2.1.7 Picasso

Picasso[8] is a simple tool, that helps loading images to layout asynchronously.
Android has specified lifecycles of activities and fragments and if, for instance,
user changes orientation of screen, all activities and fragments are destroyed
and created again. This process can stop downloading image and cause errors.
This pitfall is handled automatically by Picasso. It also takes care of memory
and disk caching so it is efficient when you want to display some images more
than once. Picasso also provides some functions for images transformation
like, for example, resize or centerCrop.

Below you can see an example of code using Picasso. It is simple for
understanding and for writing as well. Without Picasso the same functionality
could be achieved by creating a fragment, setting it as retained (which means it
will not be destroyed after configuration changes) and connecting it to current
activity/fragment where image has to be displayed.

Picasso.with(context) // Context like activity or application context

.load(url) // URL from we want to download image

.placeholder(R.drawable.placeholder) // image which will be shown

before image is downloaded

.error(R.drawable.placeholder_error) // image which will be shown if

there is error

.into(imageView); // view where we want to place our image

2.1.8 Support Library

Support Library[9] provides the latest Android features like RecyclerView or
DrawerLayout even on older devices. Some functions and elements were ad-
ded to Android after release version. For maintaining backward compatibility
Google created library which implemented these new features with code un-
derstandable for older devices.

According to [10] there are two most used versions of Support Library:

• v4 version - designed for devices with Android 1.6 and higher,

• v7 version - designed for devices with Android 2.1 and higher.

16

2.2. Database model

Table 2.1: Server and mobile storage comparison

Server Mobile

Storage size Theoretically Very limited - storing
unlimited data on a mobile device

is highly costly

Requires internet access YES NO

Access speed Depends on internet Fast
access - in most
cases pretty slow

In this project I have used v7 version of Support Library, because in con-
tains the elements I needed to use (like, for example, RecyclerView).

2.2 Database model

Even though the server side is not part of this thesis, it was necessary to design
a database structure for storing data on device and on server. In this section
I will explain which way of storing data I have chosen and why.

First of all, I split the database into 2 parts - server and mobile. Each of
them has its specificities. You can see a comparison table in figure 2.1.

I have decided to use server for storing general data - information about
products and substances, and also storing error requests from users. This
data in constant for all users. As for mobile storage - I use it for storing
user-specific information: user’s allergens, favourites and history of search.
This solution additionally strengthens users’ privacy - application does not
send any user’s private information to server. It is stored locally only. As
I have mentioned in chapter ”Choosing technologies”, I have decided to use
objective database model. The database model on picture 2.2 demonstrates
the structure of data storage on both server and client side. There are 14
classes in the model: 3 of them are used for storing data on mobile device, and
the rest - on server. Arrows in this model represent foreign key relationships
between classes. These relationships are implemented by simply storing id
of referenced object in String format. For example, each object Product, as
any other object on server, has its own object id, generated by Parse. Each
instance of class ProductBarcode holds a reference to instance of Product by
storing its id in variable productID.

17

2. Design

2.3 UI design

In this section I will present user interface I have designed for this application.

2.3.1 Home screen

Home screen is one of the most often displayed screens, it is shown when user
starts application. It has to provide fast and easy access to the most often
used functions - that are scanning product’s barcode, searching product and
typing composition. That is why the home screen will have 3 corresponding
buttons, spread all over the screen, as you can see in picture 2.3 The first
button opens a photo camera with barcode scanner, the second opens layout
for search, and the third one opens layout for entering composition. There will
also be a drawer available in every screen, including home, through hamburger
menu icon in upper left corner of the screen. The drawer will provide access
to history, favorites, allergens, settings, help, about and home.

2.3.2 Product screen

A product screen has to present information about product in a clear and
understandable way, corresponding to modern standards of Android applica-
tions design. In picture 2.4 you can see the wireframe I have designed for this
screen. At the top of the screen there is a picture of product, in its upper
left corner there is a star for adding to favorites, in upper right corner - icon
showing product’s safety level. Under the picture there is product name, and
under it - composition table. There is also a button for reporting any kinds
of errors in order to receive user’s feedback.

2.3.3 Enter product name screen

As you can see in the second wireframe in picture 2.4, Enter Product Name
Screen is very straightforward: it has an EditText field on top, where user can
enter input. As he types, application gives him tips with names of available
products in a list under. Clicking on one of these tips will direct user to a
screen with chosen product’s information.

2.3.4 My allergens screen

As shown in picture 2.4, My Allergens Screen contains a list of EditView fields
with names of user’s allergens and cross icons on the right for deletion. There
is a plus button for adding new fields and a save button for confirming changes.

18

2.3. UI design

2.3.5 History screen

History Screen is depicted by the last wireframe in picture 2.4. It consists of
a simple list of history records, containing name of product and a timestamp.
Each element in the list is clickable and holds a reference to its product.

2.3.6 Summary

In this chapter I have described the structure of a few basic screens of ap-
plication. Of course, there are a lot more of them, but their design is very
straightforward or similar to the presented wireframes.

19

2. Design

Figure 2.1: Android market share[4]

20

2.3. UI design

Figure 2.2: Database model

21

2. Design

Figure 2.3: Home wireframes

22

2.3. UI design

Figure 2.4: Other wireframes
23

Chapter 3

Implementation

3.1 Packages structure

In picture 3.1 you can see the structure of packages I created for this project for
better code maintenance. This picture is a screenshot directly from Android
Studio and shows the hierarchy of packages in this project very clearly.

The helper package contains classes with general functionality like hiding
keyboard. This function is called every time user clicks away from EditText
element. Its code looks like this:

public static void hideKeyboard(BaseActivity activity) {

View view = activity.getCurrentFocus();

if (view != null) {

InputMethodManager imm = (InputMethodManager)

activity.getSystemService(Context.INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow(view.getWindowToken(), 0);

}

}

Package listener contains 4 interfaces, that fragments executing asynchron-
ous tasks implement.

Package model contains 15 classes, that are used for mapping objects from
database. Classes with prefix ”Db” are from server database and extend
ParseObject. Each of these classes implements a few getters and setters and
method getQuery, which is later used for building queries. Classes with prefix
”Mb” are from mobile database and extend RealmObject. Each of them has
some variables and corresponding getters and setters.

Package network contains 4 classes used for executing asynchronous tasks.
I will describe them a bit more in section Asynchronous operations.

The last package view contains 3 further packages: activity, adapter and
fragment. Activity package contains 4 activities: BaseActivity, MainActiv-
ity, BarcodeScannerActivity and SplashScreenActivity. BaseActivity is each

25

3. Implementation

other’s activity parent. It is used to implement some functions, that are
common for all the activities. SplashScreenActivity is started on applica-
tion launch. It displays a splash screen with application’s logo and after a
determained period of time starts MainActivity. There is also BarcodeScan-
nerActivity, which is responsible for scanning barcode and is started when
user presses ”Scan Barcode” button.

Package adapter contains 5 adapters. I will describe them in section Re-
cyclerView.

The fragment package contains 14 fragments. All of them extend Base-
Fragment. It has a method getBaseActivity, which returns BaseActivity. This
BaseActivity maintains all fragments’ changes and transfer. This is done by
calling replaceFragment method. Each fragment can also change title in Tool-
bar through BaseActivity. All of this you can see in the code below.

// in BaseFragment

public BaseActivity getBaseActivity() {

Activity activity = getActivity();

if (activity != null) {

return (BaseActivity) activity;

}

return null;

}

// in BaseActivity

public void replaceFragment(BaseFragment baseFragment) {

getSupportFragmentManager()

.beginTransaction()

.replace(R.id.container, baseFragment,

baseFragment.getTag())

.commit();

}

// and if we need to replace fragment in another fragment

getBaseActivity().replaceFragment(ProductFragment.newInstance(null,

currentProductsIDsList.get(position)));

3.2 RecyclerView

RecyclerView[11] is a very common element in Android development. The
main reason for creating this class was simplifying displaying a large data set.
ListView was used before RecyclerView, but nowadays tends to be replaced by
RecyclerView. According to [12] the main reason for this is that RecyclerView
has an advantage of using ViewHolder pattern, which is a very efficient way
to implement a list of items. Next important reason is that RecyclerView
has Layout Manager. It is used for easy implementation of different ways of
displaying items.

26

3.2. RecyclerView

RecyclerView, unlike ListView, supports better item animation and more
intuitive item decoration. For filling RecyclerView with data user needs to
implement class which is inherited from BaseAdapter. The important function
that needs to be overridden is getView. It returns layout for one item in the
list.

In this project I have implemented several RecyclerViews and here are
their corresponding Adapters:

• AlergensAdapter,

• CompositionTableAdapter,

• FavouritesAdapter,

• HistoryAdapter,

• TypeCompositionAdapter.

Below you can see a short example of Adapter used for displaying history
of search. It has a constructor for passing some parameters, onCreateVie-
wHolder method, which is called when ViewHolder is created, onBindVie-
wHolder method, which is called every time a new element of the list appears
on screen, and getItemCount, which returns the size of the list. In the same
class you can see a ViewHolder class implemented. It has only constructor
and some class variables. Its main function is to keep information about every
single element.

public class HistoryAdapter extends

RecyclerView.Adapter<HistoryAdapter.ViewHolder> {

ArrayList<HistoryTableRow> itemsData;

BaseActivity baseActivity;

public HistoryAdapter(ArrayList<HistoryTableRow> itemsData,

BaseActivity baseActivity) {

this.itemsData = itemsData;

this.baseActivity = baseActivity;

}

@Override

public HistoryAdapter.ViewHolder onCreateViewHolder(ViewGroup

parent, int viewType) {

View itemLayoutView = LayoutInflater.from(parent.getContext())

.inflate(R.layout.item_history, null);

ViewHolder viewHolder = new ViewHolder(itemLayoutView,

baseActivity, this);

return viewHolder;

}

27

3. Implementation

@Override

public void onBindViewHolder(HistoryAdapter.ViewHolder holder,

int position) {

holder.txtViewName.setText(itemsData.get(position).getName());

holder.txtViewDate.setText(itemsData.get(position).getDate());

}

@Override

public int getItemCount() {

return itemsData.size();

}

public static class ViewHolder extends RecyclerView.ViewHolder {

TextView txtViewName;

TextView txtViewDate;

public ViewHolder(View itemView, final BaseActivity

baseActivity, final HistoryAdapter adapter) {

super(itemView);

txtViewName = (TextView)

itemView.findViewById(R.id.history_item_name);

txtViewDate = (TextView)

itemView.findViewById(R.id.history_item_date);

itemView.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

baseActivity.replaceFragment(ProductFragment

.newInstance(null,adapter.itemsData

.get(getAdapterPosition()).getId()));

}

});

}

}

3.3 Asynchronous operations

Android has a certain feature: if the main thread is frozen for too long (for
example with some loop in code) - Android shows up dialog asking user if he
wants to terminate it. To avoid this it is necessary to perform more complex
operations in background thread (asynchronously). Android provides a class
for this, it is called AsyncTask[13]. ”An asynchronous task is defined by a
computation that runs on a background thread and whose result is published
on the UI thread. An asynchronous task is defined by 3 generic types, called
Params, Progress and Result, and 4 steps, called onPreExecute, doInBack-
ground, onProgressUpdate and onPostExecute.”[14]

28

3.3. Asynchronous operations

I have implemented following asynchronous tasks:

• AsyncTaskComposition,

• AsyncTaskLanguageID,

• AsyncTaskProductFragment,

• AsyncTaskTypeComposition.

All of them inherit from AsyncTask. Below there is a basic example of
AsyncTask, which gets preferred language’s code from server. It has a con-
structor for passing Context and method doInBackground, which performs all
needed operations.

public class AsyncTaskLanguageID extends AsyncTask {

WeakReference<Context> mC;

String newLanguageId;

public AsyncTaskLanguageID(Context mC) {

this.mC = new WeakReference<Context>(mC);

}

@Override

protected Object doInBackground(Object[] params) {

if (mC.get() != null) {

String languageCode = mC.get().getSharedPreferences("preferences",

Context.MODE_PRIVATE).getString("languageCode", "");

ParseQuery<DbLanguage> query = DbLanguage.getQuery();

query.whereEqualTo("code", languageCode);

List<DbLanguage> objects = null;

try {

objects = query.find();

} catch (ParseException e) {

e.printStackTrace(); }

newLanguageId = objects.get(0).getObjectId();

SharedPreferences.Editor editor =

mC.get().getSharedPreferences("preferences",

Context.MODE_PRIVATE).edit();

editor.putString("LanguageId", newLanguageId);

editor.commit();

}

return null;

}

}

29

3. Implementation

3.4 Multiple languages

As this application’s target user group is not country-specific, application
should support at least a few basic languages. For changing language in run-
ning application it is necessary to inform resources and update Configuration
file (with information about language, orientation and so on). Updating con-
figuration causes restart of application, but this is the process which guar-
antees that all new resources (strings and layouts) are loaded properly. The
code for this looks like this:

public static Configuration

getConfigurationFromPreferences(String language) {

Locale locale = new Locale(language);

Locale.setDefault(locale);

Configuration config = new Configuration();

config.locale = locale;

return config;

}

So in order to change application’s language, it is necessary to call function
updateConfiguration on Resources from SettingsFragment, where there is a
spinner with available languages:

getBaseActivity()

.getResources()

.updateConfiguration(Helper

.getConfigurationFromPreferences(newLanguageCode),

getBaseActivity().getResources().getDisplayMetrics());

getBaseActivity().recreate();

It is also necessary to take care of the language, in which data will be down-
loaded from server. Current chosen language is stored in SharedPreferences
and can be accesses in the following way:

getSharedPreferences("preferences",

MODE_PRIVATE).getString("languageCode");

3.5 Database

3.5.1 Local storing

As I used Realm for storing objects locally, they need to inherit from Real-
mObject. Below there is an example of one of these objects. MbHistory is
used for storing user’s history of search, so each instance contains ID and
name of a product, that user found, and a timestamp.

30

3.5. Database

public class MbHistory extends RealmObject {

private String productName;

private Date date;

private String productID;

public String getProductName() {

return productName;

}

public void setProductName(String productName) {

this.productName = productName;

}

public Date getDate() {

return date;

}

public void setDate(Date date) {

this.date = date;

}

public String getProductID() {

return productID;

}

public void setProductID(String productID) {

this.productID = productID;

}

}

It is very easy to save a new object in local storage. Function createObject
takes care of it and has to be called in a transaction block. In the example
below realm is a Realm object and represents the whole local database.

realm.beginTransaction();

MbFavourites favourite = realm.createObject(MbFavourites.class);

favourite.setProductID(productID);

favourite.setName(productName);

realm.commitTransaction();

Realm uses very intuitive syntax for retrieving objects from database (for
example, functions like where, contains, equalTo and so on). Below there is
a simple example of getting results from Realm. This code checks if a product
with given ID is saved in favorites or not.

RealmResults<MbFavourites> favourites =

realm.where(MbFavourites.class).equalTo("productID",

31

3. Implementation

productID).findAll();

if (favourites.size() > 0) {

isFavourite = true;

} else {

isFavourite = false;

}

3.5.2 Storing on server

For storing objects on server I have used Parse. These objects have to inherit
from ParseObject. Below you can see that an object has to be mapped to a
table in Parse by annotation @ParseClassName(name). It implements getters
and setters by calling ParseObject methods getString and put, providing the
name of corresponding column in parameters.

@ParseClassName("ProductBarcode")

public class DbProductBarcode extends ParseObject {

public static ParseQuery<DbProductBarcode> getQuery() {

return ParseQuery.getQuery(DbProductBarcode.class);

}

public String getProductID() {

return getString("productID");

}

public void setProductID(String value) {

this.put("productID", value);

}

public String getBarcode() {

return getString("barcode");

}

public void setBarcode(String value) {

this.put("barcode", value);

}

}

The following code is from AsyncTaskTypeComposition and it retrieves
from Parse a list of substance names in the given language.

ParseQuery<DbSubstanceName> query = DbSubstanceName.getQuery();

query.whereEqualTo("languageID", languageID);

List<DbSubstanceName> objects = null;

try {

objects = query.find();

} catch (ParseException e) {

32

3.5. Database

e.printStackTrace();

}

if (objects != null && objects.size() > 0) {

list = new ArrayList<String>();

for (DbSubstanceName item : objects) {

list.add(item.getName());

}

}

33

3. Implementation

Figure 3.1: Packages structure

34

Chapter 4

Testing

Quality assurance is a very important part of software development process.
Throughout the whole development process some simple tests were performed
to evaluate implemented part’s performance. And at the end of the project
I have performed user tests split into 2 parts: performing operations and
questionnaire. I have asked 4 people with different levels of knowledge of
Android to perform certain operations with application, describe what issues
they faced and then asked them to fill a questionnaire. For testing purposes
I have filled database with testing data. It includes 5 products with complete
information about them and 64 substances from their compositions.

After performing code review I have asked 4 people with different levels of
knowledge of Android to perform certain operations with application, describe
what issues they faced and asked them to fill a questionnaire. In following
parts I will present the results I have got.

4.1 Performing operations with application

Each of 4 users was given a task to perform following operations:

1. open application,

2. find product by scanning its barcode,

3. find product by name,

4. add product to favorite,

5. access this product from favorites,

6. access this product from history,

7. find information about this composition: glycerin and water,

8. fill a list of allergens with some values.

35

4. Testing

4.1.1 First user

The first user is an Android developer, so he has a good knowledge of Android
operating system. Here is how he coped with given operations:

• Did not have any problems with starting application.

• Scanned barcode without problems.

• Found product by name without problems.

• For adding product to favorites first tried to go to favorites, but then
realized that he had to do it on screen with product and handled it in
the end.

• Accessed product from favorites without problems.

• Accessed product from history without problems.

• Was a little bit confused as where to find information about composition.

• Filled a list of allergens without problems.

4.1.2 Second user

The second user has been using Android mobile device for less than a year.
Here are the results of her performing given operations:

• Did not have any problems with starting application.

• Scanned barcode without problems.

• Had problems with finding product by its name: did not click on tips
displayed by application.

• Added product to favorites without problems.

• Accessed product from favorites without problems.

• Accessed product from history without problems.

• While looking for information about given composition entered the whole
composition into one EditText item, did not see the plus sign for adding
new substances.

• Filled a list of allergens without problems.

36

4.1. Performing operations with application

4.1.3 Third user

The third user has been using Android mobile devices for about 3 years. Here
is how he performed:

• Did not have any problems with starting application.

• Scanned barcode without problems.

• Found product by name without problems.

• Took a while to find how to add product to favorites, but managed it.

• Accessed product from favorites without problems.

• Accessed product from history without problems.

• Took some time to find where to enter composition, but then found the
right button on home screen.

• Filled a list of allergens without problems.

4.1.4 Fourth user

The fourth user has 2-years experience with using Android mobile devices.
Here are the results of his performing given operations:

• Did not have any problems with starting application.

• Scanned barcode without problems.

• Found product by name without problems.

• Added product to favorites without problems.

• Had problems accessing product from favorites: did not realize there
was a drawer in application.

• Accessed product from history without problems after being shown the
drawer.

• Took a while to find where to enter composition.

• Filled a list of allergens without problems.

37

4. Testing

4.2 Questionnaire

1. How would you rate intuitiveness of user interface design on scale from
1 to 10, 10 being the most intuitive?

• User 1 I would say 8. There were some misconceptions, but in
general it was ok.

• User 2 10, I liked it.

• User 3 7, a few things were not very intuitive, but in general it was
fine.

• User 4 9, it was pretty good.

2. Would you consider using this application?

• User 1 If the database gets larger, then yes.

• User 2 Definitely yes.

• User 3 Yes.

• User 4 If the database gets filled, definitely yes.

3. What would you improve in this application?

• User 1 Speed.

• User 2 Searching product by name is confusing, because it’s often
hard to say what the name actually is.

• User 3 The speed of search can be improved, and number of products
in database.

• User 4 Nothing comes to mind.

4.3 Summary

Even though the testing group was pretty small, it is possible to make certain
conclusions about developed application prototype based on their results. All
of users handled most operations well, though each of them had certain issues
and suggestions.

Confusion as where to find certain button or how to perform input
This issue can be solved with a quick guide on the first launch of applic-
ation.

Low speed of searching This can be resolved by moving some operations
on server side.

Incompleteness of database For now the database is filled with few data
for testing purposes. In the future it will be necessary to upload sufficient
amount of data in order for application to be usable.

38

Chapter 5

Future improvements

5.1 Data

For this Bachelor thesis I have implemented a prototype of Android applica-
tion. That means, that application supports the main required functionality.
There is a big issue, however, that stands on the way of using this application
- and that is lack of data. It is necessary to fill created database with sufficient
amount of real data in order for it to be ready for usage. This requires certain
investments, and if it is done in the future, the application can be uploaded
to Google Play, becoming publicly available.

5.2 Improving speed

Testing phase showed that the speed of search is not sufficient. In the future
this issue can be fixed by implementing part of code on server side. For
now the server is a simple objective database, and it’s necessary to perform
a few server calls in order to gain needed information. Each server call is
time-consuming, and this significantly slows down the whole search process.
Exporting these operations to server will improve the speed considerably.

5.3 First launch guide

As testing phase showed, some of the application functions can be confus-
ing, that’s why it’s a good idea to implement a simple user guide for first
application launch. This can be done by creating a Showcase View.

5.4 Products comparison

One possible useful improvement could be comparing a few products among
themselves. When a user is in a situation, when he wants to choose one

39

5. Future improvements

product, that would be most suitable for him, it would be useful to have
comparison of chosen candidates displayed on his mobile device.

5.5 More available languages

For now application supports only 2 languages: English and Czech. However,
its architecture is designed in such a way that it can support any number of
languages. That is why adding more languages requires minimal change in
the application. It is important to note, that adding new languages does not
guarantee covering new markets - the key issue here is data. It is country-
specific: products, barcodes, substances’ names, descriptions and so on. And
that means, that if we want to make application available in a certain region, it
is necessary not only to provide application interface in this region’s language,
but also to upload necessary data to server.

5.6 Users’ evaluation of products

Another nice feature could be user’s evaluation of product’s characteristics
like effectiveness, corresponding price, smell or comfortableness of usage. For
each product user will see his own evaluation and average evaluation. Average
evaluation can significantly help users to choose good products matching their
taste.

40

Conclusion

The aim of this Bachelor thesis was to create a prototype of an application
for analysis of cosmetic products composition, that would fulfill desired func-
tionality. This aim has been accomplished. The analysis of similar applica-
tions and requirements analysis have been conducted. Subsequently, applica-
tion design has been created based on established requirements. After design
phase, a prototype with basic application functionality was implemented. This
prototype has been properly tested. All of functional and nonfunctional re-
quirements have been fulfilled. However, the application is not yet ready for
public usage, mainly because the database is not yet filled with valid data.

41

Bibliography

[1] EWG’s Healthy Living [online]. EWG’s Healthy Liv-
ing, 2016 [viewed. 2016-05-06]. Available at: ht-
tps://play.google.com/store/apps/details?id=com.skindeep.mobile

[2] GoodGuide [online]. GoodGuide, 2012
[viewed. 2016-05-06]. Available at: ht-
tps://play.google.com/store/apps/details?id=com.goodguide.app

[3] Think Dirty [online]. Think Dirty, 2016 [viewed. 2016-05-06]. Avail-
able at: http://www.thinkdirtyapp.com/

[4] Smartphone OS Market Share, 2015 Q2 [online]. Framingham:
IDC Research Inc., 2015 [viewed. 2016-01-31]. Available at:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

[5] Parse [online]. Parse, 2016 [viewed. 2016-04-29]. Available at: ht-
tps://parse.com/docs/android/guide

[6] Realm [online]. Realm, 2016 [viewed. 2016-04-29]. Available at: ht-
tps://realm.io/docs/java/latest/

[7] WHARTON, Jake. Butter Knife - Field and method binding for An-
droid views [online]. Jake Wharton, 2013 [viewed. 2016-2-2]. Avail-
able at: http://jakewharton.github.io/butterknife/.

[8] Picasso - A powerful image downloading and caching library for An-
droid [online]. Square, Inc. 2013 [viewed. 2016-2-2]. Available at:
http://square.github.io/picasso/.

[9] Support Library [online]. Google Inc. 2016 [viewed. 2016-04-29]. Avail-
able at: http://http://http://developer.android.com/tools/support-
library/index.html

43

Bibliography

[10] Support Library Features [online]. Google Inc. 2016 [viewed. 2016-
04-29]. Available at: http://developer.android.com/tools/support-
library/features.html

[11] Creating Lists and Cards [online]. Google
Inc. 2016 [viewed. 2016-04-29]. Available at:
http://developer.android.com/training/material/lists-cards.html

[12] GUPT, MohitAndroid RecyclerView vs ListView — Compar-
ison [online]. Truiton, 2015 [viewed. 2016-04-29]. Available at:
http://www.truiton.com/2015/03/android-recyclerview-vs-listview-
comparison/

[13] Processes and Threads [online]. University of South-
ern California, 2009 [viewed. 2016-05-06]. Available at:
http://developer.android.com/guide/components/processes-and-
threads.html

[14] AsyncTask [online]. Google Inc. 2016 [viewed. 2016-05-06]. Avail-
able at: http://developer.android.com/android/os/AsyncTask.html

[15] Model Description [online]. Google Inc. 2016 [viewed. 2016-05-06].
Available at: http://csse.usc.edu/csse/research/CORADMO/

44

Appendix A

Application’s screenshots

Figure A.1: Screenshots of home screen and barcode scan screen

45

A. Application’s screenshots

Figure A.2: Screenshots of product screen and substance description dialogue

46

Figure A.3: Screenshots of composition screen and report error dialogue

47

A. Application’s screenshots

Figure A.4: Screenshots of product search screen and allergens screen

48

Appendix B

Material for testing

Figure B.1: Barcodes of products present in database

49

Appendix C

Contents of enclosed CD

readme.txt the file with CD contents description
apk...............................the directory with executable apk file
src.......................................the directory of source codes

implem implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

51

	Introduction
	Aim of Bachelor thesis
	Analysis
	Target users group
	Analysis of existing solutions
	Requirements analysis
	Use case modeling

	Design
	Choosing technologies
	Database model
	UI design

	Implementation
	Packages structure
	RecyclerView
	Asynchronous operations
	Multiple languages
	Database

	Testing
	Performing operations with application
	Questionnaire
	Summary

	Future improvements
	Data
	Improving speed
	First launch guide
	Products comparison
	More available languages
	Users' evaluation of products

	Conclusion
	Bibliography
	Application's screenshots
	Material for testing
	Contents of enclosed CD

