Vzduchotechnika v restauraci jízdárny

BAKALÁŘSKÁ PRÁCE

Tomáš Brouk

Vedoucí bakalářské práce: Ing. Daniel Adamovský, Ph.D.

2015/2016
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

<table>
<thead>
<tr>
<th>Příjmení: Brouk</th>
<th>Jméno: Tomáš</th>
<th>Osobní číslo: 409719</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zadávající katedra: katedra technických zařízení budov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studijní program: Stavební inženýrství</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studijní obor: Konstrukce pozemních staveb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

| Název bakalářské práce: Vzduchotechnika v restauraci jízdárny |
| Název bakalářské práce anglicky: Ventilation in a restaurant by riding-school |
| Pokyny pro vypracování: |
| Vypracujte výkresovou dokumentaci, technickou zprávu a přílišný výkaz prvků. |
| Pro rozšířující část popište základní parametry pro větrání kuchyní. |

Seznam doporučené literatury:
Gebauer, G., et. al. Vzduchotechnika, Era, 2005
portál Tzb-info.cz
firemní podklady firmy Atrea pro větrání kuchyní

| Jméno vedoucího bakalářské práce: Ing. Daniel Adamovský, Ph.D. |
| Datum zadání bakalářské práce: 24.2.2016 |
| Termín odevzdání bakalářské práce: 20.5.2016 |

III. PŘEVZETÍ ZADÁNÍ

<table>
<thead>
<tr>
<th>Datum převzetí zadání</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2.2016</td>
</tr>
<tr>
<td>Podpis studenta(ky)</td>
</tr>
</tbody>
</table>

Beru na vědomí, že jsem povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jiného konzultantu je nutné uvést v bakalářské práci a při cítování postupoval v souladu s metodickou příručkou ČVUT „Jak psát vysokoškolské závěrečné práce“ a metodickým pokynem ČVUT „O dodržování etických principů při přípravě vysokoškolských závěrečných prací“. |
Prohlašuji, že jsem svoji bakalářskou práci vypracoval samostatně s použitím uvedené literatury a podkladů.

Praha, 16. 5. 2016
podpis
PODĚKOVÁNÍ

Chtěl bych poděkovat Ing. Danieli Adamovskému, Ph.D., svému vedoucímu bakalářské práce, za trpělivost, čas strávený při konzultacích, a poskytnutí rad při zpracování této práce.
Obsah.. 5
Abstrakt .. 7
Klíčová slova... 7
Abstract... 7
Key words... 7
Úvod.. 8
1 Výpočtová část ... 9
1.1 Popis objektu... 10
1.1.1 Úvod ... 10
1.1.2 Charakteristika objektu... 10
1.1.3 Větrání objektu... 10
1.2 Tepelně technické vlastnosti Konstrukcí .. 11
1.2.1 Výpočet součinitele prostupu tepla svislých a vodorovných konstrukcí......................... 11
1.2.2 Výpočet součinitele prostupu tepla výplní otvorů... 13
1.3 Tepelná Bilance ... 14
1.3.1 Tepelné ztráty... 14
1.3.2 Tepelná zátěž... 16
1.4 Produkce škodlivin v budovách.. 22
1.4.1 Produkce vodní páry... 22
1.4.2 Produkce oxidu uhličitého... 23
1.5 Stanovení objemu přiváděného vzduchu .. 23
1.5.1 Objem přiváděného vzduchu pro pokrytí tepelných ztrát a tepelné zátaže ... 23
1.5.2 Objem přiváděného čerstvého vzduchu pro odvod škodlivin .. 24
1.5.3 Stanovení objemu přiváděného vzduchu do místností ... 24
1.6 Návrh systému vzt ... 26
1.6.1 Distribuční prvky.. 26
1.6.2 Trasa potrubí... 26
1.6.3 Tlakové ztráty.. 27
1.6.4 Vzduchotechnická jednotka.. 30
1.7 Vytápění – Chlazení... 32
1.8 Závěr ... 32
2 Rozšiřující část .. 33
 2.1 Úvod.. 34
 2.2 Větrání kuchyně restaurací ... 34
 2.2.1 Problematika větrání kuchyní .. 34
 2.2.2 Nucené větrání ... 35
 2.2.3 Legislativa .. 35
 2.2.4 Přívod větracího vzduchu ... 36
 2.2.5 Výpočet větrání kuchyní dle vdi 2052 .. 37
 2.2.6 Tukové filtry ... 43
 2.2.7 Ekonomie provozu v kuchyních .. 43
 2.3 Závěr .. 44
Použité zdroje ... 45
Seznam příloh ... 48
ABSTRAKT

Tato bakalářská práce se zabývá návrhem vzduchotechnických systému v hotelovém objektu jízdárny v Pardubicích. Cílem výpočtové části bylo navrhnout koncept větrání budovy s detailním zaměřením na dosažení optimálních mikroklimatických podmínek v restauraci v 2.NP. Projekt vzduchotechniky řeší nucené větrání, bilanční výpočty tepelných ztrát a tepelných získů klimatizovaného prostoru. K návrhu byly použity platné normy a předpisy. V rozšiřující části je popsán návrh větrání kuchyní a požadavky na provoz.

KLÍČOVÁ SLOVA

Vzduchotechnika, nucené větrání, restaurace, úprava vzduchu, větrání kuchyní

ABSTRACT

The presented bachelor thesis is dealing with ventilation systems in the riding-school hotel complex in Pardubice. The aim of the calculation chapter is to set up the ventilation concept of building with focus on achievement of optimal microclimate conditions in a restaurant on the second floor. The presented project of ventilation deals with forced ventilation, balance calculation of heat gains and losses of air-conditioned space. For the draft applicable regulations and standards were used. The theoretical chapter is describing design of kitchen ventilation and requirements for services.

KEY WORDS

Air condition, forced ventilation, restaurant, air treatment, kitchen ventilation
ÚVOD

Tato bakalářská práce se zabývá návrhem vzduchotechniky restaurace a sousedních místností v hotelu jízdárny. Vzhledem k těsně přiléhající kryté jízdárně není možné přirozené větrání okny. V řešeném objektu se vyskytuje více místností s rozdílným provozem. Z tohoto důvodu bylo nutné objekt rozdělit na několik, na sobě nezávislých úseků, které bude obsluhovat vždy samostatná vzduchotechnická jednotka. Jedná se o zázemní v 1.NP, restauraci v 2.NP, byt vrátného, wellness, kuchyně a hotelové pokoje.

V prostorách restaurace dochází v případě plného obsazení k velké produkci teplené zátěže, vodní páry a CO₂ v uzavřeném prostoru. Cílem správně navrženého systému je zajistit takovou výměnu vzduchu v místnosti, aby byl zajištěn dostatečný odvod všech škodlivých s produkcí jídel, nápojů a pohybu osob.

Ve druhé rozšiřující části práce se zaměřuji na větrání kuchyní. Popisují časté nedostatky vyskytující se v systémech ventilace, jejich příčiny a důsledky. Dále se pak věnuji výběru vhodného typu větrání prostoru, a rozmístění prvků pro přívod a odvod vzduchu, za účelem vytvoření co nejpříznivějšího vnitřního mikroklimatu a obrazu proudění pro personál. Zabývám se legislativou pro návrh kuchyní, a čast věnuji i postupu návrhu kuchyní dle VDI 2052. V závěru se pak zmíňuji o regulaci a ekonomickém provozu vzduchotechnické jednotky.
1 VÝPOČTOVÁ ČÁST
1.1 POPIS OBJEKTU

1.1.1 ÚVOD

Podkladem pro vypracování této části bakalářské práce je diplomová práce Ing. arch. Jiřího Kotouče, bývalého úspěšného studenta fakulty stavební, ČVUT v Praze. Ve výpočtové části je detailně vypracován návrh větrání restaurace hotelu jízdárny v Pardubicích. V této části bakalářské práce jsou vypočteny tepelné zisky a ztráty objektu, stanovené množství přiváděného čerstvého vzduchu pro vytvoření přijemného vnitřního prostředí, s ohledem na produkci CO$_2$ a vodní páry. Dále se věnuje návrhu vzduchotechnické jednotky a trasy potrubního systému.

1.1.2 CHARakterISTIKA OBJEKtu

![Obrázek 1.1 Architektonický návrh](image)

1.1.3 VĚTRÁNÍ OBJEKtu

V prostoru objektu hotelu se vyskytuje několik provozů s rozdílnými požadavky na vnitřní prostředí. Z tohoto důvodu je nutné navrhnout více na sobě nezávislých vzduchotechnických jednotek. Rozdělení objektu do úseků je patrný z obrázku 1.2.
1.2 TEPELNĚ TECHNICKÉ VLASTNOSTI KONSTRUKCÍ

Tepelně technické vlastnosti jednotlivých konstrukcí mají významný vliv na energii vynaloženou pro udržení požadované kvality vnitřního klimatu budovy. Se současným trendem nízkoenergetických a pasivních domů jsou kladeny vysoké nároky na charakteristické vlastnosti materiálů a jejich skladbu pro zajištění stále se zvyšujících požadavků.

1.2.1 VÝPOČET SOUČINITELE PROSTUPU TEPLA SVISLÝCH A VODOROVNÝCH KONSTRUKCÍ

Tepelný odpor R [m2·K/W]

$$R = \frac{\lambda}{d} \tag{6}$$

kde d je tloušťka konstrukce [m]

λ je součinitel tepelné vodivosti [W/m·K]

Odpor konstrukce při prostupu tepla R_T [m2·K/W]

$$R_T = R_{st} + \Sigma R + R_{se} \tag{6}$$
kde \(R_{si} \) je odpor při přestupu tepla na vnitřní straně konstrukce \([\text{m}^2\cdot\text{K}/\text{W}]\)

\(R_{se} \) je odpor při přestupu tepla na vnější straně konstrukce \([\text{m}^2\cdot\text{K}/\text{W}]\)

Hodnoty \(R_{si} \) a \(R_{se} \) jsou uvedeny v Tabulce 1.1

Tabulka 1.1 Smluvní odpory při přestupu tepla [6]

Součinitel prostupu tepla U \([\text{W}/(\text{m}^2\cdot\text{K})]\)

\[
U = \frac{1}{R_T}
\]

[6]

Výsledky výpočtu součinitele prostupu tepla vodorovných a svislých konstrukcí vyskytujících se v objektu dle výše uvedených vzorců je uveden v Tabulce 1.2

<table>
<thead>
<tr>
<th>Názve konstrukce</th>
<th>Tloušťka [mm]</th>
<th>U [Wm(^2)-K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stěna LOP</td>
<td>392</td>
<td>0,17</td>
</tr>
<tr>
<td>ŽB stěna</td>
<td>200</td>
<td>2,30</td>
</tr>
<tr>
<td>Vnitřní příčka</td>
<td>200</td>
<td>1,64</td>
</tr>
<tr>
<td>Vnitřní příčka</td>
<td>150</td>
<td>1,76</td>
</tr>
<tr>
<td>Vnitřní příčka</td>
<td>100</td>
<td>1,93</td>
</tr>
<tr>
<td>Podlaha</td>
<td>300</td>
<td>0,67</td>
</tr>
<tr>
<td>Strop</td>
<td>300</td>
<td>0,70</td>
</tr>
<tr>
<td>Podlaha nad garážemi</td>
<td>470</td>
<td>0,14</td>
</tr>
</tbody>
</table>

Tabulka 1.2 Výpočet součinitele prostupu tepla U jednotlivých konstrukcí
1.2.2 VÝPOČET SOUČINITELE PROSTUPU TEPLA VÝPLNÍ OTVORŮ

Součinitel prostupu tepla výplní otvorů U_w [W/(m²·K)]

$$U_w = \frac{\Sigma A_g U_g + \Sigma A_f U_f + \Sigma l_g \Psi_g}{\Sigma A_g + \Sigma A_f}$$ \[7\]

Kde A_g je plocha zasklení [m²]

A_f je plocha rámu [m²]

U_g je součinitel prostupu tepla zasklení [W/m²·K]

U_f je součinitel prostupu tepla rámu [W/m²·K]

l_g je celkový viditelný obvod zasklení [m]

Ψ_g je lineární činitel prostupu tepla způsobený kombinovanými tepelnými vlivy zasklení, distančního rámečku a rámu. [W/m·K]

Výpočet součinitele prostupu tepla výplní otvorů v objektu dle výše uvedených vzorců je uveden v Tabulce 1.3.

<table>
<thead>
<tr>
<th></th>
<th>A_g [m²]</th>
<th>U_g [W/(mK)]</th>
<th>A_f [m²]</th>
<th>U_f [W/(mK)]</th>
<th>l_g [m]</th>
<th>Ψ_g [m]</th>
<th>U_w [W/(mK)]</th>
<th>A [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Okno 2400x2050</td>
<td>3,82</td>
<td>0,60</td>
<td>1,10</td>
<td>0,90</td>
<td>15,68</td>
<td>0,06</td>
<td>0,86</td>
</tr>
<tr>
<td>2</td>
<td>Okno 700x2050</td>
<td>0,95</td>
<td>0,60</td>
<td>0,49</td>
<td>0,90</td>
<td>4,74</td>
<td>0,06</td>
<td>0,90</td>
</tr>
<tr>
<td>3</td>
<td>Okno 3000x1800</td>
<td>4,23</td>
<td>0,60</td>
<td>1,17</td>
<td>0,90</td>
<td>16,88</td>
<td>0,06</td>
<td>0,85</td>
</tr>
<tr>
<td>4</td>
<td>Okno 7536x2200</td>
<td>13,36</td>
<td>0,60</td>
<td>3,27</td>
<td>0,90</td>
<td>39,12</td>
<td>0,06</td>
<td>0,80</td>
</tr>
<tr>
<td>5</td>
<td>Okno 1600x1800</td>
<td>2,04</td>
<td>0,60</td>
<td>0,84</td>
<td>0,90</td>
<td>9,68</td>
<td>0,06</td>
<td>0,89</td>
</tr>
<tr>
<td>6</td>
<td>Dveře 1800x2000</td>
<td>2,73</td>
<td>0,60</td>
<td>0,87</td>
<td>0,90</td>
<td>10,26</td>
<td>0,06</td>
<td>0,84</td>
</tr>
<tr>
<td>7</td>
<td>Okno 3000x2050</td>
<td>4,91</td>
<td>0,60</td>
<td>1,25</td>
<td>0,90</td>
<td>18,08</td>
<td>0,06</td>
<td>0,84</td>
</tr>
<tr>
<td>8</td>
<td>Prosklená fasáda</td>
<td>88,39</td>
<td>0,60</td>
<td>6,51</td>
<td>0,90</td>
<td>205,01</td>
<td>0,06</td>
<td>0,75</td>
</tr>
<tr>
<td>9</td>
<td>Okno 1600x2050</td>
<td>2,37</td>
<td>0,60</td>
<td>0,96</td>
<td>0,90</td>
<td>12,48</td>
<td>0,06</td>
<td>0,91</td>
</tr>
<tr>
<td>10</td>
<td>Okno 700x3300</td>
<td>1,59</td>
<td>0,60</td>
<td>0,72</td>
<td>0,90</td>
<td>7,24</td>
<td>0,06</td>
<td>0,88</td>
</tr>
<tr>
<td>11</td>
<td>Okno 700x2700</td>
<td>1,28</td>
<td>0,60</td>
<td>0,61</td>
<td>0,90</td>
<td>6,04</td>
<td>0,06</td>
<td>0,89</td>
</tr>
<tr>
<td>12</td>
<td>Okno - mytí</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,50</td>
</tr>
<tr>
<td>13</td>
<td>Dveře 900x2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,00</td>
</tr>
<tr>
<td>14</td>
<td>Okno kuchyně</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,50</td>
</tr>
<tr>
<td>15</td>
<td>Dveře 1200x2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,00</td>
</tr>
<tr>
<td>16</td>
<td>Dveře 800x2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,50</td>
</tr>
<tr>
<td>17</td>
<td>Dveře 1000x2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
</tbody>
</table>

Tabulka 1.3- Výpočet součinitele prostupu tepla výplní otvorů U_w
1.3 TEPELNÁ BILANCE

1.3.1 TEPELNÉ ZTRÁTY

1.3.1.1 OKRAJOVÉ PODMÍNKY PRO VÝPOČET TEPELNÝCH ZTRÁT

Objekt Jízdárny se nachází v Pardubicích. Pro tuto lokalitu byla stanovena vnější výpočtová teplota $\theta_e = -12^\circ C$, průměrná roční venkovní teplota $\theta_{m,e} = 5,2^\circ C$ v nadmořské výšce 223 m. n. m. [4]

1.3.1.2 VÝPOČET TEPELNÝCH ZTRÁT

Výpočet tepelných ztrát byl proveden dle normy ČSN EN 12 831 [4]

Návrhová tepelná ztráta prostupem tepla $\Phi_{T,i}$ [W]

$$\Phi_{T,i} = (H_{T,ie} + H_{T,ue} + H_{T,ig} + H_{T,ij}) \cdot (\theta_{int,i} - \theta_e)$$

Tepelné ztráty přímo do venkovního prostředí $H_{T,ie}$ [W/K]

$$H_{T,ie} = \sum_k A_k \cdot U_k \cdot e_k$$

kde A_k je plocha stavební části (k) v [m2]
e_k je korekční součinitel vystavení povětrnostním vlivům [-]
U_k je součinitel prostupu tepla stavební částí (k) [W/m2·K]

Tepelné ztráty nevytápěným prostorem $H_{T,ue}$ [W/K]

$$H_{T,ue} = \sum_k A_k \cdot U_k \cdot b_u$$

kde b_u je teplotní činitel zahrnující teplotní rozdíl mezi teplotou nevytápěného a vytápěného prostore [-]

$$b_u = \frac{\theta_{int,i} - \theta_u}{\theta_{int,i} - \theta_e}$$

kde θ_u je teplota nevytápěného prostoru stanovena podle návrhových podmínek

Tepelné ztráty do přilehlé zeminy $H_{T,ig}$ [W/K]

$$H_{T,ig} = f_{g1} \cdot f_{g2} \cdot \sum_k A_k \cdot U_{equiv,k} \cdot G_w$$

kde f_{g1} je korekční součinitel zohledňující vliv ročních změn venkovní teploty.
f_{g2} je teplotní redukční součinitel zohledňující rozdíl mezi roční průměrnou venkovní teplotou a výpočtovu teplotou. Stanovuje se ze vztahu
\[f_{g2} = \frac{\theta_{\text{int},i} - \theta_{\text{m},e}}{\theta_{\text{int},i} - \theta_e} \]

\(G_w \) je korekční součinitel zohledňující vliv spodní vody. Uvažuje se, pokud je vzdálenost mezi předpokládanou hladinou spodní vody a úrovní podlahy podzemního podlaží menší než 1m.

\(U_{\text{equiv},k} \) je ekvivalentní součinitel prostupu tepla stavební částí. \([W/m^2\cdot K]\)
Stanovuje se podle typologie podlahy. Stanovuje se pomocí diagramů v ČSN EN 12831

kde \(b \) na vodorovné ose se stanoví pomocí vztahu:

\[b = \frac{A_g}{0,5 \cdot P} \]

\(A_g \) je plocha uvažované podlahové konstrukce. \([m^2]\)

\(P \) je obvod uvažované podlahové konstrukce ve styku s obvodem budovy. \([m]\)

Tepelné ztráty do nebo z vytápěných prostorů při různých teplotách \(H_{T,ij} \) \([W/K]\)

\[H_{T,ij} = \sum_k A_k \cdot U_k \cdot f_{ij} \]

Kde \(f_{ij} \) je redukční tepelný součinitel. Koriguje rozdíl mezi teplotou sousedního prostoru a venkovní výpočtové teploty

\[f_{ij} = \frac{\theta_{\text{int},i} - \theta_{\text{vytápěného sousedního prostoru}}}{\theta_{\text{int},i} - \theta_e} \]

1.3.1.3 VÝPOČET TEPELNÝCH ZTRÁT JEDNOTLIVÝCH MÍSTNOSTÍ

Pomocí vzorců a postupů uvedených v kapitole 1.3.1.2. byly vypočítány tepelné ztráty jednotlivých místností. Výsledné hodnoty jsou uvedeny v následující tabulce.
<table>
<thead>
<tr>
<th>Označení místnosti</th>
<th>Název místnosti</th>
<th>Plocha [m²]</th>
<th>Objem [m³]</th>
<th>Vnitřní teplota θ_{int} [°C]</th>
<th>Ztráty [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>Schodiště</td>
<td>40,28</td>
<td>664,62</td>
<td>18</td>
<td>1493</td>
</tr>
<tr>
<td>2.02</td>
<td>Restaurace</td>
<td>516,32</td>
<td>1807,12</td>
<td>20</td>
<td>4010</td>
</tr>
<tr>
<td>2.03</td>
<td>Salón Rozhodčích</td>
<td>50,87</td>
<td>178,05</td>
<td>20</td>
<td>486</td>
</tr>
<tr>
<td>2.04</td>
<td>Salón</td>
<td>42,92</td>
<td>150,22</td>
<td>20</td>
<td>233</td>
</tr>
<tr>
<td>2.05</td>
<td>Salón</td>
<td>69,85</td>
<td>244,48</td>
<td>20</td>
<td>625</td>
</tr>
<tr>
<td>2.06</td>
<td>Mytí nádobí</td>
<td>27,15</td>
<td>95,03</td>
<td>22</td>
<td>537</td>
</tr>
<tr>
<td>2.07</td>
<td>Šéfkuchař</td>
<td>13,61</td>
<td>47,64</td>
<td>20</td>
<td>293</td>
</tr>
<tr>
<td>2.08</td>
<td>VZT kuchyně</td>
<td>15,23</td>
<td>53,31</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>2.09</td>
<td>Schodiště kuchyně</td>
<td>20,65</td>
<td>144,55</td>
<td>18</td>
<td>--</td>
</tr>
<tr>
<td>2.10</td>
<td>Kuch. -příprava</td>
<td>60,68</td>
<td>212,38</td>
<td>24</td>
<td>1414</td>
</tr>
<tr>
<td>2.11</td>
<td>Schodiště</td>
<td>18,48</td>
<td>0,00</td>
<td>18</td>
<td>513</td>
</tr>
<tr>
<td>2.12</td>
<td>WC Pánské</td>
<td>18,22</td>
<td>63,77</td>
<td>18</td>
<td>-30</td>
</tr>
<tr>
<td>2.13</td>
<td>WC Dámské</td>
<td>18,22</td>
<td>63,77</td>
<td>18</td>
<td>-42</td>
</tr>
<tr>
<td>2.14</td>
<td>Sklad nápojů</td>
<td>20,81</td>
<td>72,84</td>
<td>18</td>
<td>-41</td>
</tr>
<tr>
<td>2.15</td>
<td>VZT 2.NP</td>
<td>20,12</td>
<td>70,42</td>
<td>15</td>
<td>---</td>
</tr>
<tr>
<td>2.16</td>
<td>Salón</td>
<td>29,76</td>
<td>104,16</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>2.17</td>
<td>Výtah</td>
<td>4,80</td>
<td></td>
<td>18</td>
<td>--</td>
</tr>
</tbody>
</table>

Tabulka 1.4 - Tepelné ztráty místostí 2.NP

1.3.2 TEPELNÁ ZÁTĚŽ

1.3.2.1 OKRAJOVÉ PODMÍNKY PRO VÝPOČET TEPELNÉ ZÁTĚŽE

1.3.2.2 TEPELNÉ ZISKY Z VNĚJSÍHO PROSTŘEDÍ

Tepelná zátěž okny – prostup konvekcí Q_{ok} [W]

$$ Q_{ok} = U_o \cdot S_o \cdot (t_e - t_i) $$

Kde U_o je součinitel prostupu tepla oknem [W/m²·K]

S_o je plocha okna včetně rámu [m²]

(t_e-t_i) je rozdíl teplot mezi vnějším a vnitřním prostředím [K]

Tepelná zátěž okny – radiací Q_{or} [W]

$$ Q_{or} = [S_{os} \cdot I_o \cdot c_o + (S_o - S_{os}) \cdot I_{ad}] \cdot s \cdot n_o $$

16
Kde \(S_{os} \) je oslněný povrch okna \([m^2] \)

\(I_o \) je celková intenzita sluneční radiace procházející standardním jednoduchým zasklením \([W/m^2] \)

\(I_{od} \) je intenzita difuzní sluneční radiace procházející standardním jednoduchým zasklením \([W/m^2] \)

\(s \) je stínící součinitel [-]

\(c_o \) je korekce čistoty atmosféry [-]

Součinitele \(I_o \) a \(I_{od} \) [5] byly pro výpočet tepelné zátěže převzaty z Tabulky 1.5 a Tabulky 1.6

<table>
<thead>
<tr>
<th>den měsíce</th>
<th>směr</th>
<th>Intenzity celkové sluneční radiace (I_o) ([W/m^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SV</td>
<td>98 333 432 417 325 189 163 166 163 153 138 117 92 63 28</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>96 372 555 628 605 505 351 166 163 153 138 117 92 63 28</td>
</tr>
<tr>
<td></td>
<td>JV</td>
<td>55 230 407 540 611 615 556 442 289 153 138 117 92 63 28</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>28 63 92 204 340 454 530 556 530 454 340 204 92 63 28</td>
</tr>
<tr>
<td></td>
<td>JZ</td>
<td>28 63 92 117 138 153 289 442 556 615 611 540 407 230 55</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>28 63 91 117 138 153 163 166 351 505 605 628 555 372 92</td>
</tr>
<tr>
<td></td>
<td>SZ</td>
<td>28 63 92 117 138 153 163 166 185 325 417 432 333 98</td>
</tr>
<tr>
<td></td>
<td>HOR</td>
<td>54 177 332 491 634 747 819 843 819 747 634 491 333 177 54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>den měsíce</th>
<th>směr</th>
<th>Intenzity sluneční radiace (I_o) ([W/m^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. červenec</td>
<td>S</td>
<td>45 87 80 100 117 130 139 141 139 130 117 100 80 87 45</td>
</tr>
<tr>
<td></td>
<td>SV</td>
<td>85 287 361 321 217 135 139 141 139 130 117 100 78 53 24</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>83 322 481 539 505 389 232 141 139 130 117 100 78 53 24</td>
</tr>
<tr>
<td></td>
<td>JV</td>
<td>41 180 335 452 511 506 437 316 185 130 117 100 78 53 24</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>24 53 78 128 230 335 409 435 409 335 230 128 78 53 24</td>
</tr>
<tr>
<td></td>
<td>JZ</td>
<td>24 53 78 100 117 130 185 316 437 506 511 452 335 180 41</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>24 53 78 100 117 130 139 141 232 389 505 539 481 322 83</td>
</tr>
<tr>
<td></td>
<td>SZ</td>
<td>24 53 78 100 117 130 139 141 139 135 217 321 361 287 85</td>
</tr>
<tr>
<td></td>
<td>HOR</td>
<td>41 122 249 397 534 640 706 729 706 640 534 397 249 122 41</td>
</tr>
</tbody>
</table>

Tabulka 1.5 - Intenzity celkové sluneční radiace

Tabulka 1.6 – Intenzity sluneční radiace \(I_o \)

Stínící součinitel \(s \) byl pro výpočet tepelné zátěže místností převzat z [5]
Oslněný povrch okna S_{os} se určí pomocí vzorce

$$S_{os} = [L - (e_1 - f)] \cdot [H - (e_2 - g)]$$

Kde
L je šířka zasklené části [m]
H je výška zasklené části [m]
f je odstup vodorovné části okna od slunolamů [m]
g je odstup svislé části okna od slunolamů [m]
e_1 a e_2 jsou délky stínů v okenním otvoru od okraje slunolamů [m]

Obrázek 1.3 - Oslunění výplně otvoru[5]

Tepelné zisky stěnami Q_s [W]

Venkovní stěny je možno rozdělit do tří skupin z hlediska jejich tepelné kapacity, a tím i fázovém posunutí teplotních kmitů tepelných toků. [1]

a) stěny lehké (tloušťka stěny je menší než 0,08m)
b) stěny středně těžké (tloušťka stěny je v rozmezí 0,08m až 0,45m)
c) stěny těžké (tloušťka stěny je větší než 0,45m)

Tloušťka lehkého obvodového pláště je přibližně $\delta=0,4$m. Z tohoto důvodu se tepelné zisky stanoví jako pro stěnu středně těžkou z následujícího vzorce.

$$Q_s = U_s \cdot S \cdot [(t_{rm} - t_I) + m \cdot (t_{r\psi} - t_I)]$$

Kde
$t_{r\psi}$ je rovnocenná slunečná teplota vzduchu v době o ψ dříve. [°C]
m je zmenšení teplotního kolísání.

Přibližný výpočet m a ψ uvádějí následující vztahy
\[\psi = 32 \cdot \delta - 0.5 \]
\[m = \frac{1 + 7.6 \cdot \delta}{2500^\delta} \]

Rovnocenné sluneční teploty vzduchu pro \(t_{e_{\max}} = 30 \, ^\circ C \),
\(t_{e_{\max}} - t_{e_{\min}} = 14 \, K \), \(e = 0,6 \) pro měsíce červenec

<table>
<thead>
<tr>
<th>Hodiny</th>
<th>(t_e)</th>
<th>16,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,7</td>
<td>16,9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15,2</td>
<td>16,9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18,0</td>
<td>16,9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16,2</td>
<td>16,9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16,9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18,1</td>
<td>16,9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19,5</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>21,2</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23,9</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>24,8</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>26,5</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>27,9</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>29,1</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>29,8</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>30,0</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>29,8</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>29,1</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>27,9</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>26,5</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>24,8</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>23,0</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>21,2</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>19,5</td>
<td>23,2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>18,1</td>
<td>23,2</td>
<td></td>
</tr>
</tbody>
</table>

| průměr | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 | 23,2 |

Tabulka 1.7 - Rovnocenné sluneční teploty vzduchu [5]

Tepelné zisky z okolních místností s jinou teplotou interiéru \(Q_s \) [W]

\[Q_s = U_k \cdot S \cdot (t_{is} - t_i) \]

Kde \(t_{is} \) je teplota interiéru sousední místnosti [°C]
1.3.2.3 TEPELNÉ ZISKY Z VNITŘNÍHO PROSTŘEDÍ

Produkce tepla lidmi \(Q_L \) [W]

\[
Q_L = i_1 + Q_1 \cdot (36 - t_i)
\]

Kde \(Q_L \) je produkce citelného tepla muže ve [W/10]. Primárně se určuje 62W při mírně aktivní práci. Ostatní možné hodnoty jsou stanoveny v tabulce 1.8

\(i_1 \) je počet osob v místnosti. Stanovuje se podle následujícího vzorce, kde \(i_z, i_d, i_m \)

\[
i_1 = 0,85i_z + 0,75i_d + i_m
\]

<table>
<thead>
<tr>
<th>Činnost člověka</th>
<th>Místo činnosti</th>
<th>Hodnoty metabolického tepla (W)</th>
<th>Produkce tepla lidí (Q_1) ve W pro teplotu vzduchu v °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedící, odpočívající</td>
<td>divadlo, kino</td>
<td>115</td>
<td>93 33 74 60 68 70 62 79 50 97</td>
</tr>
<tr>
<td>Sedící, mírně aktivní</td>
<td>kanceláře, byt</td>
<td>140</td>
<td>93 70 74 98 68 107 62 116 50 135</td>
</tr>
<tr>
<td>Stojící, lehká práce, vaření, mytí</td>
<td>obchody, skladové</td>
<td>150</td>
<td>90 89 72 116 66 125 60 134 48 152</td>
</tr>
<tr>
<td>Chodící, přecházející</td>
<td>obchodní domy, banky</td>
<td>160</td>
<td>96 95 77 124 70 134 64 143 51 162</td>
</tr>
<tr>
<td>Náročnější fyzická práce</td>
<td>dílny</td>
<td>240</td>
<td>99 203 79 226 73 234 66 244 53 262</td>
</tr>
<tr>
<td>Mírný tanec</td>
<td></td>
<td>260</td>
<td>116 215 92 250 85 261 77 273 62 296</td>
</tr>
</tbody>
</table>

Tabulka 1.8 – Produkce tepla a vodní páry od lidí [5]

Produkce tepla od svítidel \(Q_{sv} \) [W]

\[
Q_{sv} = q_{sv} \cdot S_{osv}
\]

Kde \(q_{sv} \) je produkce tepla od osvětlení [W/m²] stanoven dle Tabulky 1.9

\(S_{osv} \) je osvětlená plocha [m²]
<table>
<thead>
<tr>
<th>Pracoviště</th>
<th>Intenzita osv.</th>
<th>žárovky</th>
<th>zářivky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skladisti, byty, restaurace, divadla</td>
<td>120</td>
<td>20 - 30</td>
<td>7 - 9</td>
</tr>
<tr>
<td>Učebny, pokladny</td>
<td>250</td>
<td>40 - 55</td>
<td>13 - 18</td>
</tr>
<tr>
<td>Kanceláře, výpočetní střediska, výzkum</td>
<td>500</td>
<td>75 – 105</td>
<td>25 – 35</td>
</tr>
<tr>
<td>Výstavy, obchodní domy, jemná montáž</td>
<td>750</td>
<td>115 - 160</td>
<td>38 – 53</td>
</tr>
<tr>
<td>Montáž elektroniky, retuš</td>
<td>1000</td>
<td>50 – 70</td>
<td></td>
</tr>
<tr>
<td>Nejníročnější jemná montáž, elektronika</td>
<td>1500</td>
<td>75 – 105</td>
<td></td>
</tr>
<tr>
<td>Hodinářství, subminiaturní elektronika</td>
<td>2000</td>
<td>100 - 140</td>
<td></td>
</tr>
<tr>
<td>Televizní studio</td>
<td>nad 2000</td>
<td>nad 140</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka 1.9 - Produkce tepla od osvětlení [5][3]

Tepelné zisky od elektrických zařízení, technologie \(Q_e \) [W]

\[
Q_e = c_1 \cdot c_3 \cdot \Sigma P
\]

Kde
\(c_1 \) je součinitel současnosti [-]
\(c_3 \) je součinitel využití stroje [-]
\(P \) je příkon spotřebičů [W]

Tepelné zisky od jídel \(Q_j \) [W]

Ve stravovacích zařízeních se tepelná produkce od jídel počítá jako 5Wh od jednoho jídla [8] V restauracích 1. a 2. třídy se uvažuje na jedno místo u stolu jedno jídlo na hodinu.

\[
Q_j = 5 \cdot n \cdot j
\]

Kde
\(n \) je počet míst v restauraci [-]
\(j \) je počet vydaných jídel na jedno místo za hodinu [h⁻¹]
1.3.2.4 VÝPOČET TEPELNÝCH ZISKŮ JEDNOTLIVÝCH MÍSTNOSTÍ

Pomocí vzorců a postupů uvedených v kapitole 1.3.2 byly vypočítány tepelné zisky jednotlivých místností. Výsledné hodnoty jsou uvedeny v tabulce 1.10.

<table>
<thead>
<tr>
<th>Označení místnosti</th>
<th>Název místnosti</th>
<th>Plocha [m²]</th>
<th>Objem [m³]</th>
<th>Vnitřní teplota (\theta_{\text{int}}) [°C]</th>
<th>Zisky [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>Schodiště</td>
<td>40,28</td>
<td>664,62</td>
<td>30</td>
<td>6006</td>
</tr>
<tr>
<td>2.02</td>
<td>Restaurace</td>
<td>516,32</td>
<td>1807,12</td>
<td>26</td>
<td>28192</td>
</tr>
<tr>
<td>2.03</td>
<td>Salón Rozhodčích</td>
<td>50,87</td>
<td>178,05</td>
<td>26</td>
<td>2381</td>
</tr>
<tr>
<td>2.04</td>
<td>Salón</td>
<td>42,92</td>
<td>150,22</td>
<td>26</td>
<td>1568</td>
</tr>
<tr>
<td>2.05</td>
<td>Salón</td>
<td>69,85</td>
<td>244,48</td>
<td>26</td>
<td>5972</td>
</tr>
<tr>
<td>2.06</td>
<td>Mytí nádobí</td>
<td>27,15</td>
<td>95,03</td>
<td>26</td>
<td>2946</td>
</tr>
<tr>
<td>2.07</td>
<td>Šéfkuchař</td>
<td>13,61</td>
<td>47,64</td>
<td>26</td>
<td>1086</td>
</tr>
<tr>
<td>2.08</td>
<td>VZT kuchyně</td>
<td>15,23</td>
<td>53,31</td>
<td>30</td>
<td>--</td>
</tr>
<tr>
<td>2.09</td>
<td>Schodiště kuchyně</td>
<td>20,65</td>
<td>144,55</td>
<td>30</td>
<td>--</td>
</tr>
<tr>
<td>2.10</td>
<td>Kuch. -příprava</td>
<td>60,68</td>
<td>212,38</td>
<td>28</td>
<td>--</td>
</tr>
<tr>
<td>2.11</td>
<td>Schodiště</td>
<td>18,48</td>
<td>0,00</td>
<td>30</td>
<td>378</td>
</tr>
<tr>
<td>2.12</td>
<td>WC Pánské</td>
<td>18,22</td>
<td>63,77</td>
<td>26</td>
<td>602</td>
</tr>
<tr>
<td>2.13</td>
<td>WC Dámské</td>
<td>18,22</td>
<td>63,77</td>
<td>26</td>
<td>902</td>
</tr>
<tr>
<td>2.14</td>
<td>Sklad nápojů</td>
<td>20,81</td>
<td>72,84</td>
<td>26</td>
<td>2867</td>
</tr>
<tr>
<td>2.15</td>
<td>VZT 2.NP</td>
<td>20,12</td>
<td>70,42</td>
<td>30</td>
<td>--</td>
</tr>
<tr>
<td>2.16</td>
<td>Salón</td>
<td>29,76</td>
<td>104,16</td>
<td>26</td>
<td>3168</td>
</tr>
<tr>
<td>2.17</td>
<td>Výtah</td>
<td>4,80</td>
<td></td>
<td>26</td>
<td>--</td>
</tr>
</tbody>
</table>

Tabulka 1.10 – Tepelné zisky místnosti 2.NP

1.4 PRODUKCE ŠKODLIVIN V BUDOVÁCH

1.4.1 PRODUKCE VODNÍ PÁRY

Základními zdroji vodních zisků v občanských budovách jsou lidé a odpar z mokrých povrchů. V technologických provozech je třeba vycházet z produkce vodní páry konkrétních zdrojů [1].

Produkce vodní páry od lidí \(M_{w1} \) [g/h]

\[
M_{w1} = n_l \cdot g_w
\]

Kde \(n_l \) je počet osob [-]

\(g_w \) je produkce vodní páry [g/h]. Určí se podle Tabulky 1.11

Produkce vodní páry od jídel

V restauracích se produkce vodní páry od jídel stanovuje jako 10g vodní páry na jedno jídlo. [8].
Produkce vodní páry od zařízení

<table>
<thead>
<tr>
<th>Zdroj</th>
<th>Výkon [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Člověk při lehké činnosti</td>
<td>30 - 60 g/h</td>
</tr>
<tr>
<td>při středně těžké práci</td>
<td>120 - 200 g/h</td>
</tr>
<tr>
<td>při těžké práci</td>
<td>200 - 300 g/h</td>
</tr>
<tr>
<td>Koupelna s vanou</td>
<td>700 g/h</td>
</tr>
<tr>
<td>se sprchou</td>
<td>2600 g/h</td>
</tr>
<tr>
<td>Kuchyně při vaření</td>
<td>600 - 1500 g/h</td>
</tr>
<tr>
<td>průměrně denně</td>
<td>100 g/h</td>
</tr>
<tr>
<td>Sušení prádla (prášek na 4,5 kg)</td>
<td>50 - 200 g/h</td>
</tr>
<tr>
<td>odstředěného</td>
<td>100 - 500 g/h</td>
</tr>
<tr>
<td>mokrého kapajícího</td>
<td></td>
</tr>
<tr>
<td>Bazény (volné vodní plochy)</td>
<td>40 g/m².h</td>
</tr>
<tr>
<td>Rostliny</td>
<td></td>
</tr>
<tr>
<td>pokojové květiny, např. fiakra (Viola)</td>
<td>5 - 10 g/h</td>
</tr>
<tr>
<td>rostliny v květináči, např. kapradina (Comononia asplenifolia)</td>
<td>7 - 15 g/h</td>
</tr>
<tr>
<td>fíkus střední velkostí (Ficus elastica)</td>
<td>10 - 20 g/h</td>
</tr>
</tbody>
</table>

Tabulka 1.11- Zdroje vodní páry a množství její produkce [9]

1.4.2 PRODUKCE OXIDU UHLIČITÉHO

Oxid uhličitý je nejběžnější škodlivinou v obytných budovách. Jeho největším zdrojem je právě člověk, jeho metabolismem, dýchacími a termoregulačními pochody.

Produkce CO₂ člověkem byla stanovena jako \(m = 19 \cdot h^{-1} \cdot os^{-1} \) [10]

1.5 STANOVENÍ OBJEMU PŘIVÁDĚNÉHO VZDUCHU

1.5.1 OBJEM PŘIVÁDĚNÉHO VZDUCHU PRO POKRYTÍ TEPELNÝCH ZTRÁT A TEPELNÉ ZÁTEŽE

Objem přiváděného vzduchu pro pokrytí tepelných ztrát \(V \) [m³/h]

\[
V = \frac{Q_{ztráty}}{\rho \cdot c_p \cdot (t_p - t_i)}
\]

Kde
- \(Q_{ztráty} \) jsou celkové tepelné ztráty místnosti [W] [10][1]
- \(\rho \) je měrná hmotnost vzduchu = 1,2kg/m³
- \(c_p \) je měrná tepelná kapacita vzduchu = 1003 J·kg⁻¹·K⁻¹ =0,278 W·kg⁻¹·K⁻¹
- \(t_p \) je teplota přiváděného vzduchu [°C]
- \(t_i \) je teplota interiéru[°C]

Objem přiváděného vzduchu pro pokrytí tepelné zátěže \(V \) [m³/h]
V = \frac{Q_{získy}}{\rho \cdot C_p \cdot (t_i - t_p)}

Kde \(Q_{získy} \) je celková tepelná zátěž místnosti [W] \[10\]

1.5.2 OBJEM PŘIVÁDĚNÉHO ČERSTVÉHO VZDUCHU PRO ODVOD ŠKODLIVIN

Množství vzduchu potřebné pro udržení požadované relativní vlhkosti \(V \) [m³/h]

\[
V = \frac{G}{\rho \cdot (x_i - x_e)}
\]

Kde \(G \) je produkce vlhkosti v interiéru [g/h]
\(\rho \) je hustota vzduchu = 1,2 kg/m³
\(x_i \) je měrná vlhkost interiérového vzduchu [g/kg]
\(x_e \) je měrná vlhkost přiváděného venkovního vzduchu [g/kg]

Pro letní návrhový stav \(x_i = 9,0 \) g/kg
\(x_e = 6,0 \) g/kg

Množství vzduchu potřebné pro udržení nejvýše přípustné koncentrace oxidu uhličitého \(V \) [m³/h]

\[
V = \frac{m}{\rho_{max} - \rho}
\]

Kde \(m \) je produkce CO₂ [m³/h]
\(\rho_{max} \) je maximální povolená koncentrace CO₂ v interiéru = 1200ppm [g/m³]
\(\rho \) je koncentrace CO₂ ve venkovním přiváděném vzduchu = 350ppm [g/m³]

1.5.3 STANOVENÍ OBJEMU PŘIVÁDĚNÉHO VZDUCHU DO MÍSTNOSTÍ

Z výše uvedených vztažů byl vypočítán minimální objem přiváděného vzduchu pro zajištění komfortu pro osoby pohybující se uvnitř objektu. Průběh a celkové výsledky objemu přiváděného vzduchu jsou vypočteny v Tabulce 1.12
<table>
<thead>
<tr>
<th>Váha materiálu [t]</th>
<th>Objem přiváděného vzduchu do obydlí [m³/min]</th>
<th>Objem přiváděného vzduchu do obydlí [l/min]</th>
<th>Objem přiváděného vzduchu do obydlí [l/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1000</td>
<td>16667</td>
<td>46.67</td>
</tr>
<tr>
<td>1.0</td>
<td>2000</td>
<td>33333</td>
<td>93.33</td>
</tr>
<tr>
<td>1.5</td>
<td>3000</td>
<td>50000</td>
<td>133.33</td>
</tr>
<tr>
<td>2.0</td>
<td>4000</td>
<td>66667</td>
<td>183.33</td>
</tr>
</tbody>
</table>

Tabulka 1.12 - Objem přiváděného vzduchu do místností
1.6 NÁVRH SYSTÉMU VZT

1.6.1 DISTRIBUČNÍ PRVKY

V prostorách restaurace jízdárny byl zvolen směšovací způsob distribuce vzduchu, kdy dochází k míšení vnitřního vzduchu s proudy přiváděného vzduchu. Jako distribuční prvky byly v první fázi projektu navržen směšovací způsob distribuce vzduchu, kdy dochází k míšení vnitřního vzduchu s proudy přiváděného vzduchu. Jako distribuční prvky byly v první fázi projektu navrženy elegantní štěrbinové vyústky po obvodu místnosti. Jejich použití bylo ale s ohledem na vysokou rychlost v pobytového prostoru problematické. Použití těchto prvků nesplnilo nařízení vlády č. 523/2002, které stanovuje přípustné hodnoty mikroklimatických parametrů, kromě jiného i rychlost proudění vzduchu v pásmu pobytu osob. Zde nařízení uvádí pro osoby v sedě optimální rychlost proudění vzduchu v rozmezí 0,1 až 0,2 m/s. Při této rychlosti je zajištěno dostatečná účinnost větrání, ale nevzniká nepříjemný průvan. Z výše uvedeného důvodu bylo nutné nahradit štěrbinové vyústky vířivými anemostaty. Tyto prvky umožňují přívod velkého množství vzduchu i v relativně nízkých prostorech. Tyto prvky byly umístěny do plánovaného kazetového podhledu 600 mm x 600 mm ve výšce 3m nad podlahou místnosti. Jejich pozice byla upravena tak, aby čerstvý vzduch byl přiváděn primárně nad místa, kde jsou plánovány stoly. Odvod vzduchu byl proveden nad uličkami pro průchod. Obráceně tomu tak je v místnosti 2.02 v blízkosti baru, kde je vzduch přiváděn nad taneční parket, a odváděn nad stoly a nad barem. Návrh distribučních prvků pro jednotlivé části je uveden v tabulce 1.11

Jako odvodní prvky byly navrženy perforované odvodní difuzory pro kazetové stropy 600 mm x 600 mm. Místnosti 2.12 – WC Pánské, 2.13 – WC Dámské a 2.14 – Sklad nápojů, budou větrány podtlakově. Vzduch bude nasáván větrací mřížkou ve spodní části dveří a odváděn malými ventily, aby bylo zamezeno nechtěnému šíření pachů do prostoru restaurace, případně do kuchyně.

1.6.2 TRASA POTRUBÍ

Hlavní větve přívodního a odvodního potrubí jsou navrženy v prostoru mezi stropem a podhledem. Vzdálenost mezi plochou stropu a spodním licem distribučních prvků je 6000mm. Hlavní potrubí bylo navrženo jako čtyřhranné z pozinkovaného plechu. Odbočky k jednotlivým vyústím budou provedeny z kruhového pozinkovaného spiro potrubí o průměrech 200mm, 250mm a 315mm. Samotné dopojení ke koncovým elementum bude v prostorách restaurace provedeno pomocí flexi potrubí o průměru 200mm a 250mm. Z důvodu možné přesné montáže vyústek do kazetového podhledu 600mm x 600mm.
Návrh rozměru potrubí byl proveden s ohledem na rychlost proudění vzduchu. V přívodním potrubí k vyústím, byla v primárním návrhu volena rychlost 3m/s a v hlavní větví rychlost 4m/s až 5m/s. [1] U potrubí připojeném k vzduchotechnické jednotce se počítalo s rychlosti 6m/s. V místech křížení přívodního a odvodního potrubí bude přívodní potrubí situováno v horní části, odvodní ve spodní části.

1.6.2.1 ŠÍŘENÍ HLUKU

1.6.2.2 IZOLACE POTRUBÍ

Výpočet potřebné tloušťky izolace hlavního přívodního vzduchotechnického potrubí byl proveden pomocí online kalkulátoru. [12] Tloušťka izolace na přívodním potrubí byla stanovena na 20mm standardní minerální vlny.

1.6.3 TLAKOVÉ ZTRÁTY

Pro účely návrhu vzduchotechnické jednotky je nutné znát tlakovou ztrátu hlavní větve potrubí. Celkové tlakové ztráty můžeme rozdělit na ztráty třením a ztráty místními odpory. [3]

\[\Delta p_z = \Delta p_{t\theta} + \Delta p_{\xi} \]

kde \(\Delta p_z \) je celková tlaková ztráta úseku [Pa]
\(\Delta p_{t\theta} \) je tlaková ztráta třením [Pa]
\(\Delta p_{\xi} \) je tlaková ztráta místními odpory [Pa]

1.6.3.1 ZTRÁTY TŘENÍM

Ztráty třením byly pro účely bakalářské práce vypočítány z následujícího vztahu.

\[\Delta p_{t\theta} = \frac{\lambda}{d} \cdot \frac{w^2}{2} \cdot \rho \cdot l \]

kde \(\lambda \) je součinitel tření [-], závisí na \(Re \) a drsnosti sten potrubí \(k \)

a) při laminárním proudění \(\lambda = \frac{64}{Re} \)

b) při turbulentním proudění se rozlišují dva případy

- s hydraulicky hladkými stěnami
\[\varepsilon = \frac{k}{d} \leq \frac{30}{Re^{0.875}} \Rightarrow \frac{1}{\sqrt{\lambda}} = 2 \cdot \log(Re \cdot \sqrt{\lambda}) - 0.8 \]

- s hydraulicky drsnými stěnami

\[\varepsilon = \frac{k}{d} \leq \frac{30}{Re^{0.875}} \Rightarrow \frac{1}{\sqrt{\lambda}} = 1,14 - 2 \cdot \log \varepsilon \]

kde \(\varepsilon \) je relativní drsnost potrubí

\[k \] je drsnost stěn potrubí

\(d \) je vnitřní průměr potrubí [m],

pro čtyřhranné potrubí se používá ekvivalentní průměr \(d_e \)

\[d_e = \frac{2 \cdot a \cdot b}{a + b} \]

\(w \) je střední rychlost proudění [m/s]

\(\rho \) je měrná hmotnost kapaliny [kg/m³]

\(l \) je délka potrubí [m]

1.6.3.2 ZTRÁTY MÍSTNÍMI ODPORY

Pro získání hodnot ztráty místními odpory byl použit následující vztah. [3]

\[\Delta p_\xi = \sum \xi \cdot \frac{w^2}{2} \cdot \rho \]

kde \(\xi \) je součinitel místního odporu [-].

pro jeho určení byl použit online kalkulátor [13]

\(w \) je střední rychlost proudění [m/s]

\(\rho \) je měrná hmotnost kapaliny [kg/m³]

V tabulce 1.13 jsou vypočteny tlakové ztráty hlavních větví vzduchotechnického potrubí
Výpočet tlakových ztrát při řivodního vzduchotechnického potrubí

<table>
<thead>
<tr>
<th>Table 1.3 - Výpočet tlakových ztrát hlavní větvě</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graf</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

Výpočet tlakových ztrát odvodního vzduchotechnického potrubí

<table>
<thead>
<tr>
<th>Table 1.3 - Výpočet tlakových ztrát hlavní větvě</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graf</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>
1.6.4 VZDUCHOTECHNICKÁ JEDNOTKA

Z výše uvedených výpočtů byla sestavena vzduchotechnická jednotka pomocí návrhového softwaru firmy ATREA s. r. o. [14] Tento program umožňuje efektivní výběr nejvhodnějšího zařízení s eliminací chyb vzniklých nekompatibilních součástek vzduchotechnické jednotky. Výstupem z návrhového softwaru jsou h-x diagramy, schéma a specifikace jednotky, technický popis a požadavky na stavbu včetně rozměrového nákresu. Všechny tyto dokumenty jsou obsaženy v příloze bakalářské práce.

Výsledkem je návrh větrací jednotky řady DUPLEX Roto 15000 pro vnitřní použití. Tyto jednotky mohou být díky rozsáhlé variabilitě uplatněny jak pro komfortní větrání, tak pro horkovzdušné vytápění, nebo chlazení různých provozů včetně restaurací.

Jedná se o vzduchotechnickou jednotku s kondenzačním rekuperačním výměníkem R.T. 1700. Ohřev vzduchu v zimním provozu je opatřen vodním ohřivačem T 1500 2R / typ 2 o výkonu 32kW při teplotním spádu 70/50 °C. Teplonosná látka je 34% roztok etylenglykolu pro teploty -20°C. Ohřívač je opatřen 4-cestným regulačním uzlem. Pro letní provoz je jednotka opatřena vodním chladičem W 1500 4R / typ2 o výkonu 37kW při teplotním spádu 6/12°C ovládaný 3-cestným regulačním uzlem.

Obrázek 1.4 - Návrhový software ATREA s. r. o.
1.6.4.1 NAPOJENÍ VZDUCHOTECHNICKÉ JEDNOTKY

Vzduchotechnická jednotka bude umístěna v 2.NP v místě původně určeným architektem. Vzhledem k rozměrům a odstupovým vzdálenostem kolem vzduchotechnické jednotky bylo nutné upravit půdorys. Prostor vyhrazený pro sklad nápojů by přemístěn do místnosti 2.10 - kuchyn příprava. V zádveří původně plánované místnosti bude vybudován příruční sklad nápojů.

Vzduchotechnické potrubí

Venkovní vzduch přiváděný do restaurace je nasáván na východní fasádě otvorem 700mm x 900mm, který bude zakryt nerezovou protidešťovou žaluzií. Vzhledem ke společnému překlenutí prostoru jízdárny a hotelového komplexu membránou, není vhodné umístit nasávání jednotku nad střechu, kde může docházet ke shromažďování pachů. Z důvodu zabránění výraznějšímu šíření vibrací do potrubí jsou potrubí vzduchovodů připojeny přes pružné manžety na všech hrdlech.

Odpadní vzduch bude vyveden potrubím o průměru 800mm ven z objektu na východní fasádu, kde bude sveden svíše dolů. Pod úrovni terénu dojde ke smíšení odpadního vzduchu ze všech provozů a následně vyfukován rozměrným čtyřhranným potrubím nad příjezdovou rampu do podzemních garáží. V potrubí bude zabudována zpětná klapka. Dle požadavků architekta tento systém vytváří charakteristický prvek hotelového komplexu.

Přiváděný vzduch k distribučním elementům bude po opuštění vzduchotechnické jednotky veden pod stropem a nejkratší cestou opouští technickou místnost.

Odváděný vzduch bude do technické místnosti přiváděn ve dvou potrubích, které se spojují ve spodní rohové části místnosti. Následně jsou odváděny do vzduchotechnické jednotky.

Požadavky na ostatní profese TZB

Ve spodní části vzduchotechnické jednotky nutno zajistit odvod kondenzátu. Sífon je součástí zařízení. Průměr potrubí je 32mm.

K vodnímu ohřívači je nutno přivést topný výkon 31,6kW, na teplotním spádu 70/50 °C. Minimální průtok média je 1360 l/h. Připojení bude provedeno přes potrubí o vnitřním rozměru 1“.

Vodní chladič o výkonu 37,4kW bude připojen ke zdroji chladu o spádu 6/12 °C. Připojen bude potrubím o vnitřním rozměru 1“. Tlaková ztráta média bude ve výměníku 27kPa a ve ventilu 105kPa.

Ventilátory budou napojeny do sítě 400V. Vodiče budou navrženy na maximální příkon 5,4 kW a maximální proud 9,4 A.

Veškeré požadavky na připojení vzduchotechnické jednotky jsou uvedeny v Technické specifikaci v příloze bakalářské práce.
1.7 VYTÁPĚNÍ – CHLAZENÍ

Z tabulky 1.10 – Objem příváděného vzduchu do místností je patrné, že vzduchotechnické zařízení určené primárně k větrání není schopné ve všech místnostech pokrýt tepelné ztráty a tepelné zisky. Dimenzování vzduchotechnické jednotky na průtok vzduchu k těmto účelům by byl neekonomický. Pro dosažení požadované teploty interiéru v extrémních letních nebo zimních podmínkách budou v prostorách restaurace použity kazetové fan coil jednotky umístěné ve stropním podhledu. Do výměníku jednotky se přivádí studená/teplá voda kde dojde k předání tepla ze vzduchu nasávaného z místnosti. Ochlazený/ohřátý vzduch je následně vracen zpět do místnosti. Vzhledem k požadovanému malému chladicímu výkonu vyplývajícího z různorodosti provozu restaurace se nepředpokládá stály chod jednotek.

Rozmístění a počet fan coil jednotek je znázorněn ve výkresu 1- Rozmístění distribučních prvků v příloze.

1.8 ZÁVĚR

Výsledkem výpočtové části bakalářské práce je projekt vzduchotechniky restaurace hotelu jízdárny v Pardubicích. Cílem bylo dosažení optimálních mikroklimatických podmínek v extrémních letních a zimních podmínkách provozu. V této části byly vypočteny tepelné ztráty a tepelné zátěže jednotlivých místností. Následně byl stanoven optimální objem příváděného vzduchu do prostorů s ohledem na produkci vodní páry a CO\textsubscript{2} při plné obsazenosti restaurace. Následoval výběr a rozmístění vhodných distribučních prvků s ohledem na dispozici restaurace a rychlosti proudu vzduchu v pobytové zóně a vytvoření sítě potrubí. K výběru vzduchotechnické jednotky byl použit software firmy ATREA s.r.o., díky kterému byla navržena jednotka DUPLEX 15000 Roto.

2 ROZŠIŘUJÍCÍ ČÁST
2.1 ÚVOD

Dalším významnou částí objektu, která se neobejde bez nuceného větrání, je kuchyně. Vzhledem k složitosti návrhu a chybějícím podkladů o zařízení kuchyně a jeho rozmístění, bude tato část řešena pouze teoreticky. Zmíním se o požadavcích na větrání kuchyně s ohledem na komfortní pracovní prostředí pro personál. Budu se zabývat umístěním prvků pro přívod a odvod vzduchu a způsoby větrání, kde uvedu příklad výpočtu dle platné legislativy.

2.2 VĚTRÁNÍ KUCHYNĚ RESTAURACÍ

Nutnost větrání kuchyně vyplývá z nadměrné produkce tepla, vodních par, pachů a při použití volných plynových hořáků i z nutnosti odvodu spalin. Tyto škodliviny zásadně zhoršují pracovní podmínky zaměstnanců, způsobují kondenzaci par na chladnějším povrchu, zvýšenou korozí, ale i množení mikroorganismů.

Dimenzování větrání se provádí pro průměrný režim provozu. Počítá se s tím, že v extrémních podmínkách mohou navrhované teploty a vlhkost krátkodobě stoupnout. Pro dimenzování se vychází z maximální vnitřní teploty 28°C a relativní vlhkosti 70%. [2]

2.2.1 PROBLEMATIKA VĚTRÁNÍ KUCHYNÍ

V současné době je stav větrání v kuchyňských provozech velmi často mimo zájem jejich provozovatelů. Ve většině případů, se primárně investuje do kvalitních varných zařízení, vybavení pro hosty a dalších prvků, aby vše bylo v souladu s platnými hygienickými předpisy. Ovšem vzduchotechnika bývá často zanedbávána, v řadě případů až v rozporu s platnými zásadami. V těchto situacích je větrání zajištěno nevhodně, nebo pouze provizorní opravou původního zcela nevyhovujícího zařízení. Nároky nových spotřebičů na umístění ale tuto situaci značně komplikují. Velice často se pak v praxi stavá, že i v moderních kuchyních dochází ke kondenzaci vodních par a aerosolů na površích. Tím se vytváří příznivé prostředí pro tvorbu plísní, a naprosto nevhodné pracovní prostředí pro kuchaře.

Mezi nejčastější problémy ve vzduchotechnikách kuchyní je špatná instalace, nevhodné umístění větracích zařízení, úplná absence větracích zařízení, nebo větrací zařízení nejsou úmyslně užívány s ohledem na hlučnost, energetickou náročnost nebo průvan. Důsledkem je pak značný dyskomfort pro personál kuchyně. Při takto špatné navržené soustavě může dojít vlivem rozdílu tlaků k přívádění vzduchu z okolních místností, chodeb, restaurací, nebo až odtahů z WC a vestavěných plynových kotlů. V opačném případě pak dochází k přenosu znečištěného vzduchu z kuchyně dále do objektu. Kromě šíření zápachu do okolních místností pak také dochází k devastaci zařízení vlivem vlhkostí a možné tvorby plísní. Logickým důsledkem je pak nedůkladný vzduch, nespokojenost návštěvníků i personálu.

Z těchto důvodů nemožnosti komfortního používání, až úplné dysfunkce ventilační jednotky, je nutno dbát především samotný koncepční návrh vzduchotechnického systému ve vztahu ke kuchyňským zařízením. Pravidelná a kvalitní údržba celého systému a používání a pravidelné čištění tkaninových tukových filtrů je základem správně fungujícího systému. [15]
2.2.2 NUČENÉ VĚTRÁNÍ

U malých kuchyní sloužících pro přípravu jídel pro přibližně 10 osob se připouštělo větrání přirozeným způsobem, nejčastěji okny nebo větracími šachti. Dnes se už i u menších kuchyní požaduje minimálně podtlakové větrání, kdy se umísťuje odsávací zařízení nad sporáky. Tento způsob se používá jako součást větrání bytových jader, kdy je odsávání zajištěno malými ventilátory, nebo centrálně do odsávacích částí. Vzduch se do místnosti doplňuje větracími otvory ze sousedních prostorů, ventilačními štěrbinami v oknech, nebo přímo větracími prvky vyústěnými na fasádu. [2]

Při návrhu proudění vzduchu se předpokládá, že se větrací vzduch dokonale promíší se vzduchem ve větraném prostoru. Tento předpoklad však nelze téměř žádným způsobem distribuovat splnit. Výměna vzduchu v prostorech je vždy nerovnoměrná a tím logicky způsobí, že v okolí vyústek bude koncentrace škodlivin nižší, než je průměrná. V sekundárních proudech, které jsou indukovány primárními proudy vzduchu bude naopak koncentrace vyšší. Z tohoto důvodu je důležité, aby přívodní distribuční prvky byly v blízkosti pracovní oblasti. Nestačí tedy pouze dodržet intenzitu větrání, ale zvolit i vhodný rozvod vzduchu ve větraném prostoru s respektem k tlakovým poměrům v komplexu kuchyně. [16]

2.2.3 LEGISLATIVA

V roce 1999 byla v SRN vydána směrnice VDI 2052 (aktualizovaná 03/2006), která exaktním způsobem stanovuje postup při navrhování odsávacího zařízení a způsob vypočtu průtoku. Tato směrnice se postupně stává standardem i v ČR. [15]

2.2.3.1 VDI 2052

Hlavní zásady návrhu větrání kuchyní podle směrnice VDI 2052:

- Směrnice je platná pro všechny kuchyně s příkonem instalovaných zařízení větším než 25 kW
- Vzduchotechnické potrubí pro větrání připraven, skladů a výdeje nesmí být sloučeno do společného odtahu s kuchyní, s dálkovým ovládáním jednotlivých sektorů a s regulací otáček ventilátorů
- V kuchyních není povoleno použít cirkulaci vnitřního vzduchu
- Regulace otáček přiváděcích i odsávacích ventilátorů musí být shodná ve všech provozních režimech a vyrovnané v celé oblasti z důvodů zajištění rovnovážného větrání.
- Motory ventilátorů zabudovaných v produ odpadního potrubí, musí mít krytí min. IP 54
- Sací otvory venkovního vzduchu je nutno umístit alespoň 3m nad terén. Výfukové potrubí je doporučeno vyvést až nad střechu, nebo v dostatečné vzdálenosti s ohledem na směr větru, aby bylo zamezeno případnému nasávání odpadního vzduchu a zanášení pachů do oken.
- V určitých případech je nutno blokovat provoz plynových spotřebičů na provoz vzduchotechnického systému.
- Faktor současnosti provozu všech spotřebičů instalovaných v kuchyni se stanoví po dohodě s provozovatelem kuchyně s ohledem na předpokládanou zátěž. [15]

2.2.4 PŘÍVOD VĚTRACÍHO VZDUCHU

2.2.4.1 OBRAZY PROUDĚNÍ

Vhodné obrazy proudění lze vytvořit přívodem větracího neznečištěného vzduchu do pracovních míst směrem od personálu ke digestorům. Hybnost konvektivního proudu je velmi malá, proto při přivádění čerstvého vzduchu ke varné desce ze dvou stran, musí být průtoky vyváženy, aby nedošlo k vytačování konvektivního proudu vzduchu z předpokládaného směru. [16]

2.2.4.2 ZPŮSOBY PŘÍVODU VZDUCHU

Nejpřijatelnější způsoby přívodu vzduchu jsou takové, které vyvolávají směšování přiváděného vzduchu s vnitřním vzduchem, nebo zaplavenování přízemní vrstvy nad podlahou, kde se vlivem malých výšek stropu a relativně velkým rozdílem teplot uplatní vztakové síly. Při posuzování vhodnosti variant je třeba přihlédnout k stabilitě obrazu proudění na proměnný průtok vzduchu. [16]

a) Přívod směšováním

Tento způsob distribuce vzduchu se nejčastěji provádí mřížkami v boční stěně zákrytu. Přívod bývá zakončen děrovanou vyústítkou se stabilizací proudu lamelami. Dosah proudu musí být kontrolován na stabilní přilnutí ke stropu, což u proměnného průtoku vzduchu může být problém. U sníženého stropu je možno přivádět vzduch
vířivými vyústky podstropním proudem. Aby nedocházelo k odklánění konvektivního proudu vzduchu, doporučuje se použít více menších distribučních prvků. Další vyústky je pak vhodné umístit nad technologické linky a komunikační uličky. [16]

b) Přívod zaplavováním

2.2.5 VÝPOČET VĚTRÁNÍ KUCHYNÍ DLE VDI 2052

2.2.5.1 PARAMETRY MIKROKLIMATU KUCHYNĚ

\[t_{i,\text{opt}} = 18 \text{ až } 26 \, ^\circ\text{C} \quad \text{optimální teplota vzduchu v pobytovém pásmu} \]
\[w_{\text{max}} = 0,25 \text{ až } 0,45 \, \text{m/s} \quad \text{přípustné rychlosti pro proudění vzduchu (pro } t_{i} = 18 \text{ až } 32\, ^\circ\text{C)} \]
\[r_{\text{h,\text{opt}} = 80 \text{ až } 55\%} \quad \text{optimální relativní vlhkost vzduchu (pro } t_{i} = 20 \text{ až } 26\, ^\circ\text{C}) \]
\[x_{\text{max}} = 16,5 \, \text{g/kg s.v.} \quad \text{maximální vlhkost odváděného vzduchu} \]
\[x_{\text{opt}} = 11,5 \, \text{g/kg s.v.} \quad \text{optimální vlhkost vzduchu pro } r_{h} = 65\% \]
\[A_{\text{max}} = 50 \text{ až } 60 \, \text{dB} \quad \text{doporučená maximální hladina hluku v pobytovém pásmu} \]

Vlivem sálavého účinku kuchyňského zařízení stoupá v jejích blízkosti teplota oděvu kuchařů až o více než 10°C. Z tohoto důvodu se připouští v oblastech kolem těchto zařízení vyšší rychlosti proudění větracího vzduchu až 1m/s [16]
Tabulka 2.1- Produkce specifického citelného a latentního tepla a vlhkosti [15]

*) násobeno faktorem varné desky

<table>
<thead>
<tr>
<th>Kuchynská oblast</th>
<th>Tepelná kuchynská zarižení</th>
<th>Produkce citelného tepla (Q_a) [W / kW]</th>
<th>Produkce latentního tepla (Q_L) [W / kW]</th>
<th>Produkce vlhkosti (D) [g / (h kW)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Váření, pečení, outení</td>
<td>Produkce</td>
<td>Plynové zarižení</td>
<td>Produkce</td>
<td>Plynové zarižení</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varné kotle a rychlé automaticy</td>
<td>25</td>
<td>200</td>
<td>-</td>
<td>350</td>
</tr>
<tr>
<td>Tlakové kotle</td>
<td>40</td>
<td>10</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Vysokotlakové peříčky (zelené)</td>
<td>25</td>
<td>200</td>
<td>294</td>
<td>-</td>
</tr>
<tr>
<td>Vysokotlakové peříčky (průhodné)</td>
<td>25</td>
<td>200</td>
<td>294</td>
<td>-</td>
</tr>
<tr>
<td>Hornítlakové peříčky</td>
<td>100</td>
<td>100</td>
<td>285</td>
<td>-</td>
</tr>
<tr>
<td>Hornítlakové peříčky</td>
<td>100</td>
<td>100</td>
<td>285</td>
<td>-</td>
</tr>
<tr>
<td>Horkovzdušné peříčky</td>
<td>100</td>
<td>100</td>
<td>285</td>
<td>-</td>
</tr>
<tr>
<td>Výhodné panele</td>
<td>250</td>
<td>400</td>
<td>588</td>
<td>-</td>
</tr>
<tr>
<td>Smažící grilovací a rožnicí plošenky</td>
<td>150</td>
<td>200</td>
<td>294</td>
<td>-</td>
</tr>
<tr>
<td>Grily</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>Smažící a pečící brýle</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>Otevřené varné místo</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>Směsící a grilovací automaticy</td>
<td>150</td>
<td>100</td>
<td>285</td>
<td>-</td>
</tr>
<tr>
<td>Automaty na emulzi</td>
<td>150</td>
<td>100</td>
<td>285</td>
<td>-</td>
</tr>
<tr>
<td>Fritoly</td>
<td>700</td>
<td>700</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Fritovací automaticy s odsáváním</td>
<td>50</td>
<td>100</td>
<td>147</td>
<td>-</td>
</tr>
<tr>
<td>Fritovací automaticy bez odsávání</td>
<td>50</td>
<td>100</td>
<td>147</td>
<td>-</td>
</tr>
</tbody>
</table>

Smažení, grilování, pečení						
Směsící, grilovací a rožnicí plošenky	300	400	588	-	-	-
Grily	700	700	257	720	200	254
Smažící a pečící brýle	300	300	235	300	200	254
Otevřené varné místo	200	200	225	200	200	225
Směsící a grilovací automaticy	100	100	150	-	-	-
Automaty na emulzi	150	100	285	-	-	-
Fritoly	700	700	100	100	100	100
Fritovací automaticy s odsáváním	50	100	147	-	-	-
Fritovací automaticy bez odsávání	50	100	147	-	-	-

Kuchynská oblast						
Multifunkční spotřebiče, spotřebiče ke klieni, roztáčení, utraviní tepla, chlazení, zpracování, dopravní						
Sponky (*)	200	50	119	250	100	147
Stolní varná plotna	200	150	220	250	150	265
Mikrovlnné spotřebiče	50	10	15	-	-	-
Výhodné panele	250	400	588	-	-	-
Výhodné panele	250	400	588	-	-	-
Chladnátky (blízké)	700	-	-	-	-	-
Kuchynské stroje	175	-	-	-	-	-
Odpadní zařízení (*)	1000	-	-	-	-	-
Oblast pro rozdělování stravy						
Výděla spotřebiče teply stravy	125	200	294	-	-	-
Výděla spotřebiče studené stravy	700	-	-	-	-	-
Ukázková nápoje	300	-	-	-	-	-
Zařízení pro teply nápoje	100	200	-	-	-	-

2.2.5.2 ZÁSADY NÁVRHU VĚTRÁNÍ KUCHYNĚ

Základní požadavek při navrhování vzduchotechniky kuchyně, je dodržní vyrovnáním bilance odsávaného a příváděného vzduchu do kuchyně z důvodu vyloučení kontaminace vzduchu z přilehlých prostor. (Rovnořízák větrání \(\Sigma V_{ods} = \Sigma V_{pf} \)) Dalším požadavkem je limitní intenzita větrání, která má zamezit vzniku pocitů průvanu. V \(V_{pf} < 90m^3/(m^2h) \) [10]. Pracovní rozdíl teplot pro kuchyně se volí 8K. Útlum hluku musí být proveden tak, aby při vyšších nárocích hladina hluku nepřekročila 50dB, v běžných kuchyních je přípustné až 60dB [2].

Vzduchotechnická zařízení pro větrání skladů, připravený, nebo výdeje lze sloučit do společného odtahu s dálkovým ovládáním jednotlivých sektorů s regulací otáček ventilátorů. Objem příváděného a odváděného vzduchu musí být vyrovnán v celé kuchynské oblasti. Vestavěné motory ventilátorů musí mít krytí alespoň IP 54 s termokontakty, doporučuje se však použití ventilátorů s externě umístěnými motory.
Přiváděný čerstvý venkovní vzduch by měl být nasáván minimálně 3m nad terénem, a dále podle doporučení prospouštovat přes filtry F7 vybavené indikací znečištění. Přibližně každé 3m přívodního i odtahového potrubí musí být umístěny těsné revizní a čisticí otvory. Odpadní výfukové potrubí se pak doporučuje vyvěst nad střechu ideálně vnitřním budovy s ohledem na vyloučení možného ovlivnění sousedních budov. V rozvodech je nutné zajistit odvod kondenzátu a do přívodního i odtahového potrubí je třeba instalovat těsné uzavírací klapky [15] [16]

Po vzájemné dohodě s provozovatelem je nutno omezit používání plynových spotřebičů. Pokud se v kuchyni takové spotřebiče vyskytují, je nutno zajistit aby nebylo možné spustit samostatně část vzduchotechniky, která zajišťuje odtah znehodnoceného vzduchu, a mohlo by dojít k odklonění plamene hořáků. Nelze připustit, aby takové plynové spotřebiče byly zaústěny do vzduchotechnického potrubí. Vždy je vyžadováno, aby plynové spotřebiče byly zaústěny do komína. [16]

2.2.5.3 USPOŘÁDÁNÍ KUCHYNĚ

Samotný návrh provozního a technologického uspořádání gastronomického a kuchynského zařízení v prostoru kuchyně má zásadní vliv na složitost vzduchotechnického vedení. Zpravidla se doporučuje maximální koncentrace kuchynských zařízení s nutným odsáváním pod společný, většinou středový, zákryt. V případě že nelze tomuto požadavku vyhovět, je doporučeno alespoň kuchynská zařízení uspořádat do skupin a vytvořit tzv. „varná centra“. Vše musí být v souladu s respektováním komunikačních a pomocných pracovních ploch a komfortem při používání sousedních zařízení. [15]

2.2.5.4 NÁVRH ODSÁVÁNÍ

V praxi se používají dva základní způsoby odsávání. Prvním je klasické lokální odsávání par při vaření digestoři, umístěnou přímo nad kuchynským zařízením. Druhou možností je instalace odsávacího stropu SKV, kdy je z místnosti celoplošně odsáván znečištěný vzduch. [15]

Návrh odsávání digestoře

Rozměry digestoře by měly v půdorysu přesahovat při standardní výšce přes obrys kuchynského zařízení minimálně 200mm, směrnice VID 2052 stanovuje ještě úhel 12° mezi horní hranou zařízení a krajem aktivního průřezu digestoře. Standardní výška spodní hrany se uvažuje 2,1m, aby byla zajištěna průchodná výška. U konvektomatů a jiných spotřebičů s předními dveřmi může digestoř přesahovat až o 500 mm před předním otvor, aby bylo možné zachytit dostatečně množství unikajících par. [15] [16]
Návrh odsávacího stropu SKV

Odsávací stropy lze rozdělit do několika typů. Jejich správný výběr záleží na výšce kuchyně, výšce nadpraží oken apod. Minimální výška spodní hrany odsávacího vzduchovodu je stanovena jako \(h_{\text{min}} = 2100\text{mm} \) až \(2300\text{mm} \).

2.2.5.5 POSTUP VÝPOČTU

V současnosti většina výrobců vzduchotechnických zařízení poskytuje vlastní software, který je z hlediska návrhu rychlejší a přesnější. Např. návrhový program společnosti Atrea s. r. o. Drtivá většina těchto návrhových programů pracuje na principu výpočtu podle směrnice VDI 2052

1) Stanovení množství vznikajícího tepla \(Q_s \) [W] a vlhkosti \(D \) [g/h]

Pomocí tabulky 2.1 se stanoví produkce citelného tepla a vlhkosti od každého z kuchynských spotřebičů podle typu a jejich štítkového příkonu [kW]. Následně se zohlední faktor současnosti \(\varphi \) dle požadavků provozovatele kuchyně. Nejčastější hodnoty jsou (\(\varphi = 0,6 \) až 0,8)

\[
Q_{s,k} = Q_s \cdot b \cdot \varphi
\]

Kde \(b \) je stupeň zatížení. Uvažuje se \(b = 0,50 \) [-]

2) Termický proud vzduchu od jednotlivých zařízení \(V_{th} \) [m\(^3\)/h]

\[
V_{th} = k \cdot Q_{s,k}^{1/3} \cdot (z + 1,7 \cdot d_{h}^{1/3} \cdot r)
\]

Kde \(k \) je empiricky stanovený koeficient \(k = 18 \) [m\(^{4/3}\)W\(^{-1/3}\)h\(^{-1}\)]
\(Q_{s,k} \) je celkové konvekční tepelné zatížení

\[z \] je účinná odsávací výška pro jednotlivé zdroje

\[z_i = h_i \cdot H_0 \cdot \ell \]

kde \(h_i \) je výška osávacího vzduchotechnického zařízení,

digestoř: \(h = 2,1 \) m

ostatní: \(h = 2,5 \) m

\(H_0 \) je výška zdroje tepla nad podlahou [m]

\(d_{\text{hyd}} \) je hydraulický průměr jednotlivých zdrojů [m]

\[d_{\text{hyd}} = 2 \cdot L_0 \cdot B_0 / (L_0 \cdot B_0) \]

kde \(L_0 \) a \(B_0 \) jsou půdorysné rozměry zdroje tepla [m]

\(r \) je polohový faktor, který zohledňuje postavení digestoře v prostoru

- pro středové digestoře \(r = 1,00 \)
- pro nástěnné digestoře \(r = 0,65 \)
- pro digestoře uzavřené ze dvou stran (rohové) \(r = 0,45 \)
- pro digestoře ve výklenku (uzavřené ze 3 stran) \(r = 0,3 \)

3) **Množství odsávaného vzduchu od jednotlivých zdrojů** \(V_{\text{ods, dig}}, V_{G,\text{ods}} \) [m³/h]

\[V_{\text{ods, dig}} = V_{th} \cdot a \]

Kde \(a \) je přirážkový faktor proudu termického vzduchu

- pro zdrojové proudění – zaplavování \(a = 1,05 \) až \(1,10 \)
- pro směšovací proudění – bodový přívod \(a = 1,20 \) až \(1,25 \)

Dále je nutné z kuchyně odsávat spaliny od instalovaných plynových spotřebičů pod digestořemi

\[V_{G,\text{ods}} = 1,35 \cdot P \cdot \varphi \]

kde \(P \) je instalovaný příkon plynových spotřebičů [kW]

4a) **Množství odsávaného vzduchu z kuchyně digestořem** \(\Sigma V_{\text{ods}} \) [m³/h]

\[\Sigma V_{\text{ods}} = V_{\text{ods, dig}} + V_{th,\text{ne}} \cdot a \]

Kde \(V_{\text{ods, dig}} \) je množství vzduchu odsávané digestoři [m³/h]

\(V_{th,\text{ne}} \) je množství vzduchu odsávané mimo digestoř [m³/h]

41
Pokud je $V_{th,ne}$ menší než 10% vzduchu odsávaného digestořem ΣV_{ods}, odsávané množství vzduchu z prostoru je nutno zvýšit o množství V_a tak, aby bylo alespoň 10% z $\Sigma V_{ods,dig}$

$$\Sigma V_{th,ne} + V_a \geq 0,10 \cdot \Sigma V_{ods,dig}$$

4b) Množství odsávaného vzduchu odsávacím stropem $\Sigma V_{ods,strop}$ [m3/h]

$$\Sigma V_{ods,strop} = a \cdot \Sigma V_{th}$$

5) Kontrola vlhkostní bilance

Stanovení nutného množství odváděného vzduchu V_{ods} [m3/h]

$$V_{ods} = \frac{\Sigma m_d \cdot \varphi}{(x_{ods} - x_{pr}) \cdot \rho}$$

kde Σm_d je součet předání vodní páry od kuchynských zařízení [g/h]

$(x_{ods} - x_{pr})$ je rozdíl měrných vlhkostí vzduchu. $x_{ods} < 16,5$ g/kg s.v.

ρ je objemová hmotnost vzduchu [kg/m3]

6) Stanovení celkového množství přiváděného vzduchu do kuchyně $\Sigma V_{př}$ [m3/h]

Aby bylo zabráněno samovolné šíření vzduchu z kuchyně do okolních prostorů, je žádoucí, aby byl v kuchyni vytvořen velice mírný podtlak. Zajišťuje se tak mírným zvětšením objemového průtoku odváděného vzduchu. Toto zvětšení by se mělo pohybovat v rozmezí 3% až 5% objemového množství přiváděného vzduchu.

V tomto okamžiku výpočtu již známe množství přiváděného a odváděného vzduchu, a je možno dimenzovat tukové filtry, případně i rekuperační výměníky.

7a) Tlaková ztráta digestoř [Pa]

Celková tlaková ztráta digestoř se stanovuje jako součet všech dílčích tlakových ztrát jednotlivých prvků digestoře pro stanovený průtok vzduchu.

- odtah vzduchu [Pa]
 $\Sigma \Delta p_{ods} = \Delta p_f + \Delta p_r + \Delta p_s$

- přívod vzduchu [Pa]
 $\Sigma \Delta p_{př} = \Delta p_R + \Delta p_s + \Delta p_v$

kde Δp_f je tlaková ztráta tukových filtrů

Δp_R je tlaková ztráta rekuperačního výměníku

Δp_s je tlaková ztráta na vstupních hrdlech \(\Delta p_s = 25 \text{ až } 55 \text{ Pa}\)
7b) Tlaková ztráta odsávacích stropů

Celková tlaková ztráta přívodní a odtahové sekce se odvíjí od konkrétního typu a provedení odsávacího stropu. Výchází z rozměrů a členitosti stropu kuchyně, počtu přívodních a odvodních vzduchovodů, a počtu tukových filtrů. V praxi se k takovému výpočtu používají specifické softwarové výrobky.

2.2.6 TUKOVÉ FILTRY

Úkolem tukových filtrů je zabránit pronikání tukových a olejových aerosolů do odsávaného potrubí během tepelné úpravy pokrmů (vaření, smažení, fritování…)

Vhodné je jejich použití i do pekáren, udíren a především grilů.

Tukové lapače jsou součástí digestoří (zákrytů) a jsou vyjimatelné. Stupeň odloučení tukových a olejových částic u nerezových popř. hliníkových filtrů se pohybuje od 66% až do 92% dle typu filtru. Pokud není jiný požadavek, jsou filtry umístěny po celé ploše digestoře. [16] Kvůli snadné manipulaci by velikost filtrů neměla přesahovat 500 x 500mm. Poloha filtrů by z důvodu možného odkapávání tuku měla být v úhlu minimálně 45° s vodorovnou rovinou. Ideální je svislé umístění, kde se ve spodní části opatřují žlábkem. [2]

Tukové filtry vyžadují pravidelnou údržbu, aby nebyla snížena jejich účinnost, a stoupá jejich odpor. Intervaly mezi čištěním záleží na provozu. Obecně ale platí zásada, že čištění by mělo probíhat minimálně 2x měsíčně. Čištění se provádí běžnými čisticími prostředky. Pozornost je třeba věnovat u filtrů z hliníkového tahokovu, kde je zakázáno používat louhy a kyseliny, aby nedošlo k jeho poškození. [16]

2.2.7 EKONOMIE PROVOZU V KUCHYNÍCH

Ve většině případů není potřeba v kuchyni výměna vzduchu v plném rozsahu celého pracovního dne. Za pomocí regulačních klapek se servopohony je možné přesměrovat část, nebo celý objem vzduchu do jiných prostorů. V návrhu je třeba počítat s největším možným objemem a následně tento objem redukovat podle potřeby, aby zbytečně nevznikaly časté výměny vzduchu, než je žádoucí. Vhodným přesměrováním lze takto využívat vzduchotechniku na plný výkon, což se příznivě projeví na ekonomice provozu. Při návrhu je vhodné konzultovat časové využití prostorů s provozovatelem. V případě stanovení pracovních cyklů, je pak možné výkon přesměrovávat z jedné sekcí do druhé. Např. příprava, kuchyně, výdej jídla, umývárna nádobí. Celé větrání je pak schopna zajistit společnou jednotnou strojovnu, která svůj výkon přepíná podle časového plánu, automaticky nebo manuálně. Zde se nabízí jako vhodná varianta automatický regulační systém, který vyloučí chyby obsluhy a pracuje v závislosti na signály teplotních senzorů v jednotlivých provozech. [16]
2.3 ZÁVĚR

Rozšířující část bakalářské práce byla zaměřena na problematiku větrání kuchyní. V úvodu byly zmíněny časté problémy vzduchotechnických systémů kuchyní, jejich příčiny a důsledky. Porovnal jsem výhodnost rovnotlakého větrání se zaměřením na obrazy proudění a vhodné upořádání prvků pro přívod a odvod vzduchu z prostoru kuchyně. Popsal jsem výhodnost větrání směšováním nebo zaplavováním. V další části jsem se pak věnoval návrhu větrání kuchyně dle legislativy. Uvedl jsem zásady návrhu vzduchotechniky dle VDI 2052 a postupy výpočtů pro návrh kvalitní vzduchotechniky odpovídající konkrétnímu provozu. Závěr rozšířující části byl věnován tukovým filtrům a regulaci s ohledem na ekonomii provozu.
POUŽITÉ ZDROJE

LITERATURA

LEGISLATIVNÍ PŘEDPISY, NORMY

INTERNETOVÉ ZDROJE

TABULKY

Tabulka 1.1 Smluvní odpory při přestupu tepla [6] ... 12
Tabulka 1.2 Výpočet součinitele prostupu tepla U jednotlivých konstrukcí.................. 12
Tabulka 1.3- Výpočet součinitele prostupu tepla výplní otvorů Uw............................. 13
Tabulka 1.4 - Tepelné ztráty místností 2.NP ... 16
Tabulka 1.5 - Intenzity celkové sluneční radiace ... 17
Tabulka 1.6 – Intenzity sluneční radiace I_0 ... 17
Tabulka 1.7 - Rovnocenné sluneční teploty vzduchu [5]... 19
Tabulka 1.8 – Produkce tepla a vodní páry od lidi [5]... 20
Tabulka 1.9 - Produkce tepla od osvětlení [5][3] .. 21
Tabulka 1.10 – Tepelné zisky místností 2.NP ... 22
Tabulka 1.11- Zdroje vodní páry a množství její produkce [9].................................. 23
Tabulka 1.12 - Objem přiváděného vzduchu do místností... 25
Tabulka 1.13 - Výpočet tlakových ztrát hlavní větvě... 29
Tabulka 2.1- Produkce specifického citelného a latentního tepla a vlhkosti [15]...... 38

OBRÁZKY

Obrázek 1.1 Architektonický návrh .. 10
Obrázek 1.2 Koncept větrání budovy.. 11
Obrázek 1.3 - Oslunění výplně otvoru[5].. 18
Obrázek 1.5 - Návrhový software ATREA s. r. o. .. 30
Obrázek 2.1- Doporučené přesahy přes obrys kuchynského zařízení [16]............. 40
SEZNAM PŘÍLOH

1. Technická zpráva
2. Technická specifikace
3. Výkres č. 1 – Rozmístění distribučních prvků
4. Výkres č. 2 – Návrh trasy VZT potrubí
5. Výkres č. 3 – Strojovna vzduchotechniky
6. Výkres č. 4 – Podélný řez A-A´ VZT restaurace
7. Výkres č. 5 – Půdorys 2.NP - Restaurace
8. Výpočet tepelných ztrát
9. Výpočet tepelných zisků
10. Množství přiváděného vzduchu
11. Tlakové ztráty vzduchotechnického potrubí
12. Návrh Distribučních prvků
13. Skladby konstrukcí
14. Technický list – Mandík - Výstup s vířivým výtokem vzduchu
15. Technický list – Systemair - Perforated exhaust diffuser TSFI
16. Technický list – Systemair – Odvodní/Přívodní difuzory TFF-C
17. Technický list – Fan Coil jednotky Sinclair
18. Výkaz prvků